Science.gov

Sample records for rat forebrain subventricular

  1. Potassium currents in precursor cells isolated from the anterior subventricular zone of the neonatal rat forebrain.

    PubMed

    Stewart, R R; Zigova, T; Luskin, M B

    1999-01-01

    The progenitor cells from the anterior part of the neonatal subventricular zone, the SVZa, are unusual in that, although they undergo division, they have a neuronal phenotype. To characterize the electrophysiological properties of the SVZa precursor cells, recordings were made of potassium and sodium currents from SVZa cells that were removed from postnatal day 0-1 rats and cultured for 1 day. The properties of the delayed rectifier and A-type potassium currents were described by classical Hodgkin and Huxley analyses of activation and inactivation. In addition, cells were assessed under current clamp for their ability to generate action potentials. The A-type potassium current (IK(A)) was completely inactivated at a holding potential of -50 mV. The remaining potassium current resembled the delayed rectifier current (IK(DR)) in that it was blocked by tetraethylammonium (TEA; IC50 4.1 mM) and activated and inactivated slowly compared with IK(A). The conductance-voltage (G-V) curve revealed that G increased continuously from 0.2 nS at -40 mV to a peak of 2.6 nS at +10 or +20 mV, and then decreased for voltages above +30 mV. Activation time constants were largest at -40 mV ( approximately 11 ms) and smallest at 100 mV ( approximately 1.5 ms). The properties of IK(A) were studied in the presence of 20 mM TEA, to block IK(DR), and from a holding potential of -15 mV, to inactivate both IK(DR) and IK(A). IK(A) was then allowed to recover from inactivation to negative potentials during 200- to 800-ms pulses. Recovery from inactivation was fastest at -130 mV ( approximately 21 ms) and slowest at -90 mV ( approximately 135 ms). Inactivation was voltage independent from -60 to +60 mV with a time constant of approximately 15 ms. At steady state, IK(A) was half inactivated at -90 mV. GK(A) increased from 0.2 nS at -60 mV to a peak of 2.4 nS at +40 mV. Finally, the activation time constants ranged from approximately 1.9 ms at -50 mV to 0.7 ms at +60 mV. The properties of IK

  2. Mosaic Subventricular Origins of Forebrain Oligodendrogenesis

    PubMed Central

    Azim, Kasum; Berninger, Benedikt; Raineteau, Olivier

    2016-01-01

    In the perinatal as well as the adult CNS, the subventricular zone (SVZ) of the forebrain is the largest and most active source of neural stem cells (NSCs) that generates neurons and oligodendrocytes (OLs), the myelin forming cells of the CNS. Recent advances in the field are beginning to shed light regarding SVZ heterogeneity, with the existence of spatially segregated microdomains that are intrinsically biased to generate phenotypically distinct neuronal populations. Although most research has focused on this regionalization in the context of neurogenesis, newer findings underline that this also applies for the genesis of OLs under the control of specific patterning molecules. In this mini review, we discuss the origins as well as the mechanisms that induce and maintain SVZ regionalization. These come in the flavor of specific signaling ligands and subsequent initiation of transcriptional networks that provide a basis for subdividing the SVZ into distinct lineage-specific microdomains. We further emphasize canonical Wnts and FGF2 as essential signaling pathways for the regional genesis of OL progenitors from NSCs of the dorsal SVZ. This aspect of NSC biology, which has so far received little attention, may unveil new avenues for appropriately recruiting NSCs in demyelinating diseases. PMID:27047329

  3. Comparative Analysis of the Subventricular Zone in Rat, Ferret and Macaque: Evidence for an Outer Subventricular Zone in Rodents

    PubMed Central

    Camacho, Jasmin; Antczak, Jared L.; Prakash, Anish N.; Cziep, Matthew E.; Walker, Anita I.; Noctor, Stephen C.

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features

  4. The nerve growth factor administrated as eye drops activates mature and precursor cells in subventricular zone of adult rats.

    PubMed

    Tirassa, Paola

    2011-06-01

    The possibility to take advantage from the nerve growth factor (NGF) ability to induce recovery of damaged tissue has been largely explored in animal models and humans. Recently, the successful use of the ocular administration of NGF in ophthalmology, and the evidences that from the eyes NGF can access to the brain have stimulated new fields of research and open further perspectives to the clinical application of this neurotrophin. In our previous studies we have demonstrated the efficacy of NGF eye drop treatment to improved behavioural deficits and recover structural and biochemical alterations occurring follow brain lesion in animals. Since NGF exerts neuroreparative effects in brain by acting on mature neurons and neuronal precursors localised in germinal subventricular zone (SVZ), the present study has been aimed to evaluate the effects of NGF eye drop administration on the expression of the mitotic marker Ki67 in brain of adult rats. We found that a single ocular administration (10 μl) of 200 μg/mL NGF solution is sufficient to enhance the distribution of Ki67 positive cells also expressing p75 neurotrophin receptors in the proliferating layer of the SVZ. In addition, NGF treatment induces an increase of levels of brain derived neurotrophic factor (BDNF) in forebrain. This data further supports the efficacy of ocular applied NGF to affect brain activities and suggests that NGF also by inducing local factors, including BDNF, can activate the machinery regulating the proliferation and maturation of neuronal precursor in brain.

  5. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  6. Local administration of AAV-BDNF to subventricular zone induces functional recovery in stroke rats.

    PubMed

    Yu, Seong-Jin; Tseng, Kuan-Yin; Shen, Hui; Harvey, Brandon K; Airavaara, Mikko; Wang, Yun

    2013-01-01

    Migration of new neuroprogenitor cells (NPCs) from the subventricular zone (SVZ) plays an important role in neurorepair after injury. Previous studies have shown that brain derived neurotrophic factor (BDNF) enhances the migration of NPCs from SVZ explants in neonatal mice in vitro. The purpose of this study was to identify the role of BDNF in SVZ cells using AAV-BDNF in an animal model of stroke. BDNF protein production after AAV-BDNF infection was verified in primary neuronal culture. AAV-BDNF or AAV-RFP was injected into the left SVZ region of adult rats at 14 days prior to right middle cerebral artery occlusion (MCAo). SVZ tissues were collected from the brain and placed in Metrigel cultures 1 day after MCAo. Treatment with AAV-BDNF significantly increased the migration of SVZ cells in the stroke brain in vitro. In another set of animals, AAV-GFP was co-injected with AAV-BDNF or AAV-RFP to label cells in left SVZ prior to right MCAo. Local administration of AAV-BDNF significantly enhanced recovery of locomotor function and migration of GFP-positive cells from the SVZ toward the lesioned hemisphere in stroke rats. Our data suggest that focal administration of AAV-BDNF to the SVZ increases behavioral recovery post stroke, possibly through the enhancement of migration of cells from SVZ in stroke animals. Regional manipulation of BDNF expression through AAV may be a novel approach for neurorepair in stroke brains.

  7. Ocular nerve growth factor administration counteracts the impairment of neural precursor cell viability and differentiation in the brain subventricular area of rats with streptozotocin-induced diabetes.

    PubMed

    Tirassa, Paola; Maccarone, Mattia; Carito, Valentina; De Nicolò, Sara; Fiore, Marco

    2015-05-01

    The ocular administration of nerve growth factor (NGF) as eye drops (oNGF) has been shown to exert protective effects in forebrain-injured animal models, including adult diabetes induced by a single injection of streptozotocin (STZ) (60 mg/kg body weight). This type 1 diabetes model was used in this study to investigate whether oNGF might extend its actions on neuronal precursors localised in the subventricular zone (SVZ). NGF or saline was administrated as eye drops twice daily for 2 weeks in rats with STZ-induced diabetes and healthy control rats. The expression of mature and precursor NGF and the NGF receptors, tropomyosin-related kinase A and neurotrophin receptor p75, and the levels of DNA fragmentation were analysed by ELISA and western blotting. Incorporation of bromodeoxyuridine was used to trace newly formed cells. Nestin, polysialylated neuronal cell adhesion molecule (PSA-NCAM), doublecortin (DCX) and glial fibrillary acidic protein antibodies were used to identify the SVZ cells by confocal microscopy. It was found that oNGF counteracts the STZ-induced cell death and the alteration of mature/pro-NGF expression in the SVZ. It also affects the survival and differentiation of SVZ progenitors. In particular, oNGF counteracts the reduction in the number of cells expressing PSA-NCAM/DCX (neuroblast type A cells) and the related reductions in the number and distribution of nestin/DCX-positive cells (C-type cells), or glia-committed cells (type B cells), observed in the SVZ of diabetic rats. These findings show that oNGF treatment counteracts the effect of type 1 diabetes on neuronal precursors in the SVZ, and further support the neuroprotective and reparative role of oNGF in the brain.

  8. Prenatal cocaine exposure alters progenitor cell markers in the subventricular zone of the adult rat brain.

    PubMed

    Patel, Dhyanesh Arvind; Booze, Rosemarie M; Mactutus, Charles F

    2012-02-01

    Long-term consequences of early developmental exposure to drugs of abuse may have deleterious effects on the proliferative plasticity of the brain. The purpose of this study was to examine the long-term effects of prenatal exposure to cocaine, using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, on the proliferative cell types of the subventricular zones (SVZ) in the adult (180 days-old) rat brain. Employing immunocytochemistry, the expression of GFAP(+) (type B cells) and nestin(+)(GFAP(-)) (type C and A cells) staining was quantified in the subcallosal area of the SVZ. GFAP(+) expression was significantly different between the prenatal cocaine treated group and the vehicle (saline) control group. The prenatal cocaine treated group possessed significantly lower GFAP(+) expression relative to the vehicle control group, suggesting that prenatal cocaine exposure significantly reduced the expression of type B neural stem cells of the SVZ. In addition, there was a significant sex difference in nestin(+) expression with females showing approximately 8-13% higher nestin(+) expression compared to the males. More importantly, a significant prenatal treatment condition (prenatal cocaine, control) by sex interaction in nestin(+) expression was confirmed, indicating different effects of cocaine based on sex of the animal. Specifically, prenatal cocaine exposure eliminated the basal difference between the sexes. Collectively, the present findings suggest that prenatal exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, can selectively alter the major proliferative cell types in the subcallosal area of the SVZ in an adult rat brain, and does so differently for males and females. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. Prenatal cocaine exposure alters progenitor cell markers in the subventricular zone of the adult rat brain

    PubMed Central

    Patel, Dhyanesh Arvind; Booze, Rosemarie M.; Mactutus, Charles F.

    2013-01-01

    Long-term consequences of early developmental exposure to drugs of abuse may have deleterious effects on the proliferative plasticity of the brain. The purpose of this study was to examine the long-term effects of prenatal exposure to cocaine, using the IV route of administration and doses that mimic the peak arterial levels of cocaine use in humans, on the proliferative cell types of the subventricular zones (SVZ) in the adult (180 days-old) rat brain. Employing immunocytochemistry, the expression of GFAP+ (type B cells) and nestin+(GFAP−) (Type C and A cells) staining was quantified in the subcallosal area of the SVZ. GFAP+ expression was significantly different between the prenatal cocaine treated group and the vehicle (saline) control group. The prenatal cocaine treated group possessed significantly lower GFAP+ expression relative to the vehicle control group, suggesting that prenatal cocaine exposure significantly reduced the expression of type B neural stem cells of the SVZ. In addition, there was a significant sex difference in nestin+ expression with females showing approximately 8–13% higher nestin+ expression compared to the males. More importantly, a significant prenatal treatment condition (prenatal cocaine, control) by sex interaction in nestin+ expression was confirmed, indicating different effects of cocaine based on sex of the animal. Specifically, prenatal cocaine exposure eliminated the basal difference between the sexes. Collectively, the present findings suggest that prenatal exposure to cocaine, when delivered via a protocol designed to capture prominent features of recreational usage, can selectively alter the major proliferative cell types in the subcallosal area of the SVZ in an adult rat brain, and does so differently for males and females. PMID:22119286

  10. Consequential apoptosis in the cerebellum following injury to the developing rat forebrain.

    PubMed

    Taylor, Deanna L; Joashi, Umesh C; Sarraf, Catherine; Edwards, A David; Mehmet, Huseyin

    2006-07-01

    In focal brain lesions, alterations in blood flow and cerebral metabolism can be detected in brain areas remote from the primary injury. The cellular consequences of this phenomenon, originally termed diaschisis, are not fully understood. Here, we report that in two distinct models of forebrain injury, neuronal death in the cerebellum, a site distant to the primary injury, results as consequence of neuronal loss in the forebrain. Fourteen-day-old rats were subjected to unilateral forebrain injury, achieved by either hypoxia-ischemia (right carotid artery ligation and hypoxia) or direct needle injury to brain tissue. At defined times after injury, the presence of apoptosis was investigated by cell morphology, in situ end labeling, electron microscopy and poly-ADP-ribose polymerase (PARP) cleavage. Injury to the rat forebrain following hypoxia-ischemia increased apoptosis in the internal granular and Purkinje cell layers of the cerebellum, a site distant to that of the primary injury. The number of apoptotic cells in the cerebellum was significantly related to cell death in the hippocampus. Similarly, direct needle injury to the forebrain resulted in extensive apoptotic cell death in the cerebellum. These results emphasize the intimate relationship between defined neuronal populations in relatively distant brain areas and suggest a cellular basis for diaschisis.

  11. Vimentin in ependymal and subventricular proliferative zone cells of rat telencephalon.

    PubMed

    Kirik, O V; Korzhevskii, D E

    2013-02-01

    Ependymal cells of cerebral ventricles are the most probable candidate progenitor cells. We studied ependymal and subventricular zone cells expressing intermediate filament protein vimentin. The results suggest that the ventricular ependyma represent a homogenous cell population. Some ependymocytes have long processes contacting with blood vessels, which makes them similar to tanycytes of the third cerebral ventricle. New data on the structure of ependymocyte processes attest to their active involvement into creation of a special microenvironment for neural stem cells of the subventricular proliferative zone.

  12. Orexin A-induced enhancement of attentional processing in rats: role of basal forebrain neurons

    PubMed Central

    Zajo, Kristin N.; Fadel, Jim R.; Burk, Joshua A.

    2015-01-01

    Rationale Orexins are neuropeptides released in multiple brain regions from neurons that originate within the lateral hypothalamus and contiguous perfornical area. The basal forebrain, a structure implicated in attentional processing, receives orexinergic inputs. Our previous work demonstrated that administration of an orexin-1 receptor antagonist, SB-334867, systemically or via infusion directly into the basal forebrain, can disrupt performance in a task that places explicit demands on attentional processing. Objectives Given that the orexin-1 receptor binds orexin A with high affinity, we tested whether orexin A could enhance attention in rats. Methods Attentional performance was assessed using a task that required discrimination of variable duration visual signals from trials when no signal was presented. We also tested whether infusions of orexin A into the lateral ventricle could attenuate deficits following lesions of medial prefrontal cortical cholinergic projections that arise from the basal forebrain. Results Infusions of orexin A into the basal forebrain attenuated distracter-induced decreases in attentional performance. Orexin A attenuated deficits in lesioned animals when a visual distracter was presented. Conclusion The present results support the view that orexin A can enhance attentional performance via actions in the basal forebrain and may be beneficial for some conditions characterized by attentional dysfunction due to disruption of cortical cholinergic inputs. PMID:26534765

  13. Enriched environment influences brain-derived neurotrophic factor levels in rat forebrain after focal stroke.

    PubMed

    Zhao, L R; Risedal, A; Wojcik, A; Hejzlar, J; Johansson, B B; Kokaia, Z

    2001-06-15

    Tissue levels of brain-derived neurotrophic factor (BDNF) protein were studied using enzyme immunoassay in different forebrain regions in the ipsi- and contralateral hemispheres of rats housed under enriched or standard conditions after the middle cerebral artery ligation. BDNF levels in the ipsilateral to ligation side was significantly higher only in the frontal cortex of standard as compared to enriched rats. However, BDNF overall was more abundant in standard than in enriched group. In addition, BDNF levels detected in the hippocampus and frontal cortex on the ischemic side of standard rats was higher as compared to contralateral side. The present study shows that housing conditions after permanent middle cerebral artery ligation leads to differential regulation of BDNF protein levels in forebrain regions which might have important implication for post-ischemic recovery.

  14. Forebrain metabolic activation induced by the repetition of audiogenic seizures in Wistar rats.

    PubMed

    Pereira de Vasconcelos, A; Vergnes, M; Boyet, S; Marescaux, C; Nehlig, A

    1997-07-11

    In Wistar rats susceptible to audiogenic seizures (Wistar AS) inbred in our laboratory, the exposure to an intense sound induces an epileptic seizure characterized by a running episode followed by a tonic phase showing the major involvement of brainstem structures. After 10-20 sound-induced seizures, development of facial and forelimb clonus and/or tonic-clonic seizures characterize the generalization from brainstem to the forebrain as a result of seizure repetition. In order to specify the anatomical substrates of repeated audiogenic seizures in Wistar AS, we used the 2-deoxyglucose (2DG) technique over a 5 min period to map the midbrain and forebrain structures activated by audiogenic seizures before and after seizure repetition. In naive Wistar AS, six of the 22 structures showed a significant 20-56% increase in relative optical densities compared to non-epileptic controls; these were central and medial amygdala nuclei, perirhinal cortex, medial septum, subthalamic and caudate nuclei. In kindled Wistar AS, 12 additional structures showed a significant 16-121% increase in 2DG labeling. These structures were the substantia nigra, all layers of the hippocampus, the basolateral amygdala, three thalamic nuclei, the frontal motor and prefrontal cortices. In conclusion, the metabolic activation of midbrain and forebrain areas in kindled versus naive Wistar AS rats reflects the changes in the nature of the seizures and the involvement of these structures in the spread of seizure activity from the brainstem to the forebrain during seizure repetition.

  15. Development of glucocorticoid receptor regulation in the rat forebrain: Implications for adverse effects of glucocorticoids in preterm infants

    EPA Science Inventory

    Glucocorticoids are the consensus treatment to avoid respiratory distress in preterm infants but there is accumulating evidence that these agents evoke long-term neurobehavioral deficits. Earlier, we showed that the developing rat forebrain is far more sensitive to glucocorticoi...

  16. Development of glucocorticoid receptor regulation in the rat forebrain: Implications for adverse effects of glucocorticoids in preterm infants

    EPA Science Inventory

    Glucocorticoids are the consensus treatment to avoid respiratory distress in preterm infants but there is accumulating evidence that these agents evoke long-term neurobehavioral deficits. Earlier, we showed that the developing rat forebrain is far more sensitive to glucocorticoi...

  17. Receptors for GRP/bombesin-like peptides in the rat forebrain

    SciTech Connect

    Wolf, S.S.; Moody, T.W.

    1985-01-01

    Binding sites in the rat forebrain were characterized using ( SVI-Tyr4)bombesin as a receptor probe. Pharmacology experiments indicate that gastrin releasing peptide (GRP) and the GRP fragments GRP as well as Ac-GRP inhibited radiolabeled (Tyr4)bombesin binding with high affinity. Biochemistry experiments indicated that heat, N-ethyl maleimide or trypsin greatly reduced radiolabeled (Tyr4)bombesin binding. Also, autoradiographic studies indicated that highest grain densities were present in the stria terminalis, periventricular and suprachiasmatic nucleus of the hypothalamus, dorsomedial and rhomboid thalamus, dentate gyrus, hippocampus and medial amygdaloid nucleus. The data suggest that CNS protein receptors, which are discretely distributed in the rat forebrain, may mediate the action of endogenous GRP/bombesin-like peptides.

  18. Forebrain and brain stem neural circuits contribute to altered sympathetic responses to heating in senescent rats.

    PubMed

    Kenney, Michael J; Fels, Richard J

    2003-11-01

    Acute heating in young rats increases visceral sympathetic nerve discharge (SND); however, renal and splanchnic SND responses to hyperthermia are attenuated in senescent compared with young Fischer 344 (F344) rats (Kenney MJ and Fels RJ. Am J Physiol Regul Integr Comp Physiol 283: R513-R520, 2002). Central mechanisms by which aging alters visceral SND responses to heating are unknown. We tested the hypothesis that forebrain neural circuits are involved in suppressing sympathoexcitatory responses to heating in chloralose-anesthetized, senescent F344 rats. Renal and splanchnic SND responses to increased (38 degrees C-41 degrees C) internal temperature were determined in midbrain-transected (MT) and sham-MT young (3-mo-old), mature (12-mo-old), and senescent (24-mo-old) F344 rats and in cervical-transected (CT) and sham-CT senescent rats. Renal SND remained unchanged during heating in MT and sham-MT senescent rats but was increased in CT senescent rats. Splanchnic SND responses to heating were higher in MT vs. sham-MT senescent rats and in CT vs. MT senescent rats. SND responses to heating were similar in MT and sham-MT young and mature rats. Mean arterial pressure (MAP) was increased during heating in MT but not in sham-MT senescent rats, whereas heating-induced increases in MAP were higher in sham-MT vs. MT young rats. These data suggest that in senescent rats suppression of splanchnic SND to heating involves forebrain and brain stem neural circuits, whereas renal suppression is mediated solely by brain stem neural circuits. These results support the concept that aging alters the functional organization of pathways regulating SND and arterial blood pressure responses to acute heating.

  19. Hyperbaric oxygen treatment promotes neural stem cell proliferation in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage.

    PubMed

    Feng, Zhichun; Liu, Jing; Ju, Rong

    2013-05-05

    Hyperbaric oxygen therapy for the treatment of neonatal hypoxic-ischemic brain damage has been used clinically for many years, but its effectiveness remains controversial. In addition, the mechanism of this potential neuroprotective effect remains unclear. This study aimed to investigate the influence of hyperbaric oxygen on the proliferation of neural stem cells in the subventricular zone of neonatal Sprague-Dawley rats (7 days old) subjected to hypoxic-ischemic brain damage. Six hours after modeling, rats were treated with hyperbaric oxygen once daily for 7 days. Immunohistochemistry revealed that the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells in the subventricular zone of neonatal rats increased at day 3 after hypoxic-ischemic brain damage and peaked at day 5. After hyperbaric oxygen treatment, the number of 5-bromo-2'-deoxyuridine positive and nestin positive cells began to increase at day 1, and was significantly higher than that in normal rats and model rats until day 21. Hematoxylin-eosin staining showed that hyperbaric oxygen treatment could attenuate pathological changes to brain tissue in neonatal rats, and reduce the number of degenerating and necrotic nerve cells. Our experimental findings indicate that hyperbaric oxygen treatment enhances the proliferation of neural stem cells in the subventricular zone of neonatal rats with hypoxic-ischemic brain damage, and has therapeutic potential for promoting neurological recovery following brain injury.

  20. Increase in cortical endocannabinoid signaling in a rat model of basal forebrain cholinergic dysfunction.

    PubMed

    Llorente-Ovejero, Alberto; Manuel, Iván; Giralt, Maria Teresa; Rodríguez-Puertas, Rafael

    2017-08-18

    The basal forebrain cholinergic pathways progressively degenerate during the progression of Alzheimer's disease, leading to an irreversible impairment of memory and thinking skills. The stereotaxic lesion with 192IgG-saporin in the rat brain has been used to eliminate basal forebrain cholinergic neurons and is aimed at emulating the cognitive damage described in this disease in order to explore its effects on behavior and on neurotransmission. Learning and memory processes that are controlled by cholinergic neurotransmission are also modulated by the endocannabinoid (eCB) system. The objective of the present study is to evaluate the eCB signaling in relation to the memory impairment induced in adult rats following a specific cholinergic lesion of the basal forebrain. Therefore, CB1 receptor-mediated signaling was analyzed using receptor and functional autoradiography, and cellular distribution by immunofluorescence. The passive avoidance test and histochemical data revealed a relationship between impaired behavioral responses and a loss of approximately 75% of cholinergic neurons in the nucleus basalis magnocellularis (NBM), accompanied by cortical cholinergic denervation. The decrease in CB1 receptor density observed in the hippocampus, together with hyperactivity of eCB signaling in the NBM and cortex, suggest an interaction between the eCB and cholinergic systems. Moreover, following basal forebrain cholinergic denervation, the presynaptic GABAergic immunoreactivity was reduced in cortical areas. In conclusion, CB1 receptors present in presynaptic GABAergic terminals in the hippocampus are down regulated, but not those in cortical glutamatergic synapses. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Time course of ischemia/reperfusion-induced oxidative modification of neural proteins in rat forebrain.

    PubMed

    Lehotský, J; Murín, R; Strapková, A; Uríková, A; Tatarková, Z; Kaplán, P

    2004-12-01

    Time course of oxidative modification of forebrain neural proteins was investigated in the rat model of global and partial cerebral ischemia/reperfusion. Animals were subjected to 4-vessel occlusion for 15 min (global ischemia). After the end of ischemia and at different reperfusion times (2, 24 and 48 h), lipoperoxidation-dependent and direct oxidative modification neural protein markers were measured in the forebrain total membrane fraction (tissue homogenate). Ischemia itself causes significant changes only in levels of tryptophan and bityrosine fluorescence when compared to controls. All tested parameters of protein modification altered significantly and were maximal at later reperfusion stage. Content of carbonyl group in re-flow period steadily increased and culminated at 48 h of reperfusion. The highest increase in the fluorescence of bityrosines was detected after 24 h of reperfusion and was statistically significant to both sham operated and ischemic groups. The changes in fluorescence intensity of tryptophan decreased during a reperfusion time dependent manner. Formation of lysine conjugates with lipoperoxidation end-products significantly increased only at later stages of reperfusion. Total forebrain membranes from animals subjected to 3-vessel occlusion model to 15 min (partial ischemia) show no altered content of oxidatively modified proteins compared to controls. Restoration of blood flow for 24 h significantly decreased only fluorescence of aromatic tryptophan. Partial forebrain ischemia/reperfusion resulted in no detectable significant changes in oxidative products formation in extracerebral tissues (liver and kidney) homogenates. Our results suggest that global ischemia/reperfusion initiates both the lipoperoxidation-dependent and direct oxidative modifications of neural proteins. The findings support the view that spatial and temporal injury at later stages of ischemic insult at least partially involves oxidative stress-induced amino acid

  2. Acute uptake inhibition increases extracellular serotonin in the rat forebrain.

    PubMed

    Rutter, J J; Auerbach, S B

    1993-06-01

    The effect of acute uptake inhibition on serotonin (5-HT) in the rat central nervous system was monitored by using in vivo dialysis. Peripheral administration of the selective 5-HT uptake blocker, fluoxetine, caused a dose-dependent increase in extracellular 5-HT in both the diencephalon and the striatum. Administration of fluoxetine or sertraline, another selective 5-HT uptake inhibitor, caused a prolonged (24 hr) increase in 5-HT and decrease in 5-hydroxyindoleacetic acid. In addition, fluoxetine and sertraline attenuated the 5-HT releasing effect of fenfluramine administered 24 hr later. Local infusion of fluoxetine into the diencephalon caused an increase in 5-HT that was twice as large as the effect of peripheral injection. Peripheral fluoxetine, by enhancing extracellular 5-HT in the raphe, probably resulted in activation of somatodendritic autoreceptors and inhibition of 5-HT neuronal discharge. Thus, the increase in 5-HT in the diencephalon after peripheral fluoxetine presumably reflected a balance between decreased release and inhibition of reuptake. In support of this, after first infusing fluoxetine into the diencephalon to maximally block reuptake, peripheral injection of the uptake inhibitor caused a decrease in 5-HT.

  3. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats

    PubMed Central

    Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-01-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning. PMID:27051340

  4. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats.

    PubMed

    Dejanovic, Bratislav; Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-03-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning.

  5. Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology

    SciTech Connect

    Ginsberg, M.D.; Graham, D.I.; Busto, R.

    1985-10-01

    Regional patterns of cerebral glucose utilization (rCMRglc) and blood flow (rCBF) were examined in the early recovery period following transient forebrain ischemia in order to correlate early postischemic physiological events with regionally selective patterns of ischemic neuropathology. Wistar rats were subjected to 30 or 60 minutes of graded forebrain ischemia by a method combining unilateral occlusion of the common carotid artery with moderate elevation of intracranial pressure and mild hypotension; this procedure results in a high-grade ischemic deficit affecting chiefly the lateral neocortex, striatum, and hippocampus ipsilateral to the carotid occlusion. Simultaneous measurements of rCMRglc and rCBF made in regional tissue samples after 2 and 4 hours of postischemic recirculation using a double-tracer radioisotopic strategy revealed a disproportionately high level of glucose metabolism relative to blood flow in the early postischemic striatum, owing to the resumption of nearly normal rCMRglc in the face of depressed flow. In contrast, the neocortex, which had been equally ischemic, showed parallel depressions of both metabolism and blood flow during early recovery. Light microscopy at 4 and 8 hours after recovery revealed the striatum to be the predominant locus of ischemic neuronal alterations, whereas neocortical lesions were much less prominent in extent and severity at this time. The resumption of normal levels of metabolism in the setting of a disproportionate depression of rCBF in the early postischemic period may accentuate the process of neuronal injury initiated by ischemia and may contribute to the genesis of neuronal necrosis in selectively vulnerable areas of the forebrain.

  6. Influence of AMPA/kainate receptors on extracellular 5-hydroxytryptamine in rat midbrain raphe and forebrain

    PubMed Central

    Tao, Rui; Ma, Zhiyuan; Auerbach, Sidney B

    1997-01-01

    The regulation of 5-hydroxytryptamine (5-HT) release by excitatory amino acid (EAA) receptors was examined by use of microdialysis in the CNS of freely behaving rats. Extracellular 5-HT was measured in the dorsal raphe nucleus (DRN), median raphe nucleus (MRN), nucleus accumbens, hypothalamus, frontal cortex, dorsal and ventral hippocampus. Local infusion of kainate produced increases in extracellular 5-HT in the DRN and MRN. Kainate infusion into forebrain sites had a less potent effect. In further studies of the DRN and nucleus accumbens, kainate-induced increases in extracellular 5-HT were blocked by the EAA receptor antagonists, kynurenate and 6,7-dinitroquinoxaline-2,3-dione (DNQX). The effect of infusing kainate into the DRN or nucleus accumbens was attenuated or abolished by tetrodotoxin (TTX), suggesting that the increase in extracellular 5-HT is dependent on 5-HT neuronal activity. In contrast, ibotenate-induced lesion of intrinsic neurones did not attenuate the effect of infusing kainate into the nucleus accumbens. Thus, the effect of kainate in the nucleus accumbens does not depend on intrinsic neurones. Infusion of α-amino-3-hydroxy-5-methyl-4-isoxazolaproprionate (AMPA) into the DRN and nucleus accumbens induced nonsignificant changes in extracellular 5-HT. Cyclothiazide and diazoxide, which attenuate receptor desensitization, greatly enhanced the effect of AMPA on 5-HT in the DRN, but not in the nucleus accumbens. In conclusion, AMPA/kainate receptors regulate 5-HT in the raphe and in forebrain sites. PMID:9283707

  7. Nitric oxide modulates the discharge rate of basal forebrain neurones: a study in freely moving rats.

    PubMed

    Kostin, Andrey; Stenberg, Dag; Porkka-Heiskanen, Tarja

    2009-12-01

    In urethane-anaesthetized rats the infusion of a nitric oxide (NO)-donor [NOC-18, 1 mM (DETA/NO); 2,2'-(hydroxynitrosohydrazino)bis-ethanamine)] into the basal forebrain (BF) inhibited the discharge rate of most neurones, suggesting that NO may promote sleep via inhibition of wake-promoting neurones in the BF. However, this hypothesis still needs to be confirmed in freely moving rats. The objective of this study was to examine whether NO modulates the discharge rate of BF neurones in freely moving rats in a similar manner to anaesthetized rats. We measured the discharge rates of BF neurones in freely moving rats during microdialysis infusion of a NO-donor (1 mm; NOC-18) in different vigilance states. Neurones were characterized as wake (W)-on (51.8%), W-off (28.6%) and W/non-rapid eye movement (REM)-independent (21.4%) based on their discharge profiles during wakefulness (W) and non-REM sleep. The NO-donor affected the discharge rate of most BF neurones during quiet wakefulness (QW; 55%) and non-REM sleep (64%). The most prominent response in all neuronal groups was a decrease in the discharge rate during QW and non-REM sleep. A small subpopulation of neurones increased the discharge rate. The increase in NO in the BF during prolonged wakefulness may facilitate sleep via inhibition of wake-promoting neurones.

  8. Integrated Effects of Leptin in the Forebrain and Hindbrain of Male Rats

    PubMed Central

    Harris, Ruth B. S.

    2013-01-01

    Leptin receptors (ObRs) in the forebrain and hindbrain have been independently recognized as important mediators of leptin responses. It is unclear how leptin activity in these areas is integrated. We tested whether both forebrain and hindbrain ObRs have to be activated simultaneously to change energy balance and to maintain metabolic homeostasis. Previous studies used acute leptin injections in either the third ventricle (1–5 μg) or the fourth ventricle (3–10 μg); here we used 12-day infusions of low doses of leptin in one or both ventricles (0.1 μg/24 h in third, 0.6 μg/24 h in fourth). Male Sprague Dawley rats were fitted with third and fourth ventricle cannulas, and saline or leptin was infused from Alzet pumps for 6 or 12 days. Rats that received leptin into only the third or the fourth ventricle were not different from controls that received saline in both ventricles. By contrast, rats with low-dose leptin infusions into both the third and fourth ventricle showed a dramatic 60% reduction in food intake that was reversed on day 6, a 20% weight loss that stabilized on day 6, and a 50% decrease in body fat at day 12 despite the correction of food intake. They displayed normal activity and maintained energy expenditure despite weight loss, indicating inappropriately high thermogenesis that coincided with increased signal transducer and activator of transcription 3 (STAT3) phosphorylation in the brainstem. Altogether, these findings show that with low doses of leptin, chronic activation of both hypothalamic and brainstem ObRs is required to reduce body fat. PMID:23698719

  9. Integrated effects of leptin in the forebrain and hindbrain of male rats.

    PubMed

    Desai, Bhavna N; Harris, Ruth B S

    2013-08-01

    Leptin receptors (ObRs) in the forebrain and hindbrain have been independently recognized as important mediators of leptin responses. It is unclear how leptin activity in these areas is integrated. We tested whether both forebrain and hindbrain ObRs have to be activated simultaneously to change energy balance and to maintain metabolic homeostasis. Previous studies used acute leptin injections in either the third ventricle (1-5 μg) or the fourth ventricle (3-10 μg); here we used 12-day infusions of low doses of leptin in one or both ventricles (0.1 μg/24 h in third, 0.6 μg/24 h in fourth). Male Sprague Dawley rats were fitted with third and fourth ventricle cannulas, and saline or leptin was infused from Alzet pumps for 6 or 12 days. Rats that received leptin into only the third or the fourth ventricle were not different from controls that received saline in both ventricles. By contrast, rats with low-dose leptin infusions into both the third and fourth ventricle showed a dramatic 60% reduction in food intake that was reversed on day 6, a 20% weight loss that stabilized on day 6, and a 50% decrease in body fat at day 12 despite the correction of food intake. They displayed normal activity and maintained energy expenditure despite weight loss, indicating inappropriately high thermogenesis that coincided with increased signal transducer and activator of transcription 3 (STAT3) phosphorylation in the brainstem. Altogether, these findings show that with low doses of leptin, chronic activation of both hypothalamic and brainstem ObRs is required to reduce body fat.

  10. EXPRESSION OF COCAINE- AND AMPHETAMINE-REGULATED TRANSCRIPT IN THE RAT FOREBRAIN DURING POSTNATAL DEVELOPMENT

    PubMed Central

    RODRIGUES, B. C.; CAVALCANTE, J. C.; ELIAS, C. F.

    2014-01-01

    Cocaine- and amphetamine-regulated transcript (CART) is widespread in the rodent brain. CART has been implicated in many different functions including reward, feeding, stress responses, sensory processing, learning and memory formation. Recent studies have suggested that CART may also play a role in neural development. Therefore, in the present study we compared the distribution pattern and levels of CART mRNA expression in the forebrain of male and female rats at different stages of postnatal development: P06, P26 and P66. At 6 days of age (P06), male and female rats showed increased CART expression in the somatosensory and piriform cortices, indusium griseum, dentate gyrus, nucleus accumbens, and ventral premammillary nucleus. Interestingly, we found a striking expression of CART mRNA in the ventral posteromedial and ventral posterolateral thalamic nuclei. This thalamic expression was absent at P26 and P66. Contrastingly, at P06 CART mRNA expression was decreased in the arcuate nucleus. Comparing sexes, we found increased CART mRNA expression in the anteroventral periventricular nucleus of adult females. In other regions including the CA1, the lateral hypothalamic area and the dorsomedial nucleus of the hypothalamus, CART expression was not different comparing postnatal ages and sexes. Our findings indicate that CART gene expression is induced in a distinct temporal and spatial manner in forebrain sites of male and female rats. They also suggest that CART peptide participate in the development of neural pathways related to selective functions including sensory processing, reward and memory formation. PMID:21903152

  11. Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats.

    PubMed

    Galvão, Rui P; Garcia-Verdugo, José Manuel; Alvarez-Buylla, Arturo

    2008-12-10

    In rodents, the adult subventricular zone (SVZ) generates neuroblasts which migrate to the olfactory bulb (OB) and differentiate into interneurons. Recent work suggests that the neurotrophin Brain-Derived Neurotrophic Factor (BDNF) can enhance adult SVZ neurogenesis, but the mechanism by which it acts is unknown. Here, we analyzed the role of BDNF and its receptor TrkB in adult SVZ neurogenesis. We found that TrkB is the most prominent neurotrophin receptor in the mouse SVZ, but only the truncated, kinase-negative isoform (TrkB-TR) was detected. TrkB-TR is expressed in SVZ astrocytes and ependymal cells, but not in neuroblasts. TrkB mutants have reduced SVZ proliferation and survival and fewer new OB neurons. To test whether this effect is cell-autonomous, we grafted SVZ cells from TrkB knock-out mice (TrkB-KO) into the SVZ of wild-type mice (WT). Grafted progenitors generated neuroblasts that migrated to the OB in the absence of TrkB. The survival and differentiation of granular interneurons and Calbindin(+) periglomerular interneurons seemed unaffected by the loss of TrkB, whereas dopaminergic periglomerular neurons were reduced. Intra-ventricular infusion of BDNF yielded different results depending on the animal species, having no effect on neuron production from mouse SVZ, while decreasing it in rats. Interestingly, mice and rats also differ in their expression of the neurotrophin receptor p75. Our results indicate that TrkB is not essential for adult SVZ neurogenesis and do not support the current view that delivering BDNF to the SVZ can enhance adult neurogenesis.

  12. Neuronal precursors within the adult rat subventricular zone differentiate into dopaminergic neurons after substantia nigra lesion and chromaffin cell transplant.

    PubMed

    Arias-Carrión, Oscar; Hernández-López, Salvador; Ibañez-Sandoval, Osvaldo; Bargas, José; Hernández-Cruz, Arturo; Drucker-Colín, René

    2006-11-15

    Neurogenesis in the adult mammalian brain continues in the subventricular zone (SVZ). Neuronal precursors from the SVZ migrate along the rostral migratory stream to replace olfactory bulb interneurons. After the destruction of the nigro-striatal pathway (SN-lesion), some SVZ precursors begin to express tyrosine hydroxylase (TH) and neuronal markers (NeuN). Grafting of chromaffin cells (CCs) into the denervated striatum increases the number of TH+ cells (SVZ TH+ cells; Arias-Carrión et al., 2004). This study examines the functional properties of these newly differentiating TH+ cells. Under whole-cell patch-clamp, most SVZ cells recorded from lesioned and grafted animals (either TH+ or TH-) were non-excitable. Nevertheless, a small percentage of SVZ TH+ cells had the electrophysiologic phenotype of mature dopaminergic neurons and showed spontaneous postsynaptic potentials. Dopamine (DA) release was measured in SVZ and striatum from both control and SN-lesioned rats. As expected, 12 weeks after SN lesion, DA release decreased drastically. Nevertheless, 8 weeks after CCs graft, release from the SVZ of SN-lesioned rats recovered, and even surpassed that from control SVZ, suggesting that newly formed SVZ TH+ cells release DA. This study shows for the first time that in response to SN-lesions and CC grafts neural precursors within the SVZ change their developmental program, by not only expressing TH, but more importantly by acquiring excitable properties of mature dopaminergic neurons. Additionally, the release of DA in a Ca(2+)-dependent manner and the attraction of synaptic afferents from neighboring neuronal networks gives further significance to the overall findings, whose potential importance is discussed.

  13. Hyperglycemia enhances excessive superoxide anion radical generation, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats.

    PubMed

    Tsuruta, Ryosuke; Fujita, Motoki; Ono, Takeru; Koda, Yoichi; Koga, Yasutaka; Yamamoto, Takahiro; Nanba, Masahiro; Shitara, Masaki; Kasaoka, Shunji; Maruyama, Ikuro; Yuasa, Makoto; Maekawa, Tsuyoshi

    2010-01-14

    The aim of this study was to confirm the effect of acute hyperglycemia on the superoxide anion radical (O(2)(-)) generation, using a novel electrochemical O(2)(-) sensor in forebrain ischemia/reperfusion rats. Fourteen male Wistar rats were allocated to a normoglycemia group (n= 7) and a hyperglycemia group (n=7). Hyperglycemia was induced by intravenous infusion of glucose solution. Forebrain ischemia was induced by bilateral common carotid arteries occlusion with hemorrhagic hypotension for 10 min and then was reperfused. The generated O(2)(-) was measured as the current produced, which was integrated as a quantified partial value of electricity (Q), in the jugular vein using the O(2)(-) sensor. The reacted O(2)(-) current and the Q began to increase gradually during the forebrain ischemia in both groups. These values increased remarkably just after reperfusion in the normoglycemia group and were further increased significantly in the hyperglycemia group after the reperfusion. Concentrations of malondialdehyde (MDA) and high-mobility group box 1 (HMGB1) in the brain and plasma, and soluble intercellular adhesion molecule-1 (ICAM-1) in the plasma in the hyperglycemia group were significantly higher than those in the normoglycemia group. Brain and plasma MDA, HMGB1, and ICAM-1 were correlated with a sum of Q during ischemia and after reperfusion. In conclusion, acute transient hyperglycemia enhanced the O(2)(-) generation in blood and exacerbated oxidative stress, early inflammation, and endothelial injury after the forebrain ischemia/reperfusion in the rats.

  14. Principles of rat subcortical forebrain organization: a study using histological techniques and multiple fluorescence labeling.

    PubMed

    Riedel, A; Härtig, W; Seeger, G; Gärtner, U; Brauer, K; Arendt, Th

    2002-02-01

    In the present study, we introduce new views on neuro- and chemoarchitectonics of the rat forebrain subcortex deduced from traditional and current concepts of anatomical organization and from our own results. It is based on double and triple immunofluorescence of markers for transmitter-related enzymes, calcium-binding proteins, receptor proteins, myelin basic protein (MBP) and neuropeptides, and on histological cell/myelin stains. The main findings can be summarized as follows: (i) the dorsal striatum of rat and other myomorph rodents reveals a small caudate equivalent homotopic to the caudate nucleus (C) of other mammals, and a large putamen (Pu). (ii) Shell and core can be distinguished also in the 'rostral pole' of nucleus accumbens (ACC) with the calretinin/calbindin and neuropeptide Y (NPY) immunostaining. The shell reveals characteristics of a genuine striatal but not of an extended amygdala (EA) subunit. (iii) EA and lateral septum show striking similarities in structure and fiber connections and may therefore represent a separate parastriatal complex. (iv) The meandering dense layer (DL) of olfactory tubercle (OT) forms longitudinal gyrus- and sulcus-like structures converging in its rostral pole. (v) The core regions of the islands of Calleja that border the ventral pallidum (VP) sharing some of its features are invaded by myelinated fibers of the medial forebrain bundle (MFB). The island of Calleja magna is also apposed to an inconspicuous, slender dorsal appendage of VP. (vi) The VP is composed of a large dorsal reticulated part traversed by the myelinated GABAergic parvalbumin-immunoreactive axons of the MFB and a slender ventral non-reticulate part close to the islands of Calleja. (vii) Considering their close association to the limbic system, ventral striatum (VS) and VP may represent the oldest part of basal ganglia, whereas dorsal striatopallidal subunits were progressively developed in parallel to the growing neocortical influence on motor

  15. Effects of continuous infusion of cholinergic drugs on memory impairment in rats with basal forebrain lesions.

    PubMed

    Miyamoto, M; Narumi, S; Nagaoka, A; Coyle, J T

    1989-02-01

    The effects of continuous infusion of cholinergic drugs on behavior in normal rats and on impaired acquisition and retention of several behavioral tasks in rats with basal forebrain (BF) lesions were investigated. Physostigmine and oxotremorine were infused continuously with a miniosmotic pump for 3 weeks, and the performance on several different behavioral tasks was examined during the infusion. In normal rats high doses of physostigmine (4 and 8 mg/kg/day s.c.) produced significant changes in general behavior and impaired performance in the Morris water maze. Oxotremorine (0.25-2 mg/kg/day s.c.) had no significant effects on general behavior or cognitive performance in normal rats, although severe cataracts developed at the high dose (4 mg/kg/day). A deficit in motor habituation in rats with BF lesions produced by bilateral injections of ibotenic acid (30 nmol on each side) was improved markedly by the chronic administration of physostigmine (2 mg/kg/day) and oxotremorine (1 mg/kg/day). BF lesions produced severe impairments in acquisition and retention in a passive avoidance task, an active avoidance and the Morris water maze, which was characterized by a marked disruption of retention. The impairment was also ameliorated markedly by the cholinergic drugs, whereas other behavioral impairments were not affected by the drugs. These results indicate that the continuous administration of cholinergic drugs produces a marked improvement of acquisition and retention in rats with BF lesions, and suggest that the impairment in cognitive performance, especially with regard to retention, caused by BF lesions is due to the disruption of the BF-cortical cholinergic pathway.

  16. Effect of paternal exposure to gamma rays on juvenile rat forebrain.

    PubMed

    Bálentová, Sona; Raceková, Eniko; Misúrová, Eva

    2007-01-01

    We studied the transgenerational effect of the sublethal dose of gamma radiation on the proliferative activity of cells in the rostral migratory stream (RMS) in the brain of neonatal and young progeny of male rats exposed to the dose of 3 Gy 25 days before conception with intact control females. To label proliferating cells, the progeny received bromodeoxyuridine (BrdU) injection before sacrifice. The number of BrdU-positive cells was counted in three parts of the forebrain RMS, i.e. in the vertical arm, elbow and horizontal arm, at the 3rd, 7th, 14th, 21st and 28th postnatal days (P3-P28). In the RMS of control rats' progeny, the number of BrdU(+) cells transiently decreased at the 7th-14th postnatal days. In the progeny of irradiated rats, the dynamics of the changes was similar to that in the corresponding control groups, however, the number of BrdU-positive cells was significantly higher along the whole RMS at all intervals of investigation. These results suggest that paternal exposure to ionizing radiation induced the genome instability, which manifested itself in the progeny by alteration in proliferative activity or slackening of cell migration in the RMS.

  17. Suppression of the late component of the carotid occlusion reflex by lesion of the medial forebrain bundle in the rat.

    PubMed

    Lopes, O U; Timo-Iaria, C; Leitão-Filho, H A

    1981-04-01

    1. The pressor response to a prolonged carotid occlusion in the rat has two components: an early, fast increase in blood pressure, and a late, slow and sustained hypertension. Since the second component can be blocked by a disconnecting lesion near the medial side of the medial forebrain bundle, the hypothesis that this complex structure is involved in the integration of the late pressor reflex was tested. 2. The medial forebrain bundle was partially or completely destroyed, or a disconnecting lesion was made to interrupt some of its medially running afferents and/or efferents. Incomplete lesion caused a transient suppression of the second component in 4 rats, whereas complete lesion in 5 rats or probable interruption of the medial efferent pathways in 3 rats led to suppression of the late component when the one-minute occlusion was performed within one hour after the lesion. 3. The data show that the medial forebrain bundle plays an important role in the integration of the late component of the pressor response to prolonged carotid occlusion.

  18. Hyperglycemia and hypercapnia suppress BDNF gene expression in vulnerable regions after transient forebrain ischemia in the rat.

    PubMed

    Uchino, H; Lindvall, O; Siesjö, B K; Kokaia, Z

    1997-12-01

    Preischemic hyperglycemia or superimposed hypercapnia exaggerates brain damage caused by transient forebrain ischemia. Because high regional levels of brain-derived neurotrophic factor (BDNF) protein correlate with resistance to ischemic damage, we studied the expression of BDNF mRNA using in situ hybridization in rats subjected to 10 minutes of forebrain ischemia under normoglycemic, hyperglycemic, or hypercapnic conditions. Compared with normoglycemic animals, the increase of BDNF mRNA using in situ hybridization in rats subjected to 10 minutes of forebrain ischemia under normoglycemic, or hypercapnic conditions. Compared with normoglycemic animals, the increase of BDNF mRNA in dentate granule cells was attenuated and that in CA3 pyramidal neurons completely prevented in hyperglycemic rats. No ischemia-induced increases of BDNF mRNA levels in the hippocampal formation were detected in hypercapnic animals. Hyperglycemic and hypercapnic rats showed transiently decreased expression of BDNF mRNA levels in the cingulate cortex, which was not observed in normoglycemic animals. The results suggest that suppression of the BDNF gene might contribute to the increased vulnerability of the CA3 region and cingulate cortex in hyperglycemic and hypercapnic animals.

  19. Analeptic activity produced by TRH microinjection into basal forebrain area of the rat

    SciTech Connect

    Horita, A.; Carino, M.A.; Lai, H.

    1986-03-05

    Earlier, Kalivas and Horita demonstrated that the analeptic effect of TRH was mediated in part by cholinergic neurons in the medial septum-diagonal band of Broca (MS-DBB). Since the MS-DBB constitutes part of the cholinergic basal forebrain system, the present study investigated whether the area designated as the n. basalis of Meynert (NBM) was also sensitive to TRH in producing an antipentobarbital effect. Saline or TRH (0.5 ..mu..l) was microinjected via bilateral stainless steel cannulae implanted stereotaxically into the NBM using the coordinates of Wenk et al. Accuracy of cannula placement was confirmed by histological examination. Rats treated with PB (40 mg/kg, i.p.) lost their righting reflex for 130 +/- 28 min. Intrabasalis injection of TRH (but not saline) in doses of 0.1-1.0 ..mu..g exerted analeptic activity as follows: 0.1 ..mu..g = 81 +/- 21 min; 0.5 ..mu..g = 65 +/- 19 min; 1.0 ..mu..g = 45 +/- 10 min. All of these doses exerted significant shortening of narcosis duration of pentobarbitalized rats. The analeptic effect of TRH was blocked by atropine pretreatment, indicating that it was mediated via cholinergic mechanisms. High affinity, sodium-dependent /sup 3/H-choline uptake by cortical synaptosomes prepared from these animals was also increased by TRH. These results suggest that the cholinergic neurons of NBM are highly sensitive to TRH and contributes to the analeptic effect of TRH.

  20. Ca2+-permeable non-NMDA glutamate receptors in rat magnocellular basal forebrain neurones

    PubMed Central

    Waters, D Jack; Allen, Timothy G J

    1998-01-01

    Ionotropic glutamate receptor-mediated responses were recorded from rat magnocellular basal forebrain neurones under voltage clamp from a somatically located patch-clamp pipette. Currents were recorded from both acutely dissociated neurones and neurones maintained in culture for up to 6 weeks. Non-NMDA and NMDA receptor-mediated events could be distinguished pharmacologically using the selective agonists (S)-α-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA), and antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D(-)-2-amino-5-phosphonopentanoic acid (AP5). Responses to rapid application of AMPA displayed pronounced and rapid desensitization. Responses to kainate showed no desensitization. Steady-state EC50 values for AMPA and kainate were 2.7 ± 0.4 μm (n = 5) and 138 ± 25 μm (n = 10), respectively. Cyclothiazide markedly increased current amplitude of responses to both agonists, whereas concanavalin A had no clear effect on either response. The selective AMPA receptor antagonist GYKI 53655 inhibited responses to kainate with an IC50 of 1.2 ± 0.08 μm (n = 5) at -70 mV. These data strongly suggest that AMPA receptors are the predominant non-NMDA receptors expressed by basal forebrain neurones. At -70 mV, approximately 6% of control current amplitude remained, at a maximally effective concentration of GYKI 53655. This residual response displayed desensitization, was insensitive to cyclothiazide and was potentiated by concanavalin A, suggesting that it was mediated by a kainate receptor. Current-voltage relationships for non-NMDA receptor-mediated currents were obtained from both nucleated patches pulled from neurones in culture and from acutely dissociated neurones. With 30 μm spermine in the recording pipette, currents frequently displayed double-rectification characteristic of non-NMDA receptors with high Ca2+ permeabilities. Ca2+ permeability, relative to Na+ and Cs+, was investigated using constant

  1. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

    PubMed

    Vazquez-DeRose, Jacqueline; Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Gulati, Srishti; Mathew, Thomas K; Neylan, Thomas C; Kilduff, Thomas S

    2016-03-01

    Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.

  2. Low dose naltrexone administration in morphine dependent rats attenuates withdrawal-induced norepinephrine efflux in forebrain.

    PubMed

    Van Bockstaele, Elisabeth J; Qian, Yaping; Sterling, Robert C; Page, Michelle E

    2008-05-15

    The administration of low dose opioid antagonists has been explored as a potential means of detoxification in opiate dependence. Previous results from our laboratory have shown that concurrent administration of low dose naltrexone in the drinking water of rats implanted with subcutaneous morphine pellets attenuates behavioral and biochemical signs of withdrawal in brainstem noradrenergic nuclei. Noradrenergic projections originating from the nucleus tractus solitarius (NTS) and the locus coeruleus (LC) have previously been shown to be important neural substrates involved in the somatic expression of opiate withdrawal. The hypothesis that low dose naltrexone treatment attenuates noradrenergic hyperactivity typically associated with opiate withdrawal was examined in the present study by assessing norepinephrine tissue content and norepinephrine efflux using in vivo microdialysis coupled to high performance liquid chromatography (HPLC) with electrochemical detection (ED). The frontal cortex (FC), amygdala, bed nucleus of the stria terminalis (BNST) and cerebellum were analyzed for tissue content of norepinephrine following withdrawal in morphine dependent rats. Naltrexone-precipitated withdrawal elicited a significant decrease in tissue content of norepinephrine in the BNST and amygdala. This decrease was significantly attenuated in the BNST of rats that received low dose naltrexone pre-treatment compared to controls. No significant difference was observed in the other brain regions examined. In a separate group of rats, norepinephrine efflux was assessed with in vivo microdialysis in the BNST or the FC of morphine dependent rats or placebo treated rats subjected to naltrexone-precipitated withdrawal that received either naltrexone in their drinking water (5 mg/L) or unadulterated water. Following baseline dialysate collection, withdrawal was precipitated by injection of naltrexone and sample collection continued for an additional 4 h. At the end of the experiment

  3. Low dose naltrexone administration in morphine dependent rats attenuates withdrawal-induced norepinephrine efflux in forebrain

    PubMed Central

    Van Bockstaele, Elisabeth J.; Qian, Yaping; Sterling, Robert C.; Page, Michelle E.

    2009-01-01

    The administration of low dose opioid antagonists has been explored as a potential means of detoxification in opiate dependence. Previous results from our laboratory have shown that concurrent administration of low dose naltrexone in the drinking water of rats implanted with subcutaneous morphine pellets attenuates behavioral and biochemical signs of withdrawal in brainstem noradrenergic nuclei. Noradrenergic projections originating from the nucleus tractus solitarius (NTS) and the locus coeruleus (LC) have previously been shown to be important neural substrates involved in the somatic expression of opiate withdrawal. The hypothesis that low dose naltrexone treatment attenuates noradrenergic hyperactivity typically associated with opiate withdrawal was examined in the present study by assessing norepinephrine tissue content and norepinephrine efflux using in vivo microdialysis coupled to high performance liquid chromatography (HPLC) with electrochemical detection (ED). The frontal cortex (FC), amygdala, bed nucleus of the stria terminalis (BNST) and cerebellum were analyzed for tissue content of norepinephrine following withdrawal in morphine dependent rats. Naltrexone precipitated withdrawal elicited a significant decrease in tissue content of norepinephrine in the BNST and amygdala. This decrease was significantly attenuated in the BNST of rats that received low dose naltrexone pretreatment compared to controls. No significant difference was observed in the other brain regions examined. In a separate group of rats, norepinephrine efflux was assessed with in vivo microdialysis in the BNST or the FC of morphine dependent rats or placebo treated rats subjected to naltrexone-precipitated withdrawal that received either naltrexone in their drinking water (5 mg/L) or unadulterated water. Following baseline dialysate collection, withdrawal was precipitated by injection of naltrexone and sample collection continued for an additional four hours. At the end of the

  4. Fos immunoreactivity in the rat forebrain induced by electrical stimulation of the dorsolateral periaqueductal gray matter.

    PubMed

    Lim, Lee Wei; Temel, Yasin; Visser-Vandewalle, Veerle; Blokland, Arjan; Steinbusch, Harry

    2009-10-01

    Electrical stimulation of the dorsolateral periaqueductal gray (dlPAG) matter induces panic- or fear-like responses with intense emotional distress and severe anxiety. In this study, we evoked panic-like behaviour by dlPAG stimulation and evaluated the effect on neuronal activation in different brain regions. The number of c-Fos immunoreactive (c-Fos-ir) cells was measured semi-quantitatively through series of stained rat brain sections. Our results demonstrate strong neural activation in the medial prefrontal cortex, orbital cortex, anterior olfactory nuclei, secondary motor cortex, and the somatosensory cortex. Moderate increases in the number of c-Fos-ir cells were detected in various regions, including the hypothalamus, amygdala, and striatum. Additionally, there was mild expression of c-Fos-ir cells in the hippocampus, thalamus, and habenula regions. In conclusion, we have shown that deep brain stimulation of the dlPAG produced a distinctive pattern of neuronal activation across forebrain regions as compared to the sham and control animals.

  5. Metabolic Mapping of Rat Forebrain and Midbrain During Delay and Trace Eyeblink Conditioning

    PubMed Central

    Plakke, Bethany; Freeman, John H.; Poremba, Amy

    2012-01-01

    While the essential neural circuitry for delay eyeblink conditioning has been largely identified, much of the neural circuitry for trace conditioning has yet to be determined. The major difference between delay and trace conditioning is a time gap between the presentation of the conditioned stimulus (CS) and the unconditioned stimulus (US) during trace conditioning. It is this time gap, which accounts for the additional memory component and may require extra neural structures, including hippocampus and prefrontal cortex. A metabolic marker of energy use, radioactively labeled glucose analog, was used to compare differences in glucose analog uptake between delay, trace, and unpaired experimental groups (rats, Long-Evans), to identify possible new areas of involvement within forebrain and midbrain. Here, we identify increased 2-DG uptake for the delay group compared to the unpaired group in various areas including: the medial geniculate nuclei (MGN), the amygdala, cingulate cortex, auditory cortex, medial dorsal thalamus, and frontal cortices. For the trace group, compared to the unpaired group, there was an increase in 2-DG uptake for the medial orbital frontal cortex and the medial MGN. The trace group also exhibited more increases lateralized to the right hemisphere, opposite to the side of US delivery, in various areas including: CA1, subiculum, presubiculum, perirhinal cortex, ventral and dorsal MGN, and the basolateral and central amygdala. While some of these areas have been identified as important for delay or trace conditioning, some new structures have been identified such as the orbital frontal cortex for both delay and trace groups. PMID:19376256

  6. Effects of neonatal handling on the basal forebrain cholinergic system of adult male and female rats.

    PubMed

    Pondiki, S; Stamatakis, A; Fragkouli, A; Philippidis, H; Stylianopoulou, F

    2006-10-13

    Neonatal handling is an early experience which results in improved function of the hypothalamic-pituitary-adrenal axis, increased adaptability and coping as a response to stress, as well as better cognitive abilities. In the present study, we investigated the effect of neonatal handling on the basal forebrain cholinergic system, since this system is known to play an important role in cognitive processes. We report that neonatal handling results in increased number of choline-acetyl transferase immunopositive cells in the septum/diagonal band, in both sexes, while no such effect was observed in the other cholinergic nuclei, such as the magnocellular preoptic nucleus and the nucleus basalis of Meynert. In addition, neonatal handling resulted in increased M1 and M2 muscarinic receptor binding sites in the cingulate and piriform cortex of both male and female rats. A handling-induced increase in M1 muscarinic receptor binding sites was also observed in the CA3 and CA4 (fields 3 and 4 of Ammon's horn) areas of the hippocampus. Furthermore, a handling-induced increase in acetylcholinesterase staining was found only in the hippocampus of females. Our results thus show that neonatal handling acts in a sexually dimorphic manner on one of the cholinergic parameters, and has a beneficial effect on BFCS function, which could be related to the more efficient and adaptive stress response and the superior cognitive abilities of handled animals.

  7. Immediate and delayed treatments with curcumin prevents forebrain ischemia-induced neuronal damage and oxidative insult in the rat hippocampus.

    PubMed

    Al-Omar, Fadhel A; Nagi, Mahmoud N; Abdulgadir, Mustafa M; Al Joni, Khalda S; Al-Majed, Abdulhakeem A

    2006-05-01

    Oxidative stress is believed to contribute to neurodegeneration following ischemic injury. The present study was undertaken to evaluate the possible antioxidant neuroprotective effect of curcumin (Cur) on neuronal death of hippocampal CA1 neurons following transient forebrain ischemia in rat. Treatment of Cur (200 mg/kg/day, i.p.) at three different times (immediately, 3 h and 24 h after ischemia) significantly (P<0.01) reduced neuronal damage 7 days after ischemia. Also, treatment of ischemic rats with Cur decreased the elevated levels of MDA and increased GSH contents, catalase and SOD activities to normal levels. In the in vitro, Cur was as potent as antioxidant (IC(50) = 1 microM) as butylated hydroxytoluene. The present study demonstrates that curcumin treatment attenuates forebrain ischemia-induced neuronal injury and oxidative stress in hippocampal tissue. Thus treatment with curcumin immediately or even delayed until 24 h may have the potential to be used as a protective agent in forebrain ischemic insult in human.

  8. Forebrain patterns of c-Fos and FosB induction during cancer-associated anorexia-cachexia in rat.

    PubMed

    Konsman, Jan Pieter; Blomqvist, Anders

    2005-05-01

    Forebrain structures are necessary for the initiation of food intake and its coupling to energy expenditure. The cancer-related anorexia-cachexia syndrome is typified by a prolonged increase in metabolic rate resulting in body weight loss which, paradoxically, is accompanied by reduced food intake. The aim of the present work was to study the forebrain expression of Fos proteins as activation markers and thus to identify potential neurobiological mechanisms favouring catabolic processes or modulating food intake in rats suffering from cancer-related anorexia-cachexia. Neurons in forebrain structures showing most pronounced induction of Fos proteins were further identified neurochemically. To provoke anorexia-cachexia, cultured Morris hepatoma 7777 cells were injected subcutaneously in Buffalo rats. This resulted in a slowly growing tumour inducing approximately 7% body weight loss and a 20% reduction in food intake when the tumour represented 1-2% of body mass. Anorexia-cachexia in these animals was found to be accompanied by Fos induction in several hypothalamic nuclei including the paraventricular and ventromedial hypothalamus, in the parastrial nucleus, the amygdala, the bed nucleus of the stria terminalis, ventral striatal structures and the piriform and somatosensory cortices. Neurochemical identification revealed that the vast majority of FosB-positive neurons in the nucleus accumbens, ventral caudate-putamen and other ventral striatal structures contained prodynorphin or proenkephalin mRNA. These findings indicate that forebrain structures that are part of neuronal networks modulating catabolic pathways and food ingestion are activated during tumour-associated anorexia-cachexia and may contribute to the lack of compensatory eating in response to weight loss characterizing this syndrome.

  9. Astaxanthin limits fish oil-related oxidative insult in the anterior forebrain of Wistar rats: putative anxiolytic effects?

    PubMed

    Mattei, Rita; Polotow, Tatiana G; Vardaris, Cristina V; Guerra, Beatriz A; Leite, José Roberto; Otton, Rosemari; Barros, Marcelo P

    2011-09-01

    The habitual consumption of marine fish is largely associated to human mental health. Fish oil is particularly rich in n-3 polyunsaturated fatty acids that are known to play a role in several neuronal and cognitive functions. In parallel, the orange-pinkish carotenoid astaxanthin (ASTA) is found in salmon and displays important antioxidant and anti-inflammatory properties. Many neuronal dysfunctions and anomalous psychotic behavior (such as anxiety, depression, etc.) have been strongly related to the higher sensitivity of cathecolaminergic brain regions to oxidative stress. Thus, the aim of this work was to study the combined effect of ASTA and fish oil on the redox status in plasma and in the monoaminergic-rich anterior forebrain region of Wistar rats with possible correlations with the anxiolytic behavior. Upon fish oil supplementation, the downregulation of superoxide dismutase and catalase activities combined to increased "free" iron content resulted in higher levels of lipid and protein oxidation in the anterior forebrain of animals. Such harmful oxidative modifications were hindered by concomitant supplementation with ASTA despite ASTA-related antioxidant protection was mainly observed in plasma. Although it is clear that ASTA properly crosses the brain-blood barrier, our data also address a possible indirect role of ASTA in restoring basal oxidative conditions in anterior forebrain of animals: by improving GSH-based antioxidant capacity of plasma. Preliminary anxiolytic tests performed in the elevated plus maze are in alignment with our biochemical observations.

  10. Antagonism of Muscarinic Acetylcholine Receptors Alters Synaptic ERK Phosphorylation in the Rat Forebrain.

    PubMed

    Mao, Li-Min; Wang, Henry H; Wang, John Q

    2016-12-28

    Acetylcholine (ACh) is a key transmitter in the mesocorticolimbic circuit. By interacting with muscarinic ACh receptors (mAChR) enriched in the circuit, ACh actively regulates various neuronal and synaptic activities. The extracellular signal-regulated kinase (ERK) is one of members of the mitogen-activated protein kinase family and is subject to the regulation by dopamine receptors, although the regulation of ERKs by limbic mAChRs is poorly understood. In this study, we investigated the role of mAChRs in the regulation of ERK phosphorylation (activation) in the mesocorticolimbic system of adult rat brains in vivo. We targeted a sub-pool of ERKs at synaptic sites. We found that a systemic injection of the mAChR antagonist scopolamine increased phosphorylation of synaptic ERKs in the striatum (caudate putamen and nucleus accumbens) and medial prefrontal cortex (mPFC). Increases in ERK phosphorylation in both forebrain regions were rapid and transient. Notably, pretreatment with a dopamine D1 receptor (D1R) antagonist SCH23390 blocked the scopolamine-stimulated ERK phosphorylation in these brain regions, while a dopamine D2 receptor antagonist eticlopride did not. Scopolamine and SCH23390 did not change the amount of total ERK proteins. These results demonstrate that mAChRs inhibit synaptic ERK phosphorylation in striatal and mPFC neurons under normal conditions. Blockade of this inhibitory mAChR tone leads to the upregulation of ERK phosphorylation likely through a mechanism involving the level of D1R activity.

  11. Ependymal stem cells divide asymmetrically and transfer progeny into the subventricular zone when activated by injury.

    PubMed

    Gleason, D; Fallon, J H; Guerra, M; Liu, J-C; Bryant, P J

    2008-09-22

    Evidence is presented to show that cells of the ependymal layer surrounding the ventricles of the mammalian (rat) forebrain act as neural stem cells (NSCs), and that these cells can be activated to divide by a combination of injury and growth factor stimulation. Several markers of asymmetric cell division (ACD), a characteristic of true stem cells, are expressed asymmetrically in the ependymal layer but not in the underlying subventricular zone (SVZ), and when the brain is treated with a combination of local 6-hydroxydopamine (6-OHDA) with systemic delivery of transforming growth factor-alpha (TGFalpha), ependymal cells divide asymmetrically and transfer progeny into the SVZ. The SVZ cells then divide as transit amplifying cells (TACs) and their progeny enter a differentiation pathway. The stem cells in the ependymal layer may have been missed in many previous studies because they are usually quiescent and divide only in response to strong stimuli.

  12. Cholinergic ventral forebrain grafts into the neocortex improve passive avoidance memory in a rat model of Alzheimer disease.

    PubMed Central

    Fine, A; Dunnett, S B; Björklund, A; Iversen, S D

    1985-01-01

    The memory dysfunction of Alzheimer disease has been associated with a cortical cholinergic deficiency and loss of cholinergic neurons of the nucleus basalis of Meynert. This cholinergic component of Alzheimer disease can be modeled in the rat by ibotenic acid lesions of the cholinergic nucleus basalis magnocellularis. The memory impairment caused by such unilateral lesions, as reflected in passive avoidance behavior, is reversed by grafts into the deafferented neocortex of embryonic neurons of the cholinergic ventral forebrain, but not by grafts of noncholinergic hippocampal cells. Images PMID:3860857

  13. Pretreatment with minocycline restores neurogenesis in the subventricular zone and subgranular zone of the hippocampus after ketamine exposure in neonatal rats.

    PubMed

    Lu, Yang; Giri, P K; Lei, Shan; Zheng, Juan; Li, Weisong; Wang, Ning; Chen, Xinlin; Lu, Haixia; Zuo, Zhiyi; Liu, Yong; Zhang, Pengbo

    2017-04-06

    Ketamine is commonly used for anesthesia in pediatric patients. Recent studies indicated that ketamine exposure in the developing brain can induce neuroapoptosis and disturb normal neurogenesis, which will result in long-lasting cognitive impairment. Minocycline exerts neuroprotection against a wide range of toxic insults in neurodegenerative disease models. In the present study, we investigated whether the disturbed neurogenesis and behavioral deficits after ketamine neonatal exposure could be alleviated by minocycline. Postnatal day (PND)7 Sprague-Dawley rat pups randomly received either normal saline, ketamine, or minocycline 30min prior to ketamine administration, respectively. The rats were decapitated at PND14 for the detection of neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ) of the hippocampus by immunostaining. The protein expression of p-Akt, p-GSK-3β in the SVZ and SGZ at 12h after anesthesia, PND10 and PND14 were assessed by western blotting analysis. At PND 42-47, spatial learning and memory abilities were measured by the Morris water maze in all groups. Our data showed that ketamine exposure in neonatal rats resulted in neurogenetic damage and persistent cognitive deficits, and that pretreatment with minocycline eliminated the brain development damage and improved the behavioral function in adult rats. Moreover, the protection of minocycline is associated with the PI3K/Akt signaling pathway.

  14. Reduction in Subventricular Zone-Derived Olfactory Bulb Neurogenesis in a Rat Model of Huntington’s Disease Is Accompanied by Striatal Invasion of Neuroblasts

    PubMed Central

    Kandasamy, Mahesh; Rosskopf, Michael; Wagner, Katrin; Klein, Barbara; Couillard-Despres, Sebastien; Reitsamer, Herbert A.; Stephan, Michael; Nguyen, Huu Phuc; Riess, Olaf; Bogdahn, Ulrich; Winkler, Jürgen; von Hörsten, Stephan; Aigner, Ludwig

    2015-01-01

    Huntington’s disease (HD) is an inherited progressive neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene (HTT). The primary neuropathology of HD has been attributed to the preferential degeneration of medium spiny neurons (MSN) in the striatum. Reports on striatal neurogenesis have been a subject of debate; nevertheless, it should be considered as an endogenous attempt to repair the brain. The subventricular zone (SVZ) might offer a close-by region to supply the degenerated striatum with new cells. Previously, we have demonstrated that R6/2 mice, a widely used preclinical model representing an early onset HD, showed reduced olfactory bulb (OB) neurogenesis but induced striatal migration of neuroblasts without affecting the proliferation of neural progenitor cell (NPCs) in the SVZ. The present study revisits these findings, using a clinically more relevant transgenic rat model of late onset HD (tgHD rats) carrying the human HTT gene with 51 CAG repeats and mimicking many of the neuropathological features of HD seen in patients. We demonstrate that cell proliferation is reduced in the SVZ and OB of tgHD rats compared to WT rats. In the OB of tgHD rats, although cell survival was reduced, the frequency of neuronal differentiation was not altered in the granule cell layer (GCL) compared to the WT rats. However, an increased frequency of dopamenergic neuronal differentiation was noticed in the glomerular layer (GLOM) of tgHD rats. Besides this, we observed a selective proliferation of neuroblasts in the adjacent striatum of tgHD rats. There was no evidence for neuronal maturation and survival of these striatal neuroblasts. Therefore, the functional role of these invading neuroblasts still needs to be determined, but they might offer an endogenous alternative for stem or neuronal cell transplantation strategies. PMID:25719447

  15. Comprehensive Mapping of Regional Expression of the Clock Protein PERIOD2 in Rat Forebrain across the 24-h Day

    PubMed Central

    Harbour, Valerie L.; Weigl, Yuval; Robinson, Barry; Amir, Shimon

    2013-01-01

    In mammals, a light-entrainable clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms by synchronizing oscillators throughout the brain and body. Notably, the nature of the relation between the SCN clock and subordinate oscillators in the rest of the brain is not well defined. We performed a high temporal resolution analysis of the expression of the circadian clock protein PERIOD2 (PER2) in the rat forebrain to characterize the distribution, amplitude and phase of PER2 rhythms across different regions. Eighty-four LEW/Crl male rats were entrained to a 12-h: 12-h light/dark cycle, and subsequently perfused every 30 min across the 24-h day for a total of 48 time-points. PER2 expression was assessed with immunohistochemistry and analyzed using automated cell counts. We report the presence of PER2 expression in 20 forebrain areas important for a wide range of motivated and appetitive behaviors including the SCN, bed nucleus, and several regions of the amygdala, hippocampus, striatum, and cortex. Eighteen areas displayed significant PER2 rhythms, which peaked at different times of day. Our data demonstrate a previously uncharacterized regional distribution of rhythms of a clock protein expression in the brain that provides a sound basis for future studies of circadian clock function in animal models of disease. PMID:24124556

  16. Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats.

    PubMed

    Larsson, E; Nanobashvili, A; Kokaia, Z; Lindvall, O

    1999-11-01

    The levels of brain-derived neurotrophic factor (BDNF) vary between different forebrain areas and show region-specific changes after cerebral ischemia. The present study explores the possibility that the levels of endogenous BDNF determine the susceptibility to ischemic neuronal death. To block BDNF activity the authors used the TrkB-Fc fusion protein, which was infused intraventricularly in rats during 1 week before and 1 week after 5 or 30 minutes of global forebrain ischemia. Ischemic damage was quantified in the striatum and hippocampal formation after 1 week of reperfusion using immunocytochemistry and stereological procedures. After the 30-minute insult, there was a significantly lower number of surviving CA4 pyramidal neurons, neuropeptide Y-immunoreactive dentate hilar neurons, and choline acetyltransferase- and TrkA-positive, cholinergic striatal interneurons in the TrkB-Fc-infused rats as compared to controls. In contrast, the TrkB-Fc treatment did not influence survival of CA1 or CA3 pyramidal neurons or striatal projection neurons. Also, after the mild ischemic insult (5 minutes), neuronal death in the CA1 region was similar in the TrkB-Fc-treated and control groups. These results indicate that endogenous BDNF can protect certain neuronal populations against ischemic damage. It is conceivable, though, that efficient neuroprotection after brain insults is dependent not only on this factor but on the concerted action of a large number of neurotrophic molecules.

  17. [Characterization of the neurons of the basal forebrain complex in the rat: A Nissl- and Golgi impregnation study].

    PubMed

    Werner, L; Brauer, K; Schober, W; Winkelmann, E

    1990-01-01

    Nissl stained neurons were classified in some nuclei of the basal forebrain complex of the rat (Nc. septi medialis, MS; vertical limb of the nucleus of the diagonal band, vDB; horizontal limb of the nucleus of the diagonal band, hDB; Nc. preopticus magnocellularis, NPM; Substantia innominata, SI; Nc. basalis Meynert, NB). Several types of neurons are coexistent in each of these nuclei. They differ in soma size and shape, but also in their cytoplasmic and nuclear texture. We found three classes of neurons as well in the MS-vDB, as in the hDB and NPM, but five classes in the SI-NB complex. On the basis of these findings some conclusions were drawn regarding the cytoarchitecture of this region, as the demarcation of vDB and hDB and of hDB and NPM. The borderline between vDB and hDB was found to be undefinable in Nissl stained preparations, whereas the NPM is characterized by its high content of giant neurons in cotontrast the adjacent hDB. Additionally, we tried to identify the Nissl stained neurons on the basis of soma features with Golgi impregnated neurons. The daimpregnations of Golgi impregnated neurons enabled us to compare the width of the cytoplasm and the nuclear position of neurons stained after these methods. From the thirteen classes of neurons described in Golgi investigations, 8 were identified in Nissl stained sections through this region of the rat's forebrain.

  18. [Salidroside protects cultured rat subventricular zone neural stem cells against hypoxia injury by inhibiting Bax, Bcl-2 and caspase-3 expressions].

    PubMed

    Qi, Cunfang; Zhang, Junfeng; Chen, Xinlin; Zhang, JiansHui; Yang, Pengbo; Jiao, Qian; Zhang, Pengbo; Lu, Hai-Xia; Liu, Yong

    2013-07-01

    To explore the effects of salidroside (sal) on the expressions of Bcl-2, Bax and caspases-3 proteins in cultured rat subventricular zone (SVZ) neural stem cells (NSCs) exposed to hypoxia injury. Primarily cultured SVZ NSCs from adult SD rats were incubated with salidroside (120 and 240 µmol/L) for 24 h prior to exposure to hypoxia. The cell viability was assessed with MTT assay, and the cell apoptosis was analyzed using TUNEL staining and flow cytometry. Western blotting was performed to detect the expressions of Bcl-2, Bax and caspase-3 in the cells. Salidroside pretreatment of the cells for 24 h resulted in an obvious resistance to hypoxia-induced cell apoptosis and decrement of cell viability (P<0.05). Salidroside also antagonized the effect of hypoxia exposure in lowering Bcl-2/Bax ratio apoptosis of rat neural stem cells and decreased the expression of caspases-3 protein (P<0.05). Salidroside can significantly resist hypoxia-induced. The neuroprotective effect of salidroside may be related to the modulation of expressions of apoptosis-related proteins.

  19. Xanthine oxidase is one of the major sources of superoxide anion radicals in blood after reperfusion in rats with forebrain ischemia/reperfusion.

    PubMed

    Ono, Takeru; Tsuruta, Ryosuke; Fujita, Motoki; Aki, Hiromi Shinagawa; Kutsuna, Satoshi; Kawamura, Yoshikatsu; Wakatsuki, Jun; Aoki, Tetsuya; Kobayashi, Chihiro; Kasaoka, Shunji; Maruyama, Ikuro; Yuasa, Makoto; Maekawa, Tsuyoshi

    2009-12-11

    We recently reported that excessive superoxide anion radical (O(2)(-)) was generated in the jugular vein during reperfusion in rats with forebrain ischemia/reperfusion using a novel electrochemical sensor and excessive O(2)(-) generation was associated with oxidative stress, early inflammation, and endothelial injury. However, the source of O(2)(-) was still unclear. Therefore, we used allopurinol, a potent inhibitor of xanthine oxidase (XO), to clarify the source of O(2)(-) generated in rats with forebrain ischemia/reperfusion. The increased O(2)(-) current and the quantified partial value of electricity (Q), which was calculated by the integration of the current, were significantly attenuated after reperfusion by pretreatment with allopurinol. Malondialdehyde (MDA) in the brain and plasma, high-mobility group box 1 (HMGB1) in plasma, and intercellular adhesion molecule-1 (ICAM-1) in the brain and plasma were significantly attenuated in rats pretreated with allopurinol with dose-dependency in comparison to those in control rats. There were significant correlations between total Q and MDA, HMGB, or ICAM-1 in the brain and plasma. Allopurinol pretreatment suppressed O(2)(-) generation in the brain-perfused blood in the jugular vein, and oxidative stress, early inflammation, and endothelial injury in the acute phase of forebrain ischemia/reperfusion. Thus, XO is one of the major sources of O(2)(-)- in blood after reperfusion in rats with forebrain ischemia/reperfusion.

  20. Orexin-A facilitates emergence of the rat from isoflurane anesthesia via mediation of the basal forebrain.

    PubMed

    Zhang, Li-Na; Yang, Cen; Ouyang, Peng-Rong; Zhang, Zhi-Chao; Ran, Ming-Zi; Tong, Li; Dong, Hai-Long; Liu, Yong

    2016-08-01

    Previous studies have demonstrated that orexinergic neurons involve in promoting emergence from anesthesia of propofol, an intravenous anesthetics, while whether both of orexin-A and orexin-B have promotive action on emergence via mediation of basal forebrain (BF) in isoflurane anesthesia has not been elucidated. In this study, we observed c-Fos expressions in orexinergic neurons following isoflurane inhalation (for 0, 30, 60, and 120min) and at the time when the righting reflex returned after the cessation of anesthesia. The plasma concentrations of orexin-A and -B in anesthesia-arousal process were measured by radioimmunoassay. Orexin-A and -B (30 or 100pmol) or the orexin receptor-1 and -2 antagonist SB-334867A and TCS-OX2-29 (5 or 20μg) were microinjected into the basal forebrain respectively. The effects of them on the induction (loss of the righting reflex) and the emergence time (return of the righting reflex) under isoflurane anesthesia were observed. The results showed that the numbers of c-Fos-immunoreactive orexinergic neurons in the hypothalamus decreased over time with continued isoflurane inhalation, but restored at emergence. Similar alterations were observed in changes of plasma orexin-A concentrations but not in orexin-B during emergence. Administration of orexins had no effect on the induction time, but orexin-A facilitated the emergence of rats from isoflurane anesthesia while orexin-B didn't. Conversely, microinjection of the orexin receptor-1 antagonist SB-334867A delayed emergence from isoflurane anesthesia. The results indicate that orexin-A plays a promotive role in the emergence of isoflurane anesthesia and this effect is mediated by the basal forebrain.

  1. Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo.

    PubMed

    Wang, Xiaomei; Mao, Xiaoou; Xie, Lin; Greenberg, David A; Jin, Kunlin

    2009-10-01

    The Notch1 signaling pathway is regarded as one of the main regulators of neural stem cell behavior during development, but its role in the adult brain is less well understood. We found that Notch1 was mainly expressed in doublecortin (DCX)-positive cells corresponding to newborn neurons, whereas the Notch1 ligand, Jagged1, was predominantly expressed in glial fibrillary acidic protein (GFAP)-positive astrocytic cells in the subventricular zone (SVZ) of the normal adult brain. These findings were confirmed by conditional depletion of DCX-positive cells in transgenic mice carrying herpes simplex virus thymidine kinase (HSV-TK) under the control of the DCX promoter. In addition, the activated form of Notch1 (Notch intracellular domain, NICD) and its downstream transcriptional targets, Hes1 and sonic hedgehog (Shh), were also expressed in SVZ cells. Increased activation of Notch1 signaling increased SVZ cell proliferation, whereas inhibiting Notch1 signaling resulted in a reduction of proliferating cells in the SVZ. Levels of NICD, Hes1, and Shh were increased in the SVZ at 4 and 24 h after focal cerebral ischemia. Finally, ischemia-induced cell proliferation in the SVZ was blocked by inhibition of the Notch1 signaling pathway, suggesting that Notch1 signaling may have a key role in normal adult and ischemia-induced neurogenesis.

  2. Regulatory interactions of stress and reward on rat forebrain opioidergic and GABAergic circuitry.

    PubMed

    Christiansen, A M; Herman, J P; Ulrich-Lai, Y M

    2011-03-01

    Palatable food intake reduces stress responses, suggesting that individuals may consume such ?comfort? food as self-medication for stress relief. The mechanism by which palatable foods provide stress relief is not known, but likely lies at the intersection of forebrain reward and stress regulatory circuits. Forebrain opioidergic and gamma-aminobutyric acid ergic signaling is critical for both reward and stress regulation, suggesting that these systems are prime candidates for mediating stress relief by palatable foods. Thus, the present study (1) determines how palatable ?comfort? food alters stress-induced changes in the mRNA expression of inhibitory neurotransmitters in reward and stress neurocircuitry and (2) identifies candidate brain regions that may underlie comfort food-mediated stress reduction. We used a model of palatable ?snacking? in combination with a model of chronic variable stress followed by in situ hybridization to determine forebrain levels of pro-opioid and glutamic acid decarboxylase (GAD) mRNA. The data identify regions within the extended amygdala, striatum, and hypothalamus as potential regions for mediating hypothalamic-pituitary-adrenal axis buffering following palatable snacking. Specifically, palatable snacking alone decreased pro-enkephalin-A (ENK) mRNA expression in the anterior bed nucleus of the stria terminalis (BST) and the nucleus accumbens, and decreased GAD65 mRNA in the posterior BST. Chronic stress alone increased ENK mRNA in the hypothalamus, nucleus accumbens, amygdala, and hippocampus; increased dynorphin mRNA in the nucleus accumbens; increased GAD65 mRNA in the anterior hypothalamus and BST; and decreased GAD65 mRNA in the dorsal hypothalamus. Importantly, palatable food intake prevented stress-induced gene expression changes in subregions of the hypothalamus, BST, and nucleus accumbens. Overall, these data suggest that complex interactions exist between brain reward and stress pathways and that palatable snacking can

  3. Estradiol replacement enhances sleep deprivation-induced c-Fos immunoreactivity in forebrain arousal regions of ovariectomized rats.

    PubMed

    Deurveilher, S; Cumyn, E M; Peers, T; Rusak, B; Semba, K

    2008-10-01

    To understand how female sex hormones influence homeostatic mechanisms of sleep, we studied the effects of estradiol (E(2)) replacement on c-Fos immunoreactivity in sleep/wake-regulatory brain areas after sleep deprivation (SD) in ovariectomized rats. Adult rats were ovariectomized and implanted subcutaneously with capsules containing 17beta-E(2) (10.5 microg; to mimic diestrous E(2) levels) or oil. After 2 wk, animals with E(2) capsules received a single subcutaneous injection of 17beta-E(2) (10 microg/kg; to achieve proestrous E(2) levels) or oil; control animals with oil capsules received an oil injection. Twenty-four hours later, animals were either left undisturbed or sleep deprived by "gentle handling" for 6 h during the early light phase, and killed. E(2) treatment increased serum E(2) levels and uterus weights dose dependently, while attenuating body weight gain. Regardless of hormonal conditions, SD increased c-Fos immunoreactivity in all four arousal-promoting areas and four limbic and neuroendocrine nuclei studied, whereas it decreased c-Fos labeling in the sleep-promoting ventrolateral preoptic nucleus (VLPO). Low and high E(2) treatments enhanced the SD-induced c-Fos immunoreactivity in the laterodorsal subnucleus of the bed nucleus of stria terminalis and the tuberomammillary nucleus, and in orexin-containing hypothalamic neurons, with no effect on the basal forebrain and locus coeruleus. The high E(2) treatment decreased c-Fos labeling in the VLPO under nondeprived conditions. These results indicate that E(2) replacement modulates SD-induced or spontaneous c-Fos expression in sleep/wake-regulatory and limbic forebrain nuclei. These modulatory effects of E(2) replacement on neuronal activity may be, in part, responsible for E(2)'s influence on sleep/wake behavior.

  4. Cannabinoids modulate Olig2 and polysialylated neural cell adhesion molecule expression in the subventricular zone of post-natal rats through cannabinoid receptor 1 and cannabinoid receptor 2.

    PubMed

    Arévalo-Martín, Angel; García-Ovejero, Daniel; Rubio-Araiz, Ana; Gómez, Oscar; Molina-Holgado, Francisco; Molina-Holgado, Eduardo

    2007-09-01

    The subventricular zone (SVZ) is a source of post-natal glial precursors that can migrate to the overlying white matter, where they may differentiate into oligodendrocytes. We showed that, in the post-natal SVZ ependymocytes, radial glia and astrocyte-like cells express cannabinoid receptor 1 (CB1), whereas cannabinoid receptor 2 (CB2) is found in cells expressing the polysialylated neural cell adhesion molecule. To study CB1 and CB2 function, post-natal rats were exposed to selective CB1 or CB2 agonists (arachidonyl-2-chloroethylamide and JWH-056, respectively) for 15 days. Accordingly, we found that CB1 activation increases the number of Olig2-positive cells in the dorsolateral SVZ, whereas CB2 activation increases polysialylated neural cell adhesion molecule expression in this region. As intense myelination occurs during the first weeks of post-natal development, we examined how modulating these factors affected the expression of myelin basic protein. Pharmacological administration of agonists and antagonists of CB1 and CB2 showed that the activation of both receptors is needed to augment the expression of myelin basic protein in the subcortical white matter.

  5. Hypothermia induced by inhibition of fatty acid metabolism in anesthetized rats: contributions of the forebrain and vagal afferents.

    PubMed

    Osaka, Toshimasa

    2017-06-01

    2-Mercaptoacetate (MA) is an antimetabolic drug that inhibits the utilization of fatty acids as an energy source. The intravenous injection of MA (1.2 mmol·kg(-1)) elicited an increase in tail skin temperature and a decrease in body core temperature in urethane-chloralose-anesthetized, neuromuscularly blocked, artificially ventilated rats, although administration of the same amount of NaCl did not. The respiratory exchange ratio was significantly higher after administration of MA than that after the saline treatment. On the other hand, heat production was increased by either the MA- or NaCl-injection, suggesting a nonspecific effect caused by the hyperosmolality of the solutions. These results indicate that the MA-induced hypothermia was caused by an increase in heat loss but not by a decrease in heat production. The amplitudes of heat loss responses to MA in rats fasted overnight were significantly smaller than those in fed ones, suggesting a mechanism for suppression of heat loss in the fasted state. Rats pretreated with vagotomy, capsaicin-induced desensitization of sensory nerve fibers or decerebration did not exhibit the MA-induced hypothermic responses. It is possible that the MA-induced heat loss and hypothermia were mediated by the vagal afferents and required the forebrain for the full expression of the responses.

  6. Chemokines influence the migration and fate of neural precursor cells from the young adult and middle-aged rat subventricular zone.

    PubMed

    Gordon, R J; Mehrabi, N F; Maucksch, C; Connor, B

    2012-01-01

    We have previously demonstrated a role for the chemokines MCP-1, MIP-1α and GRO-α in directing subventricular zone (SVZ)-derived neural precursor cell migration towards the site of cell death in the adult rodent brain. However the influence of chemokines such as MCP-1, MIP-1α and GRO-α on the differentiation of adult neural precursor cells has not previously been investigated. Further, as the majority of neurological disorders and injuries occur during ageing, it is important to investigate the effect of chemokines on adult neural precursor cell cultures obtained from the ageing brain. This study therefore examined the effect of MCP-1, MIP-1α and GRO-α on SVZ-derived neural precursor cell differentiation in vitro, and assessed whether precursor cells from the middle-aged rat brain (13 months old) follow the same migratory and differential profile as neural precursor cells obtained from the young adult rat brain (2 months old). We observed that each of the chemokines examined generated differing effects in regards to neuronal or glial differentiation. Further, both MIP-1α and GRO-α increased total cell number, suggesting an effect on precursor cell proliferation and/or survival. In agreement with cultures obtained from young adult brains, SVZ-derived neural precursor cells cultured from the middle-aged brain exhibited chemotactic migration in response to a concentration gradient. These results indicate that the chemokines MCP-1, MIP-1α and GRO-α can influence both the migration and fate choice of SVZ-derived neural precursor cells, as well as promoting cell viability. While a response to each of these chemokines is maintained in the middle-aged brain, a distinct age-related alteration in differential fate can be identified.

  7. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats

    SciTech Connect

    Ray, Anamika; Liu Jing; Ayoubi, Patricia; Pope, Carey

    2010-10-15

    Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clustering while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NF{Kappa}B, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse

  8. Effects of L-NAME, a non-specific nitric oxide synthase inhibitor, on AlCl3-induced toxicity in the rat forebrain cortex

    PubMed Central

    Jovanović, Marina D.; Jelenković, Ankica; Čolić, Miodrag; Stojanović, Ivana; Ninković, Milica

    2009-01-01

    The present experiments were done to determine the effectiveness of a non-specific nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME), on oxidative stress parameters induced by aluminium chloride (AlCl3) intrahippocampal injections in Wistar rats. Animals were sacrificed 3 h and 30 d after treatments, heads were immediately frozen in liquid nitrogen and forebrain cortices were removed. Crude mitochondrial fraction preparations of forebrain cortices were used for the biochemical analyses: nitrite levels, superoxide production, malondialdehyde concentrations, superoxide dismutase (SOD) activities and reduced glutathione contents. AlCl3 injection resulted in increased nitrite concentrations, superoxide anion production, malondialdehyde concentrations and reduced glutathione contents in the forebrain cortex, suggesting that AlCl3 exposure promoted oxidative stress in this brain structure. The biochemical changes observed in neuronal tissues showed that aluminium acted as a pro-oxidant. However, the non-specific nitric oxide synthase (NOS) inhibitor, L-NAME, exerted anti-oxidant actions in AlCl3-treated animals. These results revealed that NO-mediated neurotoxicity due to intrahippocampal AlCl3 injection spread temporally and spatially to the forebrain cortex, and suggested a potentially neuroprotective effect for L-NAME. PMID:19255519

  9. Effects of L-NAME, a non-specific nitric oxide synthase inhibitor, on AlCl3-induced toxicity in the rat forebrain cortex.

    PubMed

    Stevanović, Ivana D; Jovanović, Marina D; Jelenković, Ankica; Colić, Miodrag; Stojanović, Ivana; Ninković, Milica

    2009-03-01

    The present experiments were done to determine the effectiveness of a non-specific nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME), on oxidative stress parameters induced by aluminium chloride (AlCl(3)) intrahippocampal injections in Wistar rats. Animals were sacrificed 3 h and 30 d after treatments, heads were immediately frozen in liquid nitrogen and forebrain cortices were removed. Crude mitochondrial fraction preparations of forebrain cortices were used for the biochemical analyses: nitrite levels, superoxide production, malondialdehyde concentrations, superoxide dismutase (SOD) activities and reduced glutathione contents. AlCl(3) injection resulted in increased nitrite concentrations, superoxide anion production, malondialdehyde concentrations and reduced glutathione contents in the forebrain cortex, suggesting that AlCl(3) exposure promoted oxidative stress in this brain structure. The biochemical changes observed in neuronal tissues showed that aluminium acted as a pro-oxidant. However, the nonspecific nitric oxide synthase (NOS) inhibitor, L-NAME, exerted anti-oxidant actions in AlCl(3)-treated animals. These results revealed that NO-mediated neurotoxicity due to intrahippocampal AlCl3 injection spread temporally and spatially to the forebrain cortex, and suggested a potentially neuroprotective effect for L-NAME.

  10. Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia.

    PubMed

    Hsu, M; Buzsáki, G

    1993-09-01

    Much of the work on forebrain ischemia in the hippocampus has focused on the phenomenon of delayed neuronal death in CA1. It is established that dentate granule cells and CA3 pyramidal cells are resistant to ischemia. However, much less is known about interneuronal involvement in CA3 or ischemic injury in the dentate hilus other than the fact that somatostatin neurons in the latter lose their immunoreactivity. We combined two sensitive methods--heat-shock protein (HSP72) immunocytochemistry and a newly developed Gallyas silver stain for demonstrating impaired cytoskeletal elements--to investigate the extent of ischemic damage to CA3 and the dentate hilus using the four-vessel-occlusion model for inducing forebrain ischemia. HSP72-like immunoreactivity was induced in neuronal populations previously shown to be vulnerable to ischemia. In addition, a distinct subset of interneurons in CA3 was also extremely sensitive to ischemia, even more so than the CA1 pyramidal cells. These neurons are located in the stratum lucidum of CA3 and possess a very high density of dendritic spines. In silver preparations, they were among the first to be impregnated as "dark" neurons, before CA1 pyramidal cells; microglial reaction was also initiated first in the stratum lucidum of CA3. Whereas CA1 damage was most prominent in the septal half of the hippocampus, hilar and CA3 interneuronal damage had a more extensive dorsoventral distribution. Our results also show a far greater extent of damage in hilar neurons than previously reported. At least four hilar cell types were consistently compromised: mossy cells, spiny fusiform cells, sparsely spiny fusiform cells, and long-spined multipolar cells. A common denominator of the injured neurons in CA3 and the hilus was the presence of spines on their dendrites, which in large part accounted for the far greater number of mossy fiber terminals they receive than their non-spiny neighbors. We suggest that the differential vulnerability of neuronal

  11. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    PubMed

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  12. Effects of one-day reperfusion after transient forebrain ischemia on circulatory system in the rat.

    PubMed

    Kravcukova, Petra; Danielisova, Viera; Nemethova, Miroslava; Burda, Jozef; Gottlieb, Miroslav

    2010-06-01

    Although ischemia/reperfusion injury remains incompletely understood, it appears that reactive oxygen species produced mainly during postischemic recirculation play a critical role. The present study examined the impact of forebrain ischemia and subsequent one-day reperfusion on several blood parameters. We determined glutamate concentration in whole blood, measured Cu/Zn- and Mn-SOD (superoxide dismutase) activity in blood cells as well as plasma, and investigated the prevalence of single and double strand breaks of lymphocyte DNA. The results of our experiment showed that the concentration of glutamic acid in whole blood was increased by about 25%. Antioxidant activity of total SOD and Cu/Zn-SOD was reduced in blood cells and plasma. Mn-SOD activity in blood cells was not affected by ischemic insult and one-day reperfusion, but we detected its significantly lower activity in samples of plasma. We observed a weakly reduced level of double and a significantly elevated level of single strand breaks of lymphocyte DNA. In conclusion, one day of recovery after the ischemic attack failed to return peripheral circulatory system to physiological conditions. Reduced antioxidant capacity in the blood and an elevated level of excitotoxic amino acid glutamate may cause lymphocyte DNA damage, and probably contribute to insufficient postischemic recovery of brain tissue.

  13. Semax, an analogue of adrenocorticotropin (4-10), binds specifically and increases levels of brain-derived neurotrophic factor protein in rat basal forebrain.

    PubMed

    Dolotov, Oleg V; Karpenko, Ekaterina A; Seredenina, Tamara S; Inozemtseva, Lyudmila S; Levitskaya, Natalia G; Zolotarev, Yuriy A; Kamensky, Andrey A; Grivennikov, Igor A; Engele, Juergen; Myasoedov, Nikolay F

    2006-04-01

    The heptapeptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) is an analogue of the N-terminal fragment (4-10) of adrenocorticotropic hormone which, after intranasal application, has profound effects on learning and memory formation in rodents and humans, and also exerts marked neuroprotective effects. A clue to the molecular mechanism underlying this neurotropic action was recently given by the observation that Semax stimulates the synthesis of brain-derived neurotrophic factor (BDNF), a potent modulator of synaptic plasticity, in astrocytes cultured from rat basal forebrain. In the present study, we investigated whether Semax affects BDNF levels in rat basal forebrain upon intranasal application of the peptide. In addition, we examined whether cell membranes isolated from this brain region contained binding sites for Semax. The binding of tritium-labelled Semax was found to be time dependent, specific and reversible. Specific Semax binding required calcium ions and was characterized by a mean+/-SEM dissociation constant (KD) of 2.4+/-1.0 nm and a BMAX value of 33.5+/-7.9 fmol/mg protein. Sandwich immunoenzymatic analysis revealed that Semax applied intranasally at 50 and 250 microg/kg bodyweight resulted in a rapid increase in BDNF levels after 3 h in the basal forebrain, but not in the cerebellum. These results point to the presence of specific binding sites for Semax in the rat basal forebrain. In addition, these findings indicate that the cognitive effects exerted by Semax might be associated, at least in part, with increased BDNF protein levels in this brain region.

  14. Forebrain Origins of Glutamatergic Innervation to the Rat Paraventricular Nucleus of the Hypothalamus: Differential Inputs to the Anterior Versus Posterior Subregions

    PubMed Central

    Ulrich-Lai, Yvonne M.; Jones, Kenneth R.; Ziegler, Dana R.; Cullinan, William E.; Herman, James P.

    2013-01-01

    The hypothalamic paraventricular nucleus (PVN) regulates numerous homeostatic systems and functions largely under the influence of forebrain inputs. Glutamate is a major neurotransmitter in forebrain, and glutamate neurosignaling in the PVN is known to mediate many of its functions. Previous work showed that vesicular glutamate transporters (VGluTs; specific markers for glutamatergic neurons) are expressed in forebrain sites that project to the PVN; however, the extent of this presumed glutamatergic innervation to the PVN is not clear. In the present study retrograde FluoroGold (FG) labeling of PVN-projecting neurons was combined with in situ hybridization for VGluT1 and VGluT2 mRNAs to identify forebrain regions that provide glutamatergic innervation to the PVN and its immediate surround in rats, with special consideration for the sources to the anterior versus posterior PVN. VGluT1 mRNA colocalization with retrogradely labeled FG neurons was sparse. VGluT2 mRNA colocalization with FG neurons was most abundant in the ventromedial hypothalamus after anterior PVN FG injections, and in the lateral, posterior, dorsomedial, and ventromedial hypothalamic nuclei after posterior PVN injections. Anterograde tract tracing combined with VGluT2 immunolabeling showed that 1) ventromedial nucleus-derived glutamatergic inputs occur in both the anterior and posterior PVN; 2) posterior nucleus-derived glutamatergic inputs occur predominantly in the posterior PVN; and 3) medial preoptic nucleus-derived inputs to the PVN are not glutamatergic, thereby corroborating the innervation pattern seen with retrograde tracing. The results suggest that PVN subregions are influenced by varying amounts and sources of forebrain glutamatergic regulation, consistent with functional differentiation of glutamate projections. PMID:21452198

  15. Sustained Expression of Osteopontin Is Closely Associated with Calcium Deposits in the Rat Hippocampus After Transient Forebrain Ischemia

    PubMed Central

    Park, Jang-Mi; Shin, Yoo-Jin; Kim, Hong Lim; Cho, Jeong Min

    2012-01-01

    The present study was designed to evaluate the extent and topography of osteopontin (OPN) protein expression in the rat hippocampus 4 to 12 weeks following transient forebrain ischemia, and to compare OPN expression patterns with those of calcium deposits and astroglial and microglial reactions. Two patterns of OPN staining were recognized by light microscopy: 1) a diffuse pattern of tiny granular deposits throughout the CA1 region at 4 weeks after ischemia and 2) non-diffuse ovoid to round deposits, which formed conglomerates in the CA1 pyramidal cell layer over the chronic interval of 8 to 12 weeks. Immunogold-silver electron microscopy and electron probe microanalysis demonstrated that OPN deposits were indeed diverse types of calcium deposits, which were clearly delineated by profuse silver grains indicative of OPN expression. Intracellular OPN deposits were frequently observed within reactive astrocytes and neurons 4 weeks after ischemia but rarely at later times. By contrast, extracellular OPN deposits progressively increased in size and appeared to be gradually phagocytized by microglia or brain macrophages and some astrocytes over 8 to 12 weeks. These data indicate an interaction between OPN and calcium in the hippocampus in the chronic period after ischemia, suggesting that OPN binding to calcium deposits may be involved in scavenging mechanisms. PMID:22496158

  16. Regional brain-derived neurotrophic factor mRNA and protein levels following transient forebrain ischemia in the rat.

    PubMed

    Kokaia, Z; Nawa, H; Uchino, H; Elmér, E; Kokaia, M; Carnahan, J; Smith, M L; Siesjö, B K; Lindvall, O

    1996-05-01

    Levels of BDNF mRNA and protein were measured in the rat brain using in situ hybridization and a two-site enzyme immunoassay. Under basal conditions, the highest BDNF concentration was found in the dentate gyrus (88 ng/g), while the levels in CA3 (50 ng/g), CA1 (18 ng/g) and parietal cortex (8 ng/g) were markedly lower. Following 10 min of forebrain ischemia, BDNF protein increased transiently in the dentate gyrus (to 124% of control at 6 h after the insult) and CA3 region (to 131% of control, at 1 week after the insult). In CA1 and parietal cortex, BDNF protein decreased to 73-75% of control at 24 h. In contrast, BDNF mRNA expression in dentate granule cells and CA3 pyramidal layer was transiently elevated to 287 and 293% of control, respectively, at 2 h, whereas no change was detected in CA1 or neocortex. The regional BDNF protein levels shown here correlate at least partly with regional differences in cellular resistance to ischemic damage, which is consistent with the hypothesis of a neuroprotective role of BDNF.

  17. Inhibition of mTOR Pathway by Rapamycin Reduces Brain Damage in Rats Subjected to Transient Forebrain Ischemia

    PubMed Central

    Yang, Xiao; Hei, Changhun; Liu, Ping; Song, Yaozu; Thomas, Taylor; Tshimanga, Sylvie; Wang, Feng; Niu, Jianguo; Sun, Tao; Li, P. Andy

    2015-01-01

    The aims of this study are to clarify the role of mTOR in mediating cerebral ischemic brain damage and the effects of rapamycin on ischemic outcomes. Ten minutes of forebrain ischemia was induced in rats, and their brains were sampled after 3 h, 16 h, and 7 days reperfusion for histology, immunohistochemistry and biochemical analysis. Our data demonstrated that cerebral ischemia resulted in both apoptotic and necrotic neuronal death; cerebral ischemia and reperfusion led to significant increases of mRNA and protein levels of p-mTOR and its downstream p-P70S6K and p-S6; elevation of LC3-II, and release of cytochrome c into the cytoplasm in both the cortex and hippocampus. Inhibition of mTOR by rapamycin markedly reduced ischemia-induced damage; suppressed p-Akt, p-mTOR, p-P70S6K and p-S6 protein levels; decreased LC3-II and Beclin-1; and prevented cytochrome c release in the two structures. All together, these data provide evidence that cerebral ischemia activates mTOR and autophagy pathways. Inhibition of mTOR deactivates the mTOR pathway, suppresses autophagy, prevents cytochrome c release and reduces ischemic brain damage. PMID:26681922

  18. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain.

    PubMed

    Frankel, Paul S; Cunningham, Kathryn A

    2002-12-27

    The hallucinogen d-lysergic acid diethylamide (d-LSD) evokes dramatic somatic and psychological effects. In order to analyze the neural activation induced by this unique psychoactive drug, we tested the hypothesis that expression of the immediate-early gene product c-Fos is induced in specific regions of the rat forebrain by a relatively low, behaviorally active, dose of d-LSD (0.16 mg/kg, i.p.); c-Fos protein expression was assessed at 30 min, and 1, 2 and 4 h following d-LSD injection. A time- and region-dependent expression of c-Fos was observed with a significant increase (P<0.05) in the number of c-Fos-positive cells detected in the anterior cingulate cortex at 1 h, the shell of the nucleus accumbens at 1 and 2 h, the bed nucleus of stria terminalis lateral at 2 h and the paraventricular hypothalamic nucleus at 1, 2 and 4 h following systemic d-LSD administration. These data demonstrate a unique pattern of c-Fos expression in the rat forebrain following a relatively low dose of d-LSD and suggest that activation of these forebrain regions contributes to the unique behavioral effects of d-LSD. Copyright 2002 Elsevier Science B.V.

  19. Distribution of Fos-immunoreactive cells in rat forebrain and midbrain following social defeat stress and diazepam treatment.

    PubMed

    Lkhagvasuren, B; Oka, T; Nakamura, Y; Hayashi, H; Sudo, N; Nakamura, K

    2014-07-11

    The anxiolytic diazepam selectively inhibits psychological stress-induced autonomic and behavioral responses without causing noticeable suppression of other central performances. This pharmacological property of diazepam led us to the idea that neurons that exhibit diazepam-sensitive, psychological stress-induced activation are potentially those recruited for stress responses. To obtain neuroanatomical clues for the central stress circuitries, we examined the effects of diazepam on psychological stress-induced neuronal activation in broad brain regions. Rats were exposed to a social defeat stress, which caused an abrupt increase in body temperature by up to 2°C. Pretreatment with diazepam (4mg/kg, i.p.) attenuated the stress-induced hyperthermia, confirming an inhibitory physiological effect of diazepam on the autonomic stress response. Subsequently, the distribution of cells expressing Fos, a marker of neuronal activation, was examined in 113 forebrain and midbrain regions of these rats after the stress exposure and diazepam treatment. The stress following vehicle treatment markedly increased Fos-immunoreactive (IR) cells in most regions of the cerebral cortex, limbic system, thalamus, hypothalamus and midbrain, which included parts of the autonomic, neuroendocrine, emotional and arousal systems. The diazepam treatment significantly reduced the stress-induced Fos expression in many brain regions including the prefrontal, sensory and motor cortices, septum, medial amygdaloid nucleus, medial and lateral preoptic areas, parvicellular paraventricular hypothalamic nucleus, dorsomedial hypothalamus, perifornical nucleus, tuberomammillary nucleus, association, midline and intralaminar thalami, and median and dorsal raphe nuclei. In contrast, diazepam increased Fos-IR cells in the central amygdaloid nucleus, medial habenular nucleus, ventromedial hypothalamic nucleus and magnocellular lateral hypothalamus. These results provide important information for elucidating the

  20. Forebrain Projections of Arcuate Neurokinin B Neurons Demonstrated by Anterograde Tract-Tracing and Monosodium Glutamate Lesions in the Rat

    PubMed Central

    Krajewski, Sally J.; Burke, Michelle C.; Anderson, Miranda J.; McMullen, Nathaniel T.; Rance, Naomi E.

    2010-01-01

    Neurokinin B (NKB) and kisspeptin receptor signaling are essential components of the reproductive axis. A population of neurons resides within the arcuate nucleus of the rat that expresses NKB, kisspeptin, dynorphin, NK3 receptors and estrogen receptor α. Here we investigate the projections of these neurons using NKB-immunocytochemistry as a marker. First, the loss of NKB-immunoreactive (ir) somata and fibers was characterized after ablation of the arcuate nucleus by neonatal injections of monosodium glutamate. Second, biotinylated dextran amine was injected into the arcuate nucleus and anterogradely labeled NKB-ir fibers were identified using dual-labeled immunofluorescence. Four major projection pathways are described: 1) Local projections within the arcuate nucleus bilaterally, 2) Projections to the median eminence including the lateral palisade zone, 3) Projections to a periventricular pathway extending rostrally to multiple hypothalamic nuclei, the septal region and BNST and dorsally to the dorsomedial nucleus and 4) Projections to a ventral hypothalamic tract to the lateral hypothalamus and medial forebrain bundle. The diverse projections provide evidence that NKB/kisspeptin/dynorphin neurons could integrate the reproductive axis with multiple homeostatic, behavioral and neuroendocrine processes. Interestingly, anterograde tract-tracing revealed NKB-ir axons originating from arcuate neurons terminating on other NKB-ir somata within the arcuate nucleus. Combined with previous studies, these experiments reveal a bilateral interconnected network of sex-steroid responsive neurons in the arcuate nucleus of the rat that express NKB, kisspeptin, dynorphin, NK3 receptors and ERα and project to GnRH terminals in the median eminence. This circuitry provides a mechanism for bilateral synchronization of arcuate NKB/kisspeptin/dynorphin neurons to modulate the pulsatile secretion of GnRH. PMID:20038444

  1. Antidepressant-like Effects of Medial Forebrain Bundle Deep Brain Stimulation in Rats are not Associated With Accumbens Dopamine Release.

    PubMed

    Bregman, Tatiana; Reznikov, Roman; Diwan, Mustansir; Raymond, Roger; Butson, Christopher R; Nobrega, José N; Hamani, Clement

    2015-01-01

    Medial forebrain bundle (MFB) deep brain stimulation (DBS) is currently being investigated in patients with treatment-resistant depression. Striking features of this therapy are the large number of patients who respond to treatment and the rapid nature of the antidepressant response. To study antidepressant-like behavioral responses, changes in regional brain activity, and monoamine release in rats receiving MFB DBS. Antidepressant-like effects of MFB stimulation at 100 μA, 90 μs and either 130 Hz or 20 Hz were characterized in the forced swim test (FST). Changes in the expression of the immediate early gene (IEG) zif268 were measured with in situ hybridization and used as an index of regional brain activity. Microdialysis was used to measure DBS-induced dopamine and serotonin release in the nucleus accumbens. Stimulation at parameters that approximated those used in clinical practice, but not at lower frequencies, induced a significant antidepressant-like response in the FST. In animals receiving MFB DBS at high frequency, increases in zif268 expression were observed in the piriform cortex, prelimbic cortex, nucleus accumbens shell, anterior regions of the caudate/putamen and the ventral tegmental area. These structures are involved in the neurocircuitry of reward and are also connected to other brain areas via the MFB. At settings used during behavioral tests, stimulation did not induce either dopamine or serotonin release in the nucleus accumbens. These results suggest that MFB DBS induces an antidepressant-like effect in rats and recruits structures involved in the neurocircuitry of reward without affecting dopamine release in the nucleus accumbens. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Posttreatment but not pretreatment with selective beta-adrenoreceptor 1 antagonists provides neuroprotection in the hippocampus in rats subjected to transient forebrain ischemia.

    PubMed

    Iwata, Masato; Inoue, Satoki; Kawaguchi, Masahiko; Nakamura, Mitsutoshi; Konishi, Noboru; Furuya, Hitoshi

    2010-04-01

    beta-Adrenoreceptor antagonists provide neuroprotection against focal cerebral ischemia, but the effects of these antagonists on experimental global cerebral ischemia are unknown. That is, the effect of beta-adrenoreceptor antagonism in vulnerable brain regions after ischemic insult has not been examined. Therefore, we investigated the neuroprotective effects of preischemic or postischemic administration of propranolol (a nonselective beta-adrenoreceptor antagonist), esmolol, and landiolol (selective beta-adrenoreceptor 1 antagonists) against forebrain ischemia in rats. IV administration of saline 10 microL . h(-1), propranolol 100 microg . kg(-1) . min(-1), esmolol 200 microg . kg(-1) . min(-1), or landiolol 50 microg . kg(-1) . min(-1) in male Sprague-Dawley rats was started 30 minutes before or 60 minutes after 8-minute bilateral carotid artery occlusion combined with hypotension (35 mm Hg) under isoflurane (1.5%) anesthesia. All drugs were administered continuously until 5 days after reperfusion, and the animals were evaluated neurologically and histologically after this 5-day period. Preischemic treatment with propranolol, esmolol, or landiolol failed to provide neuroprotection against forebrain ischemia in the hippocampus. Rats treated with propranolol tended to have a worse score for motor activity and a higher mortality rate (up to 64%), but the differences with other groups were not statistically significant. Postischemic treatment with esmolol and landiolol, but not with propranolol, reduced neuronal injury after forebrain ischemia. However, motor activity did not differ among rats treated postischemically with any of the beta-adrenoreceptor antagonists or saline. Postischemic treatment with esmolol and landiolol provided neuroprotection in the hippocampus in rats subjected to bilateral carotid artery occlusion combined with hemorrhagic shock, whereas treatment with propranolol failed to show neuroprotection. We suggest that concomitant beta-blockade and

  3. Long-term inhibition of Rho-kinase restores the LTP impaired in chronic forebrain ischemia rats by regulating GABAA and GABAB receptors.

    PubMed

    Huang, L; Zhao, L B; Yu, Z Y; He, X J; Ma, L P; Li, N; Guo, L J; Feng, W Y

    2014-09-26

    We previously demonstrated that inactivation of Rho-kinase by hydroxyfasudil could impact N-methyl-d-aspartate (NMDA) excitatory interneurons in the hippocampus and attenuate the spatial learning and memory dysfunction of rats caused by chronic forebrain hypoperfusion ischemia. Complementary interactions between the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter GABA form the molecular basis of synaptic plasticity and cognitive performance. However, whether the GABAergic inhibitory interneurons are involved in the mechanisms underlying these processes remains unclear. Here, we further examined the role of GABAergic interneurons in the neuroprotective effect of the Rho-kinase inhibitor. Chronic forebrain ischemia was induced in Wistar rats by bilateral common carotid artery occlusion (BCAO). The general synaptic transmission and long-term potentiation (LTP) of hippocampal CA3 neurons were evaluated at 30 days after sham surgery or BCAO. Real-time PCR and Western blot analyses were conducted to determine the effect of the Rho-kinase inhibitor hydroxyfasudil on GABAergic inhibitory interneuron expression and function after ischemia. Hydroxyfasudil showed no significant effect on general synaptic transmission, but it could abolish the inhibition of LTP induced by chronic forebrain ischemia. Moreover, the mRNA and protein levels of GABAA and GABAB in three brain regions after ischemia were markedly decreased, and hydroxyfasudil could up-regulate all mRNA and protein expression levels in these areas except for GABAA mRNA in the cerebral cortex and striatum. Using phosphorylation antibodies against specific sites on the GABAA and GABAB receptors, we further demonstrated that hydroxyfasudil could inhibit GABAergic interneuron phosphorylation triggered by the theta burst stimulation. In summary, our results indicated that the inactivation of Rho-kinase could enhance GABAA and GABAB expressions by different mechanisms to guarantee the induction of

  4. The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats.

    PubMed

    Buchan, A; Li, H; Pulsinelli, W A

    1991-04-01

    The neuroprotective effects of dizocilipine maleate (MK-801), a noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) receptor/channel, were tested in the 4-vessel occlusion rat model of forebrain ischemia. Adult Wistar rats, treated intraperitoneally with MK-801 or saline using several different treatment paradigms were subjected to 5 (n = 208) or 15 (n = 62) min of severe, transient forebrain ischemia. In saline-treated animals, 15 min of ischemia (n = 13) produced extensive and consistent loss of pyramidal neurons in the CA1 zone of hippocampus. The degree and distribution of cell loss were not reduced by single dose preischemic administration of MK-801 at 1 (n = 7), 2.5 (n = 4), or 5 mg/kg (n = 8). In other animals subjected to 15 min of forebrain ischemia, multiple doses of MK-801 (5, 2.5, and 2.5 mg/kg) given immediately and at approximately 8 and 20 hr after cerebral reperfusion (n = 5) did not alter CA1 injury compared to saline-treated controls (n = 5). Five minutes of forebrain ischemia in saline-treated animals, (n = 82) resulted in significantly fewer (p less than 0.001) dead CA1 pyramidal cells and a greater variance compared to animals subjected to 15 min of ischemia. Power analysis of the preliminary saline-treated animals subjected to 5 min of ischemia (n = 22) indicated that 60 animals per group were necessary to detect a 15% difference between MK-801 and vehicle-treated groups. Multidose treatment with MK-801 (1 mg/kg) given 1 hr prior to 5 min of ischemia (n = 60) and again at approximately 8 and 16 hr after recirculation failed to attenuate hippocampal injury.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long-Evans rats

    PubMed Central

    Evans, Andrew K.; Strassmann, Patrick S.; Lee, I-Ping; Sapolsky, Robert M.

    2014-01-01

    Toxoplasma gondii (T. gondii) is one of the world’s most successful brain parasites. T. gondii engages in parasite manipulation of host behavior and infection has been epidemiologically linked to numerous psychiatric disorders. Mechanisms by which T. gondii alters host behavior are not well understood, but neuroanatomical cyst presence and the localized host immune response to cysts are potential candidates. The aim of these studies was to test the hypothesis that T. gondii manipulation of specific host behaviors is dependent on neuroanatomical location of cysts in a time-dependent function post-infection. We examined neuroanatomical cyst distribution (53 forebrain regions) in infected rats after predator odor aversion behavior and anxiety-related behavior in the elevated plus maze and open field arena, across a 6-week time course. In addition, we examined evidence for microglial response to the parasite across the time course. Our findings demonstrate that while cysts are randomly distributed throughout the forebrain, individual variation in cyst localization, beginning 3 weeks post-infection, can explain individual variation in the effects of T. gondii on behavior. Additionally, not all infected rats develop cysts in the forebrain, and attenuation of predator odor aversion and changes in anxiety-related behavior are linked with cyst presence in specific forebrain areas. Finally, the immune response to cysts is striking. These data provide the foundation for testing hypotheses about proximate mechanisms by which T. gondii alters behavior in specific brain regions, including consequences of establishment of a homeostasis between T. gondii and the host immune response. PMID:24269877

  6. Differential expression of arc mRNA and other plasticity-related genes induced by nicotine in adolescent rat forebrain.

    PubMed

    Schochet, T L; Kelley, A E; Landry, C F

    2005-01-01

    Relatively little attention has been focused on mechanisms related to neural plasticity and drug abuse in adolescence, compared with abundant research using adult animal models. As smoking is typically initiated in adolescence, an important question to address is whether the adolescent brain responds differently to nicotine compared with the adult. To investigate this question, we examined the expression of a number of early response genes (arc, c-fos and NGFI-B) that have been implicated in synaptic plasticity and addiction, following acute nicotine in adolescent and adult rats. Baseline expression of arc and c-fos was higher in adolescent brains compared with adults. Following acute nicotine treatment (0.1, 0.4mg/kg), we found a marked induction of arc mRNA in the prefrontal cortex of nicotine-treated adolescents compared with a less pronounced increase of arc in the adult. c-fos and NGFI-B were also upregulated by nicotine, but not in an age-related manner. In contrast, nicotine induced less arc, c-fos, and NGFI-B expression in the somatosensory cortex of adolescents compared with adults. A fourth gene, quinoid dihydropteridine reductase was expressed at lower levels in white matter of the adolescent forebrain compared with the adult, but was not affected by nicotine. These results suggest that in adolescence, the activity of specific early response genes is higher in brain regions critical for emotional regulation and decision-making. Further, nicotine affects key plasticity molecules in these areas in a manner different from the adult. Thus, adolescence may represent a neurobiologically vulnerable period with regard to nicotine exposure.

  7. Developmental suppression of forebrain trkA receptors and attentional capacities in aging rats: A longitudinal study.

    PubMed

    Yegla, Brittney; Parikh, Vinay

    2017-09-29

    Basal forebrain (BF) cholinergic neurons innervating the cortex regulate cognitive, specifically attentional, processes. Cholinergic atrophy and cognitive decline occur at an accelerated pace in age-related neurodegenerative disorders such as Alzheimer's disease; however, the mechanism responsible for this phenomenon remains unknown. Here we hypothesized that developmental suppression of nerve growth factor signaling, mediated via tropomyosin-related kinase A (trkA) receptors, would escalate age-related attentional vulnerability. An adeno-associated viral vector expressing trkA shRNA (AAV-trkA) was utilized to knockdown trkA receptors in postnatal rats at an ontogenetic time point when cortical cholinergic inputs mature, and the impact of this manipulation on performance was assessed in animals maintained on an operant attention task throughout adulthood and until old (24 months) age. A within-subject comparison across different time points illustrated a gradual age-related decline in attentional capacities. However, the performance under baseline and distracted conditions did not differ between the AAV-trkA-infused and animals infused with a vector expressing shRNA against the control protein luciferase at any time point. Additional analysis of cholinergic measures conducted at 24 months showed that the capacity of cholinergic terminals to release acetylcholine following a depolarizing stimulus, cortical cholinergic fiber density and BF cholinergic cell size remained comparable between the two groups. Contrary to our predictions, these data indicate that developmental BF trkA disruption does not impact age-related changes in attentional functions. It is possible that life-long engagement in cognitive activity might have potentially rescued the developmental insults on the cholinergic system, thus preserving attentional capacities in advanced age. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Postnatal development of nestin positive neurons in rat basal forebrain: different onset and topography with choline acetyltransferase and parvalbumin expression.

    PubMed

    Guo, Kai-Hua; Li, Dong-Pei; Gu, Huai-Yu; Jie-Xu; Yao, Zhi-Bin

    2014-06-01

    Our previous studies identified a sub-population of cholinergic neurons which express nestin in the rostral part of the basal forebrain (BF) in normal adult rats. In the present study, the postnatal developmental patterns of nestin, choline acetyl transferase (ChAT) and parvalbumin (PV) positive neurons were explored by means of immunohistochemistry combined with immunofluorescence double label methods. Compared with early onset of ChAT expression (from P1) and delayed onset of PV expression (from P16), nestin positive activity was detected in the BF from P9 and co-expressed by parts of the ChAT positive neurons within the same region during the whole postnatal development process. However, ChAT and PV were not coexpressed by the neurons within the medial septum-diagonal band of Broca (MS-DBB) of BF. These results might imply a composite of separate development patterns displayed by different subpopulations of cholinergic neurons (nestin positive cholinergic neurons and nestin negative cholinergic neurons) within this region. Moreover, the topographic distribution of nestin, ChAT and PV positive neurons also showed different characteristics. In summary, our present study revealed a remarkable timing and topographic difference on the postnatal development of the nestin expression within the MS-DBB of BF compared with ChAT and PV expression. It is further suggested that nestin is re-expressed by cholinergic neurons in the BF after differentiation but not persisted from neuronal precursor cells. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. Forebrain medial septum region facilitates nociception in a rat formalin model of inflammatory pain.

    PubMed

    Lee, Andy Thiam-Huat; Ariffin, Mohammed Zacky; Zhou, Mingyi; Ye, Jenn Zhou; Moochhala, Shabbir M; Khanna, Sanjay

    2011-11-01

    The medial septum is anatomically and functionally linked to the hippocampus, a region implicated in nociception. However, the role of medial septum in nociception remains unclear. To investigate the role of the region in nociception in rats, muscimol, a GABA agonist, or zolpidem, a positive allosteric modulator of GABA(A) receptors, was microinjected into medial septum to attenuate the activity of neurons in the region. Electrophysiological studies in anesthetized rats indicated that muscimol evoked a stronger and longer-lasting suppression of medial septal-mediated activation of hippocampal theta field activity than zolpidem. Similarly, microinjection of muscimol (1 or 2 μg/0.5 μl) into the medial septum of awake rats suppressed both licking and flinching behaviors in the formalin test of inflammatory pain, whereas only the latter behavior was affected by zolpidem (8 or 12 μg/0.5 μl) administered into the medial septum. Interestingly, both drugs selectively attenuated nociceptive behaviors in the second phase of the formalin test that are partly driven by central plasticity. Indeed, muscimol reduced the second phase behaviors by 30% to 60%, which was comparable to the reduction seen with systemic administration of a moderate dose of the analgesic morphine. The reduction was accompanied by a decrease in formalin-induced expression of spinal c-Fos protein that serves as an index of spinal nociceptive processing. The drug effects on nociceptive behaviors were without overt sedation and were distinct from the effects observed after septal lateral microinjections. Taken together, these findings suggest that the activation of medial septum is pro-nociceptive and facilitates aspects of central neural processing underlying nociception.

  10. Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat.

    PubMed

    Wang, Hui-Dong; Dunnavant, Floyd D; Jarman, Tabitha; Deutch, Ariel Y

    2004-07-01

    The generation of new cells in the adult mammalian brain may significantly modify pathophysiological processes in neuropsychiatric disorders. We examined the ability of chronic treatment with the antipsychotic drugs (APDs) olanzapine and haloperidol to increase the number and survival of newly generated cells in the prefrontal cortex (PFC) and striatal complex of adult male rats. Animals were treated with olanzapine or haloperidol for 3 weeks and then injected with 5-bromo-2'-deoxyuridine (BrdU) to label mitotic cells. Half of the animals continued on the same APD for two more weeks after BrdU challenge, with the other half receiving vehicle during this period. Olanzapine but not haloperidol significantly increased both the total number and density of BrdU-labeled cells in the PFC and dorsal striatum; no effect was observed in the nucleus accumbens. Continued olanzapine treatment after the BrdU challenge did not increase the survival of newly generated cells. The newly generated cells in the PFC did not express the neuronal marker NeuN. Despite the significant increase in newly generated cells in the PFC of olanzapine-treated rats, the total number of these cells is low, suggesting that the therapeutic effects of atypical APD treatment may not be due to the presence of newly generated cells that have migrated to the cortex.

  11. Moderate hypothermia suppresses jugular venous superoxide anion radical, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats.

    PubMed

    Koda, Yoichi; Tsuruta, Ryosuke; Fujita, Motoki; Miyauchi, Takashi; Kaneda, Kotaro; Todani, Masaki; Aoki, Tetsuya; Shitara, Masaki; Izumi, Tomonori; Kasaoka, Shunji; Yuasa, Makoto; Maekawa, Tsuyoshi

    2010-01-22

    The aim of this study was to assess the effect of moderate hypothermia (MH) on generation of jugular venous superoxide radical (O2-.), oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion (FBI/R) rats. Twenty-one Wistar rats were allocated to a control group (n=7, 37 degrees C), a pre-MH group (n=7, 32 degrees C before ischemia), and a post-MH group (n=7, 32 degrees C after reperfusion). MH was induced before induction of ischemia in the pre-MH group and just after reperfusion in the post-MH group. Forebrain ischemia was induced by occlusion of bilateral common carotid arteries with hemorrhagic hypotension for 10 min, followed by reperfusion. O(2)(-)(.) in the jugular vein was measured from the produced current using a novel O2-. sensor. The O2-. current showed a gradual increase during forebrain ischemia in the control and post-MH groups but was attenuated in the pre-MH group. Following reperfusion, the current showed a marked increase in the control group but was strongly attenuated in the pre- and post-MH groups. Concentrations of malondialdehyde, high-mobility group box 1 (HMGB1) protein, and intercellular adhesion molecule-1 (ICAM-1) in the brain and plasma 120 min after reperfusion in the pre- and post-MH groups were significantly lower than those in the control group, except for plasma HMGB1 in the post-MH group. In conclusion, MH suppressed O2-. measured in the jugular vein, oxidative stress, early inflammation, and endothelial injury in FBI/R rats.

  12. Elevation of jugular venous superoxide anion radical is associated with early inflammation, oxidative stress, and endothelial injury in forebrain ischemia-reperfusion rats.

    PubMed

    Aki, Hiromi Shinagawa; Fujita, Motoki; Yamashita, Susumu; Fujimoto, Kenji; Kumagai, Kazumi; Tsuruta, Ryosuke; Kasaoka, Shunji; Aoki, Tetsuya; Nanba, Masahiro; Murata, Hidenori; Yuasa, Makoto; Maruyama, Ikuro; Maekawa, Tsuyoshi

    2009-10-06

    A novel electrochemical sensor was used in this study to determine the correlations between jugular venous O(2)(-) and HMGB1, malondialdehyde (MDA), and intercellular adhesion molecule-1 (ICAM-1) in rats with forebrain ischemia/reperfusion (FBI/R). Twenty-one male rats were divided into a Sham group, a hemorrhagic shock/reperfusion (HS/R) group, and a forebrain ischemia/reperfusion (FBI/R) group. The O(2)(-) sensor in the jugular vein detected the current derived from O(2)(-) generation (abbreviated as "O(2)(-) current"), which was integrated as the partial value of quantified electricity during ischemia (Q(I)) and after reperfusion (Q(R)). The plasma O(2)(-) current showed a gradual increase during forebrain ischemia in the HS/R and the FBI/R groups. The current showed a marked increase immediately after reperfusion and continued for more than 60 min in the FBI/R group. In the HS/R group, the current was gradually attenuated to the baseline level. Brain and plasma HMGB1 increased significantly in the FBI/R group compared with those in the Sham and the HS/R groups, and both brain and plasma HMGB1 correlated significantly with the sum of Q(I) and Q(R) (total Q). Brain and plasma MDA and plasma soluble ICAM-1 also correlated significantly with total Q. Here, we report the correlation between O(2)(-) and HMGB1, MDA, and sICAM-1 in rats with cerebral ischemia-reperfusion, using a novel electrochemical sensor. These data indicated that excessive production of O(2)(-) after ischemia-reperfusion was associated with early inflammation, oxidative stress, and endothelial activation in the brain and plasma, which might enhance the ischemia-reperfusion injury.

  13. Glutamate-dependent ectodomain shedding of neuregulin-1 type II precursors in rat forebrain neurons

    PubMed Central

    Iwakura, Yuriko; Wang, Ran; Inamura, Naoko; Araki, Kazuaki; Higashiyama, Shigeki; Takei, Nobuyuki; Nawa, Hiroyuki

    2017-01-01

    The neurotrophic factor neuregulin 1 (NRG1) regulates neuronal development, glial differentiation, and excitatory synapse maturation. NRG1 is synthesized as a membrane-anchored precursor and is then liberated by proteolytic processing or exocytosis. Mature NRG1 then binds to its receptors expressed by neighboring neurons or glial cells. However, the molecular mechanisms that govern this process in the nervous system are not defined in detail. Here we prepared neuron-enriched and glia-enriched cultures from embryonic rat neocortex to investigate the role of neurotransmitters that regulate the liberation/release of NRG1 from the membrane of neurons or glial cells. Using a two-site enzyme immunoassay to detect soluble NRG1, we show that, of various neurotransmitters, glutamate was the most potent inducer of NRG1 release in neuron-enriched cultures. NRG1 release in glia-enriched cultures was relatively limited. Furthermore, among glutamate receptor agonists, N-Methyl-D-Aspartate (NMDA) and kainate (KA), but not AMPA or tACPD, mimicked the effects of glutamate. Similar findings were acquired from analysis of the hippocampus of rats with KA-induced seizures. To evaluate the contribution of members of a disintegrin and metalloproteinase (ADAM) families to NRG1 release, we transfected primary cultures of neurons with cDNA vectors encoding NRG1 types I, II, or III precursors, each tagged with the alkaline phosphatase reporter. Analysis of alkaline phosphatase activity revealed that the NRG1 type II precursor was subjected to tumor necrosis factor-α-converting enzyme (TACE) / a Disintegrin And Metalloproteinase 17 (ADAM17) -dependent ectodomain shedding in a protein kinase C-dependent manner. These results suggest that glutamatergic neurotransmission positively regulates the ectodomain shedding of NRG1 type II precursors and liberates the active NRG1 domain in an activity-dependent manner. PMID:28350885

  14. Stimulation of 5-HT7 receptor during adolescence determines its persistent upregulation in adult rat forebrain areas.

    PubMed

    Nativio, Paola; Zoratto, Francesca; Romano, Emilia; Lacivita, Enza; Leopoldo, Marcello; Pascale, Esterina; Passarelli, Francesca; Laviola, Giovanni; Adriani, Walter

    2015-11-01

    Brain serotonin 7 (5-HT7) receptors play an important functional role in learning and memory, in regulation of mood and motivation, and for circadian rhythms. Recently, we have studied the modulatory effects of a developmental exposure (under subchronic regimen) in rats with LP-211, a brain-penetrant and selective 5-HT7 receptor agonist. We aimed at further deciphering long-term sequelae into adulthood. LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during the adolescent phase (postnatal days 43-45 to 47-49). When adult (postnatal days >70), forebrain areas were obtained for ex vivo immunohistochemistry, whose results prompted us to reconsider the brain connectivity maps presented in our previous study (Canese et al., Psycho-Pharmacol 2015;232:75-89.) Significant elevation in levels of 5-HT7 receptors were evidenced due to adolescent LP-211 exposure, in dorsal striatum (which also shows an increase of dopaminergic D2 auto-receptors) and-unexpectedly-in piriform cortex, with no changes in ventral striatum. We observed that functional connectivity from a seed on the right hippocampus was more extended than reported, also including the piriform cortex. As a whole, the cortical loop rearranged by adolescent LP-211 exposure consisted in a hippocampus receiving connections from piriform cortex and dorsal striatum, the latter both directly and through functional control over the 'extended amygdala'. Such results represent a starting point to explore neurophysiology of 5-HT7 receptors. Further investigation is warranted to develop therapies for sleep disorders, for impaired emotional and motivational regulation, for attentive and executive deficit. The 5-HT7 agonist LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during adolescence (postnatal days 43-45 to 47-49) in rats. When adult (postnatal days >70), a significant elevation in levels of 5-HT7 receptors were evidenced in dorsal striatum and-unexpectedly-in piriform cortex.

  15. Increases in mature brain-derived neurotrophic factor protein in the frontal cortex and basal forebrain during chronic sleep restriction in rats: possible role in initiating allostatic adaptation.

    PubMed

    Wallingford, J K; Deurveilher, S; Currie, R W; Fawcett, J P; Semba, K

    2014-09-26

    Chronic sleep restriction (CSR) has various negative consequences on cognitive performance and health. Using a rat model of CSR that uses alternating cycles of 3h of sleep deprivation (using slowly rotating activity wheels) and 1h of sleep opportunity continuously for 4 days ('3/1' protocol), we previously observed not only homeostatic but also allostatic (adaptive) sleep responses to CSR. In particular, non-rapid eye movement sleep (NREMS) electroencephalogram (EEG) delta power, an index of sleep intensity, increased initially and then declined gradually during CSR, with no rebound during a 2-day recovery period. To study underlying mechanisms of these allostatic responses, we examined the levels of brain-derived neurotrophic factor (BDNF), which is known to regulate NREMS EEG delta activity, during the same CSR protocol. Mature BDNF protein levels were measured in the frontal cortex and basal forebrain, two brain regions involved in sleep and EEG regulation, and the hippocampus, using Western blot analysis. Adult male Wistar rats were housed in motorized activity wheels, and underwent the 3/1 CSR protocol for 27 h, for 99 h, or for 99 h followed by 24h of recovery. Additional rats were housed in either locked wheels (locked wheel controls [LWCs]) or unlocked wheels that rats could rotate freely (wheel-running controls [WRCs]). BDNF levels did not differ between WRC and LWC groups. BDNF levels were increased, compared to the control levels, in all three brain regions after 27 h, and were increased less strongly after 99 h, of CSR. After 24h of recovery, BDNF levels were at the control levels. This time course of BDNF levels parallels the previously reported changes in NREMS delta power during the same CSR protocol. Changes in BDNF protein levels in the cortex and basal forebrain may be part of the molecular mechanisms underlying allostatic sleep responses to CSR.

  16. Contingency does not contribute to the effects of cocaine self-administration on prodynorphin and proenkephalin gene expression in the rat forebrain.

    PubMed

    Ziółkowska, Barbara; Stefański, Roman; Mierzejewski, Paweł; Zapart, Grzegorz; Kostowski, Wojciech; Przewłocki, Ryszard

    2006-01-19

    Neuroadaptations in the brain opioid systems produced by chronic exposure to drugs of abuse may contribute to the drug dependence and addiction. Although regulation of the gene expression of the opioid propeptides proenkephalin (PENK) and prodynorphin (PDYN) by psychostimulants has previously been described, little attention has been paid to dissociating effects of pharmacological actions of the drugs from those produced by motivational processes driving active drug intake in self-administration paradigms. In the present study, effects of response-dependent (contingent) and response-independent (noncontingent) cocaine administration on the PENK and PDYN gene expression in the rat forebrain have been directly compared using the "yoked" self-administration procedure. The i.v. cocaine treatment lasted for 5 weeks, and rats were sacrificed 24 h after the last self-administration session. In situ hybridization analysis revealed that levels of the PDYN mRNA were significantly increased in the caudate/putamen, to the same extent in rats self-administering cocaine as in animals receiving noncontingent injections of the drug at the same frequency and dosage. No changes in the expression of the PDYN gene were detected in the nucleus accumbens or in the central nucleus of amygdala. Levels of the PENK mRNA remained unaltered in all the above-mentioned forebrain regions of rats receiving contingent or noncontingent cocaine injections. The obtained data indicate that up-regulation of the PDYN gene expression in the caudate/putamen results from direct pharmacological actions of cocaine rather than from the motivational and cognitive processes underlying active self-administration of the drug.

  17. The Distribution of messenger RNAs Encoding the Three Isoforms of the Transducer Of Regulated CREB Activity (TORC) in The Rat Forebrain

    PubMed Central

    Watts, Alan G.; Sanchez-Watts, Graciela; Liu, Ying; Aguilera, Greti

    2012-01-01

    Increasing evidence indicates that the CREB-dependent transcriptional activation of a number of genes requires the CREB co-activator, transducer of regulated CREB activity (TORC). Because of the central importance of CREB in many brain functions we examined the topographic distribution of TORC1, 2, and 3 mRNAs in specific regions of the rat forebrain. In situ hybridisation (ISH) analysis revealed that TORC1 is the most abundant isoform in most forebrain structures, followed by TORC2 and TORC3. All three TORC isoforms were found in a number of brain nuclei, the ventricular ependyma, and pia mater. While high levels of TORC1 were widely distributed in the forebrain, TORC2 was found in discrete nuclei and TORC3 mostly in the ependyma, and pia mater. The relative expression of TORC isoforms was confirmed by qRT-PCR analysis in the hippocampus and hypothalamus. In the paraventricular nucleus of the hypothalamus, TORC1 and 2 mRNAs were abundant in the parvicellular and magnocellular neuroendocrine compartments, while TORC3 expression was low. All three isoform mRNAs were found elsewhere in the hypothalamus, with the most prominent expression of TORC1 in the ventromedial nucleus, TORC2 in the dorsomedial and arcuate nuclei, TORCs 1 and 2 in the supraoptic, and TORC2 in the suprachiasmatic nuclei. These differential distribution patterns are consistent with complex roles for all three TORC isoforms in diverse brain structures, and provide a foundation for further studies on the mechanisms of CREB/TORC signalling on brain function. PMID:21679259

  18. Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats.

    PubMed

    Blurton-Jones, Mathew; Tuszynski, Mark H

    2002-10-21

    Estrogen has been reported to regulate the activity of gamma-aminobutyric acid (GABA)ergic interneurons within the hippocampus, basal forebrain, and hypothalamus of adult rodents. Although estrogen receptor-alpha bearing GABAergic interneurons have been identified previously, the neurotransmitter phenotype of cells that express the more recently characterized estrogen receptor-beta (ER-beta) has not been examined in vivo. We, therefore, have used fluorescent immunohistochemistry to further characterize the phenotype of ER-beta-bearing cells by double labeling for the GABAergic-associated calcium-binding protein, parvalbumin (PV). We find that a large proportion of ER-beta-immunoreactive cells within the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized (ovx) adult rats are PV-immunoreactive. Within the infralimbic, agranular insular, primary motor, parietal association, perirhinal, and lateral entorhinal cortices, an average of 95.6% +/- 0.8% (intact) and 94.5% +/- 1.4% (ovx) of all ER-beta-immunoreactive cells coexpress parvalbumin, and this proportion is strikingly similar across these diverse cortical regions. ER-beta/PV double-labeled cells represent 23.3% +/- 1.6% (intact) and 25.8% +/- 2.0% (ovx) of all PV-labeled cells within these regions. ER-beta/PV double-labeled cells are also observed within the lateral, accessory basal, and posterior cortical nuclei of the amygdala, and periamygdaloid cortex. Within the basal forebrain, 31.0% +/- 3.1% (intact) and 26.0% +/- 5.2 % (ovx) of ER-beta-immunoreactive cells coexpress PV. Almost all ER-beta-immunoreactive cells within the subiculum, a major output region of the hippocampal formation, double label for PV (intact = 97.2% +/- 2.8%; ovx = 100% +/- 0.0%). Thus, ER-beta exhibits extensive colocalization with a subclass of inhibitory neurons, suggesting a potential mechanism whereby estrogen can regulate neuronal excitability in diverse and broad brain regions by modulating

  19. Continuous estrone treatment impairs spatial memory and does not impact number of basal forebrain cholinergic neurons in the surgically menopausal middle-aged rat.

    PubMed

    Engler-Chiurazzi, Elizabeth B; Talboom, Joshua S; Braden, B Blair; Tsang, Candy W S; Mennenga, Sarah; Andrews, Madeline; Demers, Laurence M; Bimonte-Nelson, Heather A

    2012-06-01

    CEE (conjugated equine estrogens) is the most widely prescribed estrogen-only menopausal hormone therapy in the United States, and is comprised of over 50% estrone (E1) sulfate. Following CEE administration, E1 is the principal circulating estrogen. However, the cognitive and neurobiological effects of E1 in a middle-aged rodent model have not yet been evaluated. We assessed cognitive effects of continuous E1 treatment in middle-aged surgically menopausal rats using a maze battery. We also quantified number of choline acetyltransferase-immunoreactive (ChAT-IR) neurons in distinct basal forebrain regions known in earlier studies in to be impacted by the most potent naturally-circulating estrogen in rodents and women, 17β-estradiol (17β-E2), as well as CEE. On the spatial working memory delayed-match-to-sample water maze, the highest E1 dose impaired memory performance during acquisition and after delay challenge. E1 did not impact ChAT-IR neuron number in the medial septum (MS) or horizontal/vertical diagonal bands. In a comparison study, 17β-E2 increased MS ChAT-IR neuron number. Findings indicate that E1 negatively impacts spatial working memory and memory retention, and does not increase ChAT-IR neuron number in basal forebrain, as does 17β-E2. Thus, data from prior studies suggest that 17β-E2 and CEE can enhance cognition and increase number of ChAT-IR basal forebrain neurons, while here we show that E1 does not induce these effects. Findings from preclinical basic science studies can inform the design of specific combinations of estrogens that could be beneficial to the brain and cognition. Accumulating data suggest that E1 is not likely to be among these key beneficial estrogens. Published by Elsevier Inc.

  20. Spatial relationship between neurotensinergic axons and cholinergic neurons in the rat basal forebrain: a light microscopic study with three-dimensional reconstruction.

    PubMed

    Morin, A J; Tajani, M; Jones, B E; Beaudet, A

    1996-04-01

    Cholinergic neurons of the basal forebrain are known to project to the hippocampus and cerebral cortex wherein they play an important role in cortical activation, attention and memory. These neurons have been shown to possess neurotensin binding sites and to respond electrophysiologically to local application of neurotensin, indicating the presence of functional receptors on their membrane. In the present light microscopic study, the spatial relationship between neurotensinergic axons and cholinergic nerve cell bodies and proximal dendrites was investigated in the basal forebrain of the rat by dual immunostaining for neurotensin and choline acetyltransferase. Rostrally, neurotensinergic fibres were concentrated in the lateral septum and anterior substantia innominata, whereas cholinergic neurons were located in the medial septum, diagonal band of Broca and magnocellular preoptic nucleus. At high magnification, a few neurotensinergic axonal varicosities were observed in the region of cholinergic neurons, and fewer still in close proximity to cholinergic perikarya and proximal dendrites. Caudally, neurotensinergic fibres formed a dense plexus of varicose axons in the same regions where cholinergic neurons were located in the posterior substantia innominata and in the ventral and caudal aspects of the globus paltidus. At high magnification, many of these neurotensinergic varicosities were seen in close proximity to the cholinergic perikarya. These results suggest that cholinergic cells receive a much denser neurotensinergic innervation in the caudal than in the rostral aspect of the basal forebrain. This differential distribution is not reflected in the uniform density of neurotensin receptors and potent responses to neurotensin through the cholinergic cell population, suggesting the possibility that neurotensin's effects are mediated in part by a paracrine mechanism.

  1. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water

    SciTech Connect

    Bowyer, John F.; Latendresse, John R.; Delongchamp, Robert R.; Warbritton, Alan R.; Thomas, Monzy; Divine, Becky; Doerge, Daniel R.

    2009-11-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were <= 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  2. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water.

    PubMed

    Bowyer, John F; Latendresse, John R; Delongchamp, Robert R; Warbritton, Alan R; Thomas, Monzy; Divine, Becky; Doerge, Daniel R

    2009-11-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were < or =1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  3. The Role of Basal Forebrain in Rat Somatosensory Cortex: Impact on Cholinergic Innervation, Sensory Information Processing, and Tactile Discrimination

    DTIC Science & Technology

    1993-05-28

    noradrenergic neurons, as well as from the cholinergic neurons of the brainstem tegmentum (Jones and Cuello , 1989). This suggests that final control over...Jones, B. E., & Cuello , A. C. (1989). Afferents to the basal forebrain cholinergic cell area from pontomesencephalic- catecholamine, serotonin, and...organization in mouse barrel cortex. Brain Research, 165, 327-332. 160 Sofroniew, M. V., Eckenstein, Fo, Thoenen, Ho, & Cuello , A. C. (1982

  4. Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain.

    PubMed

    Antyborzec, Inga; O'Leary, Valerie B; Dolly, James O; Ovsepian, Saak V

    2016-10-01

    Basal forebrain cholinergic neurons (BFCNs) are one of the most affected neuronal types in Alzheimer's disease (AD), with their extensive loss documented at late stages of the pathology. While discriminatory provision of neuroprotective agents and trophic factors to these cells is thought to be of substantial therapeutic potential, the intricate topography and structure of the forebrain cholinergic system imposes a major challenge. To overcome this, we took advantage of the physiological enrichment of BFCNs with a low-affinity p75 neurotrophin receptor (p75(NTR)) for their targeting by lentiviral vectors within the intact brain of adult rat. Herein, a method is described that affords selective and effective transduction of BFCNs with a green fluorescence protein (GFP) reporter, which combines streptavidin-biotin technology with anti-p75(NTR) antibody-coated lentiviral vectors. Specific GFP expression in cholinergic neurons was attained in the medial septum and nuclei of the diagonal band Broca after a single intraventricular administration of such targeted vectors. Bioelectrical activity of GFP-labeled neurons was proven to be unchanged. Thus, proof of principle is obtained for the utility of the low-affinity p75(NTR) for targeted transduction of vectors to BFCNs in vivo.

  5. Proliferation and Glia-Directed Differentiation of Neural Stem Cells in the Subventricular Zone of the Lateral Ventricle and the Migratory Pathway to the Lesions after Cortical Devascularization of Adult Rats

    PubMed Central

    Wan, Feng; Bai, Hua-Jing; Liu, Jun-Qi; Tian, Mo; Wang, Yong-Xue; Niu, Xin; Si, Yin-Chu

    2016-01-01

    We investigated the effects of cortical devascularization on the proliferation, differentiation, and migration of neural stem cells (NSCs) in the subventricular zone (SVZ) of the lateral ventricle of adult rats. 60 adult male Wistar rats were randomly divided into control group and devascularized group. At 15 and 30 days after cerebral cortices were devascularized, rats were euthanized and immunohistochemical analysis was performed. The number of PCNA-, Vimentin-, and GFAP-positive cells in the bilateral SVZ of the lateral wall and the superior wall of the lateral ventricles of 15- and 30-day devascularized groups increased significantly compared with the control group (P < 0.05 and P < 0.01). The area density of PCNA-, Vimentin-, and GFAP-positive cells in cortical lesions of 15- and 30-day devascularized groups increased significantly compared with the control group (P < 0.05 and P < 0.01). PCNA-, GFAP-, and Vimentin-positive cells in the SVZ migrated through the rostral migratory stream (RMS), and PCNA-, GFAP-, and Vimentin-positive cells from both the ipsilateral and contralateral dorsolateral SVZ (dl-SVZ) migrated into the corpus callosum (CC) and accumulated, forming a migratory pathway within the CC to the lesioned site. Our study suggested that cortical devascularization induced proliferation, glia-directed differentiation, and migration of NSCs from the SVZ through the RMS or directly to the corpus callosum and finally migrating radially to cortical lesions. This may play a significant role in neural repair. PMID:27294116

  6. Degradation of the ACTH(4-10) analog Semax in the presence of rat basal forebrain cell cultures and plasma membranes.

    PubMed

    Zolotarev, Yu A; Dolotov, O V; Inozemtseva, L S; Dadayan, A K; Dorokhova, E M; Andreeva, L A; Alfeeva, L Yu; Grivennikov, I A; Myasoedov, N F

    2006-06-01

    Here a new approach of the elucidation of paths of proteolytic biodegradation of physiologically active peptides, based on the use of a peptide with isotopic label at all amino acid residues and the enrichment of HPLC samples with unlabeled peptide fragments in UV-detectable concentration, has been proposed. The method has been applied for the investigation of degradation dynamics of the neuroactive heptapeptide MEHFPGP (Semax) in the presence of plasma membranes, and cultures of glial and neuronal cells obtained from the rat basal forebrain. The splitting away of ME and GP, and formation of pentapeptides are the predominant processes in the presence of all tested objects, whereas the difference in patterns of resulting peptide products for glial and neuronal cells has been detected. In conclusion, the approach applied allows analyzing physiologically active peptide concentrations in biological tissues and degradation pathways of peptides in the presence of targets of their action.

  7. Protective effects of sodium p-aminosalicylic acid on learning and memory via increasing the number of basal forebrain choline acetyltransferase neurons in manganese-exposed rats.

    PubMed

    Li, S-J; Meng, H-Y; Deng, X-F; Fu, X; Chen, J-W; Huang, S; Huang, Y-S; Luo, H-L; Ou, S-Y; Jiang, Y-M

    2015-03-01

    This study was conducted to investigate the protective effects of sodium p-aminosalicylic acid (PAS-Na) on learning and memory via increasing the number of basal forebrain choline acetyltransferase (ChAT) neurons in manganese (Mn)-exposed rats. Male Sprague Dawley rats were divided into following groups: the normal control I, II, and III groups, the model I, II, and III groups, low- and high-dose PAS-Na treatment (L- and H-PAS) group, PAS-Na prevention (PAS-P) group, and PAS-Na treatment (PAS-T) group. The model I, II, and III groups, L- and H-PAS, and PAS-T groups received intraperitoneal (i.p.) injection of 15 mg/kg manganese chloride tetrahydrate (MnCl2·4H2O) for 3 or 12 weeks, while the normal control I, II, and III groups received i.p. injection of an equal volume of saline; L- and H-PAS and PAS-T groups received back subcutaneous (s.c.) injection of PAS-Na (100 and 200 mg/kg) for the next 5 or 6 weeks, whereas model I and II group received back s.c. injection of an equal volume of saline. However, PAS-P group received back s.c. injection of 200 mg/kg PAS-Na + i.p. injection of 15 mg/kg MnCl2·4H2O for 12 weeks. Mn exposure significantly reduced the ability of spatial learning and memory capability, while PAS-Na prevention recovered it. Mn decreased the number of ChAT-positive neurons in vertical limb nucleus of the basal forebrain diagonal band/horizontal limb nucleus of the basal forebrain diagonal band and ChAT protein activity and treatment or prevention with PAS-Na restored those comparable with control. In brief, our results showed that PAS-Na may have protective effects on learning and memory against Mn via increasing the number of ChAT-positive neurons and activity of ChAT protein. © The Author(s) 2015.

  8. Long-term administration of the dopamine D3/2 receptor agonist pramipexole increases dopamine and serotonin neurotransmission in the male rat forebrain

    PubMed Central

    Chernoloz, Olga; El Mansari, Mostafa; Blier, Pierre

    2012-01-01

    Background Long-term administration of the dopamine (DA) D2-like (D3/2) receptor agonist pramipexole (PPX) has been previously found to desensitize D2 autoreceptors, thereby allowing a normalization of the firing of DA neurons and serotonin (5-HT)1A autoreceptors, permitting an enhancement of the spontaneous firing of 5-HT neurons. We hypothesized that PPX would increase overall DA and 5-HT neurotransmission in the forebrain as a result of these changes at the presynaptic level. Methods Osmotic minipumps were implanted subcutaneously in male Sprague-Dawley rats, delivering PPX at a dose of 1 mg/kg/d for 14 days. The in vivo electrophysiologic microiontophoretic experiments were carried out in anesthetized rats. Results The sensitivity of postsynaptic D2 receptors in the prefrontal cortex (PFC) remained unaltered following PPX administration, as indicated by the unchanged responsiveness to the microiontophoretic application of DA. Their tonic activation was, however, significantly increased by 104% compared with the control level. The sensitivity of postsynaptic 5-HT1A receptors was not altered, as indicated by the unchanged responsiveness to the microiontophoretic application of 5-HT. Similar to other antidepressant treatments, long-term PPX administration enhanced the tonic activation of 5-HT1A receptors on CA3 pyramidal neurons by 142% compared with the control level. Limitations The assessment of DA and 5-HT neuronal tone was restricted to the PFC and the hippocampus, respectively. Conclusion Chronic PPX administration led to a net enhancement in DA and 5-HT neurotransmission, as indicated by the increased tonic activation of postsynaptic D2 and 5-HT1A receptors in forebrain structures. PMID:22023785

  9. Mechanisms of glutamate-stimulated Mg2+ influx and subsequent Mg2+ efflux in rat forebrain neurones in culture.

    PubMed Central

    Stout, A K; Li-Smerin, Y; Johnson, J W; Reynolds, I J

    1996-01-01

    1. Mag-fura-2 fluorescence microscopy and whole-cell patch-clamp recordings were used to measure glutamate-induced changes in the intracellular free Mg2+ concentration ([Mg2+]i) and Mg2+ currents, respectively, in cultured forebrain neurones from fetal rats in the absence of extracellular Na+ (Nao+) and Ca2+ (Cao2+). 2. Increasing the extracellular Mg2+ concentration ([Mg2+]o) from 9 to 70 mM significantly enhanced the maximum [Mg2+]i induced by a 5 min 100 microM glutamate plus 1 microM glycine stimulation ([Mg2+]i,5 min) from 2.04 +/- 0.07 to 2.98 +/- 0.20 mM. Increasing [Mg2+]o from 9 to 70 mM also significantly enhanced the initial rate of rise in [Mg2+]i upon glutamate stimulation from 0.41 +/- 0.02 to 0.81 +/- 0.08 mM min-1. 3. The glutamate-stimulated increase in [Mg2+]i was not altered by prior depletion of intracellular free Na+ (Nai+). For paired stimulations in single neurones, the mean [Mg2+]i,5 min was 1.95 +/- 0.17 mM under Na(+)-depleted conditions and 1.94 +/- 0.16 mM under control conditions. 4. The glutamate-stimulated increase in [Mg2+]i was significantly reduced when NMDA channel-permeant Cs+ or K+ ions were used as the Na+ substitute instead of the presumably NMDA channel-impermeant ions N-methyl-D-glucamine (NMDG), Tris or sucrose. The mean [Mg2+]i,5 min was 0.56 +/- 0.06 and 0.74 +/- 0.08 mM in the presence of Cs+ or K+, respectively, compared with 2.13 +/- 0.10, 1.93 +/- 0.11 and 2.07 +/- 0.22 mM in the presence of NMDG, Tris or sucrose, respectively. 5. In whole-cell recordings performed with Cs+ as the primary intracellular cation, application of 100 microM NMDA plus 10 microM glycine induced inward currents that reversed around -55 mV in an extracellular solution containing 70 mM Mg2+ and 31 mM NMDG as the only cations. The currents were reversibly inhibited by DL-2-amino-5-phosphonovaleric acid (APV). In an extracellular solution containing 2 mM Mg2+ and 140 mM NMDG, NMDA plus glycine activated outward currents at potentials more

  10. Increases in levels of brain-derived neurotrophic factor mRNA and its promoters after transient forebrain ischemia in the rat brain.

    PubMed

    Tsukahara, T; Iihara, K; Hashimoto, N; Nishijima, T; Taniguchi, T

    1998-08-01

    Expression of brain-derived neurotrophic factor (BDNF) may play a role in the mechanism of neuronal cell death after cerebral ischemia. We investigated the changes in levels of mRNAs encoding BDNF and its promoters in the rat brain after transient forebrain ischemia. Transient forebrain ischemia was induced by occlusion of bilateral common carotid arteries and systemic hypotension for 8 min. The alterations in BDNF gene expression in the hippocampus and in the cerebral cortex were examined by in situ hybridization using a mouse BDNF cDNA probe and cDNA probes including exon-specific promoters. BDNF transcripts were rapidly enhanced after the ischemic insult, both in the hippocampus and the cerebral cortex. NBQX suppressed the enhanced gene expression of BDNF markedly in the dentate gyrus (DG). In contrast, MK-801 had little effect on BDNF expression. In the piriform cortex, MK-801 or NBQX reduced the expression only moderately. After the ischemic insult, promoter specific BDNF 5'-exon I and exon III were increased remarkably in the DG. The increase in exon I in DG was suppressed partially by MK-801 and NBQX, while the increase in exon III in CA3 was suppressed by MK-801 but that in DG was not suppressed by either antagonist. In the piriform cortex, exon III was increased remarkably and this increase was not influenced by either agonist. These results suggest that the gene expression of BDNF was enhanced by transient ischemia both in the hippocampus and the cerebral cortex and that the cerebral ischemia stimulated at least two different promoter- and neuron type-specific pathways regulating expression of the BDNF gene mediated by glutamate receptors of non-NMDA type and NMDA type.

  11. 2-Deoxy-D-glucose-induced hypothermia in anesthetized rats: Lack of forebrain contribution and critical involvement of the rostral raphe/parapyramidal regions of the medulla oblongata.

    PubMed

    Osaka, Toshimasa

    2015-07-01

    Systemic or central administration of 2-deoxy-d-glucose (2DG), a competitive inhibitor of glucose utilization, induces hypothermia in awake animals and humans. This response is mediated by the central nervous system, though the neural mechanism involved is largely unknown. In this study, I examined possible involvement of the forebrain, which contains the hypothalamic thermoregulatory center, and the medullary rostral raphe/parapyramidal regions (rRPa/PPy), which mediate hypoxia-induced heat-loss responses, in 2DG-induced hypothermia in urethane-chloralose-anesthetized, neuromuscularly blocked, artificially ventilated rats. The intravenous injection of 2DG (250mgkg(-1)) elicited an increase in tail skin temperature and decreases in body core temperature and the respiratory exchange ratio, though it did not induce any significant change in the metabolic rate. These results indicate that the hypothermic response was caused by an increase in heat loss, but not by a decrease in heat production and that it was accompanied by a decrease in carbohydrate utilization and/or an increase in lipid utilization as energy substrates. Complete surgical transection of the brainstem between the hypothalamus and the midbrain had no effect on the 2DG-induced hypothermic responses, suggesting that the hindbrain, but not the forebrain, was sufficient for the responses. However, pretreatment of the rRPa/PPy with the GABAA receptor blocker bicuculline methiodide, but not with vehicle saline, greatly attenuated the 2DG-induced responses, suggesting that the 2DG-induced hypothermia was mediated, at least in part, by GABAergic neurons in the hindbrain and activation of GABAA receptors on cutaneous sympathetic premotor neurons in the rRPa/PPy. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Subventricular zone microglia transcriptional networks.

    PubMed

    Starossom, Sarah C; Imitola, Jaime; Wang, Yue; Cao, Li; Khoury, Samia J

    2011-07-01

    Microglia play an important role in inflammatory diseases of the central nervous system. There is evidence of microglial diversity with distinct phenotypes exhibiting either neuroprotection and repair or neurotoxicity. However the precise molecular mechanisms underlying this diversity are still unknown. Using a model of experimental autoimmune encephalomyelitis (EAE) we performed transcriptional profiling of isolated subventricular zone microglia from the acute and chronic disease phases of EAE. We found that microglia exhibit disease phase specific gene expression signatures, that correspond to unique gene ontology functions and genomic networks. Our data demonstrate for the first time, distinct transcriptional networks of microglia activation in vivo, that suggests a role as mediators of injury or repair.

  13. [The binding of Semax, ACTH 4-10 heptapeptide, to plasma membranes of the rat forebrain basal nuclei and its biodegradation].

    PubMed

    Dolotov, O V; Zolotarev, Iu A; Dorokhova, E M; Andreeva, L A; Alfeeva, L Iu; Grivennikov, I A; Miasoedov, N F

    2004-01-01

    The binding characteristics of the peptide Semax (Met-Glu-His-Phe-Pro-Gly-Pro) to plasma membranes of basal nuclei of the rat forebrain and the dynamics of its degradation during its incubation with these membranes were studied. Binding of the homogeneously labeled [G-3H]Semax was shown to be time-dependent, specific, and reversible. Specific binding of the heptapeptide depended on calcium ions and was characterized by the dissociation constant of the ligand-receptor complex Kd = 2.41 +/- 1.02 x 10(-9) M and by the concentration of binding sites Bmax = 33.5 +/- 7.9 x 10(-15) mol/mg of protein. A method of studying Semax biodegradation in the presence of plasma membranes of rat brain was developed. It is based on the use of the peptide homogeneously labeled with tritium and on an HPLC analysis with UV detection at 220 and 254 nm of the peptide fragments formed. The half-life of Semax in the presence of the plasma membranes was demonstrated to be longer than 1 h. Dipeptidylaminopeptidases are considered to be the main enzymes responsible for its biodegradation; they successively cleave Semax to the HFPGP pentapeptide and the PGP tripeptide. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 3; see also http://www.maik.ru.

  14. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain.

    PubMed

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt; Wisman, Liselijn; Ettrup, Anders; Hermening, Stephan; Knudsen, Gitte M; Kirik, Deniz

    2010-03-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic delivery to the neonatal rat and minipig striatum. The efficiency of GFP expression and the phenotype of GFP-positive cells were assessed within the forebrain at different time points up to 12 months after surgery. Both rAAV1-GFP and rAAV5-GFP delivery resulted in transduction of the striatum as well as striatal input and output areas, including large parts of the cortex. In both species, rAAV5 resulted in a more widespread transgene expression compared to rAAV1. In neonatal rats, rAAV5 also transduced several other areas such as the olfactory bulbs, hippocampus, and septum. Phenotypic analysis of the GFP-positive cells, performed using immunohistochemistry and confocal microscopy, showed that most of the GFP-positive cells by either serotype were NeuN-positive neuronal profiles. The rAAV5 vector further displayed the ability to transduce non-neuronal cell types in both rats and pigs, albeit at a low frequency. Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity to study effects of genetic manipulation in this non-primate large animal species. Finally, we generated an atlas of the Göttingen minipig brain for guiding future studies in this large animal species.

  15. Sleep research in space: expression of immediate early genes in forebrain structures of rats during the nasa neurolab mission (STS-90).

    PubMed

    Centini, C; Pompeiano, O

    2007-05-01

    1. Electrophysiological and behavioural observations have shown that changes in the sleep-waking activity occur in astronauts during the space flight. Experiments performed in ground-based experiments have previously shown that the immediate early gene (IEG) c-fos, a marker of neuronal activation, can be used as a molecular correlate of sleep and waking. However, while Fos expression peaks within 2-4 hours after the stimulus and returns to baseline within 6-8 hours, other IEGs as the FRA proteins which are also synthetized soon after their induction, persist in the cell nuclei for longer periods of time, ranging from 1-2 days to weeks. 2. Both Fos and FRA expression were evaluated in several adult albino rats sacrificed at different time points of the space flight, i.e. either at FD2 and FD14, i.e. at launch and about two weeks after launch, respectively, or at R + 1 and R + 13, i.e. at the reentry and about two weeks after landing. The changes in Fos and FRA expression were then compared with those obtained in ground controls. These experiments demonstrate activation of several brain areas which varies during the different phases of the space flight. Due to their different time of persistence, Fos and FRA immunohistochemistry can provide only correlative observations. In particular, FRA expression has been quite helpful to identify the occurrence of short-lasting events such as those related either to stress or to REM-sleep, whose episodes last in the rat only a few min and could hardly be detected by using only Fos expression. 3. Evidence was presented indicating that at FD2 and FD14 Fos-labeled cells were observed in several brain areas in which Fos had been previously identified as being induced by spontaneous or forced waking in ground-based experiments. In contrast to these findings FLT rats sacrificed at R + 1 showed low levels of Fos immunostaining in the cerebral cortex (neocortex) and several forebrain structures such as the hypothalamus and thalamus

  16. Feasibility and Safety of Continuous and Chronic Bilateral Deep Brain Stimulation of the Medial Forebrain Bundle in the Naïve Sprague-Dawley Rat

    PubMed Central

    Furlanetti, Luciano L.; Döbrössy, Máté D.; Aranda, Iñigo A.; Coenen, Volker A.

    2015-01-01

    Objective. Deep brain stimulation (DBS) of the superolateral branch of the medial forebrain bundle (MFB) has provided rapid and dramatic reduction of depressive symptoms in a clinical trial. Early intracranial self-stimulation experiments of the MFB suggested detrimental side effects on the animals' health; therefore, the current study looked at the viability of chronic and continuous MFB-DBS in rodents, with particular attention given to welfare issues and identification of stimulated pathways. Methods. Sprague-Dawley female rats were submitted to stereotactic microelectrode implantation into the MFB. Chronic continuous DBS was applied for 3–6 weeks. Welfare monitoring and behavior changes were assessed. Postmortem histological analysis of c-fos protein expression was carried out. Results. MFB-DBS resulted in mild and temporary weight loss in the animals, which was regained even with continuing stimulation. MFB-DBS led to increased and long-lasting c-fos expression in target regions of the mesolimbic/mesocortical system. Conclusions. Bilateral continuous chronic MFB-DBS is feasible, safe, and without impact on the rodent's health. MFB-DBS results in temporary increase in exploration, which could explain the initial weight loss, and does not produce any apparent behavioral abnormalities. This platform represents a powerful tool for further preclinical investigation of the MFB stimulation in the treatment of depression. PMID:25960609

  17. The Rate of Fall of Blood Glucose Determines the Necessity of Forebrain-Projecting Catecholaminergic Neurons for Male Rat Sympathoadrenal Responses

    PubMed Central

    Jokiaho, Anne J.; Donovan, Casey M.

    2014-01-01

    Different onset rates of insulin-induced hypoglycemia use distinct glucosensors to activate sympathoadrenal counterregulatory responses (CRRs). Glucosensory elements in the portal-mesenteric veins are dispensable with faster rates when brain elements predominate, but are essential for responses to the slower-onset hypoglycemia that is common with insulin therapy. Whether a similar rate-associated divergence exists within more expansive brain networks is unknown. Hindbrain catecholamine neurons distribute glycemia-related information throughout the forebrain. We tested in male rats whether catecholaminergic neurons that project to the medial and ventromedial hypothalamus are required for sympathoadrenal CRRs to rapid- and slow-onset hypoglycemia and whether these neurons are differentially engaged as onset rates change. Using a catecholamine-specific neurotoxin and hyperinsulinemic-hypoglycemic clamps, we found that sympathoadrenal CRRs to slow- but not rapid-onset hypoglycemia require hypothalamus-projecting catecholaminergic neurons, the majority of which originate in the ventrolateral medulla. As determined with Fos, these neurons are differentially activated by the two onset rates. We conclude that 1) catecholaminergic projections to the hypothalamus provide essential information for activating sympathoadrenal CRRs to slow- but not rapid-onset hypoglycemia, 2) hypoglycemia onset rates have a major impact on the hypothalamic mechanisms that enable sympathoadrenal CRRs, and 3) hypoglycemia-related sensory information activates hindbrain catecholaminergic neurons in a rate-dependent manner. PMID:24740574

  18. Induction of Fos expression in the rat forebrain after intragastric administration of monosodium L-glutamate, glucose and NaCl.

    PubMed

    Otsubo, H; Kondoh, T; Shibata, M; Torii, K; Ueta, Y

    2011-11-24

    l-glutamate, an umami taste substance, is a key molecule coupled to a food intake signaling pathway. Furthermore, recent studies have unveiled new roles for dietary glutamate on gut-brain axis communication via activation of gut glutamate receptors and subsequent vagus nerve. In the present study, we mapped activation sites of the rat forebrain after intragastric load of 60 mM monosodium l-glutamate (MSG) by measurement of Fos protein, a functional marker of neuronal activation. The same concentration of d-glucose (sweet) and NaCl (salty) was used as controls. MSG administration exclusively produced enhanced Fos expression in four hypothalamic regions (the medial preoptic area, lateral hypothalamic area, dorsomedial nucleus, and arcuate nucleus). On the other hand, glucose administration exclusively enhanced Fos induction in the nucleus accumbens. Both MSG and glucose enhanced Fos induction in three brain regions (the habenular nucleus, paraventricular nucleus, and central nucleus of the amygdala). However, MSG induced Fos inductions were more potent than those of glucose in the habenular nucleus and paraventricular nucleus. Importantly, the present study identified for the first time two brain areas (the paraventricular and arcuate hypothalamic nuclei) that are more potently activated by intragastric MSG loads compared with glucose and NaCl. Overall, our results suggest significant activation of a neural network comprising the habenular nucleus, amygdala, and the hypothalamic subnuclei following intragastric load with glutamate.

  19. Effect of MDMA-Induced Axotomy on the Dorsal Raphe Forebrain Tract in Rats: An In Vivo Manganese-Enhanced Magnetic Resonance Imaging Study

    PubMed Central

    Chiu, Chuang-Hsin; Siow, Tiing-Yee; Weng, Shao-Ju; Hsu, Yi-Hua; Huang, Yuahn-Sieh; Chang, Kang-Wei; Cheng, Cheng-Yi; Ma, Kuo-Hsing

    2015-01-01

    3,4-Methylenedioxymethamphetamine (MDMA), also known as “Ecstasy”, is a common recreational drug of abuse. Several previous studies have attributed the central serotonergic neurotoxicity of MDMA to distal axotomy, since only fine serotonergic axons ascending from the raphe nucleus are lost without apparent damage to their cell bodies. However, this axotomy has never been visualized directly in vivo. The present study examined the axonal integrity of the efferent projections from the midbrain raphe nucleus after MDMA exposure using in vivo manganese-enhanced magnetic resonance imaging (MEMRI). Rats were injected subcutaneously six times with MDMA (5 mg/kg) or saline once daily. Eight days after the last injection, manganese ions (Mn2+) were injected stereotactically into the raphe nucleus, and a series of MEMRI images was acquired over a period of 38 h to monitor the evolution of Mn2+-induced signal enhancement across the ventral tegmental area, the medial forebrain bundle (MFB), and the striatum. The MDMA-induced loss of serotonin transporters was clearly evidenced by immunohistological staining consistent with the Mn2+-induced signal enhancement observed across the MFB and striatum. MEMRI successfully revealed the disruption of the serotonergic raphe-striatal projections and the variable effect of MDMA on the kinetics of Mn2+ accumulation in the MFB and striatum. PMID:26378923

  20. Longitudinal 1H MR spectroscopy of rat forebrain from infancy to adulthood reveals adolescence as a distinctive phase of neurometabolite development

    PubMed Central

    Morgan, Jonathan J.; Kleven, Gale A.; Tulbert, Christina D.; Olson, John; Horita, David A.; Ronca, April E.

    2013-01-01

    The present study represents the first longitudinal, within-subject 1H MRS investigation of the developing rat brain spanning infancy, adolescence, and early adulthood. We obtained neurometabolite profiles from a voxel located in a central location of the forebrain, centered on the striatum, with smaller contributions for cortex, thalamus, and hypothalamus, on postnatal days 7, 35, and 60. Water-scaled metabolite signals were corrected for T1 effects and quantified using the automated processing software LCModel, yielding molal concentrations. Our findings indicate age-related concentration changes in N-acetylaspartate + N-acetylaspartylglutamate, myo-inositol, glutamate + glutamine, taurine, creatine + phosphocreatine, and glycerophosphocholine + phosphocholine. Using a repeated measures design and analysis, we identified significant neurodevelopment change across all three developmental ages and identified adolescence as a distinctive phase in normative neurometabolic brain development. Between postnatal days 35 and 60, changes were observed in concentrations of N-acetylaspartate + N-acetylaspartylglutamate, glutamate + glutamine, and glycerophosphocholine + phosphocholine observed between postnatal days 35 and 60. Our data replicate past studies of early neurometabolite development and, for the first time, link maturational profiles in the same subjects across infancy, adolescence, and adulthood. PMID:23322706

  1. Induction of Fos immunoreactivity labeling in rat forebrain metabolic loci by caudal fourth ventricular infusion of the monocarboxylate transporter inhibitor, alpha-cyano-4-hydroxycinnamic acid.

    PubMed

    Briski, Karen P; Patil, Gopal D

    2005-01-01

    Caudal fourth ventricular (CV4) infusion of the monocarboxylate transporter inhibitor, alpha-cyano-4-hydroxycinnamic acid (4CIN), causes hyperglycemia coincident with Fos expression in the hindbrain nucleus tractus solitarius, a rare central source of metabolic deficit signaling. The present studies examined the hypothesis that hindbrain lactoprivic signaling activates central autonomic pathways that regulate systemic glucostasis by examining the effects of this drug treatment paradigm on patterns of Fos expression in forebrain structures that integrate sensory input from metabolic sensors and coordinate motor responses to energy shortages. Two hours after CV4 infusion of graded doses of 4CIN or vehicle alone, adult female rats were sacrificed by transcardial perfusion and sections through the telencephalic and diencephalic metabolic loci were processed for Fos immunoreactivity (-ir). Fos labeling of the hypothalamic paraventricular (PVH), dorsomedial (DMH), and ventromedial (VMH) nuclei was significantly elevated, relative to the vehicle-treated controls, in response to the lowest dose of 4CIN, e.g. 10 microg/animal. Treatment with higher doses of 4CIN (25 or 50 microg) further augmented numbers of Fos-ir-positive neurons in these structures, and also elicited staining of the bed nuclei of the stria terminalis (BST), medial preoptic (MPN), arcuate (ARH), supraoptic (SO), and anterior hypothalamic nuclei (AHN), and lateral hypothalamic area (LHA). Mean numbers of Fos-immunolabeled neurons in the ARH, DMH, LHA, AHN, MPN, and SO were not different between animals infused with 25 versus 50 microg 4CIN, whereas neuronal labeling in the VMH, BST, and PVH was significantly greater in the high- versus the middle-dose groups. The present data show that pharmacological inhibition of lactate uptake within the caudal hindbrain results in dose-dependent neuronal Fos immunoexpression within characterized forebrain components of the central metabolic circuitry, and that these

  2. Tongxinluo Enhances Neurogenesis and Angiogenesis in Peri-Infarct Area and Subventricular Zone and Promotes Functional Recovery after Focal Cerebral Ischemic Infarction in Hypertensive Rats

    PubMed Central

    Chen, Li; Wang, Xiaoting; Zhang, Jian; Dang, Chao; Liu, Gang; Liang, Zhijian; Huang, Gelun; Zhao, Weijia; Zeng, Jinsheng

    2016-01-01

    Background. Tongxinluo is a traditional Chinese medicine compound with the potential to promote the neuronal functional recovery in cerebral ischemic infarction. Objective. This study aimed to disclose whether tongxinluo promotes neurological functional recovery and neurogenesis and angiogenesis in the infarcted area and SVZ after cerebral ischemic infarction in hypertensive rats. Methods. The ischemic model was prepared by distal middle cerebral artery occlusion (MCAO) in hypertensive rats. Tongxinluo was administrated 24 h after MCAO and lasted for 3, 7, or 14 days. Behavioral tests were performed to evaluate the protection of tongxinluo. Immunochemical staining was applied on brain tissue to evaluate the effects of tongxinluo on neurogenesis and vascularization in the MCAO model rats. Results. Postinjury administration of tongxinluo ameliorated the neuronal function deficit in the MCAO model rats. As evidenced by the immunochemical staining, BrdU+/DCX+, BrdU+/nestin+, and BrdU+ vascular endothelial cells were promoted to proliferate in SVZ after tongxinluo administration. The matured neurons stained by NeuN and vascularization by laminin staining were observed after tongxinluo administration in the peri-infarct area. Conclusion. Tongxinluo postischemia administration could ameliorate the neurological function deficit in the model rats. Possible mechanisms are related to neurogenesis and angiogenesis in the peri-infarct area and SVZ. PMID:27069496

  3. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  4. Experiment K-7-18: Effects of Spaceflight in the Muscle Adductor Longus of Rats Flown in the Soviet Biosatellite Cosmos 2044. Part 2; Quantitative Autoradiographic Analysis of Gaba (Benzodiazepine) and Muscarinic (Cholinergic) Receptors in the Forebrain of Rats Flown on Cosmos 2044

    NASA Technical Reports Server (NTRS)

    Wu, L.; Daunton, N. G.; Krasnov, I. B.; DAmelio, F.; Hyde, T. M.; Sigworth, S. K.

    1994-01-01

    Quantitative autoradiographic analysis of receptors for GABA and acetylcholine in the forebrain of rats flown on COSMOS 2044 was undertaken as part of a joint US-Soviet study to determine the effects of microgravity on the central nervous system, and in particular on the sensory and motor portions of the forebrain. Changes in binding of these receptors in tissue from animals exposed to microgravity would provide evidence for possible changes in neural processing as a result of exposure to microgravity. Tritium-labelled diazepam and Quinuclidinyl-benzilate (QNB) were used to visualize GABA (benzodiazepine) and muscarinic (cholinergic) receptors, respectively. The density of tritium-labelled radioligands bound to various regions in the forebrain of both flight and control animals were measured from autoradiograms. Data from rats flown in space and from ground-based control animals that were not exposed to microgravity were compared.

  5. Expression of brain-derived neurotrophic factor in the rat forebrain and upper brain stem during postnatal development: an immunohistochemical study.

    PubMed

    Kim, J K; Jeon, S M; Lee, K M; Park, E S; Cho, H J

    2007-05-25

    The present study was undertaken to characterize the regional and temporal patterns of brain-derived neurotrophic factor (BDNF) in the rat forebrain and upper brain stem during postnatal development using an immunohistochemical approach. Results indicated that BDNF-immunoreactive (IR) cells could be divided into three groups based on their postnatal developmental patterns: (group 1) BDNF-IR cells were first detected between postnatal days (PND) 1 and 7, and thereafter they increased in number and remained stable during later stages of ontogeny; (group 2) BDNF-IR cells progressively increased in number with age, and then decreased in adults; (group 3) numerous BDNF-IR cells detected between PND 1 and 7 showed a dramatic reductions in number with few IR cells in adults. In contrast, the developmental pattern of most BDNF-IR fibers differed from that of IR neurons, i.e. they appeared between PND 1-28 and thereafter continued to increase in number showing a maximum level in adults. Additionally, BDNF-IR cells in the superficial layer of the neocortex and IR fibers in the stratum oriens of CA2 first appeared as late as PND 28 and in adults, respectively. After colchicine treatment, reexpression or a marked increase in the number of BDNF-IR neurons was observed in many areas of the adult brain where a progressive decrease in BDNF-IR cell numbers during development and scant or some IR neurons in adults were shown. These results showed both transient and persistent expression of BDNF in various regions of the developing rat brain.

  6. Changes in excitatory and inhibitory circuits of the rat hippocampus 12-14 months after complete forebrain ischemia.

    PubMed

    Arabadzisz, D; Freund, T F

    1999-01-01

    Changes in interneuron distribution and excitatory connectivity have been investigated in animals which had survived 12-14 months after complete forebrain ischemia, induced by four-vessel occlusion. Anterograde tracing with Phaseolus vulgaris leucoagglutinin revealed massive Schaffer collateral input even to those regions of the CA1 subfield where hardly any surviving pyramidal cells were found. Boutons of these Schaffer collaterals formed conventional synaptic contacts on dendritic spines and shafts, many of which likely belong to interneurons. Mossy fibres survived the ischemic challenge, however, large mossy terminals showed altered morphology, namely, the number of filopodiae on these terminals decreased significantly. The entorhinal input to the hippocampus did not show any morphological alterations. The distribution of interneurons was investigated by neurochemical markers known to label functionally distinct GABAergic cell populations. In the hilus, spiny interneurons showed a profound decrease in number. This phenomenon was not as obvious in CA3, but the spiny metabotropic glutamate receptor 1alpha-positive non-pyramidal cells, some of which contain calretinin or substance P receptor, disappeared from stratum lucidum of this area. In the CA1 region, somatostatin immunoreactivity disappeared from stratum oriens/lacunosum-moleculare-associated cells, while in metabotropic glutamate receptor 1alpha-stained sections these cells seemed unaffected in number. Other interneurons did not show an obvious decrease in number. In stratum radiatum of the CA1 subfield, some interneuron types had altered morphology: the substance P receptor-positive dendrites lost their characteristic radial orientation, and the metabotropic glutamate receptor 1alpha-expressing cells became extremely spiny. The loss of inhibitory interneurons at the first two stages of the trisynaptic loop coupled with a well-preserved excitatory connectivity among the subfields suggests that

  7. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    PubMed

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation.

  8. Blockade of the cerebral aqueduct in rats provides evidence of antagonistic leptin responses in the forebrain and hindbrain

    PubMed Central

    Vaill, Michael I.; Desai, Bhavna N.

    2013-01-01

    Previously, we reported that low-dose leptin infusions into the fourth ventricle produced a small but significant increase in body fat. These data contrast with reports that injections of higher doses of leptin into the fourth ventricle inhibit food intake and weight gain. In this study, we tested whether exogenous leptin in the fourth ventricle opposed or contributed to weight loss caused by third ventricle leptin infusion by blocking diffusion of CSF from the third to the fourth ventricle. Male Sprague-Dawley rats received third ventricle infusions of PBS or 0.3 μg leptin/24 h from miniosmotic pumps. After 4 days, rats received a 3-μl cerebral aqueduct injection of saline or of thermogelling nanoparticles (hydrogel) that solidified at body temperature. Third ventricle leptin infusion inhibited food intake and caused weight loss. Blocking the aqueduct exaggerated the effect of leptin on food intake and weight loss but had no effect on the weight of PBS-infused rats. Leptin reduced both body fat and lean body mass but did not change energy expenditure. Blocking the aqueduct decreased expenditure of rats infused with PBS or leptin. Infusion of leptin into the third ventricle increased phosphorylated STAT3 in the VMHDM of the hypothalamus and the medial NTS in the hindbrain. Blocking the aqueduct did not change hypothalamic p-STAT3 but decreased p-STAT3 in the medial NTS. These results support previous observations that low-level activation of hindbrain leptin receptors has the potential to blunt the catabolic effects of leptin in the third ventricle. PMID:24347057

  9. Blockade of the cerebral aqueduct in rats provides evidence of antagonistic leptin responses in the forebrain and hindbrain.

    PubMed

    Vaill, Michael I; Desai, Bhavna N; Harris, Ruth B S

    2014-02-15

    Previously, we reported that low-dose leptin infusions into the fourth ventricle produced a small but significant increase in body fat. These data contrast with reports that injections of higher doses of leptin into the fourth ventricle inhibit food intake and weight gain. In this study, we tested whether exogenous leptin in the fourth ventricle opposed or contributed to weight loss caused by third ventricle leptin infusion by blocking diffusion of CSF from the third to the fourth ventricle. Male Sprague-Dawley rats received third ventricle infusions of PBS or 0.3 μg leptin/24 h from miniosmotic pumps. After 4 days, rats received a 3-μl cerebral aqueduct injection of saline or of thermogelling nanoparticles (hydrogel) that solidified at body temperature. Third ventricle leptin infusion inhibited food intake and caused weight loss. Blocking the aqueduct exaggerated the effect of leptin on food intake and weight loss but had no effect on the weight of PBS-infused rats. Leptin reduced both body fat and lean body mass but did not change energy expenditure. Blocking the aqueduct decreased expenditure of rats infused with PBS or leptin. Infusion of leptin into the third ventricle increased phosphorylated STAT3 in the VMHDM of the hypothalamus and the medial NTS in the hindbrain. Blocking the aqueduct did not change hypothalamic p-STAT3 but decreased p-STAT3 in the medial NTS. These results support previous observations that low-level activation of hindbrain leptin receptors has the potential to blunt the catabolic effects of leptin in the third ventricle.

  10. Coexpression of high-voltage-activated ion channels Kv3.4 and Cav1.2 in pioneer axons during pathfinding in the developing rat forebrain.

    PubMed

    Huang, Chia-Yi; Chu, Dachen; Hwang, Wei-Chao; Tsaur, Meei-Ling

    2012-11-01

    Precise axon pathfinding is crucial for establishment of the initial neuronal network during development. Pioneer axons navigate without the help of preexisting axons and pave the way for follower axons that project later. Voltage-gated ion channels make up the intrinsic electrical activity of pioneer axons and regulate axon pathfinding. To elucidate which channel molecules are present in pioneer axons, immunohistochemical analysis was performed to examine 14 voltage-gated ion channels (Kv1.1-Kv1.3, Kv3.1-Kv3.4, Kv4.3, Cav1.2, Cav1.3, Cav2.2, Nav1.2, Nav1.6, and Nav1.9) in nine axonal tracts in the developing rat forebrain, including the optic nerve, corpus callosum, corticofugal fibers, thalamocortical axons, lateral olfactory tract, hippocamposeptal projection, anterior commissure, hippocampal commissure, and medial longitudinal fasciculus. We found A-type K⁺ channel Kv3.4 in both pioneer axons and early follower axons and L-type Ca²⁺ channel Cav1.2 in pioneer axons and early and late follower axons. Spatially, Kv3.4 and Cav1.2 were colocalized with markers of pioneer neurons and pioneer axons, such as deleted in colorectal cancer (DCC), in most fiber tracts examined. Temporally, Kv3.4 and Cav1.2 were expressed abundantly in most fiber tracts during axon pathfinding but were downregulated beginning in synaptogenesis. By contrast, delayed rectifier Kv channels (e.g., Kv1.1) and Nav channels (e.g., Nav1.2) were absent from these fiber tracts (except for the corpus callosum) during pathfinding of pioneer axons. These data suggest that Kv3.4 and Cav1.2, two high-voltage-activated ion channels, may act together to control Ca²⁺ -dependent electrical activity of pioneer axons and play important roles during axon pathfinding.

  11. Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain.

    PubMed

    Zhao, LiYing; Sakagami, Hiroyuki; Suzuki, Tatsuo

    2014-10-01

    We systematically investigated the purification process of post-synaptic density (PSD) and post-synaptic membrane rafts (PSRs) from the rat forebrain synaptic plasma membranes by examining the components and the structures of the materials obtained after the treatment of synaptic plasma membranes with TX-100, n-octyl β-d-glucoside (OG) or 3-([3-cholamidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfonate (CHAPSO). These three detergents exhibited distinct separation profiles for the synaptic subdomains. Type I and type II PSD proteins displayed mutually exclusive distribution. After TX-100 treatment, type I PSD was recovered in two fractions: a pellet and an insoluble fraction 8, which contained partially broken PSD-PSR complexes. Conventional PSD was suggested to be a mixture of these two PSD pools and did not contain type II PSD. An association of type I PSD with PSRs was identified in the TX-100 treatment, and those with type II PSD in the OG and CHAPSO treatments. An association of GABA receptors with gephyrin was easily dissociated. OG at a high concentration solubilized the type I PSD proteins. CHAPSO treatment resulted in a variety of distinct fractions, which contained certain novel structures. Two different pools of GluA, either PSD or possibly raft-associated, were identified in the OG and CHAPSO treatments. These results are useful in advancing our understanding of the structural organization of synapses at the molecular level. We systematically investigated the purification process of post-synaptic density (PSD) and synaptic membrane rafts by examining the structures obtained after treatment of the SPMs with TX-100, n-octyl β-d-glucoside or CHAPSO. Differential distribution of type I and type II PSD, synaptic membrane rafts, and other novel subdomains in the SPM give clues to understand the structural organization of synapses at the molecular level. © 2014 International Society for Neurochemistry.

  12. Comparison of somatostatin and corticotrophin-releasing hormone immunoreactivity in forebrain neurons projecting to taste-responsive and non-responsive regions of the parabrachial nucleus in rat.

    PubMed

    Panguluri, Siva; Saggu, Shalini; Lundy, Robert

    2009-11-17

    Several forebrain areas have been shown to project to the parabrachial nucleus (PBN) and exert inhibitory and excitatory influences on taste processing. The neurochemicals by which descending forebrain inputs modulate neural taste-evoked responses remain to be established. This study investigated the existence of somatostatin (SS) and corticotrophin-releasing factor (CRF) in forebrain neurons that project to caudal regions of the PBN responsive to chemical stimulation of the anterior tongue as well as more rostral unresponsive regions. Retrograde tracer was iontophoretically or pressure ejected from glass micropipettes, and 7 days later the animals were euthanized for subsequent immunohistochemical processing for co-localization of tracer with SS and CRF in tissue sections containing the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and insular cortex (IC). In each forebrain site, robust labeling of cells with distinguishable nuclei and short processes was observed for SS and CRF. The results indicate that CRF neurons in each forebrain site send projections throughout the rostral caudal extent of the PBN with a greater percentage terminating in regions rostral to the anterior tongue-responsive area. For SS, the percentage of double-labeled neurons was more forebrain site specific in that only BNST and CeA exhibited significant numbers of double-labeled neurons. Few retrogradely labeled cells in LH co-expressed SS, while no double-labeled cells were observed in IC. Again, tracer injections into rostral PBN resulted in a greater percentage of double-labeled neurons in BNST and CeA compared to caudal injections. The present results suggest that some sources of descending forebrain input might utilize somatostatin and/or CRF to exert a broad influence on sensory information processing in the PBN.

  13. Postconditioning mitigates cell death following oxygen and glucose deprivation in PC12 cells and forebrain reperfusion injury in rats.

    PubMed

    Lin, Han-Chen; Narasimhan, Purnima; Liu, Shin-Yun; Chan, Pak H; Lai, I-Rue

    2015-01-01

    Postconditioning mitigates ischemia-induced cellular damage via a modified reperfusion procedure. Mitochondrial permeability transition (MPT) is an important pathophysiological change in reperfusion injury. This study explores the role of MPT modulation underlying hypoxic postconditioning (HPoC) in PC12 cells and studies the neuroprotective effects of ischemic postconditioning (IPoC) on rats. Oxygen-glucose deprivation (OGD) was performed for 10 hr on PC12 cells. HPoC was induced by three cycles of 10-min reoxygenation/10-min rehypoxia after OGD. The MPT inhibitor N-methyl-4-isoleucine cyclosporine (NIM811) and the MPT inducer carboxyatractyloside (CATR) were administered to selective groups before OGD. Cellular death was evaluated by flow cytometry and Western blot analysis. JC-1 fluorescence signal was used to estimate the mitochondrial membrane potential (△Ψm ). Transient global cerebral ischemia (tGCI) was induced via the two-vessel occlusion and hypotension method in male Sprague Dawley rats. IPoC was induced by three cycles of 10-sec reperfusion/10-sec reocclusion after index ischemia. HPoC and NIM811 administration attenuated cell death, cytochrome c release, and caspase-3 activity and maintained △Ψm of PC12 cells after OGD. The addition of CATR negated the protection conferred by HPoC. IPoC reduced neuronal degeneration and cytochrome c release and cleaved caspase-9 expression of hippocampal CA1 neurons in rats after tGCI. HPoC protected PC12 cells against OGD by modulating the MPT. IPoC attenuated degeneration of hippocampal neurons after cerebral ischemia.

  14. Correlations between the degree and type of forebrain malformations and the simultaneous neuro-oncogenic properties of ethylnitrosourea after diaplacental exposure in rats, alone and in combination with X-irradiation

    SciTech Connect

    Schmahl, W.; Kriegel, H.

    1985-01-01

    Single and combined treatments were performed in rats on day 13 of gestation with either ENU or ENU subsequent to various X-irradiation doses between 0.5 and 1.5 Gy. At this time of gestation, developmental anomalies of the brain are still inducible by any of these treatments, in addition to neurocarcinogenic effects after ENU alone or in combination with X-irradiation. We looked for correlations between the degree of brain malformations still detectable in the adult animals and the simultaneous occurrence of brain tumors. These evaluations were based on a histopathological analysis regarding the type and degree of malformation residues, as well as the type and distribution pattern of the tumors (especially regarding gliomas) within the forebrain. Both after ENU and X-irradiation plus ENU-treatment, the occurrence of glioma in the offspring was positively correlated with the degree of brain dysplasia. This effect was not only restricted to the total glioma incidence but also confirmed by the higher glioma multiplicity in major dysplastic brains. Additionally, gliomas were preferentially located within the subependymal layer, which simultaneously was most severely affected by the teratogenic effects after prenatal treatment. Although forebrain dysplasia generally presents a significant predisposition for glioma inducibility, this oncogenic event is apparently strictly inversely related to a certain type of forebrain malformation, namely the occurrence of heterotopic neuronal nodules within the telencephalic roof. They emerge from rosettes, which are typical radiation lesions occurring only after doses above 1.0 Gy. In none of the forebrains which still revealed rosette-residues in later life could a simultaneous occurrence of gliomas be observed.

  15. Effects of RS-8359 on reduced local cerebral glucose utilization in the rat subjected to transient forebrain ischemia.

    PubMed

    Kozuka, M; Kobayashi, K; Iwata, N

    1994-04-01

    Changes in local cerebral glucose utilization (LCGU) of the postischemic rat brain were investigated using the rat four-vessel occlusion model. Following 20 or 30 min of ischemia, LCGUs of the cerebral cortices, striatum and hippocampus were decreased at 1 and 3 days postischemia, but were recovered at 7 days postischemia. Effects of repeated administration of RS-8359, (+-)-4-(4-cyanoanilino)-7-hydroxycyclopenta(3,2-e)pyrimidin e, (30 mg/kg x 2/day, p.o., 4 days) were examined at 3 days postischemia following 20 min of ischemia. Compared with the sham-operated group, the LCGUs of 22 out of 34 structures examined in the ischemic-control group were significantly reduced. In the RS-8359-treated group, however, significant reduction was observed in only 9 structures. Compared with the ischemic-control group, RS-8359 significantly ameliorated the reduction of LCGU in 12 structures. These results suggest that RS-8359 has beneficial effects on reduced glucose metabolism in the postischemic brain.

  16. Melanocortin receptor agonist ACTH 1-39 protects rat forebrain neurons from apoptotic, excitotoxic and inflammation-related damage.

    PubMed

    Lisak, Robert P; Nedelkoska, Liljana; Bealmear, Beverly; Benjamins, Joyce A

    2015-11-01

    Patients with relapsing-remitting multiple sclerosis (RRMS) are commonly treated with high doses of intravenous corticosteroids (CS). ACTH 1-39, a member of the melanocortin family, stimulates production of CS by the adrenals, but melanocortin receptors are also found in the central nervous system (CNS) and on immune cells. ACTH is produced within the CNS and may have direct protective effects on glia and neurons independent of CS. We previously reported that ACTH 1-39 protected oligodendroglia (OL) and their progenitors (OPC) from a panel of excitotoxic and inflammation-related agents. Neurons are the most vulnerable cells in the CNS. They are terminally differentiated, and sensitive to inflammatory and excitotoxic insults. For potential therapeutic protection of gray matter, it is important to investigate the direct effects of ACTH on neurons. Cultures highly enriched in neurons were isolated from 2-3 day old rat brain. After 4-7 days in culture, the neurons were treated for 24h with selected toxic agents with or without ACTH 1-39. ACTH 1-39 protected neurons from death induced by staurosporine, glutamate, NMDA, AMPA, kainate, quinolinic acid, reactive oxygen species and, to a modest extent, from rapidly released NO, but did not protect against kynurenic acid or slowly released nitric oxide. Our results show that ACTH 1-39 protects neurons in vitro from several apoptotic, excitotoxic and inflammation-related insults.

  17. Interleukin-18 and its receptor are expressed in gonadotropin-releasing hormone neurons of mouse and rat forebrain.

    PubMed

    Kuwahara-Otani, Sachi; Maeda, Seishi; Kobayashi, Kimiko; Minato, Yusuke; Tanaka, Koichi; Yamanishi, Kyosuke; Hata, Masaki; Li, Wen; Hayakawa, Tetsu; Noguchi, Koichi; Okamura, Haruki; Yagi, Hideshi

    2017-05-22

    Interleukin-18 (IL-18) is a pro-inflammatory cytokine and an important mediator of peripheral inflammation and host immune response. IL-18 functions through its binding with the IL-18 receptor (IL-18R), which consists of two chains, an IL-18-binding α chain (IL-18Rα) and a signaling β chain. IL-18 and IL-18R are expressed in the brain; however, limited information is available on IL-18R expression and the role of IL-18 in neurosecretory cells. In the present study, we used immunohistochemical techniques to investigate the distribution of IL-18Rα and IL-18 in the hypothalamus of male mice and rats. IL-18Rα-positive and IL-18-positive perikarya and fibers were found scattered throughout the medial septal nucleus, the nuclei of the vertical and horizontal limbs of the diagonal band, the organum vasculosum of the laminae terminalis, the preoptic area, and the anterior hypothalamic area. It is well known that gonadotropin-releasing hormone (GnRH) neuronal somata and/or fibers are found in these regions. Therefore, we performed double-label immunofluorescence for IL-18Rα/IL-18 and GnRH. IL-18Rα was expressed in approximately 60% of GnRH-immunopositive perikarya, and IL-18 was distributed in all GnRH-immunopositive perikarya. These observations suggest that IL-18 exerts direct effects upon the GnRH neuron via IL-18Rα and acts on GnRH neurons through an autocrine or paracrine pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cell migration in the forebrain.

    PubMed

    Marín, Oscar; Rubenstein, John L R

    2003-01-01

    The forebrain comprises an intricate set of structures that are required for some of the most complex and evolved functions of the mammalian brain. As a reflection of its complexity, cell migration in the forebrain is extremely elaborated, with widespread dispersion of cells across multiple functionally distinct areas. Two general modes of migration are distinguished in the forebrain: radial migration, which establishes the general cytoarchitectonical framework of the different forebrain subdivisions; and tangential migration, which increases the cellular complexity of forebrain circuits by allowing the dispersion of multiple neuronal types. Here, we review the cellular and molecular mechanisms underlying each of these types of migrations and discuss how emerging concepts in neuronal migration are reshaping our understanding of forebrain development in normal and pathological situations.

  19. SSEA-4 and YKL-40 positive progenitor subtypes in the subventricular zone of developing human neocortex.

    PubMed

    Brøchner, Christian B; Møllgård, Kjeld

    2016-01-01

    The glycosphingolipid SSEA-4 and the glycoprotein YKL-40 have both been associated with human embryonic and neural stem cell differentiation. We investigated the distribution of SSEA-4 and YKL-40 positive cells in proliferative zones of human fetal forebrain using immunohistochemistry and double-labeling immunofluorescence. A few small rounded SSEA-4 and YKL-40 labeled cells were present in the radial glial BLBP positive proliferative zones adjacent to the lateral ganglionic eminence from 12th week post conception. With increasing age, a similarly stained cell population appeared more widespread in the subventricular zone. At midgestation, the entire subventricular zone showed patches of SSEA-4, YKL-40, and BLBP positive cells. Co-labeling with markers for radial glial cells (RGCs) and neuronal, glial, and microglial markers tested the lineage identity of this subpopulation of radial glial descendants. Adjacent to the ventricular zone, a minor fraction showed overlap with GFAP but not with nestin, Olig2, NG2, or S100. No co-localization was found with neuronal markers NeuN, calbindin, DCX or with markers for microglial cells (Iba-1, CD68). Moreover, the SSEA-4 and YKL-40 positive cell population in subventricular zone was largely devoid of Tbr2, a marker for intermediate neuronal progenitor cells descending from RGCs. YKL-40 has recently been found in astrocytes in the neuron-free fimbria, and both SSEA-4 and YKL-40 are present in malignant astroglial brain tumors. We suggest that the population of cells characterized by immunohistochemical combination of antibodies against SSEA-4 and YKL-40 and devoid of neuronal and microglial markers represent a yet unexplored astrogenic lineage illustrating the complexity of astroglial development.

  20. SSEA‐4 and YKL‐40 positive progenitor subtypes in the subventricular zone of developing human neocortex

    PubMed Central

    Brøchner, Christian B.

    2015-01-01

    The glycosphingolipid SSEA‐4 and the glycoprotein YKL‐40 have both been associated with human embryonic and neural stem cell differentiation. We investigated the distribution of SSEA‐4 and YKL‐40 positive cells in proliferative zones of human fetal forebrain using immunohistochemistry and double‐labeling immunofluorescence. A few small rounded SSEA‐4 and YKL‐40 labeled cells were present in the radial glial BLBP positive proliferative zones adjacent to the lateral ganglionic eminence from 12th week post conception. With increasing age, a similarly stained cell population appeared more widespread in the subventricular zone. At midgestation, the entire subventricular zone showed patches of SSEA‐4, YKL‐40, and BLBP positive cells. Co‐labeling with markers for radial glial cells (RGCs) and neuronal, glial, and microglial markers tested the lineage identity of this subpopulation of radial glial descendants. Adjacent to the ventricular zone, a minor fraction showed overlap with GFAP but not with nestin, Olig2, NG2, or S100. No co‐localization was found with neuronal markers NeuN, calbindin, DCX or with markers for microglial cells (Iba‐1, CD68). Moreover, the SSEA‐4 and YKL‐40 positive cell population in subventricular zone was largely devoid of Tbr2, a marker for intermediate neuronal progenitor cells descending from RGCs. YKL‐40 has recently been found in astrocytes in the neuron‐free fimbria, and both SSEA‐4 and YKL‐40 are present in malignant astroglial brain tumors. We suggest that the population of cells characterized by immunohistochemical combination of antibodies against SSEA‐4 and YKL‐40 and devoid of neuronal and microglial markers represent a yet unexplored astrogenic lineage illustrating the complexity of astroglial development. GLIA 2016;64:90–104 PMID:26295543

  1. Clonally Related Forebrain Interneurons Disperse Broadly across Both Functional Areas and Structural Boundaries.

    PubMed

    Mayer, Christian; Jaglin, Xavier H; Cobbs, Lucy V; Bandler, Rachel C; Streicher, Carmen; Cepko, Constance L; Hippenmeyer, Simon; Fishell, Gord

    2015-09-02

    The medial ganglionic eminence (MGE) gives rise to the majority of mouse forebrain interneurons. Here, we examine the lineage relationship among MGE-derived interneurons using a replication-defective retroviral library containing a highly diverse set of DNA barcodes. Recovering the barcodes from the mature progeny of infected progenitor cells enabled us to unambiguously determine their respective lineal relationship. We found that clonal dispersion occurs across large areas of the brain and is not restricted by anatomical divisions. As such, sibling interneurons can populate the cortex, hippocampus striatum, and globus pallidus. The majority of interneurons appeared to be generated from asymmetric divisions of MGE progenitor cells, followed by symmetric divisions within the subventricular zone. Altogether, our findings uncover that lineage relationships do not appear to determine interneuron allocation to particular regions. As such, it is likely that clonally related interneurons have considerable flexibility as to the particular forebrain circuits to which they can contribute.

  2. Forebrain Pain Mechanisms

    PubMed Central

    Neugebauer, Volker; Galhardo, Vasco; Maione, Sabatino; Mackey, Sean C.

    2009-01-01

    Emotional-affective and cognitive dimensions of pain are less well understood than nociceptive and nocifensive components, but the forebrain is believed to play an important role. Recent evidence suggests subcortical and cortical brain areas outside the traditional pain processing network contribute critically to emotional-affective responses and cognitive deficits related to pain. These brain areas include different nuclei of the amygdala and certain prefrontal cortical areas. Their roles in various aspects of pain will be discussed. Biomarkers of cortical dysfunction are being identified that may evolve into therapeutic targets to modulate pain experience and improve pain-related cognitive impairment. Supporting data from preclinical studies in neuropathic pain models will be presented. Neuroimaging analysis provides evidence for plastic changes in the pain processing brain network. Results of clinical studies in neuropathic pain patients suggest that neuroimaging may help determine mechanisms of altered brain functions in pain as well as monitor the effects of pharmacologic interventions to optimize treatment in individual patients. Recent progress in the analysis of higher brain functions emphasizes the concept of pain as a multidimensional experience and the need for integrative approaches to determine the full spectrum of harmful or protective neurobiological changes in pain. PMID:19162070

  3. Colocalization of CB1 receptors with L1 and GAP-43 in forebrain white matter regions during fetal rat brain development: evidence for a role of these receptors in axonal growth and guidance.

    PubMed

    Gómez, M; Hernández, M L; Pazos, M R; Tolón, R M; Romero, J; Fernández-Ruiz, J

    2008-05-15

    There is recent evidence supporting the notion that the cannabinoid signaling system plays a modulatory role in the regulation of cell proliferation and migration, survival of neural progenitors, neuritic elongation and guidance, and synaptogenesis. This assumption is based on the fact that cannabinoid 1-type receptors (CB(1) receptors) and their ligands emerge early in brain development and are abundantly expressed in certain brain regions that play key roles in these processes. We have recently presented in vivo evidence showing that this modulatory action might be exerted through regulating the synthesis of the cell adhesion molecule L1 that is also a key element for those processes. To further explore this issue, we conducted here immunohistochemical studies aimed at determining the cellular substrates of CB(1) receptor-L1 interactions in the rat brain during late fetal development. In this period, we previously found that the activation of CB(1) receptors increased L1 synthesis in several forebrain white matter regions but not in gray matter areas. Using double labeling studies, we observed here colocalization of both proteins in fiber tracts including the corpus callosum, the adjacent subcortical white matter, the internal capsule and the anterior commissure. Experiments conducted with cultures of fetal rat cortical nerve cells revealed that L1 is present mainly in neurons but not in glial cells. This fact, together with the results obtained in the double labeling studies, would indicate that L1 and CB(1) receptors should possibly be present in axons elongating through these white matter tracts, or, alternatively, in migrating neurons. Further experiments confirmed the presence of CB(1) receptors in elongating axons, since these receptors colocalized with growth-associated protein 43 (GAP-43), a marker of growth cones, but not with synaptophysin, a marker of active synaptic terminals, in the same forebrain white matter regions. Lastly, using cultured fetal

  4. The forebrain of the ferret.

    PubMed

    Lockard, B I

    1985-06-01

    The basic neuroanatomy of the forebrain, mainly of the telencephalon, of the adult ferret (Mustela furo), is reviewed and illustrated with special references to the features that distinguish this animal from other carnivores. References to the pertinent literature describing similar regions of other carnivores are cited.

  5. Increased expression of Slit2 and its receptors Robo1 and Robo4 in reactive astrocytes of the rat hippocampus after transient forebrain ischemia.

    PubMed

    Park, Joo-Hee; Pak, Ha-Jin; Riew, Tae-Ryong; Shin, Yoo-Jin; Lee, Mun-Yong

    2016-03-01

    Slit2 is a secreted glycoprotein that was originally identified as a chemorepulsive factor in the developing brain; however, it was recently reported that Slit2 is associated with adult neuronal function including a variety of pathophysiological processes. To elucidate whether Slit2 is implicated in the pathophysiology of ischemic injury, we investigated the temporal changes and cellular localization of Slit2 and its predominant receptors, Robo1 and Robo4, for 28 days after transient forebrain ischemia. Slit2 and its receptors had similar overall expression patterns in the control and ischemic hippocampi. The ligand and receptors were constitutively expressed in hippocampal neurons in control animals; however, in animals with ischemic injury, their upregulation was detected in reactive astrocytes, but not in neurons or activated microglia, in the CA1 region. Astroglial induction of Slit2 and its receptors occurred by day 3 after reperfusion, and appeared to increase progressively until the final time point on day 28. Their temporal expression patterns overlapped with the time period in which reactive astrocytes undergo dynamic structural changes and appear hypertrophic in the ischemic hippocampus. The immunohistochemical data were consistent with the results of the immunoblot analyses, indicating that the expression of Slit2 and Robo increased progressively over the relatively long period of 28 days examined here. Collectively, these results suggest that Slit2/Robo signaling may be involved in regulating the astroglial reaction via autocrine or paracrine mechanisms in post-ischemic processes. Moreover, this may contribute to the dynamic morphological changes that occur in astrocytes in response to ischemic injury.

  6. Forebrain neurogenesis after focal Ischemic and traumatic brain injury.

    PubMed

    Kernie, Steven G; Parent, Jack M

    2010-02-01

    Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor cells in experimental stroke, and the influence of mechanical injury on adult hippocampal neurogenesis in models of traumatic brain injury (TBI). Stroke potently stimulates forebrain SVZ cell proliferation and neurogenesis. SVZ neuroblasts are induced to migrate to the injured striatum, and to a lesser extent to the peri-infarct cortex. Controversy exists as to the types of neurons that are generated in the injured striatum, and whether adult-born neurons contribute to functional restoration remains uncertain. Advances in understanding the regulation of SVZ neurogenesis in general, and stroke-induced neurogenesis in particular, may lead to improved integration and survival of adult-born neurons at sites of injury. Dentate gyrus cell proliferation and neurogenesis similarly increase after experimental TBI. However, pre-existing neuroblasts in the dentate gyrus are vulnerable to traumatic insults, which appear to stimulate neural stem cells in the SGZ to proliferate and replace them, leading to increased numbers of new granule cells. Interventions that stimulate hippocampal neurogenesis appear to improve cognitive recovery after experimental TBI. Transgenic methods to conditionally label or ablate neural stem cells are beginning to further address critical questions regarding underlying mechanisms and functional significance of neurogenesis after stroke or TBI. Future therapies should be aimed at directing appropriate neuronal replacement after ischemic or traumatic injury while suppressing aberrant integration that may contribute to co-morbidities such as epilepsy or

  7. Medial Forebrain Bundle Deep Brain Stimulation has Symptom-specific Anti-depressant Effects in Rats and as Opposed to Ventromedial Prefrontal Cortex Stimulation Interacts With the Reward System.

    PubMed

    Edemann-Callesen, Henriette; Voget, Mareike; Empl, Laura; Vogel, Martin; Wieske, Franziska; Rummel, Julia; Heinz, Andreas; Mathé, Aleksander A; Hadar, Ravit; Winter, Christine

    2015-01-01

    In recent years, deep brain stimulation (DBS) has emerged as a promising treatment option for patients suffering from treatment-resistant depression (TRD). Several stimulation targets have successfully been tested in clinical settings, including the subgenual cingulum (Cg25) and the medial forebrain bundle (MFB). MFB-DBS has led to remarkable results, surpassing the effect of previous targets in terms of response latency and number of responders. However, the question remains as to which mechanisms underlie this difference. The aim of the present study was to thoroughly study the anti-depressant effect of MFB-DBS in the Flinders sensitive line (FSL) rat model of depression as well as to investigate whether MFB-DBS and Cg25-DBS operate through the same neurobiological circuits. FSL and control rats received bilateral high-frequency stimulation to the MFB at the level of the lateral hypothalamus, while being subjected to a variety of depression- and anxiety-related behavioral paradigms. To further compare the effects of MFB-DBS and Cg25-DBS on reward-related behavior, animals were stimulated in either the MFB or ventromedial prefrontal cortex (vmPFC, rodent analog to Cg25), while being tested in the intra-cranial self-stimulation paradigm. A marked symptom-specific anti-depressant effect of MFB-DBS was demonstrated. The ICSS-paradigm revealed that MFB-DBS, as opposed to vmPFC-DBS interacts with the reward system. Our data suggest that MFB-DBS and Cg25-DBS do not operate via the same neurobiological circuits. This differentiation might be of interest when selecting patients for either Cg25- or MFB-DBS. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of hypocretin (orexin) neuronal loss on sleep and extracellular adenosine levels in the basal forebrain

    PubMed Central

    Murillo-Rodriguez, Eric; Liu, Meng; Blanco-Centurion, Carlos; Shiromani, Priyattam J.

    2009-01-01

    Neurons containing the neuropeptide hypocretin (orexin) are localized only in the lateral hypothalamus from where they innervate multiple regions implicated in arousal, including the basal forebrain. HCRT activation of downstream arousal neurons is likely to stimulate release of endogenous factors. One such factor is adenosine (AD), which in the basal forebrain increases with waking and decreases with sleep, and is hypothesized to regulate the waxing and waning of sleep drive. Does loss of HCRT neurons affect AD levels in the basal forebrain? Is the increased sleep that accompanies HCRT loss a consequence of higher AD levels in the basal forebrain? In the present study, we investigate these questions by lesioning the HCRT neurons (hypocretin-2-saporin) and measuring sleep and extracellular levels of AD in the basal forebrain. In separate groups of rats, the neurotoxin HCRT2-SAP or saline were administered locally to the lateral hypothalamus and 80 days later AD and sleep were assessed. Rats given the neurotoxin had a 94% loss of the HCRT neurons. These rats awake less at night, and had more REM sleep, which is consistent with a HCRT hypofunction. These rats also had more sleep after brief periods of sleep deprivation. However, in the lesioned rats, AD levels did not increase with 6h sleep deprivation, whereas such an increase in AD occurred in rats without lesion of the HCRT neurons. These findings indicate that AD levels do not increase with waking in rats with a HCRT lesion, and that the increased sleep in these rats occurs independently of AD levels in the basal forebrain. PMID:18783368

  9. Cell migration in the postnatal subventricular zone.

    PubMed

    Menezes, J R L; Marins, M; Alves, J A J; Froes, M M; Hedin-Pereira, C

    2002-12-01

    New neurons are constantly added to the olfactory bulb of rodents from birth to adulthood. This accretion is not only dependent on sustained neurogenesis, but also on the migration of neuroblasts and immature neurons from the cortical and striatal subventricular zone (SVZ) to the olfactory bulb. Migration along this long tangential pathway, known as the rostral migratory stream (RMS), is in many ways opposite to the classical radial migration of immature neurons: it is faster, spans a longer distance, does not require radial glial guidance, and is not limited to postmitotic neurons. In recent years many molecules have been found to be expressed specifically in this pathway and to directly affect this migration. Soluble factors with inhibitory, attractive and inductive roles in migration have been described, as well as molecules mediating cell-to-cell and cell-substrate interactions. However, it is still unclear how the various molecules and cells interact to account for the special migratory behavior in the RMS. Here we will propose some candidate mechanisms for roles in initiating and stopping SVZ/RMS migration.

  10. Forebrain Mechanisms of Nociception and Pain: Analysis through Imaging

    NASA Astrophysics Data System (ADS)

    Casey, Kenneth L.

    1999-07-01

    Pain is a unified experience composed of interacting discriminative, affective-motivational, and cognitive components, each of which is mediated and modulated through forebrain mechanisms acting at spinal, brainstem, and cerebral levels. The size of the human forebrain in relation to the spinal cord gives anatomical emphasis to forebrain control over nociceptive processing. Human forebrain pathology can cause pain without the activation of nociceptors. Functional imaging of the normal human brain with positron emission tomography (PET) shows synaptically induced increases in regional cerebral blood flow (rCBF) in several regions specifically during pain. We have examined the variables of gender, type of noxious stimulus, and the origin of nociceptive input as potential determinants of the pattern and intensity of rCBF responses. The structures most consistently activated across genders and during contact heat pain, cold pain, cutaneous laser pain or intramuscular pain were the contralateral insula and anterior cingulate cortex, the bilateral thalamus and premotor cortex, and the cerebellar vermis. These regions are commonly activated in PET studies of pain conducted by other investigators, and the intensity of the brain rCBF response correlates parametrically with perceived pain intensity. To complement the human studies, we developed an animal model for investigating stimulus-induced rCBF responses in the rat. In accord with behavioral measures and the results of human PET, there is a progressive and selective activation of somatosensory and limbic system structures in the brain and brainstem following the subcutaneous injection of formalin. The animal model and human PET studies should be mutually reinforcing and thus facilitate progress in understanding forebrain mechanisms of normal and pathological pain.

  11. Mobilization of Neural Stem Cells and Generation of New Neurons in 6-OHDA–lesioned Rats by Intracerebroventricular Infusion of Liver Growth Factor

    PubMed Central

    Gonzalo-Gobernado, Rafael; Reimers, Diana; Herranz, Antonio S.; Díaz-Gil, Juan José; Osuna, Cristina; Asensio, María José; Baena, Silvia; Rodríguez-Serrano, Macarena; Bazán, Eulalia

    2009-01-01

    Neural stem cells with self-renewal and multilineage potential persist in the subventricular zone of the adult mammalian forebrain. These cells remain relatively quiescent but, under certain conditions, can be stimulated, giving rise to new neurons. Liver growth factor (LGF) is a mitogen for liver cells that shows biological activity in extrahepatic sites and is useful for neuroregenerative therapies. The aim of this study was to investigate the potential neurogenic activity of LGF in the 6-hydroxydopamine rat model of Parkinson's disease. Proliferation was significantly increased in the subventricular zone and denervated striatum of rats receiving ICV LGF infusions, and 25% of the proliferating cells were doublecortin-positive neurons. Doublecortin-positive cells with the morphology of migrating neuroblasts were also observed in the dorsal and ventral regions of the striatum of LGF-infused animals. Moreover, some newly generated cells were neuronal nuclei-positive mature neurons. LGF also stimulated microglia and induced astrogliosis, both phenomena associated with generation and migration of new neurons in the adult brain. In summary, our study shows that LGF stimulates neurogenesis when applied intraventricularly in 6-hydroxydopamine–lesioned rats. Considering that this factor also promotes neuronal migration into damaged tissue, we propose LGF as a novel factor useful for neuronal replacement in neurodegenerative diseases. (J Histochem Cytochem 57:491–502, 2009) PMID:19188487

  12. Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity

    PubMed Central

    Marcy, Guillaume; Pieropan, Francesca; Rivera, Andrea; Donega, Vanessa; Cantù, Claudio; Williams, Gareth; Berninger, Benedikt; Butt, Arthur M.; Raineteau, Olivier

    2017-01-01

    Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ) is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs) and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP), to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases. PMID:28350803

  13. p11 is up-regulated in the forebrain of stressed rats by glucocorticoid acting via two specific glucocorticoid response elements in the p11 promoter.

    PubMed

    Zhang, L; Li, H; Su, T P; Barker, J L; Maric, D; Fullerton, C S; Webster, M J; Hough, C J; Li, X X; Ursano, R

    2008-06-02

    Posttraumatic stress disorder (PTSD) is one of the most common psychiatric disorders. Despite the extensive study of the neurobiological correlates of this disorder, the underlying mechanisms of PTSD are still poorly understood. Recently, a study demonstrated that dexamethasone (Dex), a synthetic glucocorticoid, can up-regulate p11, known as S100A10-protein which is down-regulated in patients with depression, (Yao et al., 1999; Huang et al., 2003) a common comorbid disorder in PTSD. These observations led to our hypothesis that traumatic stress may alter expression of p11 mediated through a glucocorticoid receptor. Here, we demonstrate that inescapable tail shock increased both prefrontal cortical p11 mRNA levels and plasma corticosterone levels in rats. We also found that Dex up-regulated p11 expression in SH-SY5Y cells through glucocorticoid response elements (GREs) within the p11 promoter. This response was attenuated by either RU486, a glucocorticoid receptor (GR) antagonist or mutating two of three glucocorticoid response elements (GRE2 and GRE3) in the p11 promoter. Finally, we showed that p11 mRNA levels were increased in postmortem prefrontal cortical tissue (area 46) of patients with PTSD. The data obtained from our work in a rat model of inescapable tail shock, a p11-transfected cell line and postmortem brain tissue from PTSD patients outline a possible mechanism by which p11 is regulated by glucocorticoids elevated by traumatic stress.

  14. Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions.

    PubMed

    Arias-Carrión, O; Verdugo-Díaz, L; Feria-Velasco, A; Millán-Aldaco, D; Gutiérrez, A A; Hernández-Cruz, A; Drucker-Colín, R

    2004-10-01

    Neurogenesis continues at least in two regions of the mammalian adult brain, the subventricular zone (SVZ) and the subgranular zone in hippocampal dentate gyrus. Neurogenesis in these regions is subjected to physiological regulation and can be modified by pharmacological and pathological events. Here we report the induction of neurogenesis in the SVZ and the differentiation after nigrostriatal pathway lesion along with transcranial magnetic field stimulation (TMFS) in adult rats. Significant numbers of proliferating cells demonstrated by bromodeoxyuridine-positive reaction colocalized with the neuronal marker NeuN were detected bilaterally in the SVZ, and several of these cells also expressed tyrosine hydroxylase. Transplanted chromaffin cells into lesioned animals also induced bilateral appearance of subependymal cells. These results show for the first time that unilateral lesion, transplant, and/or TMFS induce neurogenesis in the SVZ of rats and also that TMFS prevents the motor alterations induced by the lesion. Copyright 2004 Wiley-Liss, Inc.

  15. Crocodilian Forebrain: Evolution and Development

    PubMed Central

    Pritz, Michael B.

    2015-01-01

    Organization and development of the forebrain in crocodilians are reviewed. In juvenile Caiman crocodilus, the following features were examined: identification and classification of dorsal thalamic nuclei and their respective connections with the telencephalon, presence of local circuit neurons in the dorsal thalamic nuclei, telencephalic projections to the dorsal thalamus, and organization of the thalamic reticular nucleus. These results document many similarities between crocodilians and other reptiles and birds. While crocodilians, as well as other sauropsids, demonstrate several features of neural circuitry in common with mammals, certain striking differences in organization of the forebrain are present. These differences are the result of evolution. To explore a basis for these differences, embryos of Alligator misissippiensis were examined to address the following. First, very early development of the brain in Alligator is similar to that of other amniotes. Second, the developmental program for individual vesicles of the brain differs between the secondary prosencephalon, diencephalon, midbrain, and hindbrain in Alligator. This is likely to be the case for other amniotes. Third, initial development of the diencephalon in Alligator is similar to that in other amniotes. In Alligator, alar and basal parts likely follow a different developmental scheme. PMID:25829019

  16. Microinjection of the 5-HT7 receptor antagonist SB-269970 into the rat brainstem and basal forebrain: site-dependent effects on REM sleep.

    PubMed

    Monti, Jaime M; Leopoldo, Marcello; Jantos, Héctor; Lagos, Patricia

    2012-08-01

    The effects of SB-269970, a selective 5-HT7 receptor antagonist, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. The 5-HT7 receptor ligand was microinjected into the horizontal limb of the diagonal band of Broca (HDB) and the laterodorsal tegmental nucleus (LDT) during the light period of the 12-h light/12-h dark cycle. For comparative purposes the compound was administered systemically and, in addition, injected directly into the dorsal raphe nucleus (DRN). Microinjection of SB-269970 into the HDB and the DRN induced a significant reduction of rapid-eye-movement sleep (REMS). Similar effects were observed after systemic administration of the 5-HT7 receptor antagonist. On the other hand, local infusion of the compound into the LDT provoked the opposite effect. It is proposed that the deactivation of GABAergic cells located in the HDB, DRN and LDT is responsible for the changes induced by SB-269970 on REM sleep values. It is suggested that the antidepressant effect of the 5-HT7 receptor antagonist could partly depend on the involvement of neuronal systems located in the DRN and the HDB.

  17. An ultrastructural analysis of cellular death in the CA1 field in the rat hippocampus after transient forebrain ischemia followed by 2, 4 and 10 days of reperfusion.

    PubMed

    Winkelmann, Eliane Roseli; Charcansky, Alexandre; Faccioni-Heuser, M Cristina; Netto, Carlos Alexandre; Achaval, Matilde

    2006-10-01

    An ultrastructural study was performed to investigate the type of cellular death that occurs in hippocampal CA1 field pyramidal neurons after 10 and 20 min of transient cerebral ischemia in the male adult Wistar rats, followed by 2, 4 and 10 days of reperfusion. The four-vessel occlusion method was used to induce ischemic insult for either 10 or 20 min, following which the animals were submitted to either 2, 4 or 10 days of reperfusion. The animals were then anaesthetised, and their brains removed, dehydrated, embedded, sectioned and examined under a transmission electron microscope. After ischemic insult, neurons from the CA1 field presented alterations, corresponding to the initial, intermediate and final stages of the degenerative process. The only difference observed between the 10 and 20 min ischemic groups was the degree of damage; the reaction was stronger in 20 min groups than in the 10 min groups. While neurons were found in the different stages of oncotic necrosis in all groups, differences were found between the groups in relation to prevalent stages. In both ischemic groups, after 2 days of reperfusion, the initial stage of oncotic necrosis was prevalent and large numbers of neurons appeared normal. In both groups, after 4 days of reperfusion, most of the neurons showed more advanced alterations, typical of an intermediate stage. In both groups, after 10 days of reperfusion, alterations corresponding to the intermediate and final stages of oncotic necrosis were also predominant. However, few intact neurons were identified and the neuropile appeared more organised, with numerous glial cells. In summary, the pyramidal neurons of the CA1 field displayed selective vulnerability and exhibited a morphological death pattern corresponding exclusively to an oncotic necrotic pathway.

  18. Forebrain GABAergic projections to locus coeruleus in mouse.

    PubMed

    Dimitrov, Eugene L; Yanagawa, Yuchio; Usdin, Ted B

    2013-07-01

    The noradrenergic locus coeruleus (LC) regulates arousal, memory, sympathetic nervous system activity, and pain. Forebrain projections to LC have been characterized in rat, cat, and primates, but not systematically in mouse. We surveyed mouse forebrain LC-projecting neurons by examining retrogradely labeled cells following LC iontophoresis of Fluoro-Gold and anterograde LC labeling after forebrain injection of biotinylated dextran amine or viral tracer. Similar to other species, the central amygdalar nucleus (CAmy), anterior hypothalamus, paraventricular nucleus, and posterior lateral hypothalamic area (PLH) provide major LC inputs. By using mice expressing green fluorescent protein in γ-aminobutyric acid (GABA)ergic neurons, we found that more than one-third of LC-projecting CAmy and PLH neurons are GABAergic. LC colocalization of biotinylated dextran amine, following CAmy or PLH injection, with either green fluorescent protein or glutamic acid decarboxylase (GAD)65/67 immunoreactivity confirmed these GABAergic projections. CAmy injection of adeno-associated virus encoding channelrhodopsin-2-Venus showed similar fiber labeling and association with GAD65/67-immunoreactive (ir) and tyrosine hydroxylase (TH)-ir neurons. CAmy and PLH projections were densest in a pericoerulear zone, but many fibers entered the LC proper. Close apposition between CAmy GABAergic projections and TH-ir processes suggests that CAmy GABAergic neurons may directly inhibit noradrenergic principal neurons. Direct LC neuron targeting was confirmed by anterograde transneuronal labeling of LC TH-ir neurons following CAmy or PLH injection of a herpes virus that expresses red fluorescent protein following activation by Cre recombinase in mice that express Cre recombinase in GABAergic neurons. This description of GABAergic projections from the CAmy and PLH to the LC clarifies important forebrain sources of inhibitory control of central nervous system noradrenergic activity.

  19. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    ERIC Educational Resources Information Center

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  20. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    ERIC Educational Resources Information Center

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  1. Gap junctions are involved in cell migration in the early postnatal subventricular zone.

    PubMed

    Marins, Mônica; Xavier, Anna L R; Viana, Nathan B; Fortes, Fábio S A; Fróes, Maira M; Menezes, João R L

    2009-09-15

    The massive migration of neuroblasts and young neurons through the anterior extension of the postnatal subventricular zone (SVZ), known as the rostral migratory stream (RMS) is still poorly understood on its molecular basis. In this work, we investigated the involvement of gap junctional communication (GJC) in the robust centrifugal migration from SVZ/RMS explants obtained from early postnatal (P4) rats. Cells were dye-coupled in homocellular and heterocellular pairings and expressed at least two connexins, Cx 43 and 45. Treatment with the uncoupler agent carbenoxolone (CBX, 10-100 microM) reversibly reduced outgrowth from SVZ explants, while its inactive analog, glycyrhizinic acid (GZA), had no effect. Consistent with a direct effect on cell migration, time-lapse video microscopy show that different pharmacological uncouplers cause an abrupt and reversible arrest of cell movement in explants. Our results indicate that GJC is positively involved in the migration of neuroblasts within the SVZ/RMS.

  2. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb

    PubMed Central

    Comte, Isabelle; Kim, Yongsoo; Young, Christopher C.; van der Harg, Judith M.; Hockberger, Philip; Bolam, Paul J.; Poirier, Françoise; Szele, Francis G.

    2011-01-01

    The adult brain subventricular zone (SVZ) produces neuroblasts that migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB) in a specialized niche. Galectin-3 (Gal-3) regulates proliferation and migration in cancer and is expressed by activated macrophages after brain injury. The function of Gal-3 in the normal brain is unknown, but we serendipitously found that it was expressed by ependymal cells and SVZ astrocytes in uninjured mice. Ependymal cilia establish chemotactic gradients and astrocytes form glial tubes, which combine to aid neuroblast migration. Whole-mount preparations and electron microscopy revealed that both ependymal cilia and SVZ astrocytes were disrupted in Gal3−/− mice. Interestingly, far fewer new BrdU+ neurons were found in the OB of Gal3−/− mice, than in wild-type mice 2 weeks after labeling. However, SVZ proliferation and cell death, as well as OB differentiation rates were unaltered. This suggested that decreased migration in vivo was sufficient to decrease the number of new OB neurons. Two-photon time-lapse microscopy in forebrain slices confirmed decreased migration; cells were slower and more exploratory in Gal3−/− mice. Gal-3 blocking antibodies decreased migration and dissociated neuroblast cell–cell contacts, whereas recombinant Gal-3 increased migration from explants. Finally, we showed that expression of phosphorylated epidermal growth factor receptor (EGFR) was increased in Gal3−/− mice. These results suggest that Gal-3 is important in SVZ neuroblast migration, possibly through an EGFR-based mechanism, and reveals a role for this lectin in the uninjured brain. PMID:21693585

  3. Learning and the motivation to eat: Forebrain circuitry

    PubMed Central

    Petrovich, Gorica D.

    2011-01-01

    Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning—learned cues—can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmental factors are believed to contribute to the increased susceptibility to overeating and the rise in obesity in the developed world. Similarly, environmental and social factors contribute to the onset and maintenance of anorexia nervosa and other eating disorders through interactions with the individual genetic background. Nevertheless, how learning enables environmental signals to control feeding, and the underlying brain mechanisms are poorly understood. We developed two rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. In one model, a cue previously paired with food when an animal was hungry induces eating in sated rats. In the other model, food-deprived rats inhibit feeding when presented with a cue that signals danger, a tone previously paired with footshocks. Here evidence will be reviewed that the forebrain network formed by the amygdala, lateral hypothalamus and medial prefrontal cortex mediates cue-driven feeding, while a parallel amygdalar circuitry mediates suppression of eating by the fear cue. Findings from the animal models may be relevant for understanding aspects of human appetite and eating, and maladaptive mechanisms that could lead to overeating and anorexia. PMID:21549730

  4. Learning and the motivation to eat: forebrain circuitry.

    PubMed

    Petrovich, Gorica D

    2011-09-26

    Appetite and eating are not only controlled by energy needs, but also by extrinsic factors that are not directly related to energy balance. Environmental signals that acquire motivational properties through associative learning-learned cues-can override homeostatic signals and stimulate eating in sated states, or inhibit eating in states of hunger. Such influences are important, as environmental factors are believed to contribute to the increased susceptibility to overeating and the rise in obesity in the developed world. Similarly, environmental and social factors contribute to the onset and maintenance of anorexia nervosa and other eating disorders through interactions with the individual genetic background. Nevertheless, how learning enables environmental signals to control feeding, and the underlying brain mechanisms are poorly understood. We developed two rodent models to study how learned cues are integrated with homeostatic signals within functional forebrain networks, and how these networks are modulated by experience. In one model, a cue previously paired with food when an animal was hungry induces eating in sated rats. In the other model, food-deprived rats inhibit feeding when presented with a cue that signals danger, a tone previously paired with footshocks. Here evidence will be reviewed that the forebrain network formed by the amygdala, lateral hypothalamus and medial prefrontal cortex mediates cue-driven feeding, while a parallel amygdalar circuitry mediates suppression of eating by the fear cue. Findings from the animal models may be relevant for understanding aspects of human appetite and eating, and maladaptive mechanisms that could lead to overeating and anorexia.

  5. Basal Forebrain Cholinergic Modulation of Sleep Transitions

    PubMed Central

    Ozen Irmak, Simal; de Lecea, Luis

    2014-01-01

    Objectives: The basal forebrain cholinergic system is involved in cognitive processes that require an attentive state, an increased level of arousal, and/or cortical activation associated with low amplitude fast EEG activity. The activity of most neurons in the basal forebrain cholinergic space is tightly correlated with the cortical EEG and the activity state. While most cholinergic neurons fire maximally during waking and REM sleep, the activity of other types of basal forebrain neurons vastly differs across different arousal and sleep states. Numerous studies have suggested a role for the basal forebrain cholinergic neurons in eliciting cortical activation and arousal. However, the intricate local connectivity within the region requires the use of cell-specific manipulation methods to demonstrate such a causal relationship. Design and Measurements: Here we have combined optogenetics with surface EEG recordings in freely moving mice in order to investigate the effects of acute cholinergic activation on the dynamics of sleep-to-wake transitions. We recorded from naturally sleeping animals and analyzed transitions from NREM sleep to REM sleep and/or wakefulness in response to photo-stimulation of cholinergic neurons in substantia innominata. Results and Conclusions: Our results show that optogenetic activation of basal forebrain cholinergic neurons during NREM sleep is sufficient to elicit cortical activation and facilitate state transitions, particularly transitions to wakefulness and arousal, at a time scale similar to the activation induced by other subcortical systems. Our results provide in vivo cell-specific demonstration for the role of basal forebrain cholinergic system in induction of wakefulness and arousal. Citation: Ozen Irmak S, de Lecea L. Basal forebrain cholinergic modulation of sleep transitions. SLEEP 2014;37(12):1941-1951. PMID:25325504

  6. Discrete Forebrain Neuronal Networks Supporting Noradrenergic Regulation of Sensorimotor Gating

    PubMed Central

    Alsene, Karen M; Rajbhandari, Abha K; Ramaker, Marcia J; Bakshi, Vaishali P

    2011-01-01

    Prepulse inhibition (PPI) refers to the reduction in the startle response when a startling stimulus is preceded by a weak prestimulus, and is an endophenotype of deficient sensorimotor gating in several neuropsychiatric disorders. Emerging evidence suggests that norepinephrine (NE) regulates PPI, however, the circuitry involved is unknown. We found recently that stimulation of the locus coeruleus (LC), the primary source of NE to the forebrain, induces a PPI deficit that is a result of downstream NE release. Hence, this study sought to identify LC-innervated forebrain regions that mediate this effect. Separate groups of male Sprague–Dawley rats received a cocktail solution of the α1-NE receptor agonist phenylephrine plus the β-receptor agonist isoproterenol (equal parts of each; 0, 3, 10, and 30 μg) into subregions of the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc), extended amygdala, mediodorsal thalamus (MD-thalamus), or the dorsal hippocampus (DH) before PPI testing. NE agonist infusion into the posterior mPFC, NAcc shell, bed nucleus of the stria terminalis, basolateral amygdala, and the MD-thalamus disrupted PPI, with particularly strong effects in MD-thalamus. Sites in which NE receptor stimulation did not disrupt PPI (anterior mPFC, NAcc core, central amygdala, and DH) did support PPI disruptions with the dopamine D2 receptor agonist quinpirole (0, 10 μg). This pattern reveals new pathways in the regulation of PPI, and suggests that NE transmission within distinct thalamocortical and ventral forebrain networks may subserve the sensorimotor gating deficits that are seen in disorders such as schizophrenia, Tourette syndrome, and post-traumatic stress disorder. PMID:21248721

  7. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain

    PubMed Central

    Wang, Congmin; Liu, Fang; Liu, Ying-Ying; Zhao, Cai-Hong; You, Yan; Wang, Lei; Zhang, Jingxiao; Wei, Bin; Ma, Tong; Zhang, Qiangqiang; Zhang, Yue; Chen, Rui; Song, Hongjun; Yang, Zhengang

    2011-01-01

    It is of great interest to identify new neurons in the adult human brain, but the persistence of neurogenesis in the subventricular zone (SVZ) and the existence of the rostral migratory stream (RMS)-like pathway in the adult human forebrain remain highly controversial. In the present study, we have described the general configuration of the RMS in adult monkey, fetal human and adult human brains. We provide evidence that neuroblasts exist continuously in the anterior ventral SVZ and RMS of the adult human brain. The neuroblasts appear singly or in pairs without forming chains; they exhibit migratory morphologies and co-express the immature neuronal markers doublecortin, polysialylated neural cell adhesion molecule and βIII-tubulin. Few of these neuroblasts appear to be actively proliferating in the anterior ventral SVZ but none in the RMS, indicating that neuroblasts distributed along the RMS are most likely derived from the ventral SVZ. Interestingly, no neuroblasts are found in the adult human olfactory bulb. Taken together, our data suggest that the SVZ maintains the ability to produce neuroblasts in the adult human brain. PMID:21577236

  8. The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice.

    PubMed

    Sohn, Jiho; Orosco, Lori; Guo, Fuzheng; Chung, Seung-Hyuk; Bannerman, Peter; Mills Ko, Emily; Zarbalis, Kostas; Deng, Wenbin; Pleasure, David

    2015-03-04

    Astrocytes are the most abundant cells in the CNS, and have many essential functions, including maintenance of blood-brain barrier integrity, and CNS water, ion, and glutamate homeostasis. Mammalian astrogliogenesis has generally been considered to be completed soon after birth, and to be reactivated in later life only under pathological circumstances. Here, by using genetic fate-mapping, we demonstrate that new corpus callosum astrocytes are continuously generated from nestin(+) subventricular zone (SVZ) neural progenitor cells (NPCs) in normal adult mice. These nestin fate-mapped corpus callosum astrocytes are uniformly postmitotic, express glutamate receptors, and form aquaporin-4(+) perivascular endfeet. The entry of new astrocytes from the SVZ into the corpus callosum appears to be balanced by astroglial apoptosis, because overall numbers of corpus callosum astrocytes remain constant during normal adulthood. Nestin fate-mapped astrocytes also flow anteriorly from the SVZ in association with the rostral migratory stream, but do not penetrate into the deeper layers of the olfactory bulb. Production of new astrocytes from nestin(+) NPCs is absent in the normal adult cortex, striatum, and spinal cord. Our study is the first to demonstrate ongoing SVZ astrogliogenesis in the normal adult mammalian forebrain.

  9. Inflammation-induced subventricular zone dysfunction leads to olfactory deficits in a targeted mouse model of multiple sclerosis

    PubMed Central

    Tepavčević, Vanja; Lazarini, Françoise; Alfaro-Cervello, Clara; Kerninon, Christophe; Yoshikawa, Kazuaki; Garcia-Verdugo, José Manuel; Lledo, Pierre-Marie; Nait-Oumesmar, Brahim; Baron-Van Evercooren, Anne

    2011-01-01

    Neural stem cells (NSCs) persist in defined brain niches, including the subventricular zone (SVZ), throughout adulthood and generate new neurons destined to support specific neurological functions. Whether brain diseases such as multiple sclerosis (MS) are associated with changes in adult NSCs and whether this might contribute to the development and/or persistence of neurological deficits remains poorly investigated. We examined SVZ function in mice in which we targeted an MS-like pathology to the forebrain. In these mice, which we refer to herein as targeted EAE (tEAE) mice, there was a reduction in the number of neuroblasts compared with control mice. Altered expression of the transcription factors Olig2 and Dlx2 in the tEAE SVZ niche was associated with amplification of pro-oligodendrogenic transit-amplifying cells and decreased neuroblast generation, which resulted in persistent reduction in olfactory bulb neurogenesis. Altered SVZ neurogenesis led to impaired long-term olfactory memory, mimicking the olfactory dysfunction observed in MS patients. Importantly, we also found that neurogenesis was reduced in the SVZ of MS patients compared with controls. Thus, our findings suggest that neuroinflammation induces functional alteration of adult NSCs that may contribute to olfactory dysfunction in MS patients. PMID:22056384

  10. Basal Forebrain Cholinergic System and Memory.

    PubMed

    Blake, M G; Boccia, M M

    2017-02-18

    Basal forebrain cholinergic neurons constitute a way station for many ascending and descending pathways. These cholinergic neurons have a role in eliciting cortical activation and arousal. It is well established that they are mainly involved in cognitive processes requiring increased levels of arousal, attentive states and/or cortical activation with desynchronized activity in the EEG. These cholinergic neurons are modulated by several afferents of different neurotransmitter systems. Of particular importance within the cortical targets of basal forebrain neurons is the hippocampal cortex. The septohippocampal pathway is a bidirectional pathway constituting the main septal efferent system, which is widely known to be implicated in every memory process investigated. The present work aims to review the main neurotransmitter systems involved in modulating cognitive processes related to learning and memory through modulation of basal forebrain neurons.

  11. Developmental specification of forebrain cholinergic neurons.

    PubMed

    Allaway, Kathryn C; Machold, Robert

    2017-01-01

    Striatal cholinergic interneurons and basal forebrain cholinergic projection neurons, which together comprise the forebrain cholinergic system, regulate attention, memory, reward pathways, and motor activity through the neuromodulation of multiple brain circuits. The importance of these neurons in the etiology of neurocognitive disorders has been well documented, but our understanding of their specification during embryogenesis is still incomplete. All forebrain cholinergic projection neurons and interneurons appear to share a common developmental origin in the embryonic ventral telencephalon, a region that also gives rise to GABAergic projection neurons and interneurons. Significant progress has been made in identifying the key intrinsic and extrinsic factors that promote a cholinergic fate in this precursor population. However, how cholinergic interneurons and projection neurons differentiate from one another during development, as well as how distinct developmental programs contribute to heterogeneity within those two classes, is not yet well understood. In this review we summarize the transcription factors and signaling molecules known to play a role in the specification and early development of striatal and basal forebrain cholinergic neurons. We also discuss the heterogeneity of these populations and its possible developmental origins. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke.

    PubMed

    Liu, Xian Shuang; Chopp, Michael; Zhang, Xue Guo; Zhang, Rui Lan; Buller, Ben; Hozeska-Solgot, Ann; Gregg, Sara R; Zhang, Zheng Gang

    2009-02-01

    Stroke increases neuroblasts in the subventricular zone (SVZ) of the lateral ventricle and these neuroblasts migrate toward the ischemic boundary to replace damaged neurons. Using brain slices from the nonischemic adult rat and transgenic mice that expressed enhanced green fluorescent protein (EGFP) concomitantly with doublecortin (DCX), a marker for migrating neuroblasts, we recorded electrophysiological characteristics while simultaneously analyzing the gene expression in single SVZ cells. We found that SVZ cells expressing the DCX gene from the nonischemic rat had a mean resting membrane potential (RMP) of -30 mV. DCX-EGFP-positive cells in the nonischemic SVZ of the transgenic mouse had a mean RMP of -25+/-7 mV and did not exhibit Na(+) currents, characteristic of immature neurons. However, DCX-EGFP-positive cells in the ischemic SVZ exhibited a hyperpolarized mean RMP of -54+/-18 mV and displayed Na(+) currents, indicative of more mature neurons. Single-cell multiplex RT-PCR analysis revealed that DCX-EGFP-positive cells in the nonischemic SVZ of the transgenic mouse expressed high neural progenitor marker genes, Sox2 and nestin, but not mature neuronal marker genes. In contrast, DCX-EGFP-positive cells in the ischemic SVZ expressed tyrosine hydroxylase, a mature neuronal marker gene. Together, these data indicate that stroke changes gene profiles and the electrophysiology of migrating neuroblasts.

  13. Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke

    PubMed Central

    Shuang Liu, Xian; Chopp, Michael; Zhang, Xue Guo; Zhang, Rui Lan; Buller, Ben; Hozeska-Solgot, Ann; Gregg, Sara R; Zhang, Zheng Gang

    2009-01-01

    Stroke increases neuroblasts in the subventricular zone (SVZ) of the lateral ventricle and these neuroblasts migrate toward the ischemic boundary to replace damaged neurons. Using brain slices from the nonischemic adult rat and transgenic mice that expressed enhanced green fluorescent protein (EGFP) concomitantly with doublecortin (DCX), a marker for migrating neuroblasts, we recorded electrophysiological characteristics while simultaneously analyzing the gene expression in single SVZ cells. We found that SVZ cells expressing the DCX gene from the nonischemic rat had a mean resting membrane potential (RMP) of −30mV. DCX–EGFP-positive cells in the nonischemic SVZ of the transgenic mouse had a mean RMP of −25±7mV and did not exhibit Na+ currents, characteristic of immature neurons. However, DCX–EGFP-positive cells in the ischemic SVZ exhibited a hyperpolarized mean RMP of −54±18 mV and displayed Na+ currents, indicative of more mature neurons. Single-cell multiplex RT-PCR analysis revealed that DCX–EGFP-positive cells in the nonischemic SVZ of the transgenic mouse expressed high neural progenitor marker genes, Sox2 and nestin, but not mature neuronal marker genes. In contrast, DCX–EGFP-positive cells in the ischemic SVZ expressed tyrosine hydroxylase, a mature neuronal marker gene. Together, these data indicate that stroke changes gene profiles and the electrophysiology of migrating neuroblasts. PMID:18854839

  14. Phosphodiesterase7 Inhibition Activates Adult Neurogenesis in Hippocampus and Subventricular Zone In Vitro and In Vivo.

    PubMed

    Morales-Garcia, Jose A; Echeverry-Alzate, Victor; Alonso-Gil, Sandra; Sanz-SanCristobal, Marina; Lopez-Moreno, Jose A; Gil, Carmen; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2017-02-01

    The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling intracellular levels of cyclic adenosine 3',5'-monophosphate in the immune and central nervous system. We have previously shown that inhibitors of this enzyme are potent neuroprotective and anti-inflammatory agents. In addition, we also demonstrated that PDE7 inhibition induces endogenous neuroregenerative processes toward a dopaminergic phenotype. Here, we show that PDE7 inhibition controls stem cell expansion in the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the subventricular zone (SVZ) in the adult rat brain. Neurospheres cultures obtained from SGZ and SVZ of adult rats treated with PDE7 inhibitors presented an increased proliferation and neuronal differentiation compared to control cultures. PDE7 inhibitors treatment of neurospheres cultures also resulted in an increase of the levels of phosphorylated cAMP response element binding protein, suggesting that their effects were indeed mediated through the activation of the cAMP/PKA signaling pathway. In addition, adult rats orally treated with S14, a specific inhibitor of PDE7, presented elevated numbers of proliferating progenitor cells, and migrating precursors in the SGZ and the SVZ. Moreover, long-term treatment with this PDE7 inhibitor shows a significant increase in newly generated neurons in the olfactory bulb and the hippocampus. Also a better performance in memory tests was observed in S14 treated rats, suggesting a functional relevance for the S14-induced increase in SGZ neurogenesis. Taken together, our results indicate for the first time that inhibition of PDE7 directly regulates proliferation, migration and differentiation of neural stem cells, improving spatial learning and memory tasks. Stem Cells 2017;35:458-472. © 2016 AlphaMed Press.

  15. Long-term hydrocephalus alters the cytoarchitecture of the adult subventricular zone.

    PubMed

    Campos-Ordoñez, Tania; Herranz-Pérez, Vicente; Chaichana, Kaisorn L; Rincon-Torroella, Jordina; Rigamonti, Daniele; García-Verdugo, Jose M; Quiñones-Hinojosa, Alfredo; Gonzalez-Perez, Oscar

    2014-11-01

    Hydrocephalus can develop secondarily to a disturbance in production, flow and/or absorption of cerebrospinal fluid. Experimental models of hydrocephalus, especially subacute and chronic hydrocephalus, are few and limited, and the effects of hydrocephalus on the subventricular zone are unclear. The aim of this study was to analyze the effects of long-term obstructive hydrocephalus on the subventricular zone, which is the neurogenic niche lining the lateral ventricles. We developed a new method to induce hydrocephalus by obstructing the aqueduct of Sylvius in the mouse brain, thus simulating aqueductal stenosis in humans. In 120-day-old rodents (n=18 per group), the degree of ventricular dilatation and cellular composition of the subventricular zone were studied by immunofluorescence and transmission electron microscopy. In adult patients (age>18years), the sizes of the subventricular zone, corpus callosum, and internal capsule were analyzed by magnetic resonance images obtained from patients with and without aqueductal stenosis (n=25 per group). Mice with 60-day hydrocephalus had a reduced number of Ki67+ and doublecortin+cells on immunofluorescence, as well as decreased number of neural progenitors and neuroblasts in the subventricular zone on electron microscopy analysis as compared to non-hydrocephalic mice. Remarkably, a number of extracellular matrix structures (fractones) contacting the ventricular lumen and blood vessels were also observed around the subventricular zone in mice with hydrocephalus. In humans, the widths of the subventricular zone, corpus callosum, and internal capsule in patients with aqueductal stenosis were significantly smaller than age and gender-matched patients without aqueductal stenosis. In summary, supratentorial hydrocephalus reduces the proliferation rate of neural progenitors and modifies the cytoarchitecture and extracellular matrix compounds of the subventricular zone. In humans, this similar process reduces the subventricular

  16. Long-term hydrocephalus alters the cytoarchitecture of the adult subventricular zone

    PubMed Central

    Campos-Ordoñez, Tania; Herranz-Pérez, Vicente; Chaichana, Kaisorn L.; Rincon-Torroella, Jordina; Rigamonti, Daniele; García-Verdugo, Jose M.; Quiñones-Hinojosa, Alfredo; Gonzalez-Perez, Oscar

    2014-01-01

    Hydrocephalus can develop secondarily to a disturbance in production, flow and/or absorption of cerebrospinal fluid. Experimental models of hydrocephalus, especially subacute and chronic hydrocephalus, are few and limited, and the effects of hydrocephalus on the subventricular zone are unclear. The aim of this study was to analyze the effects of long-term obstructive hydrocephalus on the subventricular zone, which is the neurogenic niche lining the lateral ventricles. We developed a new method to induce hydrocephalus by obstructing the aqueduct of Sylvius in the mouse brain, thus simulating aqueductal stenosis in humans. In 120-day-old rodents (n = 18 per group), the degree of ventricular dilatation and cellular composition of the subventricular zone were studied by immunofluorescence and transmission electron microscopy. In adult patients (age > 18 years), the sizes of the subventricular zone, corpus callosum, and internal capsule were analyzed by magnetic resonance images obtained from patients with and without aqueductal stenosis (n=25 per group). Mice with 60-day hydrocephalus had a reduced number of Ki67+ and doublecortin+ cells on immunofluorescence, as well as decreased number of neural progenitors and neuroblasts in the subventricular zone on electron microscopy analysis as compared to non-hydrocephalic mice. Remarkably, a number of extracellular matrix structures (fractones) contacting the ventricular lumen and blood vessels were also observed around the subventricular zone in mice with hydrocephalus. In humans, the widths of the subventricular zone, corpus callosum, and internal capsule in patients with aqueductal stenosis were significantly smaller than age and gender-matched patients without aqueductal stenosis. In summary, supratentorial hydrocephalus reduces the proliferation rate of neural progenitors and modifies the cytoarchitecture and extracellular matrix compounds of the subventricular zone. In humans, this similar process reduces the

  17. Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons

    PubMed Central

    Sandberg, Magnus; Flandin, Pierre; Silberberg, Shanni; Su-Feher, Linda; Price, James D.; Hu, Jia Sheng; Kim, Carol; Visel, Axel; Nord, Alex S.; Rubenstein, John L.R.

    2017-01-01

    SUMMARY The embryonic basal ganglia generates multiple projection neurons and interneuron subtypes from distinct progenitor domains. Combinatorial interactions of transcription factors and chromatin are thought to regulate gene expression. In the medial ganglionic eminence, the NKX2-1 transcription factor controls regional identity and, with LHX6, is necessary to specify pallidal projection neurons and forebrain interneurons. Here, we dissected the molecular functions of NKX2-1 by defining its chromosomal binding, regulation of gene expression, and epigenetic state. NKX2-1 binding at distal regulatory elements led to a repressed epigenetic state and transcriptional repression in the ventricular zone. Conversely, NKX2-1 is required to establish a permissive chromatin state and transcriptional activation in the sub-ventricular and mantle zones. Moreover, combinatorial binding of NKX2-1 and LHX6 promotes transcriptionally permissive chromatin and activates genes expressed in cortical migrating interneurons. Our integrated approach provides a foundation for elucidating transcriptional networks guiding the development of the MGE and its descendants. PMID:27657450

  18. NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain

    PubMed Central

    2011-01-01

    From an early postnatal period and throughout life there is a continuous production of olfactory bulb (OB) interneurons originating from neuronal precursors in the subventricular zone. To reach the OB circuits, immature neuroblasts migrate along the rostral migratory stream (RMS). In the present study, we employed cultured postnatal mouse forebrain slices and used lentiviral vectors to label neuronal precursors with GFP and to manipulate the expression levels of the Na-K-2Cl cotransporter NKCC1. We investigated the role of this Cl- transporter in different stages of postnatal neurogenesis, including neuroblast migration and integration in the OB networks once they have reached the granule cell layer (GCL). We report that NKCC1 activity is necessary for maintaining normal migratory speed. Both pharmacological and genetic manipulations revealed that NKCC1 maintains high [Cl-]i and regulates the resting membrane potential of migratory neuroblasts whilst its functional expression is strongly reduced at the time cells reach the GCL. As in other developing systems, NKCC1 shapes GABAA-dependent signaling in the RMS neuroblasts. Also, we show that NKCC1 controls the migration of neuroblasts in the RMS. The present study indeed indicates that the latter effect results from a novel action of NKCC1 on the resting membrane potential, which is independent of GABAA-dependent signaling. All in all, our findings show that early stages of the postnatal recruitment of OB interneurons rely on precise, orchestrated mechanisms that depend on multiple actions of NKCC1. PMID:21284844

  19. INTACT AND INJURED ENDOTHELIAL CELLS DIFFERENTIALLY MODULATE POSTNATAL MURINE FOREBRAIN NEURAL STEM CELLS

    PubMed Central

    Plane, Jennifer M.; Andjelkovic, Anuska V.; Keep, Richard F.; Parent, Jack M.

    2010-01-01

    Neural stem cells (NSCs) persist in the forebrain subventricular zone (SVZ) within a niche containing endothelial cells. Evidence suggests that endothelial cells stimulate NSC expansion and neurogenesis. Experimental stroke increases neurogenesis and angiogenesis, but how endothelial cells influence stroke-induced neurogenesis is unknown. We hypothesized intact or oxygen-glucose deprived (OGD) endothelial cells secrete factors that enhance neurogenesis. We co-cultured mouse SVZ neurospheres (NS) with endothelial cells, or differentiated NS in endothelial cell-conditioned medium (ECCM). NS also were expanded in ECCM from OGD-exposed (OGD-ECCM) endothelial cells to assess injury effects. ECCM significantly increased NS production. NS co-cultured with endothelial cells or ECCM generated more immature-appearing neurons and oligodendrocytes, and astrocytes with radial glial-like/reactive morphology than controls. OGD-ECCM stimulated neuroblast migration and yielded neurons with longer processes and more branching. These data indicate that intact and injured endothelial cells exert differing effects on NSCs, and suggest targets for stimulating regeneration after brain insults. PMID:19837162

  20. Transcriptional Networks Controlled by NKX2-1 in the Development of Forebrain GABAergic Neurons.

    PubMed

    Sandberg, Magnus; Flandin, Pierre; Silberberg, Shanni; Su-Feher, Linda; Price, James D; Hu, Jia Sheng; Kim, Carol; Visel, Axel; Nord, Alex S; Rubenstein, John L R

    2016-09-21

    The embryonic basal ganglia generates multiple projection neurons and interneuron subtypes from distinct progenitor domains. Combinatorial interactions of transcription factors and chromatin are thought to regulate gene expression. In the medial ganglionic eminence, the NKX2-1 transcription factor controls regional identity and, with LHX6, is necessary to specify pallidal projection neurons and forebrain interneurons. Here, we dissected the molecular functions of NKX2-1 by defining its chromosomal binding, regulation of gene expression, and epigenetic state. NKX2-1 binding at distal regulatory elements led to a repressed epigenetic state and transcriptional repression in the ventricular zone. Conversely, NKX2-1 is required to establish a permissive chromatin state and transcriptional activation in the sub-ventricular and mantle zones. Moreover, combinatorial binding of NKX2-1 and LHX6 promotes transcriptionally permissive chromatin and activates genes expressed in cortical migrating interneurons. Our integrated approach provides a foundation for elucidating transcriptional networks guiding the development of the MGE and its descendants.

  1. Differential vascular permeability along the forebrain ventricular neurogenic niche in the adult murine brain.

    PubMed

    Colín-Castelán, Dannia; Ramírez-Santos, Jesús; Gutiérrez-Ospina, Gabriel

    2016-02-01

    Adult neurogenesis is influenced by blood-borne factors. In this context, greater or lesser vascular permeability along neurogenic niches would expose differentially neural stem cells (NSCs), transit amplifying cells (TACs), and neuroblasts to such factors. Here we evaluate endothelial cell morphology and vascular permeability along the forebrain neurogenic niche in the adult brain. Our results confirm that the subventricular zone (SVZ) contains highly permeable, discontinuous blood vessels, some of which allow the extravasation of molecules larger than those previously reported. In contrast, the rostral migratory stream (RMS) and the olfactory bulb core (OBc) display mostly impermeable, continuous blood vessels. These results imply that NSCs, TACs, and neuroblasts located within the SVZ are exposed more readily to blood-borne molecules, including those with very high molecular weights, than those positioned along the RMS and the OBc, subregions in which every stage of neurogenesis also takes place. These observations suggest that the existence of specialized vascular niches is not a precondition for neurogenesis to occur; specialized vascular beds might be essential for keeping high rates of proliferation and/or differential differentiation of neural precursors located at distinct domains. © 2015 Wiley Periodicals, Inc.

  2. The outer subventricular zone and primate-specific cortical complexification.

    PubMed

    Dehay, Colette; Kennedy, Henry; Kosik, Kenneth S

    2015-02-18

    Evolutionary expansion and complexification of the primate cerebral cortex are largely linked to the emergence of the outer subventricular zone (OSVZ), a uniquely structured germinal zone that generates the expanded primate supragranular layers. The primate OSVZ departs from rodent germinal zones in that it includes a higher diversity of precursor types, inter-related in bidirectional non-hierarchical lineages. In addition, primate-specific regulatory mechanisms are operating in primate cortical precursors via the occurrence of novel miRNAs. Here, we propose that the origin and evolutionary importance of the OSVZ is related to genetic changes in multiple regulatory loops and that cell-cycle regulation is a favored target for evolutionary adaptation of the cortex.

  3. Modulation of subventricular zone oligodendrogenesis: a role for hemopressin?

    PubMed

    Xapelli, Sara; Agasse, Fabienne; Grade, Sofia; Bernardino, Liliana; Ribeiro, Filipa F; Schitine, Clarissa S; Heimann, Andrea S; Ferro, Emer S; Sebastião, Ana M; De Melo Reis, Ricardo A; Malva, João O

    2014-01-01

    Neural stem cells (NSCs) from the subventricular zone (SVZ) have been indicated as a source of new oligodendrocytes to use in regenerative medicine for myelin pathologies. Indeed, NSCs are multipotent cells that can self-renew and differentiate into all neural cell types of the central nervous system. In normal conditions, SVZ cells are poorly oligodendrogenic, nevertheless their oligodendrogenic potential is boosted following demyelination. Importantly, progressive restriction into the oligodendrocyte fate is specified by extrinsic and intrinsic factors, endocannabinoids being one of these factors. Although a role for endocannabinoids in oligodendrogenesis has already been foreseen, selective agonists and antagonists of cannabinoids receptors produce severe adverse side effects. Herein, we show that hemopressin (Hp), a modulator of CB1 receptors, increased oligodendroglial differentiation in SVZ neural stem/progenitor cell cultures derived from neonatal mice. The original results presented in this work suggest that Hp and derivates may be of potential interest for the development of future strategies to treat demyelinating diseases.

  4. Forebrain neurogenesis: From embryo to adult

    PubMed Central

    Dennis, Daniel; Picketts, David; Slack, Ruth S.; Schuurmans, Carol

    2017-01-01

    A satellite symposium to the Canadian Developmental Biology Conference 2016 was held on March 16–17, 2016 in Banff, Alberta, Canada, entitled Forebrain Neurogenesis: From embryo to adult. The Forebrain Neurogenesis symposium was a focused, high-intensity meeting, bringing together the top Canadian and international researchers in the field. This symposium reported the latest breaking news, along with ‘state of the art’ techniques to answer fundamental questions in developmental neurobiology. Topics covered ranged from stem cell regulation to neurocircuitry development, culminating with a session focused on neuropsychiatric disorders. Understanding the underlying causes of neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) is of great interest as diagnoses of these conditions are climbing at alarming rates. For instance, in 2012, the Centers for Disease Control reported that the prevalence rate of ASD in the U.S. was 1 in 88; while more recent data indicate that the number is as high as 1 in 68 (Centers for Disease Control and Prevention MMWR Surveillance Summaries. Vol. 63. No. 2). Similarly, the incidence of ASD is on the rise in Canada, increasing from 1 in 150 in 2000 to 1 in 63 in 2012 in southeastern Ontario (Centers for Disease Control and Prevention). Currently very little is known regarding the deficits underlying these neurodevelopmental conditions. Moreover, the development of effective therapies is further limited by major gaps in our understanding of the fundamental processes that regulate forebrain development and adult neurogenesis. The Forebrain Neurogenesis satellite symposium was thus timely, and it played a key role in advancing research in this important field, while also fostering collaborations between international leaders, and inspiring young researchers.

  5. Chlordiazepoxide-induced released responding in extinction and punishment-conflict procedures is not altered by neonatal forebrain norepinephrine depletion.

    PubMed

    Bialik, R J; Pappas, B A; Pusztay, W

    1982-02-01

    The effects of chlordiazepoxide (CDZ) in extinction and punishment-conflict tasks were examined in rats after neonatal systemic administration of 6-hydroxydopamine (6-OHDA) to deplete forebrain norepinephrine (NE). At about 70 days of age the rats were water deprived and trained for three days to drink in a novel apparatus. On the fourth day (test day) drinking was either extinguished by elimination of water from the drinking tube or punished by lick-contingent shock. Just prior to this test session half of the vehicle and half of the 6-OHDA treated rats were given an injection of CDZ (8 mg/kg IP). Both the injection of CDZ and forebrain NE depletion prolonged responding during extinction and reduced the suppressant effects of punishment in male rats, and these effects were of similar magnitude. Furthermore, CDZ was as effective in neonatal 6-OHDA treated male rats as in vehicle treated rats indicating that decreased transmission is ascending NE fibers caused by CDZ is not solely responsible for its behavioral effects in extinction and conflict tasks. Rather, these effects may involve cooperative mediation by both noradrenergic and serotonergic forebrain terminals. Unexpectedly, CDZ's anti-extinction effect was absent in female rats and its anti-conflict effect observed only in NE depleted females.

  6. Glioblastoma multiforme: relationship to subventricular zone and recurrence.

    PubMed

    Kimura, Margareth; Lee, Yeuh; Miller, Ryan; Castillo, Mauricio

    2013-10-01

    Neurogenesis in the adult mammalian brain is active in two areas: the subgranular zone in the dentate gyrus of the hippocampus and the subventricular zone. Cancer stem cells have been isolated from malignant brain tumors and it is widely believed they arise from transformed endogenous stem cells. We sought to determine if the initial location of glioblastoma (GB) as seen on conventional MRI and its relationship to the subventricular zone (SVZ) predicts the pattern of recurrence. We analyzed the initial (prior to any treatment) and last follow-up MR studies in 49 patients with GB. On post contrast images all non-treated GB were divided into three groups according to the relationship of their enhancing margins to the SVZ: Group I (directly in contact with the SVZ), Group II (in the subcortical [SC] region) and Group III (in both the SVZ and SC regions). Recurrences or continuous growth seen as enhancing areas on follow-up studies were characterized as local, spread, or distant according to their contact with the surgical bed and correlated with the locations of the initial tumors. Local and spread patterns of recurrence occurred with nearly equal frequency (45 and 43% each, respectively) and distant in 12%. In Group I, 80% showed a spread pattern, 20% a local pattern, and none a distant pattern. In Group II, 45% showed a spread pattern, 35% a local pattern, and a 20% distant one. In Group III, 58% showed a local pattern, 33% a spread pattern, and 8% distant one. Unlike other reports, the location of GB in relation to the SVZ in our patients did not predict the pattern of tumor recurrence and/or extension in our patients.

  7. Evidence that leptin-induced weight loss requires activation of both forebrain and hindbrain receptors

    PubMed Central

    Harris, Ruth B.S.

    2013-01-01

    Previous studies with chronic decerebrate rats and rats infused with leptin into the 4th ventricle suggest that hindbrain leptin receptors attenuate the catabolic effect of forebrain leptin receptor activation. To test this further rats were fitted with both 3rd and 4th ventricle cannulae. They were infused for 12 days with different combinations of saline, low dose leptin or leptin receptor antagonist (leptin mutein protein). Infusion of 0.1 μg leptin/day into the 3rd ventricle or 0.6 μg leptin/day into the 4th ventricle had no significant effect on food intake, energy expenditure or body composition. Infusion of 2 μg mutein/day into either ventricle caused a small, but significant weight gain. When mutein was infused into one ventricle and leptin into the other, then rats lost weight irrespective of which combination was applied. Surprisingly, rats that received leptin infusions into both ventricles showed an initial hypophagia, no change in energy expenditure, but a 75% loss of carcass fat after 12 days. These data suggest that neuronal pathways activated by leptin receptors in either the forebrain or hindbrain modulate each other’s effects. In normal conditions hindbrain leptin may attenuate the catabolic effect of forebrain leptin, but if activity in one area is blocked with mutein, then the catabolic response to leptin in the other ventricle is exaggerated. When receptors in both areas are activated there is an integration of response to produce negative energy balance. This may ensure that leptin causes a loss of fat only when leptin is elevated in both the CSF and periphery. PMID:23911693

  8. Basal Forebrain Thermoregulatory Mechanism Modulates Auto-Regulated Sleep

    PubMed Central

    Mallick, Hruda Nanda; Kumar, Velayudhan Mohan

    2012-01-01

    Regulation of body temperature and sleep are two physiological mechanisms that are vital for our survival. Interestingly neural structures implicated in both these functions are common. These areas include the medial preoptic area (POA), the lateral POA, the ventrolateral POA, the median preoptic nucleus, and the medial septum, which form part of the basal forebrain (BF). When given a choice, rats prefer to stay at an ambient temperature of 27°C, though the maximum sleep was observed when they were placed at 30°C. Ambient temperature around 27°C should be considered as the thermoneutral temperature for rats in all sleep studies. At this temperature the diurnal oscillations of sleep and body temperature are properly expressed. The warm sensitive neurons of the POA mediate the increase in sleep at 30°C. Promotion of sleep during the rise in ambient temperature from 27 to 30°C, serve a thermoregulatory function. Autonomous thermoregulatory changes in core body temperature and skin temperature could act as an input signal to modulate neuronal activity in sleep-promoting brain areas. The studies presented here show that the neurons of the BF play a key role in regulating sleep. BF thermoregulatory system is a part of the global homeostatic sleep regulatory mechanism, which is auto-regulated. PMID:22754548

  9. In vivo and ex vivo magnetic resonance spectroscopy of the infarct and the subventricular zone in experimental stroke

    PubMed Central

    Jiménez-Xarrié, Elena; Davila, Myriam; Gil-Perotín, Sara; Jurado-Rodríguez, Andrés; Candiota, Ana Paula; Delgado-Mederos, Raquel; Lope-Piedrafita, Silvia; García-Verdugo, José Manuel; Arús, Carles; Martí-Fàbregas, Joan

    2015-01-01

    Ex vivo high-resolution magic-angle spinning (HRMAS) provides metabolic information with higher sensitivity and spectral resolution than in vivo magnetic resonance spectroscopy (MRS). Therefore, we used both techniques to better characterize the metabolic pattern of the infarct and the neural progenitor cells (NPCs) in the ipsilateral subventricular zone (SVZi). Ischemic stroke rats were divided into three groups: G0 (non-stroke controls, n=6), G1 (day 1 after stroke, n=6), and G7 (days 6 to 8 after stroke, n=12). All the rats underwent MRS. Three rats per group were analyzed by HRMAS. The remaining rats were used for immunohistochemical studies. In the infarct, both techniques detected significant metabolic changes. The most relevant change was in mobile lipids (2.80 ppm) in the G7 group (a 5.53- and a 3.95-fold increase by MRS and HRMAS, respectively). In the SVZi, MRS did not detect any significant metabolic change. However, HRMAS detected a 2.70-fold increase in lactate and a 0.68-fold decrease in N-acetylaspartate in the G1 group. None of the metabolites correlated with the 1.37-fold increase in NPCs detected by immunohistochemistry in the G7 group. In conclusion, HRMAS improves the metabolic characterization of the brain in experimental ischemic stroke. However, none of the metabolites qualifies as a surrogate biomarker of NPCs. PMID:25605287

  10. Implications of irradiating the subventricular zone stem cell niche.

    PubMed

    Capilla-Gonzalez, Vivian; Bonsu, Janice M; Redmond, Kristin J; Garcia-Verdugo, Jose Manuel; Quiñones-Hinojosa, Alfredo

    2016-03-01

    Radiation therapy is a standard treatment for brain tumor patients. However, it comes with side effects, such as neurological deficits. While likely multi-factorial, the effect may in part be associated with the impact of radiation on the neurogenic niches. In the adult mammalian brain, the neurogenic niches are localized in the subventricular zone (SVZ) of the lateral ventricles and the dentate gyrus of the hippocampus, where the neural stem cells (NSCs) reside. Several reports showed that radiation produces a drastic decrease in the proliferative capacity of these regions, which is related to functional decline. In particular, radiation to the SVZ led to a reduced long-term olfactory memory and a reduced capacity to respond to brain damage in animal models, as well as compromised tumor outcomes in patients. By contrast, other studies in humans suggested that increased radiation dose to the SVZ may be associated with longer progression-free survival in patients with high-grade glioma. In this review, we summarize the cellular and functional effects of irradiating the SVZ niche. In particular, we review the pros and cons of using radiation during brain tumor treatment, discussing the complex relationship between radiation dose to the SVZ and both tumor control and toxicity. Copyright © 2016. Published by Elsevier B.V.

  11. Histamine stimulates neurogenesis in the rodent subventricular zone.

    PubMed

    Bernardino, Liliana; Eiriz, Maria Francisca; Santos, Tiago; Xapelli, Sara; Grade, Sofia; Rosa, Alexandra Isabel; Cortes, Luísa; Ferreira, Raquel; Bragança, José; Agasse, Fabienne; Ferreira, Lino; Malva, João O

    2012-04-01

    Neural stem/progenitor cells present in the subventricular zone (SVZ) are a potential source of repairing cells after injury. Therefore, the identification of novel players that modulate neural stem cells differentiation can have a huge impact in stem cell-based therapies. Herein, we describe a unique role of histamine in inducing functional neuronal differentiation from cultured mouse SVZ stem/progenitor cells. This proneurogenic effect depends on histamine 1 receptor activation and involves epigenetic modifications and increased expression of Mash1, Dlx2, and Ngn1 genes. Biocompatible poly (lactic-co-glycolic acid) microparticles, engineered to release histamine in a controlled and prolonged manner, also triggered robust neuronal differentiation in vitro. Preconditioning with histamine-loaded microparticles facilitated neuronal differentiation of SVZ-GFP cells grafted in hippocampal slices and in in vivo rodent brain. We propose that neuronal commitment triggered by histamine per se or released from biomaterial-derived vehicles may represent a new tool for brain repair strategies.

  12. Neuropeptide Y promotes neurogenesis in murine subventricular zone.

    PubMed

    Agasse, Fabienne; Bernardino, Liliana; Kristiansen, Heidi; Christiansen, Søren H; Ferreira, Raquel; Silva, Bruno; Grade, Sofia; Woldbye, David P D; Malva, João O

    2008-06-01

    Stem cells of the subventricular zone (SVZ) represent a reliable source of neurons for cell replacement. Neuropeptide Y (NPY) promotes neurogenesis in the hippocampal subgranular layer and the olfactory epithelium and may be useful for the stimulation of SVZ dynamic in brain repair purposes. We describe that NPY promotes SVZ neurogenesis. NPY (1 microM) treatments increased proliferation at 48 hours and neuronal differentiation at 7 days in SVZ cell cultures. NPY proneurogenic properties are mediated via the Y1 receptor. Accordingly, Y1 receptor is a major active NPY receptor in the mouse SVZ, as shown by functional autoradiography. Moreover, short exposure to NPY increased immunoreactivity for the phosphorylated form of extracellular signal-regulated kinase 1/2 in the nucleus, compatible with a trigger for proliferation, whereas 6 hours of treatment amplified the phosphorylated form of c-Jun-NH(2)-terminal kinase signal in growing axons, consistent with axonogenesis. NPY, as a promoter of SVZ neurogenesis, is a crucial factor for future development of cell-based brain therapy. Disclosure of potential conflicts of interest is found at the end of this article.

  13. Extracellular signal-regulated kinase phosphorylation in forebrain neurones contributes to osmoregulatory mechanisms.

    PubMed

    Dine, Julien; Ducourneau, Vincent R R; Fénelon, Valérie S; Fossat, Pascal; Amadio, Aurélie; Eder, Matthias; Israel, Jean-Marc; Oliet, Stéphane H R; Voisin, Daniel L

    2014-04-01

    Vasopressin secretion from the magnocellular neurosecretory cells (MNCs) is crucial for body fluid homeostasis. Osmotic regulation of MNC activity involves the concerted modulation of intrinsic mechanosensitive ion channels, taurine release from local astrocytes as well as excitatory inputs derived from osmosensitive forebrain regions. Extracellular signal-regulated protein kinases (ERK) are mitogen-activated protein kinases that transduce extracellular stimuli into intracellular post-translational and transcriptional responses, leading to changes in intrinsic neuronal properties and synaptic function. Here, we investigated whether ERK activation (i.e. phosphorylation) plays a role in the functioning of forebrain osmoregulatory networks. We found that within 10 min after intraperitoneal injections of hypertonic saline (3 m, 6 m) in rats, many phosphoERK-immunopositive neurones were observed in osmosensitive forebrain regions, including the MNC containing supraoptic nuclei. The intensity of ERK labelling was dose-dependent. Reciprocally, slow intragastric infusions of water that lower osmolality reduced basal ERK phosphorylation. In the supraoptic nucleus, ERK phosphorylation predominated in vasopressin neurones vs. oxytocin neurones and was absent from astrocytes. Western blot experiments confirmed that phosphoERK expression in the supraoptic nucleus was dose dependent. Intracerebroventricular administration of the ERK phosphorylation inhibitor U 0126 before a hyperosmotic challenge reduced the number of both phosphoERK-immunopositive neurones and Fos expressing neurones in osmosensitive forebrain regions. Blockade of ERK phosphorylation also reduced hypertonically induced depolarization and an increase in firing of the supraoptic MNCs recorded in vitro. It finally reduced hypertonically induced vasopressin release in the bloodstream. Altogether, these findings identify ERK phosphorylation as a new element contributing to the osmoregulatory mechanisms of

  14. Extracellular signal-regulated kinase phosphorylation in forebrain neurones contributes to osmoregulatory mechanisms

    PubMed Central

    Dine, Julien; Ducourneau, Vincent R R; Fénelon, Valérie S; Fossat, Pascal; Amadio, Aurélie; Eder, Matthias; Israel, Jean-Marc; Oliet, Stéphane H R; Voisin, Daniel L

    2014-01-01

    Vasopressin secretion from the magnocellular neurosecretory cells (MNCs) is crucial for body fluid homeostasis. Osmotic regulation of MNC activity involves the concerted modulation of intrinsic mechanosensitive ion channels, taurine release from local astrocytes as well as excitatory inputs derived from osmosensitive forebrain regions. Extracellular signal-regulated protein kinases (ERK) are mitogen-activated protein kinases that transduce extracellular stimuli into intracellular post-translational and transcriptional responses, leading to changes in intrinsic neuronal properties and synaptic function. Here, we investigated whether ERK activation (i.e. phosphorylation) plays a role in the functioning of forebrain osmoregulatory networks. We found that within 10 min after intraperitoneal injections of hypertonic saline (3 m, 6 m) in rats, many phosphoERK-immunopositive neurones were observed in osmosensitive forebrain regions, including the MNC containing supraoptic nuclei. The intensity of ERK labelling was dose-dependent. Reciprocally, slow intragastric infusions of water that lower osmolality reduced basal ERK phosphorylation. In the supraoptic nucleus, ERK phosphorylation predominated in vasopressin neurones vs. oxytocin neurones and was absent from astrocytes. Western blot experiments confirmed that phosphoERK expression in the supraoptic nucleus was dose dependent. Intracerebroventricular administration of the ERK phosphorylation inhibitor U 0126 before a hyperosmotic challenge reduced the number of both phosphoERK-immunopositive neurones and Fos expressing neurones in osmosensitive forebrain regions. Blockade of ERK phosphorylation also reduced hypertonically induced depolarization and an increase in firing of the supraoptic MNCs recorded in vitro. It finally reduced hypertonically induced vasopressin release in the bloodstream. Altogether, these findings identify ERK phosphorylation as a new element contributing to the osmoregulatory mechanisms of

  15. PDGF-responsive progenitors persist in the subventricular zone across the lifespan

    PubMed Central

    Moore, Lisamarie; Bain, Jennifer M.; Loh, Ji Meng; Levison, Steven W.

    2013-01-01

    The SVZ (subventricular zone) contains neural stem cells and progenitors of various potentialities. Although initially parsed into A, B, and C cells, this germinal zone is comprised of a significantly more diverse population of cells. Here, we characterized a subset of postnatal PRPs (PDGF-AA-responsive precursors) that express functional PDGFα and β receptors from birth to adulthood. When grown in PDGF-AA, dissociated neonatal rat SVZ cells divided to produce non-adherent clusters of progeny. Unlike the self-renewing EGF/FGF-2-responsive precursors that produce neurospheres, these PRPs failed to self-renew after three passages; therefore, we refer to the colonies they produce as spheroids. Upon differentiation these spheroids could produce neurons, type 1 astrocytes and oligodendrocytes. When maintained in medium supplemented with BMP-4 they also produced type 2 astrocytes. Using lineage tracing methods, it became evident that there were multiple types of PRPs, including a subset that could produce neurons, oligodendrocytes, and type 1 and type 2 astrocytes; thus some of these PRPs represent a unique population of precursors that are quatropotential. Spheroids also could be generated from the newborn neocortex and they had the same potentiality as those from the SVZ. By contrast, the adult neocortex produced less than 20% of the numbers of spheroids than the adult SVZ and spheroids from the adult neocortex only differentiated into glial cells. Interestingly, SVZ spheroid producing capacity diminished only slightly from birth to adulthood. Altogether these data demonstrate that there are PRPs that persist in the SVZ that includes a unique population of quatropotential PRPs. PMID:24367913

  16. Electrophysiological Properties of Subventricular Zone Cells in Adult Mouse Brain

    PubMed Central

    Lai, Bin; Mao, Xiao Ou; Xie, Lin; Chang, Su-Youne; Xiong, Zhi-Gang; Jin, Kunlin; Greenberg, David A.

    2010-01-01

    The subventricular zone (SVZ) is a principal site of adult neurogenesis and appears to participate in the brain’s response to injury. Thus, measures that enhance SVZ neurogenesis may have a role in treatment of neurological disease. To better characterize SVZ cells and identify potential targets for therapeutic intervention, we studied electrophysiological properties of SVZ cells in adult mouse brain slices using patch-clamp techniques. Electrophysiology was correlated with immunohistochemical phenotype by injecting cells with lucifer yellow and by studying transgenic mice carrying green fluorescent protein under control of the doublecortin (DCX) or glial fibrillary acidic protein (GFAP) promoter. We identified five types of cells in the adult mouse SVZ: type 1 cells, with 4-aminopyridine (4-AP)/tetraethylammonium (TEA)-sensitive and CdCl2-sensitive inward currents; type 2 cells, with Ca2+-sensitive K+ and both 4-AP/TEA-sensitive and -insensitive currents; type 3 cells, with 4-AP/TEA-sensitive and -insensitive and small Na+ currents; type 4 cells, with slowly activating, large linear outward current and sustained outward current without fast-inactivating component; and type 5 cells, with a large outward rectifying current with a fast inactivating component. Type 2 and 3 cells expressed DCX, types 4 and 5 cells expressed GFAP, and type 1 cells expressed neither. We propose that SVZ neurogenesis involves a progression of electrophysiological cell phenotypes from types 4 and 5 cells (astrocytes) to type 1 cells (neuronal progenitors) to types 2 and 3 cells (nascent neurons), and that drugs acting on. ion channels expressed during neurogenesis might promote therapeutic neurogenesis in the injured brain. PMID:20434436

  17. Schisandrin A and B affect subventricular zone neurogenesis in mouse.

    PubMed

    Sun, Yi-Xue; Cong, Yan-Long; Liu, Yang; Jin, Bo; Si, Lu; Wang, Ai-Bing; Cai, Huan; Che, Guan-Yu; Tang, Bo; Wang, Chun-Feng; Li, Zi-Yi; Zhang, Xue-Ming

    2014-10-05

    Schisandrin A and B (Sch A and B) are the main effective components extracted from the oriental medicine Schisandra chinensis which is traditionally used to enhance mental and intellectual function. Although their neuroprotective effects have been demonstrated, their influences on neurogenesis are still unknown. In the brain, new neural cells born in the subventricular zone (SVZ) next to the lateral ventricles migrate along the rostral migratory stream (RMS) to the olfactory bulb (OB). To investigate the effects of Sch A and B on neurogenesis in the SVZ-RMS-OB system, Sch A and B were intragastrically administrated at dosages of 1, 10 and 20 mg/kg d respectively. The dose of 10 mg/kg d was selected for further analysis based on the preliminary analysis. In the SVZ, significant increases of phosphohistone H3 positive proliferating cells and the intensity of glial fibrillary acidic protein (GFAP+) cells were noticed in Sch B group. In the RMS, Sch A treatment augmented the intensity of doublecortin positive neuroblasts. In the OB, Sch A decreased tyrosine hydroxylase cells and Calbindin (CalB+) cells, while Sch B increased CalB+ cells and Calretinin (CalR+) cells. These results suggest that Sch B stimulates SVZ proliferation by enhancing GFAP+ cells and improves the survival of OB interneurons, while Sch A promotes neuroblast formation in the RMS but impairs the survival of OB interneurons. The present study provides the first evidence that Sch B exerts neuroprotective functions by enhancing neurogenesis, but Sch A mainly negatively regulates neurogenesis, in the adult SVZ-RMS-OB system.

  18. Habituation and extinction of fear recruit overlapping forebrain structures.

    PubMed

    Furlong, Teri M; Richardson, Rick; McNally, Gavan P

    2016-02-01

    Establishing the neurocircuitry involved in inhibiting fear is important for understanding and treating anxiety disorders. To date, extinction procedures have been predominately used to examine the inhibition of learned fear, where fear is reduced to a conditioned stimulus (CS) by presenting it in the absence of the unconditioned stimulus (US). However, learned fear can also be reduced by habituation procedures where the US is presented in the absence of the CS. Here we used expression of the activity marker c-Fos in rats to compare the recruitment of several forebrain structures following fear habituation and extinction. Following fear conditioning where a tone CS was paired with a loud noise US, fear was then reduced the following day by either presentation of the CS or US alone (i.e. CS extinction or US habituation, respectively). This extinction and habituation training recruited several common structures, including infralimbic cortex, basolateral amygdala, midline thalamus and medial hypothalamus (orexin neurons). Moreover, this overlap was shared when examining the neural correlates of the expression of habituation and extinction, with common recruitment of infralimbic cortex and midline thalamus. However, there were also important differences. Specifically, acquisition of habituation was associated with greater recruitment of prelimbic cortex whereas expression of habituation was associated with greater recruitment of paraventricular thalamus. There was also less recruitment of central amygdala for habituation compared to extinction in the retention phase. These findings indicate that largely overlapping neurocircuitries underlie habituation and fear extinction and imply common mechanisms for reducing fear across different inhibitory treatments.

  19. The bilaterian forebrain: an evolutionary chimaera.

    PubMed

    Tosches, Maria Antonietta; Arendt, Detlev

    2013-12-01

    The insect, annelid and vertebrate forebrains harbour two major centres of output control, a sensory-neurosecretory centre releasing hormones and a primordial locomotor centre that controls the initiation of muscular body movements. In vertebrates, both reside in the hypothalamus. Here, we review recent comparative neurodevelopmental evidence indicating that these centres evolved from separate condensations of neurons on opposite body sides ('apical nervous system' versus 'blastoporal nervous system') and that their developmental specification involved distinct regulatory networks (apical six3 and rx versus mediolateral nk and pax gene-dependent patterning). In bilaterian ancestors, both systems approached each other and became closely intermingled, physically, functionally and developmentally. Our 'chimeric brain hypothesis' sheds new light on the vast success and rapid diversification of bilaterian animals in the Cambrian and revises our understanding of brain architecture.

  20. Genomic Perspectives of Transcriptional Regulation in Forebrain Development

    PubMed Central

    Nord, Alex S.; Pattabiraman, Kartik; Visel, Axel; Rubenstein, John L. R.

    2015-01-01

    The forebrain is the seat of higher order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. Recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Herein, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution of the human brain. PMID:25569346

  1. Genomic perspectives of transcriptional regulation in forebrain development.

    PubMed

    Nord, Alex S; Pattabiraman, Kartik; Visel, Axel; Rubenstein, John L R

    2015-01-07

    The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. Recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Herein, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution of the human brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Expression and role of Roundabout-1 in embryonic Xenopus forebrain.

    PubMed

    Connor, R M; Key, B

    2002-09-01

    The receptor Roundabout-1 (Robo1) and its ligand Slit are known to influence axon guidance and central nervous system (CNS) patterning in both vertebrate and nonvertebrate systems. Although Robo-Slit interactions mediate axon guidance in the Drosophila CNS, their role in establishing the early axon scaffold in the embryonic vertebrate brain remains unclear. We report here the identification and expression of a Xenopus Robo1 orthologue that is highly homologous to mammalian Robo1. By using overexpression studies and immunohistochemical and in situ hybridization techniques, we have investigated the role of Robo1 in the development of a subset of neurons and axon tracts in the Xenopus forebrain. Robo1 is expressed in forebrain nuclei and in neuroepithelial cells underlying the main axon tracts. Misexpression of Robo1 led to aberrant development of axon tracts as well as the ectopic differentiation of forebrain neurons. These results implicate Robo1 in both neuronal differentiation and axon guidance in embryonic vertebrate forebrain.

  3. Neurotrophic Factors Rescue Basal Forebrain Cholinergic Neurons and Improve Performance on a Spatial Learning Test

    PubMed Central

    Lee, Yu-Shang; Danandeh, Andalib; Baratta, Janie; Lin, Ching-Yi; Yu, Jen; Robertson, Richard T.

    2013-01-01

    This study investigated whether animals sustaining experimental damage to the basal forebrain cholinergic system would benefit from treatment with exogenous neurotrophic factors. Specifically, we set out to determine whether neurotrophic factors would rescue damaged cholinergic neurons and improve behavioral performance on a spatial learning and memory task. Adult rats received bilateral injections of either saline (controls) or 192 IgG-saporin to damage basal forebrain cholinergic neurons (BFCNs). Two weeks later, animals received implants of an Alzet mini-pump connected to cannulae implanted bilaterally in the lateral ventricles. Animals received infusions of nerve growth factor (NGF), neurotrophin 3 (NT3), a combination of NGF and NT3, or a saline control over a 4-week period. Compared to saline-treated controls, animals sustaining saporin-induced damage to BFCNs took significantly more trials to learn a delayed match to position task and also performed more poorly on subsequent tests, with increasing delays between test runs. In contrast, animals infused with neurotrophins after saporin treatment performed significantly better than animals receiving saline infusions; no differences were detected for performance scores among animals infused with NGF, NT3, or a combination of NGF and NT3. Studies of ChAT immunnocytochemical labeling of BFCNs revealed a reduction in the numbers of ChAT-positive neurons in septum, nucleus of diagonal band, and nucleus basalis in animals treated with saporin followed by saline infusions, whereas animals treated with infusions of NGF, NT3 or a combination of NGF and NT3 showed only modest reductions in ChAT-positive neurons. Together, these data support the notion that administration of neurotrophic factors can rescue basal forebrain cholinergic neurons and improve learning and memory performance in rats. PMID:24017996

  4. Neurotrophic factors rescue basal forebrain cholinergic neurons and improve performance on a spatial learning test.

    PubMed

    Lee, Yu-Shang; Danandeh, Andalib; Baratta, Janie; Lin, Ching-Yi; Yu, Jen; Robertson, Richard T

    2013-11-01

    This study investigated whether animals sustaining experimental damage to the basal forebrain cholinergic system would benefit from treatment with exogenous neurotrophic factors. Specifically, we set out to determine whether neurotrophic factors would rescue damaged cholinergic neurons and improve behavioral performance on a spatial learning and memory task. Adult rats received bilateral injections of either saline (controls) or 192 IgG-saporin to damage basal forebrain cholinergic neurons (BFCNs). Two weeks later, animals received implants of an Alzet mini-pump connected to cannulae implanted bilaterally in the lateral ventricles. Animals received infusions of nerve growth factor (NGF), neurotrophin 3 (NT3), a combination of NGF and NT3, or a saline control over a 4-week period. Compared to saline-treated controls, animals sustaining saporin-induced damage to BFCNs took significantly more trials to learn a delayed match to position task and also performed more poorly on subsequent tests, with increasing delays between test runs. In contrast, animals infused with neurotrophins after saporin treatment performed significantly better than animals receiving saline infusions; no differences were detected for performance scores among animals infused with NGF, NT3, or a combination of NGF and NT3. Studies of ChAT immunnocytochemical labeling of BFCNs revealed a reduction in the numbers of ChAT-positive neurons in septum, nucleus of diagonal band, and nucleus basalis in animals treated with saporin followed by saline infusions, whereas animals treated with infusions of NGF, NT3 or a combination of NGF and NT3 showed only modest reductions in ChAT-positive neurons. Together, these data support the notion that administration of neurotrophic factors can rescue basal forebrain cholinergic neurons and improve learning and memory performance in rats.

  5. Interference with protease-activated receptor 1 does not reduce damage to subventricular zone cells of immature rodent brain following exposure to blood or blood plasma.

    PubMed

    Mao, Xiaoyan; Del Bigio, Marc R

    2015-02-04

    Prior work showed that whole blood, plasma, and serum injections are damaging to the neonatal rodent brain in a model of intracerebral/periventricular hemorrhage. Thrombin alone is also damaging. In adult animal models of hemorrhagic stroke, the protease-activated (thrombin) receptor PAR1 mediates some of the brain damage. We hypothesized that PAR1 interference will reduce the adverse effects of blood products on immature rodent brain and cells. Cultured oligodendrocyte precursor cells from rats and mice were exposed to blood plasma with and without the PAR1 antagonists SCH-79797 or BMS-200261. In concentrations previously shown to have activity on brain cells, neither drug showed evidence of protection against the toxicity of blood plasma. Newborn mice (wild type, heterozygous, and PAR1 knockout) were subjected to intracerebral injection of autologous whole blood into the periventricular region of the frontal lobe. Cell proliferation, measured by Ki67 immunoreactivity in the subventricular zone, was suppressed at 1 and 2 days, and was not normalized in the knockout mice. Cell apoptosis, measured by activated caspase 3 immunoreactivity, was not apparent in the subventricular zone. Increased apoptosis in periventricular striatal cells was not normalized in the knockout mice. Interference with the thrombin-PAR1 system does not reduce the adverse effects of blood on germinal cells of the immature rodent brain. PAR1 interference is unlikely to be a useful treatment for reducing the brain damage that accompanies periventricular (germinal matrix) hemorrhage, a common complication of premature birth.

  6. Dopaminergic innervation of the human subventricular zone: a comparison between Huntington's chorea and Parkinson's disease.

    PubMed

    Parent, Martin; Bédard, C; Pourcher, E

    2013-01-01

    The subventricular zone retains its neurogenic capacity throughout life and, as such, is often considered a potential source for endogenous repair in neurodegenerative disorders. Because dopamine is believed to stimulate adult neurogenesis, we looked for possible variations in the dopaminergic innervation of the subventricular zone between cases of Huntington's chorea and Parkinson's diseases. Antibodies against tyrosine hydroxylase (TH) and proliferating cell nuclear antigen (PCNA) were used as specific markers of dopaminergic axons and cell proliferating activity, respectively. The immunohistochemical approach was applied to postmortem tissue from 2 Parkinson's disease cases, 4 Huntington's disease cases, along with age-matched controls. The immunostaining was revealed with either diaminobenzidine or fluorescent-conjugated secondary antibodies. Optical density measurements were made along the entire dorso-ventral extent of the caudate nucleus. An intense TH+ zone was detected along the ventricular border of the caudate nucleus in Huntington's disease cases, but not in patients with Parkinson's disease or age-matched controls. This thin (287±38 μm) paraventricular zone was composed of numerous small and densely packed dopamine axon varicosities and overlapped the deep layers of the subventricular zone. Its immunoreactivity was 47±8% more intense than that of adjacent striatal areas. The dopamine innervation of the subventricular zone is strikingly massive in Huntington's chorea compared to Parkinson's disease, a finding that concurs with the marked increase in neurogenesis noted in the subventricular zone of Huntington's disease patients. This finding suggests that dopamine plays a crucial role in mechanisms designed to compensate for the massive striatal neuronal losses that occur in Huntington's disease.

  7. Neuroprotection by Exendin-4 Is GLP-1 Receptor Specific but DA D3 Receptor Dependent, Causing Altered BrdU Incorporation in Subventricular Zone and Substantia Nigra

    PubMed Central

    Harkavyi, A.; Rampersaud, N.; Whitton, P. S.

    2013-01-01

    Glucagon-like peptide-1 receptor (GLP-1R) activation by exendin-4 (EX-4) is effective in preclinical models of Parkinson's disease (PD) and appears to promote neurogenesis even in severely lesioned rats. In the present study, we determined the effects of EX-4 on cellular BrdU incorporation in the rat subventricular zone (SVZ) and substantia nigra (SN). We also determined the specificity of this effect with the GLP-1R antagonist EX-(9-39) as well as the potential role of dopamine (DA) D3 receptors. Rats were administered 6-OHDA and 1 week later given EX-4 alone, with EX-(9-39) or nafadotride (D3 antagonist) and BrdU. Seven days later, rats were challenged with apomorphine to evaluate circling. Extracellular DA was measured using striatal microdialysis and subsequently tissue DA measured. Tyrosine hydroxylase and BrdU were verified using immunohistochemistry. Apomorphine circling was reversed by EX-4 in lesioned rats, an effect reduced by EX-4, while both EX-(9-39) and NAF attenuated this. 6-OHDA decreased extracellular and tissue DA, both reversed by EX-4 but again attenuated by EX-(9-39) or NAF. Analysis of BrdU+ cells in the SVZ revealed increases in 6-OHDA-treated rats which were reversed by EX-4 and antagonised by either EX-(9-39) or NAF, while in the SN the opposite profile was seen. PMID:26316987

  8. The neuropeptide Y (NPY) Y2 receptors are largely dimeric in the kidney, but monomeric in the forebrain.

    PubMed

    Parker, S L; Parker, M S; Estes, A M; Wong, Y Y; Sah, R; Sweatman, T; Park, E A; Balasubramaniam, A; Sallee, F R

    2008-01-01

    The neuropeptide Y(NPY) Y2 receptors are detected largely as dimers in the clonal expressions in CHO cells and in particulates from rabbit kidney cortex. However, in two areas of the forebrain (rat or rabbit piriform cortex and hypothalamus), these receptors are found mainly as monomers. Evidence is presented that this difference relates to large levels of G proteins containing the Gi alpha -subunit in the forebrain areas. The predominant monomeric status of these Y2 receptors should also be physiologically linked to large synaptic inputs of the agonist NPY. The rabbit kidney and the human CHO cell-expressed Y2 dimers are converted by agonists to monomers in vitro at a similar rate in the presence of divalent cations.

  9. Evolution of vertebrate forebrain development: how many different mechanisms?

    PubMed Central

    FOLEY, ANN C.; STERN, CLAUDIO D.

    2001-01-01

    Over the past 50 years and more, many models have been proposed to explain how the nervous system is initially induced and how it becomes subdivided into gross regions such as forebrain, midbrain, hindbrain and spinal cord. Among these models is the 2-signal model of Nieuwkoop & Nigtevecht (1954), who suggested that an initial signal (‘activation’) from the organiser both neuralises and specifies the forebrain, while later signals (‘transformation’) from the same region progressively caudalise portions of this initial territory. An opposing idea emerged from the work of Otto Mangold (1933) and other members of the Spemann laboratory: 2 or more distinct organisers, emitting different signals, were proposed to be responsible for inducing the head, trunk and tail regions. Since then, evidence has accumulated that supports one or the other model, but it has been very difficult to distinguish between them. Recently, a considerable body of work from mouse embryos has been interpreted as favouring the latter model, and as suggesting that a ‘head organiser’, required for the induction of the forebrain, is spatially separate from the classic organiser (Hensen's node). An extraembryonic tissue, the ‘anterior visceral endoderm’ (AVE), was proposed to be the source of forebrain-inducing signals. It is difficult to find tissues that are directly equivalent embryologically or functionally to the AVE in other vertebrates, which led some (e.g. Kessel, 1998) to propose that mammals have evolved a new way of patterning the head. We will present evidence from the chick embryo showing that the hypoblast is embryologically and functionally equivalent to the mouse AVE. Like the latter, the hypoblast also plays a role in head development. However, it does not act like a true organiser. It induces pre-neural and pre-forebrain markers, but only transiently. Further development of neural and forebrain phenotypes requires additional signals not provided by the hypoblast. In

  10. POSTSYNAPTIC TARGETS OF GABAERGIC BASAL FOREBRAIN PROJECTIONS TO THE BASOLATERAL AMYGDALA

    PubMed Central

    McDonald, A. J.; Muller, J. F.; Mascagni, F.

    2011-01-01

    Recent studies indicate that the basolateral amygdala, like the neocortex and hippocampus, receives GABAergic inputs from the basal forebrain in addition to the well-established cholinergic inputs. Since the neuronal targets of these inputs have yet to be determined, it is difficult to predict the functional significance of this innervation. The present study addressed this question in the rat by employing anterograde tract tracing combined with immunohistochemistry at the light and electron microscopic levels of analysis. Amygdalopetal axons from the basal forebrain mainly targeted the basolateral nucleus (BL) of the amygdala. The morphology of these axons was heterogeneous and included GABAergic axons that contained vesicular GABA transporter protein (VGAT). These axons, designated type 1, exhibited distinctive large axonal varicosities that were typically clustered along the length of the axon. Type 1 axons formed multiple contacts with the cell bodies and dendrites of parvalbumin-containing (PV+) interneurons, but relatively few contacts with calretinin-containing and somatostatin-containing interneurons. At the ultrastructural level of analysis, the large terminals of type 1 axons exhibited numerous mitochondria and were densely packed with synaptic vesicles. Individual terminals formed broad symmetrical synapses with BL PV+ interneurons, and often formed additional symmetrical synapses with BL pyramidal cells. Some solitary type 1 terminals formed symmetrical synapses solely with BL pyramidal cells. These results suggest that GABAergic neurons of the basal forebrain provide indirect disinhibition, as well as direct inhibition, of BL pyramidal neurons. The possible involvement of these circuits in rhythmic oscillations related to emotional learning, attention, and arousal is discussed. PMID:21435381

  11. Effects of lithium and aripiprazole on brain stimulation reward and neuroplasticity markers in the limbic forebrain.

    PubMed

    Mavrikaki, Maria; Schintu, Nicoletta; Kastellakis, Andreas; Nomikos, George G; Svenningsson, Per; Panagis, George

    2014-04-01

    Bipolar disorder (BD) is a severe pathological condition with impaired reward-related processing. The present study was designed to assess the effects of two commonly used BD medications, the mood stabilizer lithium chloride (LiCl) and the atypical antipsychotic and antimanic agent aripiprazole, in an animal model of reward and motivation and on markers of neuroplasticity in the limbic forebrain in rats. We utilized intracranial self-simulation (ICSS) to assess the effects of acute and chronic administration of LiCl and aripiprazole on brain stimulation reward, and phosphorylation studies to determine their effects on specific cellular neuroplasticity markers, i.e., the phosphorylation of CREB and crucial phosphorylation sites on the GluA1 subunit of AMPA receptors and the NA1 and NA2B subunits of NMDA receptors, in the limbic forebrain. Chronic LiCl induced tolerance to the anhedonic effect of the drug observed after acute administration, while chronic aripiprazole induced a sustained anhedonic effect. These distinct behavioral responses might be related to differences in molecular markers of neuroplasticity. Accordingly, we demonstrated that chronic LiCl, but not aripiprazole, decreased phosphorylation of CREB at the Ser133 site and NA1 at the Ser896 site in the prefrontal cortex and GluA1 at the Ser831 site and NA2B at the Ser1303 site in the ventral striatum. The present study provides evidence for BD medication-evoked changes in reward and motivation processes and in specific markers of neuronal plasticity in the limbic forebrain, promoting the notion that these drugs may blunt dysregulated reward processes in BD by counteracting neuronal plasticity deficits.

  12. Epidermal Growth Factor Treatment of the Adult Brain Subventricular Zone Leads to Focal Microglia/Macrophage Accumulation and Angiogenesis

    PubMed Central

    Lindberg, Olle R.; Brederlau, Anke; Kuhn, H. Georg

    2014-01-01

    Summary One of the major components of the subventricular zone (SVZ) neurogenic niche is the specialized vasculature. The SVZ vasculature is thought to be important in regulating progenitor cell proliferation and migration. Epidermal growth factor (EGF) is a mitogen with a wide range of effects. When stem and progenitor cells in the rat SVZ are treated with EGF, using intracerebroventricular infusion, dysplastic polyps are formed. Upon extended infusion, blood vessels are recruited into the polyps. In the current study we demonstrate how polyps develop through distinct stages leading up to angiogenesis. As polyps progress, microglia/macrophages accumulate in the polyp core concurrent with increasing cell death. Both microglia/macrophage accumulation and cell death peak during angiogenesis and subsequently decline following polyp vascularization. This model of inducible angiogenesis in the SVZ neurogenic niche suggests involvement of microglia/macrophages in acquired angiogenesis and can be used in detail to study angiogenesis in the adult brain. PMID:24749069

  13. The subventricular zone is the developmental milestone of a 6-layered neocortex: comparisons in metatherian and eutherian mammals.

    PubMed

    Cheung, Amanda F P; Kondo, Shinichi; Abdel-Mannan, Omar; Chodroff, Rebecca A; Sirey, Tamara M; Bluy, Lisa E; Webber, Natalie; DeProto, Jamin; Karlen, Sarah J; Krubitzer, Leah; Stolp, Helen B; Saunders, Norman R; Molnár, Zoltán

    2010-05-01

    The major lineages of mammals (Eutheria, Metatheria, and Monotremata) diverged more than 100 million years ago and have undergone independent changes in the neocortex. We found that adult South American gray short-tailed opossum (Monodelphis domestica) and tammar wallaby (Macropus eugenii) possess a significantly lower number of cerebral cortical neurons compared with the mouse (Mus musculus). To determine whether the difference is reflected in the development of the cortical germinal zones, the location of progenitor cell divisions was examined in opossum, tammar wallaby, and rat. The basic pattern of the cell divisions was conserved, but the emergence of a distinctive band of dividing cells in the subventricular zone (SVZ) occurred relatively later in the opossum (postnatal day [P14]) and the tammar wallaby (P40) than in rodents. The planes of cell divisions in the ventricular zone (VZ) were similar in all species, with comparable mRNA expression patterns of Brn2, Cux2, NeuroD6, Tbr2, and Pax6 in opossum (P12 and P20) and mouse (embryonic day 15 and P0). In conclusion, the marsupial neurodevelopmental program utilizes an organized SVZ, as indicated by the presence of intermediate (or basal) progenitor cell divisions and gene expression patterns, suggesting that the SVZ emerged prior to the Eutherian-Metatherian split.

  14. Delivery of In Vivo Acute Intermittent Hypoxia in Neonatal Rodents to Prime Subventricular Zone-derived Neural Progenitor Cell Cultures

    PubMed Central

    Ross, Heather H.; Sandhu, Milap S.; Sharififar, Sharareh; Fuller, David D.

    2015-01-01

    Extended culture of neural stem/progenitor cells facilitates in vitro analyses to understand their biology while enabling expansion of cell populations to adequate numbers prior to transplantation. Identifying approaches to refine this process, to augment the production of all CNS cell types (i.e., neurons), and to possibly contribute to therapeutic cell therapy protocols is a high research priority. This report describes an easily applied in vivo “pre-conditioning” stimulus which can be delivered to awake, non-anesthetized animals. Thus, it is a non-invasive and non-stressful procedure. Specifically described are the procedures for exposing mouse or rat pups (aged postnatal day 1-8) to a brief (40-80 min) period of intermittent hypoxia (AIH). The procedures included in this video protocol include calibration of the whole-body plethysmography chamber in which pups are placed during AIH and the technical details of AIH exposure. The efficacy of this approach to elicit tissue-level changes in the awake animal is demonstrated through the enhancement of subsequent in vitro expansion and neuronal differentiation in cells harvested from the subventricular zone (SVZ). These results support the notion that tissue level changes across multiple systems could be observed following AIH, and support the continued optimization and establishment of AIH as a priming or conditioning modality for therapeutic cell populations. PMID:26556530

  15. The Subventricular Zone Response to Stroke Is Not a Therapeutic Target of Anti-Nogo-A Immunotherapy.

    PubMed

    Shepherd, Daniel J; Tsai, Shih-Yen; Cappucci, Stefanie P; Wu, Joanna Y; Farrer, Robert G; Kartje, Gwendolyn L

    2017-08-01

    Ischemic stroke is a leading cause of adult disability with no pharmacological treatments to promote the recovery of lost function. Neutralizing antibodies against the neurite outgrowth inhibitor Nogo-A have emerged as a promising treatment for subacute and chronic stroke in animal models; however, whether anti-Nogo-A treatment affects poststroke neurogenesis remains poorly understood. In this study, we confirmed expression of Nogo-A by neuroblasts in the adult rat subventricular zone (SVZ), a major neurogenic niche; however, we found no evidence that Nogo-A was expressed at the surface of these cells. In vitro migration assays demonstrated that Nogo-A signaling induced a modest reduction in neuroblast migration speed, while anti-Nogo-A antibodies had no effect on motility properties. Using a permanent distal middle cerebral artery occlusion model of cortical stroke, we found that the number of proliferating cells in the SVZ was unaffected in response to stroke, while neuroblast mobilization from the SVZ toward the stroke lesion correlated positively with lesion size. However, we found no evidence that proliferation or neuroblast mobilization were affected by anti-Nogo-A antibody treatment. Our results suggest that the SVZ is not a therapeutic target of anti-Nogo-A immunotherapy, and contribute to our understanding of the SVZ response to cortical stroke. 2017 American Association of Neuropathologists, Inc. This work is written by US Government employees and is in the public domain in the US.

  16. Genomic Perspectives of Transcriptional Regulation in Forebrain Development

    DOE PAGES

    Nord, Alex S.; Pattabiraman, Kartik; Visel, Axel; ...

    2015-01-07

    The forebrain is the seat of higher-order brain functions, and many human neuropsychiatric disorders are due to genetic defects affecting forebrain development, making it imperative to understand the underlying genetic circuitry. We report that recent progress now makes it possible to begin fully elucidating the genomic regulatory mechanisms that control forebrain gene expression. Here, we discuss the current knowledge of how transcription factors drive gene expression programs through their interactions with cis-acting genomic elements, such as enhancers; how analyses of chromatin and DNA modifications provide insights into gene expression states; and how these approaches yield insights into the evolution ofmore » the human brain.« less

  17. Cell cycle deregulation and loss of stem cell phenotype in the subventricular zone of TGF-beta adaptor elf-/- mouse brain.

    PubMed

    Golestaneh, Nady; Tang, Yi; Katuri, Varalakshmi; Jogunoori, Wilma; Mishra, Lopa; Mishra, Bibhuti

    2006-09-07

    The mammalian forebrain subependyma contains neural stem cells and other proliferating progenitor cells. Recent studies have shown the importance of TGF-beta family members and their adaptor proteins in the inhibition of proliferation in the nervous system. Previously, we have demonstrated that TGF-beta induces phosphorylation and association of ELF (embryonic liver fodrin) with Smad3 and Smad4 resulting in nuclear translocation. Elf(-/-) mice manifest abnormal neuronal differentiation, with loss of neuroepithelial progenitor cell phenotype in the subventricular zone (SVZ) with dramatic marginal cell hyperplasia and loss of nestin expression. Here, we have analyzed the expression of cell cycle-associated proteins cdk4, mdm2, p21, and pRb family members in the brain of elf(-/-) mice to verify the role of elf in the regulation of neural precursor cells in the mammalian brain. Increased proliferation in SVZ cells of the mutant mice coincided with higher levels of cdk4 and mdm2 expression. A lesser degree of apoptosis was observed in the mutant mice compared to the wild-type control. Elf(-/-) embryos showed elevated levels of hyperphosphorylated forms of pRb, p130 and p107 and decreased level of p21 compared to the wild-type control. These results establish a critical role for elf in the development of a SVZ neuroepithelial stem cell phenotype and regulation of neuroepithelial cell proliferation, suggesting that a mutation in the elf locus renders the cells susceptible to a faster entry into S phase of cell cycle and resistance to senescence and apoptotic stimuli.

  18. Persistent Wnt/β-catenin signaling determines dorsalization of the postnatal subventricular zone and neural stem cell specification into oligodendrocytes and glutamatergic neurons.

    PubMed

    Azim, Kasum; Fischer, Bruno; Hurtado-Chong, Anahi; Draganova, Kalina; Cantù, Claudio; Zemke, Martina; Sommer, Lukas; Butt, Arthur; Raineteau, Olivier

    2014-05-01

    In the postnatal and adult central nervous system (CNS), the subventricular zone (SVZ) of the forebrain is the main source of neural stem cells (NSCs) that generate olfactory neurons and oligodendrocytes (OLs), the myelinating cells of the CNS. Here, we provide evidence of a primary role for canonical Wnt/β-catenin signaling in regulating NSC fate along neuronal and oligodendroglial lineages in the postnatal SVZ. Our findings demonstrate that glutamatergic neuronal precursors (NPs) and oligodendrocyte precursors (OPs) are derived strictly from the dorsal SVZ (dSVZ) microdomain under the control of Wnt/β-catenin, whereas GABAergic NPs are derived mainly from the lateral SVZ (lSVZ) microdomain independent of Wnt/β-catenin. Transcript analysis of microdissected SVZ microdomains revealed that canonical Wnt/β-catenin signaling was more pronounced in the dSVZ microdomain. This was confirmed using the β-catenin-activated Wnt-reporter mouse and by pharmacological stimulation of Wnt/β-catenin by infusion of the specific glycogen synthase kinase 3β inhibitor, AR-A014418, which profoundly increased the generation of cycling cells. In vivo genetic/pharmacological stimulation or inhibition of Wnt/β-catenin, respectively, increased and decreased the differentiation of dSVZ-NSCs into glutamatergic NPs, and had a converse effect on GABAergic NPs. Activation of Wnt/β-catenin dramatically stimulated the generation of OPs, but its inhibition had no effect, indicating other factors act in concert with Wnt/β-catenin to fine tune oligodendrogliogenesis in the postnatal dSVZ. These results demonstrate a role for Wnt/β-catenin signaling within the dorsal microdomain of the postnatal SVZ, in regulating the genesis of glutamatergic neurons and OLs.

  19. Sex differences in oxytocin receptor binding in forebrain regions: correlations with social interest in brain region- and sex- specific ways.

    PubMed

    Dumais, Kelly M; Bredewold, Remco; Mayer, Thomas E; Veenema, Alexa H

    2013-09-01

    Social interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors. We determined whether there are sex differences in OT system parameters in the brain and whether these parameters would correlate with social interest. We also determined whether estrus phase or maternal experience would alter low social interest and whether this would correlate with changes in OT system parameters. Our results show that regardless of estrus phase, females have significantly lower OT receptor (OTR) binding densities than males in the majority of forebrain regions analyzed, including the nucleus accumbens, caudate putamen, lateral septum, bed nucleus of the stria terminalis, medial amygdala, and ventromedial hypothalamus. Interestingly, male social interest correlated positively with OTR binding densities in the medial amygdala, while female social interest correlated negatively with OTR binding densities in the central amygdala. Proestrus/estrus females showed similar social interest to non-estrus females despite increased OTR binding densities in several forebrain areas. Maternal experience had no immediate or long-lasting effects on social interest or OT brain parameters except for higher OTR binding in the medial amygdala in primiparous females. Together, these findings demonstrate that there are robust sex differences in OTR binding densities in multiple forebrain regions of rats and that OTR binding densities correlate with social interest in brain region- and sex-specific ways.

  20. Forebrain-selective AMPA-receptor antagonism guided by TARP γ-8 as an antiepileptic mechanism.

    PubMed

    Kato, Akihiko S; Burris, Kevin D; Gardinier, Kevin M; Gernert, Douglas L; Porter, Warren J; Reel, Jon; Ding, Chunjin; Tu, Yuan; Schober, Douglas A; Lee, Matthew R; Heinz, Beverly A; Fitch, Thomas E; Gleason, Scott D; Catlow, John T; Yu, Hong; Fitzjohn, Stephen M; Pasqui, Francesca; Wang, He; Qian, Yuewei; Sher, Emanuele; Zwart, Ruud; Wafford, Keith A; Rasmussen, Kurt; Ornstein, Paul L; Isaac, John T R; Nisenbaum, Eric S; Bredt, David S; Witkin, Jeffrey M

    2016-12-01

    Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.

  1. Basal forebrain lesions in monkeys disrupt attention but not learning and memory.

    PubMed

    Voytko, M L; Olton, D S; Richardson, R T; Gorman, L K; Tobin, J R; Price, D L

    1994-01-01

    Cognitive impairments in humans and animals have been linked to dysfunction of neurons in the basal forebrain cholinergic system (BFCS). Degeneration of these cells may be, in part, responsible for some of the cognitive deficits observed in Alzheimer's disease (AD). Although memory deficits are associated with lesions of the BFCS in rats, impairments in memory have been more subtle following similar lesions in monkeys. To evaluate the effects of BFCS lesions on cognitive processes in monkeys, we have systematically investigated the behavioral effects of ibotenic acid injections in the medial septum, nucleus of the diagonal band of Broca, and nucleus basalis of Meynert in cynomolgus monkeys, using a large series of cognitive tasks that examined different mnemonic and attentional abilities. These lesions did not impair accuracy in delayed nonmatching-to-sample, delayed response, simple or concurrent visual discriminations, spatial discriminations, or discrimination reversals. However, these lesions disrupted attentional focusing. Similar impairments in attention have been noted in patients with AD. BFCS lesions increased sensitivity to injections of the cholinergic antagonist scopolamine in a delayed nonmatching-to-sample task, indicating that the central cholinergic system was compromised in these monkeys. In concert, the results of this study suggest that the primate basal forebrain may be more involved in attentional than mnemonic processes, and that degeneration of neurons in the BFCS in cases of AD may contribute to the attention deficits observed in these individuals.

  2. Dynamic expression of MEIS1 homeoprotein in E14.5 forebrain and differentiated forebrain-derived neural stem cells.

    PubMed

    Barber, Benjamin A; Liyanage, Vichithra R B; Zachariah, Robby M; Olson, Carl O; Bailey, Melissa A G; Rastegar, Mojgan

    2013-10-01

    Central nervous system development is controlled by highly conserved homeoprotein transcription factors including HOX and TALE (Three Amino acid Loop Extension). TALE proteins are primarily known as HOX-cofactors and play key roles in cell proliferation, differentiation and organogenesis. MEIS1 is a TALE member with established expression in the developing central nervous system. MEIS1 is essential for embryonic development and Meis1 knockout mice dies at embryonic day (E) 14.5. However, Meis1/MEIS1 expression in the devolving forebrain, at this critical time-point has not been studied. Here, for the first time we characterize the region-specific expression of MEIS1 in E14.5 mouse forebrain, filling the gap of MEIS1 expression profile between E12.5 and E16.5. Previously, we reported MEIS1 transcriptional regulatory role in neuronal differentiation and established forebrain-derived neural stem cells (NSC) for gene therapy application of neuronal genes. Here, we show the dynamic expression of Meis1/MEIS1 during the differentiation of forebrain-derived NSC toward a glial lineage. Our results show that Meis1/MEIS1 expression is induced during NSC differentiation and is expressed in both differentiated neurons and astrocytes. Confirming these results, we detected MEIS1 expression in primary cultures of in vivo differentiated cortical neurons and astrocytes. We further demonstrate Meis1/MEIS1 expression relative to other TALE family members in the forebrain-derived NSC in the absence of Hox genes. Our data provide evidence that forebrain-derived NSC can be used as an accessible in vitro model to study the expression and function of TALE proteins, supporting their potential role in modulating NSC self-renewal and differentiation.

  3. Functional response to SDF1 alpha through over-expression of CXCR4 on adult subventricular zone progenitor cells.

    PubMed

    Liu, Xian Shuang; Chopp, Michael; Santra, Manoranjan; Hozeska-Solgot, Ann; Zhang, Rui Lan; Wang, Lei; Teng, Hua; Lu, Mei; Zhang, Zheng Gang

    2008-08-21

    The chemokine receptor CXCR4 and its ligand, stromal cell derived factor-1 alpha (SDF1 alpha) regulate neuroblast migration towards the ischemic boundary after stroke. Using loss- and gain-function, we investigated the biological effect of CXCR4/SDF1 alpha on neural progenitor cells. Neural progenitor cells, from the subventricular zone (SVZ) of the adult rat, were transfected with rat CXCR4-pLEGFP-C1 and pSIREN-RetroQ-CXCR4-siRNA retroviral vectors. Migration assay analysis showed that inhibition of CXCR4 by siRNA significantly reduced cell migration compared to the empty vector, indicating that CXCR4 mediated neural progenitor cell motility. When neural progenitor cells were cultured in growth medium containing bFGF (20 ng/ml), over-expression of CXCR4 significantly reduced the cell proliferation as measured by the number of bromodeoxyuridine+ (BrdU+) cells (26.4%) compared with the number in the control group (54.0%). Addition of a high concentration of SDF1 alpha (500 ng/ml) into the progenitor cells with over-expression of CXCR4 reversed the cell proliferation back to the control levels (57.6%). Immunostaining analysis showed that neither over-expression nor inhibition of CXCR4 altered the population of neurons and astrocytes, when neural progenitor cells were cultured in differentiation medium. These in vitro results suggest that CXCR4/SDF1 alpha primarily regulates adult neural progenitor cell motility but not differentiation, while over-expression of CXCR4 in the absence of SDF1 alpha decreases neural progenitor cell proliferation.

  4. Adult forebrain NMDA receptors gate social motivation and social memory.

    PubMed

    Jacobs, Stephanie; Tsien, Joe Z

    2017-02-01

    Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development.

  5. VENTROMEDIAN FOREBRAIN DYSGENESIS FOLLOWS EARLY PRENATAL ETHANOL EXPOSURE IN MICE

    PubMed Central

    Godin, Elizabeth A.; Dehart, Deborah B.; Parnell, Scott E.; O'Leary-Moore, Shonagh K.; Sulik, Kathleen K.

    2010-01-01

    Ethanol exposure on gestational day (GD) 7 in the mouse has previously been shown to result in ventromedian forebrain deficits along with facial anomalies characteristic of fetal alcohol syndrome (FAS). To further explore ethanol's teratogenic effect on the ventromedian forebrain in this mouse model, scanning electron microscopic and histological analyses were conducted. For this, time mated C57Bl/6J mice were injected with 2.9 g/kg ethanol or saline twice, at a four hour interval, on their 7th day of pregnancy. On GD 12.5, 13 and 17, control and ethanol-exposed specimens were collected and processed for light and scanning electron microscopic analyses. Gross morphological changes present in the forebrains of ethanol-exposed embryos included cerebral hemispheres that were too close in proximity or rostrally united, enlarged foramina of Monro, enlarged or united lateral ventricles, and varying degrees of hippocampal and ventromedian forebrain deficiency. In GD 12.5 control and ethanol-exposed embryos, in situ hybridization employing probes for Nkx2.1 or Fzd8 to distinguish the preoptic area and medial ganglionic eminences (MGE) from the lateral ganglionic eminences, respectively, confirmed the selective loss of ventromedian tissues. Immunohistochemical labeling of oligodendrocyte progenitors with Olig2, a transcription factor necessary for their specification, and of GABA, an inhibitory neurotransmitter, showed ethanol-induced reductions in both. To investigate later consequences of ventromedian forebrain loss, MGE-derived somatostatin-expressing interneurons in the subpallial region of GD 17 fetal mice were examined, with results showing that the somatostatin-expressing interneurons that were present were dysmorphic in the ethanol-exposed fetuses. The potential functional consequences of this insult are discussed. PMID:21074610

  6. Behavioral activation by CRF: evidence for the involvement of the ventral forebrain.

    PubMed

    Tazi, A; Swerdlow, N R; LeMoal, M; Rivier, J; Vale, W; Koob, G F

    1987-07-06

    Rats injected intracerebroventricularly with corticotropin releasing factor (CRF) at the level of the lateral ventricle or cisterna magna showed a dose-dependent increase in locomotor activity. The increase in locomotor activity from injections of CRF into the cisterna magna was blocked by a cold cream plug in the cerebral aqueduct. An identical plug failed to block the increase in locomotor activity produced by CRF injected into the lateral ventricle. Intracerebral injections of CRF produced a site specific increase in locomotor activity with the largest increases observed from CRF injected into the substantia innominata/lateral preoptic area. Results suggest that the locomotor activating effects of CRF may be due to an activation of CRF receptors in the ventral forebrain, a region rich in CRF cell bodies and projections.

  7. Neuronal ensemble bursting in the basal forebrain encodes salience irrespective of valence.

    PubMed

    Lin, Shih-Chieh; Nicolelis, Miguel A L

    2008-07-10

    Both reward- and punishment-related stimuli are motivationally salient and attract the attention of animals. However, it remains unclear how motivational salience is processed in the brain. Here, we show that both reward- and punishment-predicting stimuli elicited robust bursting of many noncholinergic basal forebrain (BF) neurons in behaving rats. The same BF neurons also responded with similar bursting to primary reinforcement of both valences. Reinforcement responses were modulated by expectation, with surprising reinforcement eliciting stronger BF bursting. We further demonstrate that BF burst firing predicted successful detection of near-threshold stimuli. Together, our results point to the existence of a salience-encoding system independent of stimulus valence. We propose that the encoding of motivational salience by ensemble bursting of noncholinergic BF neurons may improve behavioral performance by affecting the activity of widespread cortical circuits and therefore represents a novel candidate mechanism for top-down attention.

  8. Neuronal ensemble bursting in the basal forebrain encodes salience irrespective of valence

    PubMed Central

    Lin, Shih-Chieh; Nicolelis, Miguel A.L.

    2008-01-01

    SUMMARY Both reward- and punishment-related stimuli are motivationally salient and attract the attention of animals. However, it remains unclear how motivational salience is processed in the brain. Here we show that both reward- and punishment-predicting stimuli elicited robust bursting of many non-cholinergic basal forebrain (BF) neurons in behaving rats. The same BF neurons also responded with similar bursting to primary reinforcement of both valences. Reinforcement responses were modulated by expectation, with surprising reinforcement eliciting stronger BF bursting. We further demonstrate that BF burst firing predicted successful detection of near-threshold stimuli. Together, our results point to the existence of a salience-encoding system independent of stimulus valence. We propose that the encoding of motivational salience by ensemble bursting of non-cholinergic BF neurons may improve behavioral performance by affecting the activity of widespread cortical circuits, and therefore represents a novel candidate mechanism for top-down attention. PMID:18614035

  9. Volume of the human septal forebrain region is a predictor of source memory accuracy.

    PubMed

    Butler, Tracy; Blackmon, Karen; Zaborszky, Laszlo; Wang, Xiuyuan; DuBois, Jonathan; Carlson, Chad; Barr, William B; French, Jacqueline; Devinsky, Orrin; Kuzniecky, Ruben; Halgren, Eric; Thesen, Thomas

    2012-01-01

    Septal nuclei, components of basal forebrain, are strongly and reciprocally connected with hippocampus, and have been shown in animals to play a critical role in memory. In humans, the septal forebrain has received little attention. To examine the role of human septal forebrain in memory, we acquired high-resolution magnetic resonance imaging scans from 25 healthy subjects and calculated septal forebrain volume using recently developed probabilistic cytoarchitectonic maps. We indexed memory with the California Verbal Learning Test-II. Linear regression showed that bilateral septal forebrain volume was a significant positive predictor of recognition memory accuracy. More specifically, larger septal forebrain volume was associated with the ability to recall item source/context accuracy. Results indicate specific involvement of septal forebrain in human source memory, and recall the need for additional research into the role of septal nuclei in memory and other impairments associated with human diseases.

  10. Chronic inhibition of nitric oxide synthesis enhances both subventricular zone neurogenesis and olfactory learning in adult mice.

    PubMed

    Romero-Grimaldi, Carmen; Gheusi, Gilles; Lledo, Pierre-Marie; Estrada, Carmen

    2006-11-01

    The ability to generate new neurons during the course of adult life is preserved in the subventricular zone of the lateral ventricles and the dentate gyrus of the hippocampus in the mammalian brain. These two regions constitute specifically regulated neurogenic niches, and provide newborn neurons involved in olfactory and spatial learning, respectively. Nitric oxide (NO) is a negative regulator of neurogenesis in the subventricular zone, whereas its role in the dentate gyrus remains controversial. Using systemic administration of NO synthase (NOS) inhibitors to chronically inhibit NO production, we increased neural precursor proliferation in the subventricular zone as well as neurogenesis in the olfactory bulb, without modifying the number of mitotic cells or the granular cell layer thickness in the dentate gyrus. The same treatment specifically improved olfactory learning performance, whereas spatial learning and memory was unchanged, thus demonstrating that olfactory memory is closely associated with the level of ongoing neurogenesis in the subventricular zone-olfactory bulb. The anatomical specificity of the NOS inhibitor actions was not due to differences in the availability of NO, as demonstrated by immunohistochemical detection of neuronal NOS and S-nitrosylated proteins in both regions. Remarkably, the distinct NO sensitivity might result from a differential expression of epidermal growth factor receptor in precursor cells in both regions, as the proliferative effect of NOS inhibitors in the subventricular zone was restricted to the cells that expressed this receptor.

  11. The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone

    PubMed Central

    Liu, Xiuxin; Hashimoto-Torii, Kazue; Torii, Masaaki; Haydar, Tarik F.; Rakic, Pasko

    2008-01-01

    Most neurons of the cerebral cortex are generated in the germinal zones near the embryonic cerebral ventricle and migrate radially to the overlying cortical plate. Initially, all dividing cells are attached to the surface of the embryonic ventricle (ventricular zone) until a subset of dividing cells (basal or intermediate neuronal progenitors, INPs), recognized by their immunoreactivity to Tbr2, detach from the ventricular surface and migrate a short distance to establish a secondary proliferative compartment (the subventricular zone). The mechanism that regulates migration of the Tbr2+ INPs from the ventricular to the subventricular zones is unknown. Here, we show that INPs, unlike the postmitotic neurons that tend to lose the ATP response, continue to express the purinergic P2Y1 receptor. Furthermore, blocking ATP signaling by the P2Y1 blockers, MRS2176, suramin, and apyrase, reduces Ca2+ transients and retards INP migration to the subventricular zone. In addition, genetic knockdown of the P2Y1 receptor by in vivo application of short hairpin RNA selectively impairs the migration of INPs to the subventricular zone. Together, these results suggest that intercellular ATP signaling is essential for the migration of INPs and the proper formation of the subventricular zone. Interference of ATP signaling or abnormal Ca2+ fluctuations in INPs may play a significant role in variety of genetic or acquired cortical malformations. PMID:18689674

  12. Neural stem cells in the subventricular zone are a source of astrocytes and oligodendrocytes, but not microglia.

    PubMed

    Levison, Steven W; Druckman, Stuart K; Young, Greg M; Basu, Anirban

    2003-01-01

    The developmental origin of microglia remains a controversial subject. While it is generally accepted that primitive fetal macrophages that migrate from the yolk sac to the brain become microglia, it also has been argued that there is a second source of microglia that are of neuroectodermal lineage. To determine whether progenitors in the dorsolateral subventricular zone (SVZDL) are capable of producing microglia as well as macroglia, we infected perinatal rat SVZDL cells with a mixture of two replication-deficient retroviruses, placed these progenitors in vitro and then varied the media formulations to promote microglial differentiation. Mixed macroglial clones were obtained, but no heterogeneous clones containing microglia were observed, regardless of the media components. Among the macroglial clones, we observed every possible combination of type 1 astrocyte and O-2A lineage cells. Some clones were homogeneous and contained cells belonging to a single macroglial lineage. Other clonal clusters were heterogeneous and were comprised of type 1 astrocytes and oligodendrocytes, type 1 and type 2 astrocytes, or type 2 astrocytes and oligodendrocytes. Of 130 clones examined, where we used triple immunofluorescence with antibodies that recognize microglia, 2 clonal clusters contained OX-42+ microglia that were retrovirally labeled, but all of the cells in those clones expressed the microglial marker and none expressed either GFAP or O4. In addition, we isolated neural stem cells from the perinatal SVZDL and assessed their capacity to generate macroglia and microglia. Confirming and extending our previous analyses, neural stem cells generated homogeneous and heterogeneous macroglial clones, but they did not generate microglia. We conclude that brain macroglia and microglia do not share a common precursor, even though the neural stem cells in the SVZDL cells can produce neurons, astrocytes and oligodendrocytes. Therefore, the microglia that reside in the SVZDL are

  13. Interaction between Cannabinoid Type 1 and Type 2 Receptors in the Modulation of Subventricular Zone and Dentate Gyrus Neurogenesis.

    PubMed

    Rodrigues, Rui S; Ribeiro, Filipa F; Ferreira, Filipa; Vaz, Sandra H; Sebastião, Ana M; Xapelli, Sara

    2017-01-01

    Neurogenesis in the adult mammalian brain occurs mainly in two neurogenic niches, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus (DG). Cannabinoid type 1 and 2 receptors (CB1R and CB2R) have been shown to differently modulate neurogenesis. However, low attention has been given to the interaction between CB1R and CB2R in modulating postnatal neurogenesis (proliferation, neuronal differentiation and maturation). We focused on a putative crosstalk between CB1R and CB2R to modulate neurogenesis and cultured SVZ and DG stem/progenitor cells from early postnatal (P1-3) Sprague-Dawley rats. Data showed that the non-selective cannabinoid receptor agonist WIN55,212-2 promotes DG cell proliferation (measured by BrdU staining), an effect blocked by either CB1R or CB2R selective antagonists. Experiments with selective agonists showed that facilitation of DG cell proliferation requires co-activation of both CB1R and CB2R. Cell proliferation in the SVZ was not affected by the non-selective receptor agonist, but it was enhanced by CB1R selective activation. However, either CB1R or CB2R selective antagonists abolished the effect of the CB1R agonist in SVZ cell proliferation. Neuronal differentiation (measured by immunocytochemistry against neuronal markers of different stages and calcium imaging) was facilitated by WIN55,212-2 at both SVZ and DG. This effect was mimicked by either CB1R or CB2R selective agonists and blocked by either CB1R or CB2R selective antagonists, cross-antagonism being evident. In summary, our findings indicate a tight interaction between CB1R and CB2R to modulate neurogenesis in the two major neurogenic niches, thus contributing to further unraveling the mechanisms behind the action of endocannabinoids in the brain.

  14. Origins of serotonin innervation of forebrain structures

    NASA Technical Reports Server (NTRS)

    Kellar, K. J.; Brown, P. A.; Madrid, J.; Bernstein, M.; Vernikos-Danellis, J.; Mehler, W. R.

    1977-01-01

    The tryptophan hydroxylase activity and high-affinity uptake of (3H) serotonin ((3H)5-HT) were measured in five discrete brain regions of rats following lesions of the dorsal or median raphe nuclei. Dorsal raphe lesions reduced enzyme and uptake activity in the striatum only. Median raphe lesions reduced activities in the hippocampus, septal area, frontal cortex, and, to a lesser extent, in the hypothalamus. These data are consistent with the suggestion that the dorsal and median raphe nuclei are the origins of two separate ascending serotonergic systems - one innervating striatal structures and the other mesolimbic structures, predominantly. In addition, the data suggest that measurements of high-affinity uptake of (3H)5-HT may be a more reliable index of innervation than either 5-HT content or tryptophan hydroxylase activity.

  15. Origins of serotonin innervation of forebrain structures

    NASA Technical Reports Server (NTRS)

    Kellar, K. J.; Brown, P. A.; Madrid, J.; Bernstein, M.; Vernikos-Danellis, J.; Mehler, W. R.

    1977-01-01

    The tryptophan hydroxylase activity and high-affinity uptake of (3H) serotonin ((3H)5-HT) were measured in five discrete brain regions of rats following lesions of the dorsal or median raphe nuclei. Dorsal raphe lesions reduced enzyme and uptake activity in the striatum only. Median raphe lesions reduced activities in the hippocampus, septal area, frontal cortex, and, to a lesser extent, in the hypothalamus. These data are consistent with the suggestion that the dorsal and median raphe nuclei are the origins of two separate ascending serotonergic systems - one innervating striatal structures and the other mesolimbic structures, predominantly. In addition, the data suggest that measurements of high-affinity uptake of (3H)5-HT may be a more reliable index of innervation than either 5-HT content or tryptophan hydroxylase activity.

  16. Expression of ezrin radixin moesin proteins in the adult subventricular zone and the rostral migratory stream.

    PubMed

    Persson, A; Lindwall, C; Curtis, M A; Kuhn, H G

    2010-05-05

    Continuous proliferation occurs in the adult subventricular zone (SVZ) of the lateral ventricles throughout life. In the SVZ, progenitor cells differentiate into neuroblasts, which migrate tangentially along the rostral migratory stream (RMS) to reach their final destination in the olfactory bulb. These progenitor cells mature and integrate into the existing neural network of the olfactory bulb. Long distance migration of neuroblasts in the RMS requires a highly dynamic cytoskeleton with the ability to respond to surrounding stimuli. Radixin is a member of the ERM (Ezrin, Radixin, Moesin) family, which connect the actin cytoskeleton to the extracellular matrix through transmembrane proteins. The membrane-cytoskeleton linker proteins of the ERM family may regulate cellular events with a high demand on cytoskeleton plasticity, such as cell motility. Recently, specific expression of the ERM protein ezrin was shown in the RMS. Radixin however has not been characterized in this region. Here we used immunohistochemistry and confocal microscopy to examine the expression of radixin in the different cell types of the adult subventricular zone niche and in the RMS. Our findings indicate that radixin is strongly expressed in neuroblasts of the adult RMS and subventricular zone, and also in Olig2-positive cells. We also demonstrate the presence of radixin in the cerebral cortex, striatum, cerebellum, thalamus, hippocampus as well as the granular and periglomerular layers of the olfactory bulb. Our studies also reveal the localization of radixin in neurosphere culture studies and we reveal the specificity of our labeling using Western blotting. The expression pattern demonstrated here suggests a role for radixin in neuronal migration and differentiation in the adult RMS. Understanding how adult neuronal migration is regulated is of importance for the development of new therapeutic interventions using endogenous repair for neurodegenerative diseases.

  17. Basal forebrain control of wakefulness and cortical rhythms

    PubMed Central

    Anaclet, Christelle; Pedersen, Nigel P.; Ferrari, Loris L.; Venner, Anne; Bass, Caroline E.; Arrigoni, Elda; Fuller, Patrick M.

    2015-01-01

    Wakefulness, along with fast cortical rhythms and associated cognition, depend on the basal forebrain (BF). BF cholinergic cell loss in dementia and the sedative effect of anti-cholinergic drugs have long implicated these neurons as important for cognition and wakefulness. The BF also contains intermingled inhibitory GABAergic and excitatory glutamatergic cell groups whose exact neurobiological roles are unclear. Here we show that genetically targeted chemogenetic activation of BF cholinergic or glutamatergic neurons in behaving mice produced significant effects on state consolidation and/or the electroencephalogram but had no effect on total wake. Similar activation of BF GABAergic neurons produced sustained wakefulness and high-frequency cortical rhythms, whereas chemogenetic inhibition increased sleep. Our findings reveal a major contribution of BF GABAergic neurons to wakefulness and the fast cortical rhythms associated with cognition. These findings may be clinically applicable to manipulations aimed at increasing forebrain activation in dementia and the minimally conscious state. PMID:26524973

  18. Nicotine administration in the wake-promoting basal forebrain attenuates sleep-promoting effects of alcohol.

    PubMed

    Sharma, Rishi; Lodhi, Shafi; Sahota, Pradeep; Thakkar, Mahesh M

    2015-10-01

    Nicotine and alcohol co-abuse is highly prevalent, although the underlying causes are unclear. It has been suggested that nicotine enhances pleasurable effects of alcohol while reducing aversive effects. Recently, we reported that nicotine acts via the basal forebrain (BF) to activate nucleus accumbens and increase alcohol consumption. Does nicotine suppress alcohol-induced aversive effects via the BF? We hypothesized that nicotine may act via the BF to suppress sleep-promoting effects of alcohol. To test this hypothesis, adult male Sprague-Dawley rats were implanted with sleep-recording electrodes and bilateral guides targeted toward the BF. Nicotine (75 pmol/500 nL/side) or artificial cerebrospinal fluid (ACSF; 500 nL/side) was microinjected into the BF followed by intragastric alcohol (ACSF + EtOH and NiC + EtOH groups; 3 g/kg) or water (NiC + W and ACSF + W groups; 10 mL/kg) administration. On completion, rats were killed and processed to localize injection sites in the BF. The statistical analysis revealed a significant effect of treatment on sleep-wakefulness. While rats exposed to alcohol (ACSF + EtOH) displayed strong sleep promotion, nicotine pre-treatment in the BF (NiC + EtOH) attenuated alcohol-induced sleep and normalized sleep-wakefulness. These results suggest that nicotine acts via the BF to suppress the aversive, sleep-promoting effects of alcohol, further supporting the role of BF in alcohol-nicotine co-use.

  19. Developmentally defined forebrain circuits regulate appetitive and aversive olfactory learning

    PubMed Central

    Muthusamy, Nagendran; Zhang, Xuying; Johnson, Caroline A.; Yadav, Prem N.; Ghashghaei, H. Troy

    2016-01-01

    Postnatal and adult neurogenesis are region- and modality-specific, but the significance of developmentally distinct neuronal populations remains unclear. We demonstrate that chemogenetic inactivation of a subset of forebrain and olfactory neurons generated at birth disrupts responses to an aversive odor. In contrast, novel appetitive odor learning is sensitive to inactivation of adult born neurons, unveiling that developmentally defined sets of neurons may differentially participate in hedonic aspects of sensory learning. PMID:27918532

  20. Necdin promotes tangential migration of neocortical interneurons from basal forebrain.

    PubMed

    Kuwajima, Takaaki; Hasegawa, Koichi; Yoshikawa, Kazuaki

    2010-03-10

    Necdin is a pleiotropic protein that promotes neuronal differentiation and survival. In mammals, the necdin gene on the maternal chromosome is silenced by genomic imprinting, and only the paternal necdin gene is expressed in virtually all postmitotic neurons. Necdin forms a complex with the homeodomain protein Dlx2 to enhance its transcriptional activity. Dlx2 plays a major role in controlling tangential migration of GABAergic interneurons from the basal forebrain to the neocortex. Here, we examined whether Dlx2-expressing interneurons migrate properly in vivo in mutant mice lacking the paternal necdin gene. In necdin-deficient mice at birth, the population of Dlx2-expressing cells significantly decreased in the neocortex but increased in the preoptic area. DiI-labeled cell migration assay using organotypic forebrain slice cultures revealed that the number of cells migrating from the medial ganglionic eminence into the neocortex was significantly reduced in necdin-deficient embryos. Furthermore, necdin-deficient mice had a decreased population of neocortical GABA-containing neurons and were highly susceptible to pentylenetetrazole-induced seizures. These results suggest that necdin promotes tangential migration of neocortical GABAergic interneurons during mammalian forebrain development.

  1. Shh and forebrain evolution in the blind cavefish Astyanax mexicanus.

    PubMed

    Rétaux, Sylvie; Pottin, Karen; Alunni, Alessandro

    2008-03-01

    The blind cavefish and its surface counterpart of the teleost species Astyanax mexicanus constitute an excellent model to study the evolution of morphological features. During adaptation to their lives in perpetual darkness, the cave population has lost eyes (and pigmentation), but has gained several constructive traits. Recently, the demonstration that an increase in Shh (Sonic Hedgehog) midline signalling was indirectly responsible for the loss of eyes in cavefish led to new ways to search for possible modifications in the forebrain of these cavefish, as this anterior-most region of the vertebrate central nervous system develops under close control of the powerful Shh morphogen. In this review, we summarize the recent progress in the understanding of forebrain and eye modifications in cavefish. These include major changes in cell death, cell proliferation and cell migration in various parts of the forebrain when compared with their surface counterparts with eyes. The outcome of these modifications, in terms of neuronal circuitry, morphological and behavioral adaptations are discussed.

  2. Corelease of acetylcholine and GABA from cholinergic forebrain neurons

    PubMed Central

    Saunders, Arpiar; Granger, Adam J; Sabatini, Bernardo L

    2015-01-01

    Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-synaptic currents (PSCs) in layer 1 interneurons. Surprisingly, we observed PSCs mediated by GABAA receptors in addition to nicotinic acetylcholine receptors. Based on PSC latency and pharmacological sensitivity, our results suggest monosynaptic release of both GABA and ACh. Anatomical analysis showed that forebrain cholinergic neurons express the GABA synthetic enzyme Gad2 and the vesicular GABA transporter (Slc32a1). We confirmed the direct release of GABA by knocking out Slc32a1 from cholinergic neurons. Our results identify GABA as an overlooked fast neurotransmitter utilized throughout the forebrain cholinergic system. GABA/ACh corelease may have major implications for modulation of cortical function by cholinergic neurons. DOI: http://dx.doi.org/10.7554/eLife.06412.001 PMID:25723967

  3. Ascending connections to the forebrain in the Tegu lizard.

    PubMed

    Lohman, A H; van Woerden-Verkley, I

    1978-12-01

    The ascending connections to the striatum and the cortex of the Tegu lizard, Tupinambis nigropunctatus, were studied by means of anterograde fiber degeneration and retrograde axonal transport. The striatum receives projections by way of the dorsal peduncle of the lateral forebrain bundle from four dorsal thalamic nuclei: nucleus rotundus, nucleus reuniens, the posterior part of the dorsal lateral geniculate nucleus and nucleus dorsomedialis. The former three nuclei project to circumscribed areas of the dorsal striatum, whereas nucleus dorsomedialis has a distribution to the whole dorsal striatum. Other sources of origin to the striatum are the mesencephalic reticular formation, substantia nigra and nucleus cerebelli lateralis. With the exception of the latter afferentation all these projections are ipsilateral. The ascending connections to the pallium originate for the major part from nucleus dorsolateralis anterior of the dorsal thalamus. The fibers course in both the medial forebrain bundle and the dorsal peduncle of the lateral forebrain bundle and terminate ipsilaterally in the middle of the molecular layer of the small-celled part of the mediodorsal cortex and bilaterally above the intermediate region of the dorsal cortex. The latter area is reached also by fibers from the septal area. The large-celled part of the mediodorsal cortex receives projections from nucleus raphes superior and the corpus mammillare.

  4. Reduced Cerebral Oxygen Content in the DG and SVZ In Situ Promotes Neurogenesis in the Adult Rat Brain In Vivo.

    PubMed

    Zhang, Kuan; Zhou, Yanzhao; Zhao, Tong; Wu, Liying; Huang, Xin; Wu, Kuiwu; Xu, Lun; Li, Dahu; Liu, Shuhong; Zhao, Yongqi; Fan, Ming; Zhu, Lingling

    2015-01-01

    Neurogenesis in the adult brain occurs mainly within two neurogenic structures, the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ) of the forebrain. It has been reported that mild hypoxia promoted the proliferation of Neural Stem Cells (NSCs)in vitro. Our previous study further demonstrated that an external hypoxic environment stimulated neurogenesis in the adult rat brain in vivo. However, it remains unknown how external hypoxic environments affect the oxygen content in the brain and result in neurogenesis. Here we use an optical fiber luminescent oxygen sensor to detect the oxygen content in the adult rat brain in situ under normoxia and hypoxia. We found that the distribution of oxygen in cerebral regions is spatiotemporally heterogeneous. The Po2 values in the ventricles (45∼50 Torr) and DG (approximately 10 Torr) were much higher than those of other parts of the brain, such as the cortex and thalamus (approximately 2 Torr). Interestingly, our in vivo studies showed that an external hypoxic environment could change the intrinsic oxygen content in brain tissues, notably reducing oxygen levels in both the DG and SVZ, the major sites of adult neurogenesis. Furthermore, the hypoxic environment also increased the expression of HIF-1α and VEGF, two factors that have been reported to regulate neurogenesis, within the DG and SVZ. Thus, we have demonstrated that reducing the oxygen content of the external environment decreased Po2 levels in the DG and SVZ. This reduced oxygen level in the DG and SVZ might be the main mechanism triggering neurogenesis in the adult brain. More importantly, we speculate that varying oxygen levels may be the physiological basis of the regionally restricted neurogenesis in the adult brain.

  5. Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer's pathology

    PubMed Central

    Schmitz, Taylor W.; Nathan Spreng, R.; Weiner, Michael W.; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowki, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Shaw, Leslie M.; Khachaturian, Zaven; Sorensen, Greg; Kuller, Lew; Raichle, Marc; Paul, Steven; Davies, Peter; Fillit, Howard; Hefti, Franz; Holtzman, Davie; Mesulam, M Marcel; Potter, William; Snyder, Peter; Schwartz, Adam; Montine, Tom; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Jiminez, Gus; Harvey, Danielle; Bernstein, Matthew; Fox, Nick; Thompson, Paul; Schuff, Norbert; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Landau, Susan; Cairns, Nigel J.; Householder, Erin; Taylor-Reinwald, Lisa; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Crawford, Karen; Neu, Scott; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Faber, Kelley; Kim, Sungeun; Nho, Kwangsik; Thal, Leon; Buckholtz, Neil; Albert, Marylyn; Frank, Richard; Hsiao, John; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Carter, Raina; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Fleisher, Adam; Heidebrink, Judith L.; Lord, Joanne L.; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Grossman, Hillel; Mitsis, Effie; de Toledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; D'Agostino, Daniel; Kielb, Stephanie; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Wong, Terence Z.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H. S.; Lu, Po H.; Bartzokis, George; Graff-Radford, Neill R.; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Farlow, Martin R.; Hake, AnnMarie; Matthews, Brandy R.; Herring, Scott; Hunt, Cynthia; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristine; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan N.; Belden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Hudson, Leon; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Santulli, Robert B.; Kitzmiller, Tamar J.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Spicer, Kenneth; Bachman, David; Finger, Elizabether; Pasternak, Stephen; Rachinsky, Irina; Drost, Dick; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Smith, Karen Elizabeth; Relkin, Norman; Chaing, Gloria; Raudin, Lisa; Smith, Amanda; Fargher, Kristin; Raj, Balebail Ashok; Neylan, Thomas; Grafman, Jordan; Davis, Melissa; Morrison, Rosemary; Hayes, Jacqueline; Finley, Shannon; Friedl, Karl; Fleischman, Debra; Arfanakis, Konstantinos; James, Olga; Massoglia, Dino; Fruehling, J. Jay; Harding, Sandra; Peskind, Elaine R.; Petrie, Eric C.; Li, Gail; Yesavage, Jerome A.; Taylor, Joy L.; Furst, Ansgar J.

    2016-01-01

    There is considerable debate whether Alzheimer's disease (AD) originates in basal forebrain or entorhinal cortex. Here we examined whether longitudinal decreases in basal forebrain and entorhinal cortex grey matter volume were interdependent and sequential. In a large cohort of age-matched older adults ranging from cognitively normal to AD, we demonstrate that basal forebrain volume predicts longitudinal entorhinal degeneration. Models of parallel degeneration or entorhinal origin received negligible support. We then integrated volumetric measures with an amyloid biomarker sensitive to pre-symptomatic AD pathology. Comparison between cognitively matched normal adult subgroups, delineated according to the amyloid biomarker, revealed abnormal degeneration in basal forebrain, but not entorhinal cortex. Abnormal degeneration in both basal forebrain and entorhinal cortex was only observed among prodromal (mildly amnestic) individuals. We provide evidence that basal forebrain pathology precedes and predicts both entorhinal pathology and memory impairment, challenging the widely held belief that AD has a cortical origin. PMID:27811848

  6. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    PubMed

    Swartzwelder, H Scott; Acheson, Shawn K; Miller, Kelsey M; Sexton, Hannah G; Liu, Wen; Crews, Fulton T; Risher, Mary-Louise

    2015-01-01

    The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30) received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR) test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE.

  7. Oligodendrocyte lineage and subventricular zone response to traumatic axonal injury in the corpus callosum.

    PubMed

    Sullivan, Genevieve M; Mierzwa, Amanda J; Kijpaisalratana, Naruchorn; Tang, Haiying; Wang, Yong; Song, Sheng-Kwei; Selwyn, Reed; Armstrong, Regina C

    2013-12-01

    Traumatic brain injury frequently causes traumatic axonal injury (TAI) in white matter tracts. Experimental TAI in the corpus callosum of adult mice was used to examine the effects on oligodendrocyte lineage cells and myelin in conjunction with neuroimaging. The injury targeted the corpus callosum over the subventricular zone, a source of neural stem/progenitor cells. Traumatic axonal injury was produced in the rostral body of the corpus callosum by impact onto the skull at the bregma. During the first week after injury, magnetic resonance diffusion tensor imaging showed that axial diffusivity decreased in the corpus callosum and that corresponding regions exhibited significant axon damage accompanied by hypertrophic microglia and reactive astrocytes. Oligodendrocyte progenitor proliferation increased in the subventricular zone and corpus callosum. Oligodendrocytes in the corpus callosum shifted toward upregulation of myelin gene transcription. Plp/CreER(T):R26IAP reporter mice showed normal reporter labeling of myelin sheaths 0 to 2 days after injury but labeling was increased between 2 and 7 days after injury. Electron microscopy revealed axon degeneration, demyelination, and redundant myelin figures. These findings expand the cell types and responses to white matter injuries that inform diffusion tensor imaging evaluation and identify pivotal white matter changes after TAI that may affect axon vulnerability vs. recovery after brain injury.

  8. Gypenosides pre-treatment protects the brain against cerebral ischemia and increases neural stem cells/progenitors in the subventricular zone.

    PubMed

    Wang, Xiao-Jing; Sun, Tao; Kong, Liang; Shang, Zhen-Hua; Yang, Kun-Qi; Zhang, Qing-Yu; Jing, Fang-Miao; Dong, Lun; Xu, Xu-Feng; Liu, Jia-Xin; Xin, Hua; Chen, Zhe-Yu

    2014-04-01

    Gypenosides (GPs) have been reported to have neuroprotective effects in addition to other bioactivities. The protective activity of GPs during stroke and their effects on neural stem cells (NSCs) in the ischemic brain have not been fully elucidated. Here, we test the effects of GPs during stroke and on the NSCs within the subventricular zone (SVZ) of middle cerebral artery occlusion (MCAO) rats. Our results show that pre-treatment with GPs can reduce infarct volume and improve motor function following MCAO. Pre-treatment with GPs significantly increased the number of BrdU-positive cells in the ipsilateral and contralateral SVZ of MCAO rats. The proliferating cells in both sides of the SVZ were glial fibrillary acidic protein (GFAP)/nestin-positive type B cells and doublecortin (DCX)/nestin-positive type A cells. Our data indicate that GPs have neuroprotective effects during stroke which might be mediated through the enhancement of neurogenesis within the SVZ. These findings provide new evidence for a potential therapy involving GPs for the treatment of stroke.

  9. The carbocyanine dye DiD labels in vitro and in vivo neural stem cells of the subventricular zone as well as myelinated structures following in vivo injection in the lateral ventricle.

    PubMed

    Carradori, Dario; Barreau, Kristell; Eyer, Joël

    2016-02-01

    Carbocyanines are fluorescent lipophilic cationic dyes used since the early 1980s as neuronal tracers. Several applications of these compounds have been developed thanks to their low cell toxicity, lateral diffusion within the cellular membranes, and good photostability. 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine 4-chlorobenzenesulfonate (DiD) is an interesting component of this family because, in addition to the classic carbocyanine properties, it has a longer wavelength compared with its analogues. That makes DiD an excellent carbocyanine for labeling cells and tissues with significant intrinsic fluorescence. Drug encapsulation, drug delivery, and cellular transplantation are also fields using DiD-based systems where having detailed knowledge about its behavior as a single entity is important. Recently, promising studies concerned neural stem cells from the subventricular zone of the lateral ventricle in the brain (their natural niche) and their potential therapeutic use. Here, we show that DiD is able to label these stem cells in vitro and present basilar information concerning its pharmacokinetics, concentrations, and microscope protocols. Moreover, when DiD is injected in vivo in the cerebrospinal fluid present in the lateral ventricle of rat, it also labels stem cells as well as myelinated structures of the caudoputamen. This analysis provides a database to consult when planning experiments concerning DiD and neural stem cells from the subventricular zone. © 2015 Wiley Periodicals, Inc.

  10. Bilateral changes after neonatal ischemia in the P7 rat brain.

    PubMed

    Spiegler, Maria; Villapol, Sonia; Biran, Valérie; Goyenvalle, Catherine; Mariani, Jean; Renolleau, Sylvain; Charriaut-Marlangue, Christiane

    2007-06-01

    Neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and subgranular zone (SGZ) and increases in the adult after brain injury. In this study, postnatal day 7 rats underwent middle cerebral artery electrocoagulation and transient homolateral common carotid artery occlusion, a lesioning protocol that resulted in ipsilateral (IL) forebrain ischemic injury, leading to a cortical cavity 3 weeks later. The effects of neonatal ischemia on hemispheric damage, cell death, cell proliferation, and neurogenesis were examined 4 hours to 6 weeks later by the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and immunohistochemistry of Ki-67 in proliferating cells and of doublecortin, a microtubule-associated protein expressed only by immature neurons. Neonatal ischemic injury resulted in persistent reduced IL and transient reduced contralateral (CL) hemispheric areas, a consequence of sustained and transient cell death in the IL and CL areas, respectively. Ki-67 immunostaining revealed 3 peaks of newly generated cells in the dorsal SVZ and SGZ in the IL side and also in the CL side at 48 hours and 7 and 28 days after ischemia. Double immunofluorescence revealed that most of the Ki-67-positive cells were astrocytes at 48 hours. Ischemic injury also stimulated SVZ neurogenesis, based on increased doublecortin immunostaining in both SVZs at 7 to 14 days after injury. Doublecortin-positive neurons remained visible around the lesion at 21 days but displayed an immature shape in discrete chains or clusters. Although unilateral ischemic damage was produced, results indicate successful regenerative changes in the CL hemisphere, allowing anatomical recovery.

  11. Age-related intraneuronal elevation of αII-spectrin breakdown product SBDP120 in rodent forebrain accelerates in 3×Tg-AD mice.

    PubMed

    Cai, Yan; Zhu, Hai-Xia; Li, Jian-Ming; Luo, Xue-Gang; Patrylo, Peter R; Rose, Gregory M; Streeter, Jackson; Hayes, Ron; Wang, Kevin K W; Yan, Xiao-Xin; Jeromin, Andreas

    2012-01-01

    Spectrins line the intracellular surface of plasmalemma and play a critical role in supporting cytoskeletal stability and flexibility. Spectrins can be proteolytically degraded by calpains and caspases, yielding breakdown products (SBDPs) of various molecular sizes, with SBDP120 being largely derived from caspase-3 cleavage. SBDPs are putative biomarkers for traumatic brain injury. The levels of SBDPs also elevate in the brain during aging and perhaps in Alzheimer's disease (AD), although the cellular basis for this change is currently unclear. Here we examined age-related SBDP120 alteration in forebrain neurons in rats and in the triple transgenic model of AD (3×Tg-AD) relative to non-transgenic controls. SBDP120 immunoreactivity (IR) was found in cortical neuronal somata in aged rats, and was prominent in the proximal dendrites of the olfactory bulb mitral cells. Western blot and densitometric analyses in wild-type mice revealed an age-related elevation of intraneuronal SBDP120 in the forebrain which was more robust in their 3×Tg-AD counterparts. The intraneuronal SBDP120 occurrence was not spatiotemporally correlated with transgenic amyloid precursor protein (APP) expression, β-amyloid plaque development, or phosphorylated tau expression over various forebrain regions or lamina. No microscopically detectable in situ activated caspase-3 was found in the nuclei of SBDP120-containing neurons. The present study demonstrates the age-dependent intraneuronal presence of an αII-spectrin cleavage fragment in mammalian forebrain which is exacerbated in a transgenic model of AD. This novel neuronal alteration indicates that impairments in membrane protein metabolism, possibly due to neuronal calcium mishandling and/or enhancement of calcium sensitive proteolysis, occur during aging and in transgenic AD mice.

  12. Discharge patterns of neurons in cholinergic regions of the basal forebrain during waking and sleep.

    PubMed

    Szymusiak, R; Alam, N; McGinty, D

    2000-11-01

    A subset of neurons recorded in the magnocellular basal forebrain (mBF) of cats and rats exhibit elevated discharge rates during waking and REM sleep, and diminished discharge during sleep with cortical EEG synchrony (nonREM sleep). This pattern is observed in mBF neurons in cats with identified ascending projections, and in neurons located in cholinergic regions of the rat mBF. However, the cholinergic versus noncholinergic nature of recorded cells could not be determined with the extracellular recording method employed. During waking, discharge of mBF neurons is strongly movement-related. Peak discharge rates occur during a variety of head and limb movements. Discharge rates during waking immobility are reduced by >50% compared to rates during waking movement. The absence of movement accounts for more of the variance in discharge across the sleep-wake cycle than does the presence of cortical EEG synchronization. Several factors participate in the regulation of mBF neuronal activity across arousal states. Tonic inhibition mediated by adenosine appears to be present during both waking and sleep. In some mBF neurons, increased GABAergic inhibition contributes to nonREM sleep-related reductions in discharge rate. Fluctuations in mBF cell activity during waking behaviors may reflect changing excitatory input from neurons in the pontine and midbrain tegmentum.

  13. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention

    PubMed Central

    Villano, Ines; Messina, Antonietta; Valenzano, Anna; Moscatelli, Fiorenzo; Esposito, Teresa; Monda, Vincenzo; Esposito, Maria; Precenzano, Francesco; Carotenuto, Marco; Viggiano, Andrea; Chieffi, Sergio; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    The basal forebrain (BF) cholinergic system has an important role in attentive functions. The cholinergic system can be activated by different inputs, and in particular, by orexin neurons, whose cell bodies are located within the postero-lateral hypothalamus. Recently the orexin-producing neurons have been proved to promote arousal and attention through their projections to the BF. The aim of this review article is to summarize the evidence showing that the orexin system contributes to attentional processing by an increase in cortical acetylcholine release and in cortical neurons activity. PMID:28197081

  14. Traumatic Brain Injury Activation of the Adult Subventricular Zone Neurogenic Niche

    PubMed Central

    Chang, Eun Hyuk; Adorjan, Istvan; Mundim, Mayara V.; Sun, Bin; Dizon, Maria L. V.; Szele, Francis G.

    2016-01-01

    Traumatic brain injury (TBI) is common in both civilian and military life, placing a large burden on survivors and society. However, with the recognition of neural stem cells in adult mammals, including humans, came the possibility to harness these cells for repair of damaged brain, whereas previously this was thought to be impossible. In this review, we focus on the rodent adult subventricular zone (SVZ), an important neurogenic niche within the mature brain in which neural stem cells continue to reside. We review how the SVZ is perturbed following various animal TBI models with regards to cell proliferation, emigration, survival, and differentiation, and we review specific molecules involved in these processes. Together, this information suggests next steps in attempting to translate knowledge from TBI animal models into human therapies for TBI. PMID:27531972

  15. Excitatory Hindbrain–Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss

    PubMed Central

    Alhadeff, Amber L.; Holland, Ruby A.; Zheng, Huiyuan; Rinaman, Linda; Grill, Harvey J.

    2017-01-01

    Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain–forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. SIGNIFICANCE STATEMENT Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight

  16. Excitatory Hindbrain-Forebrain Communication Is Required for Cisplatin-Induced Anorexia and Weight Loss.

    PubMed

    Alhadeff, Amber L; Holland, Ruby A; Zheng, Huiyuan; Rinaman, Linda; Grill, Harvey J; De Jonghe, Bart C

    2017-01-11

    Cisplatin chemotherapy is commonly used to treat cancer despite severe energy balance side effects. In rats, cisplatin activates nucleus tractus solitarius (NTS) projections to the lateral parabrachial nucleus (lPBN) and calcitonin-gene related peptide (CGRP) projections from the lPBN to the central nucleus of the amygdala (CeA). We demonstrated previously that CeA glutamate receptor signaling mediates cisplatin-induced anorexia and body weight loss. Here, we used neuroanatomical tracing, immunofluorescence, and confocal imaging to demonstrate that virtually all NTS→lPBN and lPBN→CeA CGRP projections coexpress vesicular glutamate transporter 2 (VGLUT2), providing evidence that excitatory projections mediate cisplatin-induced energy balance dysregulation. To test whether lPBN→CeA projection neurons are required for cisplatin-induced anorexia and weight loss, we inhibited these neurons chemogenetically using a retrograde Cre-recombinase-expressing canine adenovirus-2 in combination with Cre-dependent inhibitory Designer Receptors Exclusive Activated by Designer Drugs (DREADDs) before cisplatin treatment. Inhibition of lPBN→CeA neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Using a similar approach, we additionally demonstrated that inhibition of NTS→lPBN neurons attenuated cisplatin-induced anorexia and body weight loss significantly. Together, our data support the view that excitatory hindbrain-forebrain projections are necessary for cisplatin's untoward effects on energy intake, elucidating a key neuroanatomical circuit driving pathological anorexia and weight loss that accompanies chemotherapy treatment. Chemotherapy treatments are commonly used to treat cancers despite accompanying anorexia and weight loss that may limit treatment adherence and reduce patient quality of life. Strikingly, we lack a neural understanding of, and effective treatments for, chemotherapy-induced anorexia and weight loss. The current data

  17. A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone

    PubMed Central

    Ribeiro Xavier, Anna L.; Kress, Benjamin T.; Goldman, Steven A.; Lacerda de Menezes, João R.

    2015-01-01

    Microglia are involved in synaptic pruning both in development and in the mature CNS. In this study, we investigated whether microglia might further contribute to circuit plasticity by modulating neuronal recruitment from the neurogenic subventricular zone (SVZ) of the adult mouse striatum. We found that microglia residing in the SVZ and adjacent rostral migratory stream (RMS) comprise a morphologically and antigenically distinct phenotype of immune effectors. Whereas exhibiting characteristics of alternatively activated microglia, the SVZ/RMS microglia were clearly distinguished by their low expression of purinoceptors and lack of ATP-elicitable chemotaxis. Furthermore, the in vivo depletion of these microglia hampered the survival and migration of newly generated neuroblasts through the RMS to the olfactory bulb. SVZ and RMS microglia thus appear to comprise a functionally distinct class that is selectively adapted to the support and direction of neuronal integration into the olfactory circuitry. Therefore, this unique microglial subpopulation may serve as a novel target with which to modulate cellular addition from endogenous neural stem and progenitor cells of the adult brain. SIGNIFICANCE STATEMENT Microglial cells are a specialized population of macrophages in the CNS, playing key roles as immune mediators. As integral components in the CNS, the microglia stand out for using the same mechanisms, phagocytosis and cytochemokine release, to promote homeostasis, synaptic pruning, and neural circuitry sculpture. Here, we addressed microglial functions in the subventricular zone (SVZ), the major postnatal neurogenic niche. Our results depict microglia as a conspicuous component of SVZ and its anterior extension, the rostral migratory stream, a pathway used by neuroblasts during their transit toward olfactory bulb layers. In addition to other unique populations residing in the SVZ niche, microglia display distinct morphofunctional properties that boost neuronal

  18. A Distinct Population of Microglia Supports Adult Neurogenesis in the Subventricular Zone.

    PubMed

    Ribeiro Xavier, Anna L; Kress, Benjamin T; Goldman, Steven A; Lacerda de Menezes, João R; Nedergaard, Maiken

    2015-08-26

    Microglia are involved in synaptic pruning both in development and in the mature CNS. In this study, we investigated whether microglia might further contribute to circuit plasticity by modulating neuronal recruitment from the neurogenic subventricular zone (SVZ) of the adult mouse striatum. We found that microglia residing in the SVZ and adjacent rostral migratory stream (RMS) comprise a morphologically and antigenically distinct phenotype of immune effectors. Whereas exhibiting characteristics of alternatively activated microglia, the SVZ/RMS microglia were clearly distinguished by their low expression of purinoceptors and lack of ATP-elicitable chemotaxis. Furthermore, the in vivo depletion of these microglia hampered the survival and migration of newly generated neuroblasts through the RMS to the olfactory bulb. SVZ and RMS microglia thus appear to comprise a functionally distinct class that is selectively adapted to the support and direction of neuronal integration into the olfactory circuitry. Therefore, this unique microglial subpopulation may serve as a novel target with which to modulate cellular addition from endogenous neural stem and progenitor cells of the adult brain. Microglial cells are a specialized population of macrophages in the CNS, playing key roles as immune mediators. As integral components in the CNS, the microglia stand out for using the same mechanisms, phagocytosis and cytochemokine release, to promote homeostasis, synaptic pruning, and neural circuitry sculpture. Here, we addressed microglial functions in the subventricular zone (SVZ), the major postnatal neurogenic niche. Our results depict microglia as a conspicuous component of SVZ and its anterior extension, the rostral migratory stream, a pathway used by neuroblasts during their transit toward olfactory bulb layers. In addition to other unique populations residing in the SVZ niche, microglia display distinct morphofunctional properties that boost neuronal progenitor survival and

  19. Dynamic variation in forebrain estradiol levels during song learning

    PubMed Central

    Chao, Andrew; Paon, Ashley; Remage-Healey, Luke

    2014-01-01

    Estrogens shape brain circuits during development, and the capacity to synthesize estrogens locally has consequences for both sexual differentiation and the acute modulation of circuits during early learning. A recently-optimized method to detect and quantify fluctuations in brain estrogens in vivo provides a direct means to explore how brain estrogen production contributes to both differentiation and neuromodulation during development. Here, we use this method to test the hypothesis that neuroestrogens are sexually-differentiated as well as dynamically responsive to song tutoring (via passive video/audio playback) during the period of song learning in juvenile zebra finches. Our results show that baseline neuroestradiol levels in the caudal forebrain do not differ between males and females during an early critical masculinization window. Instead, we observe a prominent difference between males and females in baseline neuroestradiol that emerges during the subadult stage as animals approach sexual maturity. Second, we observe that fluctuating neuroestradiol levels during periods of passive song tutoring exhibit a markedly different profile in juveniles as compared to adults. Specifically, neuroestrogens in the caudal forebrain are elevated following (rather than during) tutor song exposure in both juvenile males and females, suggesting an important role for the early consolidation of tutor song memories. These results further reveal a circadian influence on the fluctuations in local neuroestrogens during sensory/cognitive tasks. Taken together, these findings uncover several unexpected features of brain estrogen synthesis in juvenile animals that may have implications for secondary masculinization as well as the consolidation of recent sensory experiences. PMID:25205304

  20. A cholinergic basal forebrain feeding circuit modulates appetite suppression.

    PubMed

    Herman, Alexander M; Ortiz-Guzman, Joshua; Kochukov, Mikhail; Herman, Isabella; Quast, Kathleen B; Patel, Jay M; Tepe, Burak; Carlson, Jeffrey C; Ung, Kevin; Selever, Jennifer; Tong, Qingchun; Arenkiel, Benjamin R

    2016-10-13

    Atypical food intake is a primary cause of obesity and other eating and metabolic disorders. Insight into the neural control of feeding has previously focused mainly on signalling mechanisms associated with the hypothalamus, the major centre in the brain that regulates body weight homeostasis. However, roles of non-canonical central nervous system signalling mechanisms in regulating feeding behaviour have been largely uncharacterized. Acetylcholine has long been proposed to influence feeding owing in part to the functional similarity between acetylcholine and nicotine, a known appetite suppressant. Nicotine is an exogenous agonist for acetylcholine receptors, suggesting that endogenous cholinergic signalling may play a part in normal physiological regulation of feeding. However, it remains unclear how cholinergic neurons in the brain regulate food intake. Here we report that cholinergic neurons of the mouse basal forebrain potently influence food intake and body weight. Impairment of cholinergic signalling increases food intake and results in severe obesity, whereas enhanced cholinergic signalling decreases food consumption. We found that cholinergic circuits modulate appetite suppression on downstream targets in the hypothalamus. Together our data reveal the cholinergic basal forebrain as a major modulatory centre underlying feeding behaviour.

  1. Distribution of vasopressin in the forebrain of spotted hyenas.

    PubMed

    Rosen, Greta J; De Vries, Geert J; Villalba, Constanza; Weldele, Mary L; Place, Ned J; Coscia, Elizabeth M; Glickman, Steve E; Forger, Nancy G

    2006-09-01

    The extreme virilization of the female spotted hyena raises interesting questions with respect to sexual differentiation of the brain and behavior. Females are larger and more aggressive than adult, non-natal males and dominate them in social encounters; their external genitalia also are highly masculinized. In many vertebrates, the arginine vasopressin (VP) innervation of the forebrain, particularly that of the lateral septum, is associated with social behaviors such as aggression and dominance. Here, we used immunohistochemistry to examine the distribution of VP cells and fibers in the forebrains of adult spotted hyenas. We find the expected densely staining VP immunoreactive (VP-ir) neurons in the paraventricular and supraoptic nuclei, as well as an unusually extensive distribution of magnocelluar VP-ir neurons in accessory regions. A small number of VP-ir cell bodies are present in the suprachiasmatic nucleus and bed nucleus of the stria terminalis; however, there are extensive VP-ir fiber networks in presumed projection areas of these nuclei, for example, the subparaventricular zone and lateral septum, respectively. No significant sex differences were detected in the density of VP-ir fibers in any area examined. In the lateral septum, however, marked variability was observed. Intact females exhibited a dense fiber network, as did two of the four males examined; the two other males had almost no VP-ir septal fibers. This contrasts with findings in many other vertebrate species, in which VP innervation of the lateral septum is consistently greater in males than in females.

  2. Adolescent binge ethanol exposure alters specific forebrain cholinergic cell populations and leads to selective functional deficits in the prefrontal cortex.

    PubMed

    Fernandez, Gina M; Savage, Lisa M

    2017-10-11

    Adolescence has been identified as a vulnerable developmental time period during which exposure to drugs can have long-lasting, detrimental effects. Although adolescent binge-like ethanol (EtOH) exposure leads to a significant reduction in forebrain cholinergic neurons, EtOH's functional effect on acetylcholine (ACh) release during behavior has yet to be examined. Using an adolescent intermittent ethanol exposure model (AIE), rats were exposed to binge-like levels of EtOH from postnatal days (PD) 25 to 55. Three weeks following the final EtOH exposure, cholinergic functioning was assessed during a spontaneous alternation protocol. During maze testing, ACh levels increased in both the hippocampus and prefrontal cortex. However, selectively in the prefrontal cortex, AIE rats displayed reduced levels of behaviorally relevant ACh efflux. We found no treatment differences in spatial exploration, spatial learning, spatial reversal, or novel object recognition. In contrast, AIE rats were impaired during the first attentional set shift on an operant set-shifting task, indicative of an EtOH-mediated deficit in cognitive flexibility. A unique pattern of cholinergic cell loss was observed in the basal forebrain following AIE: Within the medial septum/diagonal band there was a selective loss (30%) of choline acetyltransferase (ChAT)-positive neurons that were nestin negative (ChAT+/nestin-); whereas in the Nucleus basalis of Meynert (NbM) there was a selective reduction (50%) in ChAT+/nestin+. These results indicate that early adolescent binge EtOH exposure leads to a long-lasting frontocortical functional cholinergic deficit, driven by a loss of ChAT+/nestin+ neurons in the NbM, which was associated with impaired cognitive flexibility during adulthood. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. A frontal cortex event-related potential driven by the basal forebrain

    PubMed Central

    Nguyen, David P; Lin, Shih-Chieh

    2014-01-01

    Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497

  4. Intrinsic voltage dynamics govern the diversity of spontaneous firing profiles in basal forebrain noncholinergic neurons

    PubMed Central

    Dolly, J. Oliver; Zaborszky, Laszlo

    2012-01-01

    Spontaneous firing and behavior-related changes in discharge profiles of basal forebrain (BF) neurons are well documented, albeit the mechanisms underlying the variety of activity modes and intermodal transitions remain elusive. With the use of cell-attached recordings, this study identifies a range of spiking patterns in diagonal band Broca (DBB) noncholinergic cells of rats and tentatively categorizes them into low-rate random, tonic, and cluster firing activities. It demonstrates further that the multiplicity of discharge profiles is sustained intrinsically and persists after blockade of glutamate-, glycine/GABA-, and cholinergic synaptic inputs. Stimulation of muscarinic receptors, blockade of voltage-gated Ca2+-, and small conductance (SK) Ca2+-activated K+ currents as well as chelating of intracellular Ca2+ concentration accelerate low-rate random and tonic firing and favor transition of neurons into cluster firing mode. A similar trend towards higher discharge rates with switch of neurons into cluster firing has been revealed by activation of neuropeptide Y (NPY) receptors with the NPY or NPY1 receptor agonist [Leu31,Pro34]-NPY. Whole cell current-clamp analysis demonstrates that the variety of spiking modes and intermodal transitions could be induced within the same neuronal population by injection of bias depolarizing or hyperpolarizing currents. Taken together, these data demonstrate the intrinsic and highly variable character of regenerative firing in BF noncholinergic cells, subject to powerful modulation by classical neurotransmitters, NPY, and small membrane currents. PMID:22496531

  5. Dynamic behaviour of human neuroepithelial cells in the developing forebrain

    PubMed Central

    Subramanian, Lakshmi; Bershteyn, Marina; Paredes, Mercedes F.; Kriegstein, Arnold R.

    2017-01-01

    To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal processes, and both daughter cells regrow a new process following cytokinesis. The mitotic retraction of the basal process is recapitulated by NE cells in cerebral organoids generated from human-induced pluripotent stem cells. In contrast, RG cells undergoing vertical cleavage retain their basal fibres throughout mitosis, both in primary tissue and in older organoids. Our findings highlight developmentally regulated changes in mitotic behaviour that may relate to the role of RG cells to provide a stable scaffold for neuronal migration, and suggest that the transition in mitotic dynamics can be studied in organoid models. PMID:28139695

  6. The dopaminergic projection system, basal forebrain macrosystems, and conditioned stimuli

    PubMed Central

    Zahm, Daniel S.

    2011-01-01

    This review begins with a description of some problems that in recent years have beset an influential circuit model of fear-conditioning and goes on to look at neuroanatomy that might subserve conditioning viewed in a broader perspective, including not only fear, but also appetitive, conditioning. The paper then focuses on basal forebrain functional-anatomical systems, or macrosystems, as they have come to be called, which Lennart Heimer and colleagues described beginning in the 1970’s. Yet more specific attention is then given to the relationships of the dorsal and ventral striatopallidal systems and extended amygdala with the dopaminergic mesotelencephalic projection systems, culminating with the hypothesis that all macrosystems contribute to behavioral conditioning. PMID:18204412

  7. Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer's Disease Patients.

    PubMed

    Kerbler, Georg M; Nedelska, Zuzana; Fripp, Jurgen; Laczó, Jan; Vyhnalek, Martin; Lisý, Jiří; Hamlin, Adam S; Rose, Stephen; Hort, Jakub; Coulson, Elizabeth J

    2015-01-01

    The basal forebrain degenerates in Alzheimer's disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants' ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy.

  8. Dynamic variation in forebrain estradiol levels during song learning.

    PubMed

    Chao, Andrew; Paon, Ashley; Remage-Healey, Luke

    2015-03-01

    Estrogens shape brain circuits during development, and the capacity to synthesize estrogens locally has consequences for both sexual differentiation and the acute modulation of circuits during early learning. A recently optimized method to detect and quantify fluctuations in brain estrogens in vivo provides a direct means to explore how brain estrogen production contributes to both differentiation and neuromodulation during development. Here, we use this method to test the hypothesis that neuroestrogens are sexually differentiated as well as dynamically responsive to song tutoring (via passive video/audio playback) during the period of song learning in juvenile zebra finches. Our results show that baseline neuroestradiol levels in the caudal forebrain do not differ between males and females during an early critical masculinization window. Instead, we observe a prominent difference between males and females in baseline neuroestradiol that emerges during the subadult stage as animals approach sexual maturity. Second, we observe that fluctuating neuroestradiol levels during periods of passive song tutoring exhibit a markedly different profile in juveniles as compared to adults. Specifically, neuroestrogens in the caudal forebrain are elevated following (rather than during) tutor song exposure in both juvenile males and females, suggesting an important role for the early consolidation of tutor song memories. These results further reveal a circadian influence on the fluctuations in local neuroestrogens during sensory/cognitive tasks. Taken together, these findings uncover several unexpected features of brain estrogen synthesis in juvenile animals that may have implications for secondary masculinization as well as the consolidation of recent sensory experiences. © 2014 Wiley Periodicals, Inc.

  9. Patterns of cell death in the perinatal mouse forebrain.

    PubMed

    Mosley, Morgan; Shah, Charisma; Morse, Kiriana A; Miloro, Stephen A; Holmes, Melissa M; Ahern, Todd H; Forger, Nancy G

    2017-01-01

    The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Novel in vivo imaging techniques for trafficking the behavior of subventricular zone neural stem cells (SVZSC) and SVZSC induced functional repair

    SciTech Connect

    Anna-Liisa Brownell

    2003-11-28

    Adult progenitor cells hold promise for therapeutic treatment where there has been a disabling loss of function due to death of cells from trauma, disease or aging. However, it will be essential in clinical application to be able to follow the fate of the transplanted cells over time using in vivo tracking methods. We have developed protocol for labeling of progenitor cells to monitor cell trafficking by high resolution magnetic resonance imaging (MRI) and super high resolution positron emission tomography (PET). We have transfected rat subventricular zone stem cells (SVZ, progenitor cell line) and another control cell line (PC12, pheochromocytoma cells) utilizing super paramagnetic iron oxide and poly-L-lysine complex for MR imaging or radiolabeling with 18F-fluor deoxy-D- glucose for PET imaging. The labeled cells were transplanted into the rostral migratory stream (RMS) or striatum of normal or 6-hydroxydopamine lesioned Spraque-Dawley rats. Longitudinal MRI studies (up to 40 days) showed that transplantation site has significant impact to the fate of the cells; when SVZ cells were transplanted into the RMS, cells migrated several centimeter into the olfactory bulb; after transplantation into the striatum, the migration was minimal, only 2 mm. PC 12 cells grew a massive tumor after the striatal implantation and significantly smaller tumor after the RMS implantation. PET studies conducted immediately after transplantation verified the transplantation site. MRI studies were able to show the whole path of migration in one image, since part of the cells die during migration and will get detected because of iron content. Endpoint histological studies verified the cell survival and immunohistochemical studies revealed the differentiation of the transplanted cells into astrocytes and neurons.

  11. P2X7 receptor inhibition increases CNTF in the subventricular zone, but not neurogenesis or neuroprotection after stroke in adult mice.

    PubMed

    Kang, Seong Su; Keasey, Matthew Phillip; Hagg, Theo

    2013-10-01

    Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40-60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.

  12. P2X7 Receptor Inhibition Increases CNTF in the Subventricular Zone, But Not Neurogenesis or Neuroprotection After Stroke in Adult Mice

    PubMed Central

    Kang, Seong Su; Keasey, Matthew Phillip

    2013-01-01

    Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40–60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke. PMID:24312160

  13. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone

    PubMed Central

    Rushing, Gabrielle; Ihrie, Rebecca A.

    2016-01-01

    BACKGROUND The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate. OBJECTIVE This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ). METHODS A literature search was conducted using Pubmed including the keywords “ventricular-subventricular zone,” “neural stem cell,” “heterogeneity,” “identity” and/or “single cell” to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s). RESULTS This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type. CONCLUSIONS Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo

  14. Nitric Oxidergic Cells Related to Ejaculation in Gerbil Forebrain Contain Androgen Receptor and Respond to Testosterone

    PubMed Central

    Simmons, Danielle A.; Yahr, Pauline

    2013-01-01

    Two clusters of forebrain neurons—one in the posterodorsal preoptic nucleus (PdPN) and one in the lateral part of the posterodorsal medial amygdala (MeApd)—are activated at ejaculation in male rats and gerbils as seen with Fos immunocytochemistry. To understand the functions of these cells and how they respond synchronously, it may be useful to identify their neurotransmitters. Nitric oxide (NO) was of interest because its levels in the preoptic area affect ejaculation, and it could synchronize clustered neurons through paracrine/volume transmission. Thus, we determined whether the ejaculation-related cells produce NO by assessing Fos co-localization with NO synthase (NOS) in recently mated male gerbils. We also studied NOS-Fos co-localization in the medial part of the medial pre-optic nucleus (MPNm), where half of the neurons that express Fos after mating reflect ejaculation. We also quantified NOS co-localization with androgen receptor (AR) and NOS sensitivity to androgens at these sites. Without quantification, we extended these analyses throughout the hypothalamus and amygdala. Many mating-activated PdPN, lateral MeApd, and MPNm cells contained NOS (32–54%), and many NOS neurons at these sites expressed Fos (34–51%) or AR (25–69%). PdPN and MPNm NOS cells were sensitive to testosterone but not its androgenic metabolite dihydrotestosterone. The overall distribution of NOS and NOS-AR cells was similar to that in rats. These data suggest that NO may help to synchronize the activation of PdPN and lateral MeApd neurons at ejaculation and that NOS in PdPN and MPNm cells is regulated by testosterone acting via estradiol or without undergoing metabolism. PMID:21280043

  15. Ependymal ciliary dysfunction and reactive astrocytosis in a reorganized subventricular zone after stroke.

    PubMed

    Young, Christopher C; van der Harg, Judith M; Lewis, Nicola J; Brooks, Keith J; Buchan, Alastair M; Szele, Francis G

    2013-03-01

    Subventricular zone (SVZ) astrocytes and ependymal cells are both derived from radial glia and may have similar gliotic reactions after stroke. Diminishing SVZ neurogenesis worsens outcomes in mice, yet the effects of stroke on SVZ astrocytes and ependymal cells are poorly understood. We used mouse experimental stroke to determine if SVZ astrocytes and ependymal cells assume similar phenotypes and if stroke impacts their functions. Using lateral ventricular wall whole mount preparations, we show that stroke caused SVZ reactive astrocytosis, disrupting the neuroblast migratory scaffold. Also, SVZ vascular density and neural proliferation increased but apoptosis did not. In contrast to other reports, ependymal denudation and cell division was never observed. Remarkably, however, ependymal cells assumed features of reactive astrocytes post stroke, robustly expressing de novo glial fibrillary acidic protein, enlargening and extending long processes. Unexpectedly, stroke disrupted motile cilia planar cell polarity in ependymal cells. This suggested ciliary function was affected and indeed ventricular surface flow was slower and more turbulent post stroke. Together, these results demonstrate that in response to stroke there is significant SVZ reorganization with implications for both pathophysiology and therapeutic strategies.

  16. Age-related changes in astrocytic and ependymal cells of the subventricular zone.

    PubMed

    Capilla-Gonzalez, Vivian; Cebrian-Silla, Arantxa; Guerrero-Cazares, Hugo; Garcia-Verdugo, Jose Manuel; Quiñones-Hinojosa, Alfredo

    2014-05-01

    Neurogenesis persists in the adult subventricular zone (SVZ) of the mammalian brain. During aging, the SVZ neurogenic capacity undergoes a progressive decline, which is attributed to a decrease in the population of neural stem cells (NSCs). However, the behavior of the NSCs that remain in the aged brain is not fully understood. Here we performed a comparative ultrastructural study of the SVZ niche of 2-month-old and 24-month-old male C57BL/6 mice, focusing on the NSC population. Using thymidine-labeling, we showed that residual NSCs in the aged SVZ divide less frequently than those in young mice. We also provided evidence that ependymal cells are not newly generated during senescence, as others studies suggest. Remarkably, both astrocytes and ependymal cells accumulated a high number of intermediate filaments and dense bodies during aging, resembling reactive cells. A better understanding of the changes occurring in the neurogenic niche during aging will allow us to develop new strategies for fighting neurological disorders linked to senescence.

  17. Adult neural stem cells from the subventricular zone: a review of the neurosphere assay.

    PubMed

    Gil-Perotín, Sara; Duran-Moreno, María; Cebrián-Silla, Arantxa; Ramírez, Mónica; García-Belda, Paula; García-Verdugo, José Manuel

    2013-09-01

    The possibility of obtaining large numbers of cells with potential to become functional neurons implies a great advance in regenerative medicine. A source of cells for therapy is the subventricular zone (SVZ) where adult neural stem cells (NSCs) retain the ability to proliferate, self-renew, and differentiate into several mature cell types. The neurosphere assay, a method to isolate, maintain, and expand these cells has been extensively utilized by research groups to analyze the biological properties of aNSCs and to graft into injured brains from animal models. In this review we briefly describe the neurosphere assay and its limitations, the methods to optimize culture conditions, the identity and the morphology of aNSC-derived neurospheres (including new ultrastructural data). The controversy regarding the identity and "stemness" of cells within the neurosphere is revised. The fine morphology of neurospheres, described thoroughly, allows for phenotypical characterization of cells in the neurospheres and may reveal slight changes that indirectly inform about cell integrity, cell damage, or oncogenic transformation. Along this review we largely highlight the critical points that researchers have to keep in mind before extrapolating results or translating experimental transplantation of neurosphere-derived cells to the clinical setting.

  18. Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma.

    PubMed

    Qin, Elizabeth Y; Cooper, Dominique D; Abbott, Keene L; Lennon, James; Nagaraja, Surya; Mackay, Alan; Jones, Chris; Vogel, Hannes; Jackson, Peter K; Monje, Michelle

    2017-08-24

    The lateral ventricle subventricular zone (SVZ) is a frequent and consequential site of pediatric and adult glioma spread, but the cellular and molecular mechanisms mediating this are poorly understood. We demonstrate that neural precursor cell (NPC):glioma cell communication underpins this propensity of glioma to colonize the SVZ through secretion of chemoattractant signals toward which glioma cells home. Biochemical, proteomic, and functional analyses of SVZ NPC-secreted factors revealed the neurite outgrowth-promoting factor pleiotrophin, along with required binding partners SPARC/SPARCL1 and HSP90B, as key mediators of this chemoattractant effect. Pleiotrophin expression is strongly enriched in the SVZ, and pleiotrophin knock down starkly reduced glioma invasion of the SVZ in the murine brain. Pleiotrophin, in complex with the binding partners, activated glioma Rho/ROCK signaling, and ROCK inhibition decreased invasion toward SVZ NPC-secreted factors. These findings demonstrate a pathogenic role for NPC:glioma interactions and potential therapeutic targets to limit glioma invasion. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dye coupling and connexin expression by cortical radial glia in the early postnatal subventricular zone.

    PubMed

    Freitas, Andressa S; Xavier, Anna L R; Furtado, Carla M; Hedin-Pereira, Cecilia; Fróes, Maira M; Menezes, João R L

    2012-12-01

    In this study, we have analyzed the specific contribution of the cortical radial glia (RG) for gap junctional communication (GJC) within the postnatal subventricular zone (SVZ). To specifically target RG as source of dye-coupling in situ, we have developed a new technique that involves direct cell loading through the processes that reach the pial surface, with a mix of gap junction permeant (Lucifer yellow, LY) and nonpermeant (rhodamine-conjugated dextran 3 KDa, RD) fluorochromes, the latter used as a marker for direct loaded cells. Tissue sections were analyzed for identification of directly loaded (LY+RD+) and coupled cells (LY+RD-) in the SVZ. Directly loaded cells were restricted to the region underlying the pial loading surface area. Coupled cells were distributed in a bistratified manner, along the outer dorsal surface of the SVZ and aligning the ventricle, leaving the SVZ core relatively free. Blocking GJC prior to pial loading greatly reduced dye coupling. Phenotypic analysis indicated that coupling by RG excludes neuroblasts and is mostly restricted to cells of glial lineage. Notwithstanding, no corresponding restriction to specific cell phenotype was found for two connexin isotypes, Cx43 and Cx45, in the postnatal SVZ. The extensive homocellular cell coupling by RG suggests an important role in the regulation of neurogenesis and functional compartmentalization of the postnatal SVZ.

  20. Initial stages of radial glia astrocytic transformation in the early postnatal anterior subventricular zone.

    PubMed

    Alves, José A J; Barone, Patrick; Engelender, Simone; Fróes, Maira M; Menezes, João R L

    2002-09-05

    In the early postnatal subventricular zone (SVZ), two seemingly unrelated events occur simultaneously: a massive tangential migration of neuroblasts towards the olfactory bulb, known as the rostral migratory stream (RMS), and the outward movement of radial glia (RG) undergoing astrocytic transformation. Because of the orthogonal arrangement between these two sets of cells, little, if any, relevance has been ascribed for their possible interactions. By depositing DiI at the pial surface we have studied RG transformation within the SVZ/RMS, from birth up to the end of the first postnatal week. While still within the SVZ/RMS, RG morphology changed from simple bipolar to highly complex branched profiles, attaining their highest degree of complexity at the interface of the SVZ with the overlying white matter. At this interface cell bodies of radial glia accumulate and their processes run tangentially, surrounding the SVZ/RMS. Processes of RG surrounding the SVZ/RMS could also be observed by immunostaining for vimentin, GFAP, and nestin. In contrast, in the white matter all DiI-labeled RG presented a simple bipolar profile. These results indicate that the outward radial migration of the transforming RG does not occur uniformly. Instead, the different morphologies and cell densities that RG assume when they cross the SVZ/RMS and overlying white matter imply different migratory behaviors. Finally, our data suggest that RG provide a cellular scaffold to the early postnatal SVZ/RMS, much in the same way as astrocytes in the adult RMS.

  1. Cytoarchitecture of mouse and human subventricular zone in developing cerebral neocortex.

    PubMed

    Tabata, Hidenori; Yoshinaga, Satoshi; Nakajima, Kazunori

    2012-01-01

    During cerebral neocortical development, excitatory neurons are generated from radial glial cells in the ventricular zone (VZ) or from secondary progenitor cells in the subventricular zone (SVZ); these neurons then migrate toward the pial surface. We have observed that post-mitotic neurons generated directly in the VZ accumulated just above the VZ with a multipolar morphology, while secondary progenitor cells having a long ascending process left the VZ faster than the post-mitotic neurons. Recent observations of human developing neocortex have revealed the existence of radial glia-like progenitors (oRG cells) in the SVZ. This type of progenitor was first thought to be human specific; however, similar cells have also been found in mouse neocortex, and the morphology of these cells resembled that of some of the secondary progenitor cells that we had previously observed, suggesting the existence of a common architecture for the developing neocortex among mammals. In this review, we discuss the nature of the SVZ and its similarities and differences between humans and mice.

  2. Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression.

    PubMed

    Pirozzi, Christopher J; Carpenter, Austin B; Waitkus, Matthew S; Wang, Catherine Y; Zhu, Huishan; Hansen, Landon J; Chen, Lee H; Greer, Paula K; Feng, Jie; Wang, Yu; Bock, Cheryl B; Fan, Ping; Spasojevic, Ivan; McLendon, Roger E; Bigner, Darell D; He, Yiping; Yan, Hai

    2017-02-01

    IDH1 mutations occur in the majority of low-grade gliomas and lead to the production of the oncometabolite, D-2-hydroxyglutarate (D-2HG). To understand the effects of tumor-associated mutant IDH1 (IDH1-R132H) on both the neural stem cell (NSC) population and brain tumorigenesis, genetically faithful cell lines and mouse model systems were generated. Here, it is reported that mouse NSCs expressing Idh1-R132H displayed reduced proliferation due to p53-mediated cell cycle arrest as well as a decreased ability to undergo neuronal differentiation. In vivo, Idh1-R132H expression reduced proliferation of cells within the germinal zone of the subventricular zone (SVZ). The NSCs within this area were dispersed and disorganized in mutant animals, suggesting that Idh1-R132H perturbed the NSCs and the microenvironment from which gliomas arise. Additionally, tumor-bearing animals expressing mutant Idh1 displayed a prolonged survival and also overexpressed Olig2, features consistent with IDH1-mutated human gliomas. These data indicate that mutant Idh1 disrupts the NSC microenvironment and the candidate cell of origin for glioma; thus, altering the progression of tumorigenesis. Additionally, this study provides a mutant Idh1 brain tumor model that genetically recapitulates human disease, laying the foundation for future investigations on mutant IDH1-mediated brain tumorigenesis and targeted therapy.

  3. Imaging and Recording Subventricular Zone Progenitor Cells in Live Tissue of Postnatal Mice

    PubMed Central

    Lacar, Benjamin; Young, Stephanie Z.; Platel, Jean-Claude; Bordey, Angélique

    2010-01-01

    The subventricular zone (SVZ) is one of two regions where neurogenesis persists in the postnatal brain. The SVZ, located along the lateral ventricle, is the largest neurogenic zone in the brain that contains multiple cell populations including astrocyte-like cells and neuroblasts. Neuroblasts migrate in chains to the olfactory bulb where they differentiate into interneurons. Here, we discuss the experimental approaches to record the electrophysiology of these cells and image their migration and calcium activity in acute slices. Although these techniques were in place for studying glial cells and neurons in mature networks, the SVZ raises new challenges due to the unique properties of SVZ cells, the cellular diversity, and the architecture of the region. We emphasize different methods, such as the use of transgenic mice and in vivo electroporation that permit identification of the different SVZ cell populations for patch clamp recording or imaging. Electroporation also permits genetic labeling of cells using fluorescent reporter mice and modification of the system using either RNA interference technology or floxed mice. In this review, we aim to provide conceptual and technical details of the approaches to perform electrophysiological and imaging studies of SVZ cells. PMID:20700392

  4. Glioblastoma Multiforme and Adult Neurogenesis in the Ventricular-Subventricular Zone: A Review.

    PubMed

    Capdevila, Claudia; Rodríguez Vázquez, Lucía; Martí, Joaquín

    2017-07-01

    Brain cancers account for <1,5% of all new cancer cases reported in the United States each year. Due to their invasive and heterogeneous nature, in addition to their resistance to multimodal treatments, these tumors are usually fatal. Gliomas, and in particular high-grade astrocytomas such as glioblastoma multiforme (GBM), are the most common and lethal primary tumors of the central nervous system. The median survival of most patients is less than 1 year after application of multimodal therapies. The question is why are these cancers so injurious? And above all, how is it possible for a so carefully orchestrated area like the brain to develop such tumors? This brings us to the study of glioma stem cells, their specialized niches (perivascular and hypoxic), and the neurogenic phenomena that takes place within the adult ventricular-subventricular zone: a structure that lies at the intersection between brain development and gliomagenesis. J. Cell. Physiol. 232: 1596-1601, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Laminin regulates postnatal oligodendrocyte production by promoting oligodendrocyte progenitor survival in the subventricular zone.

    PubMed

    Relucio, Jenne; Menezes, Michael J; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Colognato, Holly

    2012-10-01

    The laminin family of extracellular matrix proteins are expressed broadly during embryonic brain development, but are enriched at ventricular and pial surfaces where laminins mediate radial glial attachment during corticogenesis. In the adult brain, however, laminin distribution is restricted, yet is found within the vascular basal lamina and associated fractones of the ventricular zone (VZ)-subventricular zone (SVZ) stem cell niche, where laminins regulate adult neural progenitor cell proliferation. It remains unknown, however, if laminins regulate the wave of oligodendrogenesis that occurs in the neonatal/early postnatal VZ-SVZ. Here we report that Lama2, the gene that encodes the laminin α2-subunit, regulates postnatal oligodendrogenesis. At birth, Lama2-/- mice had significantly higher levels of dying oligodendrocyte progenitor cells (OPCs) in the OPC germinal zone of the dorsal SVZ. This translated into fewer OPCs, both in the dorsal SVZ well as in an adjacent developing white matter tract, the corpus callosum. In addition, intermediate progenitor cells that give rise to OPCs in the Lama2-/- VZ-SVZ were mislocalized and proliferated nearer to the ventricle surface. Later, delays in oligodendrocyte maturation (with accompanying OPC accumulation), were observed in the Lama2-/- corpus callosum, leading to dysmyelination by postnatal day 21. Together these data suggest that prosurvival laminin interactions in the developing postnatal VZ-SVZ germinal zone regulate the ability, or timing, of oligodendrocyte production to occur appropriately.

  6. New insights into the role of histamine in subventricular zone-olfactory bulb neurogenesis

    PubMed Central

    Eiriz, Maria F.; Valero, Jorge; Malva, João O.; Bernardino, Liliana

    2014-01-01

    The subventricular zone (SVZ) contains neural stem cells (NSCs) that generate new neurons throughout life. Many brain diseases stimulate NSCs proliferation, neuronal differentiation and homing of these newborns cells into damaged regions. However, complete cell replacement has never been fully achieved. Hence, the identification of proneurogenic factors crucial for stem cell-based therapies will have an impact in brain repair. Histamine, a neurotransmitter and immune mediator, has been recently described to modulate proliferation and commitment of NSCs. Histamine levels are increased in the brain parenchyma and at the cerebrospinal fluid (CSF) upon inflammation and brain injury, thus being able to modulate neurogenesis. Herein, we add new data showing that in vivo administration of histamine in the lateral ventricles has a potent proneurogenic effect, increasing the production of new neuroblasts in the SVZ that ultimately reach the olfactory bulb (OB). This report emphasizes the multidimensional effects of histamine in the modulation of NSCs dynamics and sheds light into the promising therapeutic role of histamine for brain regenerative medicine. PMID:24982610

  7. Neurotoxic effects of ochratoxin A on the subventricular zone of adult mouse brain.

    PubMed

    Paradells, Sara; Rocamonde, Brenda; Llinares, Cristina; Herranz-Pérez, Vicente; Jimenez, Misericordia; Garcia-Verdugo, Jose Manuel; Zipancic, Ivan; Soria, Jose Miguel; Garcia-Esparza, Ma Angeles

    2015-07-01

    Ochratoxin A (OTA), a mycotoxin that was discovered as a secondary metabolite of the fungal species Aspergillus and Penicillium, is a common contaminant in food and animal feed. This mycotoxin has been described as teratogenic, carcinogenic, genotoxic, immunotoxic and has been proven a potent neurotoxin. Other authors have previously reported the effects of OTA in different structures of the central nervous system as well as in some neurogenic regions. However, the impact of OTA exposure in the subventricular zone (SVZ) has not been assessed yet. To elucidate whether OTA affects neural precursors of the mouse SVZ we investigated, in vitro and in vivo, the effects of OTA exposure on the SVZ and on the neural precursors obtained from this neurogenic niche. In this work, we prove the cumulative effect of OTA exposure on proliferation, differentiation and depletion of neural stem cells cultured from the SVZ. In addition, we corroborated these results in vivo by immunohistochemistry and electron microscopy. As a result, we found a significant alteration in the proliferation process, which was evidenced by a decrease in the number of 5-bromo-2-deoxyuridine-positive cells and glial cells, as well as, a significant decrease in the number of neuroblasts in the SVZ. To summarize, in this study we demonstrate how OTA could be a threat to the developing and the adult SVZ through its impact in cell viability, proliferation and differentiation in a dose-dependent manner. Copyright © 2014 John Wiley & Sons, Ltd.

  8. The aged brain: genesis and fate of residual progenitor cells in the subventricular zone

    PubMed Central

    Capilla-Gonzalez, Vivian; Herranz-Pérez, Vicente; García-Verdugo, Jose Manuel

    2015-01-01

    Neural stem cells (NSCs) persist in the adult mammalian brain through life. The subventricular zone (SVZ) is the largest source of stem cells in the nervous system, and continuously generates new neuronal and glial cells involved in brain regeneration. During aging, the germinal potential of the SVZ suffers a widespread decline, but the causes of this turn down are not fully understood. This review provides a compilation of the current knowledge about the age-related changes in the NSC population, as well as the fate of the newly generated cells in the aged brain. It is known that the neurogenic capacity is clearly disrupted during aging, while the production of oligodendroglial cells is not compromised. Interestingly, the human brain seems to primarily preserve the ability to produce new oligodendrocytes instead of neurons, which could be related to the development of neurological disorders. Further studies in this matter are required to improve our understanding and the current strategies for fighting neurological diseases associated with senescence. PMID:26441536

  9. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone.

    PubMed

    Lennington, Jessica B; Pope, Sara; Goodheart, Anna E; Drozdowicz, Linda; Daniels, Stephen B; Salamone, John D; Conover, Joanne C

    2011-09-14

    Coordinated regulation of the adult neurogenic subventricular zone (SVZ) is accomplished by a myriad of intrinsic and extrinsic factors. The neurotransmitter dopamine is one regulatory molecule implicated in SVZ function. Nigrostriatal and ventral tegmental area (VTA) midbrain dopamine neurons innervate regions adjacent to the SVZ, and dopamine synapses are found on SVZ cells. Cell division within the SVZ is decreased in humans with Parkinson's disease and in animal models of Parkinson's disease following exposure to toxins that selectively remove nigrostriatal neurons, suggesting that dopamine is critical for SVZ function and nigrostriatal neurons are the main suppliers of SVZ dopamine. However, when we examined the aphakia mouse, which is deficient in nigrostriatal neurons, we found no detrimental effect to SVZ proliferation or organization. Instead, dopamine innervation of the SVZ tracked to neurons at the ventrolateral boundary of the VTA. This same dopaminergic neuron population also innervated the SVZ of control mice. Characterization of these neurons revealed expression of proteins indicative of VTA neurons. Furthermore, exposure to the neurotoxin MPTP depleted neurons in the ventrolateral VTA and resulted in decreased SVZ proliferation. Together, these results reveal that dopamine signaling in the SVZ originates from a population of midbrain neurons more typically associated with motivational and reward processing.

  10. Shades of gray: The delineation of marker expression within the adult rodent subventricular zone.

    PubMed

    Mamber, Carlyn; Kozareva, Danka A; Kamphuis, Willem; Hol, Elly M

    2013-12-01

    The research field of adult neurogenesis is rapidly expanding with more and more information becoming available on the identity of the cells located within the subventricular zone (SVZ). Much of our understanding is based on rodent studies. The SVZ is comprised of several different cell types including B1 astrocytes, transit amplifying progenitor cells (C cells), and neuroblasts (A cells). B1 astrocytes are the quiescent neural stem cells that continue to divide throughout a lifespan. They give rise to a progenitor cell, termed a C cell, which in turn, generates neuroblasts destined for the olfactory bulb. There is much controversy over how to distinguish various SVZ cell types. This review summarizes the known markers for rodent SVZ cell types, with particular attention paid towards B1 astrocytes and C cells. Unfortunately, there is no perfect stem cell marker. B1 astrocytes, C cells, and neuroblasts gain and lose marker expression patterns throughout their lineage progression. These expression patterns often overlap at the transition from one cell type to another. The SVZ cell lineage must be seen as a continuum, rather than a static and inert system. This view will aid in understanding the mechanisms underlying marker expression and cellular behavior in the SVZ. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Quantitative proteomic analysis of age-related subventricular zone proteins associated with neurodegenerative disease

    PubMed Central

    Wang, Xianli; Dong, Chuanming; Sun, Lixin; Zhu, Liang; Sun, Chenxi; Ma, Rongjie; Ning, ke; Lu, Bing; Zhang, Jinfu; Xu, Jun

    2016-01-01

    Aging is characterized by a progressive decline in the function of adult tissues which can lead to neurodegenerative disorders. However, little is known about the correlation between protein changes in the subventricular zone (SVZ) and neurodegenerative diseases with age. In the present study, neural stem cells (NSCs) were derived from the SVZ on postnatal 7 d, 1 m, and 12 m-old mice. With age, NSCs exhibited increased SA-β-gal activity and decreased proliferation and pool size in the SVZ zone, and were associated with elevated inflammatory chemokines and cytokines. Furthermore, quantitative proteomics and ingenuity pathway analysis were used to evaluate the significant age-related alterations in proteins and their functions. Some downregulated proteins such as DPYSL2, TPI1, ALDH, and UCHL1 were found to play critical roles in the neurological disease and PSMA1, PSMA3, PSMC2, PSMD11, and UCHL1 in protein homeostasis. Taken together, we have provided valuable insight into the cellular and molecular processes that underlie aging-associated declines in SVZ neurogenesis for the early detection of differences in gene expression and the potential risk of neurological disease, which is beneficial in the prevention of the diseases. PMID:27857231

  12. The Subventricular Zone Is Able to Respond to a Demyelinating Lesion After Localized Radiation

    PubMed Central

    Capilla-Gonzalez, Vivian; Guerrero-Cazares, Hugo; Bonsu, Janice M.; Gonzalez-Perez, Oscar; Achanta, Pragathi; Wong, John; Garcia-Verdugo, Jose Manuel; Quiñones-Hinojosa, Alfredo

    2016-01-01

    Radiation is a common tool in the treatment of brain tumors that induces neurological deficits as a side effect. Some of these deficits appear to be related to the impact of radiation on the neurogenic niches, producing a drastic decrease in the proliferative capacity of these regions. In the adult mammalian brain, the subventricular zone (SVZ) of the lateral ventricles is the main neurogenic niche. Neural stem/precursor cells (NSCs) within the SVZ play an important role in brain repair following injuries. However, the irradiated NSCs' ability to respond to damage has not been previously elucidated. In this study, we evaluated the effects of localized radiation on the SVZ ability to respond to a lysolecithin-induced demyelination of the striatum. We demonstrated that the proliferation rate of the irradiated SVZ was increased after brain damage and that residual NSCs were reactivated. The irradiated SVZ had an expansion of doublecortin positive cells that appeared to migrate from the lateral ventricles toward the demyelinated striatum, where newly generated oligodendrocytes were found. In addition, in the absence of demyelinating damage, remaining cells in the irradiated SVZ appeared to repopulate the neurogenic niche a year post-radiation. These findings support the hypothesis that NSCs are radioresistant and can respond to a brain injury, recovering the neurogenic niche. A more complete understanding of the effects that localized radiation has on the SVZ may lead to improvement of the current protocols used in the radiotherapy of cancer. PMID:24038623

  13. Age-Related Changes in Astrocytic and Ependymal Cells of the Subventricular Zone

    PubMed Central

    Capilla-Gonzalez, Vivian; Cebrian-Silla, Arantxa; Guerrero-Cazares, Hugo; Garcia-Verdugo, Jose Manuel; Quiñones-Hinojosa, Alfredo

    2015-01-01

    Neurogenesis persists in the adult subventricular zone (SVZ) of the mammalian brain. During aging, the SVZ neurogenic capacity undergoes a progressive decline, which is attributed to a decrease in the population of neural stem cells (NSCs). However, the behavior of the NSCs that remain in the aged brain is not fully understood. Here we performed a comparative ultrastructural study of the SVZ niche of 2-month-old and 24-month-old male C57BL/6 mice, focusing on the NSC population. Using thymidine-labeling, we showed that residual NSCs in the aged SVZ divide less frequently than those in young mice. We also provided evidence that ependymal cells are not newly generated during senescence, as others studies suggest. Remarkably, both astrocytes and ependymal cells accumulated a high number of intermediate filaments and dense bodies during aging, resembling reactive cells. A better understanding of the changes occurring in the neurogenic niche during aging will allow us to develop new strategies for fighting neurological disorders linked to senescence. PMID:24677590

  14. Traumatic brain injury reveals novel cell lineage relationships within the subventricular zone

    PubMed Central

    Thomsen, Gretchen M.; Le Belle, Janel E.; Harnisch, Jessica A.; Mc Donald, Whitney; Hovda, David A.; Sofroniew, Michael V.; Kornblum, Harley I.; Harris, Neil G.

    2014-01-01

    The acute response of the rodent subventricular zone (SVZ) to traumatic brain injury (TBI) involves a physical expansion through increased cell proliferation. However, the cellular underpinnings of these changes are not well understood. Our analyses have revealed that there are two distinct transit-amplifying cell populations that respond in opposite ways to injury. Mash1+ transit-amplifying cells are the primary SVZ cell type that is stimulated to divide following TBI. In contrast, the EGFR+ population, which has been considered to be a functionally equivalent progenitor population to Mash1+ cells in the uninjured brain, becomes significantly less proliferative after injury. Although normally quiescent GFAP+ stem cells are stimulated to divide in SVZ ablation models, we found that the GFAP+ stem cells do not divide more after TBI. We found, instead, that TBI results in increased numbers of GFAP+/EGFR+ stem cells via non-proliferative means—potentially through the dedifferentiation of progenitor cells. EGFR+ progenitors from injured brains only were competent to revert to a stem cell state following brief exposure to growth factors. Thus, our results demonstrate previously unknown changes in lineage relationships that differ from conventional models and likely reflect an adaptive response of the SVZ to maintain endogenous brain repair after TBI. PMID:24835668

  15. Neurodevelopment Genes in Lampreys Reveal Trends for Forebrain Evolution in Craniates

    PubMed Central

    Guérin, Adèle; d'Aubenton-Carafa, Yves; Marrakchi, Emna; Da Silva, Corinne; Wincker, Patrick; Mazan, Sylvie; Rétaux, Sylvie

    2009-01-01

    The forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis, patterning and regionalization in the developing forebrain. Systematic expression patterns comparisons with model organisms highlight conservations likely to reflect shared features present in the vertebrate ancestors. They also point to changes in signaling systems –pathways which control the growth and patterning of the neuroepithelium-, which may have been crucial in the evolution of forebrain anatomy at the origin of vertebrates. PMID:19399187

  16. Neurodevelopment genes in lampreys reveal trends for forebrain evolution in craniates.

    PubMed

    Guérin, Adèle; d'Aubenton-Carafa, Yves; Marrakchi, Emna; Da Silva, Corinne; Wincker, Patrick; Mazan, Sylvie; Rétaux, Sylvie

    2009-01-01

    The forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis, patterning and regionalization in the developing forebrain. Systematic expression patterns comparisons with model organisms highlight conservations likely to reflect shared features present in the vertebrate ancestors. They also point to changes in signaling systems -pathways which control the growth and patterning of the neuroepithelium-, which may have been crucial in the evolution of forebrain anatomy at the origin of vertebrates.

  17. Midbrain and forebrain patterning delivers immunocytochemically and functionally similar populations of neuropeptide Y containing GABAergic neurons.

    PubMed

    Khaira, S K; Nefzger, C M; Beh, S J; Pouton, C W; Haynes, J M

    2011-09-01

    Neurons differentiated in vitro from embryonic stem cells (ESCs) have the potential to serve both as models of disease states and in drug discovery programs. In this study, we use sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF-8) to enrich for forebrain and midbrain phenotypes from mouse ESCs. We then investigate, using Ca(2+) imaging and [(3)H]-GABA release studies, whether the GABAergic neurons produced exhibit distinct functional phenotypes. At day 24 of differentiation, reverse transcriptase-PCR showed the presence of both forebrain (Bf-1, Hesx1, Pgc-1α, Six3) and midbrain (GATA2, GATA3) selective mRNA markers in developing forebrain-enriched cultures. All markers were present in midbrain cultures except for Bf-1 and Pgc-1α. Irrespective of culture conditions all GABA immunoreactive neurons were also immunoreactive to neuropeptide Y (NPY) antibodies. Forebrain and midbrain GABAergic neurons responded to ATP (1 mM), L-glutamate (30 μM), noradrenaline (30 μM), acetylcholine (30 μM) and dopamine (30 μM), with similar elevations of intracellular Ca(2+)([Ca(2+)](i)). The presence of GABA(A) and GABA(B) antagonists, bicuculline (30 μM) and CGP55845 (1 μM), increased the elevation of [Ca(2+)](i) in response to dopamine (30 μM) in midbrain, but not forebrain GABAergic neurons. All agonists, except dopamine, elicited similar [(3)H]-GABA release from forebrain and midbrain cultures. Dopamine (30 μM) did not stimulate significant [(3)H]-GABA release in midbrain cultures, although it was effective in forebrain cultures. This study shows that differentiating neurons toward a midbrain fate restricts the expression of forebrain markers. Forebrain differentiation results in the expression of forebrain and midbrain markers. All GABA(+) neurons contain NPY, and show similar agonist-induced elevations of [Ca(2+)](i) and [(3)H]-GABA release. This study indicates that the pharmacological phenotype of these particular neurons may be independent of the addition of

  18. Forebrain glucocorticoid receptor gene deletion attenuates behavioral changes and antidepressant responsiveness during chronic stress.

    PubMed

    Jacobson, Lauren

    2014-10-02

    Stress is an important risk factor for mood disorders. Stress also stimulates the secretion of glucocorticoids, which have been found to influence mood. To determine the role of forebrain glucocorticoid receptors (GR) in behavioral responses to chronic stress, the present experiments compared behavioral effects of repeated social defeat in mice with forebrain GR deletion and in floxed GR littermate controls. Repeated defeat produced alterations in forced swim and tail suspension immobility in floxed GR mice that did not occur in mice with forebrain GR deletion. Defeat-induced changes in immobility in floxed GR mice were prevented by chronic antidepressant treatment, indicating that these behaviors were dysphoria-related. In contrast, although mice with forebrain GR deletion exhibited antidepressant-induced decreases in tail suspension immobility in the absence of stress, this response did not occur in mice with forebrain GR deletion after defeat. There were no marked differences in plasma corticosterone between genotypes, suggesting that behavioral differences depended on forebrain GR rather than on abnormal glucocorticoid secretion. Defeat-induced gene expression of the neuronal activity marker c-fos in the ventral hippocampus, paraventricular thalamus and lateral septum correlated with genotype-related differences in behavioral effects of defeat, whereas c-fos induction in the nucleus accumbens and central and basolateral amygdala correlated with genotype-related differences in behavioral responses to antidepressant treatment. The dependence of both negative (dysphoria-related) and positive (antidepressant-induced) behaviors on forebrain GR is consistent with the contradictory effects of glucocorticoids on mood, and implicates these or other forebrain regions in these effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Forebrain glucocorticoid receptor gene deletion attenuates behavioral changes and antidepressant responsiveness during chronic stress

    PubMed Central

    Jacobson, Lauren

    2014-01-01

    Stress is an important risk factor for mood disorders. Stress also stimulates the secretion of glucocorticoids, which have been found to influence mood. To determine the role of forebrain glucocorticoid receptors (GR) in behavioral responses to chronic stress, the present experiments compared behavioral effects of repeated social defeat in mice with forebrain GR deletion and in floxed GR littermate controls. Repeated defeat produced alterations in forced swim and tail suspension immobility in floxed GR mice that did not occur in mice with forebrain GR deletion. Defeat-induced changes in immobility in floxed GR mice were prevented by chronic antidepressant treatment, indicating that these behaviors were dysphoria-related. In contrast, although mice with forebrain GR deletion exhibited antidepressant-induced decreases in tail suspension immobility in the absence of stress, this response did not occur in mice with forebrain GR deletion after defeat. There were no marked differences in plasma corticosterone between genotypes, suggesting that behavioral differences depended on forebrain GR rather than on abnormal glucocorticoid secretion. Defeat-induced gene expression of the neuronal activity marker c-fos in the ventral hippocampus, paraventricular thalamus and lateral septum correlated with genotype-related differences in behavioral effects of defeat, whereas c-fos induction in the nucleus accumbens and central and basolateral amygdala correlated with genotype-related differences in behavioral responses to antidepressant treatment. The dependence of both negative (dysphoria-related) and positive (antidepressant-induced) behaviors on forebrain GR is consistent with the contradictory effects of glucocorticoids on mood, and implicates these or other forebrain regions in these effects. PMID:25168761

  20. The effects of environmental diversity on well fed and previously undernourished rats: neuronal and glial cell measurements in the visual cortex (area 17).

    PubMed Central

    Bhide, P G; Bedi, K S

    1984-01-01

    Black and white hooded Lister rats were undernourished from the sixteenth day of gestation until 25 postnatal days of age. Around 85 days of age, 12 previously undernourished male rats were assigned to an 'enriched environmental condition' and 12 to an 'isolated environmental condition'. Well fed controls were similarly assigned. After 30 days in these environmental conditions all rats were killed by perfusion with 2% buffered glutaraldehyde. Body and forebrain weights and forebrain lengths and widths were determined for each animal. Cortical depths were measured from sections through the left occipital cortical region. Neuronal and glial cell nuclear diameters and numerical densities as well as neuronal perikaryal volumes were determined from sections through the right visual cortex. In both well fed and previously undernourished groups, the environmentally enriched rats had heavier forebrains and greater forebrain lengths compared to isolated rats. There were no significant differences between enriched and isolated rats in forebrain width or cortical depth measurements in either nutritional group. In both the well fed and previously undernourished groups there were no consistently significant differences between enriched and isolated rats in any of the measurements on neurons and glial cells. Two-way analysis of variance tests on combined data from both nutritional groups indicated significant effects of environment on forebrain weight, forebrain length and on cortical depth in one of the three sections studied (section 10). Nutrition had a significant effect on body weight, forebrain weight and forebrain width. The interaction between nutrition and environment was not statistically significant for any of the measurements carried out. PMID:6735907

  1. The effects of periaqueductally injected transmitter antagonists on forebrain-elicited vocalization in the squirrel monkey.

    PubMed

    Jürgens, U; Lu, C L

    1993-06-01

    In 15 squirrel monkeys, vocalization-eliciting electrodes were implanted into the following forebrain structures: anterior cingulate cortex, genu of the internal capsule, amygdala, bed nucleus of the stria terminalis, hypothalamus, midline thalamus, inferior thalamic peduncle and periventricular grey. Then, injections of 29 transmitter antagonists were made into the midbrain periaqueductal grey (PAG) and their effects tested on the elicitability of vocalization from the forebrain. Vocalization could be blocked completely with glutamate antagonists. NMDA receptor antagonists as well as kainate/quisqualate receptor antagonists were effective. Facilitatory effects, i.e. a decrease in threshold of forebrain-elicited vocalization, was obtained with GABA-A receptor, glycine and opioid antagonists. The facilitatory effect of the opioid antagonist naloxone was limited to vocalizations expressing aversive emotional states. GABA-A receptor antagonists not only facilitated forebrain-induced vocalization but also produced vocalization themselves, i.e. without concomitant forebrain stimulation. No effects were obtained with antagonists of muscarinic and nicotinic receptors, with the GABA-B receptor antagonist phaclofen and antagonists of the monoamines dopamine, noradrenaline, adrenaline, serotonin and histamine. It is concluded that the PAG represents a crucial relay station of the vocalization-controlling system. In this station, transmission of vocalization-relevant information depends upon the activation of glutamatergic synapses. Inhibitory control is exerted by GABA, glycine and endogenous opioids. Acetylcholine, dopamine, noradrenaline, adrenaline, serotonin and histamine may play a transient modulatory role; forebrain-induced vocalization, however, does not depend upon the cholinergic or monoaminergic activation of PAG neurons.

  2. From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells.

    PubMed

    Lupo, Giuseppe; Bertacchi, Michele; Carucci, Nicoletta; Augusti-Tocco, Gabriella; Biagioni, Stefano; Cremisi, Federico

    2014-08-01

    Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.

  3. Roof plate mediated morphogenesis of the forebrain: New players join the game.

    PubMed

    Gupta, Sandeep; Sen, Jonaki

    2016-05-15

    The roof plate is a crucial signaling center located at the dorsal midline of the developing central nervous system (CNS) along its rostro-caudal axis. By virtue of secreting multiple signaling molecules, it regulates diverse processes such as specification of dorsal fate, proliferation and axon guidance. In the forebrain, the roof plate is not only involved in patterning but is also involved in the division of the single forebrain vesicle into the two cerebral hemispheres, the failure of which leads to certain forms of holoprosencephaly. Although several molecular players such as Fgfs, BMPs, Wnts and Shh have been identified as crucial regulators of development of the forebrain, little is known about how they interact to bring about the morphological changes associated with the division of the forebrain vesicle into the cerebral hemispheres. Recent studies have now identified the dorsal mesenchyme as an additional source of signaling cues, which is likely to influence the division of the forebrain vesicle into cerebral hemispheres. In this review, we discuss the current understanding about the molecular mechanisms of roof plate mediated patterning and morphogenesis of the forebrain including some recently identified factors that influence this process and also highlight the gaps in our knowledge that remain.

  4. Forebrain commissures and visual memory: a new approach.

    PubMed

    Doty, R W; Ringo, J L; Lewine, J D

    1988-08-01

    The primary purpose of these exploratory experiments was to determine: (1) whether the forebrain commissures can provide full accessibility of the mnemonic store to either hemisphere when the taks involves memory for 'events' (images) rather than, as in essentially all previous tests on split-brain animals, memory for 'rules' (discrimination habits); and (2) whether the anterior commissure (AC) alone is capable of such function. Macaques, with optic chiasm transected to allow limitation of direct visual input to one or the other hemisphere, were trained on tasks requiring recognition of previously viewed photographic slides. For one task, delayed-matching-to-sample (DMTS), the animal was presented with a 'sample' image, and then 0-15s later was required to choose that image in preference to a second image concurrently displayed. On the other task, running recognition (RR), a series of images was presented, some of which were repetitions of images previously seen in that session, and the animal was required to signal its recognition of these repetitions. For either task the initial presentation could be made to one eye and hemisphere, and subsequent recognition required of the other. In such circumstance, if all forebrain commissures were divided, such interhemispheric recognition was no longer possible. For the DMTS task if either the AC or 5 mm of the splenium of the corpus callosum were available, interhemispheric recognition was basically equivalent to that using the same eye and hemisphere. However, interhemispheric accuracy with the RR task, while well above chance levels, was consistently inferior to that achieved intrahemispherically when complex scenes or objects were viewed. This is probably a consequence mostly of the differing visual fields of the two eyes, since interhemispheric accuracy was greatly improved by use of images having approximately identical right and left halves. No consistent hemispheric specialization nor difference in direction of

  5. RhoE deficiency alters postnatal subventricular zone development and the number of calbindin-expressing neurons in the olfactory bulb of mouse.

    PubMed

    Ballester-Lurbe, Begoña; González-Granero, Susana; Mocholí, Enric; Poch, Enric; García-Manzanares, María; Dierssen, Mara; Pérez-Roger, Ignacio; García-Verdugo, José M; Guasch, Rosa M; Terrado, José

    2015-11-01

    The subventricular zone represents an important reservoir of progenitor cells in the adult brain. Cells from the subventricular zone migrate along the rostral migratory stream and reach the olfactory bulb, where they originate different types of interneurons. In this work, we have analyzed the role of the small GTPase RhoE/Rnd3 in subventricular zone cell development using mice-lacking RhoE expression. Our results show that RhoE null mice display a remarkable postnatal broadening of the subventricular zone and caudal rostral migratory stream. This broadening was caused by an increase in progenitor proliferation, observed in the second postnatal week but not before, and by an altered migration of the cells, which appeared in disorganized cell arrangements that impaired the appropriate contact between cells in the rostral migratory stream. In addition, the thickness of the granule cell layer in the olfactory bulb was reduced, although the density of granule cells did not differ between wild-type and RhoE null mice. Finally, the lack of RhoE expression affected the olfactory glomeruli inducing a severe reduction of calbindin-expressing interneurons in the periglomerular layer. This was already evident in the newborns and even more pronounced 15 days later when RhoE null mice displayed 89% less cells than control mice. Our results indicate that RhoE has pleiotropic functions on subventricular cells because of its role in proliferation and tangential migration, affecting mainly the development of calbindin-expressing cells in the olfactory bulb.

  6. Probing forebrain to hindbrain circuit functions in Xenopus.

    PubMed

    Kelley, Darcy B; Elliott, Taffeta M; Evans, Ben J; Hall, Ian C; Leininger, Elizabeth C; Rhodes, Heather J; Yamaguchi, Ayako; Zornik, Erik

    2017-01-01

    The vertebrate hindbrain includes neural circuits that govern essential functions including breathing, blood pressure and heart rate. Hindbrain circuits also participate in generating rhythmic motor patterns for vocalization. In most tetrapods, sound production is powered by expiration and the circuitry underlying vocalization and respiration must be linked. Perception and arousal are also linked; acoustic features of social communication sounds-for example, a baby's cry-can drive autonomic responses. The close links between autonomic functions that are essential for life and vocal expression have been a major in vivo experimental challenge. Xenopus provides an opportunity to address this challenge using an ex vivo preparation: an isolated brain that generates vocal and breathing patterns. The isolated brain allows identification and manipulation of hindbrain vocal circuits as well as their activation by forebrain circuits that receive sensory input, initiate motor patterns and control arousal. Advances in imaging technologies, coupled to the production of Xenopus lines expressing genetically encoded calcium sensors, provide powerful tools for imaging neuronal patterns in the entire fictively behaving brain, a goal of the BRAIN Initiative. Comparisons of neural circuit activity across species (comparative neuromics) with distinctive vocal patterns can identify conserved features, and thereby reveal essential functional components. © 2017 Wiley Periodicals, Inc.

  7. Basal forebrain dynamics during nonassociative and associative olfactory learning

    PubMed Central

    Devore, Sasha; Pender-Morris, Nathaniel; Dean, Owen; Smith, David

    2015-01-01

    Cholinergic and GABAergic projections from the horizontal diagonal band (HDB) and medial preoptic area (MCPO) of the basal forebrain to the olfactory system are associated with odor discrimination and odor learning, as well as modulation of neural responses in olfactory structures. Whereas pharmacological and lesion studies give insights into the functional role of these modulatory inputs on a slow timescale, the response dynamics of neurons in the HDB/MCPO during olfactory behaviors have not been investigated. In this study we examined how these neurons respond during two olfactory behaviors: spontaneous investigation of odorants and odor-reward association learning. We observe rich heterogeneity in the response dynamics of individual HDB/MCPO neurons, with a substantial fraction of neurons exhibiting task-related modulation. HDB/MCPO neurons show both rapid and transient responses during bouts of odor investigation and slow, long-lasting modulation of overall response rate based on behavioral demands. Specifically, baseline rates were higher during the acquisition phase of an odor-reward association than during spontaneous investigation or the recall phase of an odor reward association. Our results suggest that modulatory projections from the HDB/MCPO are poised to influence olfactory processing on multiple timescales, from hundreds of milliseconds to minutes, and are therefore capable of rapidly setting olfactory network dynamics during odor processing and learning. PMID:26561601

  8. Basal forebrain dynamics during nonassociative and associative olfactory learning.

    PubMed

    Devore, Sasha; Pender-Morris, Nathaniel; Dean, Owen; Smith, David; Linster, Christiane

    2016-01-01

    Cholinergic and GABAergic projections from the horizontal diagonal band (HDB) and medial preoptic area (MCPO) of the basal forebrain to the olfactory system are associated with odor discrimination and odor learning, as well as modulation of neural responses in olfactory structures. Whereas pharmacological and lesion studies give insights into the functional role of these modulatory inputs on a slow timescale, the response dynamics of neurons in the HDB/MCPO during olfactory behaviors have not been investigated. In this study we examined how these neurons respond during two olfactory behaviors: spontaneous investigation of odorants and odor-reward association learning. We observe rich heterogeneity in the response dynamics of individual HDB/MCPO neurons, with a substantial fraction of neurons exhibiting task-related modulation. HDB/MCPO neurons show both rapid and transient responses during bouts of odor investigation and slow, long-lasting modulation of overall response rate based on behavioral demands. Specifically, baseline rates were higher during the acquisition phase of an odor-reward association than during spontaneous investigation or the recall phase of an odor reward association. Our results suggest that modulatory projections from the HDB/MCPO are poised to influence olfactory processing on multiple timescales, from hundreds of milliseconds to minutes, and are therefore capable of rapidly setting olfactory network dynamics during odor processing and learning.

  9. Adherent neural stem (NS) cells from fetal and adult forebrain.

    PubMed

    Pollard, Steven M; Conti, Luciano; Sun, Yirui; Goffredo, Donato; Smith, Austin

    2006-07-01

    Stable in vitro propagation of central nervous system (CNS) stem cells would offer expanded opportunities to dissect basic molecular, cellular, and developmental processes and to model neurodegenerative disease. CNS stem cells could also provide a source of material for drug discovery assays and cell replacement therapies. We have recently reported the generation of adherent, symmetrically expandable, neural stem (NS) cell lines derived both from mouse and human embryonic stem cells and from fetal forebrain (Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. 2005. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol 3(9):e283). These NS cells retain neuronal and glial differentiation potential after prolonged passaging and are transplantable. NS cells are likely to comprise the resident stem cell population within heterogeneous neurosphere cultures. Here we demonstrate that similar NS cell cultures can be established from the adult mouse brain. We also characterize the growth factor requirements for NS cell derivation and self-renewal. We discuss our current understanding of the relationship of NS cell lines to physiological progenitor cells of fetal and adult CNS.

  10. Unique spatiotemporal requirements for intraflagellar transport genes during forebrain development

    PubMed Central

    Chang, Ching-Fang; Cionni, Megan; Brugmann, Samantha A.

    2017-01-01

    Primary cilia are organelles extended from virtually all cells and are required for the proper regulation of a number of canonical developmental pathways. The role in cortical development of proteins important for ciliary form and function is a relatively understudied area. Here we have taken a genetic approach to define the role in forebrain development of three intraflagellar transport proteins known to be important for primary cilia function. We have genetically ablated Kif3a, Ift88, and Ttc21b in a series of specific spatiotemporal domains. The resulting phenotypes allow us to draw several conclusions. First, we conclude that the Ttc21b cortical phenotype is not due to the activity of Ttc21b within the brain itself. Secondly, some of the most striking phenotypes are from ablations in the neural crest cells and the adjacent surface ectoderm indicating that cilia transduce critical tissue—tissue interactions in the developing embryonic head. Finally, we note striking differences in phenotypes from ablations only one embryonic day apart, indicating very discrete spatiotemporal requirements for these three genes in cortical development. PMID:28291836

  11. Basal forebrain circuit for sleep-wake control.

    PubMed

    Xu, Min; Chung, Shinjae; Zhang, Siyu; Zhong, Peng; Ma, Chenyan; Chang, Wei-Cheng; Weissbourd, Brandon; Sakai, Noriaki; Luo, Liqun; Nishino, Seiji; Dan, Yang

    2015-11-01

    The mammalian basal forebrain (BF) has important roles in controlling sleep and wakefulness, but the underlying neural circuit remains poorly understood. We examined the BF circuit by recording and optogenetically perturbing the activity of four genetically defined cell types across sleep-wake cycles and by comprehensively mapping their synaptic connections. Recordings from channelrhodopsin-2 (ChR2)-tagged neurons revealed that three BF cell types, cholinergic, glutamatergic and parvalbumin-positive (PV+) GABAergic neurons, were more active during wakefulness and rapid eye movement (REM) sleep (wake/REM active) than during non-REM (NREM) sleep, and activation of each cell type rapidly induced wakefulness. By contrast, activation of somatostatin-positive (SOM+) GABAergic neurons promoted NREM sleep, although only some of them were NREM active. Synaptically, the wake-promoting neurons were organized hierarchically by glutamatergic→cholinergic→PV+ neuron excitatory connections, and they all received inhibition from SOM+ neurons. Together, these findings reveal the basic organization of the BF circuit for sleep-wake control.

  12. Evolution and development of interhemispheric connections in the vertebrate forebrain

    PubMed Central

    Suárez, Rodrigo; Gobius, Ilan; Richards, Linda J.

    2014-01-01

    Axonal connections between the left and right sides of the brain are crucial for bilateral integration of lateralized sensory, motor, and associative functions. Throughout vertebrate species, forebrain commissures share a conserved developmental plan, a similar position relative to each other within the brain and similar patterns of connectivity. However, major events in the evolution of the vertebrate brain, such as the expansion of the telencephalon in tetrapods and the origin of the six-layered isocortex in mammals, resulted in the emergence and diversification of new commissural routes. These new interhemispheric connections include the pallial commissure, which appeared in the ancestors of tetrapods and connects the left and right sides of the medial pallium (hippocampus in mammals), and the corpus callosum, which is exclusive to eutherian (placental) mammals and connects both isocortical hemispheres. A comparative analysis of commissural systems in vertebrates reveals that the emergence of new commissural routes may have involved co-option of developmental mechanisms and anatomical substrates of preexistent commissural pathways. One of the embryonic regions of interest for studying these processes is the commissural plate, a portion of the early telencephalic midline that provides molecular specification and a cellular scaffold for the development of commissural axons. Further investigations into these embryonic processes in carefully selected species will provide insights not only into the mechanisms driving commissural evolution, but also regarding more general biological problems such as the role of developmental plasticity in evolutionary change. PMID:25071525

  13. Forebrain neurocircuitry associated with human reflex cardiovascular control

    PubMed Central

    Shoemaker, J. Kevin; Goswami, Ruma

    2015-01-01

    Physiological homeostasis depends upon adequate integration and responsiveness of sensory information with the autonomic nervous system to affect rapid and effective adjustments in end organ control. Dysregulation of the autonomic nervous system leads to cardiovascular disability with consequences as severe as sudden death. The neural pathways involved in reflexive autonomic control are dependent upon brainstem nuclei but these receive modulatory inputs from higher centers in the midbrain and cortex. Neuroimaging technologies have allowed closer study of the cortical circuitry related to autonomic cardiovascular adjustments to many stressors in awake humans and have exposed many forebrain sites that associate strongly with cardiovascular arousal during stress including the medial prefrontal cortex, insula cortex, anterior cingulate, amygdala and hippocampus. Using a comparative approach, this review will consider the cortical autonomic circuitry in rodents and primates with a major emphasis on more recent neuroimaging studies in awake humans. A challenge with neuroimaging studies is their interpretation in view of multiple sensory, perceptual, emotive and/or reflexive components of autonomic responses. This review will focus on those responses related to non-volitional baroreflex control of blood pressure and also on the coordinated responses to non-fatiguing, non-painful volitional exercise with particular emphasis on the medial prefrontal cortex and the insula cortex. PMID:26388780

  14. Emergence of learned categorical representations within an auditory forebrain circuit

    PubMed Central

    Jeanne, James M.; Thompson, Jason V.; Sharpee, Tatyana O.; Gentner, Timothy Q.

    2011-01-01

    Many learned behaviors are thought to require the activity of high-level neurons that represent categories of complex signals, such as familiar faces or native speech sounds. How these complex, experience-dependent neural responses emerge within the brain’s circuitry is not well understood. The caudomedial mesopallium (CMM), a secondary auditory region in the songbird brain, contains neurons that respond to specific combinations of song components and respond preferentially to the songs that birds have learned to recognize. Here, we examine the transformation of these learned responses across a broader forebrain circuit that includes the caudolateral mesopallium (CLM), an auditory region that provides input to CMM. We recorded extracellular single-unit activity in CLM and CMM in European starlings trained to recognize sets of conspecific songs and compared multiple encoding properties of neurons between these regions. We find that the responses of CMM neurons are more selective between song components, convey more information about song components, and are more variable over repeated components than the responses of CLM neurons. While learning enhances neural encoding of song components in both regions, CMM neurons encode more information about the learned categories associated with songs than CLM neurons. Collectively, these data suggest that CLM and CMM are part of a functional sensory hierarchy that is modified by learning to yield representations of natural vocal signals that are increasingly informative with respect to behavior. PMID:21325527

  15. A Basal Forebrain Site Coordinates the Modulation of Endocrine and Behavioral Stress Responses via Divergent Neural Pathways

    PubMed Central

    Johnson, Shane B.; Emmons, Eric B.; Anderson, Rachel M.; Glanz, Ryan M.; Romig-Martin, Sara A.; Narayanan, Nandakumar S.; LaLumiere, Ryan T.

    2016-01-01

    The bed nuclei of the stria terminalis (BST) are critically important for integrating stress-related signals between the limbic forebrain and hypothalamo-pituitary-adrenal (HPA) effector neurons in the paraventricular hypothalamus (PVH). Nevertheless, the circuitry underlying BST control over the stress axis and its role in depression-related behaviors has remained obscure. Utilizing optogenetic approaches in rats, we have identified a novel role for the anteroventral subdivision of BST in the coordinated inhibition of both HPA output and passive coping behaviors during acute inescapable (tail suspension, TS) stress. Follow-up experiments probed axonal pathways emanating from the anteroventral BST which accounted for separable endocrine and behavioral functions subserved by this cell group. The PVH and ventrolateral periaqueductal gray were recipients of GABAergic outputs from the anteroventral BST that were necessary to restrain stress-induced HPA activation and passive coping behavior, respectively, during TS and forced swim tests. In contrast to other BST subdivisions implicated in anxiety-like responses, these results direct attention to the anteroventral BST as a nodal point in a stress-modulatory network for coordinating neuroendocrine and behavioral coping responses, wherein impairment could account for core features of stress-related mood disorders. SIGNIFICANCE STATEMENT Dysregulation of the neural pathways modulating stress-adaptive behaviors is implicated in stress-related psychiatric illness. While aversive situations activate a network of limbic forebrain regions thought to mediate such changes, little is known about how this information is integrated to orchestrate complex stress responses. Here we identify novel roles for the anteroventral bed nuclei of the stria terminalis in inhibiting both stress hormone output and passive coping behavior via divergent projections to regions of the hypothalamus and midbrain. Inhibition of these projections

  16. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    PubMed

    Sims, Robert Edward; Wu, Houdini Ho Tin; Dale, Nicholas

    2013-01-01

    Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+), AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  17. 3-Dimensional Examination of the Adult Mouse Subventricular Zone Reveals Lineage-Specific Microdomains

    PubMed Central

    Azim, Kasum; Fiorelli, Roberto; Zweifel, Stefan; Hurtado-Chong, Anahi; Yoshikawa, Kazuaki; Slomianka, Lutz; Raineteau, Olivier

    2012-01-01

    Recent studies suggest that the subventricular zone (SVZ) of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling “stem” cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to accurately assess

  18. Characterization of Seeding Conditions for Studies on Differentiation Patterns of Subventricular Zone Derived Neurospheres

    PubMed Central

    Sanchez-Mendoza, Eduardo H.; Schlechter, Jana; Hermann, Dirk M.; Doeppner, Thorsten R.

    2016-01-01

    Stem cell research depends on extensive in vitro research. Poly-D-lysine (PDL) and polyornithine (PornT) are chemically synthesized amino acid chains promoting cell adhesion to solid substrates. Although, PDL and PornT are extensively used, there is no common agreement regarding the most optimal substance and its concentration. We therefore aimed at testing the effect of increasing concentrations (10, 50, and 100 μg/ml) for each compound and their corresponding mixtures (5+5 and 10+10 μg/ml) on the differentiation patterns of subventricular zone derived neurospheres. The latter were cultured for 24 h for protein and morphological analysis or for 8 h for migration analysis. No significant differences were found between increasing concentrations of PDL and PornT alone and the 10+10 condition in Western blots and immunocytochemistry. However, the mixed condition of 5+5 showed decreased glial fibrillary acidic protein and nestin expression with no changes in Akt, pAkt, GSK-3-beta, and pGSK-3-beta expression patterns. The various coating conditions also had no influence on migration of cells emerging from the neurosphere. Nevertheless, stimulation with recombinant human Erythropoietin (rhEpo) reduced migration by 20% regardless of the coating condition. We therefore conclude that a minimal concentration of 10 μg/ml of either compound should be used to produce reliable results with no alterations in protein levels as found for the 5+5 groups, and that the coating has no effect on the response of cells to chemical interventions. As such, a concentration of 10 μg/ml for either substance is sufficient when studying cellular processes of neurospheres in an in vitro or ex vivo environment. PMID:27013970

  19. Evaluation of High Ipsilateral Subventricular Zone Radiation Therapy Dose in Glioblastoma: A Pooled Analysis

    SciTech Connect

    Lee, Percy; Eppinga, Wietse; Lagerwaard, Frank; Cloughesy, Timothy; Slotman, Benjamin; Nghiemphu, Phioanh L.; Wang, Pin-Chieh; Kupelian, Patrick; Agazaryan, Nzhde; Demarco, John; Selch, Michael T.; Steinberg, Michael; Kang, Jung Julie

    2013-07-15

    Purpose: Cancer stem cells (CSCs) may play a role in the recurrence of glioblastoma. They are believed to originate from neural stem cells in the subventricular zone (SVZ). Because of their radioresistance, we hypothesized that high doses of radiation (>59.4 Gy) to the SVZ are necessary to control CSCs and improve progression-free survival (PFS) or overall survival (OS) in glioblastoma. Methods and Materials: 173 patients with glioblastoma pooled from 2 academic centers were treated with resection followed by chemoradiation therapy. The SVZ was segmented on computed tomography to calculate radiation doses delivered to the presumptive CSC niches. The relationships between high SVZ doses and PFS and OS were examined using Cox proportional hazards models. Five covariates were included to estimate their impact on PFS or OS: ipsilateral and contralateral SVZ doses, clinical target volume dose, age, and extent of resection. Results: Median PFS and OS were 10.4 and 19.6 months for the cohort. The mean ipsilateral SVZ, contralateral SVZ, and clinical target volume doses were 49.2, 35.2, and 60.1 Gy, respectively. Twenty-one patients who received high ipsilateral SVZ dose (>59.4 Gy) had significantly longer median PFS (12.6 vs 9.9 months, P=.042) and longer OS (25.8 vs 19.2 months, P=.173). On multivariate analysis, high radiation therapy doses to ipsilateral SVZ remained a statistically significant independent predictor of improved PFS but not of OS. The extent of surgery affected both PFS and OS on multivariate analysis. Conclusion: High radiation therapy doses to ipsilateral CSC niches are associated with improved PFS in glioblastoma.

  20. Ampakine CX546 increases proliferation and neuronal differentiation in subventricular zone stem/progenitor cell cultures.

    PubMed

    Schitine, Clarissa; Xapelli, Sara; Agasse, Fabienne; Sardà-Arroyo, Laura; Silva, Ana P; De Melo Reis, Ricardo A; de Mello, Fernando G; Malva, João O

    2012-06-01

    Ampakines are chemical compounds known to modulate the properties of ionotropic α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)-subtype glutamate receptors. The functional effects attributed to ampakines involve plasticity and the increase in synaptic efficiency of neuronal circuits, a process that may be intimately associated with differentiation of newborn neurons. The subventricular zone (SVZ) is the main neurogenic niche of the brain, containing neural stem cells with brain repair potential. Accordingly, the identification of new pharmaceutical compounds with neurogenesis-enhancing properties is important as a tool to promote neuronal replacement based on the use of SVZ cells. The purpose of the present paper is to examine the possible proneurogenic effects of ampakine CX546 in cell cultures derived from the SVZ of early postnatal mice. We observed that CX546 (50 μm) treatment triggered an increase in proliferation, evaluated by BrdU incorporation assay, in the neuroblast lineage. Moreover, by using a cell viability assay (TUNEL) we found that, in contrast to AMPA, CX546 did not cause cell death. Also, both AMPA and CX546 stimulated neuronal differentiation as evaluated morphologically through neuronal nuclear protein (NeuN) immunocytochemistry and functionally by single-cell calcium imaging. Accordingly, short exposure to CX546 increased axonogenesis, as determined by the number and length of tau-positive axons co-labelled for the phosphorylated form of SAPK/JNK (P-JNK), and dendritogenesis (MAP2-positive neurites). Altogether, this study shows that ampakine CX546 promotes neurogenesis in SVZ cell cultures and thereby may have potential for future stem cell-based therapies.

  1. Purines regulate adult brain subventricular zone cell functions: contribution of reactive astrocytes.

    PubMed

    Boccazzi, Marta; Rolando, Chiara; Abbracchio, Maria P; Buffo, Annalisa; Ceruti, Stefania

    2014-03-01

    Brain injuries modulate activation of neural stem cells (NSCs) in the adult brain. In pathological conditions, the concentrations of extracellular nucleotides (eNTs) raise several folds, contribute to reactive gliosis, and possibly directly affect subventricular zone (SVZ) cell functioning. Among eNTs and derived metabolites, the P2Y1 receptor agonist ADP strongly promotes astrogliosis and might also influence SVZ progenitor activity. Here, we tested the ability of the stable P2Y1 agonist adenosine 5'-O-(2-thiodiphosphate) (ADPβS) to control adult NSC functions both in vitro and in vivo, with a focus on the possible effects exerted by reactive astrocytes. In the absence of growth factors, ADPβS promoted proliferation and differentiation of SVZ progenitors. Moreover, ADPβS-activated astrocytes markedly changed the pattern of released cytokines and chemokines, and strongly modulated neurosphere-forming capacity of SVZ progenitors. Notably, a significant enhancement in proliferation was observed when SVZ cells, initially grown in the supernatant of astrocytes exposed to ADPβS, were shifted to normal medium. In vivo, ADPβS administration in the lateral ventricle of adult mice by osmotic minipumps caused diffused reactive astrogliosis, and a strong response of SVZ progenitors. Indeed, proliferation of glial fibrillary acidic protein-positive NSCs increased and led to a significant expansion of SVZ transit-amplifying progenitors and neuroblasts. Lineage tracing experiments performed in the GLAST::CreERT2;Rosa-YFP transgenic mice further demonstrated that ADPβS promoted proliferation of glutamate/aspartate transporter-positive progenitors and sustained their progression toward the generation of rapidly dividing progenitors. Altogether, our results show that the purinergic system crucially affects SVZ progenitor activities both directly and through the involvement of reactive astrocytes.

  2. Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus.

    PubMed

    Di Curzio, Domenico L; Buist, Richard J; Del Bigio, Marc R

    2013-10-01

    Hydrocephalus is a neurological condition characterized by altered cerebrospinal fluid (CSF) flow with enlargement of ventricular cavities in the brain. A reliable model of hydrocephalus in gyrencephalic mammals is necessary to test preclinical hypotheses. Our objective was to characterize the behavioral, structural, and histological changes in juvenile ferrets following induction of hydrocephalus. Fourteen-day old ferrets were given an injection of kaolin (aluminum silicate) into the cisterna magna. Two days later and repeated weekly until 56 days of age, magnetic resonance (MR) imaging was used to assess ventricle size. Behavior was examined thrice weekly. Compared to age-matched saline-injected controls, severely hydrocephalic ferrets weighed significantly less, their postures were impaired, and they were hyperactive prior to extreme debilitation. They developed significant ventriculomegaly and displayed white matter destruction. Reactive astroglia and microglia detected by glial fibrillary acidic protein (GFAP) and Iba-1 immunostaining were apparent in white matter, cortex, and hippocampus. There was a hydrocephalus-related increase in activated caspase 3 labeling of apoptotic cells (7.0 vs. 15.5%) and a reduction in Ki67 labeling of proliferating cells (23.3 vs. 5.9%) in the subventricular zone (SVZ). Reduced Olig2 immunolabeling suggests a depletion of glial precursors. GFAP content was elevated. Myelin basic protein (MBP) quantitation and myelin biochemical enzyme activity showed early maturational increases. Where white matter was not destroyed, the remaining axons developed myelin similar to the controls. In conclusion, the hydrocephalus-induced periventricular disturbances may involve developmental impairments in cell proliferation and glial precursor cell populations. The ferret should prove useful for testing hypotheses about white matter damage and protection in the immature hydrocephalic brain.

  3. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone

    PubMed Central

    Sotthibundhu, Areechun; Ekthuwapranee, Kasima; Govitrapong, Piyarat

    2016-01-01

    Melatonin, secreted mainly by the pineal gland, plays roles in various physiological functions including protecting cell death. We showed in previous study that the proliferation and differentiation of precursor cells from the adult mouse subventricular zone (SVZ) can be modulated by melatonin via the MT1 melatonin receptor. Since melatonin and epidermal growth factor receptor (EGFR) share some signaling pathway components, we investigated whether melatonin can promote the proliferation of precursor cells from the adult mouse SVZ via the extracellular signal-regulated protein kinase /mitogen-activated protein kinase (ERK/MAPK) pathways in comparison with epidermal growth factor (EGF). Melatonin-induced ERK/MAPK pathways compared with EGF were measured by using in vitro and vivo models. We used neurosphere proliferation assay, immunocytochemistry, and immuno-blotting to analyze significant differences between melatonin and growth factor treatment. We also used specific antagonist and inhibitors to confirm the exactly signaling pathway including luzindole and U0126. We found that significant increase in proliferation was observed when two growth factors (EGF+bFGF) and melatonin were used simultaneously compared with EGF + bFGF or compared with melatonin alone. In addition, the present result suggested the synergistic effect occurred of melatonin and growth factors on the activating the ERK/MAPK pathway. This study exhibited that melatonin could act as a trophic factor, increasing proliferation in precursor cells mediated through the melatonin receptor coupled to ERK/MAPK signaling pathways. Understanding the mechanism by which melatonin regulates precursor cells may conduct to the development of novel strategies for neurodegenerative disease therapy. PMID:28275319

  4. Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development.

    PubMed

    Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo

    2017-07-01

    Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.

  5. EGF induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes

    PubMed Central

    Gonzalez-Perez, Oscar; Romero-Rodriguez, Ricardo; Soriano-Navarro, Mario; Garcia-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2012-01-01

    New neurons and oligodendrocytes are continuously produced in the subventricular zone (SVZ) of adult mammalian brains. Under normal conditions, the SVZ primary precursors (type B1 cells) generate type C cells, the majority of which differentiate into neurons, with a small sub-population giving rise to oligodendrocytes. Epidermal growth factor (EGF) signaling induces dramatic proliferation and migration of SVZ progenitors, a process that could have therapeutic applications. However, the fate of cells derived from adult neural stem cells after EGF stimulation remains unknown. Here, we specifically labeled SVZ B1 cells and followed their progeny after a 7-day intraventricular infusion of EGF. Cells derived from SVZ B1 cells invaded the parenchyma around the SVZ into striatum, septum, corpus callosum, and fimbria-fornix. The majority of these B1-derived cells gave rise to cells in the oligodendrocyte lineage including local NG2+ progenitors, pre-myelinating and myelinating oligodendrocytes. SVZ B1 cells also gave rise to a population of highly branched S100β+/GFAP+ cells in the striatum and septum, but no neuronal differentiation was observed. Interestingly, when demyelination was induced in the corpus callosum by a local injection of lysolecithin, increased number of cells derived from SVZ B1 cells and stimulated to migrate and proliferate by EGF infusion, differentiated into oligodendrocytes at the lesion site. This work indicates that EGF infusion can greatly expand the number of progenitors derived from the SVZ primary progenitors, which migrate and differentiate into oligodendroglial cells. This expanded population could be used for the repair of white matter lesions. PMID:19544429

  6. RAE-1 is expressed in the adult subventricular zone and controls cell proliferation of neurospheres.

    PubMed

    Popa, Natalia; Cedile, Oriane; Pollet-Villard, Xavier; Bagnis, Claude; Durbec, Pascale; Boucraut, José

    2011-01-01

    Improving and controlling the capacity of endogenous or grafted adult neural stem cells to repair the nervous system relies on a better knowledge of interactions between immune cells and neural stem cells. Class I major histocompatibility complex (MHC) family members comprise numerous proteins playing either immune or nonimmune function. Among the latter, MHC functions in the central nervous system has started to receive recent interest. Here, our first goal was to investigate the potential relationship between MHC class I molecules and neurogenesis. For the first time, we report the expression of two MHC class I-related members by neural stem/progenitor cells: retinoic acid early induced transcript (RAE)-1 and CD1d. The expression of RAE-1 but not CD1d disappears when differentiation of neurosphere cells is induced. Interestingly, RAE-1 transcripts are expressed in the brain during development, and we demonstrate they persist in one of the main area of adult neurogenesis, the subventricular zone (SVZ). So far, RAE-1 is only known for its immune functions as a ligand of the activating receptor NKG2D expressed by natural killer (NK) cells, natural killer T, Tγδ, and some T CD8 lymphocytes. Here, we do not detect any NKG2D expression in the SVZ either in physiological or in pathological conditions. Interestingly, inhibition of RAE-1 expression in neurosphere cells reduces cell proliferation without alteration of cell viability, which argues for a nonimmune role for RAE-1. These results reveal an unexpected role of RAE-1 in regulating adult SVZ neurogenesis by supporting stem/progenitor cells proliferation.

  7. Role of the 9-O-acetyl GD3 in subventricular zone neuroblast migration.

    PubMed

    Miyakoshi, L M; Todeschini, A R; Mendez-Otero, R; Hedin-Pereira, C

    2012-02-01

    In the mammalian central nervous system the subventricular zone (SVZ) is one of the few neurogenic regions that persist postnatally. Neuroblasts generated in the SVZ migrate from this region tangentially towards the olfactory bulbs via the rostral migratory stream (RMS) and give rise to interneurons. In previous studies, an important role in radial migration of cerebellar granule neurons has been attributed to the 9-O-acetylated GD3 ganglioside. Previous data demonstrated the expression of 9-O-acetyl GD3 in the rostral migratory stream in vivo as well as in chains of neuroblasts that migrate from SVZ explants in vitro. Herein, using the Jones monoclonal antibody (Jones mAb), we combined SVZ explant migration measurements and time-lapse videomicroscopy of migrating neuroblasts to show that SVZ neuroblast migration is inhibited by the antibody that recognizes 9-O-acetyl GD3 but not by A2B5, an antibody that recognizes c-series gangliosides. In addition, inhibition of ganglioside synthesis results in reduction of migratory halos around SVZ explants. Coherently, we show that most migratory neuroblasts which express the embryonic form of NCAM co-express 9acGD3. Also, we observe that some of the ganglioside positive neuroblasts also express nestin consistent with their maintained proliferative capacity. These results strongly support that the 9-O-acetyl GD3 has a pivotal role in neuroblast migration from SVZ, being fundamental for cell-cell and cell-substrate interactions in this region. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Inhibition of glycogen synthase kinase 3 increased subventricular zone stem cells proliferation.

    PubMed

    Pachenari, Narges; Kiani, Sahar; Javan, Mohammad

    2017-09-01

    The effects of Wnt signaling modifiers on cell proliferation, seem to be cell specific. Enhancing the proliferation of subventricular zone (SVZ) progenitors has been in the focus of research in recent years. Here we investigate the effect of CHIR99021, a Glycogen Synthase Kinase 3 (GSk-3) inhibitor, on SVZ progenitor's proliferation both in vivo and in vitro. Neural stem cells were extracted from the adult C57bl/6 by mincing and trypsin treatment followed by culturing in specific medium. Sphere cells formed within about 7-10days and were characterized by immunostaining. Number of spheres and their size was assessed following exposure to different concentration of CHIR99021 or vehicle. For in vivo studies, animals received intracerebroventricular (i.c.v.) injection of CHIR99021 or vehicle for four days. A subgroup of animals, after 4days treatment with CHIR99021 received intranasal kainic acid to induce local neurodegeneration in CA3 area of hippocampus. Inhibition of GSk-3 by CHIR99021 increased neural progenitor proliferation and the effect of CHIR99021 was long lasting so that the treated cells showed higher proliferation even after CHIR99021 removal. In vivo administration of CHIR99021 increased the number of neural progenitors at the rims of lateral ventricles especially when the treatment was followed by kainic acid administration which induces neural insult. Results showed that direct administration of CHIR99021 into the culture medium or animal brain increased the number of SVZ progenitors, especially when a neural insult was induced in the hippocampus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Enhancement of ventricular-subventricular zone-derived neurogenesis and oligodendrogenesis by erythropoietin and its derivatives.

    PubMed

    Kaneko, Naoko; Kako, Eisuke; Sawamoto, Kazunobu

    2013-11-27

    In the postnatal mammalian brain, stem cells in the ventricular-subventricular zone (V-SVZ) continuously generate neuronal and glial cells throughout life. Genetic labeling of cells of specific lineages have demonstrated that the V-SVZ is an important source of the neuroblasts and/or oligodendrocyte progenitor cells (OPCs) that migrate toward injured brain areas in response to several types of insult, including ischemia and demyelinating diseases. However, this spontaneous regeneration is insufficient for complete structural and functional restoration of the injured brain, so interventions to enhance these processes are sought for clinical applications. Erythropoietin (EPO), a clinically applied erythropoietic factor, is reported to have cytoprotective effects in various kinds of insult in the central nervous system. Moreover, recent studies suggest that EPO promotes the V-SVZ-derived neurogenesis and oligodendrogenesis. EPO increases the proliferation of progenitors in the V-SVZ and/or the migration and differentiation of their progenies in and around injured areas, depending on the dosage, timing, and duration of treatment, as well as the type of animal model used. On the other hand, EPO has undesirable side effects, including thrombotic complications. We recently demonstrated that a 2-week treatment with the EPO derivative asialo-EPO promotes the differentiation of V-SVZ-derived OPCs into myelin-forming mature oligodendrocytes in the injured white matter of neonatal mice without causing erythropoiesis. Here we present an overview of the multifaceted effects of EPO and its derivatives in the V-SVZ and discuss the possible applications of these molecules in regenerative medicine.

  10. Fractone-heparan sulfates mediate BMP-7 inhibition of cell proliferation in the adult subventricular zone.

    PubMed

    Douet, Vanessa; Arikawa-Hirasawa, Eri; Mercier, Frederic

    2012-10-24

    Bone morphogenetic protein-7 (BMP-7) is a heparin-binding growth factor that inhibits cell proliferation in the subventricular zone (SVZ) of the lateral ventricle, the primary neurogenic niche in the adult brain. However, the physiological mechanisms regulating the activity of BMP-7 in the SVZ are unknown. Here, we report the inhibitory effect of BMP-7 on cell proliferation through the anterior SVZ after intracerebroventricular injection in the adult mouse. To determine whether the inhibition of cell proliferation induced by BMP-7 is dependant on heparin-binding, heparitinase-1 was intracerebroventricularly injected to N-desulfate heparan sulfate proteoglycans before BMP-7 was injected. Heparatinase-1 drastically reduced the inhibitory effect of BMP-7 on cell proliferation in the SVZ. To determine where BMP-7 binds within the niche, we visualized biotinylated-BMP-7 after intracerebroventricular injection, using streptavidin Texas red on frozen brain sections. BMP-7 binding was seen as puncta in the SVZ at the location of fractones, the particulate specialized extracellular matrix of the SVZ, which have been identified primarily by N-sulfated heparan sulfate immunoreactivity (NS-HS+). BMP binding was also seen in NS-HS+ blood vessels of the SVZ. Injection of heparitinase-1 prior to biotinylated BMP-7 resulted in the absence of signal for biotinylated-BMP-7 in the fractones and blood vessels, indicating that the binding is heparan sulfate dependant. These results indicate that BMP-7 requires heparan sulfates to bind and inhibit cell proliferation in the SVZ neurogenic niche. Heparan sulfates concentrated in fractones and SVZ blood vessels emerge as a functional stem cell niche component involved in growth factor activity.

  11. Relationship between survival and increased radiation dose to subventricular zone in glioblastoma is controversial.

    PubMed

    Elicin, Olgun; Inac, Ebrar; Uzel, Esengul Kocak; Karacam, Songul; Uzel, Omer Erol

    2014-06-01

    To test the hypothesis on prolonged survival in glioblastoma cases with increased subventricular zone (SVZ) radiation dose. Sixty glioblastoma cases were previously treated with adjuvant radiotherapy and Temozolamide. Ipsilateral, contralateral and bilateral SVZs were contoured and their doses were retrospectively evaluated. Median follow-up, progression free survival (PFS) and overall survival (OS) were 24.5, 8.5 and 19.3 months respectively. Log-rank tests showed a statistically significant correlation between contralateral SVZ (cSVZ) dose > 59.2 Gy (75th percentile) and poor median PFS (10.37 [95% CI 8.37-13.53] vs 7.1 [95% CI 3.5-8.97] months, p = 0.009). cSVZ dose > 59.2 Gy was associated with poor OS in the subgroup with subtotal resection/biopsy (HR: 4.83 [95% CI 1.71-13.97], p = 0.004). High ipsilateral SVZ dose of > 62.25 Gy (75th percentile) was associated with poor PFS in both subgroups of high performance status (HR: 2.58 [95% CI 1.03-6.05], p = 0.044) and SVZ without tumoral contact (HR: 10.57 [95% CI 2.04-49], p = 0.008). The effect of high cSVZ dose on PFS lost its statistical significance in multivariate Cox regression analysis. We report contradictory results compared to previous publications. Changing the clinical practice based on retrospective studies which even do not indicate consistent results among each other will be dangerous. We need carefully designed prospective randomized studies to evaluate any impact of radiation to SVZ in glioblastoma.

  12. Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling

    PubMed Central

    Goffart, Nicolas; Kroonen, Jérôme; Di Valentin, Emmanuel; Dedobbeleer, Matthias; Denne, Alexandre; Martinive, Philippe; Rogister, Bernard

    2015-01-01

    Background Patients with glioblastoma multiforme (GBM) have an overall median survival of 15 months. This catastrophic survival rate is the consequence of systematic relapses that could arise from remaining glioblastoma stem cells (GSCs) left behind after surgery. We previously demonstrated that GSCs are able to escape the tumor mass and specifically colonize the adult subventricular zones (SVZs) after transplantation. This specific localization, away from the initial injection site, therefore represents a high-quality model of a clinical obstacle to therapy and relapses because GSCs notably retain the ability to form secondary tumors. Method In this work, we questioned the role of the CXCL12/CXCR4 signaling in the GSC-specific invasion of the SVZs. Results We demonstrated that both receptor and ligand are respectively expressed by different GBM cell populations and by the SVZ itself. In vitro migration bio-assays highlighted that human U87MG GSCs isolated from the SVZs (U87MG-SVZ) display stronger migratory abilities in response to recombinant CXCL12 and/or SVZ-conditioned medium (SVZ-CM) compared with cancer cells isolated from the tumor mass (U87MG-TM). Moreover, in vitro inhibition of the CXCR4 signaling significantly decreased the U87MG-SVZ cell migration in response to the SVZ-CM. Very interestingly, treating U87MG-xenografted mice with daily doses of AMD3100, a specific CXCR4 antagonist, prevented the specific invasion of the SVZ. Another in vivo experiment, using CXCR4-invalidated GBM cells, displayed similar results. Conclusion Taken together, these data demonstrate the significant role of the CXCL12/CXCR4 signaling in this original model of brain cancer invasion. PMID:25085362

  13. Glioblastoma Recurrence Patterns After Radiation Therapy With Regard to the Subventricular Zone

    SciTech Connect

    Adeberg, Sebastian; König, Laila; Bostel, Tilman; Harrabi, Semi; Welzel, Thomas; Debus, Jürgen; Combs, Stephanie E.

    2014-11-15

    Purpose: We evaluated the influence of tumor location and tumor spread in primary glioblastoma (GBM), with respect to the subventricular zone (SVZ), on recurrence behavior, progression-free survival (PFS), and overall survival (OS). Methods and Materials: 607 patients (376 male and 231 female) with a median age of 61.3 years (range, 3.0-87.9 years) and primary GBM treated with radiation therapy (RT) from 2004 to 2012 at a single institution were included in this retrospective study. Preoperative images and follow-up examination results were assessed to evaluate tumor location. Tumors were classified according to the tumor location in relation to the SVZ. Results: The median PFS of the study population was 5.2 months (range, 1-91 months), and the median OS was 13.8 months (range, 1-102 months). Kaplan-Meier analysis showed that tumor location in close proximity to the SVZ was associated with a significant decline in PFS and OS (4.8 and 12.3 months, respectively; each P<.001). Furthermore, in cases where tumors were involved with the SVZ, distant cerebral progression (43.8%; P=.005) and multifocal progression (39.8%; P=.008) were more common. Interestingly, opening of the ventricle during the previous surgery showed no impact on PFS and OS. Conclusion: GBM in close proximity to the SVZ was associated with decreased survival and had a higher risk of multifocal or distant progression. Ventricle opening during surgery had no effect on survival rates.

  14. Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination.

    PubMed

    Xing, Yao Lulu; Röth, Philipp T; Stratton, Jo Anne S; Chuang, Bernard H A; Danne, Jill; Ellis, Sarah L; Ng, Sze Woei; Kilpatrick, Trevor J; Merson, Tobias D

    2014-10-15

    Parenchymal oligodendrocyte progenitor cells (pOPCs) are considered the principal cell type responsible for oligodendrogenesis and remyelinaton in demyelinating diseases. Recent studies have demonstrated that neural precursor cells (NPCs) from the adult subventricular zone (SVZ) can also generate new oligodendrocytes after demyelination. However, the relative contribution of NPCs versus pOPCs to remyelination is unknown. We used in vivo genetic fate mapping to assess the behavior of each progenitor type within the corpus callosi (CCs) of mice subjected to cuprizone-induced demyelination. Nestin-CreER(T2) and Pdgfra-CreER(T2) transgenic mice were crossed with fluorescent Cre reporter strains to map the fate of NPCs and pOPCs respectively. In cuprizone-challenged mice, substantial numbers of NPCs migrated into the demyelinated CC and contributed to oligodendrogenesis. This capacity was most prominent in rostral regions adjacent to the SVZ where NPC-derived oligodendrocytes significantly outnumbered those generated from pOPCs. Sixty-two percent of all nodes of Ranvier in this region were flanked by at least one paranode generated from an NPC-derived oligodendrocyte. Remarkably, g-ratios (ratio of the axon diameter to the diameter of the axon plus myelin sheath) of myelinated axons in regions subject to significant NPC-derived remyelination were equivalent to those of unchallenged controls, and immunoelectron microscopy revealed that NPC-derived myelin was significantly thicker than that generated by pOPCs, regardless of axonal caliber. We also demonstrate that a reduced efficiency of remyelination in the caudal CC was associated with long-term impairment in the maturation of oligodendrogenic NPCs but only transient delay in pOPC differentiation. Collectively, our data define a major distinct role for NPCs in remyelination, identifying them as a key target for enhancing myelin repair in demyelinating diseases.

  15. Motivational Salience Signal in the Basal Forebrain Is Coupled with Faster and More Precise Decision Speed

    PubMed Central

    Avila, Irene; Lin, Shih-Chieh

    2014-01-01

    The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons. PMID:24642480

  16. Histamine release in the basal forebrain mediates cortical activation through cholinergic neurons.

    PubMed

    Zant, Janneke C; Rozov, Stanislav; Wigren, Henna-Kaisa; Panula, Pertti; Porkka-Heiskanen, Tarja

    2012-09-19

    The basal forebrain (BF) is a key structure in regulating both cortical activity and sleep homeostasis. It receives input from all ascending arousal systems and is particularly highly innervated by histaminergic neurons. Previous studies clearly point to a role for histamine as a wake-promoting substance in the BF. We used in vivo microdialysis and pharmacological treatments in rats to study which electroencephalogram (EEG) spectral properties are associated with histamine-induced wakefulness and whether this wakefulness is followed by increased sleep and increased EEG delta power during sleep. We also investigated which BF neurons mediate histamine-induced cortical activation. Extracellular BF histamine levels rose immediately and remained constant throughout a 6 h period of sleep deprivation, returning to baseline levels immediately afterward. During the spontaneous sleep-wake cycle, we observed a strong correlation between wakefulness and extracellular histamine concentrations in the BF, which was unaffected by the time of day. The perfusion of histamine into the BF increased wakefulness and cortical activity without inducing recovery sleep. The perfusion of a histamine receptor 1 antagonist into the BF decreased both wakefulness and cortical activity. Lesioning the BF cholinergic neurons abolished these effects. Together, these results show that activation of the cholinergic BF by histamine is important in sustaining a high level of cortical activation, and that a lack of activation of the cholinergic BF by histamine may be important in initiating and maintaining nonrapid eye movement sleep. The level of histamine release is tightly connected to behavioral state, but conveys no information about sleep pressure.

  17. Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle

    PubMed Central

    Van Daele, Douglas J.; Cassell, Martin D.

    2009-01-01

    The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguous (NA) by 3 days post-inoculation., PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii (NTS), the Botzinger complex, and the parvocellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvocellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggest PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor

  18. Motivational salience signal in the basal forebrain is coupled with faster and more precise decision speed.

    PubMed

    Avila, Irene; Lin, Shih-Chieh

    2014-03-01

    The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons.

  19. CHOLINERGIC NEURONS OF THE BASAL FOREBRAIN MEDIATE BIOCHEMICAL AND ELECTROPHYSIOLOGICAL MECHANISMS UNDERLYING SLEEP HOMEOSTASIS

    PubMed Central

    Kalinchuk, Anna V.; Porkka-Heiskanen, Tarja; McCarley, Robert W.; Basheer, Radhika

    2015-01-01

    The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex, lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low theta power (5–7Hz), but not high theta (7–9Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx]ex and [AD]ex. Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx]ex, [AD]ex and low theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex. Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP. PMID:25369989

  20. Association of basal forebrain volumes and cognition in normal aging.

    PubMed

    Wolf, D; Grothe, M; Fischer, F U; Heinsen, H; Kilimann, I; Teipel, S; Fellgiebel, A

    2014-01-01

    The basal forebrain cholinergic system (BFCS) is known to undergo moderate neurodegenerative alterations during normal aging and severe atrophy in Alzheimer's disease (AD). It has been suggested that functional and structural alterations of the BFCS mediate cognitive performance in normal aging and AD. But, it is still unclear to what extend age-associated cognitive decline can be related to BFCS in normal aging. We analyzed the relationship between BFCS volume and cognition using MRI and a comprehensive neuropsychological test battery in a cohort of 43 healthy elderly subjects spanning the age range from 60 to 85 years. Most notably, we found significant associations between general intelligence and BFCS volumes, specifically within areas corresponding to posterior nuclei of the nucleus basalis of Meynert (Ch4p) and the nucleus subputaminalis (NSP). Associations between specific cognitive domains and BFCS volumes were less pronounced. Supplementary analyses demonstrated that especially the volume of NSP but also the volume of Ch4p was related to the volume of widespread temporal, frontal, and parietal gray and white matter regions. Volumes of these gray and white matter regions were also related to general intelligence. Higher volumes of Ch4p and NSP may enhance the effectiveness of acetylcholine supply in related gray and white matter regions underlying general intelligence and hence explain the observed association between the volume of Ch4p as well as NSP and general intelligence. Since general intelligence is known to attenuate the degree of age-associated cognitive decline and the risk of developing late-onset AD, the BFCS might, besides the specific contribution to the pathophysiology in AD, constitute a mechanism of brain resilience in normal aging.

  1. Visualization of the medial forebrain bundle using diffusion tensor imaging

    PubMed Central

    Hana, Ardian; Hana, Anisa; Dooms, Georges; Boecher-Schwarz, Hans; Hertel, Frank

    2015-01-01

    Diffusion tensor imaging is a technique that enables physicians the portrayal of white matter tracts in vivo. We used this technique in order to depict the medial forebrain bundle (MFB) in 15 consecutive patients between 2012 and 2015. Men and women of all ages were included. There were six women and nine men. The mean age was 58.6 years (39–77). Nine patients were candidates for an eventual deep brain stimulation. Eight of them suffered from Parkinson‘s disease and one had multiple sclerosis. The remaining six patients suffered from different lesions which were situated in the frontal lobe. These were 2 metastasis, 2 meningiomas, 1 cerebral bleeding, and 1 glioblastoma. We used a 3DT1-sequence for the navigation. Furthermore T2- and DTI- sequences were performed. The FOV was 200 × 200 mm2, slice thickness 2 mm, and an acquisition matrix of 96 × 96 yielding nearly isotropic voxels of 2 × 2 × 2 mm. 3-Tesla-MRI was carried out strictly axial using 32 gradient directions and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2. b-value was 800 s/mm2. The maximal angle was 50°. Additional scanning time was < 9 min. We were able to visualize the MFB in 12 of our patients bilaterally and in the remaining three patients we depicted the MFB on one side. It was the contralateral side of the lesion. These were 2 meningiomas and one metastasis. Portrayal of the MFB is possible for everyday routine for neurosurgical interventions. As part of the reward circuitry it might be of substantial importance for neurosurgeons during deep brain stimulation in patients with psychiatric disorders. Surgery in this part of the brain should always take the preservation of this white matter tract into account. PMID:26581828

  2. Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons

    PubMed Central

    Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika

    2014-01-01

    The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically

  3. Basal forebrain projections to the lateral habenula modulate aggression reward

    PubMed Central

    Golden, Sam A.; Heshmati, Mitra; Flanigan, Meghan; Christoffel, Dan J.; Guise, Kevin; Pfau, Madeline L.; Aleyasin, Hossein; Menard, Caroline; Zhang, Hongxing; Hodes, Georgia E.; Bregman, Dana; Khibnik, Lena; Tai, Jonathan; Rebusi, Nicole; Krawitz, Brian; Chaudhury, Dipesh; Walsh, Jessica J.; Han, Ming-Hu; Shapiro, Matt L.; Russo, Scott J.

    2016-01-01

    Maladaptive aggressive behavior is associated with a number of neuropsychiatric disorders1 and is thought to partly result from inappropriate activation of brain reward systems in response to aggressive or violent social stimuli2. Nuclei within the ventromedial hypothalamus3–5, extended amygdala6 and limbic7 circuits are known to encode initiation of aggression; however, little is known about the neural mechanisms that directly modulate the motivational component of aggressive behavior8. To address this, we established a mouse model to measure the valence of aggressive inter-male social interaction with a smaller subordinate intruder as reinforcement for the development of conditioned place preference (CPP). Aggressors (AGG) develop a CPP, while non-aggressors (NON) develop a conditioned place aversion (CPA), to the intruder-paired context. Further, we identify a functional GABAergic projection from the basal forebrain (BF) to the lateral habenula (lHb) that bi-directionally controls the valence of aggressive interactions. Circuit-specific silencing of GABAergic BF-lHb terminals of AGG with halorhodopsin (NpHR3.0) increases lHb neuronal firing and abolishes CPP to the intruder-paired context. Activation of GABAergic BF-lHb terminals of NON with channelrhodopsin (ChR2) decreases lHb neuronal firing and promotes CPP to the intruder-paired context. Lastly, we show that altering inhibitory transmission at BF-lHb terminals does not control the initiation of aggressive behavior. These results demonstrate that the BF-lHb circuit plays a critical role in regulating the valence of inter-male aggressive behavior and provide novel mechanistic insight into the neural circuits modulating aggression reward processing. PMID:27357796

  4. Visualization of the medial forebrain bundle using diffusion tensor imaging.

    PubMed

    Hana, Ardian; Hana, Anisa; Dooms, Georges; Boecher-Schwarz, Hans; Hertel, Frank

    2015-01-01

    Diffusion tensor imaging is a technique that enables physicians the portrayal of white matter tracts in vivo. We used this technique in order to depict the medial forebrain bundle (MFB) in 15 consecutive patients between 2012 and 2015. Men and women of all ages were included. There were six women and nine men. The mean age was 58.6 years (39-77). Nine patients were candidates for an eventual deep brain stimulation. Eight of them suffered from Parkinson's disease and one had multiple sclerosis. The remaining six patients suffered from different lesions which were situated in the frontal lobe. These were 2 metastasis, 2 meningiomas, 1 cerebral bleeding, and 1 glioblastoma. We used a 3DT1-sequence for the navigation. Furthermore T2- and DTI- sequences were performed. The FOV was 200 × 200 mm(2), slice thickness 2 mm, and an acquisition matrix of 96 × 96 yielding nearly isotropic voxels of 2 × 2 × 2 mm. 3-Tesla-MRI was carried out strictly axial using 32 gradient directions and one b0-image. We used Echo-Planar-Imaging (EPI) and ASSET parallel imaging with an acceleration factor of 2. b-value was 800 s/mm(2). The maximal angle was 50°. Additional scanning time was < 9 min. We were able to visualize the MFB in 12 of our patients bilaterally and in the remaining three patients we depicted the MFB on one side. It was the contralateral side of the lesion. These were 2 meningiomas and one metastasis. Portrayal of the MFB is possible for everyday routine for neurosurgical interventions. As part of the reward circuitry it might be of substantial importance for neurosurgeons during deep brain stimulation in patients with psychiatric disorders. Surgery in this part of the brain should always take the preservation of this white matter tract into account.

  5. Mechanisms of action of CHF3381 in the forebrain

    PubMed Central

    Barbieri, Mario; Bregola, Gianni; Buzzi, Andrea; Marino, Silvia; Zucchini, Silvia; Stables, James P; Bergamaschi, Marco; Pietra, Claudio; Villetti, Gino; Simonato, Michele

    2003-01-01

    Aim of this study was to gain insight into the mechanism of action of CHF3381, a novel putative antiepileptic and neuroprotective drug. CHF3381 blocked NMDA currents in primary cultures of cortical neurons: maximal effect was nearly −80% of the NMDA-evoked current, with EC50 of approximately 5 μM. This effect was selective, reversible, use-dependent and elicited at the concentrations reached in the rodent brain after peripheral administration of therapeutic doses. CHF3381 also inhibited voltage-gated Na+ currents in an apparently voltage-dependent manner. However, this effect could be obtained only at relatively high concentrations (100 μM). Consistent with the mild effects on voltage-gated Na+ channels, CHF3381 (100 μM) failed to affect electrical stimulation-evoked glutamate overflow in hippocampal slices. In contrast, the anti-convulsant agent and Na+ channel blocker lamotrigine (100 μM) inhibited stimulation-evoked glutamate overflow by approximately 50%. CHF3381 reduced kindled seizure-induced c-fos mRNA levels within the same brain regions, and to a similar level, as the selective NMDA receptor antagonist MK801, providing circumstantial evidence to the idea that CHF3381 blocks NMDA receptors in vivo. The present mechanistic studies suggest that the primary mechanism of action of CHF3381 in the forebrain is blockade of NMDA receptors. On this basis, this compound may have a potential use in other diseases caused by or associated with a pathologically high level of NMDA receptor activation. PMID:12890713

  6. Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain

    PubMed Central

    2012-01-01

    Background Cerebrospinal fluid (CSF) has been considered as a preferential pathway of circulation for immune cells during neuroimmune surveillance. In order to evaluate the involvement of CSF-filled spaces in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, we performed a time-course analysis of immune cell association with the CSF-containing ventricles, velae, and cisterns in two active models of this disease. Methods Guinea-pig spinal cord homogenate-induced EAE in rat and myelin oligodendrocyte glycoprotein-induced EAE in mouse were used. Leukocyte distribution and phenotypes were investigated by immunohistochemistry in serial sections of brain areas of interest, as well as in CSF withdrawn from rat. Immune cells associated with the choroid plexuses were quantified. Results Freund’s adjuvant-induced peripheral inflammation in the absence of brain antigen led to a subtle but definite increase in the number of myeloid cells in the extraventricular CSF spaces. In both rats and mice, EAE was characterized by a sustained and initial infiltration of lymphocytes and monocytes within forebrain/midbrain fluid-filled compartments such as the velum interpositum and ambient cisterns, and certain basal cisterns. Leukocytes further infiltrated periventricular and pericisternal parenchymal areas, along perivascular spaces or following a downward CSF-to-tissue gradient. Cells quantified in CSF sampled from rats included lymphocytes and neutrophils. The distinctive pattern of cell distribution suggests that both the choroid plexus and the vessels lying in the velae and cisterns are gates for early leukocyte entry in the central nervous system. B-cell infiltration observed in the mouse model was restricted to CSF-filled extraventricular compartments. Conclusion These results identified distinctive velae and cisterns of the forebrain and midbrain as preferential sites of immune cell homing following peripheral and early central

  7. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.

    PubMed

    Reyes, Beverly A S; Van Bockstaele, Elisabeth J

    2006-10-30

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions.

  8. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus

    PubMed Central

    Teipel, Stefan J.; Flatz, Wilhelm; Ackl, Nibal; Grothe, Michel; Kilimann, Ingo; Bokde, Arun L.W.; Grinberg, Lea; Amaro, Edson; Kljajevic, Vanja; Alho, Eduardo; Knels, Christina; Ebert, Anne; Heinsen, Helmut; Danek, Adrian

    2014-01-01

    Primary progressive aphasia (PPA) is characterized by left hemispheric frontotemporal cortical atrophy. Evidence from anatomical studies suggests that the nucleus subputaminalis (NSP), a subnucleus of the cholinergic basal forebrain, may be involved in the pathological process of PPA. Therefore, we studied the pattern of cortical and basal forebrain atrophy in 10 patients with a clinical diagnosis of PPA and 18 healthy age-matched controls using high-resolution magnetic resonance imaging (MRI). We determined the cholinergic basal forebrain nuclei according to Mesulam’s nomenclature and the NSP in MRI reference space based on histological sections and the MRI scan of a post-mortem brain in cranio. Using voxel-based analysis, we found left hemispheric cortical atrophy in PPA patients compared with controls, including prefrontal, lateral temporal and medial temporal lobe areas. We detected cholinergic basal forebrain atrophy in left predominant localizations of Ch4p, Ch4am, Ch4al, Ch3 and NSP. For the first time, we have described the pattern of basal forebrain atrophy in PPA and confirmed the involvement of NSP that had been predicted based on theoretical considerations. Our findings may enhance understanding of the role of cholinergic degeneration for the regional specificity of the cortical destruction leading to the syndrome of PPA. PMID:24434193

  9. Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers.

    PubMed

    Pombal, M A; Puelles, L

    1999-11-22

    The structural organization of the lamprey extratelencephalic forebrain is re-examined from the perspective of the prosomeric segmental paradigm. The question asked was whether the prosomeric forebrain model used for gnathostomes is of material advantage for interpreting subdivisions in the lamprey forebrain. To this aim, the main longitudinal and transverse landmarks recognized by the prosomeric model in other vertebrates were identified in Nissl-stained lamprey material. Lines of cytoarchitectural discontinuity and contours of migrated neuronal groups were mapped in a two-dimensional sagittal representation and were also classified according to their radial position. Immunocytochemical mapping of calretinin expression in adjacent sections served to define particular structural units better, in particular, the dorsal thalamus. These data were complemented by numerous other chemoarchitectonic observations obtained with ancillary markers, which identified additional specific formations, subdivisions, or boundaries. Emphasis was placed on studying whether such chemically defined neuronal groups showed boundaries aligned with the postulated inter- or intraprosomeric boundaries. The course of diverse axonal tracts was studied also with regard to their prosomeric topography. This analysis showed that the full prosomeric model applies straightforwardly to the lamprey forebrain. This finding implies that a common segmental and longitudinal organization of the neural tube may be primitive for all vertebrates. Interesting novel aspects appear in the interpretation of the lamprey pretectum, the dorsal and ventral thalami, and the hypothalamus. The topologic continuity of the prosomeric forebrain regions with evaginated or non-evaginated portions of the telencephalon was also examined.

  10. Subchronic metformin pretreatment enhances novel object recognition memory task in forebrain ischemia: behavioural, molecular, and electrophysiological studies.

    PubMed

    Ashabi, Ghorbangol; Sarkaki, Alireza; Khodagholi, Fariba; Zareh Shahamati, Shima; Goudarzvand, Mahdi; Farbood, Yaghoob; Badavi, Mohammad; Khalaj, Leila

    2017-04-01

    Metformin exerts its effect via AMP-activated protein kinase (AMPK), which is a key sensor for energy homeostasis that regulates different intracellular pathways. Metformin attenuates oxidative stress and cognitive impairment. In our experiment, rats were divided into 8 groups; some were pretreated with metformin (Met, 200 mg/kg) and (or) the AMPK inhibitor Compound C (CC) for 14 days. On day 14, rats underwent transient forebrain global ischemia. Data indicated that pretreatment of ischemic rats with metformin reduced working memory deficits in a novel object recognition test compared to group with ischemia-reperfusion (I-R) (P < 0.01). Pretreatment of the I-R animals with metformin increased phosphorylated cyclic-AMP response element-binding protein (pCREB) and c-fos levels compared to the I-R group (P < 0.001 for both). The level of CREB and c-fos was significantly lower in ischemic rats pretreated with Met + CC compared to the Met + I-R group. Field excitatory postsynaptic potential (fEPSP) amplitude and slope was significantly lower in the I-R group compared to the sham operation group (P < 0.001). Data showed that fEPSP amplitude and slope was significantly higher in the Met + I-R group compared to the I-R group (P < 0.001). Treatment of ischemic animals with Met + CC increased fEPSP amplitude and slope compared to the Met + I-R group (P < 0.01). We unravelled new aspects of the protective role of AMPK activation by metformin, further emphasizing the potency of metformin pretreatment against cerebral ischemia.

  11. Grafted Subventricular Zone Neural Stem Cells Display Robust Engraftment and Similar Differentiation Properties and Form New Neurogenic Niches in the Young and Aged Hippocampus

    PubMed Central

    Hattiangady, Bharathi

    2016-01-01

    As clinical application of neural stem cell (NSC) grafting into the brain would also encompass aged people, critical evaluation of engraftment of NSC graft-derived cells in the aged hippocampus has significance. We examined the engraftment and differentiation of alkaline phosphatase-positive NSCs expanded from the postnatal subventricular zone (SVZ), 3 months after grafting into the intact young or aged rat hippocampus. Graft-derived cells engrafted robustly into both young and aged hippocampi. Although most graft-derived cells pervasively migrated into different hippocampal layers, the graft cores endured and contained graft-derived neurons expressing neuron-specific nuclear antigen (NeuN) and γ-amino butyric acid in both groups. A fraction of migrated graft-derived cells in the neurogenic subgranular zone-granule cell layer also expressed NeuN. Neuronal differentiation was, however, occasionally seen amid graft-derived cells that had migrated into non-neurogenic regions, where substantial fractions differentiated into S-100β+ astrocytes, NG2+ oligodendrocyte progenitors, or Olig2+ putative oligodendrocytes. In both age groups, graft cores located in non-neurogenic regions displayed many doublecortin-positive (DCX+) immature neurons at 3 months after grafting. Analyses of cells within graft cores using birth dating and putative NSC markers revealed that DCX+ neurons were newly born neurons derived from engrafted cells and that putative NSCs persisted within the graft cores. Thus, both young and aged hippocampi support robust engraftment and similar differentiation of SVZ-NSC graft-derived cells. Furthermore, some grafted NSCs retain the “stemness” feature and produce new neurons even at 3 months after grafting, implying that grafting of SVZ-NSCs into the young or aged hippocampus leads to establishment of new neurogenic niches in non-neurogenic regions. Significance The results demonstrate that advanced age of the host at the time of grafting has no major

  12. Increased Subventricular Zone Radiation Dose Correlates With Survival in Glioblastoma Patients After Gross Total Resection

    SciTech Connect

    Chen, Linda; Guerrero-Cazares, Hugo; Ye, Xiaobu; Ford, Eric; McNutt, Todd; Kleinberg, Lawrence; Lim, Michael; Chaichana, Kaisorn; Quinones-Hinojosa, Alfredo; Redmond, Kristin

    2013-07-15

    Purpose: Neural progenitor cells in the subventricular zone (SVZ) have a controversial role in glioblastoma multiforme (GBM) as potential tumor-initiating cells. The purpose of this study was to examine the relationship between radiation dose to the SVZ and survival in GBM patients. Methods and Materials: The study included 116 patients with primary GBM treated at the Johns Hopkins Hospital between 2006 and 2009. All patients underwent surgical resection followed by adjuvant radiation therapy with intensity modulated radiation therapy (60 Gy/30 fractions) and concomitant temozolomide. Ipsilateral, contralateral, and bilateral SVZs were contoured on treatment plans by use of coregistered magnetic resonance imaging and computed tomography. Multivariate Cox regression was used to examine the relationship between mean SVZ dose and progression-free survival (PFS), as well as overall survival (OS). Age, Karnofsky Performance Status score, and extent of resection were used as covariates. The median age was 58 years (range, 29-80 years). Results: Of the patients, 12% underwent biopsy, 53% had subtotal resection (STR), and 35% had gross total resection (GTR). The Karnofsky Performance Status score was less than 90 in 54 patients and was 90 or greater in 62 patients. The median ipsilateral, contralateral, and bilateral mean SVZ doses were 48.7 Gy, 34.4 Gy, and 41.5 Gy, respectively. Among patients who underwent GTR, a mean ipsilateral SVZ dose of 40 Gy or greater was associated with a significantly improved PFS compared with patients who received less than 40 Gy (15.1 months vs 10.3 months; P=.028; hazard ratio, 0.385 [95% confidence interval, 0.165-0.901]) but not in patients undergoing STR or biopsy. The subgroup of GTR patients who received an ipsilateral dose of 40 Gy or greater also had a significantly improved OS (17.5 months vs 15.6 months; P=.027; hazard ratio, 0.385 [95% confidence interval, 0.165-0.895]). No association was found between SVZ radiation dose and PFS

  13. P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone.

    PubMed

    Messemer, Nanette; Kunert, Christin; Grohmann, Marcus; Sobottka, Helga; Nieber, Karen; Zimmermann, Herbert; Franke, Heike; Nörenberg, Wolfgang; Straub, Isabelle; Schaefer, Michael; Riedel, Thomas; Illes, Peter; Rubini, Patrizia

    2013-10-01

    Neurogenesis requires the balance between the proliferation of newly formed progenitor cells and subsequent death of surplus cells. RT-PCR and immunocytochemistry demonstrated the presence of P2X7 receptor mRNA and immunoreactivity in cultured neural progenitor cells (NPCs) prepared from the adult mouse subventricular zone (SVZ). Whole-cell patch-clamp recordings showed a marked potentiation of the inward current responses both to ATP and the prototypic P2X7 receptor agonist dibenzoyl-ATP (Bz-ATP) at low Ca(2+) and zero Mg(2+) concentrations in the bath medium. The Bz-ATP-induced currents reversed their polarity near 0 mV; in NPCs prepared from P2X7(-/-) mice, Bz-ATP failed to elicit membrane currents. The general P2X/P2Y receptor antagonist PPADS and the P2X7 selective antagonists Brilliant Blue G and A-438079 strongly depressed the effect of Bz-ATP. Long-lasting application of Bz-ATP induced an initial current, which slowly increased to a steady-state response. In combination with the determination of YO-PRO uptake, these experiments suggest the dilation of a receptor-channel and/or the recruitment of a dye-uptake pathway. Ca(2+)-imaging by means of Fura-2 revealed that in a Mg(2+)-deficient bath medium Bz-ATP causes [Ca(2+)](i) transients fully depending on the presence of external Ca(2+). The MTT test indicated a concentration-dependent decrease in cell viability by Bz-ATP treatment. Correspondingly, Bz-ATP led to an increase in active caspase 3 immunoreactivity, indicating a P2X7-controlled apoptosis. In acute SVZ brain slices of transgenic Tg(nestin/EGFP) mice, patch-clamp recordings identified P2X7 receptors at NPCs with pharmacological properties identical to those of their cultured counterparts. We suggest that the apoptotic/necrotic P2X7 receptors at NPCs may be of particular relevance during pathological conditions which lead to increased ATP release and thus could counterbalance the ensuing excessive cell proliferation.

  14. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits.

    PubMed

    Patel, Jyoti C; Rossignol, Elsa; Rice, Margaret E; Machold, Robert P

    2012-01-01

    Dopamine transmission is critical for exploratory motor behaviour. A key regulator is acetylcholine; forebrain acetylcholine regulates striatal dopamine release, whereas brainstem cholinergic inputs regulate the transition of dopamine neurons from tonic to burst firing modes. How these sources of cholinergic activity combine to control dopamine efflux and exploratory motor behaviour is unclear. Here we show that mice lacking total forebrain acetylcholine exhibit enhanced frequency-dependent striatal dopamine release and are hyperactive in a novel environment, whereas mice lacking rostral brainstem acetylcholine are hypoactive. Exploratory motor behaviour is normalized by the removal of both cholinergic sources. Involvement of dopamine in the exploratory motor phenotypes observed in these mutants is indicated by their altered sensitivity to the dopamine D2 receptor antagonist raclopride. These results support a model in which forebrain and brainstem cholinergic systems act in tandem to regulate striatal dopamine signalling for proper control of motor activity.

  15. Age-dependent increase of brain copper levels and expressions of copper regulatory proteins in the subventricular zone and choroid plexus

    PubMed Central

    Fu, Sherleen; Jiang, Wendy; Zheng, Wei

    2015-01-01

    Our recent data suggest a high accumulation of copper (Cu) in the subventricular zone (SVZ) along the wall of brain ventricles. Anatomically, SVZ is in direct contact with cerebrospinal fluid (CSF), which is secreted by a neighboring tissue choroid plexus (CP). Changes in Cu regulatory gene expressions in the SVZ and CP as the function of aging may determine Cu levels in the CSF and SVZ. This study was designed to investigate the associations between age, Cu levels, and Cu regulatory genes in SVZ and plexus. The SVZ and CP were dissected from brains of 3-week, 10-week, or 9-month old male rats. Analyses by atomic absorption spectroscopy revealed that the SVZ of adult and old animals contained the highest Cu level compared with other tested brain regions. Significantly positive correlations between age and Cu levels in SVZ and plexus were observed; the SVZ Cu level of old animals was 7.5- and 5.8-fold higher than those of young and adult rats (p < 0.01), respectively. Quantitation by qPCR of the transcriptional expressions of Cu regulatory proteins showed that the SVZ expressed the highest level of Cu storage protein metallothioneins (MTs), while the CP expressed the high level of Cu transporter protein Ctr1. Noticeably, Cu levels in the SVZ were positively associated with type B slow proliferating cell marker Gfap (p < 0.05), but inversely associated with type A proliferating neuroblast marker Dcx (p < 0.05) and type C transit amplifying progenitor marker Nestin (p < 0.01). Dmt1 had significant positive correlations with age and Cu levels in the plexus (p < 0.01). These findings suggest that Cu levels in all tested brain regions are increased as the function of age. The SVZ shows a different expression pattern of Cu-regulatory genes from the CP. The age-related increase of MTs and decrease of Ctr1 may contribute to the high Cu level in this neurogenesis active brain region. PMID:26106293

  16. Regulation of fear responses by striatal and extrastriatal adenosine A2A receptors in forebrain.

    PubMed

    Wei, Catherine J; Augusto, Elisabete; Gomes, Catarina A; Singer, Philipp; Wang, Yumei; Boison, Detlev; Cunha, Rodrigo A; Yee, Benjamin K; Chen, Jiang-Fan

    2014-06-01

    Adenosine A2A receptors (A2ARs) are enriched in the striatum but are also present at lower levels in the extrastriatal forebrain (i.e., hippocampus, cortex), integrating dopamine, glutamate, and brain-derived neurotrophic factor (BDNF) signaling, and are thus essential for striatal neuroplasticity and fear and anxiety behavior. We tested two brain region-specific A2AR knockout lines with A2ARs selectively deleted either in the striatum (st-A2AR KO) or the entire forebrain (striatum, hippocampus, and cortex [fb-A2AR KO]) on fear and anxiety-related responses. We also examined the effect of hippocampus-specific A2AR deletion by local injection of adeno-associated virus type 5 (AAV5)-Cre into floxed-A2AR knockout mice. Selectively deleting A2ARs in the striatum increased Pavlovian fear conditioning (both context and tone) in st-A2AR KO mice, but extending the deletion to the rest of the forebrain apparently spared context fear conditioning and attenuated tone fear conditioning in fb-A2AR KO mice. Moreover, focal deletion of hippocampal A2ARs by AAV5-Cre injection selectively attenuated context (but not tone) fear conditioning. Deletion of A2ARs in the entire forebrain in fb-A2AR KO mice also produced an anxiolytic phenotype in both the elevated plus maze and open field tests, and increased the startle response. These extrastriatal forebrain A2AR behavioral effects were associated with reduced BDNF levels in the fb-A2AR KO hippocampus. This study provides evidence that inactivation of striatal A2ARs facilitates Pavlovian fear conditioning, while inactivation of extrastriatal A2ARs in the forebrain inhibits fear conditioning and also affects anxiety-related behavior. Copyright © 2014. Published by Elsevier Inc.

  17. Organization of the avian basal forebrain: chemical anatomy in the parrot (Melopsittacus undulatus).

    PubMed

    Roberts, Todd Freeman; Hall, William Sterling; Brauth, Steven Earle

    2002-12-23

    Hodological, electrophysiological, and ablation studies indicate a role for the basal forebrain in telencephalic vocal control; however, to date the organization of the basal forebrain has not been extensively studied in any nonmammal or nonhuman vocal learning species. To this end the chemical anatomy of the avian basal forebrain was investigated in a vocal learning parrot, the budgerigar (Melopsittacus undulatus). Immunological and histological stains, including choline acetyltransferase, acetylcholinesterase, tyrosine hydroxylase, dopamine and cAMP-regulated phosphoprotein (DARPP)-32, the calcium binding proteins calbindin D-28k and parvalbumin, calcitonin gene-related peptide, iron, substance P, methionine enkephalin, nicotinamide adenine dinucleotide phosphotase diaphorase, and arginine vasotocin were used in the present study. We conclude that the ventral paleostriatum (cf. Kitt and Brauth [1981] Neuroscience 6:1551-1566) and adjacent archistriatal regions can be subdivided into several distinct subareas that are chemically comparable to mammalian basal forebrain structures. The nucleus accumbens is histochemically separable into core and shell regions. The nucleus taeniae (TN) is theorized to be homologous to the medial amygdaloid nucleus. The archistriatum pars ventrolateralis (Avl; comparable to the pigeon archistriatum pars dorsalis) is theorized to be a possible homologue of the central amygdaloid nucleus. The TN and Avl are histochemically continuous with the medial aspects of the bed nucleus of the stria terminalis and the ventromedial striatum, forming an avian analogue of the extended amygdala. The apparent counterpart in budgerigars of the mammalian nucleus basalis of Meynert consists of a field of cholinergic neurons spanning the basal forebrain. The budgerigar septal region is theorized to be homologous as a field to the mammalian septum. Our results are discussed with regard to both the evolution of the basal forebrain and its role in vocal

  18. Substitution of natural sensory input by artificial neurostimulation of an amputated trigeminal nerve does not prevent the degeneration of basal forebrain cholinergic circuits projecting to the somatosensory cortex

    PubMed Central

    Herrera-Rincon, Celia; Panetsos, Fivos

    2014-01-01

    Peripheral deafferentation downregulates acetylcholine (ACh) synthesis in sensory cortices. However, the responsible neural circuits and processes are not known. We irreversibly transected the rat infraorbital nerve and implanted neuroprosthetic microdevices for proximal stump stimulation, and assessed cytochrome-oxidase and choline- acetyl-transferase (ChAT) in somatosensory, auditory and visual cortices; estimated the number and density of ACh-neurons in the magnocellular basal nucleus (MBN); and localized down-regulated ACh-neurons in basal forebrain using retrograde labeling from deafferented cortices. Here we show that nerve transection, causes down regulation of MBN cholinergic neurons. Stimulation of the cut nerve reverses the metabolic decline but does not affect the decrease in cholinergic fibers in cortex or cholinergic neurons in basal forebrain. Artifical stimulation of the nerve also has no affect of ACh-innervation of other cortices. Cortical ChAT depletion is due to loss of corticopetal MBN ChAT-expressing neurons. MBN ChAT downregulation is not due to a decrease of afferent activity or to a failure of trophic support. Basalocortical ACh circuits are sensory specific, ACh is provided to each sensory cortex “on demand” by dedicated circuits. Our data support the existence of a modality-specific cortex-MBN-cortex circuit for cognitive information processing. PMID:25452715

  19. Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis

    PubMed Central

    Cavodeassi, Florencia; Ivanovitch, Kenzo; Wilson, Stephen W.

    2013-01-01

    During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis. PMID:24026122

  20. Basal forebrain moderates the magnitude of task-dependent amygdala functional connectivity

    PubMed Central

    Knodt, Annchen R.; Hariri, Ahmad R.

    2015-01-01

    Animal studies reveal that the amygdala promotes attention and emotional memory, in part, by driving activity in downstream target regions including the prefrontal cortex (PFC) and hippocampus. Prior work has demonstrated that the amygdala influences these regions directly through monosynaptic glutamatergic signaling, and indirectly by driving activity of the cholinergic basal forebrain and subsequent downstream acetylcholine release. Yet to date, no work has addressed the functional relevance of the cholinergic basal forebrain in facilitating signaling from the amygdala in humans. We set out to determine how blood oxygen level-dependent signal within the amygdala and cholinergic basal forebrain interact to predict neural responses within downstream targets. Here, we use functional connectivity analyses to demonstrate that the cholinergic basal forebrain moderates increased amygdala connectivity with both the PFC and the hippocampus during the processing of biologically salient stimuli in humans. We further demonstrate that functional variation within the choline transporter gene predicts the magnitude of this modulatory effect. Collectively, our results provide novel evidence for the importance of cholinergic signaling in modulating neural pathways supporting arousal, attention and memory in humans. Further, our results may shed light on prior association studies linking functional variation within the choline transporter gene and diagnoses of major depression and attention-deficit hyperactivity disorder. PMID:24847112

  1. Identification of the optic recess region as a morphogenetic entity in the zebrafish forebrain.

    PubMed

    Affaticati, Pierre; Yamamoto, Kei; Rizzi, Barbara; Bureau, Charlotte; Peyriéras, Nadine; Pasqualini, Catherine; Demarque, Michaël; Vernier, Philippe

    2015-03-04

    Regionalization is a critical, highly conserved step in the development of the vertebrate brain. Discrepancies exist in how regionalization of the anterior vertebrate forebrain is conceived since the "preoptic area" is proposed to be a part of the telencephalon in tetrapods but not in teleost fish. To gain insight into this complex morphogenesis, formation of the anterior forebrain was analyzed in 3D over time in zebrafish embryos, combining visualization of proliferation and differentiation markers, with that of developmental genes. We found that the region containing the preoptic area behaves as a coherent morphogenetic entity, organized around the optic recess and located between telencephalon and hypothalamus. This optic recess region (ORR) makes clear borders with its neighbor areas and expresses a specific set of genes (dlx2a, sim1a and otpb). We thus propose that the anterior forebrain (secondary prosencephalon) in teleosts contains three morphogenetic entities (telencephalon, ORR and hypothalamus), instead of two (telencephalon and hypothalamus). The ORR in teleosts could correspond to "telencephalic stalk area" and "alar hypothalamus" in tetrapods, resolving current inconsistencies in the comparison of basal forebrain among vertebrates.

  2. TrkA Gene Ablation in Basal Forebrain Results in Dysfunction of the Cholinergic Circuitry

    PubMed Central

    Sanchez-Ortiz, Efrain; Yui, Daishi; Song, Dongli; Li, Yun; Rubenstein, John L.; Reichardt, Louis F.; Parada, Luis F.

    2012-01-01

    Dysfunction of basal forebrain cholinergic neurons (BFCNs) is an early pathological hallmark of Alzheimer's disease (AD). Numerous studies have indicated that nerve growth factor (NGF) supports survival and phenotypic differentiation of BFCNs. Consistent with a potential link to AD pathogenesis, TrkA, a NGF receptor, is expressed in cholinergic forebrain neuronal populations including those in basal forebrain (BF) and striatum, and is markedly reduced in individuals with mild cognitive impairment (MCI) without dementia and early-stage AD. To investigate the role of TrkA in the development, connectivity, and function of the BF cholinergic system and its contribution to AD pathology, we have generated a forebrain-specific conditional TrkA knockout mouse line. Our findings show a key role for TrkA signaling in establishing the BF cholinergic circuitry through the ERK pathway, and demonstrate that the normal developmental increase of choline acetyltransferase (ChAT) expression becomes critically dependent on TrkA signaling before neuronal connections are established. Moreover, the anatomical and physiological deficits caused by lack of TrkA signaling in BFCNs have selective impact on cognitive activity. These data demonstrate that TrkA loss results in cholinergic BF dysfunction and cognitive decline that is reminiscent of MCI and early AD. PMID:22442072

  3. Loss of the tailless gene affects forebrain development and emotional behavior

    PubMed Central

    Roy, Kristine; Thiels, Edda; Monaghan, A. Paula

    2009-01-01

    We are studying the role of the evolutionarily conserved tlx gene in forebrain development in mice. Tlx is expressed in the ventricular zone that gives rise to neurons and glia of the forebrain. We have shown by mutating the tlx gene in mice, that in the absence of this transcription factor, mutant animals survive, but suffer specific anatomical defects in the limbic system. Because of these developmentally induced structural changes, mice with a mutation in the tlx gene can function, but exhibit extreme behavioral pathology. Mice show heightened aggressiveness, excitability, and poor cognition. In this article, we present a summary of our findings on the cellular and behavioral changes in the forebrain of mutant animals. We show that absence of the tlx gene leads to abnormal proliferation and differentiation of progenitor cells (PCs) in the forebrain from embryonic day 9 (E9). These abnormalities lead to hypoplasia of superficial cortical layers and subsets of GABAergic interneurons in the neocortex. We examined the behavior of mutant animals in three tests for anxiety/fear: the open field, the elevated plus maze, and fear conditioning. Mutant animals are less anxious and less fearful when assessed in the elevated plus and open-field paradigm. In addition, mutant animals do not condition to either the tone or the context in the fear-conditioning paradigm. These animals, therefore, provide a genetic tool to delineate structure/function relationships in defined regions of the brain and decipher how their disruption leads to behavioral abnormalities. PMID:12527005

  4. Fgf19 regulated by Hh signaling is required for zebrafish forebrain development.

    PubMed

    Miyake, Ayumi; Nakayama, Yoshiaki; Konishi, Morichika; Itoh, Nobuyuki

    2005-12-01

    Fibroblast growth factor (Fgf) signaling plays important roles in brain development. Fgf3 and Fgf8 are crucial for the formation of the forebrain and hindbrain. Fgf8 is also required for the midbrain to form. Here, we identified zebrafish Fgf19 and examined its roles in brain development by knocking down Fgf19 function. We found that Fgf19 expressed in the forebrain, midbrain and hindbrain was involved in cell proliferation and cell survival during embryonic brain development. Fgf19 was also essential for development of the ventral telencephalon and diencephalon. Regional specification is linked to cell type specification. Fgf19 was also essential for the specification of gamma-aminobutyric acid (GABA)ergic interneurons and oligodendrocytes generated in the ventral telencephalon and diencephalon. The cross talk between Fgf and Hh signaling is critical for brain development. In the forebrain, Fgf19 expression was down-regulated on inhibition of Hh but not of Fgf3/Fgf8, and overexpression of Fgf19 rescued partially the phenotype on inhibition of Hh. The present findings indicate that Fgf19 signaling is crucial for forebrain development by interacting with Hh and provide new insights into the roles of Fgf signaling in brain development.

  5. GABAergic terminals are a source of galanin to modulate cholinergic neuron development in the neonatal forebrain.

    PubMed

    Keimpema, Erik; Zheng, Kang; Barde, Swapnali Shantaram; Berghuis, Paul; Dobszay, Márton B; Schnell, Robert; Mulder, Jan; Luiten, Paul G M; Xu, Zhiqing David; Runesson, Johan; Langel, Ülo; Lu, Bai; Hökfelt, Tomas; Harkany, Tibor

    2014-12-01

    The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine

    PubMed Central

    Vu, Michael T.; Du, Guizhi; Bayliss, Douglas A.

    2015-01-01

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K+ (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K+ current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASKf/f mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30–50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30–50 Hz activity in ChAT-Cre:TASKf/f mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. SIGNIFICANCE STATEMENT Attentive states and cognitive function are associated with the generation of γ EEG activity

  7. Intraventricular injection of myxoma virus results in transient expression of viral protein in mouse brain ependymal and subventricular cells.

    PubMed

    France, Megan R; Thomas, Diana L; Liu, Jia; McFadden, Grant; MacNeill, Amy L; Roy, Edward J

    2011-01-01

    Oncolytic viruses that selectively infect and lyse cancer cells have potential as therapeutic agents. Myxoma virus, a poxvirus that is known to be pathogenic only in rabbits, has not been reported to infect normal tissues in humans or mice. We observed that when recombinant virus was injected directly into the lateral ventricle of the mouse brain, virally encoded red fluorescent protein was expressed in ependymal and subventricular cells. Cells were positive for nestin, a marker of neural stem cells. Rapamycin increased the number of cells expressing the virally encoded protein. However, protein expression was transient. Cells expressing the virally encoded protein did not undergo apoptosis and the ependymal lining remained intact. Myxoma virus appears to be safe when injected into the brain despite the transient expression of virally derived protein in a small population of periventricular cells.

  8. A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels.

    PubMed

    Martínez-Martínez, Maria Ángeles; De Juan Romero, Camino; Fernández, Virginia; Cárdenas, Adrián; Götz, Magdalena; Borrell, Víctor

    2016-06-06

    The outer subventricular zone (OSVZ) is a germinal layer playing key roles in the development of the neocortex, with particular relevance in gyrencephalic species such as human and ferret, where it contains abundant basal radial glia cells (bRGCs) that promote cortical expansion. Here we identify a brief period in ferret embryonic development when apical RGCs generate a burst of bRGCs that become founders of the OSVZ. After this period, bRGCs in the OSVZ proliferate and self-renew exclusively locally, thereby forming a self-sustained lineage independent from the other germinal layers. The time window for the brief period of OSVZ bRGC production is delineated by the coincident downregulation of Cdh1 and Trnp1, and their upregulation reduces bRGC production and prevents OSVZ seeding. This mechanism in cortical development may have key relevance in brain evolution and disease.

  9. Unmasking the responses of the stem cells and progenitors in the subventricular zone after neonatal and pediatric brain injuries.

    PubMed

    Clausi, Mariano Guardia; Kumari, Ekta; Levison, Steven W

    2016-01-01

    There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the subventricular zone (SVZ). However, a comprehensive understanding of SVZ cell responses to brain injuries has been hindered by the lack of sensitive approaches to study the cellular composition of this niche. Here we review progress being made in deciphering the cells of the SVZ gleaned from the use of a recently designed flow cytometry panel that allows SVZ cells to be parsed into multiple subsets of progenitors as well as putative stem cells. We review how this approach has begun to unmask both the heterogeneity of SVZ cells as well as the dynamic shifts in cell populations with neonatal and pediatric brain injuries. We also discuss how flow cytometric analyses also have begun to reveal how specific cytokines, such as Leukemia inhibitory factor are coordinating SVZ responses to injury.

  10. A restricted period for formation of outer subventricular zone defined by Cdh1 and Trnp1 levels

    PubMed Central

    Martínez-Martínez, Maria Ángeles; De Juan Romero, Camino; Fernández, Virginia; Cárdenas, Adrián; Götz, Magdalena; Borrell, Víctor

    2016-01-01

    The outer subventricular zone (OSVZ) is a germinal layer playing key roles in the development of the neocortex, with particular relevance in gyrencephalic species such as human and ferret, where it contains abundant basal radial glia cells (bRGCs) that promote cortical expansion. Here we identify a brief period in ferret embryonic development when apical RGCs generate a burst of bRGCs that become founders of the OSVZ. After this period, bRGCs in the OSVZ proliferate and self-renew exclusively locally, thereby forming a self-sustained lineage independent from the other germinal layers. The time window for the brief period of OSVZ bRGC production is delineated by the coincident downregulation of Cdh1 and Trnp1, and their upregulation reduces bRGC production and prevents OSVZ seeding. This mechanism in cortical development may have key relevance in brain evolution and disease. PMID:27264089

  11. Adult Neural Stem Cells from the Subventricular Zone Give Rise to Reactive Astrocytes in the Cortex after Stroke.

    PubMed

    Faiz, Maryam; Sachewsky, Nadia; Gascón, Sergio; Bang, K W Annie; Morshead, Cindi M; Nagy, Andras

    2015-11-05

    Reactive astrocytes (RAs) have been reported to convert to multipotent neural stem cells (NSCs) capable of neurosphere (NS) formation and multilineage differentiation in vitro. Using genetic tagging, we determined that subventricular zone (SVZ) NSCs give rise to NSs derived from the stroke-injured cortex. We demonstrate that these cells can be isolated from the cortex in two different models of stroke and from different stroke-lesioned cortical regions. Interestingly, SVZ NSCs give rise to a subpopulation of RAs in the cortex that contribute to astrogliosis and scar formation. Last, we show that these SVZ derived RAs can be converted to neurons in vivo by forced expression of Ascl1. Identifying the contribution of cells originating from the SVZ to injury repair has implications for neural regeneration strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain.

    PubMed

    Köles, László; Garção, Pedro; Zádori, Zoltán S; Ferreira, Samira G; Pinheiro, Bárbara S; da Silva-Santos, Carla S; Ledent, Catherine; Köfalvi, Attila

    2013-08-01

    Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal.

  13. Slow age-dependent decline of doublecortin expression and BrdU labeling in the forebrain from lesser hedgehog tenrecs.

    PubMed

    Alpár, Alán; Künzle, Heinz; Gärtner, Ulrich; Popkova, Yulia; Bauer, Ute; Grosche, Jens; Reichenbach, Andreas; Härtig, Wolfgang

    2010-05-12

    In addition to synaptic remodeling, formation of new neurons is increasingly acknowledged as an important cue for plastic changes in the central nervous system. Whereas all vertebrates retain a moderate neuroproliferative capacity, phylogenetically younger mammals become dramatically impaired in this potential during aging. The present study shows that the lesser hedgehog tenrec, an insectivore with a low encephalization index, preserves its neurogenic potential surprisingly well during aging. This was shown by quantitative analysis of 5-bromo-2'-deoxyuridine (BrdU) immunolabeling in the olfactory bulb, paleo-, archi-, and neocortices from 2- to 7-year-old animals. In addition to these newly born cells, a large number of previously formed immature neurons are present throughout adulthood as shown by doublecortin (DCX) immunostaining in various forebrain regions including archicortex, paleocortex, nucleus accumbens, and amygdala. Several ventricle-associated cells in olfactory bulb and hippocampus were double-labeled by BrdU and DCX immunoreactivity. However, most DCX cells in the paleocortex can be considered as persisting immature neurons that obviously do not enter a differentiation program since double fluorescence labeling does not reveal their co-occurrence with numerous neuronal markers, whereas only a small portion coexpresses the pan-neuronal marker HuC/D. Finally, the present study reveals tenrecs as suitable laboratory animals to study age-dependent brain alterations (e.g., of neurogenesis) or slow degenerative processes, particularly due to the at least doubled longevity of tenrecs in comparison to mice and rats.

  14. Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition.

    PubMed

    Lin, Shih-Chieh; Brown, Ritchie E; Hussain Shuler, Marshall G; Petersen, Carl C H; Kepecs, Adam

    2015-10-14

    The basal forebrain (BF) houses major ascending projections to the entire neocortex that have long been implicated in arousal, learning, and attention. The disruption of the BF has been linked with major neurological disorders, such as coma and Alzheimer's disease, as well as in normal cognitive aging. Although it is best known for its cholinergic neurons, the BF is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific BF cell types have led to a renaissance in the study of the BF and are beginning to yield new insights about cell-type-specific circuit mechanisms during behavior. These approaches enable us to determine the behavioral conditions under which cholinergic and noncholinergic BF neurons are activated and how they control cortical processing to influence behavior. Here we discuss recent advances that have expanded our knowledge about this poorly understood brain region and laid the foundation for future cell-type-specific manipulations to modulate arousal, attention, and cortical plasticity in neurological disorders. Although the basal forebrain is best known for, and often equated with, acetylcholine-containing neurons that provide most of the cholinergic innervation of the neocortex, it is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific cell types in the basal forebrain have led to a renaissance in this field and are beginning to dissect circuit mechanisms in the basal forebrain during behavior. This review discusses recent advances in the roles of basal forebrain cholinergic and noncholinergic neurons in cognition via their dynamic modulation of cortical activity. Copyright © 2015 the authors 0270-6474/15/3513896-08$15.00/0.

  15. Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition

    PubMed Central

    Brown, Ritchie E.; Hussain Shuler, Marshall G.; Petersen, Carl C.H.; Kepecs, Adam

    2015-01-01

    The basal forebrain (BF) houses major ascending projections to the entire neocortex that have long been implicated in arousal, learning, and attention. The disruption of the BF has been linked with major neurological disorders, such as coma and Alzheimer's disease, as well as in normal cognitive aging. Although it is best known for its cholinergic neurons, the BF is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific BF cell types have led to a renaissance in the study of the BF and are beginning to yield new insights about cell-type-specific circuit mechanisms during behavior. These approaches enable us to determine the behavioral conditions under which cholinergic and noncholinergic BF neurons are activated and how they control cortical processing to influence behavior. Here we discuss recent advances that have expanded our knowledge about this poorly understood brain region and laid the foundation for future cell-type-specific manipulations to modulate arousal, attention, and cortical plasticity in neurological disorders. SIGNIFICANCE STATEMENT Although the basal forebrain is best known for, and often equated with, acetylcholine-containing neurons that provide most of the cholinergic innervation of the neocortex, it is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific cell types in the basal forebrain have led to a renaissance in this field and are beginning to dissect circuit mechanisms in the basal forebrain during behavior. This review discusses recent advances in the roles of basal forebrain cholinergic and noncholinergic neurons in cognition via their dynamic modulation of cortical activity. PMID:26468190

  16. TDP-43 pathology in the basal forebrain and hypothalamus of patients with amyotrophic lateral sclerosis.

    PubMed

    Cykowski, Matthew D; Takei, Hidehiro; Schulz, Paul E; Appel, Stanley H; Powell, Suzanne Z

    2014-12-24

    Amyotrophic lateral sclerosis is a neurodegenerative disease characterized clinically by motor symptoms including limb weakness, dysarthria, dysphagia, and respiratory compromise, and pathologically by inclusions of transactive response DNA-binding protein 43 kDa (TDP-43). Patients with amyotrophic lateral sclerosis also may demonstrate non-motor symptoms and signs of autonomic and energy dysfunction as hypermetabolism and weight loss that suggest the possibility of pathology in the forebrain, including hypothalamus. However, this region has received little investigation in amyotrophic lateral sclerosis. In this study, the frequency, topography, and clinical associations of TDP-43 inclusion pathology in the basal forebrain and hypothalamus were examined in 33 patients with amyotrophic lateral sclerosis: 25 men and 8 women; mean age at death of 62.7 years, median disease duration of 3.1 years (range of 1.3 to 9.8 years). TDP-43 pathology was present in 11 patients (33.3%), including components in both basal forebrain (n=10) and hypothalamus (n=7). This pathology was associated with non-motor system TDP-43 pathology (Χ2=17.5, p=0.00003) and bulbar symptoms at onset (Χ2=4.04, p=0.044), but not age or disease duration. Furthermore, TDP-43 pathology in the lateral hypothalamic area was associated with reduced body mass index (W=11, p=0.023). This is the first systematic demonstration of pathologic involvement of the basal forebrain and hypothalamus in amyotrophic lateral sclerosis. Furthermore, the findings suggest that involvement of the basal forebrain and hypothalamus has significant phenotypic associations in amyotrophic lateral sclerosis, including site of symptom onset, as well as deficits in energy metabolism with loss of body mass index.

  17. Increased dopamine receptor expression and anti-depressant response following deep brain stimulation of the medial forebrain bundle.

    PubMed

    Dandekar, Manoj P; Luse, Dustin; Hoffmann, Carson; Cotton, Patrick; Peery, Travis; Ruiz, Christian; Hussey, Caroline; Giridharan, Vijayasree V; Soares, Jair C; Quevedo, Joao; Fenoy, Albert J

    2017-08-01

    Among several potential neuroanatomical targets pursued for deep brain stimulation (DBS) for treating those with treatment-resistant depression (TRD), the superolateral-branch of the medial forebrain bundle (MFB) is emerging as a privileged location. We investigated the antidepressant-like phenotypic and chemical changes associated with reward-processing dopaminergic systems in rat brains after MFB-DBS. Male Wistar rats were divided into three groups: sham-operated, DBS-Off, and DBS-On. For DBS, a concentric bipolar electrode was stereotactically implanted into the right MFB. Exploratory activity and depression-like behavior were evaluated using the open-field and forced-swimming test (FST), respectively. MFB-DBS effects on the dopaminergic system were evaluated using immunoblotting for tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine receptors (D1-D5), and high-performance liquid chromatography for quantifying dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in brain homogenates of prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens (NAc). Animals receiving MFB-DBS showed a significant increase in swimming time without alterations in locomotor activity, relative to the DBS-Off (p<0.039) and sham-operated groups (p<0.014), indicating an antidepressant-like response. MFB-DBS led to a striking increase in protein levels of dopamine D2 receptors and DAT in the PFC and hippocampus, respectively. However, we did not observe appreciable differences in the expression of other dopamine receptors, TH, or in the concentrations of dopamine, DOPAC, and HVA in PFC, hippocampus, amygdala, and NAc. This study was not performed on an animal model of TRD. MFB-DBS rescues the depression-like phenotypes and selectively activates expression of dopamine receptors in brain regions distant from the target area of stimulation. Copyright © 2017. Published by Elsevier B.V.

  18. The activation of cannabinoid receptors during early postnatal development reduces the expression of cell adhesion molecule L1 in the rat brain.

    PubMed

    Gómez, María; Hernández, Mariluz; Fernández-Ruiz, Javier

    2007-05-11

    Cannabinoid CB(1) receptors and their ligands emerge early in brain development and are abundantly expressed in certain brain regions that play key roles in processes related to cell proliferation and migration, neuritic elongation and guidance, and synaptogenesis. This would support the notion that the cannabinoid system might play a modulatory role in the regulation of these processes. We have recently presented preliminary in vivo evidence showing that this modulatory action might be exerted, among others, through regulating the levels of several key elements in these processes, such as the L1 protein. This was observed in various white matter areas of the rat forebrain. Because these preliminary in vivo experiments focused only in fetal ages, we concentrated now in the period of early postnatal development. To this end, we analyzed the effects of the cannabinoid agonist Delta(9)-tetrahydrocannabinol (Delta(9)-THC) daily administered since the 5th day of gestation on mRNA levels for L1 in different brain structures of rat neonates at different postnatal ages (PND1, PND5 and PND12). Our results revealed that Delta(9)-THC exposure affected the levels of L1 transcripts in specific brain structures only in PND1, these effects disappearing during further days. Thus, we found reduced L1-mRNA levels in grey matter regions, such as the cerebral cortex, septum nuclei, striatum, dentate gyrus and CA3 subfield of the Ammon horn. White matter areas and subventricular zones were, however, more resistant to Delta(9)-THC exposure at this postnatal age in contrast with the previous data obtained in the fetal brain. Importantly, the effects were influenced by gender of animals, since the reductions were always more marked in females than males, also in contrast with the data reported for the fetal brain. In summary, the cannabinoid system seems to modulate the levels of L1 in several brain structures during specific periods of development [late gestation (previous data) and very

  19. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease.

    PubMed

    Baker-Nigh, Alaina; Vahedi, Shahrooz; Davis, Elena Goetz; Weintraub, Sandra; Bigio, Eileen H; Klein, William L; Geula, Changiz

    2015-06-01

    The mechanisms that contribute to selective vulnerability of the magnocellular basal forebrain cholinergic neurons in neurodegenerative diseases, such as Alzheimer's disease, are not fully understood. Because age is the primary risk factor for Alzheimer's disease, mechanisms of interest must include age-related alterations in protein expression, cell type-specific markers and pathology. The present study explored the extent and characteristics of intraneuronal amyloid-β accumulation, particularly of the fibrillogenic 42-amino acid isoform, within basal forebrain cholinergic neurons in normal young, normal aged and Alzheimer's disease brains as a potential contributor to the selective vulnerability of these neurons using immunohistochemistry and western blot analysis. Amyloid-β1-42 immunoreactivity was observed in the entire cholinergic neuronal population regardless of age or Alzheimer's disease diagnosis. The magnitude of this accumulation as revealed by optical density measures was significantly greater than that in cortical pyramidal neurons, and magnocellular neurons in the globus pallidus did not demonstrate a similar extent of amyloid immunoreactivity. Immunoblot analysis with a panel of amyloid-β antibodies confirmed accumulation of high concentration of amyloid-β in basal forebrain early in adult life. There was no age- or Alzheimer-related alteration in total amyloid-β content within this region. In contrast, an increase in the large molecular weight soluble oligomer species was observed with a highly oligomer-specific antibody in aged and Alzheimer brains when compared with the young. Similarly, intermediate molecular weight oligomeric species displayed an increase in aged and Alzheimer brains when compared with the young using two amyloid-β42 antibodies. Compared to cortical homogenates, small molecular weight oligomeric species were lower and intermediate species were enriched in basal forebrain in ageing and Alzheimer's disease. Regional and age

  20. Lack of the murine homeobox gene Hesx1 leads to a posterior transformation of the anterior forebrain

    PubMed Central

    Andoniadou, Cynthia L.; Signore, Massimo; Sajedi, Ezat; Gaston-Massuet, Carles; Kelberman, Daniel; Burns, Alan J.; Itasaki, Nobue; Dattani, Mehul; Martinez-Barbera, Juan Pedro

    2008-01-01

    The homeobox gene Hesx1 is an essential repressor that is required within the anterior neural plate for normal forebrain development in mouse and humans. Combining genetic cell labelling and marker analyses, we demonstrate that the absence of Hesx1 leads to a posterior transformation of the anterior forebrain (AFB) during mouse development. Our data suggest that the mechanism underlying this transformation is the ectopic activation of Wnt/β-catenin signalling within the Hesx1 expression domain in the AFB. When ectopically expressed in the developing mouse embryo, Hesx1 alone cannot alter the normal fate of posterior neural tissue. However, conditional expression of Hesx1 within the AFB can rescue the forebrain defects observed in the Hesx1 mutants. The results presented here provide new insights into the function of Hesx1 in forebrain formation. PMID:17360769

  1. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant.

    PubMed

    Izumo, Mariko; Pejchal, Martina; Schook, Andrew C; Lange, Ryan P; Walisser, Jacqueline A; Sato, Takashi R; Wang, Xiaozhong; Bradfield, Christopher A; Takahashi, Joseph S

    2014-12-19

    In order to assess the contribution of a central clock in the hypothalamic suprachiasmatic nucleus (SCN) to circadian behavior and the organization of peripheral clocks, we generated forebrain/SCN-specific Bmal1 knockout mice by using floxed Bmal1 and pan-neuronal Cre lines. The forebrain knockout mice showed >90% deletion of BMAL1 in the SCN and exhibited an immediate and complete loss of circadian behavior in constant conditions. Circadian rhythms in peripheral tissues persisted but became desynchronized and damped in constant darkness. The loss of synchrony was rescued by light/dark cycles and partially by restricted feeding (only in the liver and kidney but not in the other tissues) in a distinct manner. These results suggest that the forebrain/SCN is essential for internal temporal order of robust circadian programs in peripheral clocks, and that individual peripheral clocks are affected differently by light and feeding in the absence of a functional oscillator in the forebrain.

  2. Distribution of glutamine synthetase in the chick forebrain: implications for passive avoidance memory formation.

    PubMed

    O'Dowd, B S; Ng, K T; Robinson, S R

    1997-01-01

    The glial enzyme glutamine synthetase (GS) converts glutamate to glutamine; the latter is used by neurons for the resynthesis of glutamate and GABA. We have used a monoclonal antibody to GS to examine the regional distribution of this enzyme in the forebrains of day-old chicks. GS was detected in glia throughout the rostral and caudal regions of the forebrain and was particularly intense in the hippocampus, area parahippocampus and parts of the hyperstriatal and paleostriatal complex, regions widely considered to be involved in memory formation. Thus, our data provide an anatomical framework for the conclusion that neurons require the support of glia in order to restock their glutamate and/or GABA transmitter supplies during memory processing.

  3. The ancestral role of nodal signalling in breaking L/R symmetry in the vertebrate forebrain.

    PubMed

    Lagadec, Ronan; Laguerre, Laurent; Menuet, Arnaud; Amara, Anis; Rocancourt, Claire; Péricard, Pierre; Godard, Benoît G; Rodicio, Maria Celina; Rodriguez-Moldes, Isabel; Mayeur, Hélène; Rougemont, Quentin; Mazan, Sylvie; Boutet, Agnès

    2015-03-30

    Left-right asymmetries in the epithalamic region of the brain are widespread across vertebrates, but their magnitude and laterality varies among species. Whether these differences reflect independent origins of forebrain asymmetries or taxa-specific diversifications of an ancient vertebrate feature remains unknown. Here we show that the catshark Scyliorhinus canicula and the lampreys Petromyzon marinus and Lampetra planeri exhibit conserved molecular asymmetries between the left and right developing habenulae. Long-term pharmacological treatments in these species show that nodal signalling is essential to their generation, rather than their directionality as in teleosts. Moreover, in contrast to zebrafish, habenular left-right differences are observed in the absence of overt asymmetry of the adjacent pineal field. These data support an ancient origin of epithalamic asymmetry, and suggest that a nodal-dependent asymmetry programme operated in the forebrain of ancestral vertebrates before evolving into a variable trait in bony fish.

  4. Molecular taxonomy of major neuronal classes in the adult mouse forebrain.

    PubMed

    Sugino, Ken; Hempel, Chris M; Miller, Mark N; Hattox, Alexis M; Shapiro, Peter; Wu, Caizi; Huang, Z Josh; Nelson, Sacha B

    2006-01-01

    Identifying the neuronal cell types that comprise the mammalian forebrain is a central unsolved problem in neuroscience. Global gene expression profiles offer a potentially unbiased way to assess functional relationships between neurons. Here, we carried out microarray analysis of 12 populations of neurons in the adult mouse forebrain. Five of these populations were chosen from cingulate cortex and included several subtypes of GABAergic interneurons and pyramidal neurons. The remaining seven were derived from the somatosensory cortex, hippocampus, amygdala and thalamus. Using these expression profiles, we were able to construct a taxonomic tree that reflected the expected major relationships between these populations, such as the distinction between cortical interneurons and projection neurons. The taxonomic tree indicated highly heterogeneous gene expression even within a single region. This dataset should be useful for the classification of unknown neuronal subtypes, the investigation of specifically expressed genes and the genetic manipulation of specific neuronal circuit elements.

  5. Nerve growth factor corrects developmental impairments of basal forebrain cholinergic neurons in the trisomy 16 mouse.

    PubMed Central

    Corsi, P; Coyle, J T

    1991-01-01

    The trisomy 16 (Ts16) mouse, which shares genetic and phenotypic homologies with Down syndrome, exhibits impaired development of the basal forebrain cholinergic system. Basal forebrains obtained from Ts16 and euploid littermate fetuses at 15 days of gestation were dissociated and cultured in completely defined medium, with cholinergic neurons identified by choline acetyltransferase (ChAT) immunoreactivity. The Ts16 cultures exhibited fewer ChAT-immunoreactive neurons, which were smaller and emitted shorter, smoother, and more simplified neurites than those from euploid littermates. Whereas the addition of beta-nerve growth factor (100 ng/ml) augmented the specific activity of ChAT and neuritic extension for both Ts16 and euploid cholinergic neurons, only Ts16 cultures exhibited an increase in the number and size of ChAT-immunoreactive neurons. Furthermore, Ts16 ChAT-immunoreactive neurites formed varicosities only in the presence of beta-nerve growth factor. Images PMID:2000385

  6. Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments.

    PubMed

    Cunha, Carla; Angelucci, Andrea; D'Antoni, Angela; Dobrossy, Mate D; Dunnett, Stephen B; Berardi, Nicoletta; Brambilla, Riccardo

    2009-03-01

    In this study we analyzed the effect on behavior of a chronic exposure to brain-derived neurotrophic factor (BDNF), by analysing a mouse line overexpressing BDNF under the alphaCaMKII promoter, which drives the transgene expression exclusively to principal neurons of the forebrain. BDNF transgenic mice and their WT littermates were examined with a battery of behavioral tests, in order to evaluate motor coordination, learning, short and long-term memory formation. Our results demonstrate that chronic BDNF overexpression in the central nervous system (CNS) causes learning deficits and short-term memory impairments, both in spatial and instrumental learning tasks. This observation suggests that a widespread increase in BDNF in forebrain networks may result in adverse effects on learning and memory formation.

  7. Overexpression of the Type 1 Adenylyl Cyclase in the Forebrain Leads to Deficits of Behavioral Inhibition

    PubMed Central

    Cao, Hong; Saraf, Amit; Zweifel, Larry S.

    2015-01-01

    The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition. PMID:25568126

  8. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice.

    PubMed

    Zunino, G; Messina, A; Sgadò, P; Baj, G; Casarosa, S; Bozzi, Y

    2016-06-02

    Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD.

  9. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration.

    PubMed

    Hambright, William Sealy; Fonseca, Rene Solano; Chen, Liuji; Na, Ren; Ran, Qitao

    2017-02-01

    Synaptic loss and neuron death are the underlying cause of neurodegenerative diseases such as Alzheimer's disease (AD); however, the modalities of cell death in those diseases remain unclear. Ferroptosis, a newly identified oxidative cell death mechanism triggered by massive lipid peroxidation, is implicated in the degeneration of neurons populations such as spinal motor neurons and midbrain neurons. Here, we investigated whether neurons in forebrain regions (cerebral cortex and hippocampus) that are severely afflicted in AD patients might be vulnerable to ferroptosis. To this end, we generated Gpx4BIKO mouse, a mouse model with conditional deletion in forebrain neurons of glutathione peroxidase 4 (Gpx4), a key regulator of ferroptosis, and showed that treatment with tamoxifen led to deletion of Gpx4 primarily in forebrain neurons of adult Gpx4BIKO mice. Starting at 12 weeks after tamoxifen treatment, Gpx4BIKO mice exhibited significant deficits in spatial learning and memory function versus Control mice as determined by the Morris water maze task. Further examinations revealed that the cognitively impaired Gpx4BIKO mice exhibited hippocampal neurodegeneration. Notably, markers associated with ferroptosis, such as elevated lipid peroxidation, ERK activation and augmented neuroinflammation, were observed in Gpx4BIKO mice. We also showed that Gpx4BIKO mice fed a diet deficient in vitamin E, a lipid soluble antioxidant with anti-ferroptosis activity, had an expedited rate of hippocampal neurodegeneration and behavior dysfunction, and that treatment with a small-molecule ferroptosis inhibitor ameliorated neurodegeneration in those mice. Taken together, our results indicate that forebrain neurons are susceptible to ferroptosis, suggesting that ferroptosis may be an important neurodegenerative mechanism in diseases such as AD.

  10. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    PubMed Central

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  11. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain

    PubMed Central

    Zaborszky, L.; Hoemke, L.; Mohlberg, H.; Schleicher, A.; Amunts, K.; Zilles, K.

    2008-01-01

    The basal forebrain contains several interdigitating anatomical structures, including the diagonal band of Broca, the basal nucleus of Meynert, the ventral striatum, and also cell groups underneath the globus pallidus that bridge the centromedial amygdala to the bed nucleus of the stria terminalis. Among the cell populations, the magnocellular, cholinergic corticopetal projection neurons have received particular attention due to their loss in Alzheimer’s disease. In MRI images, the precise delineation of these structures is difficult due to limited spatial resolution and contrast. Here, using microscopic delineations in ten human postmortem brains, we present stereotaxic probabilistic maps of the basal forebrain areas containing the magnocellular cell groups. Cytoarchitectonic mapping was performed in silver stained histological serial sections. The positions and the extent of the magnocellular cell groups within the septum (Ch1-2), the horizontal limb of the diagonal band (Ch3), and in the sublenticular part of the basal forebrain (Ch4) were traced in high-resolution digitized histological sections, 3D reconstructed, and warped to the reference space of the MNI single subject brain. The superposition of the cytoarchitectonic maps in the MNI brain shows the intersubject variability of the various Ch compartments and their stereotaxic position relative to other brain structures. Both the right and left Ch4 regions showed significantly smaller volumes when age was considered as a covariate. Probabilistic maps of compartments of the basal forebrain magnocellular system are now available as an open source reference for correlation with fMRI, PET, and structural MRI data of the living human brain. PMID:18585468

  12. Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling

    PubMed Central

    Wang, Xiao-Dong; Chen, Yuncai; Wolf, Miriam; Wagner, Klaus V.; Liebl, Claudia; Scharf, Sebastian H.; Harbich, Daniela; Mayer, Bianca; Wurst, Wolfgang; Holsboer, Florian; Deussing, Jan M.; Baram, Tallie Z.; Müller, Marianne B.; Schmidt, Mathias V.

    2011-01-01

    Chronic stress evokes profound structural and molecular changes in the hippocampus, which may underlie spatial memory deficits. Corticotropin-releasing hormone (CRH) and CRH receptor 1 (CRHR1) mediate some of the rapid effects of stress on dendritic spine morphology and modulate learning and memory, thus providing a potential molecular basis for impaired synaptic plasticity and spatial memory by repeated stress exposure. Using adult male mice with CRHR1 conditionally inactivated in the forebrain regions, we investigated the role of CRH-CRHR1 signaling in the effects of chronic social defeat stress on spatial memory, the dendritic morphology of hippocampal CA3 pyramidal neurons, and the hippocampal expression of nectin-3, a synaptic cell adhesion molecule important in synaptic remodeling. In chronically stressed wild-type mice, spatial memory was disrupted, and the complexity of apical dendrites of CA3 neurons reduced. In contrast, stressed mice with forebrain CRHR1 deficiency exhibited normal dendritic morphology of CA3 neurons and mild impairments in spatial memory. Additionally, we showed that the expression of nectin-3 in the CA3 area was regulated by chronic stress in a CRHR1-dependent fashion and associated with spatial memory and dendritic complexity. Moreover, forebrain CRHR1 deficiency prevented the down-regulation of hippocampal glucocorticoid receptor expression by chronic stress but induced increased body weight gain during persistent stress exposure. These findings underscore the important role of forebrain CRH-CRHR1 signaling in modulating chronic stress-induced cognitive, structural and molecular adaptations, with implications for stress-related psychiatric disorders. PMID:21296667

  13. Tyrosine hydroxylase immunoreactive neurons in the forebrain of the trout: organization, cellular features and innervation.

    PubMed

    Anadón, Ramón; Rodríguez-Moldes, Isabel; González, Agustín

    We studied the segmental distribution and cellular features of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the forebrain of trout. Large differences in cell size, general morphology, and complexity of cell processes were observed between TH-ir nuclei of different regions, and a new type of complex spiny TH-ir neurons in the ventral telencephalon is described for the first time. The distribution of TH-ir fibers was also analyzed and discussed.

  14. Forebrain neuropeptide regulation of pair association and behavior in cooperating cleaner fish.

    PubMed

    Cardoso, Sónia C; Grutter, Alexandra S; Paula, José R; André, Gonçalo I; Messias, João P; Gozdowska, Magdalena; Kulczykowska, Ewa; Soares, Marta C

    2015-06-01

    Animals establish privileged relationships with specific partners, which are treated differently from other conspecifics, and contribute to behavioral variation. However, there is limited information on the underlying physiological mechanisms involved in the establishment of these privileged ties and their relationship to individual cooperation levels. The Indo-Pacific bluestreak cleaner wrasse Labroides dimidiatus often forages in mixed-sex pairs when cleaning fish clients. Intra-couple conflicts often arise during a joint client inspection, which may alter the overall quality of cleaning service provided. Here we tested two hypotheses: a) whether intra-pair association (i.e. association index), measured with joint interspecific cleaning and intraspecific behavior, is correlated with neuroendocrine mechanisms involving forebrain neuropeptides arginine vasotocin (AVT) and isotocin (IT) and b) whether these neuropeptide level shifts relate to an individual's interspecific service quality. We found that partner support (number of cleaning interactions and tactile stimulation) received by male cleaners increased with association index. When cleaners inspected clients alone, cleaners' cheating decreased with association index for females but not males. AVT levels did not differ according to sex or association level. Forebrain IT levels increased with association index for males, whereas no relationship was found for females. Finally, cleaner cheating varied between sex and forebrain IT levels. Findings indicate that variation in pairs' relationships influences male and female cleaner fish differently and contributes to the variation of brain neuropeptide levels, which is linked to distinct cooperative outcomes.

  15. CBP regulates the differentiation of interneurons from ventral forebrain neural precursors during murine development.

    PubMed

    Tsui, David; Voronova, Anastassia; Gallagher, Denis; Kaplan, David R; Miller, Freda D; Wang, Jing

    2014-01-15

    The mechanisms that regulate appropriate genesis and differentiation of interneurons in the developing mammalian brain are of significant interest not only because interneurons play key roles in the establishment of neural circuitry, but also because when they are deficient, this can cause epilepsy. In this regard, one genetic syndrome that is associated with deficits in neural development and epilepsy is Rubinstein-Taybi Syndrome (RTS), where the transcriptional activator and histone acetyltransferase CBP is mutated and haploinsufficient. Here, we have asked whether CBP is necessary for the appropriate genesis and differentiation of interneurons in the murine forebrain, since this could provide an explanation for the epilepsy that is associated with RTS. We show that CBP is expressed in neural precursors within the embryonic medial ganglionic eminence (MGE), an area that generates the vast majority of interneurons for the cortex. Using primary cultures of MGE precursors, we show that knockdown of CBP causes deficits in differentiation of these precursors into interneurons and oligodendrocytes, and that overexpression of CBP is by itself sufficient to enhance interneuron genesis. Moreover, we show that levels of the neurotransmitter synthesis enzyme GAD67, which is expressed in inhibitory interneurons, are decreased in the dorsal and ventral forebrain of neonatal CBP(+/-) mice, indicating that CBP plays a role in regulating interneuron development in vivo. Thus, CBP normally acts to ensure the differentiation of appropriate numbers of forebrain interneurons, and when its levels are decreased, this causes deficits in interneuron development, providing a potential explanation for the epilepsy seen in individuals with RTS.

  16. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba).

    PubMed

    Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca

    2015-01-01

    Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior-posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals.

  17. The neuroprotective mechanism of ampicillin in a mouse model of transient forebrain ischemia

    PubMed Central

    Lee, Kyung-Eon; Cho, Kyung-Ok; Choi, Yun-Sik

    2016-01-01

    Ampicillin, a β-lactam antibiotic, dose-dependently protects neurons against ischemic brain injury. The present study was performed to investigate the neuroprotective mechanism of ampicillin in a mouse model of transient global forebrain ischemia. Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral common carotid artery occlusion for 40 min. Before transient forebrain ischemia, ampicillin (200 mg/kg, intraperitoneally [i.p.]) or penicillin G (6,000 U/kg or 20,000 U/kg, i.p.) was administered daily for 5 days. The pretreatment with ampicillin but not with penicillin G signifi cantly attenuated neuronal damage in the hippocampal CA1 subfield. Mechanistically, the increased activity of matrix metalloproteinases (MMPs) following forebrain ischemia was also attenuated by ampicillin treatment. In addition, the ampicillin treatment reversed increased immunoreactivities to glial fibrillary acidic protein and isolectin B4, markers of astrocytes and microglia, respectively. Furthermore, the ampicillin treatment significantly increased the level of glutamate transporter-1, and dihydrokainic acid (DHK, 10 mg/kg, i.p.), an inhibitor of glutamate transporter-1 (GLT-1), reversed the neuroprotective effect of ampicillin. Taken together, these data indicate that ampicillin provides neuroprotection against ischemia-reperfusion brain injury, possibly through inducing the GLT-1 protein and inhibiting the activity of MMP in the mouse hippocampus. PMID:26937215

  18. Forebrain neuroanatomy of the neonatal and juvenile dolphin (T. truncatus and S. coeruloalba)

    PubMed Central

    Parolisi, Roberta; Peruffo, Antonella; Messina, Silvia; Panin, Mattia; Montelli, Stefano; Giurisato, Maristella; Cozzi, Bruno; Bonfanti, Luca

    2015-01-01

    Knowledge of dolphin functional neuroanatomy mostly derives from post-mortem studies and non-invasive approaches (i.e., magnetic resonance imaging), due to limitations in experimentation on cetaceans. As a consequence the availability of well-preserved tissues for histology is scarce, and detailed histological analyses are referred mainly to adults. Here we studied the neonatal/juvenile brain in two species of dolphins, the bottlenose dolphin (Tursiops truncatus) and the striped dolphin (Stenella coeruleoalba), with special reference to forebrain regions. We analyzed cell density in subcortical nuclei, white/gray matter ratio, and myelination in selected regions at different anterior–posterior levels of the whole dolphin brain at different ages, to better define forebrain neuroanatomy and the developmental stage of the dolphin brain around birth. The analyses were extended to the periventricular germinal layer and the cerebellum, whose delayed genesis of the granule cell layer is a hallmark of postnatal development in the mammalian nervous system. Our results establish an atlas of the young dolphin forebrain and, on the basis of occurrence/absence of delayed neurogenic layers, confirm the stage of advanced brain maturation in these animals with respect to most terrestrial mammals. PMID:26594155

  19. Dietary protein, energy and arginine affect LAT1 expression in forebrain white matter differently.

    PubMed

    Wu, X; Yin, Y L; Li, T J; Wang, L; Ruan, Z; Liu, Z Q; Hou, Y Q

    2010-09-01

    L-type amino acid transporter-1 (LAT1) transports large, branched-chain, aromatic and neutral amino acids. About 64 Duroc × Landrace × Yorkshire pigs were used to study the effects of dietary crude protein (CP), energy and arginine on LAT1 expression in forebrain. The results showed that LAT1 expression in forebrain was sensitive to different levels of CP, energy and arginine. On the basis of Western blot analysis, a lower level of LAT1 presented in the brain tissues of pigs fed the low dietary CP diet (P < 0.05), a higher level were found in pigs fed the higher CP diet, with moderate to intense staining seen in pigs fed the diet plus 1% arginine. In contrast, pigs fed the control-energy diet had weak LAT1 expression, and those fed the diet supplemented with 1% arginine showed lowest LAT1 expression (P < 0.05). These results showed that LAT1 was highly expressed in the forebrain, and expression of LAT1 was affected by dietary protein, energy and arginine differently.

  20. Characterization of forebrain neurons derived from late-onset Huntington's disease human embryonic stem cell lines

    PubMed Central

    Niclis, Jonathan C.; Pinar, Anita; Haynes, John M.; Alsanie, Walaa; Jenny, Robert; Dottori, Mirella; Cram, David S.

    2012-01-01

    Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the Huntingtin (HTT) gene. Recently, induced pluripotent stem cell (iPSC) lines carrying atypical and aggressive (CAG60+) HD variants have been generated and exhibit disparate molecular pathologies. Here we investigate two human embryonic stem cell (hESC) lines carrying CAG37 and CAG51 typical late-onset repeat expansions in comparison to wildtype control lines during undifferentiated states and throughout forebrain neuronal differentiation. Pluripotent HD lines demonstrate growth, viability, pluripotent gene expression, mitochondrial activity and forebrain specification that is indistinguishable from control lines. Expression profiles of crucial genes known to be dysregulated in HD remain unperturbed in the presence of mutant protein and throughout differentiation; however, elevated glutamate-evoked responses were observed in HD CAG51 neurons. These findings suggest typical late-onset HD mutations do not alter pluripotent parameters or the capacity to generate forebrain neurons, but that such progeny may recapitulate hallmarks observed in established HD model systems. Such HD models will help further our understanding of the cascade of pathological events leading to disease onset and progression, while simultaneously facilitating the identification of candidate HD therapeutics. PMID:23576953

  1. The integrity of cholinergic basal forebrain neurons depends on expression of Nkx2-1

    PubMed Central

    Magno, Lorenza; Kretz, Oliver; Bert, Bettina; Ersözlü, Sara; Vogt, Johannes; Fink, Heidrun; Kimura, Shioko; Vogt, Angelika; Monyer, Hannah; Nitsch, Robert; Naumann, Thomas

    2012-01-01

    The transcription factor Nkx2-1 belongs to the homeobox-encoding family of proteins that have essential functions in prenatal brain development. Nkx2-1 is required for the specification of cortical interneurons and several neuronal subtypes of the ventral forebrain. Moreover, this transcription factor is involved in migratory processes by regulating the expression of guidance molecules. Interestingly, Nkx2-1 expression was recently detected in the mouse brain at postnatal stages. Using two transgenic mouse lines that allow prenatal or postnatal cell type-specific deletion of Nkx2-1, we show that continuous expression of the transcription factor is essential for the maturation and maintenance of cholinergic basal forebrain neurons in mice. Notably, prenatal deletion of Nkx2-1 in GAD67-expressing neurons leads to a nearly complete loss of cholinergic neurons and parvalbumin-containing GABAergic neurons in the basal forebrain. We also show that postnatal mutation of Nkx2-1 in choline acetyltransferase-expressing cells causes a striking reduction in their number. These degenerative changes are accompanied by partial denervation of their target structures and results in a discrete impairment of spatial memory. PMID:22098391

  2. Time-lapse live imaging of clonally related neural progenitor cells in the developing zebrafish forebrain.

    PubMed

    Dong, Zhiqiang; Wagle, Mahendra; Guo, Su

    2011-04-06

    Precise patterns of division, migration and differentiation of neural progenitor cells are crucial for proper brain development and function. To understand the behavior of neural progenitor cells in the complex in vivo environment, time-lapse live imaging of neural progenitor cells in an intact brain is critically required. In this video, we exploit the unique features of zebrafish embryos to visualize the development of forebrain neural progenitor cells in vivo. We use electroporation to genetically and sparsely label individual neural progenitor cells. Briefly, DNA constructs coding for fluorescent markers were injected into the forebrain ventricle of 22 hours post fertilization (hpf) zebrafish embryos and electric pulses were delivered immediately. Six hours later, the electroporated zebrafish embryos were mounted with low melting point agarose in glass bottom culture dishes. Fluorescently labeled neural progenitor cells were then imaged for 36 hours with fixed intervals under a confocal microscope using water dipping objective lens. The present method provides a way to gain insights into the in vivo development of forebrain neural progenitor cells and can be applied to other parts of the central nervous system of the zebrafish embryo.

  3. Salt Appetite: Interaction of Forebrain Angiotensinergic and Hindbrain Serotonergic Mechanisms

    NASA Technical Reports Server (NTRS)

    Menani, Jose Vanderlei; Colombari, Debora S. A.; Beltz, Terry G.; Thunhorst, Robert L.; Johnson, Alan Kim

    1998-01-01

    Methysergide injected into the lateral parabrachial nucleus (LPBN) increases the salt appetite of rats depleted of sodium by furosemide (FURO). The present study investigated the effects of angiotensin 2 (ANG 2) receptor blockade in the subfornical organ (SFO) on this increased salt appetite. The intake of 0.3 M NaCl and water was induced by combined administration of the diuretic, FURO, and the angiotensin-convertina, enzyme inhibitor, captopril (CAP). Pretreatment of the SFO with the anciotensin Type 1 (AT,) receptor antagonist, losartan (1 microgram/200 nl), reduced water intake but not 0.3 M NaCl intake induced by subcutaneous FURO+ CAP. Methysergide (4 microgram/200 nl) injected bilaterally into the LPBN increased 0.3 M NaCl intake after FURO + CAP. Losartan injected into the SFO prevented additional 0.3 M NaCl intake caused by methysergide injections into the LPBN. These results indicate that AT, receptors located in the SFO may have a role in mediatina the intake of sodium and water induced by sodium depletion. They also suggest that after treatment with FURO + CAP an LPBN-associated scrotonergic mechanism inhibits increased sodium intake.

  4. Salt Appetite: Interaction of Forebrain Angiotensinergic and Hindbrain Serotonergic Mechanisms

    NASA Technical Reports Server (NTRS)

    Menani, Jose Vanderlei; Colombari, Debora S. A.; Beltz, Terry G.; Thunhorst, Robert L.; Johnson, Alan Kim

    1998-01-01

    Methysergide injected into the lateral parabrachial nucleus (LPBN) increases the salt appetite of rats depleted of sodium by furosemide (FURO). The present study investigated the effects of angiotensin 2 (ANG 2) receptor blockade in the subfornical organ (SFO) on this increased salt appetite. The intake of 0.3 M NaCl and water was induced by combined administration of the diuretic, FURO, and the angiotensin-convertina, enzyme inhibitor, captopril (CAP). Pretreatment of the SFO with the anciotensin Type 1 (AT,) receptor antagonist, losartan (1 microgram/200 nl), reduced water intake but not 0.3 M NaCl intake induced by subcutaneous FURO+ CAP. Methysergide (4 microgram/200 nl) injected bilaterally into the LPBN increased 0.3 M NaCl intake after FURO + CAP. Losartan injected into the SFO prevented additional 0.3 M NaCl intake caused by methysergide injections into the LPBN. These results indicate that AT, receptors located in the SFO may have a role in mediatina the intake of sodium and water induced by sodium depletion. They also suggest that after treatment with FURO + CAP an LPBN-associated scrotonergic mechanism inhibits increased sodium intake.

  5. Understanding the cognitive impact of the contraceptive estrogen Ethinyl Estradiol: tonic and cyclic administration impairs memory, and performance correlates with basal forebrain cholinergic system integrity.

    PubMed

    Mennenga, Sarah E; Gerson, Julia E; Koebele, Stephanie V; Kingston, Melissa L; Tsang, Candy W S; Engler-Chiurazzi, Elizabeth B; Baxter, Leslie C; Bimonte-Nelson, Heather A

    2015-04-01

    Ethinyl Estradiol (EE), a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives, and is found in at least 30 different contraceptive formulations currently prescribed to women as well as hormone therapies prescribed to menopausal women. Thus, EE is prescribed clinically to women at ages ranging from puberty to reproductive senescence. Here, in two separate studies, the cognitive effects of cyclic or tonic EE administration following ovariectomy (Ovx) were evaluated in young female rats. Study I assessed the cognitive effects of low and high doses of EE, delivered tonically via a subcutaneous osmotic pump. Study II evaluated the cognitive effects of low, medium, and high doses of EE administered via a daily subcutaneous injection, modeling the daily rise and fall of serum EE levels with oral regimens. Study II also investigated the impact of low, medium and high doses of EE on the basal forebrain cholinergic system. The low and medium doses utilized here correspond to the range of doses currently used in clinical formulations, and the high dose corresponds to doses prescribed to a generation of women between 1960 and 1970, when oral contraceptives first became available. We evaluate cognition using a battery of maze tasks tapping several domains of spatial learning and memory as well as basal forebrain cholinergic integrity using immunohistochemistry and unbiased stereology to estimate the number of choline acetyltransferase (ChAT)-producing cells in the medial septum and vertical/diagonal bands. At the highest dose, EE treatment impaired multiple domains of spatial memory relative to vehicle treatment, regardless of administration method. When given cyclically at the low and medium doses, EE did not impact working memory, but transiently impaired reference memory during the learning phase of testing. Of the doses and regimens tested here, only EE at the highest dose impaired several domains of memory

  6. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions

    PubMed Central

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V.; Field, Bianca; Deutch, Ariel Y.

    2015-01-01

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DATIREScre mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. SIGNIFICANCE STATEMENT Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain

  7. Ontogeny of CX3CR1-EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone

    PubMed Central

    Xavier, Anna L.; Lima, Flavia R. S.; Nedergaard, Maiken; Menezes, João R. L.

    2015-01-01

    The full spectrum of cellular interactions within CNS neurogenic niches is still poorly understood. Only recently has the monocyte counterpart of the nervous system, the microglial cells, been described as an integral cellular component of neurogenic niches. The present study sought to characterize the microglia population in the early postnatal subventricular zone (SVZ), the major site of postnatal neurogenesis, as well as in its anterior extension, the rostral migratory stream (RMS), a pathway for neuroblasts during their transit toward the olfactory bulb (OB) layers. Here we show that microglia within the SVZ/RMS pathway are not revealed by phenotypic markers that characterize microglia in other regions. Analysis of the transgenic mice strain that has one locus of the constitutively expressed fractalkine CX3CR1 receptor replaced by the gene encoding the enhanced green fluorescent protein (EGFP) circumvented the antigenic plasticity of the microglia, thus allowing us to depict microglia within the SVZ/RMS pathway during early development. Notably, microglia within the early SVZ/RMS are not proliferative and display a protracted development, retaining a more immature morphology than their counterparts outside germinal layers. Furthermore, microglia contact and phagocyte radial glia cells (RG) processes, thereby playing a role on the astroglial transformation that putative stem cells within the SVZ niche undergo during the first postnatal days. PMID:25741237

  8. Ontogeny of CX3CR1-EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone.

    PubMed

    Xavier, Anna L; Lima, Flavia R S; Nedergaard, Maiken; Menezes, João R L

    2015-01-01

    The full spectrum of cellular interactions within CNS neurogenic niches is still poorly understood. Only recently has the monocyte counterpart of the nervous system, the microglial cells, been described as an integral cellular component of neurogenic niches. The present study sought to characterize the microglia population in the early postnatal subventricular zone (SVZ), the major site of postnatal neurogenesis, as well as in its anterior extension, the rostral migratory stream (RMS), a pathway for neuroblasts during their transit toward the olfactory bulb (OB) layers. Here we show that microglia within the SVZ/RMS pathway are not revealed by phenotypic markers that characterize microglia in other regions. Analysis of the transgenic mice strain that has one locus of the constitutively expressed fractalkine CX3CR1 receptor replaced by the gene encoding the enhanced green fluorescent protein (EGFP) circumvented the antigenic plasticity of the microglia, thus allowing us to depict microglia within the SVZ/RMS pathway during early development. Notably, microglia within the early SVZ/RMS are not proliferative and display a protracted development, retaining a more immature morphology than their counterparts outside germinal layers. Furthermore, microglia contact and phagocyte radial glia cells (RG) processes, thereby playing a role on the astroglial transformation that putative stem cells within the SVZ niche undergo during the first postnatal days.

  9. Altered speeds and trajectories of neurons migrating in the ventricular and subventricular zones of the reeler neocortex.

    PubMed

    Britto, Joanne M; Tait, Karen J; Johnston, Leigh A; Hammond, Vicki E; Kalloniatis, Michael; Tan, Seong-Seng

    2011-05-01

    The Reelin signaling pathway is essential for proper cortical development, but it is unclear to whether Reelin function is primarily important for cortical layering or neuron migration. It has been proposed that Reelin is perhaps required only for somal translocation but not glial-dependent locomotion. This implies that the location of neurons responding to Reelin is restricted to the outer regions of the cortical plate (CP). To determine whether Reelin is required for migration outside of the CP, we used time-lapse imaging to track the behavior of cells undergoing locomotion in the germinal zones. We focused on the migratory activity in the ventricular/subventricular zones where the first transition of bipolar to multipolar migration occurs and where functional Reelin receptors are known to be expressed. Despite Reelin loss, neurons had no difficulty in undergoing radial migration and indeed displayed greater migratory speed. Additionally, compared with the wild-type, reeler neurons displayed altered trajectories with greater deviation from a radial path. These results suggest that Reelin loss has early consequences for migration in the germinal zones that are portrayed as defective radial trajectories and migratory speeds. Together, these abnormalities can give rise to the increased cell dispersion observed in the reeler cortex.

  10. Developmental exposure of decabromodiphenyl ether impairs subventricular zone neurogenesis and morphology of granule cells in mouse olfactory bulb.

    PubMed

    Xu, Mingrui; Huang, Yingxue; Li, Kaikai; Cheng, Xinran; Li, Guohong; Liu, Mengmeng; Nie, Yufei; Geng, Shu; Zhao, Shanting

    2017-09-07

    Polybrominated diphenyl ethers (PBDEs) are additive flame retardants widely used in various products (e.g., textiles, consumer electronics, and plastics). Strong evidence indicates that PBDEs are developmental neurotoxicants that can cause neurodevelopmental disabilities and cognitive defects. Currently, decabromodiphenyl ether (BDE 209) is the only PBDE permitted for production in most countries. This study investigated the impact of BDE 209 on postnatal neurogenesis in the subventricular zone (SVZ) of ICR mice. For this purpose, pregnant ICR mice were orally administrated a daily dose of 0, 20 or 100 mg/kg BDE 209 from gestation day 6 to postnatal day 16. Bromodeoxyuridine (BrdU) incorporation and in vivo postnatal electroporation were performed to label the newly generated cells in the SVZ. On PND 16, a reduction of type-B stem cells was found in the 100 mg/kg group. BDE 209 also decreased the number of newborn cells and Calretinin(+) interneurons in granule cell layer at the dose of 100 mg/kg. In addition, we observed impaired neuronal migration and dendritic development of newborn olfactory granule cells in both 20 and 100 mg/kg groups. In conclusion, developmental exposure to BDE 209 produces adverse effects on SVZ neurogenesis and dendritic growth of mouse offspring. These findings suggest a potential risk of BDE 209 in human neurodevelopment.

  11. Anosmin-1 over-expression increases adult neurogenesis in the subventricular zone and neuroblast migration to the olfactory bulb.

    PubMed

    García-González, Diego; Murcia-Belmonte, Verónica; Esteban, Pedro F; Ortega, Felipe; Díaz, David; Sánchez-Vera, Irene; Lebrón-Galán, Rafael; Escobar-Castañondo, Laura; Martínez-Millán, Luis; Weruaga, Eduardo; García-Verdugo, José Manuel; Berninger, Benedikt; de Castro, Fernando

    2016-01-01

    New subventricular zone (SVZ)-derived neuroblasts that migrate via the rostral migratory stream are continuously added to the olfactory bulb (OB) of the adult rodent brain. Anosmin-1 (A1) is an extracellular matrix protein that binds to FGF receptor 1 (FGFR1) to exert its biological effects. When mutated as in Kallmann syndrome patients, A1 is associated with severe OB morphogenesis defects leading to anosmia and hypogonadotropic hypogonadism. Here, we show that A1 over-expression in adult mice strongly increases proliferation in the SVZ, mainly with symmetrical divisions, and produces substantial morphological changes in the normal SVZ architecture, where we also report the presence of FGFR1 in almost all SVZ cells. Interestingly, for the first time we show FGFR1 expression in the basal body of primary cilia in neural progenitor cells. Additionally, we have found that A1 over-expression also enhances neuroblast motility, mainly through FGFR1 activity. Together, these changes lead to a selective increase in several GABAergic interneuron populations in different OB layers. These specific alterations in the OB would be sufficient to disrupt the normal processing of sensory information and consequently alter olfactory memory. In summary, this work shows that FGFR1-mediated A1 activity plays a crucial role in the continuous remodelling of the adult OB.

  12. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum.

    PubMed

    Yamashita, Toru; Ninomiya, Mikiko; Hernández Acosta, Pilar; García-Verdugo, Jose Manuel; Sunabori, Takehiko; Sakaguchi, Masanori; Adachi, Kazuhide; Kojima, Takuro; Hirota, Yuki; Kawase, Takeshi; Araki, Nobuo; Abe, Koji; Okano, Hideyuki; Sawamoto, Kazunobu

    2006-06-14

    Recent studies have revealed that the adult mammalian brain has the capacity to regenerate some neurons after various insults. However, the precise mechanism of insult-induced neurogenesis has not been demonstrated. In the normal brain, GFAP-expressing cells in the subventricular zone (SVZ) of the lateral ventricles include a neurogenic cell population that gives rise to olfactory bulb neurons only. Herein, we report evidence that, after a stroke, these cells are capable of producing new neurons outside the olfactory bulbs. SVZ GFAP-expressing cells labeled by a cell-type-specific viral infection method were found to generate neuroblasts that migrated toward the injured striatum after middle cerebral artery occlusion. These neuroblasts in the striatum formed elongated chain-like cell aggregates similar to those in the normal SVZ, and these chains were observed to be closely associated with thin astrocytic processes and blood vessels. Finally, long-term tracing of the green fluorescent-labeled cells with a Cre-loxP system revealed that the SVZ-derived neuroblasts differentiated into mature neurons in the striatum, in which they expressed neuronal-specific nuclear protein and formed synapses with neighboring striatal cells. These results highlight the role of the SVZ in neuronal regeneration after a stroke and its potential as an important therapeutic target for various neurological disorders.

  13. Aging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone.

    PubMed

    Pushkar, Yulia; Robison, Gregory; Sullivan, Brendan; Fu, Sherleen X; Kohne, Meghan; Jiang, Wendy; Rohr, Sven; Lai, Barry; Marcus, Matthew A; Zakharova, Taisiya; Zheng, Wei

    2013-10-01

    Analysis of rodent brains with X-ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X-ray absorption spectroscopy we determined the copper (I) oxidation state and the sulfur ligand environment. Cu K-edge X-ray absorption near edge spectroscopy is consistent with Cu being bound as a multimetallic Cu-S cluster similar to one present in Cu-metallothionein. Analysis of age-related changes show that Cu content in astrocytes of the SVZ increases fourfold from 3 weeks to 9 months, while Cu concentration in other brain areas remain essentially constant. This increase in Cu correlates with a decrease in adult neurogenesis assessed using the Ki67 marker (both, however, can be age-related effects). We demonstrate that the Cu distribution and age-related concentration changes in the brain are highly cell specific.

  14. Expression of delta- and mu-opioid receptors in the ventricular and subventricular zones of the developing human neocortex.

    PubMed

    Tripathi, Anushree; Khurshid, Nazia; Kumar, Praveen; Iyengar, Soumya

    2008-07-01

    Recent research has documented the involvement of the endogenous opioid system in neural development, including neurogenesis and neuronal differentiation. However, the expression of opioid receptors (ORs) in different cell types of the human ventricular and subventricular zones (VZ and SVZ) has not been studied during early gestation. In the present study, we have used immunohistochemistry and quantified the results to demonstrate that the levels of delta- and mu-OR subtypes were high in the VZ and SVZ between 11 and 16 gestation weeks (GW) and decreased by 20GW. These results have also been confirmed by studying OR mRNA expression in the VZ and SVZ. Both delta- and mu-OR subtypes were expressed by multipotential stem cells, newly differentiated neurons and developing glial cells to different extents. However, migrating neurons expressed negligible levels of both OR subtypes. Our results suggest that the opioid system may affect cellular proliferation and/or differentiation of stem cells into neurons and glia during the first and second trimesters of gestation in humans. Since layers II and III of the cerebral cortex are being formed during the second trimester, their development is most likely affected by the opioid system mediated through delta- and mu-ORs.

  15. Regulation of Olig2 during astroglial differentiation in the subventricular zone of a cuprizone-induced demyelination mouse model.

    PubMed

    Chen, L P; Li, Z F; Ping, M; Li, R; Liu, J; Xie, X H; Song, X J; Guo, L

    2012-09-27

    The mammalian subventricular zone (SVZ) is the largest germinative zone of the adult brain. Progenitor cells generated from the SVZ play important roles during the remyelination process. To determine the functional role of Olig2 in regulating astroglial differentiation in the mouse SVZ, we used the cuprizone mouse model to investigate demyelination. We found that cuprizone administration significantly enhanced the expression of Olig2 and increased astroglial differentiation in the SVZ, as compared with control. Moreover, cytoplasmic translocation of Olig2 occurred after demyelination. In vitro studies further revealed that supplementation of culture media with growth factors enhanced the oligodendroglial differentiation of oligodendrocyte progenitor cells (OPCs), whereas serum alone promoted astroglial differentiation and cytoplasmic translocation of Olig2. Additionally, the expression levels of bone morphogenetic proteins 2 and 4 (BMP2 and BMP4) and inhibitor of DNA binding 2 and 4 (Id2 and Id4) were greatly elevated during astroglial differentiation. BMP inhibition by noggin suppressed the astroglial differentiation of OPCs. Our results indicate that Olig2 may serve as a key regulator during the directional differentiation of progenitor cells after demyelination. The BMP signaling pathway may contribute to the cytoplasmic translocation and altered expression of Olig2 during the remyelination process. These findings provide a better understanding of the mechanisms involved in remyelination.

  16. GSK3β regulates oligodendrogenesis in the dorsal microdomain of the subventricular zone via Wnt-β-catenin signaling.

    PubMed

    Azim, Kasum; Rivera, Andrea; Raineteau, Olivier; Butt, Arthur M

    2014-05-01

    Oligodendrocytes, the myelinating cells of the CNS, are derived postnatally from oligodendrocyte precursors (OPs) of the subventricular zone (SVZ). However, the mechanisms that regulate their generation from SVZ neural stem cells (NSC) are poorly understood. Here, we have examined the role of glycogen synthase kinase 3β (GSK3β), an effector of multiple converging signaling pathways in postnatal mice. The expression of GSK3β by rt-qPCR was most prominent in the SVZ and in the developing white matter, around the first 1–2 weeks of postnatal life, coinciding with the peak periods of OP differentiation. Intraventricular infusion of the GSK3β inhibitor ARA-014418 in mice aged postnatal day (P) 8–11 significantly increased generation of OPs in the dorsal microdomain of the SVZ, as shown by expression of cell specific markers using rt-qPCR and immunolabelling. Analysis of stage specific markers revealed that the augmentation of OPs occurred via increased specification from earlier SVZ cell types. These effects of GSK3β inhibition on the dorsal SVZ were largely attributable to stimulation of the canonical Wnt/β-catenin signaling pathway over other pathways. The results indicate GSK3β is a key endogenous factor for specifically regulating oligodendrogenesis from the dorsal SVZ microdomain under the control of Wnt-signaling.

  17. Response to histamine allows the functional identification of neuronal progenitors, neurons, astrocytes, and immature cells in subventricular zone cell cultures.

    PubMed

    Agasse, Fabienne; Bernardino, Liliana; Silva, Bruno; Ferreira, Raquel; Grade, Sofia; Malva, João O

    2008-02-01

    Subventricular zone (SVZ) cell cultures contain mixed populations of immature cells, neurons, astrocytes, and progenitors in different stages of development. In the present work, we examined whether cell types of the SVZ could be functionally discriminated on the basis of intracellular free calcium level ([Ca(2+)](i)) variations following KCl and histamine stimulation. For this purpose, [Ca(2+)](i) were measured in SVZ cell cultures from neonatal P1-3 C57Bl/6 donor mice, in single cells, after stimulation with 100 microM histamine or 50 mM KCl. MAP-2-positive neurons and doublecortin-positive neuroblasts were distinguished on the basis of their selective ratio of response to KCl and/or histamine stimulation. Moreover, we could distinguish immature cells on the basis of the selective response to histamine via the histamine 1 receptor activation. Exposure of SVZ cultures to the pro-neurogenic stem cell factor (SCF) induced an increase in the number of cells responding to KCl and a decrease in the number of cells responding to histamine, consistent with neuronal differentiation. The selective response to KCl/histamine in single cell calcium imaging analysis offers a rapid and efficient way for the functional discrimination of neuronal differentiation in SVZ cell cultures, opening new perspectives for the search of potential pro-neurogenic factors.

  18. Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum.

    PubMed

    Mistry, Akshitkumar M; Dewan, Michael C; White-Dzuro, Gabrielle A; Brinson, Philip R; Weaver, Kyle D; Thompson, Reid C; Ihrie, Rebecca A; Chambless, Lola B

    2017-04-01

    The clinical effect of radiographic contact of glioblastoma (GBM) with neurogenic zones (NZ)-the ventricular-subventricular (VSVZ) and subgranular (SGZ) zones-and the corpus callosum (CC) remains unclear and, in the case of the SGZ, unexplored. We investigated (1) if GBM contact with a NZ correlates with decreased survival; (2) if so, whether this effect is associated with a specific NZ; and (3) if radiographic contact with or invasion of the CC by GBM is associated with decreased survival. We retrospectively identified 207 adult patients who underwent cytoreductive surgery for GBM followed by chemotherapy and/or radiation. Age, preoperative Karnofsky performance status score (KPS), and extent of resection were recorded. Preoperative MRIs were blindly analyzed to calculate tumor volume and assess its contact with VSVZ, SGZ, CC, and cortex. Overall (OS) and progression free (PFS) survivals were calculated and analyzed with multivariate Cox analyses. Among the 207 patients, 111 had GBM contacting VSVZ (VSVZ+GBMs), 23 had SGZ+GBMs, 52 had CC+GBMs, and 164 had cortex+GBMs. VSVZ+, SGZ+, and CC+ GBMs were significantly larger in size relative to their respective non-contacting controls. Multivariate Cox survival analyses revealed GBM contact with the VSVZ, but not SGZ, CC, or cortex, as an independent predictor of lower OS, PFS, and early recurrence. We hypothesize that the VSVZ niche has unique properties that contribute to GBM pathobiology in adults.

  19. Cytoarchitecture, Proliferative Activity and Neuroblast Migration in the Subventricular Zone and Lateral Ventricle Extension of the Adult Guinea Pig Brain.

    PubMed

    Jara, Nery; Cifuentes, Manuel; Martínez, Fernando; Salazar, Katterine; Nualart, Francisco

    2016-10-01

    In the mouse brain, neuroblasts generated in the subventricular zone (SVZ) migrate to the olfactory bulb (OB) through the rostral migratory stream (RMS). Although the RMS is not present in the human brain, a migratory pathway that is organized around a ventricular cavity that reaches the OB has been reported. A similar cavity, the lateral ventricle extension (LVE), is found in the adult guinea pig brain. Therefore, we analyzed cytoarchitecture, proliferative activity and precursor cell migration in the SVZ and LVE of 1-, 6- and 12-month-old guinea pigs. In young animals, we used confocal spectral and transmission electron microscopy to identify neuroblasts, astrocytes, and progenitor cells in the SVZ and LVE. Analysis of peroxidase diffusion demonstrated that the LVE was a continuous cavity lined by ependymal cells and surrounded by neuroblasts. Precursor cells were mostly located in the SVZ and migrated from the SVZ to the OB through the LVE. Finally, analysis of 6- and 12-month-old guinea pigs revealed that the LVE was preserved in older animals; however, the number of neurogenic cells was significantly reduced. Consequently, we propose that the guinea pig brain may be used as a new neurogenic model with increased similarity to humans, given that the LVE connects the LV with the OB, as has been described in humans, and that the LVE works a migratory pathway. Stem Cells 2016;34:2574-2586.

  20. Neural Stem Cells in the Adult Subventricular Zone Oxidize Fatty Acids to Produce Energy and Support Neurogenic Activity

    PubMed Central

    Makin, Rebecca; Sweet, Ian R.; Trevelyan, Andrew J.; Miwa, Satomi; Horner, Philip J.; Turnbull, Douglass M.

    2015-01-01

    Abstract Neural activity is tightly coupled to energy consumption, particularly sugars such as glucose. However, we find that, unlike mature neurons and astrocytes, neural stem/progenitor cells (NSPCs) do not require glucose to sustain aerobic respiration. NSPCs within the adult subventricular zone (SVZ) express enzymes required for fatty acid oxidation and show sustained increases in oxygen consumption upon treatment with a polyunsaturated fatty acid. NSPCs also demonstrate sustained decreases in oxygen consumption upon treatment with etomoxir, an inhibitor of fatty acid oxidation. In addition, etomoxir decreases the proliferation of SVZ NSPCs without affecting cellular survival. Finally, higher levels of neurogenesis can be achieved in aged mice by ectopically expressing proliferator‐activated receptor gamma coactivator 1 alpha (PGC1α), a factor that increases cellular aerobic capacity by promoting mitochondrial biogenesis and metabolic gene transcription. Regulation of metabolic fuel availability could prove a powerful tool in promoting or limiting cellular proliferation in the central nervous system. Stem Cells 2015;33:2306–2319 PMID:25919237

  1. A comparative study of the structural organization of spheres derived from the adult human subventricular zone and glioblastoma biopsies

    SciTech Connect

    Vik-Mo, Einar Osland; Sandberg, Cecilie; Joel, Mrinal; Stangeland, Biljana; Watanabe, Yasuhiro; Mackay-Sim, Alan; Moe, Morten Carstens; Murrell, Wayne; Langmoen, Iver Arne

    2011-04-15

    Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2-93%)/SSEA1 (3-15%)/CXCR4 (1-72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells, but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.

  2. Embryonic cerebrospinal fluid activates neurogenesis of neural precursors within the subventricular zone of the adult mouse brain.

    PubMed

    Carnicero, E; Alonso, M I; Carretero, R; Lamus, F; Moro, J A; de la Mano, A; Fernández, J M F; Gato, A

    2013-01-01

    There is a nondeveloped neurogenic potential in the adult mammalian brain, which could be the basis for neuroregenerative strategies. Many research efforts have been made to understand the control mechanisms which regulate the transition from a neural precursor to a neuron in the adult brain. Embryonic cerebrospinal fluid (CSF) is a complex fluid which has been shown to play a key role in neural precursor behavior during development, working as a powerful neurogenic inductor. We tested if the neurogenic properties of embryonic CSF are able to increase the neurogenic activity of neuronal precursors from the subventricular zone (SVZ) in the brains of adult mice. Our results show that mouse embryonic CSF significantly increases the neurogenic activity in precursor cells from adult brain SVZ. This intense neurogenic effect was specific for embryonic CSF and was not induced by adult CSF. Embryonic CSF is a powerful neurogenesis inductor in homologous neuronal precursors in the adult brain. This property of embryonic CSF could be a useful tool in neuroregeneration strategies.

  3. Neural Stem Cells in the Adult Subventricular Zone Oxidize Fatty Acids to Produce Energy and Support Neurogenic Activity.

    PubMed

    Stoll, Elizabeth A; Makin, Rebecca; Sweet, Ian R; Trevelyan, Andrew J; Miwa, Satomi; Horner, Philip J; Turnbull, Douglass M

    2015-07-01

    Neural activity is tightly coupled to energy consumption, particularly sugars such as glucose. However, we find that, unlike mature neurons and astrocytes, neural stem/progenitor cells (NSPCs) do not require glucose to sustain aerobic respiration. NSPCs within the adult subventricular zone (SVZ) express enzymes required for fatty acid oxidation and show sustained increases in oxygen consumption upon treatment with a polyunsaturated fatty acid. NSPCs also demonstrate sustained decreases in oxygen consumption upon treatment with etomoxir, an inhibitor of fatty acid oxidation. In addition, etomoxir decreases the proliferation of SVZ NSPCs without affecting cellular survival. Finally, higher levels of neurogenesis can be achieved in aged mice by ectopically expressing proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), a factor that increases cellular aerobic capacity by promoting mitochondrial biogenesis and metabolic gene transcription. Regulation of metabolic fuel availability could prove a powerful tool in promoting or limiting cellular proliferation in the central nervous system. Stem Cells 2015;33:2306-2319. © 2015 AlphaMed Press.

  4. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    PubMed

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day.

  5. Vocal matching and intensity of begging calls are associated with a forebrain song circuit in a generalist brood parasite.

    PubMed

    Liu, Wan-Chun; Rivers, James W; White, David J

    2016-06-01

    Vocalizations produced by developing young early in life have simple acoustic features and are thought to be innate. Complex forms of early vocal learning are less likely to evolve in young altricial songbirds because the forebrain vocal-learning circuit is underdeveloped during the period when early vocalizations are produced. However, selective pressure experienced in early postnatal life may lead to early vocal learning that is likely controlled by a simpler brain circuit. We found the food begging calls produced by fledglings of the brown-headed cowbird (Molothrus ater), a generalist avian brood parasite, induced the expression of several immediate early genes and early circuit innervation in a forebrain vocal-motor pathway that is later used for vocal imitation. The forebrain neural activity was correlated with vocal intensity and variability of begging calls that appears to allow cowbirds to vocally match host nestmates. The begging-induced forebrain circuits we observed in fledgling cowbirds were not detected in nonparasitic passerines, including species that are close relatives to the cowbird. The involvement of forebrain vocal circuits during fledgling begging and its association with vocal learning plasticity may be an adaptation that provides young generalist brood parasites with a flexible signaling strategy to procure food from a wide range of heterospecific host parents.

  6. Conditional corticotropin-releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep

    PubMed Central

    Kimura, M; Müller-Preuss, P; Lu, A; Wiesner, E; Flachskamm, C; Wurst, W; Holsboer, F; Deussing, J M

    2009-01-01

    Impaired sleep and enhanced stress hormone secretion are the hallmarks of stress-related disorders, including major depression. The central neuropeptide, corticotropin-releasing hormone (CRH), is a key hormone that regulates humoral and behavioral adaptation to stress. Its prolonged hypersecretion is believed to play a key role in the development and course of depressive symptoms, and is associated with sleep impairment. To investigate the specific effects of central CRH overexpression on sleep, we used conditional mouse mutants that overexpress CRH in the entire central nervous system (CRH-COE-Nes) or only in the forebrain, including limbic structures (CRH-COE-Cam). Compared with wild-type or control mice during baseline, both homozygous CRH-COE-Nes and -Cam mice showed constantly increased rapid eye movement (REM) sleep, whereas slightly suppressed non-REM sleep was detected only in CRH-COE-Nes mice during the light period. In response to 6-h sleep deprivation, elevated levels of REM sleep also became evident in heterozygous CRH-COE-Nes and -Cam mice during recovery, which was reversed by treatment with a CRH receptor type 1 (CRHR1) antagonist in heterozygous and homozygous CRH-COE-Nes mice. The peripheral stress hormone levels were not elevated at baseline, and even after sleep deprivation they were indistinguishable across genotypes. As the stress axis was not altered, sleep changes, in particular enhanced REM sleep, occurring in these models are most likely induced by the forebrain CRH through the activation of CRHR1. CRH hypersecretion in the forebrain seems to drive REM sleep, supporting the notion that enhanced REM sleep may serve as biomarker for clinical conditions associated with enhanced CRH secretion. PMID:19455148

  7. Conditional corticotropin-releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep.

    PubMed

    Kimura, M; Müller-Preuss, P; Lu, A; Wiesner, E; Flachskamm, C; Wurst, W; Holsboer, F; Deussing, J M

    2010-02-01

    Impaired sleep and enhanced stress hormone secretion are the hallmarks of stress-related disorders, including major depression. The central neuropeptide, corticotropin-releasing hormone (CRH), is a key hormone that regulates humoral and behavioral adaptation to stress. Its prolonged hypersecretion is believed to play a key role in the development and course of depressive symptoms, and is associated with sleep impairment. To investigate the specific effects of central CRH overexpression on sleep, we used conditional mouse mutants that overexpress CRH in the entire central nervous system (CRH-COE-Nes) or only in the forebrain, including limbic structures (CRH-COE-Cam). Compared with wild-type or control mice during baseline, both homozygous CRH-COE-Nes and -Cam mice showed constantly increased rapid eye movement (REM) sleep, whereas slightly suppressed non-REM sleep was detected only in CRH-COE-Nes mice during the light period. In response to 6-h sleep deprivation, elevated levels of REM sleep also became evident in heterozygous CRH-COE-Nes and -Cam mice during recovery, which was reversed by treatment with a CRH receptor type 1 (CRHR1) antagonist in heterozygous and homozygous CRH-COE-Nes mice. The peripheral stress hormone levels were not elevated at baseline, and even after sleep deprivation they were indistinguishable across genotypes. As the stress axis was not altered, sleep changes, in particular enhanced REM sleep, occurring in these models are most likely induced by the forebrain CRH through the activation of CRHR1. CRH hypersecretion in the forebrain seems to drive REM sleep, supporting the notion that enhanced REM sleep may serve as biomarker for clinical conditions associated with enhanced CRH secretion.

  8. Forebrain development in fetal MRI: evaluation of anatomical landmarks before gestational week 27.

    PubMed

    Schmook, Maria T; Brugger, Peter C; Weber, Michael; Kasprian, Gregor; Nemec, Stefan; Krampl-Bettelheim, Elisabeth; Prayer, Daniela

    2010-06-01

    Forebrain malformations include some of the most severe developmental anomalies and require early diagnosis. The proof of normal or abnormal prosencephalic development may have an influence on further management in the event of a suspected fetal malformation. The purpose of this retrospective study was to evaluate the detectability of anatomical landmarks of forebrain development using in vivo fetal magnetic resonance imaging (MRI) before gestational week (gw) 27. MRI studies of 83 singleton fetuses (gw 16-26, average +/- sd: gw 22 +/- 2) performed at 1.5 Tesla were assessed. T2-weighted (w) fast spin echo, T1w gradient-echo and diffusion-weighted sequences were screened for the detectability of anatomical landmarks as listed below. The interhemispheric fissure, ocular bulbs, corpus callosum, infundibulum, chiasm, septum pellucidum (SP), profile, and palate were detectable in 95%, 95%, 89%, 87%, 82%, 81%, 78%, 78% of cases. Olfactory tracts were more easily delineated than bulbs and sulci (37% versus 18% and 8%), with significantly higher detection rates in the coronal plane. The pituitary gland could be detected on T1w images in 60% with an increasing diameter with gestational age (p = 0.041). The delineation of olfactory tracts (coronal plane), chiasm, SP and pituitary gland were significantly increased after week 21 (p < 0.05). Pathologies were found in 28% of cases. This study provides detection rates for anatomical landmarks of forebrain development with fetal MRI before gw 27. Several anatomical structures are readily detectable with routine fetal MRI sequences; thus, if these landmarks are not delineable, it should raise the suspicion of a pathology. Recommendations regarding favorable sequences/planes are provided.

  9. Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex.

    PubMed

    Ahern, Todd H; Krug, Stefanie; Carr, Audrey V; Murray, Elaine K; Fitzpatrick, Emmett; Bengston, Lynn; McCutcheon, Jill; De Vries, Geert J; Forger, Nancy G

    2013-08-01

    Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address larg