Science.gov

Sample records for rat forelimb reduces

  1. Reducing contralateral SI activity reveals hindlimb receptive fields in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Chiaia, Nicolas L; Rhoades, Robert W; Lane, Richard D

    2005-09-01

    In adult rats that sustained forelimb amputation on the day of birth, >30% of multiunit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) also respond to cutaneous hindlimb stimulation when cortical GABA(A+B) receptors are blocked (GRB). This study examined whether hindlimb receptive fields could also be revealed in forelimb-stump sites by reducing one known source of excitatory input to SI GABAergic neurons, the contralateral SI cortex. Corpus callosum projection neurons connect homotopic SI regions, making excitatory contacts onto pyramidal cells and interneurons. Thus in addition to providing monosynaptic excitation in SI, callosal fibers can produce disynaptic inhibition through excitatory synapses with inhibitory interneurons. Based on the latter of these connections, we hypothesized that inactivating the contralateral (intact) SI forelimb region would "unmask" normally suppressed hindlimb responses by reducing the activity of SI GABAergic neurons. The SI forelimb-stump representation was first mapped under normal conditions and then during GRB to identify stump/hindlimb responsive sites. After GRB had dissipated, the contralateral (intact) SI forelimb region was mapped and reversibly inactivated with injections of 4% lidocaine, and selected forelimb-stump sites were retested. Contralateral SI inactivation revealed hindlimb responses in approximately 60% of sites that were stump/hindlimb responsive during GRB. These findings indicate that activity in the contralateral SI contributes to the suppression of reorganized hindlimb receptive fields in neonatally amputated rats.

  2. Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats

    PubMed Central

    Allred, Rachel P.; Jones, Theresa A.

    2009-01-01

    It is common following stroke to focus early rehabilitation efforts on developing compensatory use of the less-affected body side. Here we used a rat model of focal cortical infarct to examine how motor skill acquisition with the less-affected (“intact”) forelimb influences sensorimotor function of the infarct-impaired forelimb and neural activity in peri-infarct cortex. Rats proficient in skilled reaching with one forelimb were given focal ischemic lesions in the contralateral sensorimotor cortex (SMC). Recovery in this forelimb was tested following a period of reach training focused on the intact forelimb or control procedures. Quantitative measures of the cumulatively expressed transcription factor, FosB/ΔFosB, were used to assay intact forelimb training effects on neuronal activity in remaining SMC of the infarcted hemisphere. Intact forelimb training worsened behavioral recovery in the impaired forelimb following unilateral focal ischemia. Furthermore, it decreased neuronal FosB/ΔFosB expression in layer II/III of peri-infarct SMC. These effects were not found in sham-operated rats trained sequentially with both forelimbs or in animals receiving bilateral forelimb training after unilateral infarcts. Thus, focused use of the intact forelimb has detrimental effects on recovery of impaired forelimb function following a focal ischemic injury and this is linked to reduced neuronal activation in remaining cortex. These results suggest that peri-infarct cortex becomes vulnerable to early post-stroke experience with the less-affected forelimb and that this experience may drive neural plasticity here in a direction that is maladaptive for functional outcome. PMID:18054917

  3. Rapid and persistent impairments of the forelimb motor representations following cervical deafferentation in rats

    PubMed Central

    Jiang, Yuqiu; Williams, Preston TJA; Martin, John H.

    2013-01-01

    Skilled motor control is regulated by the convergence of somatic sensory and motor signals in brain and spinal motor circuits. Cervical deafferentation is known to diminish forelimb somatic sensory representations rapidly and to impair forelimb movements. Our focus was to determine what effect deafferentation has on the motor representations in motor cortex, knowledge of which could provide new insights into the locus of impairment following somatic sensory loss, such as after spinal cord injury or stroke. We hypothesized that somatic sensory information is important for cortical motor map topography. To investigate this we unilaterally transected the dorsal rootlets in adult rats from C4 to C8 and mapped the forelimb motor representations using intracortical microstimulation, immediately after rhizotomy and following a 2-week recovery period. Immediately after deafferentation we found that the size of the distal representation was reduced. However, despite this loss of input there were no changes in motor threshold. Two weeks after deafferentation, animals showed a further distal representation reduction, an expansion of the elbow representation, and a small elevation in distal movement threshold. These changes were specific to the forelimb map in the hemisphere contralateral to deafferentation; there were no changes in the hindlimb or intact-side forelimb representations. Degradation of the contralateral distal forelimb representation probably contributes to the motor control deficits after deafferentation. We propose that somatic sensory inputs are essential for the maintenance of the forelimb motor map in motor cortex and should be considered when rehabilitating patients with peripheral or spinal cord injuries or after stroke. PMID:24329730

  4. Cortical field potentials preceding self-paced forelimb movements and influences of cerebellectomy upon them in rats.

    PubMed

    Ohishi, Hiroko; Ichikawa, Jun; Matsuzaki, Ryuichi; Kyuhou, Shin ichi; Matsuura-Nakao, Kazuko; Seki, Tomomi; Gemba, Hisae

    2003-11-27

    Seven rats were well trained to move lever to the left by right forelimb at self-pace (self-paced forelimb movements). Cortical field potentials associated with self-paced forelimb movements were recorded by electrodes implanted chronically on the surface and at a 2.0 mm depth in the forelimb motor cortex on the left side. A surface-negative, depth-positive potential starting about 1.0 s prior to the movement was recorded in the rostral part of the forelimb motor cortex. Further we found that the premovement potential was eliminated by the cerebellar hemispherectomy on the right side. This suggests the participation of the cerebellar hemisphere in preparing the activity of the motor cortex before self-paced forelimb movements in rats, by cerebello-thalamo-cortical projections.

  5. Adaptive changes in the motor cortex during and after longterm forelimb immobilization in adult rats

    PubMed Central

    Viaro, Riccardo; Budri, Mirco; Parmiani, Pierantonio; Franchi, Gianfranco

    2014-01-01

    Experimental and clinical studies have attempted to evaluate the changes in cortical activity seen after immobilization-induced longterm sensorimotor restriction, although results remain controversial. We used intracortical microstimulation (ICMS), which provides topographic movement representations of the motor areas in both hemispheres with optimal spatial characterization, combined with behavioural testing to unravel the effects of limb immobilization on movement representations in the rat primary motor cortex (M1). Unilateral forelimb immobilization in rats was achieved by casting the entire limb and leaving the cast in place for 15 or 30 days. Changes in M1 were bilateral and specific for the forelimb area, but were stronger in the contralateral-to-cast hemisphere. The threshold current required to evoke forelimb movement increased progressively over the period in cast, whereas the forelimb area size decreased and the non-excitable area size increased. Casting resulted in a redistribution of proximal/distal movement representations: proximal forelimb representation increased, whereas distal representation decreased in size. ICMS after cast removal showed a reversal of changes, which remained partial at 15 days. Local application of the GABAA-antagonist bicuculline revealed the impairment of cortical synaptic connectivity in the forelimb area during the period of cast and for up to 15 days after cast removal. Six days of rehabilitation using a rotarod performance protocol after cast removal did not advance map size normalization in the contralateral-to-cast M1 and enabled the cortical output towards the distal forelimb only in sites that had maintained their excitability. These results are relevant to our understanding of adult M1 plasticity during and after sensorimotor deprivation, and to new approaches to conditions that require longterm limb immobilization. PMID:24566543

  6. Tissue fluid shift, forelimb loading, and tail tension in tail-suspended rats

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Steskal, J.; Johansson, C.; Tipton, C. M.

    1984-01-01

    The tail suspension model (head-down tilt) simulates hypogravity in terms of musculoskeletal loss in the rat. However, little is known of tissue fluid shifts and body weight distribution in this model. Tissue fluid pressures were measured by wick catheters in 12 Munich-Wistar rats before, during, and after 48 hrs of tail suspension (about 30 deg head-down tilt). Subcutaneous tissue fluid pressure in the neck increased from -2.2 + or - 0.4 (normal horizontal position) to +4.0 + or - 1.5 cm H2O during tail suspension, indicating a cephalic fluid shift and significant edema during head-down tilt. In a separate study, six rats were suspended at 30-70 deg, and forelimb load and tail tension were measured by a balance and force transducer, respectively. Approximately 50 percent of body weight (BW) was loaded on forelimbs at a head-down tilt angle of 30 deg and forelimb load declined linearly to 10 percent BW at 70 deg. Furthermore, tail tension increased from 50 percent BW at 30 deg to 85 percent BW at 70 deg. These results indicate that less than normal loads are applied to forelimbs of rats suspended at angles of less than 30 deg and that the tail bears an increasing proportion of the rat's body weight at head-down tilt angles of less than 30 deg.

  7. Rapid functional reorganization of the forelimb cortical representation after thoracic spinal cord injury in adult rats.

    PubMed

    Sydekum, Esther; Ghosh, Arko; Gullo, Miriam; Baltes, Christof; Schwab, Martin; Rudin, Markus

    2014-02-15

    Thoracic spinal cord injured rats rely largely on forelimbs to walk, as their hindlimbs are dysfunctional. This increased limb use is accompanied by expansion of the cortical forelimb sensory representation. It is unclear how quickly the representational changes occur and whether they are at all related to the behavioral adaptation. Using blood oxygenation level dependent functional mangetic resonance imaging (BOLD-fMRI) we show that major plastic changes of the somato-sensory map can occur as early as one day after injury. The extent of map increase was variable between animals, and some animals showed a reduction in map size. However, at three or seven days after injury a significant enhancement of the forelimb representation was evident in all the animals. In a behavioral test for precise limb control, crossing of a horizontal ladder, the injured rats relied almost entirely on their forelimbs; they initially made more mistakes than at 7 days post injury. Remarkably, in the individual animals the behavioral performance seen at seven days was proportional to the physiological change present at one day after injury. The rapid increase in cortical representation of the injury-spared body part may provide the additional neural substrate necessary for high level behavioral adaptation.

  8. Forelimb Kinematics of Rats Using XROMM, with Implications for Small Eutherians and Their Fossil Relatives.

    PubMed

    Bonnan, Matthew F; Shulman, Jason; Varadharajan, Radha; Gilbert, Corey; Wilkes, Mary; Horner, Angela; Brainerd, Elizabeth

    2016-01-01

    The earliest eutherian mammals were small-bodied locomotor generalists with a forelimb morphology that strongly resembles that of extant rats. Understanding the kinematics of the humerus, radius, and ulna of extant rats can inform and constrain hypotheses concerning typical posture and mobility in early eutherian forelimbs. The locomotion of Rattus norvegicus has been extensively studied, but the three-dimensional kinematics of the bones themselves remains under-explored. Here, for the first time, we use markerless XROMM (Scientific Rotoscoping) to explore the three-dimensional long bone movements in Rattus norvegicus during a normal, symmetrical gait (walking). Our data show a basic kinematic profile that agrees with previous studies on rats and other small therians: rats maintain a crouched forelimb posture throughout the step cycle, and the ulna is confined to flexion/extension in a parasagittal plane. However, our three-dimensional data illuminate long-axis rotation (LAR) movements for both the humerus and the radius for the first time. Medial LAR of the humerus throughout stance maintains an adducted elbow with a caudally-facing olecranon process, which in turn maintains a cranially-directed manus orientation (pronation). The radius also shows significant LAR correlated with manus pronation and supination. Moreover, we report that elbow flexion and manus orientation are correlated in R. norvegicus: as the elbow angle becomes more acute, manus supination increases. Our data also suggest that manus pronation and orientation in R. norvegicus rely on a divided system of labor between the ulna and radius. Given that the radius follows the flexion and extension trajectory of the ulna, it must rotate at the elbow (on the capitulum) so that during the stance phase its distal end lies medial to ulna, ensuring that the manus remains pronated while the forelimb is supporting the body. We suggest that forelimb posture and kinematics in Juramaia, Eomaia, and other basal

  9. Forelimb Kinematics of Rats Using XROMM, with Implications for Small Eutherians and Their Fossil Relatives

    PubMed Central

    Bonnan, Matthew F.; Shulman, Jason; Varadharajan, Radha; Gilbert, Corey; Wilkes, Mary; Horner, Angela; Brainerd, Elizabeth

    2016-01-01

    The earliest eutherian mammals were small-bodied locomotor generalists with a forelimb morphology that strongly resembles that of extant rats. Understanding the kinematics of the humerus, radius, and ulna of extant rats can inform and constrain hypotheses concerning typical posture and mobility in early eutherian forelimbs. The locomotion of Rattus norvegicus has been extensively studied, but the three-dimensional kinematics of the bones themselves remains under-explored. Here, for the first time, we use markerless XROMM (Scientific Rotoscoping) to explore the three-dimensional long bone movements in Rattus norvegicus during a normal, symmetrical gait (walking). Our data show a basic kinematic profile that agrees with previous studies on rats and other small therians: rats maintain a crouched forelimb posture throughout the step cycle, and the ulna is confined to flexion/extension in a parasagittal plane. However, our three-dimensional data illuminate long-axis rotation (LAR) movements for both the humerus and the radius for the first time. Medial LAR of the humerus throughout stance maintains an adducted elbow with a caudally-facing olecranon process, which in turn maintains a cranially-directed manus orientation (pronation). The radius also shows significant LAR correlated with manus pronation and supination. Moreover, we report that elbow flexion and manus orientation are correlated in R. norvegicus: as the elbow angle becomes more acute, manus supination increases. Our data also suggest that manus pronation and orientation in R. norvegicus rely on a divided system of labor between the ulna and radius. Given that the radius follows the flexion and extension trajectory of the ulna, it must rotate at the elbow (on the capitulum) so that during the stance phase its distal end lies medial to ulna, ensuring that the manus remains pronated while the forelimb is supporting the body. We suggest that forelimb posture and kinematics in Juramaia, Eomaia, and other basal

  10. Early onset of forced impaired forelimb use causes recovery of forelimb skilled motor function but no effect on gross sensory-motor function after capsular hemorrhage in rats.

    PubMed

    Ishida, Akimasa; Tamakoshi, Keigo; Hamakawa, Michiru; Shimada, Haruka; Nakashima, Hiroki; Masuda, Tadashi; Hida, Hideki; Ishida, Kazuto

    2011-11-20

    Intensive use of the impaired forelimb promotes behavioral recovery and induces plastic changes of the central nervous system after stroke. However, the optimal onset of intensive use treatment after stroke is controversial. In this study, we investigated whether early forced impaired limb use (FLU) initiated 24h after intracerebral hemorrhage (ICH) of the internal capsule affected behavioral recovery and histological damage. Rats were subjected to ICH via low-dose collagenase infusion or sham stroke. One day after surgery, the ipsilateral forelimbs of half of the ICH and sham rats were casted for a week to induce the use of their contralateral forelimbs. Behavioral assessments were performed on days 10-12 and 26-28 after the surgery and followed by histological assessments. Improvements in skilled reaching and coordinated stepping function were found in the FLU-treated group in comparison with the untreated group after ICH. Additionally, FLU-treated ICH animals showed more normal and precise reaching and stepping movements as compared with ICH control animals. In contrast, FLU did not have a significant impact on gross sensory-motor functions such as the motor deficit score, contact placing response and spontaneous usage of the impaired paw. The volume of tissue lost and the number of spared corticospinal neurons in lesioned motor cortex were not affected by early FLU after ICH. These findings demonstrate the efficacy of early focused use of an impaired limb after internal capsule hemorrhage.

  11. Soy protein diet increases skilled forelimb reaching function after stroke in rats.

    PubMed

    Cheatwood, Joseph L; Burnet, Derek; Butteiger, Dustie N; Banz, William J

    2011-01-20

    Stroke is a leading cause of lasting disability. Dietary strategies aimed at increasing post-stroke outcomes are lifestyle alterations which could be easily implemented by people at risk of occlusive stroke. Soy diets have been demonstrated to provide some benefits in the short term following stroke, but longer time periods have not been studied. Further, carefully defined diets containing soy protein isolates have not been investigated. In the current study, male Long Evans Hooded rats were fed semi-purified diets containing either sodium caseinate or soy protein isolate. Rats were trained to perform the skilled forelimb reaching task and subsequently underwent unilateral middle cerebral artery occlusion (MCAO) to induce a stroke lesion. After stroke, rats remained on the same diet and were tested daily for a period of 8 weeks to observe their performance on the skilled forelimb reaching task. In the first week following stroke, rats receiving the soy protein-containing diet (SP) demonstrated less severe reaching deficits than rats fed the Na caseinate-containing diet (CAS) (p<0.05). These results suggest that a soy protein-based diet provides significant protection from neurological damage following MCAO stroke in rats.

  12. Role of development in reorganization of the SI forelimb-stump representation in fetally, neonatally, and adult amputated rats.

    PubMed

    Pluto, Charles P; Lane, Richard D; Chiaia, Nicolas L; Stojic, Andrey S; Rhoades, Robert W

    2003-09-01

    Rats that sustain forelimb removal on postnatal day (P) 0 exhibit numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to hindlimb stimulation when cortical GABAA+B receptors are blocked. Most of these hindlimb inputs originate in the medial SI hindlimb representation. Although many forelimb-stump sites in these animals respond to hindlimb stimulation, very few respond to stimulation of the face (vibrissae or lower jaw), which is represented in SI just lateral to the forelimb. The lateral to medial development of SI may influence the capacity of hindlimb (but not face) inputs to "invade" the forelimb-stump region in neonatal amputees. The SI forelimb-stump was mapped in adult (>60 days) rats that had sustained amputation on embryonic day (E) 16, on P0, or during adulthood. GABA receptors were blocked and subsequent mapping revealed increases in nonstump inputs in E16 and P0 amputees: fetal amputees exhibited forelimb-stump sites responsive to face (34%), hindlimb (10%), and both (22%); neonatal amputees exhibited 10% face, 39% hindlimb, and 5% both; adult amputees exhibited 10% face, 5% hindlimb, and 0% both, with approximately 80% stump-only sites. These results indicate age-dependent differences in receptive-field reorganization of the forelimb-stump representation, which may reflect the spatiotemporal development of SI. Results from cobalt chloride inactivation of the SI vibrissae region and electrolesioning of the dysgranular cortex suggest that normally suppressed vibrissae inputs to the SI forelimb-stump area originate in the SI vibrissae region and synapse in the dysgranular cortex.

  13. Cortical PKC inhibition promotes axonal regeneration of the corticospinal tract and forelimb functional recovery after cervical dorsal spinal hemisection in adult rats.

    PubMed

    Wang, Xiaofei; Hu, Jianguo; She, Yun; Smith, George M; Xu, Xiao-Ming

    2014-11-01

    Our previous study shows that conventional protein kinases C (cPKCs) are key signaling mediators that are activated by extracellular inhibitory molecules. Inhibition of cPKC by intrathecal infusion of a cPKC inhibitor, GÖ6976, into the site of dorsal hemisection (DH) induces regeneration of lesioned dorsal column sensory, but not corticospinal tract (CST), axons. Here, we investigated whether a direct cortical delivery of GÖ6976 into the soma of corticospinal neurons promotes regeneration of CST and the recovery of forelimb function in rats with cervical spinal cord injuries. We report that cortical delivery of GÖ6976 reduced injury-induced activation of conventional PKCα and PKCβ1 in CST neurons, promoted regeneration of CST axons through and beyond a cervical DH at C4, formed new synapses on target neurons caudal to the injury, and enhanced forelimb functional recovery in adult rats. When combined with lenti-Chondroitinase ABC treatment, cortical administration of GÖ6976 promoted even greater CST axonal regeneration and recovery of forelimb function. Thus, this study has demonstrated a novel strategy that can promote anatomical regeneration of damaged CST axons and partial recovery of forelimb function. Importantly, such an effect is critically dependent on the efficient blockage of injury-induced PKC activation in the soma of layer V CST neurons.

  14. Mechanism of Forelimb Motor Function Restoration after Cervical Spinal Cord Hemisection in Rats: A Comparison of Juveniles and Adults.

    PubMed

    Hasegawa, Atsushi; Takahashi, Masahito; Satomi, Kazuhiko; Ohne, Hideaki; Takeuchi, Takumi; Sato, Shunsuke; Ichimura, Shoichi

    2016-01-01

    The aim of this study was to investigate forelimb motor function after cervical spinal cord injury in juvenile and adult rats. Both rats received a left segmental hemisection of the spinal cord after C3-C4 laminectomy. Behavioral evaluation of motor function was monitored and assessed using the New Rating Scale (NRS) and Forelimb Locomotor Scale (FLS) and by measuring the range of motion (ROM) of both the elbow and wrist. Complete left forelimb motor paralysis was observed in both rats. The NRS showed motor function recovery restored to 50.2 ± 24.7% in juvenile rats and 34.0 ± 19.8% in adult rats. FLS was 60.4 ± 26.8% in juvenile rats and 46.5 ± 26.9% in adult rats. ROM of the elbow and wrist were 88.9 ± 20.6% and 44.4 ± 24.1% in juvenile rats and 70.0 ± 29.2% and 40.0 ± 21.1% in adult rats. Thus, the NRS and ROM of the elbow showed a significant difference between age groups. These results indicate that left hemisection of the cervical spinal cord was not related to right-sided motor functions. Moreover, while motor paralysis of the left forelimb gradually recovered in both groups, the improvement was greater in juvenile rats.

  15. Local GABA receptor blockade reveals hindlimb responses in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Lane, Richard D; Rhoades, Robert W

    2004-07-01

    In adult rats that sustained forelimb amputation on the day of birth, there are numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to cutaneous stimulation of the hindlimb when cortical receptors for GABA are blocked. These normally suppressed hindlimb inputs originate in the SI hindlimb representation and synapse in the dysgranular cortex before exciting SI forelimb-stump neurons. In our previous studies, GABA (A + B) receptor blockade was achieved by topically applying a bicuculline methiodide/saclofen solution (BMI/SAC) to the cortical surface. This treatment blocks receptors throughout SI and does not allow determination of where along the above circuit the GABA-mediated suppression of hindlimb information occurs. In this study, focal injections of BMI/SAC were delivered to three distinct cortical regions that are involved in the hindlimb-to-forelimb-stump pathway. Blocking GABA receptors in the SI hindlimb representation and in the dysgranular cortex was largely ineffective in revealing hindlimb inputs ( approximately 10% of hindlimb inputs were revealed in both cases). In contrast, when the blockade was targeted at forelimb-stump recording sites, >80% of hindlimb inputs were revealed. Thus GABAergic interneurons within the forelimb-stump representation suppress the expression of reorganized hindlimb inputs to the region. A circuit model incorporating these and previous observations is presented and discussed.

  16. A novel rat forelimb model of neuropathic pain produced by partial injury of the median and ulnar nerves.

    PubMed

    Yi, Hanju; Kim, Myung Ah; Back, Seung Keun; Eun, Jong Shin; Na, Heung Sik

    2011-05-01

    The vast majority of human peripheral nerve injuries occur in the upper limb, whereas the most animal studies have been conducted using the hindlimb models of neuropathic pain, involving damages of the sciatic or lumbar spinal nerve(s). We attempted to develop a rat forelimb model of peripheral neuropathy by partial injury of the median and ulnar nerves. The halves of each nerve were transected by microscissors at about 5mm proximal from the elbow joint and behavioral signs of neuropathic pain, such as mechanical and cold allodynia, and heat hyperalgesia, were monitored up to 126 days following nerve injury. Mechanical allodynia was assessed by measuring the forepaw withdrawal threshold to von Frey filaments, and cold allodynia was evaluated by measuring the time spent in lifting or licking the forepaw after applying acetone to it. Heat hyperalgesia was also monitored by investigating the forepaw withdrawal latencies using the Hargreaves' test. After the nerve injury, the experimental animals exhibited long-lasting clear neuropathic pain-like behaviors, such as reduced forepaw withdrawal threshold to von Frey filaments, the increased response duration of the forepaw to acetone application, and the decreased withdrawal latency to radiant heat stimulation. These behaviors were significantly alleviated by administration of gabapentin (5 or 50mg/kg, i.p.) in a dose-dependent manner. Therefore, these abnormal sensitivities are interpreted as the signs of neuropathic pain following injury of the median and ulnar nerves. Our rat forelimb model of neuropathic pain may be useful for studying human neuropathic pain and screening for valuable drug candidates.

  17. Structure of the excitatory receptive fields of infragranular forelimb neurons in the rat primary somatosensory cortex responding to touch.

    PubMed

    Tutunculer, Banu; Foffani, Guglielmo; Himes, B Timothy; Moxon, Karen A

    2006-06-01

    We quantitatively studied the excitatory receptive fields of 297 neurons recorded from the forelimb infragranular somatosensory cortex of the rat while touch stimuli were applied to discrete locations on the forelimbs. Receptive fields were highly heterogeneous, but they were regulated, on average, by an underlying spatio-temporal structure. We found the following. (i) Neurons responded with decreasing magnitude and increasing latency when the stimulus was moved from the primary location to secondary locations and to far ispilateral locations of their excitatory receptive fields, displaying smooth transitions from the primary location to secondary locations. (ii) Receptive field patterns revealed functional connectivity between the digits and ventral palm, which did not depend on whether the digits were stimulated dorsally or ventrally. (iii) The structure of the receptive fields (i.e. the neural responses to stimulation of secondary locations compared to the neural responses to stimulation of the primary location), reflected cortical (rather than body) distances. (iv) There was a functional separation between the forepaw and the rest of the forelimb. Namely: if the primary location was in the digits or palm, secondary locations were biased toward the digits and palm; if the primary location was in rest of the forelimb, secondary locations appeared equally distributed over forelimb, digits and palm. (v) More than 40% of neurons extended their receptive field to the ipsilateral forelimb, without any evident spatial organization. Overall, the stimuli evoked approximately 3 times more spikes from secondary responses than from primary responses. These results suggest that a rich repertoire of spatio-temporal responses is available for encoding tactile information. This highly distributed receptive field structure provides the electrophysiological architecture for studying organization and plasticity of cortical somatosensory processing.

  18. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats.

    PubMed

    Lynskey, James V; Sandhu, Faheem A; Sandhu, Faheen A; Dai, Hai-Ning; Dai, Hail-Ning; McAtee, Marietta; Slotkin, Jonathan R; Slotkin, Jon R; MacArthur, Linda; Bregman, Barbara S

    2006-05-01

    The adult central nervous system is capable of considerable anatomical reorganization and functional recovery after injury. Functional outcomes, however, vary greatly, depending upon size and location of injury, type and timing of intervention, and type of recovery and plasticity evaluated. The present study was undertaken to assess the recovery of skilled and unskilled forelimb function in adult rats after a C5/C6 spinal cord over-hemisection and delayed intervention with fetal spinal cord transplants and neurotrophins. Recovery of forelimb function was evaluated during both target reaching (a skilled behavior) and vertical exploration (an unskilled behavior). Anatomical tracing and immunohistochemistry were used to assess the growth of descending raphespinal, corticospinal, and rubrospinal fibers at the injury site, tracts that normally confer forelimb function. Delayed intervention with transplants and either brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) restored skilled left forelimb reaching to pre-injury levels. Animals showed recovery of normal reaching movements rather than compensation with abnormal movements. Transplants and NT-3 also improved right forelimb use during an unskilled vertical exploration, but not skilled right reaching. Intervention with fetal transplant tissue supported the growth of descending serotonergic, corticospinal, and rubrospinal fibers into the transplant at the lesion site. The addition of neurotrophins, however, did not significantly increase axonal growth at the lesion site. These studies suggest that the recovery of skilled and unskilled forelimb use is possible after a large cervical spinal cord injury following delayed intervention with fetal spinal cord and neurotrophins. Plasticity of both spared and axotomized descending pathways likely contributes to the functional recovery observed.

  19. Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats.

    PubMed

    Bazley, Faith A; Maybhate, Anil; Tan, Chuen Seng; Thakor, Nitish V; Kerr, Candace; All, Angelo H

    2014-09-01

    The adult central nervous system is capable of significant reorganization and adaptation following neurotrauma. After a thoracic contusive spinal cord injury (SCI) neuropathways that innervate the cord below the epicenter of injury are damaged, with minimal prospects for functional recovery. In contrast, pathways above the site of injury remain intact and may undergo adaptive changes in response to injury. We used cortical somatosensory evoked potentials (SSEPs) to evaluate changes in intact forelimb pathways. Rats received a midline contusion SCI, unilateral contusion SCI, or laminectomy with no contusion at the T8 level and were monitored for 28 days post-injury. In the midline injury group, SSEPs recorded from the contralateral forelimb region of the primary somatosensory cortex were 59.7% (CI 34.7%, 84.8%; c(2) = 21.9; dof = 1; p = 2.9 ×10(-6)) greater than the laminectomy group; SSEPs from the ipsilateral somatosensory cortex were 47.6% (CI 18.3%, 77%; c(2) = 10.1; dof = 1; p = 0.001) greater. Activation of the ipsilateral somatosensory cortex was further supported by BOLD-fMRI, which showed increased oxygenation at the ipsilateral hemisphere at day seven post-injury. In the unilateral injury group, ipsilesional side was compared to the contralesional side. SSEPs on day 14 (148%; CI 111%, 185%) and day 21 (137%; CI 110%, 163%) for ipsilesional forelimb stimulation were significantly increased over baseline (100%). SSEPs recorded from the hindlimb sensory cortex upon ipsilesional stimulation were 33.9% (CI 14.3%, 53.4%; c(2) = 11.6; dof = 1; p = 0.0007) greater than contralesional stimulation. Therefore, these results demonstrate the ability of SSEPs to detect significant enhancements in the activation of forelimb sensory pathways following both midline and unilateral contusive SCI at T8. Reorganization of forelimb pathways may occur after thoracic SCI, which SSEPs can monitor to aid the development of future therapies.

  20. Decoding the rat forelimb movement direction from epidural and intracortical field potentials

    NASA Astrophysics Data System (ADS)

    Slutzky, Marc W.; Jordan, Luke R.; Lindberg, Eric W.; Lindsay, Kevin E.; Miller, Lee E.

    2011-06-01

    Brain-machine interfaces (BMIs) use signals from the brain to control a device such as a computer cursor. Various types of signals have been used as BMI inputs, from single-unit action potentials to scalp potentials. Recently, intermediate-level signals such as subdural field potentials have also shown promise. These different signal types are likely to provide different amounts of information, but we do not yet know what signal types are necessary to enable a particular BMI function, such as identification of reach target location, control of a two-dimensional cursor or the dynamics of limb movement. Here we evaluated the performance of field potentials, measured either intracortically (local field potentials, LFPs) or epidurally (epidural field potential, EFPs), in terms of the ability to decode reach direction. We trained rats to move a joystick with their forepaw to control the motion of a sipper tube to one of the four targets in two dimensions. We decoded the forelimb reach direction from the field potentials using linear discriminant analysis. We achieved a mean accuracy of 69 ± 3% with EFPs and 57 ± 2% with LFPs, both much better than chance. Signal quality remained good up to 13 months after implantation. This suggests that using epidural signals could provide BMI inputs of high quality with less risk to the patient than using intracortical recordings.

  1. Encoding of forelimb forces by corticospinal tract activity in the rat

    PubMed Central

    Guo, Yi; Foulds, Richard A.; Adamovich, Sergei V.; Sahin, Mesut

    2014-01-01

    In search of a solution to the long standing problems encountered in traditional brain computer interfaces (BCI), the lateral descending tracts of the spinal cord present an alternative site for taping into the volitional motor signals. Due to the convergence of the cortical outputs into a final common pathway in the descending tracts of the spinal cord, neural interfaces with the spinal cord can potentially acquire signals richer with volitional information in a smaller anatomical region. The main objective of this study was to evaluate the feasibility of extracting motor control signals from the corticospinal tract (CST) of the rat spinal cord. Flexible substrate, multi-electrode arrays (MEA) were implanted in the CST of rats trained for a lever pressing task. This novel use of flexible substrate MEAs allowed recording of CST activity in behaving animals for up to three weeks with the current implantation technique. Time-frequency and principal component analyses (PCA) were applied to the neural signals to reconstruct isometric forelimb forces. Computed regression coefficients were then used to predict isometric forces in additional trials. The correlation between measured and predicted forces in the vertical direction averaged across six animals was 0.67 and R2 value was 0.44. Force regression in the horizontal directions was less successful, possibly due to the small amplitude of forces. Neural signals above and near the high gamma band made the largest contributions to prediction of forces. The results of this study support the feasibility of a spinal cord computer interface (SCCI) for generation of command signals in paralyzed individuals. PMID:24847198

  2. Early life versus lifelong oral manganese exposure differently impairs skilled forelimb performance in adult rats

    PubMed Central

    Beaudin, Stephane A.; Nisam, Sean; Smith, Donald R.

    2013-01-01

    Recent studies of children suggest that exposure to elevated manganese (Mn) levels disrupt aspects of motor, cognitive and behavioral functions that are dependent on dopamine brain systems. Although basal ganglia motor functions are well-known targets of adult occupational Mn exposure, the extent of motor function deficits in adults as a result of early life Mn exposure is unknown. Here we used a rodent model early life versus lifelong oral Mn exposure and the Montoya staircase test to determine whether developmental Mn exposure produces long-lasting deficits in sensorimotor performance in adulthood. Long-Evans male neonate rats (n=11/treatment) were exposed daily to oral Mn at levels of 0, 25, or 50 mg Mn/kg/d from postnatal day (PND) 1-21 (early life only), or from PND 1 - throughout life. Staircase testing began at age PND 120 and lasted 1 month to objectively quantify measures of skilled forelimb use in reaching and pellet grasping/retrieval performance. Behavioral reactivity also was rated on each trial. Results revealed that (1) behavioral reactivity scores were significantly greater in the Mn-exposed groups, compared to controls, during the staircase acclimation/training stage, but not the latter testing stages, (2) early life Mn exposure alone caused long-lasting impairments in fine motor control of reaching skills at the higher, but not lower Mn dose, (3) lifelong Mn exposure from drinking water led to widespread impairment in reaching and grasping/retrieval performance in adult rats, with the lower Mn dose group showing the greatest impairment, and (4) lifelong Mn exposure produced similar (higher Mn group) or more severe (lower Mn group) impairments compared to their early life-only Mn exposed counterparts. Collectively, these results substantiate the emerging clinical evidence in children showing associations between environmental Mn exposure and deficits in fine sensorimotor function. They also show that the objective quantification of skilled motor

  3. Abnormalities in skilled reaching movements are improved by peripheral anesthetization of the less-affected forelimb after sensorimotor cortical infarcts in rats

    PubMed Central

    O’Bryant, A.; Bernier, B.; Jones, T.A.

    2008-01-01

    Unilateral damage to sensorimotor cortical (SMC) regions can profoundly impair skilled reaching function in the contralesional forelimb. Such damage also results in impairments and compensatory changes in the less-affected/ipsilesional forelimb, but these effects remain poorly understood. Furthermore, anesthetization of the ipsilesional hand in humans with cerebral infarcts has been reported to produce transient functional improvements in the paretic hand [14,48]. One aim of this study was to sensitively assay the bilateral effects of unilateral ischemic SMC damage on performance of a unimanual skilled reaching task (the single pellet retrieval task) that rats had acquired pre-operatively with each forelimb. The second aim was to determine whether partially recovered contralesional reaching function is influenced by anesthetization of the ipsilesional forelimb. Unilateral SMC lesions were found to result in transient ipsilesional impairments in reaching success and significant ipsilesional abnormalities in reaching movements compared with sham-operates. There were major contralesional reaching impairments which improved during a 4 week training period, but movements remained significantly abnormal. Anesthetization of the ipsilesional forelimb with lidocaine at this time attenuated the contralesional movement abnormalities. These findings indicate that unilateral ischemic SMC lesions impair skilled reaching behavior in both forelimbs. Furthermore, after partial recovery in the contralesional forelimb, additional improvements can be induced by transient anesthetization of the ipsilesional forelimb. This is consistent with the effects of unilateral anesthetization in humans which have been attributed to the modulation of competitive interhemispheric interactions. The present findings suggest that such interactions are also likely to influence skilled reaching function in rats. PMID:17173985

  4. Reducing GABAA-mediated inhibition improves forelimb motor function after focal cortical stroke in mice

    PubMed Central

    Alia, Claudia; Spalletti, Cristina; Lai, Stefano; Panarese, Alessandro; Micera, Silvestro; Caleo, Matteo

    2016-01-01

    A deeper understanding of post-stroke plasticity is critical to devise more effective pharmacological and rehabilitative treatments. The GABAergic system is one of the key modulators of neuronal plasticity, and plays an important role in the control of “critical periods” during brain development. Here, we report a key role for GABAergic inhibition in functional restoration following ischemia in the adult mouse forelimb motor cortex. After stroke, the majority of cortical sites in peri-infarct areas evoked simultaneous movements of forelimb, hindlimb and tail, consistent with a loss of inhibitory signalling. Accordingly, we found a delayed decrease in several GABAergic markers that accompanied cortical reorganization. To test whether reductions in GABAergic signalling were causally involved in motor improvements, we treated animals during an early post-stroke period with a benzodiazepine inverse agonist, which impairs GABAA receptor function. We found that hampering GABAA signalling led to significant restoration of function in general motor tests (i.e., gridwalk and pellet reaching tasks), with no significant impact on the kinematics of reaching movements. Improvements were persistent as they remained detectable about three weeks after treatment. These data demonstrate a key role for GABAergic inhibition in limiting motor improvements after cortical stroke. PMID:27897203

  5. Sensorimotor experience influences recovery of forelimb abilities but not tissue loss after focal cortical compression in adult rats.

    PubMed

    Martinez, Marina; Brezun, Jean-Michel; Xerri, Christian

    2011-02-16

    Sensorimotor activity has been shown to play a key role in functional outcome after extensive brain damage. This study was aimed at assessing the influence of sensorimotor experience through subject-environment interactions on the time course of both lesion and gliosis volumes as well as on the recovery of forelimb sensorimotor abilities following focal cortical injury. The lesion consisted of a cortical compression targeting the forepaw representational area within the primary somatosensory cortex of adult rats. After the cortical lesion, rats were randomly subjected to various postlesion conditions: unilateral C5-C6 dorsal root transection depriving the contralateral cortex from forepaw somatosensory inputs, standard housing or an enriched environment promoting sensorimotor experience and social interactions. Behavioral tests were used to assess forelimb placement during locomotion, forelimb-use asymmetry, and forepaw tactile sensitivity. For each group, the time course of tissue loss was described and the gliosis volume over the first postoperative month was evaluated using an unbiased stereological method. Consistent with previous studies, recovery of behavioral abilities was found to depend on post-injury experience. Indeed, increased sensorimotor activity initiated early in an enriched environment induced a rapid and more complete behavioral recovery compared with standard housing. In contrast, severe deprivation of peripheral sensory inputs led to a delayed and only partial sensorimotor recovery. The dorsal rhizotomy was found to increase the perilesional gliosis in comparison to standard or enriched environments. These findings provide further evidence that early sensory experience has a beneficial influence on the onset and time course of functional recovery after focal brain injury.

  6. Forelimb amputation-induced reorganization in the ventral posterior lateral nucleus (VPL) provides a substrate for large-scale cortical reorganization in rat forepaw barrel subfield (FBS).

    PubMed

    Li, Cheng X; Chappell, Tyson D; Ramshur, John T; Waters, Robert S

    2014-10-02

    In this study, we examined the role of the ventral posterior lateral nucleus (VPL) as a possible substrate for large-scale cortical reorganization in the forepaw barrel subfield (FBS) of primary somatosensory cortex (SI) that follows forelimb amputation. Previously, we reported that, 6 weeks after forelimb amputation in young adult rats, new input from the shoulder becomes expressed throughout the FBS that quite likely has a subcortical origin. Subsequent examination of the cuneate nucleus (CN) 1 to 30 weeks following forelimb amputation showed that CN played an insignificant role in cortical reorganization and led to the present investigation of VPL. As a first step, we used electrophysiological recordings in forelimb intact adult rats (n=8) to map the body representation in VPL with particular emphasis on the forepaw and shoulder representations and showed that VPL was somatotopically organized. We next used stimulation and recording techniques in forelimb intact rats (n=5) and examined the pattern of projection (a) from the forelimb and shoulder to SI, (b) from the forepaw and shoulder to VPL, and (c) from sites in the forepaw and shoulder representation in VPL to forelimb and shoulder sites in SI. The results showed that the projections were narrowly focused and homotopic. Electrophysiological recordings were then used to map the former forepaw representation in forelimb amputated young adult rats (n=5) at 7 to 24 weeks after amputation. At each time period, new input from the shoulder was observed in the deafferented forepaw region in VPL. To determine whether the new shoulder input in the deafferented forepaw VPL projected to a new shoulder site in the deafferented FBS, we examined the thalamocortical pathway in 2 forelimb-amputated rats. Stimulation of a new shoulder site in deafferented FBS antidromically-activated a cell in the former forepaw territory in VPL; however, similar stimulation from a site in the original shoulder representation, outside the

  7. Posterior hypothalamic nucleus deep brain stimulation restores locomotion in rats with haloperidol-induced akinesia but not skilled forelimb use in pellet reaching and lever pressing.

    PubMed

    Young, C K; Whishaw, I Q; Bland, B H

    2011-09-29

    Recent studies have shown that electrical stimulation of the posterior hypothalamic nucleus (PH) facilitates locomotion in control rats, and rats were made akinetic by dopaminergic blockade via haloperidol or dopamine depletion by the neurotoxin 6-hydroxydopamine. These findings suggest that PH stimulation might be a promising treatment for akinesia associated with dopamine loss in Parkinson's disease. The present study further examined the positive effects of PH stimulation on behavior by characterizing its potential facilitatory effects on tasks that require skilled movements. Rats were trained to reach for food pellets with a forelimb (skilled reaching) or press a bar in an operant conditioning task for food. PH stimulation in undrugged rats not only facilitated locomotion in each of the tasks, but also impaired performance of the skilled movement components of the tasks. Haloperidol reduced locomotion and skilled movement, and PH stimulation only restored locomotion. The results are discussed in relation to the idea that PH stimulation selectively facilitates locomotor behavior and may have limited use in restoring impairments in skilled movements and consummatory behavior that results from dopaminergic depletion.

  8. Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis.

    PubMed

    Jackson, K L; Dayton, R D; Orchard, E A; Ju, S; Ringe, D; Petsko, G A; Maquat, L E; Klein, R L

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is an RNA surveillance mechanism that requires upframeshift protein 1 (UPF1). This study demonstrates that human UPF1 exerts protective effects in a rat paralysis model based on the amyotrophic lateral sclerosis (ALS)-associated protein, TDP-43 (transactive response DNA-binding protein 43 kDa). An adeno-associated virus vector (AAV9) was used to express TDP-43 throughout the spinal cord of rats, inducing reproducible limb paralysis, to recapitulate the paralysis in ALS. We selected UPF1 for therapeutic testing based on a genetic screen in yeast. The expression of human TDP-43 or human UPF1 in the spinal cord was titrated to less than twofold over the respective endogenous level. AAV9 human mycUPF1 clearly improved overall motor scores in rats also expressing TDP-43. The gene therapy effect of mycUPF1 was specific and reproducible compared with groups receiving either empty vector or green fluorescent protein vector controls. The gene therapy maintained forelimb motor function in rats that would otherwise become quadriplegic. This work helps validate UPF1 as a novel therapeutic for ALS and other TDP-43-related diseases and may implicate UPF1 and NMD involvement in the underlying disease mechanisms.

  9. Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis

    PubMed Central

    Jackson, KL; Dayton, RD; Orchard, EA; Ju, S; Ringe, D; Petsko, GA; Maquat, LE; Klein, RL

    2016-01-01

    Nonsense-mediated mRNA decay (NMD) is an RNA surveillance mechanism that requires upframeshift protein 1 (UPF1). This study demonstrates that human UPF1 exerts protective effects in a rat paralysis model based on the amyotrophic lateral sclerosis (ALS)-associated protein, TDP-43 (transactive response DNA-binding protein 43 kDa). An adeno-associated virus vector (AAV9) was used to express TDP-43 throughout the spinal cord of rats, inducing reproducible limb paralysis, to recapitulate the paralysis in ALS. We selected UPF1 for therapeutic testing based on a genetic screen in yeast. The expression of human TDP-43 or human UPF1 in the spinal cord was titrated to less than twofold over the respective endogenous level. AAV9 human mycUPF1 clearly improved overall motor scores in rats also expressing TDP-43. The gene therapy effect of mycUPF1 was specific and reproducible compared with groups receiving either empty vector or green fluorescent protein vector controls. The gene therapy maintained forelimb motor function in rats that would otherwise become quadriplegic. This work helps validate UPF1 as a novel therapeutic for ALS and other TDP-43-related diseases and may implicate UPF1 and NMD involvement in the underlying disease mechanisms. PMID:25354681

  10. Aging Contributes to Inflammation in Upper Extremity Tendons and Declines in Forelimb Agility in a Rat Model of Upper Extremity Overuse

    PubMed Central

    Kietrys, David M.; Barr-Gillespie, Ann E.; Amin, Mamta; Wade, Christine K.; Popoff, Steve N.; Barbe, Mary F.

    2012-01-01

    We sought to determine if tendon inflammatory and histopathological responses increase in aged rats compared to young rats performing a voluntary upper extremity repetitive task, and if these changes are associated with motor declines. Ninety-six female Sprague-Dawley rats were used in the rat model of upper extremity overuse: 67 aged and 29 young adult rats. After a training period of 4 weeks, task rats performed a voluntary high repetition low force (HRLF) handle-pulling task for 2 hrs/day, 3 days/wk for up to 12 weeks. Upper extremity motor function was assessed, as were inflammatory and histomorphological changes in flexor digitorum and supraspinatus tendons. The percentage of successful reaches improved in young adult HRLF rats, but not in aged HRLF rats. Forelimb agility decreased transiently in young adult HRLF rats, but persistently in aged HRLF rats. HRLF task performance for 12 weeks lead to increased IL-1beta and IL-6 in flexor digitorum tendons of aged HRLF rats, compared to aged normal control (NC) as well as young adult HRLF rats. In contrast, TNF-alpha increased more in flexor digitorum tendons of young adult 12-week HRLF rats than in aged HRLF rats. Vascularity and collagen fibril organization were not affected by task performance in flexor digitorum tendons of either age group, although cellularity increased in both. By week 12 of HRLF task performance, vascularity and cellularity increased in the supraspinatus tendons of only aged rats. The increased cellularity was due to increased macrophages and connective tissue growth factor (CTGF)-immunoreactive fibroblasts in the peritendon. In conclusion, aged rat tendons were overall more affected by the HRLF task than young adult tendons, particularly supraspinatus tendons. Greater inflammatory changes in aged HRLF rat tendons were observed, increases associated temporally with decreased forelimb agility and lack of improvement in task success. PMID:23056540

  11. Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test.

    PubMed

    Olsson, M; Nikkhah, G; Bentlage, C; Björklund, A

    1995-05-01

    Methods for the assessment of akinesia in the unilateral rat Parkinson model have so far been lacking. The experiments reported here evaluate the usefulness of a new "stepping test" to monitor forelimb akinesia in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the mesencephalic dopamine (DA) system, and to assess the ability of DA-receptor agonists and fetal DA neuron transplants to reverse these deficits. The 6-OHDA lesion induced marked and long-lasting impairments in the initiation of stepping movements with the contralateral paw. Systemic injections of low doses (chosen to be subthreshold for induction of rotation) of the mixed D1 and D2 receptor agonist apomorphine, the D1-selective agonist SKF 38393, and to a lesser extent also the D2-selective agonist quinpirole were effective in reversing these deficits. Similar effects was seen after a subrotational dose of L-dopa, whereas amphetamine had no effect. Fetal nigral transplants, implanted as multiple deposits in the ipsilateral caudate-putamen and substantia nigra, restored initiation of stepping to a similar degree as the DA agonists. Nigral grafts placed in substantia nigra alone were also effective, although the improvement was less pronounced. Apomorphine, at a dose effective in the lesion-only animals, had no additive effect in the grafted rats, whereas amphetamine appeared to further improve stepping in the rats with intranigral transplants. Identical experiments were performed on skilled forelimb use in the so-called staircase test. Interestingly, neither the DA agonist drugs nor the nigral transplants had any effects on the lesion induced deficits in this more complex task. The results show that forelimb stepping is a highly useful test to monitor lesion-/and transplant-induced changes in forelimb akinesia, a behavioral parameter that may be analogous to limb akinesia and gait problems seen in patients with Parkinson's disease.

  12. Enhanced Thalamic Functional Connectivity with No fMRI Responses to Affected Forelimb Stimulation in Stroke-Recovered Rats

    PubMed Central

    Shim, Woo H.; Suh, Ji-Yeon; Kim, Jeong K.; Jeong, Jaeseung; Kim, Young R.

    2017-01-01

    Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery. PMID:28119575

  13. A Sliced Inverse Regression (SIR) Decoding the Forelimb Movement from Neuronal Spikes in the Rat Motor Cortex

    PubMed Central

    Yang, Shih-Hung; Chen, You-Yin; Lin, Sheng-Huang; Liao, Lun-De; Lu, Henry Horng-Shing; Wang, Ching-Fu; Chen, Po-Chuan; Lo, Yu-Chun; Phan, Thanh Dat; Chao, Hsiang-Ya; Lin, Hui-Ching; Lai, Hsin-Yi; Huang, Wei-Chen

    2016-01-01

    Several neural decoding algorithms have successfully converted brain signals into commands to control a computer cursor and prosthetic devices. A majority of decoding methods, such as population vector algorithms (PVA), optimal linear estimators (OLE), and neural networks (NN), are effective in predicting movement kinematics, including movement direction, speed and trajectory but usually require a large number of neurons to achieve desirable performance. This study proposed a novel decoding algorithm even with signals obtained from a smaller numbers of neurons. We adopted sliced inverse regression (SIR) to predict forelimb movement from single-unit activities recorded in the rat primary motor (M1) cortex in a water-reward lever-pressing task. SIR performed weighted principal component analysis (PCA) to achieve effective dimension reduction for nonlinear regression. To demonstrate the decoding performance, SIR was compared to PVA, OLE, and NN. Furthermore, PCA and sequential feature selection (SFS) which are popular feature selection techniques were implemented for comparison of feature selection effectiveness. Among SIR, PVA, OLE, PCA, SFS, and NN decoding methods, the trajectories predicted by SIR (with a root mean square error, RMSE, of 8.47 ± 1.32 mm) was closer to the actual trajectories compared with those predicted by PVA (30.41 ± 11.73 mm), OLE (20.17 ± 6.43 mm), PCA (19.13 ± 0.75 mm), SFS (22.75 ± 2.01 mm), and NN (16.75 ± 2.02 mm). The superiority of SIR was most obvious when the sample size of neurons was small. We concluded that SIR sorted the input data to obtain the effective transform matrices for movement prediction, making it a robust decoding method for conditions with sparse neuronal information. PMID:28018160

  14. A Sliced Inverse Regression (SIR) Decoding the Forelimb Movement from Neuronal Spikes in the Rat Motor Cortex.

    PubMed

    Yang, Shih-Hung; Chen, You-Yin; Lin, Sheng-Huang; Liao, Lun-De; Lu, Henry Horng-Shing; Wang, Ching-Fu; Chen, Po-Chuan; Lo, Yu-Chun; Phan, Thanh Dat; Chao, Hsiang-Ya; Lin, Hui-Ching; Lai, Hsin-Yi; Huang, Wei-Chen

    2016-01-01

    Several neural decoding algorithms have successfully converted brain signals into commands to control a computer cursor and prosthetic devices. A majority of decoding methods, such as population vector algorithms (PVA), optimal linear estimators (OLE), and neural networks (NN), are effective in predicting movement kinematics, including movement direction, speed and trajectory but usually require a large number of neurons to achieve desirable performance. This study proposed a novel decoding algorithm even with signals obtained from a smaller numbers of neurons. We adopted sliced inverse regression (SIR) to predict forelimb movement from single-unit activities recorded in the rat primary motor (M1) cortex in a water-reward lever-pressing task. SIR performed weighted principal component analysis (PCA) to achieve effective dimension reduction for nonlinear regression. To demonstrate the decoding performance, SIR was compared to PVA, OLE, and NN. Furthermore, PCA and sequential feature selection (SFS) which are popular feature selection techniques were implemented for comparison of feature selection effectiveness. Among SIR, PVA, OLE, PCA, SFS, and NN decoding methods, the trajectories predicted by SIR (with a root mean square error, RMSE, of 8.47 ± 1.32 mm) was closer to the actual trajectories compared with those predicted by PVA (30.41 ± 11.73 mm), OLE (20.17 ± 6.43 mm), PCA (19.13 ± 0.75 mm), SFS (22.75 ± 2.01 mm), and NN (16.75 ± 2.02 mm). The superiority of SIR was most obvious when the sample size of neurons was small. We concluded that SIR sorted the input data to obtain the effective transform matrices for movement prediction, making it a robust decoding method for conditions with sparse neuronal information.

  15. Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in the rat: physiological, histological and behavioral correlates.

    PubMed

    Soblosky, J S; Matthews, M A; Davidson, J F; Tabor, S L; Carey, M E

    1996-09-01

    This study characterizes physiological, histological and behavioral effects of traumatic brain injury (TBI) produced by a controlled pneumatic impactor striking the entire right sensorimotor cortex of the anesthetized rat. Damage to both the fore- and hindlimb sensorimotor areas resulted in a hemiparetic animal which allowed us to use four sensitive behavioral/neurological tests to track the recovery sequelae after injury. Initial experiments measured cardiovascular and respiratory effects after cortical impact which depressed the dura to varying depths. Both 0.5 mm and 1 mm cortical depressions produced a momentary decrease (P < 0.05) in mean arterial blood pressure (MABP) while cortical impacts to depths of 2 mm or 3 mm produced a momentary increase (P < 0.05) in MABP. Normotension was re-established within 30 s after the initial response at all injury levels. Respiratory rate was affected only following 3 mm cortical depressions. A 1 mm cortical depression appeared ideal in terms of minimal cardiorespiratory effects, low mortality and lasting behavioral effects. For behavioral and histologic studies, therefore, additional rats were injured by a 1 mm cortical impact and tested for 8 weeks after TBI using four behavioral tests. Injured rats displayed both fore- and hindlimb deficits up to 56 days while traversing a narrow beam (P < 0.001) and up to 28 days when crossing a pegged beam (P < 0.05). Forelimb deficits evaluated on a wire grid platform were evident for 28 days (P < 0.05). Forepaw preference measured in a non-test setting indicated a bias to use the unaffected forepaw for 35 days (P < 0.05). A biphasic pattern of functional recovery was seen on all tests. A period of rapid functional recovery lasting 7 to 10 days was followed by a slower period of functional recovery lasting many weeks. Possible meanings of this biphasic recovery are discussed as issues of behavioral compensation/adaptation versus true neural recovery. Eight weeks after TBI histological

  16. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats

    PubMed Central

    2012-01-01

    Background A complete spinal cord transection results in loss of all supraspinal motor control below the level of the injury. The neural circuitry in the lumbosacral spinal cord, however, can generate locomotor patterns in the hindlimbs of rats and cats with the aid of motor training, epidural stimulation and/or administration of monoaminergic agonists. We hypothesized that there are patterns of EMG signals from the forelimbs during quadrupedal locomotion that uniquely represent a signal for the “intent” to step with the hindlimbs. These observations led us to determine whether this type of “indirect” volitional control of stepping can be achieved after a complete spinal cord injury. The objective of this study was to develop an electronic bridge across the lesion of the spinal cord to facilitate hindlimb stepping after a complete mid-thoracic spinal cord injury in adult rats. Methods We developed an electronic spinal bridge that can detect specific patterns of EMG activity from the forelimb muscles to initiate electrical-enabling motor control (eEmc) of the lumbosacral spinal cord to enable quadrupedal stepping after a complete spinal cord transection in rats. A moving window detection algorithm was implemented in a small microprocessor to detect biceps brachii EMG activity bilaterally that then was used to initiate and terminate epidural stimulation in the lumbosacral spinal cord. We found dominant frequencies of 180–220 Hz in the EMG of the forelimb muscles during active periods, whereas these frequencies were between 0–10 Hz when the muscles were inactive. Results and conclusions Once the algorithm was validated to represent kinematically appropriate quadrupedal stepping, we observed that the algorithm could reliably detect, initiate, and facilitate stepping under different pharmacological conditions and at various treadmill speeds. PMID:22691460

  17. Quantitative positron emission tomography imaging of angiogenesis in rats with forelimb ischemia using (68)Ga-NOTA-c(RGDyK).

    PubMed

    Kim, Joong Hyun; Kim, Young-Hwa; Kim, Young Joo; Yang, Bo Yeun; Jeong, Jae Min; Youn, Hyewon; Lee, Dong Soo; Lee, Jae Sung

    2013-10-01

    Gallium-68-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-cyclic Arg-Gly-Asp-D-Tyr-Lys (c(RGDyK)) was developed for αvβ3 targeting, and is a promising agent for imaging of cancer and disorders related to angiogenesis. In this study, we performed kinetic analysis of (68)Ga-NOTA-c(RGDyK) in rats with surgically induced forelimb ischemia, and immunohistochemical analysis was also performed to assess αvβ3 immuno-staining level. Animal models were created by excision of the left brachial vessels, and a sham operation was performed on the right brachial region under 2 % isoflurane anesthesia. Using an animal positron emission tomography/computed tomography (PET/CT) scanner, a list mode PET scan (120 min) was started with the injection of (68)Ga-NOTA-c(RGDyK) via the tail vein at 3, 5 and 7 days after ischemic surgery. Volumes of interest were drawn on the left ventricle, sham operation, control, and ischemic regions. Compartmental and two graphical analyses (Logan and RE plots) were performed for kinetic parameter estimation. The immunohistochemical analysis was also performed after the last PET scan, and cell components were scored on a six point scale for quantification of immuno-staining level (0-negative to 5-very high). A 3-compartment model with reversible binding best described the tissue time-activity curves. The distribution volume of the ischemic region was significantly higher than that of the sham operation (P < 10(-6)) and control region (P < 10(-9)). Both the Logan and RE plots showed high correlation with compartmental analysis (R(2) = 0.96 and 0.95 for Logan and RE, respectively). The temporal changes in distribution volume and binding potential were not significant. The immuno-staining level of the ischemic region was significantly higher than that of sham operation (P < 10(-4)) and control region (P < 10(-8)). Kinetic modeling studies with dynamic (68)Ga-NOTA-c(RGDyK) PET scan are feasible based on an image-derived input function in a

  18. Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex.

    PubMed

    Greenough, W T; Larson, J R; Withers, G S

    1985-09-01

    Effects of motor training on a neocortical nerve cell population involved in performance of the motor task were assessed by measuring Layer V pyramidal neuron apical dendritic branching in motor-sensory forelimb cortex of rats trained to reach into a tube for food. Rats were trained to reach with the forepaw they preferred to use (group PRAC), the nonpreferred forepaw (REV), both forepaws (ALT), or neither forepaw (CONT). Across groups, hemispheres opposite trained forepaws had larger apical dendritic fields, in terms of total dendritic length, number of oblique branches from the apical shaft, and length of terminal branches. Similar, although somewhat less consistent, effects were seen when results were analyzed for between- (CONT vs ALT) and within-subject comparisons (trained vs nontrained hemispheres of REV and PRAC). This finding is compatible with the hypothesis that altered dendritic patterns, with associated synapses, are involved in storage of information from the training experience. The within-subject effects mitigate suggestions that these differences arise from generally acting hormonal or metabolic consequences of the training experience, although the possibility that these effects result from neural activity per se and are unrelated to information storage cannot be excluded.

  19. Spinal cord projections of the rat main forelimb nerves, studied by transganglionic transport of WGA-HRP and by the disappearance of acid phosphatase.

    PubMed

    Castro-Lopes, J M; Coimbra, A

    1991-03-01

    The spinal cord projections of the 3 main forelimb nerves-median, radial and ulnar, were studied in the rat dorsal horn with transganglionic transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP), or using the disappearance of fluoride resistant acid phosphatase (FRAP) after nerve section. The projection patterns in lamina II were similar following the two procedures. The median and the radial nerve fibers projected to the medial and the intermediate thirds, respectively, of the dorsal horn lamina II in spinal cord segments C4-C8. The ulnar nerve projected to segments C6-C8 between the areas occupied by the other two nerves. The FRAP method also showed that the lateral part of lamina II, which was not filled by radial nerve fibers, received the projections from the dorsal cutaneous branches of cervical spinal nerves. In addition, FRAP disappeared from the medial end of segment T1 after skin incisions extending from the medial brachium to the axilla, which seemed due to severance of the cutaneous branchlets of the lateral anterior thoracic nerve. The FRAP procedure is thus sensitive enough to detect fibers in lamina II arising from small peripheral nerves, and may be used as an alternative to the anterograde tracing methods whenever there are no overlapping projections.

  20. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury.

  1. Projection of forelimb nerve afferents to external cuneate nucleus of the rat as revealed by intraneural injection of a neurotoxic lectin, Ricinus communis agglutinin.

    PubMed

    Cha, S W; Tan, C K

    1996-01-01

    This study seeks to extend the observations of previous studies of projection of primary afferent fibres from the forelimb nerves and muscles to the external cuneate nucleus (ECN) of mammals using a neurotoxic lectin, Ricinus communis agglutinin (RCA) to achieve chemical ganglionectomy of the dorsal root ganglia. Following intraneural injection of RCA into the three main forelimb nerves, namely the radial, ulnar and median nerves, terminal degeneration of the primary afferent fibres in the ECN was studied under the light microscope by means of the Fink-Heimer method. The results show that the primary afferent fibres from these three nerves project to the medial part of the ECN. The field of terminal degeneration take a crescentic form. The projection from the median nerve was most dorsally located whereas that from the radial nerve was the most ventral with extensive overlaps between them. Of the three nerves, the projection from the radial nerve was the most dense. Rostrocaudally, the three nerves also show extensive overlaps. The rostrocaudal extent of maximum terminal degeneration was greatest for the radial nerve and least for the median nerve. Analysis of variance showed that these differences were statistically significant. This suggests that the radial nerve has the most extensive projection to the ECN and the median nerve the least.

  2. Forelimb segment length proportions in extant hominoids and Australopithecus afarensis.

    PubMed

    Drapeau, Michelle S M; Ward, Carol V

    2007-03-01

    Forelimb proportions have been used to infer locomotor adaptation in Australopithecus afarensis. However, little is known about proportions among individual forelimb segments in extant or fossil hominoids. The partial A. afarensis skeleton A.L. 438-1 and the more complete skeleton A.L. 288-1 provide the opportunity to assess relative length of the arm, forearm, wrist, and palm. We compare scaling relationships between pairs of forelimb bones of extant hominoids and A. afarensis, and length of individual forelimb elements to a body size surrogate. Hylobatids, and to a lesser extent orangutans, have the longest forelimb bones relative to size, although the carpus varies little among taxa, perhaps due to functional constraints of the wrist. Pan species are unique in having long metacarpals relative to ulnar length, demonstrating that they probably differ from the common chimp-human ancestor, and also that developmental mechanisms can be altered to results in differential growth of individual forelimb segments. A. afarensis has no forelimb bones that are significantly longer than those of humans for its size. It falls within the range of variation seen in modern humans for all comparisons relative to size, but appears to differ from the typical human brachial index due to a slightly shorter humerus and/or slightly longer ulna. It has short metacarpals like humans only among hominoids. Thus, while Pan may have elongated its metacarpus relative to ulnar length, A. afarensis may have reduced the length of its metacarpals and possibly its humerus relative to body size from the primitive condition.

  3. Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury

    NASA Astrophysics Data System (ADS)

    Kasten, M. R.; Sunshine, M. D.; Secrist, E. S.; Horner, P. J.; Moritz, C. T.

    2013-08-01

    Objective. Intraspinal microstimulation (ISMS) is a promising method for activating the spinal cord distal to an injury. The objectives of this study were to examine the ability of chronically implanted stimulating wires within the cervical spinal cord to (1) directly produce forelimb movements, and (2) assess whether ISMS stimulation could improve subsequent volitional control of paretic extremities following injury. Approach. We developed a technique for implanting intraspinal stimulating electrodes within the cervical spinal cord segments C6-T1 of Long-Evans rats. Beginning 4 weeks after a severe cervical contusion injury at C4-C5, animals in the treatment condition received therapeutic ISMS 7 hours/day, 5 days/week for the following 12 weeks. Main results. Over 12 weeks of therapeutic ISMS, stimulus-evoked forelimb movements were relatively stable. We also explored whether therapeutic ISMS promoted recovery of forelimb reaching movements. Animals receiving daily therapeutic ISMS performed significantly better than unstimulated animals during behavioural tests conducted without stimulation. Quantitative video analysis of forelimb movements showed that stimulated animals performed better in the movements reinforced by stimulation, including extending the elbow to advance the forelimb and opening the digits. While threshold current to elicit forelimb movement gradually increased over time, no differences were observed between chronically stimulated and unstimulated electrodes suggesting that no additional tissue damage was produced by the electrical stimulation. Significance. The results indicate that therapeutic intraspinal stimulation delivered via chronic microwire implants within the cervical spinal cord confers benefits extending beyond the period of stimulation, suggesting future strategies for neural devices to promote sustained recovery after injury.

  4. The 5-alpha reductase inhibitor finasteride reduces dyskinesia in a rat model of Parkinson's disease.

    PubMed

    Frau, Roberto; Savoia, Paola; Fanni, Silvia; Fiorentini, Chiara; Fidalgo, Camino; Tronci, Elisabetta; Stancampiano, Roberto; Meloni, Mario; Cannas, Antonino; Marrosu, Francesco; Bortolato, Marco; Devoto, Paola; Missale, Cristina; Carta, Manolo

    2017-05-01

    Levodopa-induced dyskinesia (LID) is a disabling motor complication occurring in Parkinson's disease patients (PD) after long-term l-DOPA treatment. Although its etiology remains unclear, there is accumulating evidence that LID relies on an excessive dopamine receptor transmission, particularly at the downstream signaling of D1 receptors. We previously reported that the pharmacological blockade of 5-alpha reductase (5AR), the rate limiting enzyme in neurosteroids synthesis, rescued a number of behavioral aberrations induced by D1 receptor-selective and non-selective agonists, without inducing extrapyramidal symptoms. Thus, the present study was designed to verify whether the 5AR inhibitor finasteride (FIN) may counteract the dyskinesias induced by dopaminergic agonists in 6-hydroxydopamine (6-OHDA)-lesioned rats. First, we assessed the acute and chronic effect of different doses of FIN (30-60mg/kg) on LID, in male 6-OHDA-lesioned dyskinetic rats. Thereafter, to fully characterize the therapeutic potential of FIN on LID and its impact on l-DOPA efficacy, we assessed abnormal involuntary movements and forelimb use in hemiparkinsonian male rats chronically injected with FIN (30-60mg/kg/24days) either prior to- or concomitant with l-DOPA administration. In addition, to investigate whether the impact of FIN on LID may be ascribed to a modulation of the D1- or D2/D3-receptor function, dyskinesias were assessed in l-DOPA-primed 6-OHDA-lesioned rats that received FIN in combination with selective direct dopaminergic agonists. Finally, we set to investigate whether FIN may produce similar effect in female hemiparkinsonian rats, as seen in males. The results indicated that FIN administrations significantly dampened LID in all tested treatment regimens, without interfering with the ability of l-DOPA to ameliorate forelimb use in the stepping test. The antidyskinetic effect appears to be due to modulation of both D1- and D2/D3-receptor function, as FIN also reduced abnormal

  5. Phylogeny and forelimb disparity in waterbirds.

    PubMed

    Wang, Xia; Clarke, Julia A

    2014-10-01

    Previous work has shown that the relative proportions of wing components (i.e., humerus, ulna, carpometacarpus) in birds are related to function and ecology, but these have rarely been investigated in a phylogenetic context. Waterbirds including "Pelecaniformes," Ciconiiformes, Procellariiformes, Sphenisciformes, and Gaviiformes form a highly supported clade and developed a great diversity of wing forms and foraging ecologies. In this study, forelimb disparity in the waterbird clade was assessed in a phylogenetic context. Phylogenetic signal was assessed via Pagel's lambda, Blomberg's K, and permutation tests. We find that different waterbird clades are clearly separated based on forelimb component proportions, which are significantly correlated with phylogeny but not with flight style. Most of the traditional contents of "Pelecaniformes" (e.g., pelicans, cormorants, and boobies) cluster with Ciconiiformes (herons and storks) and occupy a reduced morphospace. These taxa are closely related phylogenetically but exhibit a wide range of ecologies and flight styles. Procellariiformes (e.g., petrels, albatross, and shearwaters) occupy a wide range of morphospace, characterized primarily by variation in the relative length of carpometacarpus and ulna. Gaviiformes (loons) surprisingly occupy a wing morphospace closest to diving petrels and penguins. Whether this result may reflect wing proportions plesiomorphic for the waterbird clade or a functional signal is unclear. A Bayesian approach detecting significant rate shifts across phylogeny recovered two such shifts. At the base of the two sister clades Sphenisciformes + Procellariiformes, a shift to an increase evolutionary rate of change is inferred for the ulna and carpometacarpus. Thus, changes in wing shape begin prior to the loss of flight in the wing-propelled diving clade. Several shifts to slower rate of change are recovered within stem penguins.

  6. The Organization of the Forelimb Representation of the C57BL/6 Mouse Motor Cortex as Defined by Intracortical Microstimulation and Cytoarchitecture

    PubMed Central

    Adkins, DeAnna L.; Donlan, Nicole A.; Asay, Aaron L.; Thomas, Nagheme; Kleim, Jeffrey A.

    2011-01-01

    The organization of forelimb representation areas of the monkey, cat, and rat motor cortices has been studied in depth, but its characterization in the mouse lags far behind. We used intracortical microstimulation (ICMS) and cytoarchitectonics to characterize the general organization of the C57BL/6 mouse motor cortex, and the forelimb representation in more detail. We found that the forelimb region spans a large area of frontal cortex, bordered primarily by vibrissa, neck, shoulder, and hindlimb representations. It included a large caudal forelimb area, dominated by digit representation, and a small rostral forelimb area, containing elbow and wrist representations. When the entire motor cortex was mapped, the forelimb was found to be the largest movement representation, followed by head and hindlimb representations. The ICMS-defined motor cortex spanned cytoarchitecturally identified lateral agranular cortex (AGl) and also extended into medial agranular cortex. Forelimb and hindlimb representations extended into granular cortex in a region that also had cytoarchitectural characteristics of AGl, consistent with the primary motor–somatosensory overlap zone (OL) characterized in rats. Thus, the mouse motor cortex has homologies with the rat in having 2 forelimb representations and an OL but is distinct in the predominance of digit representations. PMID:20739477

  7. Activity-Based Therapies To Promote Forelimb Use after a Cervical Spinal Cord Injury

    PubMed Central

    Dai, Haining; MacArthur, Linda; McAtee, Marietta; Hockenbury, Nicole; Tidwell, J. Lille; McHugh, Brian; Mansfield, Kevin; Finn, Tom; Hamers, Frank P.T.

    2009-01-01

    Abstract Significant interest exists in strategies for improving forelimb function following spinal cord injury. We investigated the effect of enriched housing combined with skilled training on the recovery of skilled and automatic forelimb function after a cervical spinal cord injury in adult rats. All animals were pretrained in skilled reaching, gridwalk crossing, and overground locomotion. Some received a cervical over-hemisection lesion at C4-5, interrupting the right side of the spinal cord and dorsal columns bilaterally, and were housed in standard housing alone or enriched environments with daily training. A subset of animals received rolipram to promote neuronal plasticity. Animals were tested weekly for 4 weeks to measure reaching, errors on the gridwalk, locomotion, and vertical exploration. Biotinylated dextran amine was injected into the cortex to label the corticospinal tract. Enriched environments/daily training significantly increased the number and success of left reaches compared to standard housing. Animals also made fewer errors on the gridwalk, a measure of coordinated forelimb function. However, there were no significant improvements in forelimb use during vertical exploration or locomotion. Likewise, rolipram did not improve any of the behaviors tested. Both enriched housing and rolipram increased plasticity of the corticospinal tract rostral to the lesion. These studies indicate that skilled training after a cervical spinal cord injury improves recovery of skilled forelimb use (reaching) and coordinated limb function (gridwalk) but does not improve automatic forelimb function (locomotion and vertical exploration). These studies suggest that rehabilitating forelimb function after spinal cord injury will require separate strategies for descending and segmental pathways. PMID:19317604

  8. Forelimb lameness in the young patient.

    PubMed

    Cook, J L

    2001-01-01

    Forelimb lameness is a common problem in young dogs and can be caused by a wide variety of problems. Accurate and comprehensive diagnosis and treatment must be provided for these patients. Differential diagnoses for forelimb lameness in the young patient fall into the categories of congenital abnormalities; developmental disorders; trauma; and infectious, nutritional, metabolic, and neoplastic causes. The etiopathogeneses of many of these disorders are still unknown, and treatment options and prognoses vary tremendously. Until definitive causes are determined, it is the responsibility of veterinarians to address the factors that contribute to the development and progression of these disorders. These areas primarily involve weight and nutritional management as well as breeding programs.

  9. Intrastriatal injection of sonic hedgehog reduces behavioral impairment in a rat model of Parkinson's disease.

    PubMed

    Tsuboi, Kyoko; Shults, Clifford W

    2002-01-01

    Sonic hedgehog (Shh), a member of hedgehog (hh) family of signaling molecules, is necessary for normal axial patterning and cellular differentiation in the developing central nervous system. Shh also promotes the survival of fetal dopaminergic neurons and protects cultures of fetal midbrain dopaminergic neurons from the toxic effects of N-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that selectively injures nigral dopaminergic neurons. The mRNA expression of Shh and its putative receptor in the adult brain indicates an important role of Shh in the mature nervous system in addition to its roles during embryogenesis. In this study we examined the behavioral and anatomical effects of intrastriatal injection of singly myristoylated wild-type human Sonic hedgehog N-terminal fragment (Shh-M) in a rat model of Parkinson's disease (PD). Five groups of rats received a series of four intrastriatal injections of Shh-M (180 ng, 540 ng, or 4.275 microg per injection), glial cell line-derived neurotrophic factor (GDNF) (1 microg/injection), or vehicle on days 1, 3, 5, and 8. On day 4, the animals received an intrastriatal injection of 15 microg 6-hydroxydopamine (6-OHDA) free base. Intrastriatal administration of Shh (180 ng/injection) twice before and after a single intrastriatal injection of 6-OHDA reduced apomorphine- and amphetamine-induced rotation and forelimb akinesia and partially preserved dopaminergic axons in the striatum. This is the first demonstration in vivo that Shh reduces behavioral deficits induced by intrastriatal 6-OHDA lesion and suggests that Shh may be useful in the treatment of disorders that affect the nigrostriatal system, such as PD.

  10. Experimental Forelimb Allotransplantation in Canine Model

    PubMed Central

    2016-01-01

    As reconstructive transplantation is gaining popularity as a viable alternative for upper limb amputees, it is becoming increasingly important for plastic surgeons to renew surgical skills and knowledge of this area. Forelimb allotransplantation research has been performed previously in rodent and swine models. However, preclinical canine forelimb allotransplantation studies are lacking in the literature. The purpose of this paper is to provide an overview of the surgical skills necessary to successfully perform forelimb transplantation in canines as a means to prepare for clinical application. A total of 18 transplantation operations on canines were performed. The recipient limb was shortened at the one-third proximal forearm level. The operation was performed in the following order: bones (two reconstructive plates), muscles and tendons (separately sutured), nerves (median, ulnar, and radial nerve), arteries (two), and veins (two). The total mean time of transplantation was 5 hours ± 30 minutes. All of the animals that received transplantation were treated with FK-506 (tacrolimus, 2 mg/kg) for 7 days after surgery. Most allografts survived with perfect viability without vascular problems during the early postoperative period. The canine forelimb allotransplantation model is well qualified to be a suitable training model for standard transplantation and future research work. PMID:27597952

  11. Ketogenic Diet Improves Forelimb Motor Function after Spinal Cord Injury in Rodents

    PubMed Central

    Streijger, Femke; Plunet, Ward T.; Lee, Jae H. T.; Liu, Jie; Lam, Clarrie K.; Park, Soeyun; Hilton, Brett J.; Fransen, Bas L.; Matheson, Keely A. J.; Assinck, Peggy; Kwon, Brian K.; Tetzlaff, Wolfram

    2013-01-01

    High fat, low carbohydrate ketogenic diets (KD) are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI) in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1) expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate) prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited. PMID:24223849

  12. Growth and apoptosis during larval forelimb development and adult forelimb regeneration in the newt ( Notophthalmus viridescens).

    PubMed

    Vlaskalin, Tatjana; Wong, Christine J; Tsilfidis, Catherine

    2004-09-01

    Many of the genes involved in the initial development of the limb in higher vertebrates are also expressed during regeneration of the limb in urodeles such as Notophthalmus viridescens. These similarities have led researchers to conclude that the regeneration process is a recapitulation of development, and that patterning of the regenerate mimics pattern formation in development. However, the developing limb and the regenerating limb do not look similar. In developing urodele forelimbs, digits appear sequentially as outgrowths from the limb palette. In regeneration, all the digits appear at once. In this work, we address the issue of whether regeneration and development are similar by examining growth and apoptosis patterns. In contrast to higher vertebrates, forelimb development in the newt, N. viridescens, does not use interdigital apoptosis as the method of digit separation. During adult forelimb regeneration, apoptosis seems to play an important role in wound healing and again during cartilage to bone turnover in the advanced digits and radius/ulna. However, similar to forelimb development, demarcation of the digits in adult forelimb regeneration does not involve interdigital apoptosis. Outgrowth, rather than regression of the interdigital mesenchyme, leads to the individualization of forelimb digits in both newt development and regeneration.

  13. Neuromuscular anatomy and evolution of the cetacean forelimb.

    PubMed

    Cooper, Lisa Noelle; Dawson, Susan D; Reidenberg, Joy S; Berta, Annalisa

    2007-09-01

    The forelimb of cetaceans (whales, dolphins, and porpoises) has been radically modified during the limb-to-flipper transition. Extant cetaceans have a soft tissue flipper encasing the manus and acting as a hydrofoil to generate lift. The neuromuscular anatomy that controls flipper movement, however, is poorly understood. This study documents flipper neuromuscular anatomy and tests the hypothesis that antebrachial muscle robustness is related to body size. Data were gathered during dissections of 22 flippers, representing 15 species (7 odontocetes, 15 mysticetes). Results were compared with published descriptions of both artiodactyls and secondarily aquatic vertebrates. Results indicate muscle robustness is best predicted by taxonomic distribution and is not a function of body size. All cetaceans have atrophied triceps muscles, an immobile cubital joint, and lack most connective tissue structures and manus muscles. Forelimbs retain only three muscle groups: triceps (only the scapular head is functional as the humeral heads are vestigal), and antebrachial extensors and flexors. Well-developed flexor and extensor muscles were found in mysticetes and basal odontocetes (i.e., physeterids, kogiids, and ziphiids), whereas later diverging odontocetes (i.e., monodontids, phocoenids, and delphinids) lack or reduce these muscles. Balaenopterid mysticetes (e.g., fin and minke whales) may actively change flipper curvature, while basal odontocetes (e.g., sperm and beaked whales) probably stiffen the flipper through isometric contraction. Later diverging odontocetes lack musculature supporting digital movements and are unable to manipulate flipper curvature. Cetacean forelimbs are unique in that they have lost agility and several soft tissue structures, but retain sensory innervations.

  14. Intramuscular Neurotrophin-3 normalizes low threshold spinal reflexes, reduces spasms and improves mobility after bilateral corticospinal tract injury in rats

    PubMed Central

    Kathe, Claudia; Hutson, Thomas Haynes; McMahon, Stephen Brendan; Moon, Lawrence David Falcon

    2016-01-01

    Brain and spinal injury reduce mobility and often impair sensorimotor processing in the spinal cord leading to spasticity. Here, we establish that complete transection of corticospinal pathways in the pyramids impairs locomotion and leads to increased spasms and excessive mono- and polysynaptic low threshold spinal reflexes in rats. Treatment of affected forelimb muscles with an adeno-associated viral vector (AAV) encoding human Neurotrophin-3 at a clinically-feasible time-point after injury reduced spasticity. Neurotrophin-3 normalized the short latency Hoffmann reflex to a treated hand muscle as well as low threshold polysynaptic spinal reflexes involving afferents from other treated muscles. Neurotrophin-3 also enhanced locomotor recovery. Furthermore, the balance of inhibitory and excitatory boutons in the spinal cord and the level of an ion co-transporter in motor neuron membranes required for normal reflexes were normalized. Our findings pave the way for Neurotrophin-3 as a therapy that treats the underlying causes of spasticity and not only its symptoms. DOI: http://dx.doi.org/10.7554/eLife.18146.001 PMID:27759565

  15. Reducing Fear of the Laboratory Rat: A Participant Modeling Approach.

    ERIC Educational Resources Information Center

    Barber, Nigel

    1994-01-01

    Reports on the use of participant modeling in a study of 56 college-level students to reduce fear of laboratory rats. Discovers that even mild exposure reduced fear significantly. Finds that women were more fearful initially but that their fear reduction was equal to that of men. (CFR)

  16. Forelimb indicators of prey-size preference in the Felidae.

    PubMed

    Meachen-Samuels, Julie; Van Valkenburgh, Blaire

    2009-06-01

    The forelimbs, along with the crania, are an essential part of the prey-killing apparatus in cats. Linear morphometrics of the forelimbs were used to determine the morphological differences between felids that specialize on large prey, small prey, or mixed prey. We also compared the scaling of felid forelimbs to those of canids to test whether prey capture strategies affect forelimb scaling. Results suggest that large prey specialists have relatively robust forelimbs when compared with smaller prey specialists. This includes relatively more robust humeri and radii, relatively larger distal ends of the humerus, and relatively larger articular areas of the humerus and radius. Large prey specialists also had relatively longer olecranon processes of the ulna and wider proximal paws. These characters are all important for subduing large prey while the cat positions itself for the killing bite. Small prey specialists have relatively longer distal limb elements for swift prey capture, and mixed prey specialists had intermediate values with relatively more robust metacarpals. Arboreal felids also had more robust limbs. They had relatively longer proximal phalanges for better grip while climbing, and a relatively short brachial index (radius to humerus ratio). Additionally, we found that felids and canids differ in forelimb scaling, which emphasizes the dual use of forelimbs for locomotion and prey capture in felids. This morphometric technique worked well to separate prey-size preference in felids, but did not work as well to separate locomotor groups, as scansorial and terrestrial felids were not clearly distinguished.

  17. The Irvine, Beatties, and Bresnahan (IBB) Forelimb Recovery Scale: An Assessment of Reliability and Validity

    PubMed Central

    Irvine, Karen-Amanda; Ferguson, Adam R.; Mitchell, Kathleen D.; Beattie, Stephanie B.; Lin, Amity; Stuck, Ellen D.; Huie, J. Russell; Nielson, Jessica L.; Talbott, Jason F.; Inoue, Tomoo; Beattie, Michael S.; Bresnahan, Jacqueline C.

    2014-01-01

    The IBB scale is a recently developed forelimb scale for the assessment of fine control of the forelimb and digits after cervical spinal cord injury [SCI; (1)]. The present paper describes the assessment of inter-rater reliability and face, concurrent and construct validity of this scale following SCI. It demonstrates that the IBB is a reliable and valid scale that is sensitive to severity of SCI and to recovery over time. In addition, the IBB correlates with other outcome measures and is highly predictive of biological measures of tissue pathology. Multivariate analysis using principal component analysis (PCA) demonstrates that the IBB is highly predictive of the syndromic outcome after SCI (2), and is among the best predictors of bio-behavioral function, based on strong construct validity. Altogether, the data suggest that the IBB, especially in concert with other measures, is a reliable and valid tool for assessing neurological deficits in fine motor control of the distal forelimb, and represents a powerful addition to multivariate outcome batteries aimed at documenting recovery of function after cervical SCI in rats. PMID:25071704

  18. Hypotension and reduced catecholamines in neuropeptide Y transgenic rats.

    PubMed

    Michalkiewicz, Mieczyslaw; Knestaut, Kriss M; Bytchkova, Elena Yu; Michalkiewicz, Teresa

    2003-05-01

    The neurons that control blood pressure express neuropeptide Y. Administered centrally, this neuropeptide reduces blood pressure and anxiety, together with lowering sympathetic outflow. The generation of neuropeptide Y transgenic rats overexpressing this peptide, under its natural promoter, has allowed us to examine the role of endogenous neuropeptide Y in the long-term control of blood pressure by the sympathetic nervous system. This study tested a hypothesis that endogenous neuropeptide Y acts to reduce blood pressure and catecholamine release. Blood pressure was measured by radiotelemetry in conscious male transgenic and nontransgenic littermates (control). Novel cage with cold water and forced swimming were used as stressors. Catecholamines were determined in 24-hour urine (baseline) and plasma (cold water stress) by a radioenzymatic assay. Blood pressures in baseline and during the stresses were significantly reduced in the transgenic rats. The lower blood pressure was associated with reduced catecholamines, lower decrease in pressure after autonomic ganglionic blockade, and increased longevity. Data obtained through the use of this transgenic rat model support and extend the evidence for the previously postulated sympatholytic and hypotensive effects of neuropeptide Y and provide novel evidence for an important physiological role of endogenous peptide in blood pressure regulation. As indicated by the increased longevity of these rats, in long-term regulation, these buffering actions of neuropeptide Y may have important cardiovascular protective effects against sympathetic hyperexcitation.

  19. Metformin reduces hepatic resistance and portal pressure in cirrhotic rats.

    PubMed

    Tripathi, Dinesh M; Erice, Eva; Lafoz, Erica; García-Calderó, Héctor; Sarin, Shiv K; Bosch, Jaime; Gracia-Sancho, Jordi; García-Pagán, Juan Carlos

    2015-09-01

    Increased hepatic vascular resistance is the primary factor in the development of portal hypertension. Metformin ameliorates vascular cells function in several vascular beds. Our study was aimed at evaluating the effects, and the underlying mechanisms, of metformin on hepatic and systemic hemodynamics in cirrhotic rats and its possible interaction with the effects of propranolol (Prop), the current standard treatment for portal hypertension. CCl4-cirrhotic rats received by gavage metformin 300 mg/kg or its vehicle once a day for 1 wk, before mean arterial pressure (MAP), portal pressure (PP), portal blood flow (PBF), hepatic vascular resistance, and putative molecular/cellular mechanisms were measured. In a subgroup of cirrhotic rats, the hemodynamic response to acute Prop (5 mg/kg iv) was assessed. Effects of metformin ± Prop on PP and MAP were validated in common bile duct ligated-cirrhotic rats. Metformin-treated CCl4-cirrhotic rats had lower PP and hepatic vascular resistance than vehicle-treated rats, without significant changes in MAP or PBF. Metformin caused a significant reduction in liver fibrosis (Sirius red), hepatic stellate cell activation (α-smooth muscle actin, platelet-derived growth factor receptor β polypeptide, transforming growth factor-βR1, and Rho kinase), hepatic inflammation (CD68 and CD163), superoxide (dihydroethidium staining), and nitric oxide scavenging (protein nitrotyrosination). Prop, by decreasing PBF, further reduced PP. Similar findings were observed in common bile duct ligated-cirrhotic rats. Metformin administration reduces PP by decreasing the structural and functional components of the elevated hepatic resistance of cirrhosis. This effect is additive to that of Prop. The potential impact of this pharmacological combination, otherwise commonly used in patients with cirrhosis and diabetes, needs clinical evaluation.

  20. Red maca (Lepidium meyenii) reduced prostate size in rats

    PubMed Central

    Gonzales, Gustavo F; Miranda, Sara; Nieto, Jessica; Fernández, Gilma; Yucra, Sandra; Rubio, Julio; Yi, Pedro; Gasco, Manuel

    2005-01-01

    Background Epidemiological studies have found that consumption of cruciferous vegetables is associated with a reduced risk of prostate cancer. This effect seems to be due to aromatic glucosinolate content. Glucosinolates are known for have both antiproliferative and proapoptotic actions. Maca is a cruciferous cultivated in the highlands of Peru. The absolute content of glucosinolates in Maca hypocotyls is relatively higher than that reported in other cruciferous crops. Therefore, Maca may have proapoptotic and anti-proliferative effects in the prostate. Methods Male rats treated with or without aqueous extracts of three ecotypes of Maca (Yellow, Black and Red) were analyzed to determine the effect on ventral prostate weight, epithelial height and duct luminal area. Effects on serum testosterone (T) and estradiol (E2) levels were also assessed. Besides, the effect of Red Maca on prostate was analyzed in rats treated with testosterone enanthate (TE). Results Red Maca but neither Yellow nor Black Maca reduced significantly ventral prostate size in rats. Serum T or E2 levels were not affected by any of the ecotypes of Maca assessed. Red Maca also prevented the prostate weight increase induced by TE treatment. Red Maca administered for 42 days reduced ventral prostatic epithelial height. TE increased ventral prostatic epithelial height and duct luminal area. These increases by TE were reduced after treatment with Red Maca for 42 days. Histology pictures in rats treated with Red Maca plus TE were similar to controls. Phytochemical screening showed that aqueous extract of Red Maca has alkaloids, steroids, tannins, saponins, and cardiotonic glycosides. The IR spectra of the three ecotypes of Maca in 3800-650 cm (-1) region had 7 peaks representing 7 functional chemical groups. Highest peak values were observed for Red Maca, intermediate values for Yellow Maca and low values for Black Maca. These functional groups correspond among others to benzyl glucosinolate. Conclusions

  1. Skilled forelimb movements and internal copy motor circuits.

    PubMed

    Azim, Eiman; Alstermark, Bror

    2015-08-01

    Mammalian skilled forelimb movements are remarkable in their precision, a feature that emerges from the continuous adjustment of motor output. Here we discuss recent progress in bridging the gap between theory and neural implementation in understanding the basis of forelimb motor refinement. One influential theory is that feedback from internal copy motor pathways enables fast prediction, through a forward model of the limb, an idea supported by behavioral studies that have explored how forelimb movements are corrected online and can adapt to changing conditions. In parallel, neural substrates of forelimb internal copy pathways are coming into clearer focus, in part through the use of genetically tractable animal models to isolate spinal and cerebellar circuits and explore their contributions to movement.

  2. Strength of forelimb lateralization predicts motor errors in an insect

    PubMed Central

    Bell, Adrian T. A.

    2016-01-01

    Lateralized behaviours are widespread in both vertebrates and invertebrates, suggesting that lateralization is advantageous. Yet evidence demonstrating proximate or ultimate advantages remains scarce, particularly in invertebrates or in species with individual-level lateralization. Desert locusts (Schistocerca gregaria) are biased in the forelimb they use to perform targeted reaching across a gap. The forelimb and strength of this bias differed among individuals, indicative of individual-level lateralization. Here we show that strongly biased locusts perform better during gap-crossing, making fewer errors with their preferred forelimb. The number of targeting errors locusts make negatively correlates with the strength of forelimb lateralization. This provides evidence that stronger lateralization confers an advantage in terms of improved motor control in an invertebrate with individual-level lateralization. PMID:27651534

  3. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat.

    PubMed

    Feng, Yangzheng; Paul, Ian A; LeBlanc, Michael H

    2006-03-31

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 +/- 3.6% in vehicle pups (n = 28) to 11.9 +/- 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2alpha measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 +/- 7 pg/g in the shams (n = 6), 175 +/- 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 +/- 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity.

  4. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat

    PubMed Central

    Feng, Yangzheng; Paul, Ian A.; LeBlanc, Michael H.

    2011-01-01

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 ± 3.6% in vehicle pups (n = 28) to 11.9 ± 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2α measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 ± 7 pg/g in the shams (n = 6), 175 ± 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 ± 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity. PMID:16533659

  5. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat

    PubMed Central

    Kao, T; Shumsky, JS; Murray, M; Moxon, KA

    2009-01-01

    Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/day, 5days/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI, but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923

  6. Pemirolast reduces cisplatin-induced kaolin intake in rats.

    PubMed

    Tatsushima, Yoko; Egashira, Nobuaki; Matsushita, Naohiro; Kurobe, Kentaro; Kawashiri, Takehiro; Yano, Takahisa; Oishi, Ryozo

    2011-07-01

    Emesis is the most feared side effect in patients who are undergoing cancer chemotherapy. In particular, cisplatin causes severe acute and delayed emesis. Although early vomiting is well controlled by 5-hydroxytryptamine 3 (5-HT(3)) receptor antagonists, delayed-phase vomiting is not sufficiently controlled. Substance P is thought to be involved in the development of emesis, and tachykinin NK(1) receptor antagonists can inhibit delayed vomiting. We previously have reported that substance P is involved in the paclitaxel-induced hypersensitivity reaction in rats, and anti-allergic agent pemirolast reduces these reactions via inhibition of substance P release. In the present study, we investigated the effect of pemirolast on cisplatin-induced kaolin intake, which is an index of nausea/vomiting in the rat. Cisplatin (5 mg/kg, i.p.) induced kaolin intake and reduced normal feed intake from days 1 to 5 after injection. Cisplatin-induced kaolin intake was significantly reduced by co-administration of ondansetron (2 mg/kg, i.p.), a 5-HT(3) receptor antagonist, and dexamethasone (2 mg/kg, i.p.) from days 1 to 5. Similarly, pemirolast (10 mg/kg, p.o.) and the tachykinin NK(1) receptor antagonist aprepitant (10 and 30 mg/kg, p.o.) significantly reduced cisplatin-induced kaolin intake on days 3 and 4. Moreover, pemirolast at the same dose significantly reversed the cisplatin-induced increase in the cerebrospinal fluid level of substance P in rats. These results suggest that substance P is involved in cisplatin-induced kaolin intake in rats, and pemirolast reduces kaolin intake by inhibition of substance P release.

  7. Soy protein reduces paraquat-induced oxidative stress in rats.

    PubMed

    Aoki, Hisa; Otaka, Yukiko; Igarashi, Kiharu; Takenaka, Asako

    2002-08-01

    The effect of soy protein, soy isoflavones and saponins on paraquat (PQ)-induced oxidative stress was investigated in rats. Rats were fed experimental diets containing casein (CAS), soy protein (SPI), and casein with soy isoflavones and saponins (CAS + IS). The diets were supplemented or not with 0.025% paraquat (CAS + PQ, SPI + PQ, and CAS + IS + PQ). The protective effects of soy protein, soy isoflavones, and saponins on paraquat-induced oxidative stress were examined. Ingestion of soy protein generally mitigated the lung enlargement (P = 0.076), loss of body weight (P = 0.051) and oxidation of liver lipid (P = 0.043) and glutathione (P = 0.035) induced by paraquat, although soy isoflavones and saponins did not. To determine whether soy protein exerted its antioxidative effects by preventing paraquat absorption from digestive organs, rats were fed CAS or SPI diets and orally administered a 12.5 g/L paraquat solution. Plasma, urine, and fecal paraquat concentrations did not differ between the two groups, indicating that soy protein did not prevent paraquat absorption. The present study suggests that intake of soy protein itself, but not soy isoflavones and saponins, reduces paraquat-induced oxidative stress in rats, although this effect was not due to reduced absorption of paraquat from digestive organs.

  8. Growth hormone reduces mortality and bacterial translocation in irradiated rats.

    PubMed

    Gómez-de-Segura, I A; Prieto, I; Grande, A G; García, P; Guerra, A; Mendez, J; De Miguel, E

    1998-01-01

    Growth hormone stimulates the growth of intestinal mucosa and may reduce the severity of injury caused by radiation. Male Wistar rats underwent abdominal irradiation (12 Gy) and were treated with either human growth hormone (hGH) or saline, and sacrificed at day 4 or 7 post-irradiation. Bacterial translocation, and the ileal mucosal thickness, proliferation, and disaccharidase activity were assessed. Mortality was 65% in irradiated animals, whereas hGH caused a decrement (29%, p < 0.05). Bacterial translocation was also reduced by hGH (p < 0.05). Treating irradiated rats with hGH prevented body weight loss (p < 0.05). Mucosal thickness increased faster in irradiated hGH-treated animals. The proliferative index showed an increment in hGH-treated animals (p < 0.05). Giving hGH to irradiated rats prevented decrease in sucrose activity, and increment in lactase activity. In conclusion, giving hGH to irradiated rats promotes the adaptative process of the intestine and acute radiation-related negative effects, including mortality, bacterial translocation, and weight loss.

  9. New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma.

    PubMed

    Diogo, Rui; Linde-Medina, Marta; Abdala, Virginia; Ashley-Ross, Miriam A

    2013-02-01

    Most textbooks and research reports state that the structures of the tetrapod forelimbs and hindlimbs are serial homologues. From this view, the main challenge of evolutionary biologists is not to explain the similarity between tetrapod limbs, but instead to explain why and how they have diverged. However, these statements seem to be related to a confusion between the serial homology of the vertebrate pelvic and pectoral appendages as a whole, and the serial homology of the specific soft- and hard-tissue structures of the tetrapod forelimbs and hindlimbs, leading to an even more crucial and puzzling question being overlooked: why are the skeletal and particularly the muscle structures of the forelimb and hindlimb actually so strikingly similar to each other? Herein we provide an updated discussion of these questions and test two main hypotheses: (i) that the similarity of the limb muscles is due to serial homology; and (ii) that tetrapods that use hindlimbs for a largely exclusive function (e.g. bipedalism in humans) exhibit fewer cases of similarity between forelimbs and hindlimbs than do quadrupedal species. Our review shows that of the 23 arm, forearm and hand muscles/muscle groups of salamanders, 18 (78%) have clear 'topological equivalents' in the hindlimb; in lizards, 14/24 (58%); in rats, 14/35 (40%); and in modern humans, 19/37 (51%). These numbers seem to support the idea that there is a plesiomorphic similarity and subsequent evolutionary divergence, but this tendency actually only applies to the three former quadrupedal taxa. Moreover, if one takes into account the total number of 'correspondences', one comes to a surprising and puzzling conclusion: in modern humans the number of forelimb muscles/muscle groups with clear 'equivalents' in the hindlimb (19) is substantially higher than in quadrupedal mammals such as rats (14), lizards (14) and even salamanders (18). These data contradict the hypothesis that divergent functions lead to divergent

  10. Functional differentiation of trailing and leading forelimbs during locomotion on the ground and on a horizontal branch in the European red squirrel (Sciurus vulgaris, Rodentia).

    PubMed

    Schmidt, André

    2011-06-01

    Mammalian locomotion is characterized by the frequent use of in-phase gaits in which the footfalls of the left and right fore- or hindlimbs are unevenly spaced in time. Although previous studies have identified a functional differentiation between the first limb (trailing limb) and the second limb (leading limb) to touch the ground during terrestrial locomotion, the influence of a horizontal branch on limb function has never been explored. To determine the functional differences between trailing and leading forelimbs during locomotion on the ground and on a horizontal branch, X-ray motion analysis and force measurements were carried out in two European red squirrels (Sciurus vulgaris, Rodentia). The differences observed between trailing and leading forelimbs were minimal during terrestrial locomotion, where both limbs fulfill two functions and go through a shock-absorbing phase followed by a generating phase. During locomotion on a horizontal branch, European red squirrels reduce speed and all substrate reaction forces transmitted may be due to the reduction of vertical oscillation of the center of mass. Further adjustments during locomotion on a horizontal branch differ significantly between trailing and leading forelimbs and include limb flexion, lead intervals, limb protraction and vertical displacement of the scapular pivot. Consequently, trailing and leading forelimbs perform different functions. Trailing forelimbs function primarily as shock-absorbing elements, whereas leading forelimbs are characterized by a high level of stiffness. This functional differentiation indicates that European red squirrels 'test' the substrate for stability with the trailing forelimb, while the leading forelimb responds to or counteracts swinging or snapping branches.

  11. Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy

    PubMed Central

    Dadsetan, Sherry; Balzano, Tiziano; Forteza, Jerónimo; Cabrera-Pastor, Andrea; Taoro-Gonzalez, Lucas; Hernandez-Rabaza, Vicente; Gil-Perotín, Sara; Cubas-Núñez, Laura; García-Verdugo, José-Manuel; Agusti, Ana; Llansola, Marta; Felipo, Vicente

    2016-01-01

    Inflammation contributes to cognitive impairment in patients with hepatic encephalopathy (HE). However, the process by which peripheral inflammation results in cognitive impairment remains unclear. In animal models, neuroinflammation and altered neurotransmission mediate cognitive impairment. Taking into account these data, we hypothesized that in rats with HE: (1) peripheral inflammation is a main contributor to neuroinflammation; (2) neuroinflammation in hippocampus impairs spatial learning by altering AMPA and/or NMDA receptors membrane expression; (3) reducing peripheral inflammation with infliximab (anti-TNF-a) would improve spatial learning; (4) this would be associated with reduced neuroinflammation and normalization of the membrane expression of glutamate receptors. The aims of this work were to assess these hypotheses. We analyzed in rats with portacaval shunt (PCS) and control rats, treated or not with infliximab: (a) peripheral inflammation by measuring prostaglandin E2, IL10, IL-17, and IL-6; (b) neuroinflammation in hippocampus by analyzing microglial activation and the content of TNF-a and IL-1b; (c) AMPA and NMDA receptors membrane expression in hippocampus; and (d) spatial learning in the Radial and Morris water mazes. We assessed the effects of treatment with infliximab on peripheral inflammation, on neuroinflammation and AMPA and NMDA receptors membrane expression in hippocampus and on spatial learning and memory. PCS rats show increased serum prostaglandin E2, IL-17, and IL-6 and reduced IL-10 levels, indicating increased peripheral inflammation. PCS rats also show microglial activation and increased nuclear NF-kB and expression of TNF-a and IL-1b in hippocampus. This was associated with altered AMPA and NMDA receptors membrane expression in hippocampus and impaired spatial learning and memory in the radial and Morris water maze. Treatment with infliximab reduces peripheral inflammation in PCS rats, normalizing prostaglandin E2, IL-17, IL-6, and

  12. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats.

    PubMed

    Lysne, Vegard; Bjørndal, Bodil; Vik, Rita; Nordrehaug, Jan Erik; Skorve, Jon; Nygård, Ottar; Berge, Rolf K

    2015-06-04

    The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP), with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP.

  13. Nicotine reduces antipsychotic-induced orofacial dyskinesia in rats.

    PubMed

    Bordia, Tanuja; McIntosh, J Michael; Quik, Maryka

    2012-03-01

    Antipsychotics are an important class of drugs for the management of schizophrenia and other psychotic disorders. They act by blocking dopamine receptors; however, because these receptors are present throughout the brain, prolonged antipsychotic use also leads to serious side effects. These include tardive dyskinesia, repetitive abnormal involuntary movements of the face and limbs for which there is little treatment. In this study, we investigated whether nicotine administration could reduce tardive dyskinesia because nicotine attenuates other drug-induced abnormal movements. We used a well established model of tardive dyskinesia in which rats injected with the commonly used antipsychotic haloperidol develop vacuous chewing movements (VCMs) that resemble human orofacial dyskinesias. Rats were first administered nicotine (minipump; 2 mg/kg per day). Two weeks later, they were given haloperidol (1 mg/kg s.c.) once daily. Nicotine treatment reduced haloperidol-induced VCMs by ∼20% after 5 weeks, with a significant ∼60% decline after 13 weeks. There was no worsening of haloperidol-induced catalepsy. To understand the molecular basis for this improvement, we measured the striatal dopamine transporter and nicotinic acetylcholine receptors (nAChRs). Both haloperidol and nicotine treatment decreased the transporter and α6β2* nAChRs (the asterisk indicates the possible presence of other nicotinic subunits in the receptor complex) when given alone, with no further decline with combined drug treatment. By contrast, nicotine alone increased, while haloperidol reduced α4β2* nAChRs in both vehicle and haloperidol-treated rats. These data suggest that molecular mechanisms other than those directly linked to the transporter and nAChRs underlie the nicotine-mediated improvement in haloperidol-induced VCMs in rats. The present results are the first to suggest that nicotine may be useful for improving the tardive dyskinesia associated with antipsychotic use.

  14. Oral administration of hyaluronan reduces bone turnover in ovariectomized rats.

    PubMed

    Ma, Jenny; Granton, Patrick V; Holdsworth, David W; Turley, Eva A

    2013-01-16

    The effect of oral hyaluronan (HA) on bone loss in ovariectomized (OVX) 3-month-old rats was measured using serum markers of bone turnover and bone mineral density. OVX rats were administered 1 mg/kg HA (OVX + HA) or phosphate-buffered saline (PBS) (OVX + PBS) by oral gavage (5 days/week for 54 days). Additional controls included sham ovariectomy with PBS gavage (Sham + PBS) and no treatment. Oral administration of HA resulted in approximately 50% (p < 0.05) increases in serum HA. Gel filtration analyses showed this was high molecular weight HA (300-500 kDa). Osteopenia was mild due to the young age of the animals. Thus, ovariectomy resulted in a 30% increase in serum collagen N-terminal telopeptides (p < 0.001), a 20% increase in serum nitrate/nitrite levels (p = 0.05), and a 5-6% decrease in femur bone mineral density/content (p < 0.05). HA gavage blunted the development of osteopenia in this model as determined by preventing the 30% increase in serum collagen N-terminal telopeptide levels (p < 0.001) and by reducing bone mineral content loss from 6 to 4%. These results show that oral supplements of HA (gavage solution, 0.12% solution) significantly reduce bone turnover associated with mild osteopenia in rats.

  15. Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats.

    PubMed

    Agil, Ahmad; El-Hammadi, Mazen; Jiménez-Aranda, Aroa; Tassi, Mohamed; Abdo, Walied; Fernández-Vázquez, Gumersindo; Reiter, Russel J

    2015-08-01

    Hepatic mitochondrial dysfunction is thought to play a role in the development of liver steatosis and insulin resistance, which are both common characteristics of obesity and type 2 diabetes mellitus (T2DM). It was hypothesized that the antioxidant properties of melatonin could potentially improve the impaired functions of hepatic mitochondria in diabetic obese animals. Male Zucker diabetic fatty (ZDF) rats and lean littermates (ZL) were given either melatonin (10 mg/kg BW/day) orally for 6 wk (M-ZDF and M-ZL) or vehicle as control groups (C-ZDF and C-ZL). Hepatic function was evaluated by measurement of serum alanine transaminase and aspartate transaminase levels, liver histopathology and electron microscopy, and hepatic mitochondrial functions. Several impaired functions of hepatic mitochondria were observed in C-ZDF in comparison with C-ZL rats. Melatonin treatment to ZDF rats decreases serum levels of ALT (P < 0.001), alleviates liver steatosis and vacuolation, and also mitigates diabetic-induced mitochondrial abnormalities, glycogen, and lipid accumulation. Melatonin improves mitochondrial dysfunction in M-ZDF rats by increasing activities of mitochondrial citrate synthase (P < 0.001) and complex IV of electron transfer chain (P < 0.05) and enhances state 3 respiration (P < 0.001), respiratory control index (RCR) (P < 0.01), and phosphorylation coefficient (ADP/O ratio) (P < 0.05). Also melatonin augments ATP production (P < 0.05) and diminishes uncoupling protein 2 levels (P < 0.001). These results demonstrate that chronic oral melatonin reduces liver steatosis and mitochondria dysfunction in ZDF rats. Therefore, it may be beneficial in the treatment of diabesity.

  16. Brief communication: Forelimb compliance in arboreal and terrestrial opossums.

    PubMed

    Schmitt, Daniel; Gruss, Laura T; Lemelin, Pierre

    2010-01-01

    Primates display high forelimb compliance (increased elbow joint yield) compared to most other mammals. Forelimb compliance, which is especially marked among arboreal primates, moderates vertical oscillations of the body and peak vertical forces and may represent a basal adaptation of primates for locomotion on thin, flexible branches. However, Larney and Larson (Am J Phys Anthropol 125 [2004] 42-50) reported that marsupials have forelimb compliance comparable to or greater than that of most primates, but did not distinguish between arboreal and terrestrial marsupials. If forelimb compliance is functionally linked to locomotion on thin branches, then elbow yield should be highest in marsupials relying on arboreal substrates more often. To test this hypothesis, we compared forelimb compliance between two didelphid marsupials, Caluromys philander (an arboreal opossum relying heavily on thin branches) and Monodelphis domestica (an opossum that spends most of its time on the ground). Animals were videorecorded while walking on a runway or a horizontal 7-mm pole. Caluromys showed higher elbow yield (greater changes in degrees of elbow flexion) on both substrates, similar to that reported for arboreal primates. Monodelphis was characterized by lower elbow yield that was intermediate between the values reported by Larney and Larson (Am J Phys Anthropol 125 [2004] 42-50) for more terrestrial primates and rodents. This finding adds evidence to a model suggesting a functional link between arboreality--particularly locomotion on thin, flexible branches--and forelimb compliance. These data add another convergent trait between arboreal primates, Caluromys, and other arboreal marsupials and support the argument that all primates evolved from a common ancestor that was a fine-branch arborealist.

  17. Noribogaine reduces nicotine self-administration in rats.

    PubMed

    Chang, Qing; Hanania, Taleen; Mash, Deborah C; Maillet, Emeline L

    2015-06-01

    Noribogaine, a polypharmacological drug with activities at opioid receptors, ionotropic nicotinic receptors, and serotonin reuptake transporters, has been investigated for treatment of substance abuse-related disorders. Smoking cessation has major benefits for both individuals and society, therefore the aim of this study was to evaluate the potential of noribogaine for use as a treatment for nicotine dependence. Adult male Sprague-Dawley rats were trained to self-administer nicotine intravenous. After initial food pellet training, followed by 26 sessions of nicotine self-administration training, the rats were administered noribogaine (12.5, 25 or 50 mg/kg orally), noribogaine vehicle, varenicline or saline using a within-subject design with a Latin square test schedule. Noribogaine dose-dependently decreased nicotine self-administration by up to 64% of saline-treated rats' levels and was equi-effective to 1.7 mg/kg intraperitoneal varenicline. Noribogaine was less efficient at reducing food pellets self-administration than at nicotine self-administration, inhibiting the nondrug reinforcing effects of palatable pellets by 23% at the highest dose. These results suggest that noribogaine dose-dependently attenuates drug-taking behavior for nicotine, attenuates the reinforcing effects of nicotine and is comparable to varenicline power in that regard. The findings from the present study hold promise for a new therapy to aid smoking cessation.

  18. SKELETAL MORPHOLOGY OF THE FORELIMB OF MYRMECOPHAGA TRIDACTYLA.

    PubMed

    Sesoko, Natália Ferreira; Rahal, Sheila Canevese; Bortolini, Zara; de Souza, Lívia Pasini; Vulcano, Luiz Carlos; Monteiro, Frederico Ozanan Barros; Teixeira, Carlos Roberto

    2015-12-01

    Anteater forelimbs are morphologically adapted to obtain food and to provide defense and locomotion. Four species are known, but there are few anatomical studies presenting the morphologic features of each species. The aim of this study was to describe the skeletal morphology of the giant anteater (Myrmecophaga tridactyla) forelimb. Pictures and schematic drawings of six cadavers were created to show the bone morphology. In addition, radiographs and computed tomographs were obtained. The skeletal structure of the forelimb had several notable anatomical features. The scapula had two spines, with apparent differences between infant and adult animals. The humerus had a pectoral ridge, a pectoral tubercle, and a pronounced medial epicondyle that represent the origins of muscles important for fossorial activity. The radius had cranial, lateral, and caudal ridges that became more prominent in older animals, and the distal condyle joint provided enhanced support of the dorsal articulation for the manus. Knowledge of the bone morphology of the forelimb generates a better understanding of giant anteater habits and helps in the diagnosis of skeletal abnormalities and in the routine medical assessment of this species.

  19. Ventricular arrhythmia incidence in the rat is reduced by naloxone.

    PubMed

    Pugsley, M K; Hayes, E S; Wang, W Q; Walker, M J A

    2015-07-01

    This study characterized the antiarrhythmic effects of the opioid receptor antagonist naloxone in rats subject to electrically induced and ischemic arrhythmias. Naloxone (2, 8 and 32 μmol/kg/min) was examined on heart rate, blood pressure, and the electrocardiogram (EKG) as well as for effectiveness against arrhythmias produced by occlusion of the left anterior descending coronary artery or electrical stimulation of the left ventricle. Naloxone reduced blood pressure at the highest dose tested while heart rate was dose-dependently reduced. Naloxone dose-dependently prolonged the P-R and QRS intervals and increased the RSh amplitude indicative of effects on cardiac sodium (Na) channels. Naloxone prolonged the Q-T interval suggesting a delay in repolarization. Naloxone effects were comparable to the comparator quinidine. Naloxone (32 μmol/kg/min) reduced ventricular fibrillation (VF) incidence to 38% (from 100% in controls). This same dose significantly increased the threshold for induction of ventricular fibrillation (VFt), prolonged the effective refractory period (ERP) and reduced the maximal following frequency (MFF). The patterns of ECG changes, reduction in ischemic arrhythmia (VF) incidence and changes in electrically induced arrhythmia parameters at high doses of naloxone suggest that it directly blocks cardiac Na and potassium (K) ion channels.

  20. Forelimb-hindlimb developmental timing changes across tetrapod phylogeny

    PubMed Central

    Bininda-Emonds, Olaf RP; Jeffery, Jonathan E; Sánchez-Villagra, Marcelo R; Hanken, James; Colbert, Matthew; Pieau, Claude; Selwood, Lynne; ten Cate, Carel; Raynaud, Albert; Osabutey, Casmile K; Richardson, Michael K

    2007-01-01

    Background Tetrapods exhibit great diversity in limb structures among species and also between forelimbs and hindlimbs within species, diversity which frequently correlates with locomotor modes and life history. We aim to examine the potential relation of changes in developmental timing (heterochrony) to the origin of limb morphological diversity in an explicit comparative and quantitative framework. In particular, we studied the relative time sequence of development of the forelimbs versus the hindlimbs in 138 embryos of 14 tetrapod species spanning a diverse taxonomic, ecomorphological and life-history breadth. Whole-mounts and histological sections were used to code the appearance of 10 developmental events comprising landmarks of development from the early bud stage to late chondrogenesis in the forelimb and the corresponding serial homologues in the hindlimb. Results An overall pattern of change across tetrapods can be discerned and appears to be relatively clade-specific. In the primitive condition, as seen in Chondrichthyes and Osteichthyes, the forelimb/pectoral fin develops earlier than the hindlimb/pelvic fin. This pattern is either retained or re-evolved in eulipotyphlan insectivores (= shrews, moles, hedgehogs, and solenodons) and taken to its extreme in marsupials. Although exceptions are known, the two anurans we examined reversed the pattern and displayed a significant advance in hindlimb development. All other species examined, including a bat with its greatly enlarged forelimbs modified as wings in the adult, showed near synchrony in the development of the fore and hindlimbs. Conclusion Major heterochronic changes in early limb development and chondrogenesis were absent within major clades except Lissamphibia, and their presence across vertebrate phylogeny are not easily correlated with adaptive phenomena related to morphological differences in the adult fore- and hindlimbs. The apparently conservative nature of this trait means that changes in

  1. Reduced T cell response in carcinogen-sensitive Donryu rats compared with carcinogen-resistant DRH rats.

    PubMed

    Mise-Omata, S; Sugiura, T; Higashi, K; Yamashita, U

    1999-12-01

    Carcinogen-resistant DRH rats were developed from carcinogen-sensitive Donryu rats, which showed a high incidence of hepatic tumors when they were exposed to 3'-methyl-4-dimethyl-amino-azobenzene (3'-MeDAB4) or other aminoazo hepatocarcinogens. In order to study the mechanism of the difference of carcinogenesis, we studied the immunological competence of Donryu rats compared with that of DRH rats. Anti-keyhole limpet hemocyanin (KLH) antibody and KLH-specific delayed hypersensitivity (DTH) responses after immunization with KLH were reduced in Donryu rats compared with DRH rats. Proliferative responses of spleen cells to KLH and nonspecific mitogens such as conconavalin A (Con A) and phytohemagglutinin (PHA) were significantly lower in Donryu rats than in DRH rats. Upon the cross-linking of T cell receptor (TCR) complex using anti-CD3 monoclonal antibody (Mab), spleen cells from Donryu rats proliferated poorly. Two other strains of rats, SD and Wistar, exhibited high responsiveness, comparable to that of DRH rats, indicating that the responsiveness of Donryu rats was impaired. The production of interleukin-2 (IL-2) upon stimulation with Con A and the responsiveness of Con A blasts to exogenous IL-2 were also attenuated in Donryu rats. In contrast to T cell responsiveness, natural killer (NK) cell activity of spleen was increased in Donryu rats. Flow cytometric analysis revealed that the expression of CD4 and CD8 on T cells was decreased in Donryu rats, though the expression of other T cell markers such as CD2, CD3 and CD5 was not different. These results indicate that Donryu rats, which have been used in many years for cancer research in Japan, have impaired immunological surveillance mechanisms. This is likely to be one of the factors accounting for the high sensitivity to chemical carcinogens and the high susceptibility to transplanted tumor cells of Donryu rats.

  2. Statins Reduce the Risks of Relapse to Addiction in Rats.

    PubMed

    Chauvet, Claudia; Nicolas, Celine; Lafay-Chebassier, Claire; Jaber, Mohamed; Thiriet, Nathalie; Solinas, Marcello

    2016-05-01

    Statins are drugs that have been used for decades in humans for the treatment of hypercholesterolemia. More recently, several lines of evidence demonstrate that statins, in addition to their peripheral effects, produce a wide variety of effects in the brain and may be beneficial in neurological and psychiatric conditions. In this study, we allowed rats to self-administer cocaine for several weeks and, at the end of self-administration training, we treated them with low doses of statins daily for a 21-day period of abstinence. Chronic administration of brain-penetrating statins, simvastatin (1 mg/kg) and atorvastatin (1 mg/kg), reduced cocaine seeking compared with vehicle, whereas administration of pravastatin (2 mg/kg), a statin with low brain penetrability, did not. Importantly, the effects of brain-penetrating statins persisted even after discontinuation of the treatment and were specific for drug seeking because drug taking was not altered by simvastatin treatment. Finally, the effects of simvastatin were found to generalize to another drug of abuse such as nicotine, but not to food reward, and to reinstatement of cocaine seeking induced by stress. These results demonstrate that brain-penetrating statins can reduce risks of relapse to addiction. Given their well-known safety profile in humans, statins could be a novel effective treatment for relapse to cocaine and nicotine addiction and their use could be implemented in clinical settings without major health risks.

  3. Supporting forelimb lameness: clinical judgement vs. computerised symmetry measurement.

    PubMed

    Peham, C; Licka, T; Girtler, D; Scheidl, M

    1999-09-01

    The aim of this study was to compare supporting forelimb lameness determined by a motion analysis system with the subjective grading of a trained equine orthopaedic surgeon. Trotting on a treadmill, 29 individuals with a supporting forelimb lameness were measured with the SELSPOT II system and judged by the clinician. The vertical motion of the head was measured, analysed using Fourier transform, and the percentages of symmetry determined. The veterinarian evaluated the lameness and graded it according to a clinical routine. Veterinarian and system for motion analysis assigned the lameness to the same leg in all cases, but the grading of the lameness differed in 6 out of 29 cases. The results of this study indicate that motion analysis can be used as an informative tool supporting the subjective veterinary judgement.

  4. Nomenclatural review of long digital forelimb flexors in carnivores.

    PubMed

    Spoor, C F; Badoux, D M

    1986-12-01

    A hitherto-unknown atavistic muscle in the dog initiated a review of the literature on the homologies and nomenclature of the forelimb flexors in carnivores and man. A consequence is that we recommend a revision of the nomenclature in the Nomina Anatomica Veterinaria (Ithaca, New York, 1983) so that it is in agreement with the Nomina Anatomica (Wilkins, Baltimore, 1983). This revision mainly consists of the incorporation of the terms M. palmaris longus and Mm. flexores breves manus.

  5. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    PubMed

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior.

  6. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Pettet, Garry K J; Luo, Yan; Lim, Ta; Akimov, Stanislav; Sanders, Robert D; Franks, Nicholas P; Maze, Mervyn

    2006-02-01

    Xenon attenuates on-going neuronal injury in both in vitro and in vivo models of hypoxic-ischaemic injury when administered during and after the insult. In the present study, we sought to investigate whether the neuroprotective efficacy of xenon can be observed when administered before an insult, referred to as 'preconditioning'. In a neuronal-glial cell coculture, preexposure to xenon for 2 h caused a concentration-dependent reduction of lactate dehydrogenase release from cells deprived of oxygen and glucose 24 h later; xenon's preconditioning effect was abolished by cycloheximide, a protein synthesis inhibitor. Preconditioning with xenon decreased propidium iodide staining in a hippocampal slice culture model subjected to oxygen and glucose deprivation. In an in vivo model of neonatal asphyxia involving hypoxic-ischaemic injury to 7-day-old rats, preconditioning with xenon reduced infarction size when assessed 7 days after injury. Furthermore, a sustained improvement in neurologic function was also evident 30 days after injury. Phosphorylated cAMP (cyclic adenosine 3',5'-monophosphate)-response element binding protein (pCREB) was increased by xenon exposure. Also, the prosurvival proteins Bcl-2 and brain-derived neurotrophic factor were upregulated by xenon treatment. These studies provide evidence for xenon's preconditioning effect, which might be caused by a pCREB-regulated synthesis of proteins that promote survival against neuronal injury.

  7. Nonabsorbable Antibiotics Reduce Bacterial and Endotoxin Translocation in Hepatectomised Rats

    PubMed Central

    Kakkos, S. K.; Kirkilesis, J.; Scopa, C. D.; Arvaniti, A.; Alexandrides, T.

    1997-01-01

    There is increasing evidence that septic complications, occurring after major hepatectomies, may be caused by gram negative bacteria, translocating from the gut. We investigated in rats, the effect of extended hepatectomy on the structure and morphology of the intestinal mucosa as well as on the translocation of intestinal bacteria and endotoxins. We also examined the effect of nonabsorbable antibiotics on reducing the intestinal flora and consequently the phenomenon of translocation by administering neomycin sulphate and cefazoline. Hepatectomy was found to increase translocation, while administration of nonabsorbable antibiotics decreased it significantly. In addition, hepatectomy increased the aerobic cecal bacterial population, which normalised in the group receiving antibiotics. Among the histological parameters evaluated, villus height demonstrated a significant reduction after hepatectomy, while the number of villi per cm and the number of mitoses per crypt, remained unchanged. Our results indicate that administration of nonabsorbable antibiotics presents a positive effect on bacterial and endotoxin translocation after extended hepatectomy, and this may be related to reduction of colonic bacterial load as an intraluminal effect of antibiotics. PMID:9298382

  8. Somatosensory Cortex Plays an Essential Role in Forelimb Motor Adaptation in Mice.

    PubMed

    Mathis, Mackenzie Weygandt; Mathis, Alexander; Uchida, Naoshige

    2017-03-22

    Our motor outputs are constantly re-calibrated to adapt to systematic perturbations. This motor adaptation is thought to depend on the ability to form a memory of a systematic perturbation, often called an internal model. However, the mechanisms underlying the formation, storage, and expression of such models remain unknown. Here, we developed a mouse model to study forelimb adaptation to force field perturbations. We found that temporally precise photoinhibition of somatosensory cortex (S1) applied concurrently with the force field abolished the ability to update subsequent motor commands needed to reduce motor errors. This S1 photoinhibition did not impair basic motor patterns, post-perturbation completion of the action, or their performance in a reward-based learning task. Moreover, S1 photoinhibition after partial adaptation blocked further adaptation, but did not affect the expression of already-adapted motor commands. Thus, S1 is critically involved in updating the memory about the perturbation that is essential for forelimb motor adaptation.

  9. Carvedilol protected diabetic rat hearts via reducing oxidative stress

    PubMed Central

    Huang, He; Shan, Jiang; Pan, Xiao-hong; Wang, Hui-ping; Qian, Ling-bo

    2006-01-01

    Oxidative stress plays a dominant role in the pathogenesis of diabetes mellitus. Bcl-2 gene has close connection with antioxidant stress destruction in many diseases including diabetes. Carvedilol, an adrenoceptor blocker, also has antioxidant properties. To study the effect of carvedilol on the antioxidant status in diabetic hearts, we investigated carvedilol-administrated healthy and streptozotocin-induced diabetic rats. After small and large dosage carvedilol-administered for 5 weeks, hemodynamic parameters, the levels of malondialdehyde, activities of antioxidant enzymes and expression of Bcl-2 mRNA in the cardiac tissues were measured. The diabetic rats not only had cardiac disfunction, weaker activities of antioxidant enzymes, but also showed lower expression of Bcl-2. Carvedilol treatment increased activities of antioxidant enzymes and expression of Bcl-2 in healthy rats as well as diabetic rats. These results indicated that carvedilol partly improves cardiac function via its antioxidant properties in diabetic rats. PMID:16909474

  10. Ergonomic task reduction prevents bone osteopenia in a rat model of upper extremity overuse

    PubMed Central

    BARBE, Mary F.; JAIN, Nisha X.; MASSICOTTE, Vicky S.; POPOFF, Steven N.; BARR-GILLESPIE, Ann E.

    2015-01-01

    We evaluated the effectiveness of ergonomic workload reduction of switching rats from a high repetition high force (HRHF) lever pulling task to a reduced force and reach rate task for preventing task-induced osteopenic changes in distal forelimb bones. Distal radius and ulna trabecular structure was examined in young adult rats performing one of three handle-pulling tasks for 12 wk: 1) HRHF, 2) low repetition low force (LRLF); or 3) HRHF for 4 wk and than LRLF thereafter (HRHF-to-LRLF). Results were compared to age-matched controls rats. Distal forelimb bones of 12-wk HRHF rats showed increased trabecular resorption and decreased volume, as control rats. HRHF-to-LRLF rats had similar trabecular bone quality as control rats; and decreased bone resorption (decreased trabecular bone volume and serum CTX1), increased bone formation (increased mineral apposition, bone formation rate, and serum osteocalcin), and decreased osteoclasts and inflammatory cytokines, than HRHF rats. Thus, an ergonomic intervention of HRHF-to-LRLF prevented loss of trabecular bone volume occurring with prolonged performance of a repetitive upper extremity task. These findings support the idea of reduced workload as an effective approach to management of work-related musculoskeletal disorders, and begin to define reach rate and load level boundaries for such interventions. PMID:25739896

  11. Unilateral forelimb partial aphalangia in a kitten.

    PubMed

    Macrì, Francesco; Lanteri, Giovanni; Rapisarda, Giuseppe; Marino, Fabio

    2012-04-01

    Congenital limb deformities are rarely reported in the cat. The macroscopic and radiographic features of aphalangia are described in a 2-month-old male kitten showing a shortened limb that ended, at the level of the carpus, in a stump without digits. A nail was present at the level of the first phalanx and on the palmar surface only two footpads were present. The radiographs showed an absence of phalanges. The first metacarpal and the proximal and distal phalanges of digit 1 were present. The deformed metacarpal bones were reduced in length; the carpal bones were incompletely ossified. This defect is a rare condition in many animal species. To the author's knowledge, the congenital fore limb deformity described here is the first documented case in a cat.

  12. Fluvastatin reduced liver injury in rat model of extrahepatic cholestasis.

    PubMed

    Demirbilek, Savaş; Tas, Erkan; Gurunluoglu, Kubilay; Akin, Melih; Aksoy, Rauf T; Emre, Memet H; Aydin, Nasuhi E; Ay, Selma; Ozatay, Nilufer

    2007-02-01

    Inhibitors of 3-hydroxy-3methylglutarly coenzyme A, reductase, namely statins, exert pleiotropic actions beyond lipid-lowering effects. In ex vivo and in vitro studies, statins have antioxidative and antiinflammatory effects. Herein, we sought to determine whether treatment with fluvastatin (FV) would be beneficial in a rat model of common bile duct ligation (BDL)-induced liver injury. Female rats were subjected to a sham (n=10) or BDL (n=20). Obstructive jaundice was induced in rats by the ligation and division of the common bile duct. Three days after operation, rats subjected to CBDL were randomized to receive treatment with either FV (10 mg/kg) or saline every day over a 10 days experimental period. High levels of alanine aminotransferase, aspartate aminotransferase, and gamma glutamyltransferase decreased significantly (P<0.05) in animals treated with FV with compared to saline-administrated BDL animals. Compared with sham-operated rats, CBDL rats showed significantly higher levels of total nitrite and nitrate, malondihaldehyde, tumor necrosis factor alpha, myeloperoxidase, and lower concentrations of glutathione, superoxide dismutase, and catalase in the liver tissue (P<0.001). All of these changes were significantly attenuated (P<0.05) by treatment with FV after CBDL. CBDL was associated with increased apoptosis and nuclear factor kappa beta expression in saline-treated rats. Treatment with FV also decreased these parameters. These data support the view that FV ameliorates hepatic inflammation, lipid peroxidation, and tissue injury in rats subjected to CDBL. FV warrants further evaluation as an adjunctive treatment to ameliorate liver injury from extrahepatic biliary obstruction.

  13. Transcranial magnetic stimulation reduces nociceptive threshold in rats.

    PubMed

    Ambriz-Tututi, Mónica; Sánchez-González, Violeta; Drucker-Colín, René

    2012-05-01

    Transcranial magnetic stimulation (TMS) is a procedure that uses magnetic fields to stimulate or inhibit nerve cells in the brain noninvasively. TMS induces an electromagnetic current in the underlying cortical neurons. Varying frequencies and intensities of TMS increase or decrease excitability in the cortical area directly targeted. It has been suggested that TMS has potential in the treatment of some neurological disorders such as Parkinson's disease, stroke, and depression. Initial case reports and open label trials reported by several groups support the use of TMS in pain treatment. In the present study, we evaluated the effect of TMS on the nociceptive threshold in the rat. The parameters used were a frequency of 60 Hz and an intensity of 2 and 6 mT for 2 hr twice per day. After 5 days of TMS treatment, rats were evaluated for mechanical, chemical, and cold stimulation. We observed a significant reduction in the nociceptive threshold in TMS-treated rats but not in sham-treated rats in all behavioral tests evaluated. When TMS treatment was stopped, a slow recovery to normal mechanic threshold was observed. Interestingly, i.c.v. MK-801 or CNQX administration reverted the TMS-induced pronociception. The results suggest that high-frequency TMS can alter the nociceptive threshold and produce allodynia in the rats; results suggest the involvement of NMDA and AMPA/KA receptors on TMS-induced allodynia in the rat.

  14. Endotoxin-induced mortality in rats is reduced by nitrones

    SciTech Connect

    Hamburger, S.A.; McCay, P.B. )

    1989-12-01

    The goal of these investigations was to determine if nitrone spin-trapping agents can alter mortality associated with endotoxemia in the rat. Reactive free radicals attack nitrone spin-trapping agents forming relatively reactive, persistent free radical spin adducts. We administered 85 mM (10 ml/kg) of alpha-phenyl N-tert-butyl nitrone (PBN), alpha-4-pyridyl-N-oxide N-tert-butyl nitrone (4-POBN), 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), or vehicle (saline i.p.) 30 min before endotoxin (25 mg/kg i.p.) or vehicle to Sprague-Dawley (SD) or Holtzman virus-free (HVF) rats (n = 10-17/group). All vehicle-treated rats receiving endotoxin were dead by 1 day. At 7 days, 83% of PBN-treated SD, 42% of PBN- or POBN-treated HVF, and 25% of DMPO-treated HVF rats were alive. The difference in survival of PBN-treated animals between strains may reflect the higher susceptibility of HVF rats to endotoxin. The observed reduction in mortality may be related to the well-established capacity of spin-trapping agents to capture reactive free radicals that may be generated in target tissues in response to endotoxin, and that would otherwise react with cell components and produce tissue injury.

  15. Contrasting developmental trajectories in the earliest known tetrapod forelimbs.

    PubMed

    Callier, Viviane; Clack, Jennifer A; Ahlberg, Per E

    2009-04-17

    Ichthyostega and Acanthostega are the earliest tetrapods known from multiple near-complete skeletons, with Acanthostega generally considered the more primitive. New material indicates differing ontogenetic trajectories for their forelimbs: In Ichthyostega, the pattern of muscle attachment processes on small humeri (upper arm bones) resembles that in "fish" members of the tetrapod stem group such as Tiktaalik, whereas large humeri approach (but fail to attain) the tetrapod crown-group condition; in Acanthostega, both small and large humeri exhibit the crown-group pattern. We infer that Ichthyostega underwent greater locomotory terrestrialization during ontogeny. The newly recognized primitive characteristics also suggest that Ichthyostega could be phylogenetically more basal than Acanthostega.

  16. Memory Retrieval before or after Extinction Reduces Recovery of Fear in Adolescent Rats

    ERIC Educational Resources Information Center

    Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick

    2013-01-01

    Adolescent rats exhibit impaired extinction retention compared to pre-adolescent and adult rats. A single nonreinforced exposure to the conditioned stimulus (CS; a retrieval trial) given shortly before extinction has been shown in some circumstances to reduce the recovery of fear after extinction in adult animals. This study investigated whether a…

  17. Immediate Postsession Feeding Reduces Operant Responding in Rats

    ERIC Educational Resources Information Center

    Smethells, John R.; Fox, Andrew T.; Andrews, Jennifer J.; Reilly, Mark P.

    2012-01-01

    Three experiments investigated the effects of immediate and delayed postsession feeding on progressive-ratio and variable-interval schedule performance in rats. During Experiments 1 and 2, immediate postsession feeding decreased the breakpoint, or largest completed ratio, under progressive-ratio schedules. Experiment 3 was conducted to extend the…

  18. Doramectin reduces sexual behavior and penile erection in male rats.

    PubMed

    Ferri, R; Todon E Silva, A F S; Cabral, D; Moreira, N; Spinosa, H S; Bernardi, M M

    2013-01-01

    Doramectin (DOR) is an antiparasitic drug that is widely used in domestic animals. In mammals, DOR acts as a γ-aminobutyric acid receptor agonist. This neurotransmitter plays an important role in the regulation of sexual behavior. The present study investigated the effects of two medically relevant doses of DOR on sexual behavior in male rats. We also examined whether previous sexual experience modulates responses to DOR. General activity was first observed in an open field 24, 48, and 72 h after administration of 0.1 and 0.3 mg/kg DOR to determine the dose and time effects of the drug. Apomorphine-induced penile erection and sexual behavior in inexperienced male rats were then analyzed. The effects of previous sexual experience on subsequent sexual behavior in DOR-treated rats (0.3 mg/kg, 24 h prior to the test) were also assessed. The standard therapeutic dose (0.2 mg/kg) did not modify general activity or penile erection. A slightly concentrated dose of 0.3 mg/kg, which is still within the therapeutic range, decreased apomorphine-induced penile erection, whereas 0.2 mg/kg did not modify this behavior. Compared with controls, sexual behavior in inexperienced male rats was impaired after 0.3 mg/kg DOR. Previous sexual experience had little impact on the effects of 0.3 mg/kg DOR. In conclusion, the 0.2 mg/kg dose of DOR did not affect motor behavior or apomorphine-induced penile erection. At a more slightly higher dose level, the appetitive and consummatory phases of sexual behavior in inexperienced male rats were impaired. Previous sexual experience was unable to reverse this sexual impairment, suggesting that previous sexual experience does not exert a positive effect in attenuating sexual impairment produced by DOR treatment.

  19. Computer Simulations Imply Forelimb-Dominated Underwater Flight in Plesiosaurs

    PubMed Central

    Liu, Shiqiu; Smith, Adam S.; Gu, Yuting; Tan, Jie; Liu, C. Karen; Turk, Greg

    2015-01-01

    Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability. PMID:26683221

  20. Functional anatomy of the cheetah (Acinonyx jubatus) forelimb

    PubMed Central

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-01-01

    Despite the cheetah being the fastest living land mammal, we know remarkably little about how it attains such high top speeds (29 m s−1). Here we aim to describe and quantify the musculoskeletal anatomy of the cheetah forelimb and compare it to the racing greyhound, an animal of similar mass, but which can only attain a top speed of 17 m s−1. Measurements were made of muscle mass, fascicle length and moment arms, enabling calculations of muscle volume, physiological cross-sectional area (PCSA), and estimates of joint torques and rotational velocities. Bone lengths, masses and mid-shaft cross-sectional areas were also measured. Several species differences were observed and have been discussed, such as the long fibred serratus ventralis muscle in the cheetah, which we theorise may translate the scapula along the rib cage (as has been observed in domestic cats), thereby increasing the cheetah's effective limb length. The cheetah's proximal limb contained many large PCSA muscles with long moment arms, suggesting that this limb is resisting large ground reaction force joint torques and therefore is not functioning as a simple strut. Its structure may also reflect a need for control and stabilisation during the high-speed manoeuvring in hunting. The large digital flexors and extensors observed in the cheetah forelimb may be used to dig the digits into the ground, aiding with traction when galloping and manoeuvring. PMID:21332715

  1. Functional anatomy of the cheetah (Acinonyx jubatus) forelimb.

    PubMed

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-04-01

    Despite the cheetah being the fastest living land mammal, we know remarkably little about how it attains such high top speeds (29 m s(-1)). Here we aim to describe and quantify the musculoskeletal anatomy of the cheetah forelimb and compare it to the racing greyhound, an animal of similar mass, but which can only attain a top speed of 17 m s(-1). Measurements were made of muscle mass, fascicle length and moment arms, enabling calculations of muscle volume, physiological cross-sectional area (PCSA), and estimates of joint torques and rotational velocities. Bone lengths, masses and mid-shaft cross-sectional areas were also measured. Several species differences were observed and have been discussed, such as the long fibred serratus ventralis muscle in the cheetah, which we theorise may translate the scapula along the rib cage (as has been observed in domestic cats), thereby increasing the cheetah's effective limb length. The cheetah's proximal limb contained many large PCSA muscles with long moment arms, suggesting that this limb is resisting large ground reaction force joint torques and therefore is not functioning as a simple strut. Its structure may also reflect a need for control and stabilisation during the high-speed manoeuvring in hunting. The large digital flexors and extensors observed in the cheetah forelimb may be used to dig the digits into the ground, aiding with traction when galloping and manoeuvring.

  2. Reduced platelet-mediated and enhanced leukocyte-mediated fibrinolysis in experimentally induced diabetes in rats

    SciTech Connect

    Winocour, P.D.; Colwell, J.A.

    1985-05-01

    Studies of fibrinolytic activity in diabetes mellitus have produced conflicting results. This may be a result of methodologic insensitivity or of variable contributions of the different blood components to whole blood fibrinolysis. To explore these two possibilities, the authors used a sensitive solid-phase radiometric assay to examine the fibrinolytic activity of whole blood, platelet-rich plasma, leukocytes, and platelet- and leukocyte-poor plasma prepared from control rats and rats with streptozocin-induced diabetes at various times after induction of diabetes. Fibrinolytic activity of whole blood from diabetic rats after 7 days was significantly reduced, and remained reduced after longer durations of diabetes up to 28 days. Platelet-rich plasma from diabetic rats had decreased fibrinolytic activity, which followed the same time course of changes as in whole blood. The platelet contribution to whole blood fibrinolysis was further reduced in vivo after 14 days of diabetes by a reduced whole blood platelet count. In contrast, fibrinolytic activity of leukocytes from diabetic rats became enhanced after 7 days of diabetes. After 49 days of diabetes, the whole blood leukocyte count was reduced, and in vivo would offset the enhanced activity. Plasma fibrinolytic activity was small compared with that of whole blood and was unaltered in diabetic rats. The authors conclude that altered platelet function contributes to decreased fibrinolytic activity of whole blood in diabetic rats, and that this may be partially offset by enhanced leukocyte-mediated fibrinolysis.

  3. Turning into frogs: Asymmetry in forelimb emergence and escape direction in metamorphosing anurans.

    PubMed

    Zechini, Luigi; Lilley, Alison; Waddell, Emily; Burns, Thomas J; Downie, J Roger; Walsh, Patrick T

    2016-09-26

    There is considerable debate about the pattern and origin of laterality in forelimb emergence and turning behaviour within amphibians, with the latter being poorly investigated in tadpoles around metamorphic climax. Using 6 species of metamorphosing anurans, we investigated the effect of asymmetrical spiracle location, and disturbance at the time of forelimb emergence, on the pattern of forelimb emergence. Turning behaviour was observed to assess whether motor lateralization occurred in non-neobatrachian anurans and was linked to patterns of forelimb emergence. Biases in forelimb emergence differed among species, supporting the hypothesis that asymmetrical spiracle position results in the same asymmetry in forelimb emergence. However, this pattern only occurred when individuals were undisturbed. Therefore, context at the time of the emergence of the forelimbs may be important, and might explain some discrepancies in the literature. Turning biases, unconnected to forelimb emergence, were found in Pipidae and Bombinatoridae, confirming the basal origin of lateralized behaviour among anurans. Turning direction in our metamorphs differed from the leftward bias commonly observed in tadpoles, but may be analogous to the prevalent right-"handedness" among adult anurans. Therefore, the transitions occurring during metamorphosis may affect lateralized behaviour and metamorphosis may be fruitful for understanding the development of lateralization.

  4. Forelimbs of "Tyrannosaurus Rex": A Pathetic Vestigial Organ or an Integral Part of a Fearsome Predator?

    ERIC Educational Resources Information Center

    Lee, Scott A.; Thomas, Joshua D.

    2014-01-01

    In this paper, we examine a first-year torque and angular acceleration problem to address a possible use of the forelimbs of "Tyrannosaurus rex." A 1/40th-scale model (see Fig. 1) is brought to the classroom to introduce the students to the quandary: given that the forelimbs of "T. rex" were too short to reach its mouth, what…

  5. Fore-Aft Ground Force Adaptations to Induced Forelimb Lameness in Walking and Trotting Dogs

    PubMed Central

    Abdelhadi, Jalal; Wefstaedt, Patrick; Nolte, Ingo; Schilling, Nadja

    2012-01-01

    Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles. PMID:23300614

  6. Tbx5 Buffers Inherent Left/Right Asymmetry Ensuring Symmetric Forelimb Formation

    PubMed Central

    Nishimoto, Satoko; Kucharska, Anna; Newbury-Ecob, Ruth; Logan, Malcolm P. O.

    2016-01-01

    The forelimbs and hindlimbs of vertebrates are bilaterally symmetric. The mechanisms that ensure symmetric limb formation are unknown but they can be disrupted in disease. In Holt-Oram Syndrome (HOS), caused by mutations in TBX5, affected individuals have left-biased upper/forelimb defects. We demonstrate a role for the transcription factor Tbx5 in ensuring the symmetric formation of the left and right forelimb. In our mouse model, bilateral hypomorphic levels of Tbx5 produces asymmetric forelimb defects that are consistently more severe in the left limb than the right, phenocopying the left-biased limb defects seen in HOS patients. In Tbx hypomorphic mutants maintained on an INV mutant background, with situs inversus, the laterality of defects is reversed. Our data demonstrate an early, inherent asymmetry in the left and right limb-forming regions and that threshold levels of Tbx5 are required to overcome this asymmetry to ensure symmetric forelimb formation. PMID:27992425

  7. Peripheral oxytocin administration reduces ethanol consumption in rats

    PubMed Central

    MacFadyen, Kaley; Loveless, Rebecca; DeLucca, Brandon; Wardley, Krystal; Deogan, Sumeet; Thomas, Cameron; Peris, Joanna

    2016-01-01

    The neuropeptide oxytocin interacts with mesolimbic dopamine neurons to mediate reward associated with filial behaviors, but also other rewarding behaviors such as eating or taking drugs of abuse. Based on its efficacy to decrease intake of other abused substances, oxytocin administration is implicated as a possible treatment for excessive alcohol consumption. We tested this hypothesis by measuring ethanol intake in male Sprague–Dawley rats injected with oxytocin or saline using two different ethanol self-administration paradigms. First, a dose–response curve was constructed for oxytocin inhibition of fluid intake using a modified drinking-in-the-dark model with three bottles containing .05% saccharine, 10% ethanol in saccharine, and 15% ethanol in saccharine. Doses of oxytocin tested were 0.05, 0.1, 0.3, and 0.5 mg/kg (I.P.). Next, rats received 0.3 mg/kg oxytocin preceding operant sessions in which they were trained to lever-press for either plain gelatin or ethanol gelatin in order to compare oxytocin inhibition of ethanol intake versus caloric intake. For the three-bottle choice study, rats consumed significantly less ethanol when treated with the three higher doses of oxytocin on the injection day. In the operant study, 0.3 mg/kg oxytocin significantly decreased ethanol gel consumption to a greater extent than plain gel consumption, both in terms of the amount of gel eaten and calories consumed. These data affirm oxytocin's efficacy for decreasing ethanol intake in rats, and confirm clinical studies suggesting oxytocin as a potential treatment for alcoholism. PMID:26519603

  8. Peripheral oxytocin administration reduces ethanol consumption in rats.

    PubMed

    MacFadyen, Kaley; Loveless, Rebecca; DeLucca, Brandon; Wardley, Krystal; Deogan, Sumeet; Thomas, Cameron; Peris, Joanna

    2016-01-01

    The neuropeptide oxytocin interacts with mesolimbic dopamine neurons to mediate reward associated with filial behaviors, but also other rewarding behaviors such as eating or taking drugs of abuse. Based on its efficacy to decrease intake of other abused substances, oxytocin administration is implicated as a possible treatment for excessive alcohol consumption. We tested this hypothesis by measuring ethanol intake in male Sprague-Dawley rats injected with oxytocin or saline using two different ethanol self-administration paradigms. First, a dose-response curve was constructed for oxytocin inhibition of fluid intake using a modified drinking-in-the-dark model with three bottles containing .05% saccharine, 10% ethanol in saccharine, and 15% ethanol in saccharine. Doses of oxytocin tested were 0.05, 0.1, 0.3, and 0.5mg/kg (I.P.). Next, rats received 0.3mg/kg oxytocin preceding operant sessions in which they were trained to lever-press for either plain gelatin or ethanol gelatin in order to compare oxytocin inhibition of ethanol intake versus caloric intake. For the three-bottle choice study, rats consumed significantly less ethanol when treated with the three higher doses of oxytocin on the injection day. In the operant study, 0.3mg/kg oxytocin significantly decreased ethanol gel consumption to a greater extent than plain gel consumption, both in terms of the amount of gel eaten and calories consumed. These data affirm oxytocin's efficacy for decreasing ethanol intake in rats, and confirm clinical studies suggesting oxytocin as a potential treatment for alcoholism.

  9. The “good” limb makes the “bad” limb worse: Experience-dependent interhemispheric disruption of functional outcome after cortical infarcts in rats

    PubMed Central

    Allred, R.P.; Cappellini, C.H.; Jones, T.A.

    2016-01-01

    Following stroke-like lesions to the sensorimotor cortex in rats, experience with the ipsi-to-lesion (ipsilesional, “nonparetic”) forelimb worsens deficits in the contralesional (“paretic”) forelimb. We tested whether the maladaptive effects of experience with the nonparetic limb are mediated through callosal connections and the contralesional sensorimotor cortex. Adult male rats with proficiency in skilled reaching with their dominant (for reaching) forelimb received ischemic bilateral sensorimotor cortex lesions, or unilateral lesions with or without callosal transections. After assessing dominant forelimb function (the paretic forelimb in rats with unilateral lesions), animals were trained with their non-dominant/nonparetic forelimb or underwent control procedures for 15 days. Animals were then tested with their dominant/paretic forelimb. In animals with unilateral lesions only, nonparetic forelimb training worsened subsequent performance with the paretic forelimb, as found previously. This effect was not found in animals with both callosal transections and unilateral lesions. After bilateral lesions, training the non-dominant limb did not worsen function of the dominant limb compared with controls. Thus, the maladaptive effects of training the nonparetic limb on paretic forelimb function depend upon the contralesional cortex and transcallosal projections. This suggests that this experience-dependent disruption of functional recovery is mediated through interhemispheric connections of the sensorimotor cortex. PMID:20141287

  10. Architectural properties of distal forelimb muscles in horses, Equus caballus.

    PubMed

    Brown, Nicholas A T; Kawcak, Christopher E; McIlwraith, C Wayne; Pandy, Marcus G

    2003-10-01

    Articular injuries in athletic horses are associated with large forces from ground impact and from muscular contraction. To accurately and noninvasively predict muscle and joint contact forces, a detailed model of musculoskeletal geometry and muscle architecture is required. Moreover, muscle architectural data can increase our understanding of the relationship between muscle structure and function in the equine distal forelimb. Muscle architectural data were collected from seven limbs obtained from five thoroughbred and thoroughbred-cross horses. Muscle belly rest length, tendon rest length, muscle volume, muscle fiber length, and pennation angle were measured for nine distal forelimb muscles. Physiological cross-sectional area (PCSA) was determined from muscle volume and muscle fiber length. The superficial and deep digital flexor muscles displayed markedly different muscle volumes (227 and 656 cm3, respectively), but their PCSAs were very similar due to a significant difference in muscle fiber length (i.e., the superficial digital flexor muscle had very short fibers, while those of the deep digital flexor muscle were relatively long). The ulnaris lateralis and flexor carpi ulnaris muscles had short fibers (17.4 and 18.3 mm, respectively). These actuators were strong (peak isometric force, Fmax=5,814 and 4,017 N, respectively) and stiff (tendon rest length to muscle fiber length, LT:LMF=5.3 and 2.1, respectively), and are probably well adapted to stabilizing the carpus during the stance phase of gait. In contrast, the flexor carpi radialis muscle displayed long fibers (89.7 mm), low peak isometric force (Fmax=555 N), and high stiffness (LT:LMF=1.6). Due to its long fibers and low Fmax, flexor carpi radialis appears to be better adapted to flexion and extension of the limb during the swing phase of gait than to stabilization of the carpus during stance. Including muscle architectural parameters in a musculoskeletal model of the equine distal forelimb may lead to

  11. Melatonin and succinate reduce rat liver mitochondrial dysfunction in diabetes.

    PubMed

    Zavodnik, I B; Lapshina, E A; Cheshchevik, V T; Dremza, I K; Kujawa, J; Zabrodskaya, S V; Reiter, R J

    2011-08-01

    Mitochondrial dysfunction and an increase in mitochondrial reactive oxygen species in response to hyperglycemia during diabetes lead to pathological consequences of hyperglycemia. The aim of the present work was to investigate the role of a specific functional damage in rat liver mitochondria during diabetes as well as to evaluate the possibility of metabolic and antioxidative correction of mitochondrial disorders by pharmacological doses of succinate and melatonin. In rat liver mitochondria, streptozotocin-induced diabetes was accompanied by marked impairments of metabolism: we observed a significant activation of α-ketoglutarate dehydrogenase (by 60%, p<0.05) and a damage of the respiratory function. In diabetic animals, melatonin (10 mg/kg b.w., 30 days) or succinate (50 mg/kg b.w., 30 days) reversed the oxygen consumption rate V(3) and the acceptor control ratio to those in nondiabetic animals. Melatonin enhanced the inhibited activity of catalase in the cytoplasm of liver cells and prevented mitochondrial glutathione-S-transferase inhibition while succinate administration prevented α-ketoglutarate dehydrogenase activation. The mitochondria dysfunction associated with diabetes was partially remedied by succinate or melatonin administration. Thus, these molecules may have benefits for the treatment of diabetes. The protective mechanism may be related to improvements in mitochondrial physiology and the antioxidative status of cells.

  12. Reduced serum antibodies associated with social defeat in rats.

    PubMed

    Fleshner, M; Laudenslager, M L; Simons, L; Maier, S F

    1989-06-01

    Many studies have linked various physical stressors with changes in immune function. The present experiment examined the effect of a social stressor, defeat associated with territorial defense, on serum antibodies to a specific protein, keyhole limpet hemocyanin (KLH). Pairs of male rats formed colonies and experimental rats were intruders. Experimental animals were immunized with KLH prior to exposures to territorially defensive colonies. Control animals were placed into colonies but separated from residents by a Plexiglas barrier. Behavioral measures, including number of bites and total time spent in submissive postures, were taken for colony-intruder interactions. Serum antibody levels were determined from blood samples taken one, two, and three weeks following immunization. Experimental animals had significantly less serum antibodies to KLH than did controls. Within the experimental group, total time spent in submissive postures at week one was significantly correlated with serum antibody levels, such that animals spending the most time in submission had lower antibody levels. Total bites correlated only slightly with antibody levels. The correlation between submission and serum antibody levels increased when the bites factor was partialled out. A stressful social encounter may thus affect immune function in a manner independent of the influence of physical (nociceptive) stressors.

  13. Melatonin reduces formalin-induced nociception and tactile allodynia in diabetic rats.

    PubMed

    Arreola-Espino, Rosaura; Urquiza-Marín, Héctor; Ambriz-Tututi, Mónica; Araiza-Saldaña, Claudia Ivonne; Caram-Salas, Nadia L; Rocha-González, Héctor I; Mixcoatl-Zecuatl, Teresa; Granados-Soto, Vinicio

    2007-12-22

    The purpose of this study was to assess the antinociceptive and antiallodynic effect of melatonin as well as its possible mechanism of action in diabetic rats. Streptozotocin (50 mg/kg) injection caused hyperglycemia within 1 week. Formalin-evoked flinching was increased in diabetic rats as compared to non-diabetic rats. Oral administration of melatonin (10-300 mg/kg) dose-dependently reduced flinching behavior in diabetic rats. In addition, K-185 (a melatonin MT(2) receptor antagonist, 0.2-2 mg/kg, s.c.) completely blocked the melatonin-induced antinociception in diabetic rats, whereas that naltrexone (a non-selective opioid receptor antagonist, 1 mg/kg, s.c.) and naltrindole (a selective delta opioid receptor antagonist, 0.5 mg/kg, s.c.), but not 5'-guanidinonaltrindole (a selective kappa opioid receptor antagonist, 1 mg/kg, s.c.), partially reduced the antinociceptive effect of melatonin. Given alone K-185, naltrexone, naltrindole or 5'-guanidinonaltrindole did not modify formalin-induced nociception in diabetic rats. Four to 8 weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. On this condition, oral administration of melatonin (75-300 mg/kg) dose-dependently reduced tactile allodynia in diabetic rats. Both antinociceptive and antiallodynic effects were not related to motor changes as melatonin did not modify number of falls in the rotarod test. Results indicate that melatonin is able to reduce formalin-induced nociception and tactile allodynia in streptozotocin-injected rats. In addition, data suggest that melatonin MT(2) and delta opioid receptors may play an important role in these effects.

  14. Morphological integration in the forelimb of musteloid carnivorans

    PubMed Central

    Fabre, Anne-Claire; Goswami, Anjali; Peigné, Stéphane; Cornette, Raphaël

    2014-01-01

    The forelimb forms a functional unit that allows a variety of behaviours and needs to be mobile, yet at the same time stable. Both mobility and stability are controlled, amongst others, at the level of the elbow joint. This joint is composed of the humero-ulnar articulation, mainly involved during parasagittal movements; and the radio-ulnar articulation, mainly allowing rotation. In contrast, the humero-radial articulation allows both movements of flexion–extension and rotation. Here, we study the morphological integration between each bone of the forelimb at the level of the entire arm, as well as at the elbow joint, in musteloid carnivorans. To do so, we quantitatively test shape co-variation using surface 3D geometric morphometric data. Our results show that morphological integration is stronger for bones that form functional units. Different results are obtained depending on the level of investigation: for the entire arm, results show a greater degree of shape co-variation between long bones of the lower arm than between the humerus and either bone of the lower arm. Thus, at this level the functional unit of the lower arm is comprised of the radius and ulna, permitting rotational movements of the lower arm. At the level of the elbow, results display a stronger shape co-variation between bones allowing flexion and stability (humerus and ulna) than between bones allowing mobility (ulna and radius and humerus and radius). Thus, the critical functional unit appears to be the articulation between the humerus and ulna providing the stability of the joint. PMID:24836555

  15. Forelimb myology of the pygmy hippopotamus (Choeropsis liberiensis).

    PubMed

    Fisher, Rebecca E; Scott, Kathleen M; Naples, Virginia L

    2007-06-01

    Based on morphological analyses, hippos have traditionally been classified as Suiformes, along with pigs and peccaries. However, molecular data indicate hippos and cetaceans are sister taxa (see review in Uhen, 2007, this issue). This study analyzes soft tissue characters of the pygmy hippo forelimb to elucidate the functional anatomy and evolutionary relationships of hippos within Artiodactyla. Two specimens from the National Zoological Park in Washington, D.C. were dissected, revealing several adaptations to an aquatic lifestyle. However, these adaptations differ functionally from most aquatic mammals as hippos walk along river or lake bottoms, rather than swim. Several findings highlight a robust mechanism for propelling the trunk forward through the water. For example, mm. pectoralis superficialis and profundus demonstrate broad sites of origin, while the long flexor tendons serve each of the digits, reflecting the fact that all toes are weight-bearing. Pygmy hippos also have eight mm. interossei and a well-developed m. lumbricalis IV. Retention of intrinsic adductors functions to prevent splaying of the toes, an advantageous arrangement in an animal walking on muddy substrates. Published descriptions indicate common hippos share all of these features. Hippo and ruminant forelimbs share several traits; however, hippos are unique among artiodactyls in retaining several primitive muscles (e.g., mm. palmaris longus and flexor digitorum brevis). These findings are consistent with the hypothesis that hippos diverged from other Artiodactyla early in the history of this group. Additional analyses of hindlimb and axial muscles may help determine whether this trajectory was closely allied to that of Cetacea.

  16. Reduced potassium currents in old rat CA1 hippocampal neurons.

    PubMed

    Alshuaib, W B; Hasan, S M; Cherian, S P; Mathew, M V; Hasan, M Y; Fahim, M A

    2001-01-15

    Potassium currents are an important factor in repolarizing the membrane potential and determining the level of neuronal excitability. We compared potassium currents in CA1 hippocampal neurons dissociated from young (2-3 months old) and old (26-30 months old) Sprague-Dawley rats. Whole-cell patch-clamp techniques were used to measure the delayed rectifier (sustained) and the A-type (transient) potassium currents. The delayed rectifier current was smaller in old (548 +/- 57 pA) than in young (1193 +/- 171 pA) neurons. In the absence of extracellular calcium, the delayed rectifier current was also smaller in old (427 +/- 41 pA) than in young (946 +/- 144 pA) neurons. The cell membrane capacitance was unchanged in old (13.3 +/- 1.2 pF) compared to young (13.6 +/- 1.2 pF). Therefore, the reduction in the delayed rectifier current was not due to a change in membrane surface area. Moreover, activation and inactivation of the delayed rectifier current were unchanged in old compared to young neurons. The slope of the current-voltage relation, however, was smaller in old (B = 5.03) than in young (B = 9.62) neurons. Similarly, the A-current was smaller in old (100 +/- 16 pA) than in young (210 +/- 44 pA) neurons in the presence of extracellular calcium. This reduction of potassium currents could account for the prolongation of action potentials reported previously for old rat CA1 hippocampal neurons. The age-related reduction in potassium current indicates plasticity in neuronal function that can impact communication in the hippocampal neural network during aging.

  17. Coordination strategies for limb forces during weight-bearing locomotion in normal rats, and in rats spinalized as neonates

    PubMed Central

    Giszter, Simon F; Davies, Michelle R; Graziani, Virginia

    2010-01-01

    Some rats spinally transected as neonates (ST rats) achieve weight-supporting independent locomotion. The mechanisms of coordinated hindlimb weight support in such rats are not well understood. To examine these in such ST rats and normal rats, rats with better than 60% of weight supported steps on a treadmill as adults were trained to cross an instrumented runway. Ground reaction forces, coordination of hindlimb and forelimb forces and the motions of the center of pressure were assessed. Normal rats crossed the runway with a diagonal trot. On average hindlimbs bore about 80% of the vertical load carried by forelimbs, although this varied. Forelimbs and hindlimb acted synergistically to generate decelerative and propulsive rostrocaudal forces, which averaged 15% of body weight with maximums of 50% . Lateral forces were very small (<8% of body weight). Center of pressure progressed in jumps along a straight line with mean lateral deviations <1 cm. ST rats hindlimbs bore about 60% of the vertical load of forelimbs, significantly less compared to intact (p<0.05). ST rats showed similar mean rostrocaudal forces, but with significantly larger maximum fluctuations of up to 80% of body weight (p<0.05). Joint force-plate recordings showed forelimbs and hindlimb rostrocaudal forces in ST rats were opposing and significantly different from intact rats (p<0.05). Lateral forces were ~20% of body weight and significantly larger than in normal rats (p<0.05). Center of pressure zig-zagged, with mean lateral deviations of ~ 2cm and a significantly larger range (p<0.05). The haunches were also observed to roll more than normal rats. The locomotor strategy of injured rats using limbs in opposition was presumably less efficient but their complex gait was statically stable. Because forelimbs and hindlimbs acted in opposition, the trunk was held compressed. Force coordination was likely managed largely by the voluntary control in forelimbs and trunk. PMID:18612631

  18. Diabetic rats show reduced cardiac-somatic reflex evoked by intrapericardial capsaicin.

    PubMed

    Liu, Xiao-Hua; Qin, Chao; Du, Jian-Qing; Xu, Yan; Sun, Na; Tang, Jing-Shi; Li, Qiang; Foreman, Robert D

    2011-01-25

    Painless myocardial infarction is a serious complication of diabetes. The present study examined whether cardiac nociception was altered in the streptozotocin-induced diabetic rat model by assessing intrapericardial capsaicin-evoked electromyography (EMG) responses in the spinotrapezius muscle. Somatic sensitivities to mechanical and thermal stimulation of the skin were also determined. Intrapericardial administration of capsaicin evoked a concentration-dependent EMG response, which was reproducible with repeated administration. However, the capsaicin-induced EMG responses were different in streptozotocin-induced diabetic rats and controls. Intrapericardial capsaicin produced fewer EMG responses, which were delayed and reduced in streptozotocin-treated rats compared to controls. Pretreatment with capsazepine, a TRPV1 antagonist, significantly decreased capsaicin-evoked EMG activity in both streptozotocin-treated and control rats. In addition, streptozotocin-treated rats showed a decreased paw withdrawal threshold in response to mechanical stimulation but no change in response to radiant heat stimulation. These results suggest that streptozotocin-induced diabetic rats develop somatic mechanical hypersensitivity (allodynia), but reduced cardiac nociception. Decreased TRPV1 function may contribute to the reduction of cardiac nociception in the diabetic rat.

  19. Hindlimb spasticity after unilateral motor cortex lesion in rats is reduced by contralateral nerve root transfer

    PubMed Central

    Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin

    2016-01-01

    Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (P<0.001). Hmax (H-wave maximum amplitude)/Mmax (M-wave maximum amplitude) ratio of gastrocnemius and plantaris muscles (PMs) significantly reduced in group C (P<0.01). Average VGLUT1 positive boutons per CTB-labelled motoneurons significantly reduced in group C (P<0.001). We demonstrated for the first time that contralateral L4 ventral root transfer to L5 ventral root of the affected side was effective in relieving unilateral motor cortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential

  20. Masking reduces orientation selectivity in rat visual cortex.

    PubMed

    Alwis, Dasuni S; Richards, Katrina L; Price, Nicholas S C

    2016-11-01

    In visual masking the perception of a target stimulus is impaired by a preceding (forward) or succeeding (backward) mask stimulus. The illusion is of interest because it allows uncoupling of the physical stimulus, its neuronal representation, and its perception. To understand the neuronal correlates of masking, we examined how masks affected the neuronal responses to oriented target stimuli in the primary visual cortex (V1) of anesthetized rats (n = 37). Target stimuli were circular gratings with 12 orientations; mask stimuli were plaids created as a binarized sum of all possible target orientations. Spatially, masks were presented either overlapping or surrounding the target. Temporally, targets and masks were presented for 33 ms, but the stimulus onset asynchrony (SOA) of their relative appearance was varied. For the first time, we examine how spatially overlapping and center-surround masking affect orientation discriminability (rather than visibility) in V1. Regardless of the spatial or temporal arrangement of stimuli, the greatest reductions in firing rate and orientation selectivity occurred for the shortest SOAs. Interestingly, analyses conducted separately for transient and sustained target response components showed that changes in orientation selectivity do not always coincide with changes in firing rate. Given the near-instantaneous reductions observed in orientation selectivity even when target and mask do not spatially overlap, we suggest that monotonic visual masking is explained by a combination of neural integration and lateral inhibition.

  1. Inhibition of Cyclooxygenase-2 Reduces Hypothalamic Excitation in Rats with Adriamycin-Induced Heart Failure

    PubMed Central

    Liu, Wei; Zang, Wei-Jin; Bao, Cui-Yu; Qin, Da-Nian

    2012-01-01

    Background The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the progression of heart failure (HF). We investigated whether cyclooxygenase-2 (COX-2) inhibition in the PVN attenuates the activities of sympathetic nervous system (SNS) and renin-angiotensin system (RAS) in rats with adriamycin-induced heart failure. Methodology/Principal Finding Heart failure was induced by intraperitoneal injection of adriamycin over a period of 2 weeks (cumulative dose of 15 mg/kg). On day 19, rats received intragastric administration daily with either COX-2 inhibitor celecoxib (CLB) or normal saline. Treatment with CLB reduced mortality and attenuated both myocardial atrophy and pulmonary congestion in HF rats. Compared with the HF rats, ventricle to body weight (VW/BW) and lung to body weight (LW/BW) ratios, heart rate (HR), left ventricular end-diastolic pressure (LVEDP), left ventricular peak systolic pressure (LVPSP) and maximum rate of change in left ventricular pressure (LV±dp/dtmax) were improved in HF+CLB rats. Angiotensin II (ANG II), norepinephrine (NE), COX-2 and glutamate (Glu) in the PVN were increased in HF rats. HF rats had higher levels of ANG II and NE in plasma, higher level of ANG II in myocardium, and lower levels of ANP in plasma and myocardium. Treatment with CLB attenuated these HF-induced changes. HF rats had more COX-2-positive neurons and more corticotropin releasing hormone (CRH) positive neurons in the PVN than did control rats. Treatment with CLB decreased COX-2-positive neurons and CRH positive neurons in the PVN of HF rats. Conclusions These results suggest that PVN COX-2 may be an intermediary step for PVN neuronal activation and excitatory neurotransmitter release, which further contributes to sympathoexcitation and RAS activation in adriamycin-induced heart failure. Treatment with COX-2 inhibitor attenuates sympathoexcitation and RAS activation in adriamycin-induced heart failure. PMID:23152801

  2. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus

    PubMed Central

    Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (−23%) and dentate gyrus (−48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression. PMID:27579183

  3. Antecedent glycemic control reduces severe hypoglycemia-induced neuronal damage in diabetic rats.

    PubMed

    Reno, Candace M; Tanoli, Tariq; Bree, Adam; Daphna-Iken, Dorit; Cui, Chen; Maloney, Susan E; Wozniak, David F; Fisher, Simon J

    2013-06-15

    Brain damage due to severe hypoglycemia occurs in insulin-treated people with diabetes. This study tests the hypothesis that chronic insulin therapy that normalizes elevated blood glucose in diabetic rats would be neuroprotective against brain damage induced by an acute episode of severe hypoglycemia. Male Sprague-Dawley rats were split into three groups: 1) control, non-diabetic; 2) STZ-diabetic; and 3) insulin-treated STZ-diabetic. After 3 wk of chronic treatment, unrestrained awake rats underwent acute hyperinsulinemic severe hypoglycemic (10-15 mg/dl) clamps for 1 h. Rats were subsequently analyzed for brain damage and cognitive function. Severe hypoglycemia induced 15-fold more neuronal damage in STZ-diabetic rats compared with nondiabetic rats. Chronic insulin treatment of diabetic rats, which nearly normalized glucose levels, markedly reduced neuronal damage induced by severe hypoglycemia. Fortunately, no cognitive defects associated with the hypoglycemia-induced brain damage were observed in any group. In conclusion, antecedent blood glucose control represents a major modifiable therapeutic intervention that can afford diabetic subjects neuroprotection against severe hypoglycemia-induced brain damage.

  4. Trans-11 vaccenic acid reduces hepatic lipogenesis and chylomicron secretion in JCR:LA-cp rats.

    PubMed

    Wang, Ye; Jacome-Sosa, M Miriam; Ruth, Megan R; Goruk, Sue D; Reaney, Martin J; Glimm, David R; Wright, David C; Vine, Donna F; Field, Catherine J; Proctor, Spencer D

    2009-11-01

    Trans-11 vaccenic acid (VA) is the predominant trans isomer in ruminant fat and a major precursor to the endogenous synthesis of cis9,trans11-conjugated linoleic acid in humans and animals. We have previously shown that 3-wk VA supplementation has a triglyceride (TG)-lowering effect in a rat model of dyslipidemia, obesity, and metabolic syndrome (JCR:LA-cp rats). The objective of this study was to assess the chronic effect (16 wk) of VA on lipid homeostasis in both the liver and intestine in obese JCR:LA-cp rats. Plasma TG (P < 0.001), total cholesterol (P < 0.001), LDL cholesterol (P < 0.01), and nonesterified fatty acid concentrations, as well as the serum haptoglobin concentration, were all lower in obese rats fed the VA diet compared with obese controls (P < 0.05). In addition, there was a decrease in the postprandial plasma apolipoprotein (apo)B48 area under the curve (P < 0.05) for VA-treated obese rats compared with obese controls. The hepatic TG concentration and the relative abundance of fatty acid synthase and acetyl-CoA carboxylase proteins were all lower (P < 0.05) in the VA-treated group compared with obese controls. Following acute gastrointestinal infusion of a VA-triolein emulsion in obese rats that had been fed the control diet for 3 wk, the TG concentration was reduced by 40% (P < 0.05) and the number of chylomicron (CM) particles (apoB48) in nascent mesenteric lymph was reduced by 30% (P < 0.01) relative to rats infused with a triolein emulsion alone. In conclusion, chronic VA supplementation significantly improved dyslipidemia in both the food-deprived and postprandial state in JCR:LA-cp rats. The appreciable hypolipidemic benefits of VA may be attributed to a reduction in both intestinal CM and hepatic de novo lipogenesis pathways.

  5. Forelimb dyskinesia mediated by high-frequency stimulation of the subthalamic nucleus is linked to rapid activation of the NR2B subunit of N-methyl-D-aspartate receptors.

    PubMed

    Quintana, Adrien; Melon, Christophe; Kerkerian-Le Goff, Lydia; Salin, Pascal; Savasta, Marc; Sgambato-Faure, Véronique

    2010-08-01

    Dyskinesia is a major side-effect of chronic l-DOPA administration, the reference treatment for Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN-HFS) alleviates parkinsonian motor symptoms and indirectly improves dyskinesia by decreasing the L-DOPA requirement. However, inappropriate stimulation can also trigger dyskinetic movements, in both human and rodents. We investigated whether STN-HFS-evoked forelimb dyskinesia involved changes in glutamatergic neurotransmission as previously reported for L-DOPA-induced dyskinesias, focusing on the role of NR2B-containing N-methyl-D-aspartate receptors (NR2B/NMDARs). We applied STN-HFS in normal rats at intensities above and below the threshold for triggering forelimb dyskinesia. Dyskinesiogenic STN-HFS induced the activation of NR2B (as assessed by immunodetection of the phosphorylated residue Tyr(1472)) in neurons of the subthalamic nucleus, entopeduncular nucleus, motor thalamus and forelimb motor cortex. The severity of STN-HFS-induced forelimb dyskinesia was decreased in a dose-dependent manner by systemic injections of CP-101,606, a selective blocker of NR2B/NMDARs, but was either unaffected or increased by the non-selective N-methyl-D-aspartate receptor antagonist, MK-801.

  6. A Three-Dimensional Analysis of Morphological Evolution and Locomotor Performance of the Carnivoran Forelimb

    PubMed Central

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2014-01-01

    In this study, three-dimensional landmark-based methods of geometric morphometrics are used for estimating the influence of phylogeny, allometry and locomotor performance on forelimb shape in living and extinct carnivorans (Mammalia, Carnivora). The main objective is to investigate morphological convergences towards similar locomotor strategies in the shape of the major forelimb bones. Results indicate that both size and phylogeny have strong effects on the anatomy of all forelimb bones. In contrast, bone shape does not correlate in the living taxa with maximum running speed or daily movement distance, two proxies closely related to locomotor performance. A phylomorphospace approach showed that shape variation in forelimb bones mainly relates to changes in bone robustness. This indicates the presence of biomechanical constraints resulting from opposite demands for energetic efficiency in locomotion –which would require a slender forelimb– and resistance to stress –which would be satisfied by a robust forelimb–. Thus, we interpret that the need of maintaining a trade-off between both functional demands would limit shape variability in forelimb bones. Given that different situations can lead to one or another morphological solution, depending on the specific ecology of taxa, the evolution of forelimb morphology represents a remarkable “one-to-many mapping” case between anatomy and ecology. PMID:24454891

  7. Forelimbs of Tyrannosaurus Rex: A pathetic vestigial organ or an integral part of a fearsome predator?

    NASA Astrophysics Data System (ADS)

    Lee, Scott A.; Thomas, Joshua D.

    2014-12-01

    In this paper, we examine a first-year torque and angular acceleration problem to address a possible use of the forelimbs of Tyrannosaurus rex. A 1/40th-scale model (see Fig. 1) is brought to the classroom to introduce the students to the quandary: given that the forelimbs of T. rex were too short to reach its mouth, what function did the forelimbs serve? This issue crosses several scientific disciplines including paleontology, ecology, and physics, making it a great starting point for thinking "outside the box." Noted paleontologist Kenneth Carpenter has suggested that the forelimbs of T. rex were an integral part of its predatory behavior. Given the large teeth of T. rex, it is assumed that they killed with their teeth. Lipkin and Carpenter1 have suggested that the forelimbs were used to hold a struggling victim (which had not been dispatched with the first bite) while the final, lethal bite was applied. If that is the case, then the forelimbs must be capable of large angular accelerations α in order to grab the animal attempting to escape. The concepts of the typical first-year physics course are sufficient to test this hypothesis by solving α =τ /I . Naturally, students love solving any problem related to Tyrannosaurus rex!

  8. Ancestry of motor innervation to pectoral fin and forelimb

    PubMed Central

    Ma, Leung-Hang; Gilland, Edwin; Bass, Andrew H.; Baker, Robert

    2010-01-01

    Motor innervation to the tetrapod forelimb and fish pectoral fin is assumed to share a conserved spinal cord origin, despite major structural and functional innovations of the appendage during the vertebrate water-to-land transition. In this paper, we present anatomical and embryological evidence showing that pectoral motoneurons also originate in the hindbrain among ray-finned fish. New and previous data for lobe-finned fish, a group that includes tetrapods, and more basal cartilaginous fish showed pectoral innervation that was consistent with a hindbrain-spinal origin of motoneurons. Together, these findings support a hindbrain–spinal phenotype as the ancestral vertebrate condition that originated as a postural adaptation for pectoral control of head orientation. A phylogenetic analysis indicated that Hox gene modules were shared in fish and tetrapod pectoral systems. We propose that evolutionary shifts in Hox gene expression along the body axis provided a transcriptional mechanism allowing eventual decoupling of pectoral motoneurons from the hindbrain much like their target appendage gained independence from the head. PMID:20975699

  9. Ethanol exposure during development reduces resident aggression and testosterone in rats.

    PubMed

    Lugo, Joaquin N; Marino, Melissa D; Gass, Justin T; Wilson, Marlene A; Kelly, Sandra J

    2006-02-28

    Ethanol exposure during development has been shown to alter social behaviors in people, but the range of deficits is not clear. Using an animal model of Fetal Alcohol Spectrum Disorders, inter-male aggression and testosterone levels were examined in adult rats. Rats were exposed to ethanol during the entire prenatal period and from postnatal day 2 through 10. Ethanol was administered via intragastric intubation. Two other groups consisted of a nontreated control and an intubated control group that was exposed to the administration procedures but not ethanol. Both offensive and defensive aggression were examined in experimental residents and intruders under three different housing conditions for the resident males: (1) with another male, (2) with a pregnant female, and (3) with a female and litter fathered by the experimental animal. When housed with a female and litter, ethanol-exposed rats displayed reduced offensive aggression compared to control groups under the same condition. Defensive aggression in the non-experimental intruders was reduced in this same condition. There were no differences in duration of non-aggressive social behaviors among the groups in any of the housing conditions. Testosterone levels were reduced in ethanol-exposed rats compared to controls. In summary, ethanol exposure over the combined prenatal and postnatal periods reduces aggressive behavior in a condition where aggressive behavior is normally seen. This reduction may be related to lower testosterone levels.

  10. Reduced L-carnitine transport in aortic endothelial cells from spontaneously hypertensive rats.

    PubMed

    Salsoso, Rocío; Guzmán-Gutiérrez, Enrique; Arroyo, Pablo; Salomón, Carlos; Zambrano, Sonia; Ruiz-Armenta, María Victoria; Blanca, Antonio Jesús; Pardo, Fabián; Leiva, Andrea; Mate, Alfonso; Sobrevia, Luis; Vázquez, Carmen María

    2014-01-01

    Impaired L-carnitine uptake correlates with higher blood pressure in adult men, and L-carnitine restores endothelial function in aortic rings from spontaneously hypertensive rat (SHR). Thus, endothelial dysfunction in hypertension could result from lower L-carnitine transport in this cell type. L-Carnitine transport is mainly mediated by novel organic cation transporters 1 (Octn1, Na(+)-independent) and 2 (Octn2, Na(+)-dependent); however, their kinetic properties and potential consequences in hypertension are unknown. We hypothesize that L-carnitine transport kinetic properties will be altered in aortic endothelium from spontaneously hypertensive rats (SHR). L-Carnitine transport was measured at different extracellular pH (pHo 5.5-8.5) in the absence or presence of sodium in rat aortic endothelial cells (RAECs) from non-hypertensive Wistar-Kyoto (WKY) rats and SHR. Octn1 and Octn2 mRNA relative expression was also determined. Dilation of endothelium-intact or denuded aortic rings in response to calcitonine gene related peptide (CGRP, 0.1-100 nmol/L) was measured (myography) in the absence or presence of L-carnitine. Total L-carnitine transport was lower in cells from SHR compared with WKY rats, an effect due to reduced Na(+)-dependent (Na(+) dep ) compared with Na(+)-independent (Na(+) indep ) transport components. Saturable L-carnitine transport kinetics show maximal velocity (V max), without changes in apparent K m for Na(+) indep transport in SHR compared with WKY rats. Total and Na(+) dep component of transport were increased, but Na(+) indep transport was reduced by extracellular alkalization in WKY rats. However, alkalization reduced total and Na(+) indep transport in cells from SHR. Octn2 mRNA was higher than Octn-1 mRNA expression in cells from both conditions. Dilation of artery rings in response to CGRP was reduced in vessels from SHR compared with WKY rats. CGRP effect was endothelium-dependent and restored by L-carnitine. All together these results

  11. Reduced L-Carnitine Transport in Aortic Endothelial Cells from Spontaneously Hypertensive Rats

    PubMed Central

    Salsoso, Rocío; Guzmán-Gutiérrez, Enrique; Arroyo, Pablo; Salomón, Carlos; Zambrano, Sonia; Ruiz-Armenta, María Victoria; Blanca, Antonio Jesús; Pardo, Fabián; Leiva, Andrea; Mate, Alfonso; Sobrevia, Luis; Vázquez, Carmen María

    2014-01-01

    Impaired L-carnitine uptake correlates with higher blood pressure in adult men, and L-carnitine restores endothelial function in aortic rings from spontaneously hypertensive rat (SHR). Thus, endothelial dysfunction in hypertension could result from lower L-carnitine transport in this cell type. L-Carnitine transport is mainly mediated by novel organic cation transporters 1 (Octn1, Na+-independent) and 2 (Octn2, Na+-dependent); however, their kinetic properties and potential consequences in hypertension are unknown. We hypothesize that L-carnitine transport kinetic properties will be altered in aortic endothelium from spontaneously hypertensive rats (SHR). L-Carnitine transport was measured at different extracellular pH (pHo 5.5–8.5) in the absence or presence of sodium in rat aortic endothelial cells (RAECs) from non-hypertensive Wistar-Kyoto (WKY) rats and SHR. Octn1 and Octn2 mRNA relative expression was also determined. Dilation of endothelium-intact or denuded aortic rings in response to calcitonine gene related peptide (CGRP, 0.1–100 nmol/L) was measured (myography) in the absence or presence of L-carnitine. Total L-carnitine transport was lower in cells from SHR compared with WKY rats, an effect due to reduced Na+-dependent (Na+dep) compared with Na+-independent (Na+indep) transport components. Saturable L-carnitine transport kinetics show maximal velocity (Vmax), without changes in apparent Km for Na+indep transport in SHR compared with WKY rats. Total and Na+dep component of transport were increased, but Na+indep transport was reduced by extracellular alkalization in WKY rats. However, alkalization reduced total and Na+indep transport in cells from SHR. Octn2 mRNA was higher than Octn-1 mRNA expression in cells from both conditions. Dilation of artery rings in response to CGRP was reduced in vessels from SHR compared with WKY rats. CGRP effect was endothelium-dependent and restored by L-carnitine. All together these results suggest that reduced L

  12. Hyaluronic acid membrane for reducing adhesion formation and reformation in the rat uterine horn.

    PubMed

    Yarali, H; Zahradka, B F; Gomel, V

    1994-09-01

    The efficacy of hyaluronic acid (HA) membrane in preventing or reducing intraperitoneal adhesion formation and reformation was evaluated in the rat uterine horn. Forty-seven Wistar rats were employed. Following a measured laser injury on the right uterine horn of each rat, HA membrane was applied to cover the site of injury in 20 (HA membrane group). No membrane was applied in another 20 (control group). The type and extent of adhesions were assessed at relaparotomy. Following microsurgical adhesiolysis at second-look laparotomy, the same animals were randomized to the HA membrane and control groups. The type and extent of adhesion reformation were evaluated at third-look laparotomy. Following a similar injury on the right uterine horn in another seven rats, HA membrane was applied on both uterine horns. A repeat laparotomy was performed three hours later to assess the status of the membrane. The type and extent of adhesion formation and reformation were comparable between the HA membrane and control groups. The HA membrane did not remain on the uterine horn and gelled rapidly. Hyaluronic acid membrane was ineffective in reducing adhesion formation and reformation in the rat uterine horn.

  13. Fish protein hydrolysate elevates plasma bile acids and reduces visceral adipose tissue mass in rats.

    PubMed

    Liaset, Bjørn; Madsen, Lise; Hao, Qin; Criales, Gabriel; Mellgren, Gunnar; Marschall, Hanns-Ulrich; Hallenborg, Philip; Espe, Marit; Frøyland, Livar; Kristiansen, Karsten

    2009-04-01

    Conjugation of bile acids (BAs) to the amino acids taurine or glycine increases their solubility and promotes liver BA secretion. Supplementing diets with taurine or glycine modulates BA metabolism and enhances fecal BA excretion in rats. However, it is still unclear whether dietary proteins varying in taurine and glycine contents alter BA metabolism, and thereby modulate the recently discovered systemic effects of BAs. Here we show that rats fed a diet containing saithe fish protein hydrolysate (saithe FPH), rich in taurine and glycine, for 26 days had markedly elevated fasting plasma BA levels relative to rats fed soy protein or casein. Concomitantly, the saithe FPH fed rats had reduced liver lipids and fasting plasma TAG levels. Furthermore, visceral adipose tissue mass was reduced and expression of genes involved in fatty acid oxidation and energy expenditure was induced in perirenal/retroperitoneal adipose tissues of rats fed saithe FPH. Our results provide the first evidence that dietary protein sources with different amino acid compositions can modulate the level of plasma bile acids and our data suggest potential novel mechanisms by which dietary protein sources can affect energy metabolism.

  14. Severe Calorie Restriction Reduces Cardiometabolic Risk Factors and Protects Rat Hearts from Ischemia/Reperfusion Injury

    PubMed Central

    Melo, Dirceu S.; Costa-Pereira, Liliane V.; Santos, Carina S.; Mendes, Bruno F.; Costa, Karine B.; Santos, Cynthia Fernandes F.; Rocha-Vieira, Etel; Magalhães, Flávio C.; Esteves, Elizabethe A.; Ferreira, Anderson J.; Guatimosim, Sílvia; Dias-Peixoto, Marco F.

    2016-01-01

    Background and Aims: Recent studies have proposed that if a severe caloric restriction (SCR) is initiated at the earliest period of postnatal life, it can lead to beneficial cardiac adaptations later on. We investigated the effects of SCR in Wistar rats from birth to adult age on risk factors for cardiac diseases (CD), as well as cardiac function, redox status, and HSP72 content in response to ischemia/reperfusion (I/R) injury. Methods and Results: From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Food intake was assessed daily and body weight were assessed weekly. In the last week of the SCR protocol, systolic blood pressure and heart rate were measured and the double product index was calculated. Also, oral glucose and intraperitoneal insulin tolerance tests were performed. Thereafter, rats were decapitated, visceral fat was weighed, and blood and hearts were harvested for biochemical, functional, tissue redox status, and western blot analyzes. Compared to AL, CR50 rats had reduced the main risk factors for CD. Moreover, the FR50 rats showed increased cardiac function both at baseline conditions (45% > AL rats) and during the post-ischemic period (60% > AL rats) which may be explained by a decreased cardiac oxidative stress and increased HSP72 content. Conclusion: SCR from birth to adult age reduced risk factors for CD, increased basal cardiac function and protected hearts from the I/R, possibly by a mechanism involving ROS. PMID:27092082

  15. Valproic acid and progestin inhibit lesion growth and reduce hyperalgesia in experimentally induced endometriosis in rats.

    PubMed

    Liu, Maohua; Liu, Xishi; Zhang, Yuqiu; Guo, Sun-Wei

    2012-04-01

    Accumulating evidence suggests that endometriosis is an epigenetic disease. This study was designed to evaluate the effect of valproic acid (VPA) and progesterone (P4) in a rat model of endometriosis on serum tumor necrosis factor-α (TNF-α) levels, hot plate and tail-flick latencies, lesion size, and body weight. We used 77 adult female rats, and endometriosis was induced by autotransplanting pieces of uterus (ENDO) or fat (SHAM) to the pelvic cavity. The BLANK group received no surgery. After 2 weeks, the ENDO group was further divided, randomly, into 5 groups, receiving, respectively, treatment with low- and high-dose VPA, P4 alone, VPA + P4, and no treatment. The SHAM rats received no treatment. The BLANK rats were further divided into 2 groups, one received VPA treatment and the other, no treatment. After 4 weeks, all rats were sacrificed. Response latency in hot plate and tail-flick tests, body weight, and serum TNF-α levels were measured before the surgery, before and after the treatment, along with lesion size. We found that induced endometriosis reduced response latency. ENDO rats receiving VPA and/or P4 treatment had significantly reduced lesion size as compared with untreated ones, and had significantly improved response to noxious thermal stimuli. They also had significantly increased weight gain. Serum TNF-α levels increased following surgery but eventually decreased regardless of treatment or not. In conclusion, VPA is well tolerated. Treatment with VPA significantly reduces lesion growth and improves sensitivity to nocifensive stimuli. The improvement is specific to endometriosis-induced hyperalgesia. Thus, histone deacetylase inhibitors may be a promising therapeutics for treating endometriosis.

  16. NOS inhibition increases bubble formation and reduces survival in sedentary but not exercised rats.

    PubMed

    Wisløff, Ulrik; Richardson, Russell S; Brubakk, Alf O

    2003-01-15

    Previously we have shown that chronic as well as a single bout of exercise 20 h prior to a simulated dive protects rats from severe decompression illness (DCI) and death. However, the mechanism behind this protection is still not known. The present study determines the effect of inhibiting nitric oxide synthase (NOS) on bubble formation in acutely exercised and sedentary rats exposed to hyperbaric pressure. A total of 45 adult female Sprague-Dawley rats (270-320 g) were randomly assigned into exercise or sedentary control groups, with and without NOS inhibition, using L-NAME (0.05 or 1 mg ml(-1)) (a nonselective NOS inhibitor). Exercising rats ran intervals on a treadmill for 1.5 h, 20 h prior to the simulated dive. Intervals alternated between 8 min at 85-90 % of maximal oxygen uptake, and 2 min at 50-60 %. Rats were compressed (simulated dive) in a pressure chamber, at a rate of 200 kPa min(-1) to a pressure of 700 kPa, and maintained for 45 min breathing air. At the end of the exposure period, rats were decompressed linearly to the "surface" (100 kPa) at a rate of 50 kPa min(-1). Immediately after reaching the surface the animals were anaesthetised and the right ventricle was insonated using ultrasound. The study demonstrated that sedentary rats weighing more than 300 g produced a large amount of bubbles, while those weighing less than 300 g produced few bubbles and most survived the protocol. Prior exercise reduced bubble formation and increased survival in rats weighing more than 300 g, confirming the results from the previous study. During NOS inhibition, the simulated dive induced significantly more bubbles in all sedentary rats weighing less than 300 g. However, this effect could be attenuated by a single bout of exercise 20 h before exposure. The present study demonstrates two previously unreported findings: that administration of L-NAME allows substantial bubble formation and decreased survival in sedentary rats, and that a single bout of exercise

  17. A Cervical Hemi-Contusion Spinal Cord Injury Model for the Investigation of Novel Therapeutics Targeting Proximal and Distal Forelimb Functional Recovery

    PubMed Central

    Mondello, Sarah E.; Sunshine, Michael D.; Fischedick, Amanda E.; Moritz, Chet T.

    2015-01-01

    Abstract Cervical spinal cord contusion is the most common human spinal cord injury, yet few rodent models replicate the pathophysiological and functional sequela of this injury. Here, we modified an electromechanical injury device and characterized the behavioral and histological changes occurring in response to a lateralized C4 contusion injury in rats. A key feature of the model includes a non-injurious touch phase where the spinal cord surface is dimpled with a consistent starting force. Animals were either left intact as a control, received a non-injury–producing touch on the surface of the cord (“sham”), or received a 0.6 mm or a 0.8 mm displacement injury. Rats were then tested on the forelimb asymmetry use test, CatWalk, and the Irvine, Beatties, and Bresnahan (IBB) cereal manipulation task to assess proximal and distal upper limb function for 12 weeks. Injuries of moderate (0.6 mm) and large (0.8 mm) displacement showed consistent differences in forelimb asymmetry, metrics of the CatWalk, and sub-scores of the IBB. Overall findings indicated long lasting proximal and distal upper limb deficits following 0.8 mm injury but transient proximal with prolonged distal limb deficits following 0.6 mm injury. Significant differences in loss of ipsilateral unmyelinated and myelinated white matter was detected between injury severities. Demyelination was primarily localized to the dorsolateral region of the hemicord and extended further rostral following 0.8 mm injury. These findings establish the C4 hemi-contusion injury as a consistent, graded model for testing novel treatments targeting forelimb functional recovery. PMID:25929319

  18. Serotonin transporter knockout rats show improved strategy set-shifting and reduced latent inhibition.

    PubMed

    Nonkes, Lourens J P; van de Vondervoort, Ilse I G M; de Leeuw, Mark J C; Wijlaars, Linda P; Maes, Joseph H R; Homberg, Judith R

    2012-04-13

    Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT(-/-)) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting (EDSS), heavily depends on the medial prefrontal cortex. This region shows functional changes in 5-HTT(-/-) rodents as well. Here we subjected 5-HTT(-/-) rats and their wild-type counterparts to an EDSS paradigm and a supplementary latent inhibition task. Results indicate that 5-HTT(-/-) rats also show improved EDSS, and indicate that reduced latent inhibition may contribute as an underlying mechanism.

  19. Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats.

    PubMed

    Ni, Wei; Okauchi, Masanobu; Hatakeyama, Tetsuhiro; Gu, Yuxiang; Keep, Richard F; Xi, Guohua; Hua, Ya

    2015-10-01

    Iron contributes to c-Jun N-terminal kinases (JNK) activation in young rats and white matter injury in piglets after intracerebral hemorrhage (ICH). In the present study, we examined the effect of deferoxamine on ICH-induced white matter injury and JNK activation and in aged rats. Male Fischer 344 rats (18months old) had either an intracaudate injection of 100μl of autologous blood or a needle insertion (sham). The rats were treated with deferoxamine or vehicle with different regimen (dosage, duration and time window). White matter injury and activation of JNK were examined. We found that a dose of DFX should be at more than 10mg/kg for a therapeutic duration more than 2days with a therapeutic time window of 12h to reduce ICH-induced white matter loss at 2months. ICH-induced white matter injury was associated with JNK activation. The protein levels of phosphorylated-JNK (P-JNK) were upregulated at day-1 after ICH and then gradually decreased. P-JNK immunoreactivity was mostly located in white matter bundles. ICH-induced JNK activation was reduced by DFX treatment. This study demonstrated that DFX can reduce ICH-induced JNK activation and white matter damage.

  20. Chronic Alternate Day Fasting Results in Reduced Diastolic Compliance and Diminished Systolic Reserve in Rats

    PubMed Central

    Ahmet, Ismayil; Wan, Ruiqian; Mattson, Mark P; Lakatta, Edward G.; Talan, Mark I.

    2010-01-01

    Background Based on animal experiments and limited data from few human trials, alternate day fasting (ADF) resulted in weight loss; prolonged life; reduced metabolic risk factors for diabetes and cardiovascular diseases; and reduced prevalence of age-related diseases. The present study is the first comprehensive examination of the long-term effects of ADF on general cardiovascular fitness in rats. Methods and Results Four months old male Sprague-Dawley rats were started on ADF or continued on ad libitum diets and followed for 6 months with serial echocardiography. A comprehensive hemodynamic evaluation including a combined dobutamine - volume stress test was performed at the end of the study, and hearts were harvested for histological assessment. The six-month long ADF diet resulted in a 9% reduction (p<0.01) of cardiomyocyte diameter and 3 fold increase in interstitial myocardial fibrosis. Left ventricular chamber size was not affected by ADF and ejection fraction was not reduced, but left atrial diameter was increased 16%, and the E/A in Doppler-measured mitral flow was reduced (p<0.01). Pressure-volume loop analyses revealed a “stiff” heart during diastole in ADF rats, while combined dobutamine and volume loading showed a significant reduction in LV diastolic compliance and a lack of increase in systolic pump function, indicating a diminished cardiac reserve. Conclusion Chronic ADF in rats results in development of diastolic dysfunction with diminished cardiac reserve. ADF is a novel and unique experimental model of diet-induced diastolic dysfunction. The deleterious effect of ADF in rats suggests that additional studies of ADF effects on cardiovascular functions in humans are warranted. PMID:20932467

  1. Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats.

    PubMed

    Yazdanparast, Razieh; Bahramikia, Seifollah; Ardestani, Amin

    2008-04-15

    Nasturtium officinale R. Br. (Brassicaceae) has been used as a home remedy by the people of south eastern (SE) region of Iran as a medicinal plant. This therapeutical application has been attributed to Nasturtium officinale (N. officinale) antioxidant capacity which is mostly tested by means of cell-free assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). In addition, the antioxidant effect of N. officinale extract has been investigated in hypercholesterolaemic rats in vivo. The results revealed that the extract has notable scavenging activity against DPPH radicals as well as potent reducing power in FRAP assay. Intragastric administration of N. officinale (500 mg/kg body weight per day) to groups of hypercholesterolaemic rats for 30 days lowered their blood total cholesterol (TC), triglyceride (TG), and low density lipoprotein cholesterol (LDL-C) levels by 37, 44 and 48%, respectively. However, the blood high density lipoprotein cholesterol (HDL-C) levels in the same treated rats increased by 16%. To evaluate the mechanism(s) of action, we studied the antioxidative potential of N. officinale extract in terms of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities and also the level of reduced glutathione (GSH) in the liver tissues. In addition, hepatic tissue malondialdehyde level (MDA, an index of lipid peroxidation) was also determined. Under hypercholesterolaemic condition, hepatic MDA was increased. Moreover, our data indicated GSH depletion along with significant reduction in the activities of CAT and SOD in rats fed high-fat diet rats. On the other hand, significant elevation in the activities of GPx and GR were seen in the same group of rats. Treatment of hypercholesterolaemic rats with N. officinale extract significantly increased the GSH level along with enhanced CAT and SOD activities in liver tissues. Furthermore, N. officinale extract significantly

  2. MAG-EPA reduces severity of DSS-induced colitis in rats.

    PubMed

    Morin, Caroline; Blier, Pierre U; Fortin, Samuel

    2016-05-15

    Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the intestinal mucosa of the large bowel. Omega-3 (ω3) fatty acid supplementation has been associated with a decreased production of inflammatory cytokines involved in UC pathogenesis. The aim of this study was to determine the preventive and therapeutic potential of eicosapentaenoic acid monoglyceride (MAG-EPA) in an in vivo rats model of UC induced by dextran sulfate sodium (DSS). DSS rats were untreated or treated per os with MAG-EPA. Morphological, histological, and biochemical analyses were performed following MAG-EPA administrations. Morphological and histological analyses revealed that MAG-EPA pretreatment (12 days pre-DSS) and treatment (6 days post-DSS) exhibited strong activity in reducing severity of disease in DSS rats. Following MAG-EPA administrations, tissue levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 were markedly lower compared with rats treated only with DSS. MAG-EPA per os administration decrease neutrophil infiltration in colon tissues, as depicted by myelohyperoxidase activity. Results also revealed a reduced activation of NF-κB pathways correlated with a decreased expression of COX-2 in colon homogenates derived from MAG-EPA-pretreated and treated rats. Tension measurements performed on colon tissues revealed that contractile responses to methacholine and relaxing effect induced by sodium nitroprusside were largely increased following MAG-EPA treatment. The combined treatment of MAG-EPA and vitamin E displayed an antagonistic effect on anti-inflammatory properties of MAG-EPA in DSS rats.

  3. Hypothalamic paraventricular nucleus stimulation reduces intestinal injury in rats with ulcerative colitis

    PubMed Central

    Deng, Quan-Jun; Deng, Ding-Jing; Che, Jin; Zhao, Hai-Rong; Yu, Jun-Jie; Lu, Yong-Yu

    2016-01-01

    AIM: To investigate the effect and mechanism of stimulation of the hypothalamic paraventricular nucleus with glutamate acid in rats with ulcerative colitis (UC). METHODS: The rats were anesthetized with 10% chloral hydrate via abdominal injection and treated with an equal volume of TNBS + 50% ethanol enema, injected into the upper section of the anus with the tail facing up. Colonic damage scores were calculated after injecting a certain dose of glutamic acid into the paraventricular nucleus (PVN), and the effect of the nucleus tractus solitarius (NTS) and vagus nerve in alleviating UC injury through chemical stimulation of the PVN was observed in rats. Expression changes of C-myc, Apaf-1, caspase-3, interleukin (IL)-6, and IL-17 during the protection against UC injury through chemical stimulation of the PVN in rats were detected by Western blot. Malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in colon tissues of rats were measured by colorimetric methods. RESULTS: Chemical stimulation of the PVN significantly reduced UC in rats in a dose-dependent manner. The protective effects of the chemical stimulation of the PVN on rats with UC were eliminated after chemical damage to the PVN. After glutamate receptor antagonist kynurenic acid was injected into the PVN, the protective effects of the chemical stimulation of the PVN were eliminated in rats with UC. After AVP-Vl receptor antagonist ([Deamino-penl, val4, D-Arg8]-vasopressin) was injected into NTS or bilateral chemical damage to NTS, the protective effect of the chemical stimulation of PVN on UC was also eliminated. After chemical stimulation of the PVN, SOD activity increased, MDA content decreased, C-myc protein expression significantly increased, caspase-3 and Apaf-1 protein expression significantly decreased, and IL-6 and IL-17 expression decreased in colon tissues in rats with UC. CONCLUSION: Chemical stimulation of the hypothalamic PVN provides a protective effect against UC injury in

  4. Testosterone reduces cumulative burying in female Wistar rats with minimal participation of estradiol.

    PubMed

    Gutiérrez-García, Ana G; Contreras, Carlos M; Vásquez-Hernández, Diana I; Molina-Jiménez, Tania; Jacome-Jacome, Emma

    2009-10-01

    Testosterone exerts anxiolytic effects, but the participation of its aromatase metabolic product estradiol is controversial. Therefore, we used the defensive burying paradigm in female Wistar rats to explore testosterone's (1.0 mg/rat, s.c.) interactions with picrotoxin (a noncompetitive gamma-aminobutyric acid-A receptor [GABA(A)] antagonist; 1.0 mg/kg, i.p.), formestane (an aromatase inhibitor; 3.0 mg/rat, s.c.), and tamoxifen (an estrogen receptor-beta antagonist; 1.0 mg/kg, s.c.). Serum levels of testosterone, estradiol, and progesterone were determined in the same rats. Burying latency and locomotion did not significantly change. Systemic testosterone administration enhanced serum testosterone and estradiol levels and reduced defensive burying. This reduction in total burying was blocked by pretreatment with picrotoxin and tamoxifen, but not formestane. We conclude that testosterone produced anxiolytic-like effects in female rats that were mediated by actions at the GABA(A) receptor, with participation of the estradiol receptor-beta, rather than estradiol aromatization.

  5. Early social and physical deprivation leads to reduced social motivation in adulthood in Wistar rats.

    PubMed

    Mintz, Matti; Rüedi-Bettschen, Daniela; Feldon, Joram; Pryce, Christopher R

    2005-01-30

    Behavioural abnormalities in adulthood may have their origin in a disturbed interaction with the environment during postnatal development. We tested the consequences for adult social motivation of early deprivation (ED) of rat pups from mothers and littermates relative to nonhandled (NH) pups. Early deprivation was performed at room or warm ambient temperatures, cold-ED and warm-ED, respectively, and during either the dark or light phase of the daily cycle. In adulthood, rats that were unrelated and unfamiliar but of the same treatment group were introduced in pairs to an open field for a 30-min test. Social behaviour in home base and exploration modes was assessed using algorithmic analysis of the XY locations of the two rats. Findings revealed that Cold-ED induced a preference for a separate home base, which limited significantly the episodes of social interactions, in comparison to NH. Warm-ED had no comparable effect on the rats' social behaviour. These findings indicate that ED under ambient conditions that constitute severe thermal stress for rat pups leads to development of reduced social motivation in adulthood.

  6. Probiotic Pre-treatment Reduces Gliclazide Permeation (ex vivo) in Healthy Rats but Increases It in Diabetic Rats to the Level Seen in Untreated Healthy Rats.

    PubMed

    Al-Salami, Hani; Butt, Grant; Tucker, Ian; Skrbic, Ranko; Golocorbin-Kon, Svetlana; Mikov, Momir

    2008-07-01

    AIM: To investigate the influence of probiotic pre-treatment on the permeation of the antidiabetic drug gliclazide in healthy and diabetic rats. METHODS: Wistar rats (age 2-3 months, weight 350 +/- 50 g) were randomly allocated into one of 4 groups (N = 16 each group): healthy control, healthy probiotic, diabetic control, and diabetic probiotic. Probiotics (75 mg/kg, equal quantities of Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus rhamnosus) were administered twice a day for three days to the appropriate groups after diabetes had been induced with alloxan i.v. 30 mg/kg. Rats were sacrificed, ileal tissues mounted in Ussing chambers and gliclazide (200 microg/mL) was administered for the measurement of the mucosal to serosal absorption Jss((MtoS)) and serosal to mucosal secretion Jss((StoM)) of gliclazide. RESULTS: Treatment of healthy rats with probiotics reduced Jss((MtoS)) of gliclazide from 1.2 +/- 0.3 to 0.3 +/- 0.1 microg/min/cm(2) (P < 0.01) and increased Jss((StoM))from 0.6 +/- 0.1 to 1.4 +/- 0.3 (P < 0.01) resulting in net secretion while, in diabetic tissues, treatment with probiotics increased both Jss((MtoS)) and Jss((StoM))fluxes of gliclazide to the comparable levels of healthy tissues resulting in net absorption. DISCUSSION: In healthy rats, the reduction in Jss((MtoS)) after probiotics administration could be explained by the production of bacterial metabolites that upregulate the mucosal efflux drug transporters Mrp2 that control gliclazide transport. In diabetic rats, the restored fluxes of gliclazide after probiotic treatment, suggests the normalization of the functionality of the drug transporters resulting in a net absorption. CONCLUSION: Probiotics may alter gliclazide transport across rat ileal tissue studied ex vivo.

  7. Development of an in vivo bone fatigue damage model using axial compression of the rabbit forelimb.

    PubMed

    Buettmann, Evan G; Silva, Matthew J

    2016-10-03

    Many nontraumatic fractures seen clinically in patients with metabolic bone disorders or on antiresorptive treatment show an increased incidence of microdamage accumulation and impaired intracortical remodeling. However, the lack of basal remodeling and Haversian bone in rodents limits their translatability in studying bone damage repair mechanisms. The work presented here demonstrates the development of the forelimb loading model in rabbits, the smallest mammal with intracortical Haversian remodeling. The forelimbs of post-mortem female New Zealand white rabbits were loaded in axial end compression to determine their basic monotonic and fatigue properties. Following time zero characterization, stress fractures were created in vivo and animals were allowed to recover for a period of two to five weeks. The rabbit forelimb when loaded in axial compression demonstrates a consistent mid-diaphyseal fracture location characterized by a local mixed compression-bending loading environment. Forelimb apparent stiffness, when fatigue loaded, demonstrates a progressive increase until macrocrack formation, at which time apparent stiffness rapidly declines until failure. Stress fractures in the rabbit ulna display robust periosteal expansion and woven bone formation two weeks following fracture. Subsequent healing at five weeks post-fracture is marked by woven bone densification, resorption and intracortical remodeling along the stress fracture line. The rabbit forelimb fatigue model is a promising new platform by which bone׳s response to damage may be studied.

  8. Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization.

    PubMed

    Versace, Elisabetta; Vallortigara, Giorgio

    2015-01-01

    Functional preferences in the use of right/left forelimbs are not exclusively present in humans but have been widely documented in a variety of vertebrate and invertebrate species. A matter of debate is whether non-human species exhibit a degree and consistency of functional forelimb asymmetries comparable to human handedness. The comparison is made difficult by the variability in hand use in humans and the few comparable studies conducted on other species. In spite of this, interesting continuities appear in functions such as feeding, object manipulation and communicative gestures. Studies on invertebrates show how widespread forelimb preferences are among animals, and the importance of experience for the development of forelimb asymmetries. Vertebrate species have been extensively investigated to clarify the origins of forelimb functional asymmetries: comparative evidence shows that selective pressures for different functions have likely driven the evolution of human handedness. Evidence of a complex genetic architecture of human handedness is in line with the idea of multiple evolutionary origins of this trait.

  9. Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization

    PubMed Central

    Versace, Elisabetta; Vallortigara, Giorgio

    2015-01-01

    Functional preferences in the use of right/left forelimbs are not exclusively present in humans but have been widely documented in a variety of vertebrate and invertebrate species. A matter of debate is whether non-human species exhibit a degree and consistency of functional forelimb asymmetries comparable to human handedness. The comparison is made difficult by the variability in hand use in humans and the few comparable studies conducted on other species. In spite of this, interesting continuities appear in functions such as feeding, object manipulation and communicative gestures. Studies on invertebrates show how widespread forelimb preferences are among animals, and the importance of experience for the development of forelimb asymmetries. Vertebrate species have been extensively investigated to clarify the origins of forelimb functional asymmetries: comparative evidence shows that selective pressures for different functions have likely driven the evolution of human handedness. Evidence of a complex genetic architecture of human handedness is in line with the idea of multiple evolutionary origins of this trait. PMID:25798121

  10. Response of the forelimb vasculature to vasoactive agents: effects of ouabain.

    PubMed

    Dobbins, D E; Swindall, B T; Haddy, F J; Dabney, J M

    1985-01-01

    The effect of the local intra-arterial infusion of ouabain (11.8 micrograms/min.) on the response of the forelimb to vasoactive agents was examined. In seven dogs, bolus injections of CaCl2, MgSO4, KCl, norepinephrine, adenosine, acetylcholine, PGE1 and saline were made into the forelimb perfused at constant flow before and three times during ouabain infusion. Ouabain blocked potassium vasodilation and changed the response to CaCl2 from vasoconstriction to vasodilation. The response of the forelimb to the other vasoactive agents was initially unaffected by ouabain but with time the forelimb vasculature became less sensitive to all agents studied. These changes were not seen in a series of 5 saline infused control animals. In a third series of animals steady-state dose responses to CaCl2, Ca-gluconate and KCl were explored by infusing solutions intrabrachially at three dosages. Before ouabain, forelimb resistance increased as a function of Ca++ and decreased as a function of K+. Ouabain completely blocked potassium vasodilation and on the average blocked Ca++ vasoconstriction although a number of animals evidenced vasodilation to Ca++ during ouabain infusion. These data indicate that K+ vasodilation is Na+, K+-ATPase dependent and that Na+, K+-ATPase inhibition unmasks a vasodilatory action of locally applied Ca++.

  11. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response

    PubMed Central

    Chen, Xueyu; Walther, Frans J.; Sengers, Rozemarijn M. A.; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio

    2015-01-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD. PMID:26047641

  12. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response.

    PubMed

    Chen, Xueyu; Walther, Frans J; Sengers, Rozemarijn M A; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio; Wagenaar, Gerry T M

    2015-08-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD.

  13. Combined Effects of Vincristine and Quercetin in Reducing Isoproterenol-Induced Cardiac Necrosis in Rats.

    PubMed

    Panda, Sunanda; Kar, Anand

    2015-10-01

    Combined effects of vincristine and quercetin in the regulation of isoproterenol (ISO)-induced cardiac necrosis have been evaluated in rats. ISO administration (100 mg/kg, s.c., for two consecutive days) increased the levels of serum creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), glutamate pyruvate transaminase (SGPT) and cardiac troponin (cTnT) as well as cardiac lipid peroxidation products (malondialdehyde and lipid hydroperoxides). However, it reduced the activities of superoxide dismutase (SOD), catalase and the glutathione peroxidase and the level of reduced glutathione. It also increased the heart rate and ST-segment elevation in ECG. Pretreatment of vincristine (25 μg/kg) or quercetin (10 mg/kg) alone for 2 weeks ameliorated these cardiotoxic effects partially. However, treatment of both vincristine and quercetin for a similar period reduced the serum CK-MB, LDH, SGPT and cTnT levels near to normal levels in ISO-treated rats. Concomitantly, the test drugs improved the status of antioxidants and decreased the cardiac lipid peroxidation products. Combined treatment of both the drugs also restored the pathological electrocardiographic patterns and reduced the area of myocardial necrosis. Histopathology of heart in ISO-administered rats that received both vincristine and quercetin showed nearly normal myocardium with very little inflammatory infiltration. In conclusion, the present finding appears to be the first one, suggesting a better protection of cardiac tissues by combined treatment of vincristine and quercetin in isoproterenol-induced cardiac toxicity.

  14. Insulin Reduces Cerebral Ischemia/Reperfusion Injury in the Hippocampus of Diabetic Rats

    PubMed Central

    Collino, Massimo; Aragno, Manuela; Castiglia, Sara; Tomasinelli, Chiara; Thiemermann, Christoph; Boccuzzi, Giuseppe; Fantozzi, Roberto

    2009-01-01

    OBJECTIVE—There is evidence that insulin reduces brain injury evoked by ischemia/reperfusion (I/R). However, the molecular mechanisms underlying the protective effects of insulin remain unknown. Insulin is a well-known inhibitor of glycogen synthase kinase-3β (GSK-3β). Here, we investigate the role of GSK-3β inhibition on I/R-induced cerebral injury in a rat model of insulinopenic diabetes. RESEARCH DESIGN AND METHODS—Rats with streptozotocin-induced diabetes were subjected to 30-min occlusion of common carotid arteries followed by 1 or 24 h of reperfusion. Insulin (2–12 IU/kg i.v.) or the selective GSK-3β inhibitor TDZD-8 (0.2–3 mg/kg i.v.) was administered during reperfusion. RESULTS—Insulin or TDZD-8 dramatically reduced infarct volume and levels of S100B protein, a marker of cerebral injury. Both drugs induced phosphorylation of the Ser9 residue, thereby inactivating GSK-3β in the rat hippocampus. Insulin, but not TDZD-8, lowered blood glucose. The hippocampi of the drug-treated animals displayed reduced oxidative stress at 1 h of reperfusion as shown by the decreased generation of reactive oxygen species and lipid peroxidation. I/R-induced activation of nuclear factor-κB was attenuated by both drug treatments. At 24 h of reperfusion, TDZD-8 and insulin significantly reduced plasma levels of tumor necrosis factor-α; neutrophil infiltration, measured as myeloperoxidase activity and intercellular-adhesion-molecule-1 expression; and cyclooxygenase-2 and inducible-NO-synthase expression. CONCLUSIONS—Acute administration of insulin or TDZD-8 reduced cerebral I/R injury in diabetic rats. We propose that the inhibitory effect on the activity of GSK-3β contributes to the protective effect of insulin independently of any effects on blood glucose. PMID:18840784

  15. A high-potassium diet reduces infarct size and improves vascular structure in hypertensive rats.

    PubMed

    Dorrance, Anne M; Pollock, David M; Romanko, Olga P; Stepp, David W

    2007-01-01

    High-potassium diets can improve vascular function, yet the effects of potassium supplementation on ischemic stroke have not been studied. We hypothesized that dietary potassium supplementation would reduce ischemic cerebral infarct size by reversing cerebral artery hypertrophy. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were fed diets containing 0.79% potassium (LK) or 2.11% potassium (HK) for 6 wk; Wistar-Kyoto (WKY) rats were fed the LK diet. The HK diet did not reduce blood pressure, as measured by telemetry, in the SHRSP. Cerebral ischemia was induced by middle cerebral artery (MCA) occlusion. The resultant infarct was smaller in the HK-SHRSP than in the LK-SHRSP: 55.1 +/- 6.3 vs. 71.4 +/- 2.4% of the hemisphere infarcted (P < 0.05). Infarcts were smaller in WKY rats (33.5 +/- 4.8%) than in LK-SHRSP or HK-SHRSP. The vessel wall of MCAs from LK-SHRSP was hypertrophied compared with WKY rats; this was reversed in HK-SHRSP. RT-PCR analysis of the cerebral vessels showed that expression of platelet-derived growth factor receptors-alpha and -beta, epidermal growth factor receptor, and collagen I and III was increased in the vessels from LK-SHRSP compared with WKY rats and reduced in HK-SHRSP. These results suggest that potassium supplementation provides neuroprotection in a model of ischemic stroke independent of blood pressure and possibly through changes in vascular structure.

  16. A ketogenic diet reduces long-term potentiation in the dentate gyrus of freely behaving rats.

    PubMed

    Koranda, Jessica L; Ruskin, David N; Masino, Susan A; Blaise, J Harry

    2011-08-01

    Ketogenic diets are very low in carbohydrates and can reduce epileptic seizures significantly. This dietary therapy is particularly effective in pediatric and drug-resistant epilepsy. Hypothesized anticonvulsant mechanisms of ketogenic diets focus on increased inhibition and/or decreased excitability/excitation. Either of these consequences might not only reduce seizures, but also could affect normal brain function and synaptic plasticity. Here, we characterized effects of a ketogenic diet on hippocampal long-term potentiation, a widely studied form of synaptic plasticity. Adult male rats were placed on a control or ketogenic diet for 3 wk before recording. To maintain the most physiological conditions possible, we assessed synaptic transmission and plasticity using chronic in vivo recordings in freely behaving animals. Rats underwent stereotaxic surgery to chronically implant a recording electrode in the hippocampal dentate gyrus and a stimulating electrode in the perforant path; they recovered for 1 wk. After habituation and stable baseline recording, 5-Hz theta-burst stimulation was delivered to induce long-term potentiation. All animals showed successful plasticity, demonstrating that potentiation was not blocked by the ketogenic diet. Compared with rats fed a control diet, rats fed a ketogenic diet demonstrated significantly diminished long-term potentiation. This decreased potentiation lasted for at least 48 h. Reduced potentiation in ketogenic diet-fed rats is consistent with a general increase in neuronal inhibition (or decrease in excitability) and decreased seizure susceptibility. A better understanding of the effects of ketogenic diets on synaptic plasticity and learning is important, as diet-based therapy is often prescribed to children with epilepsy.

  17. High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats

    PubMed Central

    Li, Jing; Zuo, Wanhong; Fu, Rao; Xie, Guiqin; Kaur, Amandeep; Bekker, Alex

    2016-01-01

    Background: Development of new strategies that can effectively prevent and/or treat alcohol use disorders is of paramount importance, because the currently available treatments are inadequate. Increasing evidence indicates that the lateral habenula (LHb) plays an important role in aversion, drug abuse, and depression. In light of the success of high-frequency stimulation (HFS) of the LHb in improving helplessness behavior in rodents, we assessed the effects of LHb HFS on ethanol-drinking behavior in rats. Methods: We trained rats to drink ethanol under an intermittent access two-bottle choice procedure. We used c-Fos immunohistochemistry and electrophysiological approaches to examine LHb activity. We applied a HFS protocol that has proven effective for reducing helplessness behavior in rats via a bipolar electrode implanted into the LHb. Results: c-Fos protein expression and the frequency of both spontaneous action potential firings and spontaneous excitatory postsynaptic currents were higher in LHb neurons of ethanol-withdrawn rats compared to their ethanol-naïve counterparts. HFS to the LHb produced long-term reduction of intake and preference for ethanol, without altering locomotor activity. Conversely, low-frequency electrical stimulation to the LHb or HFS applied to the nearby nucleus did not affect drinking behavior. Conclusions: Our results suggest that withdrawal from chronic ethanol exposure increases glutamate release and the activity of LHb neurons, and that functional inhibition of the LHb via HFS reduces ethanol consumption. Thus, LHb HFS could be a potential new therapeutic option for alcoholics. PMID:27234303

  18. Exposure to sucrose during periods of withdrawal does not reduce cocaine-seeking behavior in rats

    PubMed Central

    Nicolas, Céline; Lafay-Chebassier, Claire; Solinas, Marcello

    2016-01-01

    Concomitant access to drugs of abuse and alternative rewards such as sucrose has been shown to decrease addiction-related behaviors in animals. Here we investigated whether access to sucrose during abstinence in contexts that are temporally and physically distinct from drug-related contexts could reduce subsequent drug seeking. In addition, we investigated whether a history of cocaine self-administration would alter the rewarding effects of sucrose. Rats self-administered cocaine for ten sessions, while yoked-saline rats received only saline injections, and then we subjected them to a 30-day withdrawal period during which they had access to water and sucrose continuously or intermittently according to a schedule that induces binge-drinking behavior. At the end of the withdrawal period, rats were tested for cocaine seeking behavior during a single 6 h session. We found that exposure to cocaine increased sucrose consumption only when rats had intermittent access to sucrose, but exposure to sucrose did not alter drug seeking regardless of the schedule of access. These results suggest that exposure to cocaine cross-sensitizes to the rewarding effects of sucrose, but exposure to sucrose during abstinence, temporally and physically distinct from drug-related environments, does not to reduce drug seeking. PMID:26997496

  19. Exposure to sucrose during periods of withdrawal does not reduce cocaine-seeking behavior in rats.

    PubMed

    Nicolas, Céline; Lafay-Chebassier, Claire; Solinas, Marcello

    2016-03-21

    Concomitant access to drugs of abuse and alternative rewards such as sucrose has been shown to decrease addiction-related behaviors in animals. Here we investigated whether access to sucrose during abstinence in contexts that are temporally and physically distinct from drug-related contexts could reduce subsequent drug seeking. In addition, we investigated whether a history of cocaine self-administration would alter the rewarding effects of sucrose. Rats self-administered cocaine for ten sessions, while yoked-saline rats received only saline injections, and then we subjected them to a 30-day withdrawal period during which they had access to water and sucrose continuously or intermittently according to a schedule that induces binge-drinking behavior. At the end of the withdrawal period, rats were tested for cocaine seeking behavior during a single 6 h session. We found that exposure to cocaine increased sucrose consumption only when rats had intermittent access to sucrose, but exposure to sucrose did not alter drug seeking regardless of the schedule of access. These results suggest that exposure to cocaine cross-sensitizes to the rewarding effects of sucrose, but exposure to sucrose during abstinence, temporally and physically distinct from drug-related environments, does not to reduce drug seeking.

  20. COX-2-Derived Prostanoids and Oxidative Stress Additionally Reduce Endothelium-Mediated Relaxation in Old Type 2 Diabetic Rats

    PubMed Central

    Vessières, Emilie; Guihot, Anne-Laure; Toutain, Bertrand; Maquigneau, Maud; Fassot, Céline; Loufrani, Laurent; Henrion, Daniel

    2013-01-01

    Endothelial dysfunction in resistance arteries alters end organ perfusion in type 2 diabetes. Superoxides and cyclooxygenase-2 (COX-2) derivatives have been shown separately to alter endothelium-mediated relaxation in aging and diabetes but their role in the alteration of vascular tone in old diabetic subjects is not clear, especially in resistance arteries. Consequently, we investigated the role of superoxide and COX-2-derivatives on endothelium-dependent relaxation in 3 and 12 month-old Zucker diabetic fatty (ZDF) and lean (LZ) rats. Mesenteric resistance arteries were isolated and vascular tone was investigated using wire-myography. Endothelium (acetylcholine)-dependent relaxation was lower in ZDF than in LZ rats (60 versus 84% maximal relaxation in young rats and 41 versus 69% in old rats). Blocking NO production with L-NAME was less efficient in old than in young rats. L-NAME had no effect in old ZDF rats although eNOS expression level in old ZDF rats was similar to that in old LZ rats. Superoxide level and NADPH-oxidase subunits (p67phox and gp91phox) expression level were greater in ZDF than in LZ rats and were further increased by aging in ZDF rats. In young ZDF rats reducing superoxide level with tempol restored acetylcholine-dependent relaxation to the level of LZ rats. In old ZDF rats tempol improved acetylcholine-dependent relaxation without increasing it to the level of LZ rats. COX-2 (immunolabelling and Western-blot) was present in arteries of ZDF rats and absent in LZ rats. In old ZDF rats arterial COX-2 level was higher than in young ZDF rats. COX-2 blockade with NS398 restored in part acetylcholine-dependent relaxation in arteries of old ZDF rats and the combination of tempol and NS398 fully restored relaxation in control (LZ rats) level. Accordingly, superoxide production and COX-2 derivatives together reduced endothelium-dependent relaxation in old ZDF rats whereas superoxides alone attenuated relaxation in young ZDF or old LZ rats. PMID

  1. Sericin reduces serum cholesterol in rats and cholesterol uptake into Caco-2 cells.

    PubMed

    Limpeanchob, Nanteetip; Trisat, Kanittaporn; Duangjai, Acharaporn; Tiyaboonchai, Waree; Pongcharoen, Sutatip; Sutheerawattananonda, Manote

    2010-12-08

    A cholesterol lowering effect of sericin was investigated both in vivo and in vitro. Rats were dosed with cholesterol with and without sericin for 14 days. Non-high-density lipoprotein (HDL) and total serum cholesterols were reduced in rats fed high-cholesterol diet with all three tested doses of sericin (10, 100, and 1000 mg kg(-1) day(-1)). The potential mechanism of actions was determined by measuring the uptake of radiolabeled cholesterol into differentiated Caco-2 cells and cholesterol solubility in mixed lipid micelles. Concentration of sericin as low as 25 and 50 μg/mL inhibited 30% of cholesterol uptake into Caco-2 cells whereas no effect was found at higher concentration. Cholesterol micellar solubility was reduced in the presence of sericin. This study suggests the cholesterol lowering effect of sericin results from its inhibition of cholesterol absorption in intestinal cells and its reduction of cholesterol solubility in lipid micelles.

  2. The unilateral 6-OHDA rat model of Parkinson's disease revisited: an electromyographic and behavioural analysis.

    PubMed

    Metz, Gerlinde A; Tse, Arthur; Ballermann, Mark; Smith, Lori K; Fouad, Karim

    2005-08-01

    The characteristic locomotor disturbances of Parkinson's disease (PD) include shuffling gait, short steps and low walking velocity. In this study we investigated features of walking and turning in a rat model of PD caused by unilateral infusion of the neurotoxin 6-hydroxydopamine (6-OHDA). We assessed gait and electromyographic (EMG) patterns of the ankle flexor tibialis anterior and the knee extensor vastus lateralis of the hindlimb, and triceps brachii of the forelimb, during overground locomotion, spontaneous rotation (turning) and apomorphine-induced rotation. When compared with control rats, rats with unilateral dopamine depletion displayed a shuffling gait and short stride lengths. This locomotor pattern was accompanied by prolonged ankle flexor activity on the ipsilateral side, and prolonged activity of knee extensors on the contralateral side. The dopamine depletion also led to enhanced contraversive rotations after an apomorphine challenge. The EMG recordings during drug-induced rotation suggested that hindlimb stepping was a reflective response to an active drive produced by forelimbs. The EMG recordings of the contralateral side during rotation were marked by reduced ankle flexor activity and increased knee extensor activity. Furthermore, EMG recordings indicated that dopamine-agonists induce rotational bias by altering the coupling between ipsi- and contralateral hindlimbs, and between forelimbs. In straight walking, however, the gait of 6-OHDA lesion animals reflected normal, coupled hindlimb stepping as controlled by spinal pattern generators. The data suggest that the unilateral rat model of PD resembles key features of human parkinsonian gait, and that asymmetric descending input may underlie the observed changes in gait patterns.

  3. Diet enriched with procyanidins enhances antioxidant activity and reduces myocardial post-ischaemic damage in rats.

    PubMed

    Facino, R M; Carini, M; Aldini, G; Berti, F; Rossoni, G; Bombardelli, E; Morazzoni, P

    1999-01-01

    Aim of this work was to study the efficacy of procyanidins from Vitis vinifera seeds, a standardized mixture of polyphenol antioxidants, on cardiac mechanics following ischemia/reperfusion stunning in the rat, after 3 weeks supplementation. Young and aged male rats were fed a diet enriched with procyanidins complexed (1:3 w/w) with soybean lecithin (2.4%); control animals (CTR-young and CTR-aged) received an equal amount of lecithin and 2 additional groups of animals the standard diet. At the end of the treatment, the total plasma antioxidant defense (TRAP), vitamin E, ascorbic acid and uric acid were determined in plasma and the hearts from all groups of animals subjected to moderate ischemia (flow reduction to 1 ml/min for 20 min) and reperfusion (15 ml/min for 30 min). In both young and aged rats supplemented with procyanidins the recovery of left ventricular developed pressure (LVDP) at the end of reperfusion was 93% (p < 0.01) and 74% (p < 0.01) of the preischemic values and the values of coronary perfusion pressure (CPP) were maintained close to those of the preischemic period. Also creatine kinase (CK) outflow was restrained to baseline levels, while a 2-fold increase in prostacyclin (6-keto-PGF1alpha) in the perfusate from hearts of young and aged rats was elicited during both ischemia and reperfusion. In parallel, procyanidins significantly increased the total antioxidant plasma capacity (by 40% in young and by 30% in aged rats) and the plasma levels of ascorbic acid, while tend to reduce vitamin E levels; no significant differences were observed in uric acid levels. The results of this study demonstrate that procyanidins supplementation in the rat (young and aged) makes the heart less susceptible to ischemia/reperfusion damage and that this is positively associated to an increase in plasma antioxidant activity.

  4. Low-Anxiety Rat Phenotypes Can Be Further Reduced through Genetic Intervention

    PubMed Central

    Granzotto, Natalli; Ramos, André

    2013-01-01

    Background A previous study using an intercross between the inbred rat strains Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) identified a locus on chromosome 4, named Anxrr16, influencing an experimental index of anxiety and showing a transgressive effect, with alleles from the LEW strain (more anxious) decreasing rather than increasing anxiety. Objective To confirm the location and isolate the effect of a rat genome region named Anxrr16 through a planned genomic recombination strategy, where the target locus in SHR rats was replaced with LEW genetic material. Methods A new congenic strain, named SHR.LEW-Anxrr16 (SLA16), was developed from a cross between LEW (donor) and SHR (receptor) rats and then evaluated in several anxiety-related tests. The activity and attention levels of the new strain were also evaluated, since hyperactivity was observed during its construction and because SHR is a model of attention deficit hyperactivity disorder. Results Significant effects of Anxrr16 were found for open field central locomotion, as well as for other indices of anxiety from the light/dark box, triple test and T-maze. In all cases, the low-anxiety levels of SHR rats were further reduced by the insertion of LEW alleles. Differences in locomotor activity were found only in unfamiliar (hence stressful) environments and no genetic effects were observed in indices of attention. Conclusion The SLA16 strain can help in the identification of the molecular pathways involved in experimental anxiety and it demonstrates how apparently extreme phenotypes sometimes hide major opposite-acting genes. PMID:24386249

  5. Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis.

    PubMed

    Barichello, Tatiana; Ceretta, Renan A; Generoso, Jaqueline S; Moreira, Ana Paula; Simões, Lutiana R; Comim, Clarissa M; Quevedo, João; Vilela, Márcia Carvalho; Zuardi, Antonio Waldo; Crippa, José A; Teixeira, Antônio Lucio

    2012-12-15

    Pneumococcal meningitis is a life-threatening disease characterized by an acute infection affecting the pia matter, arachnoid and subarachnoid space. The intense inflammatory response is associated with a significant mortality rate and neurologic sequelae, such as, seizures, sensory-motor deficits and impairment of learning and memory. The aim of this study was to evaluate the effects of acute and extended administration of cannabidiol on pro-inflammatory cytokines and behavioral parameters in adult Wistar rats submitted to pneumococcal meningitis. Male Wistar rats underwent a cisterna magna tap and received either 10μl of sterile saline as a placebo or an equivalent volume of S. pneumoniae suspension. Rats subjected to meningitis were treated by intraperitoneal injection with cannabidiol (2.5, 5, or 10mg/kg once or daily for 9 days after meningitis induction) or a placebo. Six hours after meningitis induction, the rats that received one dose were killed and the hippocampus and frontal cortex were obtained to assess cytokines/chemokine and brain-derived neurotrophic factor levels. On the 10th day, the rats were submitted to the inhibitory avoidance task. After the task, the animals were killed and samples from the hippocampus and frontal cortex were obtained. The extended administration of cannabidiol at different doses reduced the TNF-α level in frontal cortex. Prolonged treatment with canabidiol, 10mg/kg, prevented memory impairment in rats with pneumococcal meningitis. Although descriptive, our results demonstrate that cannabidiol has anti-inflammatory effects in pneumococcal meningitis and prevents cognitive sequel.

  6. Hypothyroidism reduces mammary tumor progression via Β-catenin-activated intrinsic apoptotic pathway in rats.

    PubMed

    López Fontana, C M; Zyla, L E; Santiano, F E; Sasso, C V; Cuello-Carrión, F D; Pistone Creydt, V; Fanelli, M A; Carón, R W

    2017-02-13

    Experimental hypothyroidism retards mammary carcinogenesis promoting apoptosis of tumor cells. β-catenin plays a critical role in cell adhesion and intracellular signaling pathways conditioning the prognosis of breast cancer. However, the mechanistic connections associated with the expression of β-catenin in thyroid status and breast cancer are not known. Therefore, we studied the relationship between the expression and localization of β-catenin and apoptosis in mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) in hypothyroid (Hypot) and euthyroid (EUT) rats. Female Sprague Dawley rats were treated with a dose of DMBA (15 mg/rat) at 55 days of age and were then divided into two groups: HypoT (0.01% 6-N-propyl-2-thiouracil in drinking water, n = 54) and EUT (untreated control, n = 43). Latency, incidence and progression of tumors were determined. At sacrifice, tumors were obtained for immunohistological studies and Western Blot. The latency was longer (p < 0.05), the incidence was lower (p < 0.0001) and tumor growth was slower (p < 0.01) in HypoT rats compared to EUT. The expression of Bax, cleaved caspase-9 and caspase-3 was significantly higher in tumors of HypoT than in EUT (p < 0.05) indicating the activation of the intrinsic pathway. In this group, β-catenin was expressed in the plasma membrane and with less intensity, while its expression was nuclear and with greater intensity in the EUT (p < 0.05). Moreover, the expression of survivin was reduced in tumors of HypoT rats (p < 0.05). In conclusion, decreased expression of β-catenin and its normal location in membrane of mammary tumors are associated with augmented apoptosis via activation of the intrinsic pathway in HypoT rats.

  7. Efficacy of curcumin to reduce hepatic damage induced by alcohol and thermally treated oil in rats.

    PubMed

    El-Deen, Nasr A M N; Eid, Mohamed

    2010-01-01

    The authors investigated the effect of curcumin on markers of oxidative stress and liver damage in rats that chronically ingested alcohol and heated oil. Nine groups of ten Wistar male rats received combinations of curcumin 100 mg/kg body weight daily, ethanol 5 mg/kg, 15% dietary sunflower oil and 15% heated sunflower oil for 12 weeks. Serum and liver tissue were collected. Groups 4-6, which had received compounds causing oxidative stress, showed increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, cholesterol, triglycerides, low density lipoprotein, very low density lipoprotein and reduced high density lipoprotein, protein and albumin, compared with the controls. Reductions were observed in glutathione peroxidase and reductase gene expression, superoxide dismutase activity, glutathione peroxidase activity, glutathione reductase activity, reduced glutathione concentration and catalase enzyme activity. Groups 7, 8 and 9 which received curcumin with heated oil, ethanol or both, showed lower elevations in serum and oxidative damage markers compared with the corresponding non-curcumin treated groups. It can be concluded that curcumin reduces markers of liver damage in rats treated with heated sunflower oil or ethanol.

  8. Alginate enhances excretion and reduces absorption of strontium and cesium in rats.

    PubMed

    Idota, Yoko; Harada, Hitomi; Tomono, Takumi; Morimoto, Kaori; Kobayashi, Shoko; Kakinuma, Chihaya; Miyajima, Chihiro; Kasahara, Fumiyoshi; Ogihara, Takuo

    2013-01-01

    Alginate (ALA), which is an intercellular polysaccharide associated with brown algae, is used as a food additive, a health food and a medicine. Here, we first examined the adsorption of strontium (Sr) and cesium (Cs) by ALA in vitro, and then evaluated the effects of ALA on absorption and excretion of Sr and Cs in rats, in order to evaluate its potential usefulness for minimizing radiation damage from materials released after a nuclear accident. Both Sr and Cs were concentration-dependently adsorbed by sodium alginate (ALA-Na) in vitro. In rats given diet containing either ALA-Na or calcium alginate (ALA-Ca) for two weeks, the plasma concentration of Sr gradually decreased compared with the controls (normal diet); however, in the case of Cs, the plasma concentration was decreased only in the ALA-Ca group, but not the ALA-Na group. Moreover, we examined the effect of preadministration of diet containing either ALA-Na or ALA-Ca on absorption of Sr and Cs administered orally as the chloride salts to rats. Absorption of both Sr and Cs was reduced in the ALA-Ca group, while absorption of only Sr was reduced in the ALA-Na group. Safety assessments indicated that ALA-Ca is safer than ALA-Na. These results indicate that ALA-Ca reduces absorption and promotes excretion of both Sr and Cs, while ALA-Na does so only for Sr.

  9. Estradiol selectively reduces central neural activation induced by hypertonic NaCl infusion in ovariectomized rats.

    PubMed

    Jones, Alexis B; Bass, Eryn E; Fan, Liming; Curtis, Kathleen S

    2012-09-10

    We recently reported that the latency to begin drinking water during slow, intravenous infusion of a concentrated NaCl solution was shorter in estradiol-treated ovariectomized rats compared to oil vehicle-treated rats, despite comparably elevated plasma osmolality. To test the hypothesis that the decreased latency to begin drinking is attributable to enhanced detection of increased plasma osmolality by osmoreceptors located in the CNS, the present study used immunocytochemical methods to label fos, a marker of neural activation. Increased plasma osmolality did not activate the subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), or the nucleus of the solitary tract (NTS) in either oil vehicle-treated rats or estradiol-treated rats. In contrast, hyperosmolality increased fos labeling in the area postrema (AP), the paraventricular nucleus of the hypothalamus (PVN) and the rostral ventrolateral medulla (RVLM) in both groups; however, the increase was blunted in estradiol-treated rats. These results suggest that estradiol has selective effects on the sensitivity of a population of osmo-/Na(+)-receptors located in the AP, which, in turn, alters activity in other central areas associated with responses to increased osmolality. In conjunction with previous reports that hyperosmolality increases blood pressure and that elevated blood pressure inhibits drinking, the current findings of reduced activation in AP, PVN, and RVLM-areas involved in sympathetic nerve activity-raise the possibility that estradiol blunts HS-induced blood pressure changes. Thus, estradiol may eliminate or reduce the initial inhibition of water intake that occurs during increased osmolality, and facilitate a more rapid behavioral response, as we observed in our recent study.

  10. Reducing Caloric Intake Prevents Ischemic Injury and Myocardial Dysfunction and Affects Anesthetic Cardioprotection in Type 2 Diabetic Rats

    PubMed Central

    Boer, Christa; van den Akker, Rob F. P.; Loer, Stephan A.; Bouwman, R. Arthur

    2017-01-01

    Background. Type 2 diabetes mellitus (T2DM) increases the risk of myocardial ischemia, followed by increased perioperative risk of cardiovascular morbidity. We investigated whether reducing caloric intake reduces ischemic injury and myocardial dysfunction and affects the protective effects of the volatile anesthetic sevoflurane in diet-induced T2DM rats. Methods. Rats received a western (WD) or control diet (CD). Caloric intake was reduced by reversing WD-fed rats to CD. Myocardial function was determined with echocardiography. After 8 weeks of diet feeding, myocardial infarction was induced and the effect of sevoflurane was studied on myocardial function and ischemia/reperfusion injury. Results. WD-feeding resulted in a mild T2DM phenotype and myocardial dysfunction. Sevoflurane further impaired systolic function in WD-fed rats. Unexpectedly, WD-feeding reduced infarct size compared to CD-feeding. Sevoflurane reduced infarct size in CD-fed rats; however it enlarged infarct size in WD-fed rats. Caloric reduction restored myocardial dysfunction and the protective effect of sevoflurane against ischemia compared to WD-fed rats, whereas the protective effects of WD-feeding persisted. Conclusion. Caloric reduction restored the T2DM phenotype and myocardial function, while the cardioprotective properties of WD-feeding or sevoflurane persisted. Our data suggest that reducing caloric intake in T2DM might be a possible intervention to reduce perioperative risk of cardiovascular morbidity. PMID:28349068

  11. Functional morphology of the forelimb of living and extinct tree-kangaroos (Marsupialia: Macropodidae).

    PubMed

    Warburton, Natalie M; Harvey, Kathryn J; Prideaux, Gavin J; O'Shea, James E

    2011-10-01

    Tree-kangaroos are a unique group of arboreal marsupials that evolved from terrestrial ancestors. The recent discovery of well-preserved specimens of extinct tree-kangaroo species (genus Bohra) within Pleistocene cave deposits of south-central Australia provides a unique opportunity to examine adaptive evolution of tree-kangaroos. Here, we provide the first detailed description of the functional anatomy of the forelimb, a central component of the locomotor complex, in the extant Dendrolagus lumholtzi, and compare its structure and function with representatives of other extant marsupial families. Several features were interpreted as adaptations for coping with a discontinuous, uneven and three-dimensional arboreal substrate through enhanced muscular strength and dexterity for propulsion, grasping, and gripping with the forelimbs. The forelimb musculoskeletal anatomy of Dendrolagus differed from terrestrial kangaroos in the following principal ways: a stronger emphasis on the development of muscles groups responsible for adduction, grasping, and gripping; the enlargement of muscles that retract the humerus; and modified shape of the scapula and bony articulations of the forelimb bones to allow improved mobility. Many of these attributes are convergent with other arboreal marsupials. Tree-kangaroos, however, still retain the characteristic bauplan of their terrestrial ancestors, particularly with regard to skeletal morphology, and the muscular anatomy of the forelimb highlights a basic conservatism within the group. In many instances, the skeletal remains of Bohra have similar features to Dendrolagus that suggest adaptations to an arboreal habit. Despite the irony of their retrieval from deposits of the Nullarbor "Treeless" Plain, forelimb morphology clearly shows that the species of Bohra were well adapted to an arboreal habitat.

  12. The α2-adrenergic receptor agonist, clonidine, reduces alcohol drinking in alcohol-preferring (P) rats.

    PubMed

    Rasmussen, Dennis D; Alexander, Laura; Malone, Julia; Federoff, David; Froehlich, Janice C

    2014-09-01

    Evidence suggests that noradrenergic signaling may play a role in mediating alcohol-drinking behavior in both rodents and humans. We have investigated this possibility by administering clonidine to alcohol-drinking rats selectively bred for alcohol preference (P line). Clonidine is an α2-adrenergic receptor agonist which, at low doses, inhibits noradrenergic signaling by decreasing norepinephrine release from presynaptic noradrenergic neurons. Adult male P rats were given 24 h access to food and water and scheduled access to a 15% (v/v) alcohol solution for 2 h daily. Rats received intra-peritoneal (IP) injections with clonidine (0, 10, 20, 40, or 80 μg/kg body weight [BW], 10-11 rats/treatment group) once/day at 30 min prior to onset of the daily 2 h alcohol access period for 2 consecutive days. Clonidine, in doses of 40 or 80 μg/kg BW, significantly reduced alcohol intake on both days of treatment (p<0.001). Two weeks later, rats were treated with clonidine for 5 consecutive days and clonidine, in doses of 40 or 80 μg/kg BW, reduced alcohol intake on all 5 treatment days (p < 0.001). Clonidine did not alter water consumption during the daily 2 h free-choice between alcohol and water. In a separate group of male P rats, clonidine (40 μg/kg BW) suppressed intake of a saccharin solution (0.04 g/L). These results are consistent with and complement our previous findings that the α1-adrenergic receptor antagonist, prazosin, decreases voluntary alcohol drinking in alcohol-preferring rats, but suggests that effects of clonidine may not be specific for alcohol. The results suggest that although activation of the noradrenergic system plays an important role in mediating voluntary alcohol drinking, care is needed in selecting which drugs to use to suppress central noradrenergic signaling in order to maximize the selectivity of the drugs for treating alcohol-use disorders.

  13. Hypertension-Induced Vascular Remodeling Contributes to Reduced Cerebral Perfusion and the Development of Spontaneous Stroke in Aged SHRSP Rats

    DTIC Science & Technology

    2010-01-01

    induced vascular remodeling contributes to reduced cerebral perfusion and the development of spontaneous stroke in aged SHRSP rats Erica C Henning1...spontaneously-hypertensive, stroke-prone (SHRSP) rats is of particular interest because the pathogenesis is believed to be similar to that in the...cerebral infarction and the specific role of cerebral perfusion in disease development. Twelve female SHRSP rats (age: - 1 year) were Imaged within 1

  14. Noxious Colorectal Distention in Spinalized Rats Reduces Pseudorabies Virus Labeling of Sympathetic Neurons

    PubMed Central

    Duale, Hanad; Lyttle, Travis S.; Smith, Bret N.

    2010-01-01

    Abstract The retrograde transsynaptic tracer pseudorabies virus (PRV) has been widely used as a marker for synaptic connectivity in the spinal cord. Notably, the PRV-152 construct expresses enhanced green fluorescent protein (EGFP). We recently reported a significant attenuation of PRV-152 labeling of the intermediolateral cell column (IML) and celiac ganglia after complete T4 spinal cord transection versus sham injury in rats at 96 h after PRV-152 inoculation of the left kidney. Here we found a significant increase in noxious colorectal distention (CRD)-evoked c-Fos expression in spinal cords of injured versus sham rats without PRV infection. In order to assess whether enhancing neuronal activity in spinalized rats might increase PRV-152 labeling, we subjected awake spinalized rats to 1.5 h of intermittent noxious CRD either: (1) just prior to inoculation, or (2) 96 h after inoculation (n = 3/group). Equal numbers of spinalized rats in both groups received PRV-152 inoculations without CRD (non-stimulated; n = 3/group). At 96 h post-inoculation fixed spinal cords and left celiac ganglionic tissues were assessed for the distribution and quantification of EGFP-labeled cells. The injured cohort that received CRD just prior to PRV injection showed a significant reduction in EGFP-labeled cells in both the IML and left celiac ganglion compared to non-stimulated injured rats. In contrast, the injured cohort that received CRD 96 h after PRV-152 inoculation showed no differences in EGFP-labeled cell numbers in the IML or celiac ganglia versus non-stimulated injured rats. Interestingly, microglia near c-Fos-positive cells after acute CRD appeared more reactive compared to non-stimulated spinalized rats, and activated microglial cells markedly reduce viral transduction and progression following PRV inoculation of the CNS. Hence our results imply that increased CRD-induced c-Fos expression in the injured paradigm, prior to but not after PRV injection, further

  15. A Novel Hemp Seed Meal Protein Hydrolysate Reduces Oxidative Stress Factors in Spontaneously Hypertensive Rats

    PubMed Central

    Girgih, Abraham T.; Alashi, Adeola M.; He, Rong; Malomo, Sunday A.; Raj, Pema; Netticadan, Thomas; Aluko, Rotimi E.

    2014-01-01

    This report shows the antioxidant effects of a hemp seed meal protein hydrolysate (HMH) in spontaneously hypertensive rats (SHR). Defatted hemp seed meal was hydrolyzed consecutively with pepsin and pancreatin to yield HMH, which was incorporated into rat feed as a source of antioxidant peptides. Young (8-week old) SHRs were divided into three groups (8 rats/group) and fed diets that contained 0.0%, 0.5% or 1.0% (w/w) HMH for eight weeks; half of the rats were sacrificed for blood collection. After a 4-week washout period, the remaining 20-week old SHRs were fed for an additional four weeks and sacrificed for blood collection. Plasma total antioxidant capacity (TAC) and superoxide dismutase (SOD), catalase (CAT) and total peroxides (TPx) levels were determined. Results showed that plasma TAC, CAT and SOD levels decreased in the older 20-week old SHRs when compared to the young SHRs. The presence of HMH in the diets led to significant (p < 0.05) increases in plasma SOD and CAT levels in both young and adult SHR groups; these increases were accompanied by decreases in TPx levels. The results suggest that HMH contained antioxidant peptides that reduced the rate of lipid peroxidation in SHRs with enhanced antioxidant enzyme levels and total antioxidant capacity. PMID:25493943

  16. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    PubMed Central

    Herrera-Pérez, José Jaime; Fernández-Guasti, Alonso; Martínez-Mota, Lucía

    2013-01-01

    In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT) expression associated with low testosterone (T) levels. The objectives of this study were to establish (1) if brain SERT expression is reduced by aging and (2) if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months) and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population. PMID:26317087

  17. Palmitoylethanolamide treatment reduces retinal inflammation in streptozotocin-induced diabetic rats.

    PubMed

    Paterniti, Irene; Di Paola, Rosanna; Campolo, Michela; Siracusa, Rosalba; Cordaro, Marika; Bruschetta, Giuseppe; Tremolada, Gemma; Maestroni, Anna; Bandello, Francesco; Esposito, Emanuela; Zerbini, Gianpaolo; Cuzzocrea, Salvatore

    2015-12-15

    Although the pathogenesis of diabetic retinopathy (DR) is still insufficiently understood, new evidences indicate 'retinal inflammation' as an important player in the pathogenesis of the complication. Accordingly, common sets of upregulated inflammatory cytokines are found in serum, vitreous and aqueous samples obtained from subjects with DR, and these cytokines can have multiple interactions to impact the pathogenesis of the disease. Thus, based on previously published data, we investigated the effects of Palmitoylethanolamide (PEA), an endogenous lipid amide that belongs to the N-acyl-ethanolamines family, on DR in streptozotocin (STZ)-induced diabetic rats. PEA (10mg/kg) was administered orally daily starting 3 days after the iv administration of STZ. The rats were killed 15 and 60day later and eyes were enucleated to evaluate, through immunohistochemical analysis, the key inflammatory events involved in the breakdown of blood retinal barrier (BRB). Immunohistochemical analysis confirmed the presence of VEGF, ICAM-1, nitrotyrosine (a marker of peroxynitrite), and tight junctions in the retina of STZ-treated rats. Of interest, the extent of injury was significantly reduced after treatment with PEA. Altogether, this study provides the first evidence that PEA attenuates the degree of inflammation while preserving the blood-retinal barrier in rats with experimental DR.

  18. Spent turmeric reduces fat mass in rats fed a high-fat diet.

    PubMed

    Han, Kyu-Ho; Lee, Chang-Hyun; Kinoshita, Mikio; Oh, Chan-Ho; Shimada, Ken-ichiro; Fukushima, Michihiro

    2016-04-01

    Indigestible carbohydrates may improve obesity. Spent turmeric contains high levels of dietary fibre and resistant starch (RS), which have fermentation potential in vitro. We hypothesised that indigestible carbohydrates in spent turmeric might prevent obesity development. In the first study, rats were administered 10% turmeric powder (TP) or spent turmeric powder (STP) in a high-fat (HF) diet for 28 d. In the second study, rats were fed 10% STP in a HF diet with or without antibiotics for 15 d. In the third study, rats were treated with a STP-containing suspension. In study 1, the TP and STP diet increased the caecal short-chain fatty acid (SCFA) content compared to that of a control diet. The lower energy intake in the TP and STP group was strongly related to the decrease in visceral fat weight. In study 2, after caecal fermentation suppression with antibiotics, STP treatment decreased the visceral fat mass. In study 3, the plasma glucose levels and incremental area under the curve (AUC) after ingestion of a STP-containing suspension were lower than those after ingestion of suspension alone. These findings suggest the reduction of carbohydrate absorption during the gastrointestinal passage after TP and STP treatment. Our data indicate that the reduced obesity development in rats fed a HF diet may be attributed to the low metabolisable energy density of carbohydrates in the spent turmeric, independent of SCFA-mediated factors.

  19. Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats.

    PubMed

    Xing, Yingshou; Qin, Yi; Jing, Wei; Zhang, Yunxiang; Wang, Yanran; Guo, Daqing; Xia, Yang; Yao, Dezhong

    2016-02-01

    Patients with temporal lobe epilepsy (TLE) often display cognitive deficits. However, current epilepsy therapeutic interventions mainly aim at how to reduce the frequency and degree of epileptic seizures. Recovery of cognitive impairment is not attended enough, resulting in the lack of effective approaches in this respect. In the pilocarpine-induced temporal lobe epilepsy rat model, memory impairment has been classically reported. Here we evaluated spatial cognition changes at different epileptogenesis stages in rats of this model and explored the effects of long-term Mozart music exposure on the recovery of cognitive ability. Our results showed that pilocarpine rats suffered persisting cognitive impairment during epileptogenesis. Interestingly, we found that Mozart music exposure can significantly enhance cognitive ability in epileptic rats, and music intervention may be more effective for improving cognitive function during the early stages after Status epilepticus. These findings strongly suggest that Mozart music may help to promote the recovery of cognitive damage due to seizure activities, which provides a novel intervention strategy to diminish cognitive deficits in TLE patients.

  20. Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats.

    PubMed

    Schober, Gudrun; Arnold, Myrtha; Birtles, Susan; Buckett, Linda K; Pacheco-López, Gustavo; Turnbull, Andrew V; Langhans, Wolfgang; Mansouri, Abdelhak

    2013-05-01

    Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased β-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect.

  1. A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats.

    PubMed

    Girgih, Abraham T; Alashi, Adeola M; He, Rong; Malomo, Sunday A; Raj, Pema; Netticadan, Thomas; Aluko, Rotimi E

    2014-12-01

    This report shows the antioxidant effects of a hemp seed meal protein hydrolysate (HMH) in spontaneously hypertensive rats (SHR). Defatted hemp seed meal was hydrolyzed consecutively with pepsin and pancreatin to yield HMH, which was incorporated into rat feed as a source of antioxidant peptides. Young (8-week old) SHRs were divided into three groups (8 rats/group) and fed diets that contained 0.0%, 0.5% or 1.0% (w/w) HMH for eight weeks; half of the rats were sacrificed for blood collection. After a 4-week washout period, the remaining 20-week old SHRs were fed for an additional four weeks and sacrificed for blood collection. Plasma total antioxidant capacity (TAC) and superoxide dismutase (SOD), catalase (CAT) and total peroxides (TPx) levels were determined. Results showed that plasma TAC, CAT and SOD levels decreased in the older 20-week old SHRs when compared to the young SHRs. The presence of HMH in the diets led to significant (p < 0.05) increases in plasma SOD and CAT levels in both young and adult SHR groups; these increases were accompanied by decreases in TPx levels. The results suggest that HMH contained antioxidant peptides that reduced the rate of lipid peroxidation in SHRs with enhanced antioxidant enzyme levels and total antioxidant capacity.

  2. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    PubMed

    Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  3. An oxidized/reduced state of plasma albumin reflects malnutrition due to an insufficient diet in rats

    PubMed Central

    Kuwahata, Masashi; Hasegawa, Mari; Kobayashi, Yukiko; Wada, Yasuaki; Kido, Yasuhiro

    2017-01-01

    We examined whether protein- and food-intake restrictions modulate the oxidized/reduced state of plasma albumin in Sprague-Dawley rats. Rats were fed a 3%, 5%, 10% or 20% casein diet for 2 weeks. The plasma albumin concentration significantly decreased with decreasing protein intake. However, no significant difference in plasma albumin concentration was seen between rats fed the 5% or 10% casein diet. In rats fed the 5% casein diet, the percentage of mercaptalbumin within total plasma albumin was significantly lower and that of nonmercaptalbumin-1 was significantly higher than in rats fed the 10% casein diet. In experiments with food-intake restriction for 2 weeks, rats were fed 50% or 75% of the amount of a 20% casein diet consumed by control rats. The percentage of mercaptalbumin was significantly lower and that of nonmercaptalbumin-2 was significantly higher in rats with food-intake restriction than in control rats. When rats with malnutrition were refed with the 20% casein diet ad libitum, the percentage of mercaptalbumin rapidly increased. The change in the percentage of mercaptalbumin was correlated with the plasma transthyretin concentration. These results indicate that the oxidized/reduced state of plasma albumin may be applied as a sensitive marker of nutritional status reflecting dietary pattern. PMID:28163385

  4. Comparative anatomy, evolution, and homologies of tetrapod hindlimb muscles, comparison with forelimb muscles, and deconstruction of the forelimb-hindlimb serial homology hypothesis.

    PubMed

    Diogo, Rui; Molnar, Julia

    2014-06-01

    For more than two centuries, the idea that the forelimb and hindlimb are serially homologous structures has been accepted without serious question. This study presents the first detailed analysis of the evolution and homologies of all hindlimb muscles in representatives of each major tetrapod group and proposes a unifying nomenclature for these muscles. These data are compared with information obtained previously about the forelimb muscles of tetrapods and the muscles of other gnathostomes in order to address one of the most central and enigmatic questions in evolutionary and comparative anatomy: why are the pelvic and pectoral appendages of gnathostomes generally so similar to each other? An integrative analysis of the new myological data, combined with a review of recent paleontological, developmental, and genetic works and of older studies, does not support serial homology between the structures of these appendages. For instance, many of the strikingly similar forelimb and hindlimb muscles found in each major extant tetrapod taxon were acquired at different geological times and/or have different embryonic origins. These similar muscles are not serial homologues, but the result of evolutionary parallelism/convergence due to a complex interplay of ontogenetic, functional, topological, and phylogenetic constraints/factors.

  5. Rifaximin, but not growth factor 1, reduces brain edema in cirrhotic rats

    PubMed Central

    Òdena, Gemma; Miquel, Mireia; Serafín, Anna; Galan, Amparo; Morillas, Rosa; Planas, Ramon; Bartolí, Ramon

    2012-01-01

    AIM: To compare rifaximin and insulin-like growth factor (IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion. METHODS: Rats with CCl4-induced cirrhosis with ascites plus portal vein occlusion and controls were randomized into six groups: Cirrhosis; Cirrhosis + IGF-1; Cirrhosis + rifaximin; Controls; Controls + IGF-1; and Controls + rifaximin. An oral glutamine-challenge test was performed, and plasma and cerebral ammonia, glucose, bilirubin, transaminases, endotoxemia, brain water content and ileocecal cultures were measured and liver histology was assessed. RESULTS: Rifaximin treatment significantly reduced bacterial overgrowth and endotoxemia compared with cirrhosis groups, and improved some liver function parameters (bilirubin, alanine aminotransferase and aspartate aminotransferase). These effects were associated with a significant reduction in cerebral water content. Blood and cerebral ammonia levels, and area-under-the-curve values for oral glutamine-challenge tests were similar in rifaximin-treated cirrhotic rats and control group animals. By contrast, IGF-1 administration failed to improve most alterations observed in cirrhosis. CONCLUSION: By reducing gut bacterial overgrowth, only rifaximin was capable of normalizing plasma and brain ammonia and thereby abolishing low-grade brain edema, alterations associated with hepatic encephalopathy. PMID:22563196

  6. Dietary sodium deprivation reduces gustatory neural responses of the parabrachial nucleus in rats.

    PubMed

    Huang, Tao; Yan, Jianqun

    2008-02-27

    Acute sodium depletion induced by furosemide reduces gustatory responses of parabrachial nucleus (PBN) neurons to 0.3-0.5M NaCl in rats. However, in the rat nucleus of the solitary tract (NST), where taste-responsive cells project to the PBN, acute sodium depletion and dietary sodium deprivation elicit different response profiles to lingual NaCl stimulation. To examine the effect of dietary sodium deprivation on the responses of PBN gustatory neurons, we observed the taste responses of the PBN neurons to the four taste qualities and serial concentrations of NaCl in 15-day dietary sodium-deprived and control rats. The results showed that sodium deprivation reduced the responses of PBN taste neurons to 0.1-1.0M NaCl, but not to other tastants. Based on the analyses classified by best-stimulus categories, the number of NaCl-best neurons decreased from 68% to 45% following dietary sodium deprivation, and the responses of the NaCl-best neurons to 0.03-1.0M NaCl were significantly inhibited. Multidimensional scaling illustrated that sodium deprivation increased the similarity of the response profiles of the NaCl-best neurons. These findings suggest that dietary sodium deprivation might modulate sodium intake via increasing aversive threshold for salt rather enhancing salt discrimination.

  7. Evidence of reduced oral bioavailability of paracetamol in rats following multiple ingestion of grapefruit juice.

    PubMed

    Qinna, Nidal A; Ismail, Obbei A; Alhussainy, Tawfiq M; Idkaidek, Nasir M; Arafat, Tawfiq A

    2016-04-01

    The aim of the current investigation was to assess the ability GFJ to modulate the pharmacokinetic profile of paracetamol following single or repeated administrations of GFJ in Sprague-Dawley rats. Diclofenac and carbamazepine were both used as positive controls. Rats received single GFJ or single distilled water doses or pretreated with three doses of GFJ prior to test drug administration. Blood samples were collected, processed and analyzed using validated HPLC methods, and pharmacokinetic data were constructed for each group. Increase in the bioavailability of both diclofenac and carbamazepine following multiple GFJ ingestion was revealed. Conversely, the bioavailability of paracetamol was significantly reduced following multiple GFJ administration. The percentage of reduction in the C max and AUC of paracetamol were calculated as 31 and 51 %, respectively, compared to none-GFJ-treated control (P < 0.05). The T(max) was not essentially changed. In conclusion, frequent administration of GFJ was confirmed to modulate the pharmacokinetics of paracetamol in rats by reducing its bioavailability. Meanwhile, it may be advisable not to ingest large amounts of GFJ along with paracetamol to avoid a possible potential loss of the efficacy.

  8. Treatment with carnosine reduces hypoxia-ischemia brain damage in a neonatal rat model.

    PubMed

    Zhang, Huizhen; Guo, Shang; Zhang, Linlin; Jia, Liting; Zhang, Zhan; Duan, Hongbao; Zhang, Jingbin; Liu, Jingyan; Zhang, Weidong

    2014-03-15

    Perinatal hypoxia-ischemia brain damage (HIBD) is a major cause of mortality and morbidity in neonates, and there is currently no effective therapy for HIBD. Carnosine plays a neuroprotective role in adult brain damage. We have previously demonstrated that carnosine pretreatment protects against HIBD in a neonatal rat model. Therefore, we hypothesized that treatment with carnosine would also have neuroprotective effects. Hypoxia-ischemia was induced in rats on postnatal days 7-9 (P7-9). Carnosine was administered intraperitoneally at a dose of 250mg/kg at 0h, 24h, and 48h after hypoxia-ischemia was induced. The biochemical markers of oxidative stress and apoptosis were evaluated at 72h after hypoxia-ischemia was induced, Brain learning and memory function performance were observed using the Morris water maze test on postnatal days 28-33 (P28-33). Treatment with carnosine post-HIBD significantly reduced the concentration of 8-iso-prostaglandinF2alpha in brain tissue and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region and cortex as well as the mitochondria caspase-3 protein expression. Furthermore, carnosine also improved the cognitive function of P28-33 rats, whose cognitive function decline was due to HIBD. These results demonstrate that carnosine treatment after HIBD can reduce the brain injury, improving brain function. Carnosine could be an attractive candidate for treating HIBD.

  9. Readiness potential and movement initiation in the rat.

    PubMed

    Seki, Tomomi; Gemba, Hisae; Matsuzaki, Ryuichi; Nakao, Kazuko

    2005-02-01

    Cortical field potentials were recorded by electrodes implanted chronically on the surface and at a 2.0 mm depth in various cortical areas in the left hemisphere in the rat during self-paced movements of the right forelimb. A surface-negative (s-N), depth-positive (d-P) cortical field potential appeared about 1.0 s (range: 0.5-1.5 s) before movement onset in the rostral (RFA) and caudal (CFA) forelimb areas of the motor cortex, and the somatosensory cortex, but not in the occipital cortex. Bipolar recording of electromyographic activities induced by the electrical stimulation of various cortical loci was also performed by pairs of steel electrodes inserted in the face, trunk, forelimb and hindlimb muscles on both sides. The stimulation of the forelimb motor cortex activated the face and/or forelimb muscles, while that of the somatosensory cortex generally activated several body part muscles including the forelimb muscle. Stronger stimulus intensity was requested to elicit the activities of most of the ipsilateral muscles to the cortex stimulated than the contralateral ones. The minimum intensity for inducing the forelimb muscle activity was lowest in the CFA among cortical areas producing the activity. The stimulation of cortical loci in which the s-N, d-P potential was recorded could induce muscle activities in the forelimb contralateral to the stimulation. It is suggested that the s-N, d-P potential is the readiness potential for activating muscles to initiate movement in the rat forelimb.

  10. The selective estrogen receptor modulator, bazedoxifene, reduces ischemic brain damage in male rat.

    PubMed

    Castelló-Ruiz, María; Torregrosa, Germán; Burguete, María C; Miranda, Francisco J; Centeno, José M; López-Morales, Mikahela A; Gasull, Teresa; Alborch, Enrique

    2014-07-11

    While the estrogen treatment of stroke is under debate, selective estrogen receptor modulators (SERMs) arise as a promising alternative. We hypothesize that bazedoxifene (acetate, BZA), a third generation SERM approved for the treatment of postmenopausal osteoporosis, reduces ischemic brain damage in a rat model of transient focal cerebral ischemia. For comparative purposes, the neuroprotective effect of 17β-estradiol (E2) has also been assessed. Male Wistar rats underwent 60min middle cerebral artery occlusion (intraluminal thread technique), and grouped according to treatment: vehicle-, E2- and BZA-treated rats. Optimal plasma concentrations of E2 (45.6±7.8pg/ml) and BZA (20.7±2.1ng/ml) were achieved 4h after onset of ischemia, and maintained until the end of the procedure (24h). Neurofunctional score and volume of the damaged brain regions were the main end points. At 24h after ischemia-reperfusion, neurofunctional examination of the animals did not show significant differences among the three experimental groups. By contrast, both E2- and BZA-treated groups showed significantly lower total infarct volumes, BZA acting mainly in the cortical region and E2 acting mainly at the subcortical level. Our results demonstrate that: (1) E2 at physiological plasma levels in female rats is neuroprotective in male rats when given at the acute stage of the ischemic challenge and (2) BZA at clinically relevant plasma levels mimics the neuroprotective action of E2 and could be, therefore, a candidate in stroke treatment.

  11. Nitric Oxide Overproduction Reduces Insulin Secretion from Isolated Islets in Fetal Hypothyroid Rats.

    PubMed

    Rouintan, Z; Farrokhfall, K; Karbalaei, N; Ghasemi, A

    2016-02-01

    Thyroid hormones have developmental effects during fetal life. Fetal hypothyroidism leads to glucose intolerance and reduced insulin secretion capacity. Activity of nitric oxide synthases follows a heterogeneous pattern in hypothyroidism. Overactivity of constitutive nitric oxide synthase (NOS), inhibits glucose-stimulated insulin release. The aim of this study was to examine if reduction in insulin secretion in fetal hypothyroidism is due to overproduction of nitric oxide. Pregnant Wistar rats were divided into 2 groups; the experimental group consumed water containing 0.02% of 6-propyl-2-thiouracil till delivery, while the control group consumed tap water. After delivery serum thyroid hormones were measured. Intravenous glucose tolerance test was performed in 6-month old offspring (n=8). After 3 weeks recovery, pancreatic islets were isolated and insulin secretion, inducible and constitutive nitric oxide synthase activity were measured (n=4). Compared to controls, during intravenous glucose tolerance test, fetal hypothyroid rats had high plasma glucose concentration (p=0.003) and low plasma insulin levels (p=0.012) at 5-20 min and their insulin secretion from isolated islets at basal glucose concentration and in the presence of l-arginine was lower. The nitric oxide synthase inhibitor, NG-nitro-l-arginine methyl ester significantly improved insulin secretion in fetal hypothyroid rats at basal glucose concentration and in the presence of l-arginine. The results showed higher NOS activities in fetal hypothyroid rats (constitutive 17.60±1.09 vs. 47.34±4.44 and inducible 4.09±0.96 vs. 19.97±1.14 pmol/min/mg proteins, p=0.002). In conclusion, NO overproduction through NOS participates in decreased insulin secretion in fetal hypothyroid rats.

  12. Helichrysum and Grapefruit Extracts Boost Weight Loss in Overweight Rats Reducing Inflammation.

    PubMed

    de la Garza, Ana Laura; Etxeberria, Usune; Haslberger, Alexander; Aumueller, Eva; Martínez, J Alfredo; Milagro, Fermín I

    2015-08-01

    Obesity is characterized by an increased production of inflammatory markers. High levels of circulating free fatty acids and chronic inflammation lead to increased oxidative stress, contributing to the development of insulin resistance (IR). Recent studies have focused on the potential use of flavonoids for obesity management due to their antioxidant and anti-inflammatory properties. This study was designed to investigate the antioxidant and anti-inflammatory effects of helichrysum and grapefruit extracts in overweight insulin-resistant rats. Thirty-eight male Wistar rats were randomly distributed in two groups: control group (n=8) and high-fat sucrose (HFS) group (n=30). After 22 days of ad libitum water and food access, the rats fed HFS diet changed to standard diet and were reassigned into three groups (n=10 each group): nonsupplemented, helichrysum extract (2 g/kg bw), and grapefruit extract (1 g/kg bw) administered for 5 weeks. Rats supplemented with both extracts gained less body weight during the 5-week period of treatment, showed lower serum insulin levels and liver TBARS levels. Leptin/adiponectin ratio, as an indicator of IR, was lower in both extract-administered groups. These results were accompanied by a reduction in TNFα gene expression in epididymal adipose tissue and intestinal mucosa, and TLR2 expression in intestinal mucosa. Helichrysum and grapefruit extracts might be used as complement hypocaloric diets in weight loss treatment. Both extracts helped to reduce weight gain, hyperinsulinemia, and IR, improved inflammation markers, and decreased the HFS diet-induced oxidative stress in insulin-resistant rats.

  13. A Phaseolus vulgaris Extract Reduces Cue-Induced Reinstatement of Chocolate Seeking in Rats

    PubMed Central

    Lorrai, Irene; Piga, Valentina; Carai, Mauro A. M.; Riva, Antonella; Morazzoni, Paolo; Gessa, Gian Luigi; Colombo, Giancarlo; Maccioni, Paola

    2016-01-01

    Previous evidence has suggested that treatment with a standardized dry extract of Phaseolus vulgaris reduced intake and operant self-administration of highly palatable foods and fluids in rats and mice. The present study was designed to assess whether such extract was also effective in reducing seeking behavior for a highly hedonic chocolate-flavored beverage, using a “reinstatement” procedure adopted from the drug addiction research field and modeling relapse behavior. Rats were initially trained to lever-respond for the chocolate-flavored beverage under the Fixed Ratio (FR) 10 schedule of reinforcement. Subsequently, rats were exposed to an extinction responding phase, during which lever-responding – being unreinforced – diminished progressively up to extinction. Lever-responding was then powerfully reinstated by the non-contingent presentation of a complex of gustatory, olfactory, auditory, and visual stimuli previously associated to the availability of the chocolate-flavored beverage. Acute, intragastric administration of P. vulgaris dry extract (100 and 500 mg/kg) reduced lever-responding by 40–45%, in comparison to vehicle condition. These results indicate the ability of P. vulgaris dry extract to reduce seeking behavior for a highly palatable nourishment in an experimental model of relapse into disordered eating of palatable foods. The unavailability of the chocolate-flavored beverage in the reinstatement session tends to exclude that the observed effect of the P. vulgaris dry extract was secondary to any inhibition of carbohydrate metabolism; conversely, it is the likely consequence on a central action on the rewarding and hedonic properties of food. PMID:27199752

  14. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat.

    PubMed

    Prakash, Prem; Singh, Vishal; Jain, Manish; Rana, Minakshi; Khanna, Vivek; Barthwal, Manoj Kumar; Dikshit, Madhu

    2014-03-15

    High dietary fructose causes insulin resistance syndrome (IRS), primarily due to simultaneous induction of genes involved in glucose, lipid and mitochondrial oxidative metabolism. The present study evaluates effect of a hepatoprotective agent, silymarin (SYM) on fructose-induced metabolic abnormalities in the rat and also assessed the associated thrombotic complications. Wistar rats were kept on high fructose (HFr) diet throughout the 12-week study duration (9 weeks of HFr feeding and subsequently 3 weeks of HFr plus SYM oral administration [once daily]). SYM treatment significantly reduced the HFr diet-induced increase expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α/β, peroxisome proliferator-activated receptor (PPAR)-α, forkhead box protein O1 (FOXO1), sterol regulatory element binding protein (SREBP)-1c, liver X receptor (LXR)-β, fatty acid synthase (FAS) and PPARγ genes in rat liver. SYM also reduced HFr diet mediated increase in plasma triglycerides (TG), non-esterified fatty acids (NEFA), uric acid, malondialdehyde (MDA), total nitrite and pro-inflammatory cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-gamma [IFN-γ] and tumor necrosis factor [TNF]) levels. Moreover, SYM ameliorated HFr diet induced reduction in glucose utilization and endothelial dysfunction. Additionally, SYM significantly reduced platelet activation (adhesion and aggregation), prolonged ferric chloride-induced blood vessel occlusion time and protected against exacerbated myocardial ischemia reperfusion (MI-RP) injury. SYM treatment prevented HFr induced mRNA expression of hepatic PGC-1α/β and also its target transcription factors which was accompanied with recovery in insulin sensitivity and reduced propensity towards thrombotic complications and aggravated MI-RP injury.

  15. A Phaseolus vulgaris Extract Reduces Cue-Induced Reinstatement of Chocolate Seeking in Rats.

    PubMed

    Lorrai, Irene; Piga, Valentina; Carai, Mauro A M; Riva, Antonella; Morazzoni, Paolo; Gessa, Gian Luigi; Colombo, Giancarlo; Maccioni, Paola

    2016-01-01

    Previous evidence has suggested that treatment with a standardized dry extract of Phaseolus vulgaris reduced intake and operant self-administration of highly palatable foods and fluids in rats and mice. The present study was designed to assess whether such extract was also effective in reducing seeking behavior for a highly hedonic chocolate-flavored beverage, using a "reinstatement" procedure adopted from the drug addiction research field and modeling relapse behavior. Rats were initially trained to lever-respond for the chocolate-flavored beverage under the Fixed Ratio (FR) 10 schedule of reinforcement. Subsequently, rats were exposed to an extinction responding phase, during which lever-responding - being unreinforced - diminished progressively up to extinction. Lever-responding was then powerfully reinstated by the non-contingent presentation of a complex of gustatory, olfactory, auditory, and visual stimuli previously associated to the availability of the chocolate-flavored beverage. Acute, intragastric administration of P. vulgaris dry extract (100 and 500 mg/kg) reduced lever-responding by 40-45%, in comparison to vehicle condition. These results indicate the ability of P. vulgaris dry extract to reduce seeking behavior for a highly palatable nourishment in an experimental model of relapse into disordered eating of palatable foods. The unavailability of the chocolate-flavored beverage in the reinstatement session tends to exclude that the observed effect of the P. vulgaris dry extract was secondary to any inhibition of carbohydrate metabolism; conversely, it is the likely consequence on a central action on the rewarding and hedonic properties of food.

  16. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    PubMed

    Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity

  17. Acute Treatment with Lauric Acid Reduces Blood Pressure and Oxidative Stress in Spontaneously Hypertensive Rats.

    PubMed

    Alves, Naiane Ferraz Bandeira; de Queiroz, Thyago Moreira; de Almeida Travassos, Rafael; Magnani, Marciane; de Andrade Braga, Valdir

    2017-04-01

    The effects of acute administration of lauric acid (LA), the most abundant medium-chain fatty acid of coconut oil, on blood pressure, heart rate and oxidative stress were investigated in spontaneously hypertensive rats (SHR). Intravenous doses of LA reduced blood pressure in a dose-dependent fashion (1, 3, 4, 8 and 10 mg/kg) in both SHR and Wistar Kyoto rats. LA (10(-8) to 3 × 10(-3) M) induced vasorelaxation in isolated superior mesenteric artery rings of SHR in the presence (n = 7) or absence (n = 8) of functional endothelium [maximum effect (ME) = 104 ± 3 versus 103 ± 4%]. After exposure to KCl (60 mM), LA also induced concentration-dependent vasorelaxation (n = 7) compared to that under Phe-induced contraction (ME = 113.5 + 5.1 versus 104.5 + 4.0%). Furthermore, LA-induced vasorelaxation in vessels contracted with S(-)-BayK8644 (200 nM), a L-type Ca(2+) channel agonist (ME = 91.4 + 4.3 versus 104.5 + 4.0%, n = 7). Lastly, LA (10(-3) M) reduced NADPH-dependent superoxide accumulation in the heart (18 ± 1 versus 25 ± 1 MLU/min/μg protein, n = 4, p < 0.05) and kidney (82 ± 3 versus 99 ± 4 MLU/min/μg protein, n = 4, p < 0.05). Our data show that LA reduces blood pressure in normotensive and hypertensive rats. In SHR, this effect might involve Ca(+2) channels in the resistance vessels and by its capability of reducing oxidative stress in heart and kidneys.

  18. Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats.

    PubMed

    Xu, Weijie; Liu, Juanhong; Ma, Delin; Yuan, Gang; Lu, Yan; Yang, Yan

    2017-01-01

    Type 2 diabetes (T2D) is a high-risk factor for Alzheimer's disease (AD) due to impaired insulin signaling pathway in brain. Capsaicin is a specific transient receptor potential vanilloid 1 (TRPV1) agonist which was proved to ameliorate insulin resistance. In this study, we investigated whether dietary capsaicin could reduce the risk of AD in T2D. T2D rats were fed with capsaicin-containing high fat (HF) diet for 10 consecutive days (T2D+CAP). Pair-fed T2D rats (T2D+PF) fed with the HF-diet of average dose of T2D+CAP group were included to control for the effects of reduced food intake and body weight. Capsaicin-containing standard chow was also introduced to non-diabetic rats (NC+CAP). Blood glucose and insulin were monitored. The phosphorylation level of tau at individual sites, the activities of phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) and glycogen synthase kinase-3β (GSK-3β) were analyzed by Western blots. The results revealed that the levels of phosphorylated tau protein at sites Ser199, Ser202 and Ser396 in hippocampus of T2D+CAP group were decreased significantly, but these phospho-sites in T2D+PF group didn't show such improvements compared with T2D group. There were almost no changes in non-diabetic rats on capsaicin diet (NC+CAP) compared with the non-diabetic rats with normal chow (NC). Increased activity of PI3K/AKT and decreased activity of GSK-3β were detected in hippocampus of T2D+CAP group compared with T2D group, and these changes did not show in T2D+PF group either. These results demonstrated that dietary capsaicin appears to prevent the hyperphosphorylation of AD-associated tau protein by increasing the activity of PI3K/AKT and inhibiting GSK-3β in hippocampus of T2D rats, which supported that dietary capsaicin might have a potential use for the prevention of AD in T2D.

  19. Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats

    PubMed Central

    Xu, Weijie; Liu, Juanhong; Ma, Delin; Yuan, Gang; Lu, Yan

    2017-01-01

    Type 2 diabetes (T2D) is a high-risk factor for Alzheimer’s disease (AD) due to impaired insulin signaling pathway in brain. Capsaicin is a specific transient receptor potential vanilloid 1 (TRPV1) agonist which was proved to ameliorate insulin resistance. In this study, we investigated whether dietary capsaicin could reduce the risk of AD in T2D. T2D rats were fed with capsaicin-containing high fat (HF) diet for 10 consecutive days (T2D+CAP). Pair-fed T2D rats (T2D+PF) fed with the HF-diet of average dose of T2D+CAP group were included to control for the effects of reduced food intake and body weight. Capsaicin-containing standard chow was also introduced to non-diabetic rats (NC+CAP). Blood glucose and insulin were monitored. The phosphorylation level of tau at individual sites, the activities of phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) and glycogen synthase kinase-3β (GSK-3β) were analyzed by Western blots. The results revealed that the levels of phosphorylated tau protein at sites Ser199, Ser202 and Ser396 in hippocampus of T2D+CAP group were decreased significantly, but these phospho-sites in T2D+PF group didn’t show such improvements compared with T2D group. There were almost no changes in non-diabetic rats on capsaicin diet (NC+CAP) compared with the non-diabetic rats with normal chow (NC). Increased activity of PI3K/AKT and decreased activity of GSK-3β were detected in hippocampus of T2D+CAP group compared with T2D group, and these changes did not show in T2D+PF group either. These results demonstrated that dietary capsaicin appears to prevent the hyperphosphorylation of AD-associated tau protein by increasing the activity of PI3K/AKT and inhibiting GSK-3β in hippocampus of T2D rats, which supported that dietary capsaicin might have a potential use for the prevention of AD in T2D. PMID:28225806

  20. Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass.

    PubMed Central

    Lafayette, R A; Mayer, G; Park, S K; Meyer, T W

    1992-01-01

    The effects of angiotensin II (AII) blockade were compared with the effects of angiotensin converting enzyme inhibition in rats with reduced nephron number. Rats were subjected to five-sixths renal ablation and divided into four groups with similar values for blood pressure and serum creatinine after 2 wk. Group 1 then served as untreated controls, while group 2 received the AII receptor antagonist MK954 (which has previously been designated DuP753), group 3 received the converting enzyme inhibitor enalapril, and group 4 received a combination of reserpine, hydralazine, and hydrochlorothiazide. Micropuncture and morphologic studies were performed 10 wk later. Converting enzyme inhibition, AII receptor blockade, and the combination regimen were equally effective in reversing systemic hypertension (time-averaged systolic blood pressure: group 1, 185 +/- 5 mmHg; group 2, 125 +/- 2 mmHg; group 3, 127 +/- 2 mmHg; group 4, 117 +/- 4 mmHg). Micropuncture studies showed that glomerular transcapillary pressure was reduced significantly by converting enzyme inhibition and by AII blockade but not by the combination regimen (delta P: group 1, 49 +/- 1 mmHg; group 2, 42 +/- 1 mmHg; group 3, 40 +/- 2 mmHg, group 4, 47 +/- 1 mmHg). Reduction of systemic blood pressure was associated with the development of markedly less proteinuria and segmental glomerular sclerosis in rats receiving enalapril and MK954 but not in rats receiving the combination regimen (prevalence of glomerular sclerotic lesions: group 1, 41 +/- 4%; group 2, 9 +/- 1%; group 3, 9 +/- 1%; group 4, 33 +/- 6%). These results indicate that the effects of converting enzyme inhibition on remnant glomerular function and structure depend on reduction in AII activity and are not attributable simply to normalization of systemic blood pressure. PMID:1522231

  1. Nicotinic receptor ligands reduce ethanol intake by high alcohol-drinking HAD-2 rats.

    PubMed

    Bell, Richard L; Eiler, Bill J A; Cook, Jason B; Rahman, Shafiqur

    2009-12-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are implicated in the reinforcing effects of many drugs of abuse, including ethanol. The present study examined the efficacy of cytisine, a nAChR partial agonist, and lobeline, a putative nAChR antagonist, on the maintenance of ethanol drinking by HAD-2 rats. Adult male HAD-2 rats were given access to ethanol (15 and 30%, with ad libitum access to water and food) 22 h/day for 12 weeks, beginning at 60 days of age, after which cytisine (0.0, 0.5, and 1.5 mg/kg) was tested for 3 consecutive days. The rats were given an 18-day washout period and were then tested with lobeline (0.0, 1.0, and 5.0 mg/kg) for 3 consecutive days. Ethanol intake was measured at 1, 4, and 22 h postinjection. Rats were injected intraperitoneally just before lights out (1200 h). There was a significant main effect of cytisine treatment on the second test day, with the 1.5 mg/kg dose significantly reducing ethanol intake at the 1- and 4-h time-points, relative to saline, and the 0.5 mg/kg dose inducing a significant reduction at the 4-h time-point. Conversely, lobeline treatment resulted in significant main effects of treatment for all three time-points within each test day, with the 5.0 mg/kg dose significantly reducing ethanol intake, relative to saline, at each time-point within each test day. These findings provide further evidence that activity at the nAChR influences ethanol intake and is a promising target for pharmacotherapy development for the treatment of alcohol dependence and relapse.

  2. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model.

    PubMed

    Chen, C H; Manaenko, A; Zhan, Y; Liu, W W; Ostrowki, R P; Tang, J; Zhang, J H

    2010-08-11

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested the effect of hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague-Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H(2)); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H(2) (MCAO+H(2)). All rats received an injection of 50% dextrose (6 ml/kg i.p.) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 h during reperfusion. We measured the level of blood glucose at 0 h, 0.5 h, 4 h, and 6 h after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluated by measuring the level of 8 Hydroxyguanosine (8OHG), 4-Hydroxy-2-Nonenal (HNE) and nitrotyrosine), and matrix metalloproteinase (MMP)-2/MMP-9 activity were measured at 24 h after ischemia. We found that hydrogen inhalation for 2 h reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen was accompanied by a reduction of the expression of 8OHG, HNE, and nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500+/-32.51 to 366+/-68.22 mg/dl at 4 h after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occludin, collagen IV or aquaporin4 (AQP4). In conclusion, hydrogen gas reduced brain infarction, hemorrhagic transformation, and improved neurological function in rats. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation.

  3. Reduced limbic metabolism and fronto-cortical volume in rats vulnerable to alcohol addiction

    PubMed Central

    Gozzi, Alessandro; Agosta, Federica; Massi, Maurizio; Ciccocioppo, Roberto; Bifone, Angelo

    2014-01-01

    Alcohol abuse is associated with long-term reductions in fronto-cortical volume and limbic metabolism. However, an unanswered question in alcohol research is whether these alterations are the sole consequence of chronic alcohol use, or contain heritable contributions reflecting biological propensity toward ethanol addiction. Animal models of genetic predisposition to alcohol dependence can be used to investigate the role of inborn brain abnormalities in the aetiology of alcoholism. Here we used magnetic resonance imaging (MRI) in e Marchigian Sardinian (msP) alcohol-preferring rats to assess the presence of inherited structural or functional brain alterations. Alcohol-naïve msP (N=22) and control rats (N=26) were subjected to basal cerebral blood volume (bCBV) mapping followed by voxel-based morphometry (VBM) of gray matter and tract-based spatial statistics mapping of white matter fractional anisotropy. msP rats exhibited significantly reduced bCBV, an established marker of resting brain function, in focal cortico-limbic and thalamic areas, together with reduced gray matter volume in the thalamus, ventral tegmental area, insular and cingulate cortex. No statistically significant differences in fractional anisotropy were observed between groups. These findings highlight the presence of inborn gray matter and metabolic abnormalities in alcohol-naïve msP rats, the localization and sign of which are remarkably similar to those mapped in abstinent alcoholics and subjects at high risk for alcohol dependence. Collectively, these results point for a significant role of heritable neurofunctional brain alterations in biological propensity toward ethanol addiction, and support the translational use of advanced imaging methods to describe the circuital determinants of vulnerability to drug addiction. PMID:23261637

  4. Administration of dried Aloe vera gel powder reduced body fat mass in diet-induced obesity (DIO) rats.

    PubMed

    Misawa, Eriko; Tanaka, Miyuki; Nabeshima, Kazumi; Nomaguchi, Kouji; Yamada, Muneo; Toida, Tomohiro; Iwatsuki, Keiji

    2012-01-01

    The aim of the present study was to investigate the anti-obesity effects of Aloe vera gel administration in male Sprague-Dawley (SD) rats with diet-induced obesity (DIO). SD rats at 7 wk of age were fed either a standard diet (10 kcal% fat) (StdD) or high-fat (60 kcal% fat) diet (HFD) during the experimental period. Four weeks after of HFD-feeding, DIO rats (11 wk of age) were orally administered with two doses of Aloe vera gel powder (20 and 200 mg/kg/d) for 90 d. Body weights (g) and body fat (%) of HFD fed rats were significantly higher than those of StdD-fed rats. Although a modest decrease of body weight (g) was observed with the administration of dried Aloe vera gel powder, both subcutaneous and visceral fat weight (g) and body fat (%) were reduced significantly in Aloe vera gel-treated rats. Serum lipid parameters elevated by HFD were also improved by the Aloe vera gel treatment. The oxygen consumption (VO(2)), an index of energy expenditure, was decreased in HFD-fed rats compared with that in StdD-fed rats. Administration of Aloe vera gel reversed the change in VO(2) in the HFD-fed rats. These results suggest that intake of Aloe vera gel reduced body fat accumulation, in part, by stimulation of energy expenditure. Aloe vera gel might be beneficial for the prevention and improvement of diet-induced obesity.

  5. Infusions of muscimol into the lateral septum do not reduce rats' defensive behaviors toward a cat odor stimulus.

    PubMed

    Chee, San-San A; Patel, Ronak; Menard, Janet L

    2015-01-01

    The lateral septum (LS) is implicated in behavioral defense. We tested whether bilateral infusions of the GABAA receptor agonist muscimol into the LS suppress rats' defensive responses to cat odor. Rats received intra-LS infusions of either saline or muscimol (40 ng/rat) and were exposed to either a piece of a cat collar that had been previously worn by a cat or to a control (cat odor free) collar. Rats exposed to the cat odor collar displayed more head-out postures, while intra-LS application of muscimol reduced the number of head-out postures. However, this reduction was also present in rats exposed to a control (cat odor free) collar. This latter finding suggests that despite its involvement in other defensive behaviors (e.g., open arm avoidance in the elevated plus maze), the LS does not selectively regulate rats' receptor defensive responding to the olfactory cues present in our cat odor stimulus.

  6. Muscular reconstruction and functional morphology of the forelimb of early Miocene sloths (Xenarthra, Folivora) of Patagonia.

    PubMed

    Toledo, Néstor; Bargo, M Susana; Vizcaíno, Sergio F

    2013-02-01

    Early Miocene sloths are represented by a diversity of forms ranging from 38 to 95 kg, being registered mainly from Santacrucian Age deposits in southern-most shores of Patagonia, Argentina. Their postcranial skeleton differs markedly in shape from those of their closest living relatives (arboreal forms of less than 10 kg), Bradypus and Choloepus. In order to gain insight on functional properties of the Santacrucian sloths forelimb, musculature was reconstructed and a comparative, qualitative morphofunctional analysis was performed, allowing proposing hypotheses about biological role of the limb in substrate preferences, and locomotor strategies. The anatomy of the forelimb of Santacrucian sloths resembles more closely extant anteaters such as Tamandua and Myrmecophaga, due to the robustness of the elements, development of features related to attachment of ligaments and muscles, and conservative, pentadactylous, and strong-clawed manus. The reconstructed forelimb musculature was very well developed and resembles that of extant Pilosa (especially anteaters), although retaining the basic muscular configuration of generalized mammals. This musculature allowed application of powerful forces, especially in adduction of the forelimb, flexion and extension of the antebrachium, and manual prehension. These functional properties are congruent with both climbing and digging activities, and provide support for proposed Santacrucian sloths as good climbing mammals, possibly arboreal or semiarboreal, being also capable diggers. Their climbing strategies were limited, thus these forms relied mainly on great muscular strength and curved claws of the manus to move cautiously on branches.

  7. Kinetics of the forelimb in horses circling on different ground surfaces at the trot.

    PubMed

    Chateau, Henry; Camus, Mathieu; Holden-Douilly, Laurène; Falala, Sylvain; Ravary, Bérangère; Vergari, Claudio; Lepley, Justine; Denoix, Jean-Marie; Pourcelot, Philippe; Crevier-Denoix, Nathalie

    2013-12-01

    Circling increases the expression of distal forelimb lameness in the horse, depending on rein, diameter and surface properties of the circle. However, there is limited information about the kinetics of horses trotting on circles. The aim of this study was to quantify ground reaction force (GRF) and moments in the inside and outside forelimb of horses trotting on circles and to compare the results obtained on different ground surfaces. The right front hoof of six horses was equipped with a dynamometric horseshoe, allowing the measurement of 3-dimensional GRF, moments and trajectory of the centre of pressure. The horses were lunged at slow trot (3 m/s) on right and left 4 m radius circles on asphalt and on a fibre sand surface. During circling, the inside forelimb produced a smaller peak vertical force and the stance phase was longer in comparison with the outside forelimb. Both right and left circling produced a substantial transversal force directed outwards. On a soft surface (sand fibre), the peak transversal force and moments around the longitudinal and vertical axes of the hoof were significantly decreased in comparison with a hard surface (asphalt). Sinking of the lateral or medial part of the hoof in a more compliant surface enables reallocation of part of the transversal force into a proximo-distal force, aligned with the limb axis, thus limiting extrasagittal stress on the joints.

  8. Forelimb posture in dinosaurs and the evolution of the avian flapping flight-stroke.

    PubMed

    Nudds, Robert L; Dyke, Gareth J

    2009-04-01

    Ontogenetic and behavioral studies using birds currently do not document the early evolution of flight because birds (including juveniles) used in such studies employ forelimb oscillation frequencies over 10 Hz, forelimb stroke-angles in excess of 130 degrees , and possess uniquely avian flight musculatures. Living birds are an advanced morphological stage in the development of flapping flight. To gain insight into the early stages of flight evolution (i.e., prebird), in the absence of a living analogue, a new approach using Strouhal number was used. Strouhal number is a nondimensional number that describes the relationship between wing-stroke amplitude (A), wing-beat frequency (f), and flight speed (U). Calculations indicated that even moderate wing movements are enough to generate rudimentary thrust and that a propulsive flapping flight-stroke could have evolved via gradual incremental changes in wing movement and wing morphology. More fundamental to the origin of the avian flapping flight-stroke is the question of how a symmetrical forelimb posture-required for gliding and flapping flight-evolved from an alternating forelimb motion, evident in all extant bipeds when running except birds.

  9. Extreme Modification of the Tetrapod Forelimb in a Triassic Diapsid Reptile.

    PubMed

    Pritchard, Adam C; Turner, Alan H; Irmis, Randall B; Nesbitt, Sterling J; Smith, Nathan D

    2016-10-24

    The tetrapod forelimb is one of the most versatile structures in vertebrate evolution, having been co-opted for an enormous array of functions. However, the structural relationships between the bones of the forelimb have remained largely unchanged throughout the 375 million year history of Tetrapoda, with a radius and ulna made up of elongate, paralleling shafts contacting a series of shorter carpal bones. These features are consistent across nearly all known tetrapods, suggesting that the morphospace encompassed by these taxa is limited by some sort of constraint(s). Here, we report on a series of three-dimensionally preserved fossils of the small-bodied (<1 m) Late Triassic diapsid reptile Drepanosaurus, from the Chinle Formation of New Mexico, USA, which dramatically diverge from this pattern. Along with the crushed type specimen from Italy, these specimens have a flattened, crescent-shaped ulna with a long axis perpendicular to that of the radius and hyperelongate, shaft-like carpal bones contacting the ulna that are proximodistally longer than the radius. The second digit supports a massive, hooked claw. This condition has similarities to living "hook-and-pull" digging mammals and demonstrates that specialized, modern ecological roles had developed during the Triassic Period, over 200 million years ago. The forelimb bones in Drepanosaurus represent previously unknown morphologies for a tetrapod and, thus, a dramatic expansion of known tetrapod forelimb morphospace.

  10. Antinociceptive activity of Syzygium jambos leaves extract on rats.

    PubMed

    Avila-Peña, D; Peña, N; Quintero, L; Suárez-Roca, H

    2007-06-13

    Syzygium jambos (L.) Alston (Myrtaceae) (syn Eugenia jambos) is a widespread medicinal plant traditionally used in sub-Saharan Africa to treat several diseases. The analgesic potential of leaf hydro-alcoholic extracts was assessed in rats. Hot plate and formalin tests were used to estimate cutaneous nociception whereas measurements of forelimb grip force were done to assess muscular nociception under normal and inflammatory conditions. In the hot plate test, Syzygium jambos extract produced a significant increase in the withdrawal response latencies in a dose-dependant manner (10-300 mg/kg i.p.) and with a maximal effect (analgesic efficacy) similar to that of morphine. The extract (100-300 mg/kg i.p.) significantly reduced pain scores in all the phases of the formalin test with an analgesic efficacy higher than that shown by diclofenac. Although the extract (300 mg/kg) did not alter grip force in intact rats, it reversed the reduction in grip force induced by bilateral injection carrageenan in the forelimb triceps. This analgesic effect of the extract on muscle hyperalgesia was not antagonized, but enhanced, by naloxone. Thus, the Syzygium jambos extract has remarkable analgesic effects on both cutaneous and deep muscle pain that is not mediated by opioid receptors.

  11. Cyclosporin A reduces expression of adhesion molecules in the kidney of rats with chronic serum sickness

    PubMed Central

    Rincón, J; Parra, G; Quiroz, Y; Benatuil, L; Rodríguez-Iturbe, B

    2000-01-01

    Treatment with cyclosporin A (CsA) improves proteinuria and reduces renal cellular infiltration in chronic serum sickness (CSS). We examined if these effects were associated with a reduced renal expression of CD54 and its ligands, interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α) and MHC class II molecules. We studied two groups of rats in which CSS was induced by daily injections of ovalbumin (OVA): a group treated with CsA (OVA.CsA group, n = 11) and a group that received no treatment (OVA.CSS group, n = 11). An additional group of five rats (control group) received only phosphate buffer. Immunostaining techniques were used to follow CSS and to study the expression of CD54, CD18, CD11b/c, IFN-γ, TNF-α and MHC class molecules. Proteinuria (mg/24 h) was reduced from 248·2 ± 73·1 (OVA.CCS group) to 14·5 ± 13·1 with CsA treatment (P < 0·0001). The renal expression of CD54 and its ligands (CD18 and CD11b/c) was reduced by 50% to 75%. Correspondingly, there was a 60% to 85% reduction in the number of infiltrating leucocytes. The number of cells expressing TNF-α, IFN-γ and MHC II molecules was also reduced. CsA reduces expression of CD54 and its ligands. This effect is associated with a reduction of cellular infiltration, IFN-γ, TNF-α-producing cells and with MHC II expression in the kidney. These findings suggest that expression of adhesion molecules plays a critical role in CSS and underline the importance of cellular immunity in this experimental model. PMID:10931158

  12. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    NASA Technical Reports Server (NTRS)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  13. Tetrahydrocannabinolic acid reduces nausea-induced conditioned gaping in rats and vomiting in Suncus murinus

    PubMed Central

    Rock, E M; Kopstick, R L; Limebeer, C L; Parker, L A

    2013-01-01

    BACKGROUND AND PURPOSE We evaluated the anti-emetic and anti-nausea properties of the acid precursor of Δ9-tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), and determined its mechanism of action in these animal models. EXPERIMENTAL APPROACH We investigated the effect of THCA on lithium chloride- (LiCl) induced conditioned gaping (nausea-induced behaviour) to a flavour, and context (a model of anticipatory nausea) in rats, and on LiCl-induced vomiting in Suncus murinus. Furthermore, we investigated THCA's ability to induce hypothermia and suppress locomotion [rodent tasks to assess cannabinoid1 (CB1) receptor agonist-like activity], and measured plasma and brain THCA and THC levels. We also determined whether THCA's effect could be blocked by pretreatment with SR141716 (SR, a CB1 receptor antagonist). KEY RESULTS In rats, THCA (0.05 and/or 0.5 mg·kg−1) suppressed LiCl-induced conditioned gaping to a flavour and context; the latter effect blocked by the CB1 receptor antagonist, SR, but not by the 5-hydroxytryptamine-1A receptor antagonist, WAY100635. In S. murinus, THCA (0.05 and 0.5 mg·kg−1) reduced LiCl-induced vomiting, an effect that was reversed with SR. A comparatively low dose of THC (0.05 mg·kg−1) did not suppress conditioned gaping to a LiCl-paired flavour or context. THCA did not induce hypothermia or reduce locomotion, indicating non-CB1 agonist-like effects. THCA, but not THC was detected in plasma samples. CONCLUSIONS AND IMPLICATIONS THCA potently reduced conditioned gaping in rats and vomiting in S. murinus, effects that were blocked by SR. These data suggest that THCA may be a more potent alternative to THC in the treatment of nausea and vomiting. PMID:23889598

  14. Comparative study of the tissue distribution of NADH and NADPH-dependent chloral hydrate reducing enzymes in the rat

    SciTech Connect

    Ogino, Keiki; Hobara, Tatsuya; Kobayashi, Haruo; Iwamoto, Susumu )

    1990-03-01

    Chloral hydrate (CH), an intermediate metabolite of trichloroethylene, is reduced to trichloroethanol (TCE) by alcohol dehydrogenase and aldehyde reductase. Alcohol dehydrogenase requires reduced nicotinamide adenine dinucleotide (NADH), and aldehyde reductase requires reduced nicotinamide adenine dinucleotide phosphate (NADPH). No reports have appeared concerning comparative studies of the tissue distribution of CH-reducing enzymes. In this report, NADH and NADPH-dependent CH-reducing activities were investigated in various organs of the rat.

  15. Evidence for reduced lymphatic CSF absorption in the H-Tx rat hydrocephalus model

    PubMed Central

    Rammling, Matthias; Madan, Meenu; Paul, Leena; Behnam, Babak; Pattisapu, Jogi V

    2008-01-01

    Background There is mounting evidence that spinal fluid absorption takes place not only at the arachnoid villi, but also at several extracranial sites, which might serve as a reserve mechanism for, or be primarily involved in the absorption of CSF in hydrocephalus. Methods We compared the nasal lymphatic pathway in congenital Hydrocephalus-Texas (H-Tx) rats in unaffected and affected hydrocephalic (HC) siblings with that of control Sprague Dawley (SD) rat pups. The animals were examined after immediate post mortem injection of Evan's blue dye into the cisterna magna at 6 and 10 days of age. The specimens were evaluated for amount of dye penetration into the nasal passages. Results We found more dye visualization in the olfactory regions of control SD (14/16 at P6, 14/16 at P10) and unaffected H-Tx (13/17 at P6, 13/16 at P10) compared with HC animals (0/14 at P6, 3/15 at P10). This difference was more pronounced at 10 days of age. The dye was not visualized in the cervical lymph nodes or venous channels in these acute experiments. Conclusion The results of this study suggest that nasal lymphatic cerebrospinal fluid absorption is reduced in the H-Tx rat hydrocephalus model. PMID:18925964

  16. Electrolyzed-reduced water inhibits acute ethanol-induced hangovers in Sprague-Dawley rats.

    PubMed

    Park, Seung-Kyu; Qi, Xu-Feng; Song, Soon-Bong; Kim, Dong-Heui; Teng, Yung-Chien; Yoon, Yang-Suk; Kim, Kwang-Yong; Li, Jian-Hong; Jin, Dan; Lee, Kyu-Jae

    2009-10-01

    Ethanol consumption disturbs the balance between the pro- and anti-oxidant systems of the organism, leading to oxidative stress. Electrolyzed-reduced water (ERW) is widely used by people in East Asia for drinking purposes because of its therapeutic properties including scavenging effect of reactive oxygen species. This study was performed to investigate the effect of ERW on acute ethanol-induced hangovers in Sprague-Dawley rats. Alcohol concentration in serum of ERW-treated rats showed significant difference at 1 h, 3 h and 5 h respectively as compared with the rats treated with distilled water. Both alcohol dehydrogenase type 1 and acetaldehyde dehydrogenase related with oxidation of alcohol were significantly increased in liver tissue while the level of aspartate aminotransferase and alanine aminotransferase in serum was markedly decreased 24 h after pre-oral administration of ERW. Moreover, oral administration of ERW significantly activated non-ezymatic (glutathione) and enzymatic (glutathione peroxidase, glutathione-S-transferase, Cu/Zn-superoxide dismutase and catalase) antioxidants in liver tissues compared with the control group. These results suggest that drinking ERW has an effect of alcohol detoxification by antioxidant mechanism and has potentiality for relief of ethanol-induced hangover symptoms.

  17. MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis.

    PubMed

    Zhang, Z Y; Zhang, Z; Schluesener, H J

    2010-08-11

    Experimental autoimmune neuritis (EAN) is a T cell-mediated autoimmune inflammatory demyelinating disease of the peripheral nervous system and serves as the animal model of human inflammatory demyelinating polyradiculoneuropathies. MS-275, a potent histone deacetylase inhibitor currently undergoing clinical investigations for various malignancies, has been reported to demonstrate promising anti-inflammatory activities. In our present study, MS-275 administration (3.5 mg/kg i.p.) to EAN rats once daily from the appearance of first neurological signs greatly reduced the severity and duration of EAN and attenuated local accumulation of macrophages, T cells and B cells, and demyelination of sciatic nerves. Further, significant reduction of mRNA levels of pro-inflammatory interleukin-1beta, interferon-gamma, interleukine-17, inducible nitric oxide synthase and matrix metalloproteinase-9 was observed in sciatic nerves of MS-275 treated EAN rats. In lymph nodes, MS-275 depressed pro-inflammatory cytokines as well, but increased expression of anti-inflammatory cytokine interleukine-10 and of foxhead box protein3 (Foxp3), a unique transcription factor of regulatory T cells. In addition, MS-275 treatment increased proportion of infiltrated Foxp3(+) cells and anti-inflammatory M2 macrophages in sciatic nerves of EAN rats. In summary, our data demonstrated that MS-275 could effectively suppress inflammation in EAN, through suppressing inflammatory T cells, macrophages and cytokines, and inducing anti-inflammatory immune cells and molecules, suggesting MS-275 as a potent candidate for treatment of autoimmune neuropathies.

  18. Interferon-γ-loaded collagen scaffolds reduce myofibroblast numbers in rat palatal mucosa.

    PubMed

    Jansen, Richard G; van Kuppevelt, Toin H; Daamen, Willeke F; Kuijpers-Jagtman, Anne M; Von den Hoff, Johannes W

    2011-02-01

    Wound contraction and scar formation after cleft palate repair lead to growth impairment of the maxilla and midface. Myofibroblasts play a key role in these processes. The application of an interferon-γ (IFN-γ)-loaded collagen scaffold after surgery might reduce the differentiation of myofibroblasts. In this study, the tissue response to IFN-γ-loaded collagen scaffolds was evaluated after implantation in the palate of rats. Scaffolds, with or without IFN-γ, were implanted submucoperiosteally in the palate of two groups of 25 five-week-old male Wistar rats. Groups of five rats were sacrificed at 1, 2, 4, 8, and 16 weeks post-implantation and processed for histological analyses. On haematoxylin and eosin-stained sections, the cell density and number of giant cells within the scaffolds were determined. Blood vessels, inflammatory cells, and myofibroblasts were detected by immunohistochemistry. The data for cell density, blood vessels, and giant cells were compared with a two-way analysis of variance. The scores for myofibroblasts and inflammation were compared by a rank sum test. A mild and rapidly subsiding inflammatory and foreign body response was found in both groups. Angiogenesis had already begun after 1 week, showed a peak after 4 weeks, and declined thereafter. IFN-γ induced a faster influx of host cells and a major reduction in myofibroblast numbers. The scaffolds might be suitable for future applications in oral surgery.

  19. Extended Exposure to Environmental Cues, but not to Sucrose, Reduces Sucrose Cue-reactivity in Rats

    PubMed Central

    Harkness, John H.; Wells, Jason; Webb, Sierra; Grimm, Jeffrey W.

    2015-01-01

    The present study examined the effect of extinction of sucrose-predictive contextual cues and/or sucrose satiation on the expression of sucrose cue-reactivity in a rat model of relapse. Context extinction was imposed by housing rats in their home cage or in the operant conditioning chamber for 17 hours prior to testing. For sucrose satiation, rats were allowed unlimited access to water or sucrose for 17 hours prior to testing. Cue-reactivity was assessed after either 1 (Day 1) or 30 (Day 30) days of forced abstinence from sucrose self-administration. An abstinence-dependent increase in sucrose cue-reactivity was observed in all conditions (“incubation of craving”). Context extinction dramatically reduced lever responding on both Day 1 and Day 30. Sucrose satiation had no significant effect on cue-reactivity in any condition. These results demonstrate that the context in which self-administration occurred maintains a powerful influence over cue-reactivity even after extended forced abstinence. In contrast, the primary reinforcer has little control over cue-reactivity. These findings highlight the important role of conditioned contextual cues in driving relapse behavior. PMID:26169836

  20. Low-Power 2-MHz Pulsed-Wave Transcranial Ultrasound Reduces Ischemic Brain Damage in Rats.

    PubMed

    Alexandrov, Andrei V; Barlinn, Kristian; Strong, Roger; Alexandrov, Anne W; Aronowski, Jaroslaw

    2011-09-01

    It is largely unknown whether prolonged insonation with ultrasound impacts the ischemic brain tissue by itself. Our goal was to evaluate safety and the effect of high-frequency ultrasound on infarct volume in rats. Thirty-two Long-Evans rats with permanent middle cerebral and carotid artery occlusions received either 2-MHz ultrasound at two levels of insonation power (128 or 10 mW) or no ultrasound (controls). We measured cerebral hemorrhage, indirect and direct infarct volume as well as edema volume at 24 h. No cerebral hemorrhages were detected in all animals. Exposure to low-power (10 mW) ultrasound resulted in a significantly decreased indirect infarct volume (p = 0.0039), direct infarct volume (p = 0.0031), and brain edema volume (p = 0.01) compared with controls. High-power (128 mW) ultrasound had no significant effects. An additional experiment with India ink showed a greater intravascular penetration of dye into ischemic tissues exposed to low-power ultrasound. Insonation with high-frequency, low-power ultrasound reduces ischemic brain damage in rat. Its effect on edema reduction and possible promotion of microcirculation could be used to facilitate drug and nutrient delivery to ischemic areas.

  1. mTOR Inhibition: Reduced Insulin Secretion and Sensitivity in a Rat Model of Metabolic Syndrome

    PubMed Central

    Rovira, Jordi; Ramírez-Bajo, María Jose; Banon-Maneus, Elisenda; Moya-Rull, Daniel; Ventura-Aguiar, Pedro; Hierro-Garcia, Natalia; Lazo-Rodriguez, Marta; Revuelta, Ignacio; Torres, Armando; Oppenheimer, Federico; Campistol, Josep M.; Diekmann, Fritz

    2016-01-01

    Background Sirolimus (SRL) has been associated with new-onset diabetes mellitus after transplantation. The aim was to determine the effect of SRL on development of insulin resistance and β-cell toxicity. Methods Lean Zucker rat (LZR) and obese Zucker rat (OZR) were distributed into groups: vehicle and SRL (0.25, 0.5, or 1.0 mg/kg) during 12 or 28 days. Intraperitoneal glucose tolerance test (IPGTT) was evaluated at days 0, 12, 28, and 45. Islet morphometry, β-cell proliferation, and apoptosis were analyzed at 12 days. Islets were isolated to analyze insulin content, insulin secretion, and gene expression. Results After 12 days, SRL treatment only impaired IPGTT in a dose-dependent manner in OZR. Treatment prolongation induced increase of area under the curve of IPGTT in LZR and OZR; however, in contrast to OZR, LZR normalized glucose levels after 2 hours. The SRL reduced pancreas weight and islet proliferation in LZR and OZR as well as insulin content. Insulin secretion was only affected in OZR. Islets from OZR + SRL rats presented a downregulation of Neurod1, Pax4, and Ins2 gene. Genes related with insulin secretion remained unchanged or upregulated. Conclusions In conditions that require adaptive β-cell proliferation, SRL might reveal harmful effects by blocking β-cell proliferation, insulin production and secretion. These effects disappeared when removing the therapy. PMID:27500257

  2. FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis

    PubMed Central

    Verbeke, Len; Mannaerts, Inge; Schierwagen, Robert; Govaere, Olivier; Klein, Sabine; Vander Elst, Ingrid; Windmolders, Petra; Farre, Ricard; Wenes, Mathias; Mazzone, Massimiliano; Nevens, Frederik; van Grunsven, Leo A.; Trebicka, Jonel; Laleman, Wim

    2016-01-01

    Hepatic inflammation drives hepatic stellate cells (HSC), resulting in liver fibrosis. The Farnesoid-X receptor (FXR) antagonizes inflammation through NF-κB inhibition. We investigated preventive and therapeutic effects of FXR agonist obeticholic acid (OCA) on hepatic inflammation and fibrosis in toxic cirrhotic rats. Cirrhosis was induced by thioacetamide (TAA) intoxication. OCA was given during or after intoxication with vehicle-treated rats as controls. At sacrifice, fibrosis, hemodynamic and biochemical parameters were assessed. HSC activation, cell turn-over, hepatic NF-κB activation, pro-inflammatory and pro-fibrotic cytokines were determined. The effect of OCA was further evaluated in isolated HSC, Kupffer cells, hepatocytes and liver sinusoidal endothelial cells (LSEC). OCA decreased hepatic inflammation and fibrogenesis during TAA-administration and reversed fibrosis in established cirrhosis. Portal pressure decreased through reduced intrahepatic vascular resistance. This was paralleled by decreased expression of pro-fibrotic cytokines (transforming growth-factor β, connective tissue growth factor, platelet-derived growth factor β-receptor) as well as markers of hepatic cell turn-over, by blunting effects of pro-inflammatory cytokines (e.g. monocyte chemo-attractant protein-1). In vitro, OCA inhibited both LSEC and Kupffer cell activation; while HSC remained unaffected. This related to NF-κB inhibition via up-regulated IκBα. In conclusion, OCA inhibits hepatic inflammation in toxic cirrhotic rats resulting in decreased HSC activation and fibrosis. PMID:27634375

  3. Cyclosporin A reduces canalicular membrane fluidity and regulates transporter function in rats.

    PubMed Central

    Yasumiba, S; Tazuma, S; Ochi, H; Chayama, K; Kajiyama, G

    2001-01-01

    Changes of the biliary canalicular membrane lipid content can affect membrane fluidity and biliary lipid secretion in rats. The immunosuppressant cyclosporin A is known to cause intrahepatic cholestasis. This study investigated whether cyclosporin A influenced canalicular membrane fluidity by altering membrane phospholipids or transporter expression. In male Sprague-Dawley rats, a bile-duct cannula was inserted to collect bile, and sodium taurocholate was infused (100 nmol/min per 100 g) for 60 min. During steady-state taurocholate infusion, cyclosporin A (20 mg/kg) or vehicle was injected intravenously and then bile was collected for 80 min. After killing the rats, canalicular membrane vesicles were prepared. Expression of canalicular membrane transporters was assessed by Western blotting and canalicular membrane vesicle fluidity was estimated by fluorescence polarization. Cyclosporin A reduced biliary lipid secretion along with a disproportionate reduction of lipids relative to bile acids. Cyclosporin A significantly decreased canalicular membrane fluidity along with an increase of the cholesterol/phospholipid molar ratio. Only expression of the transporter P-glycoprotein was increased by cyclosporin A. Because canalicular membrane transporter expression was largely unchanged by cyclosporin A despite a marked decrease of biliary lipid secretion, transporter activity may partly depend upon canalicular membrane fluidity. PMID:11237863

  4. Luteolin supplementation adjacent to aspirin treatment reduced dimethylhydrazine-induced experimental colon carcinogenesis in rats.

    PubMed

    Osman, Neamt H A; Said, Usama Z; El-Waseef, Ahmed M; Ahmed, Esraa S A

    2015-02-01

    Previous studies have shown that aspirin is used in colon cancer treatment. However, long-term of Aspirin usage is limited to gastric and renal toxicity. Luteolin (LUT) has cancer prevention and anti-inflammatory effects. The present study was designed to investigate the effect of LUT supplementation and Aspirin treatment in dimethylhydrazine (DMH)-induced carcinogenesis in rats. DMH (20 mg/kg BW/week) treated rats received gavages with Aspirin (50 mg/kg BW/week) and LUT (0.2 mg/kg BW/day) for 15 weeks. DMH injections induce colon polyps and renal bleeding, significantly increasing carcinoembryonic antigen (CEA), cyclooxygenase-2 (COX-2), oxidative stress, and kidney function tests and reducing antioxidant markers. Either Aspirin or LUT gavages alone or combined produce a significant decrease in colon polyp number and size, significantly decreasing CEA, COX-2, and oxidative stress and increasing antioxidant markers. In conclusion, the supplementations of LUT adjacent to Aspirin in the treatment of DMH-induced carcinogenesis in rats reflect a better effect than the use of Aspirin alone.

  5. Prior exposure to enriched environment reduces nitric oxide synthase after transient MCAO in rats.

    PubMed

    Yu, Kewei; Wu, Yi; Hu, Yongshan; Zhang, Qi; Xie, Hongyu; Liu, Gang; Chen, Yao; Guo, Zhenzhen; Jia, Jie

    2013-12-01

    Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia/reperfusion injury is neuroprotective in animal models. However, little is known about of the neuroprotective effects of EE exposure prior to injury. The current study examined the effects of prior EE exposure on inducible and neuronal nitric oxide syntheses (iNOS and nNOS) after transient middle cerebral artery occlusion (tMCAO) in rats. A total of 72 rats were exposed to EE or standard housing condition (SC) for 1 month, followed by 90-min MCAO and reperfusion or sham surgery, leading to the following three groups: (1) EE+MCAO (n=24), (2) SC+MCAO (n=24), (3) SC+sham (n=24). Rats were sacrificed at 1, 6, or 24h after MCAO (n=6/group) for iNOS and nNOS mRNA quantification by real-time PCR and at 24h after MCAO (n=6/group) for iNOS and nNOS protein quantification by Western blot or were evaluated for neurological function outcomes, then sacrificed to assess infarct volume (n=6/group). Results showed that prior exposure to EE reduced iNOS and nNOS mRNA and protein and improved neurological status after MCAO without affecting infarct volume, suggesting that EE may provide neuroprotection via ischemic preconditioning.

  6. Effect of Alocasia indica Tuber Extract on Reducing Hepatotoxicity and Liver Apoptosis in Alcohol Intoxicated Rats

    PubMed Central

    Bhattacharya, Koushik; Mukherjee, Soumya

    2014-01-01

    The possible protective role of ethanolic extract of A. indica tuber (EEAIT) in hepatotoxicity and apoptosis of liver caused by alcohol in rats was investigated. Treatment of rats with alcohol (3 g ethanol per kg body weight per day for 15 days intraperitoneally) produced marked elevation of liver biomarkers such as serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (γ-GT), and total bilirubin levels which were reduced by EEAIT in a dose-dependent manner. Furthermore, EEAIT improved antioxidant status (MDA, NO, and GSH) and preserved hepatic cell architecture. Simultaneous supplementation with EEAIT significantly restored hepatic catalase (CAT) and superoxide dismutase (SOD) activity levels towards normal. The studies with biochemical markers were strongly supported by the histopathological evaluation of the liver tissue. EEAIT also attenuated apoptosis and necrosis features of liver cell found in immunohistochemical evaluation. HPLC analysis of the extract showed the presence of three major peaks of which peak 2 (RT: 33.33 min) contains the highest area (%) and UV spectrum analysis identified it as flavonoids. It is therefore suggested that EEAIT can provide a definite protective effect against chronic hepatic injury caused by alcohol in rats, which may mainly be associated with its antioxidative effect. PMID:24977149

  7. Effect of Alocasia indica tuber extract on reducing hepatotoxicity and liver apoptosis in alcohol intoxicated rats.

    PubMed

    Pal, Swagata; Bhattacharjee, Ankita; Mukherjee, Sandip; Bhattacharya, Koushik; Mukherjee, Soumya; Khowala, Suman

    2014-01-01

    The possible protective role of ethanolic extract of A. indica tuber (EEAIT) in hepatotoxicity and apoptosis of liver caused by alcohol in rats was investigated. Treatment of rats with alcohol (3 g ethanol per kg body weight per day for 15 days intraperitoneally) produced marked elevation of liver biomarkers such as serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (γ-GT), and total bilirubin levels which were reduced by EEAIT in a dose-dependent manner. Furthermore, EEAIT improved antioxidant status (MDA, NO, and GSH) and preserved hepatic cell architecture. Simultaneous supplementation with EEAIT significantly restored hepatic catalase (CAT) and superoxide dismutase (SOD) activity levels towards normal. The studies with biochemical markers were strongly supported by the histopathological evaluation of the liver tissue. EEAIT also attenuated apoptosis and necrosis features of liver cell found in immunohistochemical evaluation. HPLC analysis of the extract showed the presence of three major peaks of which peak 2 (RT: 33.33 min) contains the highest area (%) and UV spectrum analysis identified it as flavonoids. It is therefore suggested that EEAIT can provide a definite protective effect against chronic hepatic injury caused by alcohol in rats, which may mainly be associated with its antioxidative effect.

  8. Cryotherapy reduces skeletal muscle damage after ischemia/reperfusion in rats.

    PubMed

    Puntel, Gustavo O; Carvalho, Nélson R; Dobrachinski, Fernando; Salgueiro, Andréia C F; Puntel, Robson L; Folmer, Vanderlei; Barbosa, Nilda B V; Royes, Luiz F F; Rocha, João Batista T; Soares, Félix A A

    2013-02-01

    The aim of this study was to analyze the effects of cryotherapy on the biochemical and morphological changes in ischemic and reperfused (I/R) gastrocnemius muscle of rats. Forty male Wistar rats were divided into control and I/R groups, and divided based on whether or not the rats were submitted to cryotherapy. Following the reperfusion period, biochemical and morphological analyses were performed. Following cryotherapy, a reduction in thiobarbituric acid-reactive substances and dichlorofluorescein oxidation levels were observed in I/R muscle. Cryotherapy in I/R muscle also minimized effects such as decreased cellular viability, levels of non-protein thiols and calcium ATPase activity as well as increased catalase activity. Cryotherapy also limited mitochondrial dysfunction and decreased the presence of neutrophils in I/R muscle, an effect that was corroborated by reduced myeloperoxidase activity in I/R muscle treated with cryotherapy. The effects of cryotherapy are associated with a reduction in the intensity of the inflammatory response and also with a decrease in mitochondrial dysfunction.

  9. Hox C6 expression during development and regeneration of forelimbs in larval Notophthalmus viridescens.

    PubMed

    Khan, P A; Tsilfidis, C; Liversage, R A

    1999-06-01

    A central theme concerning the epimorphic regenerative potential of urodele amphibian appendages is that limb regeneration in the adult parallels larval limb development. Results of previous research have led to the suggestion that homeobox containing genes are "re-expressed" during the epimorphic regeneration of forelimbs of adult Notophthalmus viridescens in patterns which retrace larval limb development. However, to date no literature exists concerning expression patterns of any homeobox containing genes during larval development of this species. The lack of such information has been a hindrance in exploring the similarities as well as differences which exist between limb regeneration in adults and limb development in larvae. Here we report the first such results of the localization of Hox C6 (formerly, NvHBox-1) in developing and regenerating forelimbs of N. viridescens larvae as demonstrated by whole-mount in situ hybridization. Inasmuch as the pattern of Hox C6 expression is similar in developing forelimb buds of larvae and epimorphically regenerating forelimb blastemata of both adults and larvae, our results support the paradigm that epimorphic regeneration in adult newts parallels larval forelimb development. However, in contrast with observations which document the presence of Hox C6 in both intact, as well as regenerating hindlimbs and tails of adult newts, our results reveal no such Hox C6 expression during larval development of hindlimbs or the tail. As such, our findings indicate that critical differences in larval hindlimb and tail development versus adult expression patterns of this gene in these two appendages may be due primarily to differences in gene regulation as opposed to gene function. Thus, the apparent ability of urodeles to regulate genes in such a highly co-ordinated fashion so as to replace lost, differentiated, appendicular structures in adult animals may assist, at least in part, in better elucidating the phenomenon of epimorphic

  10. The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles.

    PubMed

    Cuff, Andrew R; Sparkes, Emily L; Randau, Marcela; Pierce, Stephanie E; Kitchener, Andrew C; Goswami, Anjali; Hutchinson, John R

    2016-07-01

    The body masses of cats (Mammalia, Carnivora, Felidae) span a ~300-fold range from the smallest to largest species. Despite this range, felid musculoskeletal anatomy remains remarkably conservative, including the maintenance of a crouched limb posture at unusually large sizes. The forelimbs in felids are important for body support and other aspects of locomotion, as well as climbing and prey capture, with the assistance of the vertebral (and hindlimb) muscles. Here, we examine the scaling of the anterior postcranial musculature across felids to assess scaling patterns between different species spanning the range of felid body sizes. The muscle architecture (lengths and masses of the muscle-tendon unit components) for the forelimb, cervical and thoracic muscles was quantified to analyse how the muscles scale with body mass. Our results demonstrate that physiological cross-sectional areas of the forelimb muscles scale positively with increasing body mass (i.e. becoming relatively larger). Many significantly allometric variables pertain to shoulder support, whereas the rest of the limb muscles become relatively weaker in larger felid species. However, when phylogenetic relationships were corrected for, most of these significant relationships disappeared, leaving no significantly allometric muscle metrics. The majority of cervical and thoracic muscle metrics are not significantly allometric, despite there being many allometric skeletal elements in these regions. When forelimb muscle data were considered in isolation or in combination with those of the vertebral muscles in principal components analyses and MANOVAs, there was no significant discrimination among species by either size or locomotory mode. Our results support the inference that larger felid species have relatively weaker anterior postcranial musculature compared with smaller species, due to an absence of significant positive allometry of forelimb or vertebral muscle architecture. This difference in strength

  11. The lateral reticular nucleus; integration of descending and ascending systems regulating voluntary forelimb movements.

    PubMed

    Alstermark, Bror; Ekerot, Carl-Fredrik

    2015-01-01

    Cerebellar control of movements is dependent on mossy fiber input conveying information about sensory and premotor activity in the spinal cord. While much is known about spino-cerebellar systems, which provide the cerebellum with detailed sensory information, much less is known about systems conveying motor information. Individual motoneurones do not have projections to spino-cerebellar neurons. Instead, the fastest route is from last order spinal interneurons. In order to identify the networks that convey ascending premotor information from last order interneurons, we have focused on the lateral reticular nucleus (LRN), which provides the major mossy fiber input to cerebellum from spinal interneuronal systems. Three spinal ascending systems to the LRN have been investigated: the C3-C4 propriospinal neurones (PNs), the ipsilateral forelimb tract (iFT) and the bilateral ventral flexor reflex tract (bVFRT). Voluntary forelimb movements involve reaching and grasping together with necessary postural adjustments and each of these three interneuronal systems likely contribute to specific aspects of forelimb motor control. It has been demonstrated that the command for reaching can be mediated via C3-C4 PNs, while the command for grasping is conveyed via segmental interneurons in the forelimb segments. Our results reveal convergence of ascending projections from all three interneuronal systems in the LRN, producing distinct combinations of excitation and inhibition. We have also identified a separate descending control of LRN neurons exerted via a subgroup of cortico-reticular neurones. The LRN projections to the deep cerebellar nuclei exert a direct excitatory effect on descending motor pathways via the reticulospinal, vestibulospinal, and other supraspinal tracts, and might play a key role in cerebellar motor control. Our results support the hypothesis that the LRN provides the cerebellum with highly integrated information, enabling cerebellar control of complex forelimb

  12. A1 noradrenergic neurons lesions reduce natriuresis and hypertensive responses to hypernatremia in rats.

    PubMed

    da Silva, Elaine Fernanda; Freiria-Oliveira, André Henrique; Custódio, Carlos Henrique Xavier; Ghedini, Paulo César; Bataus, Luiz Artur Mendes; Colombari, Eduardo; de Castro, Carlos Henrique; Colugnati, Diego Basile; Rosa, Daniel Alves; Cravo, Sergio L D; Pedrino, Gustavo Rodrigues

    2013-01-01

    Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group) contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS) infusion in non-anesthetized rats. Male Wistar rats (280-340 g) received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL(-1)) or free saporin (sham, 0.021 ng.nL(-1)) into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2) and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg(-1), b.wt., for longer than 1 min). In the sham-group (n = 8), HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline). Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11)were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group), and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg). Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05). In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid.

  13. Low Frequency Stimulation of Hippocampal Commissures Reduces Seizures in Chronic Rat Model of Temporal Lobe Epilepsy

    PubMed Central

    Rashid, Saifur; Pho, Gerald; Czigler, Michael; Werz, Mary Ann; Durand, Dominique M.

    2013-01-01

    SUMMARY Purpose To investigate the effects of low frequency stimulation (LFS) of a fiber track for the suppression of spontaneous seizures described by Nissinen in a rat model of human temporal lobe epilepsy. Methods Stimulation electrodes were implanted into the ventral hippocampal commissure (VHC) in a rat post-status epilepticus (SE) model of human temporal lobe epilepsy (n = 7). Two recordings electrodes were placed in the CA3 regions bilaterally and neural data was recorded for a minimum of six weeks. LFS (60 minute train of 1Hz biphasic square wave pulses, each 0.1ms in duration and 200μA in amplitude, followed by 15 minutes of rest) was applied to the VHC for, two weeks, 24 hours a day. Key Findings The baseline mean seizure frequency of the study animals was 3.7 seizures per day. The seizures were significantly reduced by the application of LFS in every animal (n=7). By the end of the two-week period of stimulation, there was a significant 90% (<1 seizure/day) reduction of seizure frequencies (p < 0.05) and a 57% reduction during the period following LFS (p < 0.05) when compared to baseline. LFS also resulted in a significant reduction of hippocampal interictal spike frequency (71%, p < 0.05), during two weeks LFS session. The hippocampal histological analysis showed no significant difference between rats that received LFS and SE-induction and those that had only received SE-induction. None of the animals showed any symptomatic hemorrhage, infection or complication. Significance LFS applied at a frequency of 1Hz significantly reduced both the excitability of the neural tissue as well as the seizure frequency in a rat model of human temporal lobe epilepsy. The results support the hypothesis that LFS of fiber tracts can be an effective method for the suppression of spontaneous seizures in a temporal lobe model of epilepsy in rats and could be lead to the development of the new therapeutic modality for human patients with temporal lobe epilepsy. PMID:22150779

  14. Fermented soy permeate reduces cytokine level and oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Malardé, Ludivine; Groussard, Carole; Lefeuvre-Orfila, Luz; Vincent, Sophie; Efstathiou, Théo; Gratas-Delamarche, Arlette

    2015-01-01

    Oxidative stress and inflammation are involved in the development of type 1 diabetes and its complications. Because two compounds found in soy, that is, isoflavones and alpha-galactooligosaccharides, have been shown to exert antioxidant and anti-inflammatory effects, this study aimed to assess the effects of a dietary supplement containing these two active compounds, the fermented soy permeate (FSP). We hypothesized that FSP would be able to reduce in vivo oxidative stress and inflammation in streptozotocin (STZ)-induced type 1 diabetic rats. Thirty male Wistar rats were divided into the control placebo, diabetic placebo, and diabetic FSP-supplemented groups. They received daily, by oral gavage, water (placebo groups) or diluted FSP (0.1 g/day; FSP-supplemented group). After 3 weeks, glycemic regulation (glycemia and fructosamine level); the plasma level of carboxymethyllysine (CML), a marker of systemic oxidative stress in diabetes; and the plasma levels of inflammatory markers (CRP, IL-1β, IL-6, and uric acid) were evaluated. Markers of oxidative damage (isoprostanes and GSH/GSSG), antioxidant enzymatic activity (SOD and GPX), and Mn-SOD content were determined in skeletal muscle (gastrocnemius). Diabetic placebo rats exhibited higher CML levels, lower SOD and GPX activities, and decreased Mn-SOD contents. FSP supplementation in diabetic animals normalized the CML and antioxidant enzymatic activity levels and tended to increase Mn-SOD expression. The markers of inflammation whose levels were increased in the diabetic placebo group were markedly decreased by FSP (IL-1β: -75%, IL-6: -46%, and uric acid: -17%), except for CRP. Our results demonstrate that FSP exhibited antioxidant and anti-inflammatory properties in vivo in STZ-induced diabetic rats.

  15. Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats

    PubMed Central

    Furlanetto, Roberto; de Paula Souza, Aletéia; de Oliveira, Anselmo Alves; Nunes, Paulo Ricardo Prado; Michelin, Márcia Antoniazi; Chica, Javier Emilio Lazo; Murta, Eddie Fernando Candido

    2017-01-01

    Objective We studied the effect of resistance exercise (RE) on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF). Material and methods Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams) were randomly allocated into five groups: control group (CT-Sham; n = 6); group with rheumatoid arthritis (RA; n = 6); group with rheumatoid arthritis subjected to RE (RAEX; n = 6); ovariectomy group with rheumatoid arthritis (RAOV; n = 6); and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6). After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. Results The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA) of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV), but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. Conclusions LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1). However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF. PMID:28250722

  16. Intranasal leptin reduces appetite and induces weight loss in rats with diet-induced obesity (DIO).

    PubMed

    Schulz, Carla; Paulus, Kerstin; Jöhren, Olaf; Lehnert, Hendrik

    2012-01-01

    Resistance to brain-mediated effects of leptin is a characteristic feature of obesity, resulting from alterations in leptin receptor signaling in hypothalamic neurons and/or transport across the blood-brain-barrier. We have shown previously, that the latter can be circumvented by intranasal (i.n.) application of leptin in lean rats. This prompted us to test i.n. leptin in animals with diet-induced obesity (DIO) as a basis for future human administration. DIO was induced in male Wistar rats by feeding a cafeteria diet for 25 or 32 wk, respectively. Consecutively, these DIO animals (seven to eight per treatment) and standard diet rats (lean) (14-15 per treatment, matched for age and diet duration) were treated with 0.1, 0.2 mg/kg leptin, or control solution i.n. daily for 4 wk before onset of dark period. Energy intake and body weight were measured daily; blood glucose, serum insulin, and leptin were measured before and after treatment. Expression of hypothalamic neuropeptides was assessed by quantitative real-time PCR. We demonstrate, for the first time, that i.n. leptin reduces appetite and induces weight loss in DIO to the same extent as in lean rats. Our findings are supported accordingly by an altered expression pattern of anorexigenic and orexigenic neuropeptides in the hypothalamus, e.g. proopiomelanocortin, cocaine and amphetamine-related transcript, neuropeptide Y, agouti-related protein. It now appears clear that i.n. leptin is effectively acting in obese animals in the same fashion as in their lean counterparts. These findings now clearly warrant studies in humans and may open new perspectives in the treatment of obesity.

  17. Reduced ability of calcitriol to promote augmented dopamine release in the lesioned striatum of aged rats.

    PubMed

    Cass, Wayne A; Peters, Laura E

    2017-04-05

    Parkinson's disease (PD) is a progressive and debilitating neurodegenerative disorder that affects over one million people in the United States. Previous studies, carried out in young adult rats, have shown that calcitriol, the active metabolite of vitamin D, can be neuroprotective in 6-hydroxydopamine (6-OHDA) models of PD. However, as PD usually affects older individuals, the ability of calcitriol to promote dopaminergic recovery was examined in lesioned young adult (4 month old), middle-aged (14 month old) and aged (22 month old) rats. Animals were given a single injection of 12 μg 6-OHDA into the right striatum. Four weeks later they were administered vehicle or calcitriol (1.0 μg/kg, s.c.) once a day for eight consecutive days. In vivo microdialysis experiments were carried out three weeks after the calcitriol or vehicle treatments to measure potassium and amphetamine evoked overflow of DA from both the left and right striata. In control animals treated with 6-OHDA and vehicle there were significant reductions in evoked overflow of DA on the lesioned side of the brain compared to the contralateral side. The calcitriol treatments significantly increased evoked overflow of DA from the lesioned striatum in both the young adult and middle-aged rats. However, the calcitriol treatments did not significantly augment DA overflow in the aged rats. Postmortem tissue levels of striatal DA were also increased in the young and middle-aged animals, but not in the aged animals. In the substantia nigra, the calcitriol treatments led to increased levels of DA in all three age groups. Thus, the effects of calcitriol were similar in the young adult and middle-aged animals, but in the aged animals the effects of calcitriol were diminished. These results suggest that calcitriol may help promote recovery of dopaminergic functioning in injured nigrostriatal neurons; however, the effectiveness of calcitriol may be reduced in aging.

  18. Brown Norway chromosome 1 congenic reduces symptoms of renal disease in fatty Zucker rats.

    PubMed

    Warden, Craig H; Slupsky, Carolyn; Griffey, Stephen M; Bettaieb, Ahmed; Min, Esther; Le, Anh; Fisler, Janis S; Hansen, Susan; Haj, Fawaz; Stern, Judith S

    2014-01-01

    We previously reported that a congenic rat with Brown Norway (BN) alleles on chromosome 1 reduces renal disease of 15-week old fatty Zucker rats (ZUC). Development of renal disease in fatty BN congenic and fatty ZUC rats from 9 through 28 weeks is now examined. Analysis of urine metabolites by (1)H nuclear magnetic resonance (NMR) spectroscopy revealed a significantly increased urinary loss of glucose, myo-inositol, urea, creatine, and valine in ZUC. Food intake was lower in the BN congenic rats at weeks 9-24, but they weighed significantly more at 28 weeks compared with the ZUC group. Fasting glucose was significantly higher in ZUC than congenic and adiponectin levels were significantly lower in ZUC, but there was no significant genotype effect on Insulin levels. Glucose tolerance tests exhibited no significant differences between ZUC and congenic when values were normalized to basal glucose levels. Quantitative PCR on livers revealed evidence for higher gluconeogenesis in congenics than ZUC at 9 weeks. Plasma urea nitrogen and creatinine were more than 2-fold higher in 28-week ZUC. Twelve urine protein markers of glomerular, proximal and distal tubule disease were assayed at three ages. Several proteins that indicate glomerular and proximal tubular disease increased with age in both congenic and ZUC. Epidermal growth factor (EGF) level, a marker whose levels decrease with distal tubule disease, was significantly higher in congenics. Quantitative histology of 28 week old animals revealed the most significant genotype effect was for tubular dilation and intratubular protein. The congenic donor region is protective of kidney disease, and effects on Type 2 diabetes are likely limited to fasting glucose and adiponectin. The loss of urea together with a small increase of food intake in ZUC support the hypothesis that nitrogen balance is altered in ZUC from an early age.

  19. Bolus oral or continuous intestinal amino acids reduce hypothermia during anesthesia in rats.

    PubMed

    Imoto, Akinobu; Yokoyama, Takeshi; Suwa, Kunio; Yamasaki, Fumiyasu; Yatabe, Tomoaki; Yokoyama, Reiko; Yamashita, Koichi; Selldén, Eva

    2010-01-01

    We hypothesized that, with oral or intestinal administration of amino acids (AA), we may reduce hypothermia during general anesthesia as effectively as with intravenous AA. We, therefore, examined the effect of bolus oral and continuous intestinal AA in preventing hypothermia in rats. Male Wistar rats were anesthetized with sevoflurane for induction and with propofol for maintenance. In the first experiment, 30 min before anesthesia, rats received one bolus 42 mL/kg of AA solution (100 g/L) or saline orally. Then for the next 3 h during anesthesia, they received 14 mL/kg/h of AA and/or saline intravenously. They were in 4 groups: I-A/A, both AA; I-A/S, oral AA and intravenous saline; I-S/A, oral saline and intravenous AA; I-S/S, both saline. In the second experiment, rats received 14 mL/kg/h duodenal AA and/or saline for 2 h. They were in 3 groups: II-A/S, duodenal AA and intravenous saline; II-S/A, duodenal saline and intravenous AA; II-S/S, both saline. Core body temperature was measured rectally. After the second experiment, serum electrolytes were examined. In both experiments, rectal temperature decreased in all groups during anesthesia. However, the decrease in rectal temperature was significantly less in groups receiving AA than in groups receiving only saline. In the second experiment, although there was no significant difference in the decrease in body temperature between II-A/S and II-S/A, Na(+) concentration was significantly lower in II-S/A. In conclusion, AA, administered orally or intestinally, tended to keep the body temperature stable during anesthesia without disturbing electrolyte balance. These results suggest that oral or enteral AA may be useful for prevention of hypothermia in patients.

  20. A Peptide to Reduce Pulmonary Edema in a Rat Model of Lung Transplantation

    PubMed Central

    Finsterwalder, Richard; Friedl, Heinz P.; Rauscher, Sabine; Gröger, Marion; Kocher, Alfred; Wagner, Christine; Wagner, Stephan N.; Fischer, Gottfried; Schultz, Marcus J.; Wiedemann, Dominik; Petzelbauer, Peter

    2015-01-01

    Background Despite significant advances in organ preservation, surgical techniques and perioperative care, primary graft dysfunction is a serious medical problem in transplantation medicine in general and a specific problem in patients undergoing lung transplantation. As a result, patients develop lung edema, causing reduced tissue oxygenation capacity, reduced lung compliance and increased requirements for mechanical ventilatory support. Yet, there is no effective strategy available to protect the grafted organ from stress reactions induced by ischemia/reperfusion and by the surgical procedure itself. Methods We assessed the effect of a cingulin-derived peptide, XIB13 or a random peptide in an established rat model of allogeneic lung transplantation. Donor lungs and recipients received therapeutic peptide at the time of transplantation and outcome was analyzed 100min and 28 days post grafting. Results XIB13 improved blood oxygenation and reduced vascular leak 100min post grafting. Even after 28 days, lung edema was significantly reduced by XIB13 and lungs had reduced fibrotic or necrotic zones. Moreover, the induction of an allogeneic T cell response was delayed indicating a reduced antigen exchange between the donor and the host. Conclusions In summary, we provide a new tool to strengthen endothelial barrier function thereby improving outcomes in lung transplantation. PMID:26536466

  1. Complete forelimb myology of the basal theropod dinosaur Tawa hallae based on a novel robust muscle reconstruction method.

    PubMed

    Burch, Sara H

    2014-09-01

    The forelimbs of nonavian theropod dinosaurs have been the subject of considerable study and speculation due to their varied morphology and role in the evolution of flight. Although many studies on the functional morphology of a limb require an understanding of its musculature, comparatively little is known about the forelimb myology of theropods and other bipedal dinosaurs. Previous phylogenetically based myological reconstructions have been limited to the shoulder, restricting their utility in analyses of whole-limb function. The antebrachial and manual musculature in particular have remained largely unstudied due to uncertain muscular homologies in archosaurs. Through analysis of the musculature of extant taxa in a robust statistical framework, this study presents new hypotheses of homology for the distal limb musculature of archosaurs and provides the first complete reconstruction of dinosaurian forelimb musculature, including the antebrachial and intrinsic manual muscles. Data on the forelimb myology of a broad sample of extant birds, crocodylians, lizards, and turtles were analyzed using maximum likelihood ancestral state reconstruction and examined together with the osteology of the early theropod Tawa hallae from the Late Triassic of New Mexico to formulate a complete plesiomorphic myology for the theropod forelimb. Comparisons with previous reconstructions show that the shoulder musculature of basal theropods is more similar to that of basal ornithischians and sauropodomorphs than to that of dromaeosaurids. Greater development of the supracoracoideus and deltoideus musculature in theropods over other bipedal dinosaurs correlates with stronger movements of the forelimb at the shoulder and an emphasis on apprehension of relatively large prey. This emphasis is further supported by the morphology of the antebrachium and the intrinsic manual musculature, which exhibit a high degree of excursion and a robust morphology well-suited for powerful digital flexion

  2. Complete forelimb myology of the basal theropod dinosaur Tawa hallae based on a novel robust muscle reconstruction method

    PubMed Central

    Burch, Sara H

    2014-01-01

    The forelimbs of nonavian theropod dinosaurs have been the subject of considerable study and speculation due to their varied morphology and role in the evolution of flight. Although many studies on the functional morphology of a limb require an understanding of its musculature, comparatively little is known about the forelimb myology of theropods and other bipedal dinosaurs. Previous phylogenetically based myological reconstructions have been limited to the shoulder, restricting their utility in analyses of whole-limb function. The antebrachial and manual musculature in particular have remained largely unstudied due to uncertain muscular homologies in archosaurs. Through analysis of the musculature of extant taxa in a robust statistical framework, this study presents new hypotheses of homology for the distal limb musculature of archosaurs and provides the first complete reconstruction of dinosaurian forelimb musculature, including the antebrachial and intrinsic manual muscles. Data on the forelimb myology of a broad sample of extant birds, crocodylians, lizards, and turtles were analyzed using maximum likelihood ancestral state reconstruction and examined together with the osteology of the early theropod Tawa hallae from the Late Triassic of New Mexico to formulate a complete plesiomorphic myology for the theropod forelimb. Comparisons with previous reconstructions show that the shoulder musculature of basal theropods is more similar to that of basal ornithischians and sauropodomorphs than to that of dromaeosaurids. Greater development of the supracoracoideus and deltoideus musculature in theropods over other bipedal dinosaurs correlates with stronger movements of the forelimb at the shoulder and an emphasis on apprehension of relatively large prey. This emphasis is further supported by the morphology of the antebrachium and the intrinsic manual musculature, which exhibit a high degree of excursion and a robust morphology well-suited for powerful digital flexion

  3. Losartan reduces oxidative damage to renal DNA and conserves plasma antioxidant capacity in diabetic rats.

    PubMed

    Lodovici, Maura; Bigagli, Elisabetta; Tarantini, Francesca; Di Serio, Claudia; Raimondi, Laura

    2015-11-01

    Increased reactive oxygen species (ROS) levels produced by hyperglycemia and angiotensin-II (AT-II) are considered among the pathogenic factors in the malignant transformation of diabetic renal cells. We aimed to investigate the potential role of AT-II in the increased cancer risk seen in diabetes; measuring oxidative damage to renal DNA and protective antioxidant defenses, including adiponectin (Adp) and plasma antioxidant capacity by the Ferric Reducing Ability of Plasma (FRAP) method. In the kidney of streptozotocin (STZ)-induced (55 mg/kg) diabetic rats either treated or not treated for 3 weeks with losartan, an AT-II type 1 receptor antagonist (20 mg/kg/day); we measured 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels, as an index of oxidative DNA damage, circulating Adp and FRAP. Diabetic rats showed significantly higher 8-oxodGuo levels in renal DNA (8.48 ± 0.98 × 10(-6) dG, mean ± SEM n = 11) than normoglycemic ones (1.18 ± 0.04 × 10(-6) dG, mean ± SEM, n=7) and lower plasma Adp and FRAP levels in comparison to normoglycemics. The treatment of diabetic rats with losartan significantly (P < 0.01) reduced 8-oxodGuo levels (5.4 ± 0.58 × 10(-6) dG, mean ± SEM n=9) in renal DNA and conserved FRAP values. Moreover, an inverse correlation was found between 8-oxodGuo in kidney DNA and circulating Adp levels in normoglycemic and diabetic rats. Losartan treatment preserves FRAP levels, reduces DNA oxidative injury and thus the carcinogenesis risk. Furthermore, our results indicate that Adp plasma levels are a further marker of oxidative injury to the kidney and confirm that it is an important part of the plasma antioxidant defense.

  4. Shengmai San reduces hepatic lipids and lipid peroxidation in rats fed on a high-cholesterol diet.

    PubMed

    Yao, Hsien-Tsung; Chang, Yi-Wei; Chen, Chiung-Tong; Chiang, Meng-Tsan; Chang, Ling; Yeh, Teng-Kuang

    2008-02-28

    Shengmai San (SMS), which is comprised of the medicinal herbs of Panax ginseng C.A. Meyer, Schisandra chinensis Baill., and Ophiopogon japonicus Ker-Gawl (2:1:2)., is a traditional Chinese medicine being used for treating coronary heart disease. The aim of this study was to investigate the effects of SMS on the plasma and liver lipids, lipid peroxidation and antioxidant systems in liver and heart of cholesterol-fed rats. Rats were fed on a high-cholesterol (0.5%) diet (control group), high-cholesterol diet containing 2% SMS (2% SMS group) and 4% SMS (4% SMS group) for four weeks. The oxidative stress marker (thiobarbituric acid reactive substances, TBARS) and antioxidant defense systems including glutathione (GSH), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities in rat liver and heart were evaluated. Results showed that rats fed with SMS-containing diet had reduced the H(2)O(2)-induced erythrocytes susceptibility to hemolysis, and 4% SMS feeding rats had higher plasma GSH concentration compared to the animals fed with the control diet. However, SMS had no effect on plasma lipids (total cholesterol, triglyceride and high-density lipoprotein cholesterol) and TBARS concentration. On the other hand, rats fed with the 4% SMS diet reduced the hepatic cholesterol and triglyceride contents. Fecal bile acid excretion was significantly increased in rats fed with the SMS-containing diet. Higher hepatic GSH and lower TBARS concentrations were observed in rats fed with the 4% SMS diet compared with the rats fed with the control diet. No significant difference in activities of GSH-Px, GST and SOD was found in liver and heart after the SMS treatment. Results from this study indicate that the SMS may reduce hepatic lipids and lipid peroxidation in rats.

  5. Cyclooxygenase-2-derived prostanoids reduce inward arterial remodeling induced by blood flow reduction in old obese Zucker rat mesenteric arteries.

    PubMed

    Vessières, Emilie; Belin de Chantemèle, Eric J; Guihot, Anne-Laure; Jardel, Alain; Toutain, Bertrand; Loufrani, Laurent; Henrion, Daniel

    2013-01-01

    Obesity is associated with altered arterial structure and function leading to arterial narrowing in most vascular beds, especially when associated with aging. Nevertheless, mesenteric blood flow remains elevated in obese rats, although the effect of aging remains unknown. We investigated mesenteric artery narrowing following blood flow reduction in vivo in 3- and 12-month-old obese Zucker rats. After 21 days, inward remodeling occurred in low flow (LF) arteries in young and old lean rats and in young obese rats (30% diameter reduction). Diameter did not significantly decrease in old obese rats. Phenylephrine-mediated contraction was reduced by approximately 20% in LF arteries in all groups but in old obese rat arteries in which the decrease reached 80%. LF arteries expressed cyclooxygenase-2 and blood 6-keto-PGF1alpha (prostacyclin metabolite) was elevated in old obese rats. In old obese rats, acute cyclooxygenase-2 blockade restored phenylephrine-mediated contraction in LF arteries and chronic cyclooxygenase-2 blockade restored inward remodeling and contractility to control level. Thus, in old obese rats, cyclooxygenase-2-derived prostacyclin prevented the diameter reduction induced by a chronic decrease in blood flow. This adaptation is in favor of a preserved perfusion of the mesentery by contrast with other vascular territories, possibly amplifying the vascular disorders occurring in obesity.

  6. SEXUAL INTERACTIONS WITH UNFAMILIAR FEMALES REDUCE HIPPOCAMPAL NEUROGENESIS AMONG ADULT MALE RATS

    PubMed Central

    Spritzer, Mark D.; Curtis, Molly G.; DeLoach, Julia P.; Maher, Jack; Shulman, Leanne M.

    2016-01-01

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of BrdU (200 mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30 min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohisotchemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. There were no differences in the amount of sexual behavior (mounts, intromissions, ejaculations, or contact time) that the familiar and unfamiliar groups engaged in, indicating that the differences in neurogenesis were not due to the relative amounts of sexual activity. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect

  7. Oxytocin in the nucleus accumbens core reduces reinstatement of methamphetamine-seeking behaviour in rats.

    PubMed

    Baracz, Sarah J; Everett, Nicholas A; McGregor, Iain S; Cornish, Jennifer L

    2016-03-01

    The psychostimulant methamphetamine (METH) is an addictive illicit drug. Systemic administration of the neuropeptide oxytocin modulates METH-related reward and METH-seeking behaviour. Recent findings demonstrated a reduction in METH-induced reward by oxytocin administration into the nucleus accumbens (NAc) core. It is not known, however, if oxytocin acts in this region to reduce relapse to METH-seeking behaviour. Using the drug reinstatement paradigm in rats experienced at METH self-administration, we aimed to determine whether oxytocin pre-treatment within the NAc core would reduce relapse to METH use and if this could be reversed by the co-administration of the oxytocin receptor (OTR) antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague-Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae in the NAc core. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour fixed ratio 1 scheduled sessions for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.5 pmol, 1.5 pmol, 4.5 pmol) or co-administration of oxytocin (1.5 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (1 nmol, 3 nmol) in the NAc core (500 nl/side) was examined on METH-primed (1 mg/kg, i.p.) reinstatement of drug-seeking behaviour. Our results showed oxytocin directly administered into the NAc core decreased METH-primed reinstatement in a dose-dependent manner. Co-administration of the selective OTR antagonist did not specifically reverse the inhibitory effects of oxytocin on METH priming, suggesting mediation by receptors other than the OTR. These findings highlight an important modulatory effect of oxytocin in the NAc core on relapse to METH seeking.

  8. Irradiation of rat brain reduces P-glycoprotein expression and function.

    PubMed

    Bart, J; Nagengast, W B; Coppes, R P; Wegman, T D; van der Graaf, W T A; Groen, H J M; Vaalburg, W; de Vries, E G E; Hendrikse, N H

    2007-08-06

    The blood-brain barrier (BBB) hampers delivery of several drugs including chemotherapeutics to the brain. The drug efflux pump P-glycoprotein (P-gp), expressed on brain capillary endothelial cells, is part of the BBB. P-gp expression on capillary endothelium decreases 5 days after brain irradiation, which may reduce P-gp function and increase brain levels of P-gp substrates. To elucidate whether radiation therapy reduces P-gp expression and function in the brain, right hemispheres of rats were irradiated with single doses of 2-25 Gy followed by 10 mg kg(-1) of the P-gp substrate cyclosporine A (CsA) intravenously (i.v.), with once 15 Gy followed by CsA (10, 15 or 20 mg kg(-1)), or with fractionated irradiation (4 x 5 Gy) followed by CsA (10 mg kg(-1)) 5 days later. Additionally, four groups of three rats received 25 Gy once and were killed 10, 15, 20 or 25 days later. The brains were removed and P-gp detected immunohistochemically. P-gp function was assessed by [(11)C]carvedilol uptake using quantitative autoradiography. Irradiation increased [(11)C]carvedilol uptake dose-dependently, to a maximum of 20% above non irradiated hemisphere. CsA increased [(11)C]carvedilol uptake dose-dependently in both hemispheres, but more (P<0.001) in the irradiated hemisphere. Fractionated irradiation resulted in a lost P-gp expression 10 days after start irradiation, which coincided with increased [(11)C]carvedilol uptake. P-gp expression decreased between day 15 and 20 after single dose irradiation, and increased again thereafter. Rat brain irradiation results in a temporary decreased P-gp function.

  9. Yellow pea fiber improves glycemia and reduces Clostridium leptum in diet-induced obese rats.

    PubMed

    Eslinger, Amanda J; Eller, Lindsay K; Reimer, Raylene A

    2014-08-01

    Numerous studies have demonstrated the impact of functional fibers on gut microbiota and metabolic health, but some less well-studied fibers and/or fractions of foods known to be high in fiber still warrant examination. The aim of this study was to assess the effect of yellow pea-derived fractions varying in fiber and protein content on metabolic parameters and gut microbiota in diet-induced obese rats. We hypothesized that the yellow pea fiber (PF) fraction would improve glycemia and alter gut microbiota. Rats were randomized to 1 of 5 isoenergetic dietary treatments for 6 weeks: (1) control; (2) oligofructose (OFS); (3) yellow PF; (4) yellow pea flour (PFL); or (5) yellow pea starch (PS). Glycemia, plasma gut hormones, body composition, hepatic triglyceride content, gut microbiota, and messenger RNA expression of genes related to hepatic fat metabolism were examined. Pea flour attenuated weight gain compared with control, PF, and PS (P < .05). Pea flour, PS, and OFS had significantly lower final percent body fat compared with control. Oligofructose but not the pea fraction diets reduced food intake compared with control (P < .05). Pea fiber resulted in lower fasting glucose and glucose area under the curve compared with control. Changes in gut microbiota were fraction specific and included a decrease in Firmicutes (percent) for OFS, PF, and PFL compared with control (P < .05). The Firmicutes/Bacteroidetes ratio was reduced with OFS, PF, and PFL when compared with PS (P < .05). Taken together, this work suggests that yellow pea-derived fractions are able to distinctly modulate metabolic parameters and gut microbiota in obese rats.

  10. Cardiac spinal deafferentation reduces the susceptibility to sustained ventricular tachycardia in conscious rats

    PubMed Central

    Lujan, Heidi L.; Krishnan, Sandhya

    2011-01-01

    The response to myocardial ischemia is complex and involves the cardio-cardiac sympathetic reflex. Specifically, cardiac spinal (sympathetic) afferents are excited by ischemic metabolites and elicit an excitatory sympathetic reflex, which plays a major role in the genesis of ventricular arrhythmias. For example, brief myocardial ischemia leads to ATP release, which activates cardiac spinal afferents through stimulation of P2 receptors. Clinical work with patients and preclinical work with animals document that disruption of this reflex protects against ischemia-induced ventricular arrhythmias. However, the role of afferent signals in the initiation of sustained ventricular tachycardia has not been investigated. Therefore, we tested the hypothesis that cardiac spinal deafferentation reduces the susceptibility to sustained ventricular tachycardia in adult (12–15 wk of age), conscious, male Sprague-Dawley rats. To test this hypothesis, the susceptibility to ventricular tachyarrhythmias produced by occlusion of the left main coronary artery was determined in two groups of conscious rats: 1) deafferentation (bilateral excision of the T1-T5 dorsal root ganglia) and 2) control (sham deafferentation). The ventricular arrhythmia threshold (VAT) was defined as the time from coronary occlusion to sustained ventricular tachycardia resulting in a reduction in arterial pressure. Results document a significantly higher VAT in the deafferentation group (7.0 ± 0.7 min) relative to control (4.3 ± 0.3 min) rats. The decreased susceptibility to tachyarrhythmias with deafferentation was associated with a reduced cardiac metabolic demand (lower rate-pressure product and ST segment elevation) during ischemia. PMID:21677267

  11. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

    PubMed Central

    Babaee, Abdolreza; Eftekhar-Vaghefi, Seyed Hassan; Asadi-shekaari, Majid; Shahrokhi, Nader; Soltani, Samereh Dehghani; Malekpour-Afshar, Reza; Basiri, Mohsen

    2015-01-01

    Objective(s): Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury. Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis), as well as inhibition of apoptosis in brain tissue of male rats after TBI. Materials and Methods: The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline) and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg). All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP) marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. Results: The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P<0.05) in melatonin- treated groups (no dose dependent) compared to the vehicle group. Furthermore, based on TUNEL results, melatonin treatment considerably reduced the number of apoptotic cells (P<0.05). Conclusion: In total, the present findings suggest that melatonin treatment following TBI diminishes astrocyte reactivity and neuronal cells apoptosis in brain cortex in the rat model. PMID:26523219

  12. Alcohol Binge Drinking during Adolescence or Dependence during Adulthood Reduces Prefrontal Myelin in Male Rats

    PubMed Central

    Vargas, Wanette M.; Bengston, Lynn; Gilpin, Nicholas W.; Whitcomb, Brian W.

    2014-01-01

    Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropathology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral and cognitive impairments associated with early onset drinking and alcoholism. PMID:25355229

  13. Erythropoietin reduces ischemia-reperfusion injury after liver transplantation in rats.

    PubMed

    Schmeding, Maximilian; Hunold, Gerhard; Ariyakhagorn, Veravoorn; Rademacher, Sebastian; Boas-Knoop, Sabine; Lippert, Steffen; Neuhaus, Peter; Neumann, Ulf P

    2009-07-01

    Human recombinant Erythropoietin (rHuEpo) has recently been shown to be a potent protector of ischemia- reperfusion injury in warm-liver ischemia. Significant enhancement of hepatic regeneration and survival after large volume partial hepatic resection has also been demonstrated. It was the aim of this study to evaluate the capacities of rHuEpo in the setting of rat liver transplantation. One-hundred-and-twenty Wistar rats were used: 60 recipients received liver transplantation following donor organ treatment (60 donors) with either 1000 IU rHuEpo or saline injection (controls) into portal veins (cold ischemia 18 h, University of Wisconsin (UW) solution). Recipients were allocated to two groups, which either received 1000 IU rHuEpo at reperfusion or an equal amount of saline (control). Animals were sacrificed at defined time-points (2, 4.5, 24, 48 h and 7 days postoperatively) for analysis of liver enzymes, histology [hematoxylin-eosin (HE) staining, periodic acid Schiff staining (PAS)], immunostaining [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Hypoxyprobe] and real-time polymerase chain reaction (RT-PCR) of cytokine mRNA (IL-1, IL-6). Lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) values were significantly reduced among the epo-treated animals 24 and 48 h after liver transplantation (LT). The TUNEL and Hypoxyprobe analyses as well as necrotic index evaluation displayed significant reduction of apoptosis and necrosis in rHuEpo-treated graft livers. Erythropoietin reduces ischemia-reperfusion injury after orthotopic liver transplantation in rats.

  14. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats.

    PubMed

    Spritzer, M D; Curtis, M G; DeLoach, J P; Maher, J; Shulman, L M

    2016-03-24

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual

  15. Oral N-acetylcysteine reduces bleomycin-induced lung damage and mucin Muc5ac expression in rats.

    PubMed

    Mata, M; Ruíz, A; Cerdá, M; Martinez-Losa, M; Cortijo, J; Santangelo, F; Serrano-Mollar, A; Llombart-Bosch, A; Morcillo, E J

    2003-12-01

    Oxidative stress is involved in the pathogenesis of pulmonary fibrosis, therefore antioxidants may be of therapeutic value. Clinical work indicates that N-acetylcysteine (NAC) may be beneficial in this disease. The activity of this antioxidant was examined on bleomycin-induced lung damage, mucus secretory cells hyperplasia and mucin Muc5ac gene expression in rats. NAC (3 mmol x kg(-1) x day(-1)) or saline was given orally to Sprague-Dawley rats for 1 week prior to a single intratracheal instillation of bleomycin (2.5 U x kg(-1)) and for 14 days postinstillation. NAC decreased collagen deposition in bleomycin-exposed rats (hydroxyproline content was 4,257+/-323 and 3,200+/-192 microg x lung(-1) in vehicle- and NAC-treated rats, respectively) and lessened the fibrotic area assessed by morphometric analysis. The bleomycin-induced increases in lung tumour necrosis factor-alpha and myeloperoxidase activity were reduced by NAC treatment. The numbers of mucus secretory cells in airway epithelium, and the Muc5ac messenger ribonucleic acid and protein expression, were markedly augmented in rats exposed to bleomycin. These changes were significantly reduced in NAC-treated rats. These results indicate that bleomycin increases the number of airway secretory cells and their mucin production, and that oral N-acetylcysteine improved pulmonary lesions and reduced the mucus hypersecretion in the bleomycin rat model.

  16. Goat milk fat naturally enriched with conjugated linoleic acid increased lipoproteins and reduced triacylglycerol in rats.

    PubMed

    Rodrigues, Raphaela; Soares, Juliana; Garcia, Hugo; Nascimento, Claudenice; Medeiros, Maria; Bomfim, Marco; Medeiros, Maria Carmo; Queiroga, Rita

    2014-03-24

    Goat milk is source of different lipids, including conjugated linoleic acid (CLA). CLA reduces body fat and protect against cardiovascular diseases. In the present study fat from goat milk naturally enriched with CLA was used. Male Wistar rats were divided into three groups that received during a 10 week diet with different lipid sources: soybean oil (CON), coconut oil (CO) and goat milk fat naturally enriched with CLA (GM-CLA). We evaluated the effects of a GM-CLA on biochemistry parameters--high density lipoprotein (HDL), triacylglycerol (TAG), TAG/HDL ratio, total cholesterol and glucose, body weight and histopathological aspects of the intestine and liver. GM-CLA increased body weight from the second to the fifth week of the experiment compared to CON. Feed intake differed between the CON group and GM-CLA early in the first to third week of the experiments and later between the ninth and tenth week. The CLA-diet group showed increased levels of HDL, reduced levels of TAG and TAG/HDL ratio and no effect on LDL, but enhanced total cholesterol. Serum glucose of the GM-CLA group showed no difference from the control group. Thus, a GM-CLA diet promoted growth in young rats and acted as protector of cardiovascular function, but further studies are still needed to clarify these effects.

  17. Reduced mechanical efficiency in left‐ventricular trabeculae of the spontaneously hypertensive rat

    PubMed Central

    Han, June‐Chiew; Tran, Kenneth; Johnston, Callum M.; Nielsen, Poul M. F.; Barrett, Carolyn J.; Taberner, Andrew J.; Loiselle, Denis S.

    2014-01-01

    Abstract Long‐term systemic arterial hypertension, and its associated compensatory response of left‐ventricular hypertrophy, is fatal. This disease leads to cardiac failure and culminates in death. The spontaneously hypertensive rat (SHR) is an excellent animal model for studying this pathology, suffering from ventricular failure beginning at about 18 months of age. In this study, we isolated left‐ventricular trabeculae from SHR‐F hearts and contrasted their mechanoenergetic performance with those from nonfailing SHR (SHR‐NF) and normotensive Wistar rats. Our results show that, whereas the performance of the SHR‐F differed little from that of the SHR‐NF, both SHR groups performed less stress‐length work than that of Wistar trabeculae. Their lower work output arose from reduced ability to produce sufficient force and shortening. Neither their heat production nor their enthalpy output (the sum of work and heat), particularly the energy cost of Ca2+ cycling, differed from that of the Wistar controls. Consequently, mechanical efficiency (the ratio of work to change of enthalpy) of both SHR groups was lower than that of the Wistar trabeculae. Our data suggest that in hypertension‐induced left‐ventricular hypertrophy, the mechanical performance of the tissue is compromised such that myocardial efficiency is reduced. PMID:25413328

  18. Allopurinol reduces severity of delayed neurologic sequelae in experimental carbon monoxide toxicity in rats.

    PubMed

    Dong, Guangtao; Ren, Ming; Wang, Xiujie; Jiang, Hongquan; Yin, Xiang; Wang, Shuyu; Wang, Xudong; Feng, Honglin

    2015-05-01

    Approximately half of those who survive severe carbon monoxide (CO) poisoning develop delayed neurologic sequelae. Growing evidence supports the crucial role of free radicals in delayed brain injury associated with CO toxicity. Xanthine oxidase (XO) has been reported to play a pivotal role in the generation of reactive oxygen species (ROS) in CO poisoning. A recent report indicates that allopurinol both attenuated oxidative stress and possessed anti-inflammatory properties in an animal model of acute liver failure. In this study, we aimed to explore the potential of allopurinol to reduce the severity of delayed neurologic sequelae. The rats were first exposed to 1000 ppm CO for 40 min and then to 3000 ppm CO for another 20 min. Following CO poisoning, the rats were injected with allopurinol (50 mg/kg, i.p.) six times. Results showed that allopurinol significantly reduced neuronal death and suppressed expression of pro-inflammatory factors, including tumor necrosis factor-α, intercellular adhesion molecule-1, ionized calcium-binding adapter molecule 1, and degraded myelin basic protein. Furthermore, behavioral studies revealed an improved performance in the Morris water maze test. Our findings indicated that allopurinol may have protective effects against delayed neurologic sequelae caused by CO toxicity.

  19. Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats.

    PubMed

    Kirschneck, Christian; Wolf, Michael; Reicheneder, Claudia; Wahlmann, Ulrich; Proff, Peter; Roemer, Piero

    2014-12-05

    The anchorage mechanisms currently used in orthodontic treatment have various disadvantages. The objective of this study was to determine the applicability of the osteoporosis medication strontium ranelate in pharmacologically induced orthodontic tooth anchorage. In 48 male Wistar rats, a constant orthodontic force of 0.25 N was reciprocally applied to the upper first molar and the incisors by means of a Sentalloy(®) closed coil spring for two to four weeks. 50% of the animals received strontium ranelate at a daily oral dosage of 900 mg per kilogramme of body weight. Bioavailability was determined by blood analyses. The extent of tooth movement was measured both optometrically and cephalometrically (CBCT). Relative alveolar gene expression of osteoclastic markers and OPG-RANKL was assessed by qRT-PCR and root resorption area and osteoclastic activity were determined in TRAP-stained histologic sections of the alveolar process. Compared to controls, the animals treated with strontium ranelate showed up to 40% less tooth movement after four weeks of orthodontic treatment. Gene expression and histologic analyses showed significantly less osteoclastic activity and a significantly smaller root resorption area. Blood analyses confirmed sufficient bioavailability of strontium ranelate. Because of its pharmacologic effects on bone metabolism, strontium ranelate significantly reduced tooth movement and root resorption in orthodontic treatment of rats. Strontium ranelate may be a viable agent for inducing tooth anchorage and reducing undesired root resorption in orthodontic treatment. Patients under medication of strontium ranelate have to expect prolonged orthodontic treatment times.

  20. Ascorbic acid and beta-carotene reduce stress-induced oxidative organ damage in rats.

    PubMed

    Esrefoglu, M; Akinci, A; Taslidere, E; Elbe, H; Cetin, A; Ates, B

    2016-10-01

    Antioxidants are potential therapeutic agents for reducing stress-induced organ damage. We investigated the effects of ascorbic acid and β-carotene on oxidative stress-induced cerebral, cerebellar, cardiac and hepatic damage using microscopy and biochemistry. Male Wistar albino rats were divided into five groups: untreated control, stressed, stressed + saline, stressed + ascorbic acid and stressed + β-carotene. The rats in the stressed groups were subjected to starvation, immobilization and cold. The histopathological damage scores for the stressed and stressed + saline groups were higher than those of the control group for all organs examined. The histopathological damage scores and mean tissue malondialdehyde levels for the groups treated with antioxidants were lower than those for the stressed and stressed + saline groups. Mean tissue superoxide dismutase activities for groups that received antioxidants were higher than those for the stressed + saline group for most organs evaluated. Ascorbic acid and β-carotene can reduce stress-induced organ damage by both inhibiting lipid oxidation and supporting the cellular antioxidant defense system.

  1. Reduced neuroplasticity in aged rats: a role for the neurotrophin brain-derived neurotrophic factor.

    PubMed

    Calabrese, Francesca; Guidotti, Gianluigi; Racagni, Giorgio; Riva, Marco A

    2013-12-01

    Aging is a physiological process characterized by a significant reduction of neuronal plasticity that might contribute to the functional defects observed in old subjects. Even if the neurobiological mechanisms that contribute to such impairment remain largely unknown, a role for neurotrophic molecules, such as the neurotrophin brain-derived neurotrophic factor (BDNF), has been postulated. On this basis, the purpose of this study was to provide a detailed investigation of the BDNF system, at transcriptional and translational levels, in the ventral and dorsal hippocampus and in the prefrontal cortex of middle-aged and old rats, compared with in adult animals. The expression of major players in BDNF regulation and response, including the transcription factors, calcium-responsive transcription factor, cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB), and neuronal Per Arnt Sim (PAS) domain protein 4, and the high-affinity receptor tropomyosin receptor kinase B (TrkB), was also analyzed. Our results demonstrate that the BDNF system is affected at different levels in aged rats with global impairment including reduced transcription, impaired protein synthesis and processing, and decreased activation of the TrkB receptors. These modifications might contribute to the cognitive deficits associated with aging and suggest that pharmacological strategies aimed at restoring reduced neurotrophism might be useful to counteract age-related cognitive decline.

  2. Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats

    PubMed Central

    guzmán-marín, Ruben; Suntsova, Natalia; Stewart, Darya R; Gong, Hui; Szymusiak, Ronald; McGinty, Dennis

    2003-01-01

    The dentate gyrus (DG) of the adult hippocampus gives rise to progenitor cells, which have the potential to differentiate into neurons. To date it is not known whether sleep or sleep loss has any effect on proliferation of cells in the DG. Male rats were implanted for polysomnographic recording, and divided into treadmill sleep-deprived (SD), treadmill control (TC) and cage control (CC) groups. SD and TC rats were kept for 96 h on a treadmill that moved either for 3 s on/12 s off (SD group) or for 15 min on/60 min off (TC group) to equate total movement but permit sustained rest periods in TC animals. To label proliferating cells the thymidine analogue 5-bromo-2′-deoxyuridine (BrdU) was injected after the first 48 h of the experimental procedure in all groups (50 mg kg−1, i.p.). The percentage of time awake per day was 93.2 % in the SD group vs. 59.6 % in the TC group and 49.9 % in the CC group (P < 0.001). Stereological analysis showed that the number of BrdU-positive cells in the DG of the dorsal hippocampus was reduced by 54 % in the SD group in comparison with the TC and by 68 % in comparison with the CC group. These results suggest that sleep deprivation reduces proliferation of cells in the DG of the dorsal hippocampus. PMID:12679377

  3. Satellite cell proliferation is reduced in muscles of obese Zucker rats but restored with loading.

    PubMed

    Peterson, Jonathan M; Bryner, Randall W; Alway, Stephen E

    2008-08-01

    The obese Zucker rat (OZR) is a model of metabolic syndrome, which has lower skeletal muscle size than the lean Zucker rat (LZR). Because satellite cells are essential for postnatal muscle growth, this study was designed to determine whether reduced satellite cell proliferation contributes to reduced skeletal mass in OZR vs. LZR. Satellite cell proliferation was determined by a constant-release 5-bromo-2-deoxyuridine (BrdU) pellet that was placed subcutaneously in each animal. Satellite cell proliferation, as determined by BrdU incorporation, was significantly attenuated in control soleus and plantaris muscles of the OZR compared with that shown in the LZR. To determine whether this attenuation of satellite cell activity could be rescued in OZR muscles, soleus and gastrocnemius muscles were denervated, placing a compensatory load on the plantaris muscle. In the LZR and the OZR after 21 days of loading, increases of approximately 25% and approximately 30%, respectively, were shown in plantaris muscle wet weight compared with that shown in the contralateral control muscle. The number of BrdU-positive nuclei increased similarly in loaded plantaris muscles from LZR and OZR. Myogenin, MyoD, and Akt protein expressions were lower in control muscles of OZR than in those of the LZR, but they were all elevated to similar levels in the loaded plantaris muscles of OZR and LZR. These data indicate that metabolic syndrome may reduce satellite cell proliferation, and this may be a factor that contributes to the reduced mass in control muscles of OZR; however, satellite cell proliferation can be restored with compensatory loading in OZR.

  4. Dextromethorphan interactions with histaminergic and serotonergic treatments to reduce nicotine self-administration in rats.

    PubMed

    Briggs, Scott A; Hall, Brandon J; Wells, Corinne; Slade, Susan; Jaskowski, Paul; Morrison, Margaret; Rezvani, Amir H; Rose, Jed E; Levin, Edward D

    2016-03-01

    Combining effective treatments with diverse mechanisms of action for smoking cessation may provide better therapy by targeting multiple points of control in the neural circuits underlying addiction. Previous research in a rat model has shown that dextromethorphan, which has α3β4 nicotinic and NMDA glutamatergic antagonist actions, significantly decreases nicotine self-administration. We have found in the rat model that the H1 histamine antagonist pyrilamine and the serotonin 5HT2C agonist lorcaserin also significantly reduce nicotine self-administration. The current studies were conducted to determine the interactive effects of dextromethorphan with pyrilamine and lorcaserin on nicotine self-administration in rats. Young adult female rats were fitted with jugular IV catheters and trained to self-administer a nicotine infusion dose of 0.03-mg/kg/infusion. In an initial dose-effect function study of dextromethorphan, we found a monotonic decrease in nicotine self-administration over a dose range of 1 to 30-mg/kg with the lowest effective dose of 3-mg/kg. Then, with two separate cohorts of rats, dextromethorphan (0, 3.3, and 10-mg/kg) interactions with pyrilamine (0, 4.43, and 13.3-mg/kg) were investigated as well as interactions with lorcaserin (0, 0.3125 and 0.625-mg/kg). In the pyrilamine-dextromethorphan interaction study, an acute dose of pyrilamine (13.3-mg/kg) as well as an acute dose of dextromethorphan caused a significant decrease in nicotine self-administration. There were mutually augmenting effects of these two drugs. The combination of dextromethorphan (10-mg/kg) and pyrilamine (13.3-mg/kg) significantly lowered nicotine self-administration relative to either 10-mg/kg of dextromethorphan alone (p<0.05) or 13.3-mg/kg of pyrilamine alone (p<0.0005). In the lorcaserin-dextromethorphan study, an acute dose of lorcaserin (0.312-mg/kg) as well as an acute dose of dextromethorphan (10-mg/kg) caused a significant decrease in nicotine self

  5. Forelimb preferences in quadrupedal marsupials and their implications for laterality evolution in mammals

    PubMed Central

    2013-01-01

    Background Acquisition of upright posture in evolution has been argued to facilitate manual laterality in primates. Owing to the high variety of postural habits marsupials can serve as a suitable model to test whether the species-typical body posture shapes forelimb preferences in non-primates or this phenomenon emerged only in the course of primate evolution. In the present study we aimed to explore manual laterality in marsupial quadrupeds and compare them with the results in the previously studied bipedal species. Forelimb preferences were assessed in captive grey short-tailed opossum (Monodelphis domestica) and sugar glider (Petaurus breviceps) in four different types of unimanual behaviour per species, which was not artificially evoked. We examined the possible effects of sex, age and task, because these factors have been reported to affect motor laterality in placental mammals. Results In both species the direction of forelimb preferences was strongly sex-related. Male grey short-tailed opossums showed right-forelimb preference in most of the observed unimanual behaviours, while male sugar gliders displayed only a slight, not significant rightward tendency. In contrast, females in both species exhibited consistent group-level preference of the left forelimb. We failed to reveal significant differences in manual preferences between tasks of potentially differing complexity: reaching a stable food item and catching live insects, as well as between the body support and food manipulation. No influence of subjects’ age on limb preferences was found. Conclusions The direction of sex-related differences in the manual preferences found in quadrupedal marsupials seems to be not typical for placental mammals. We suggest that the alternative way of interhemispheric connection in absence of corpus callosum may result in a fundamentally distinct mechanism of sex effect on limb preferences in marsupials compared to placentals. Our data confirm the idea that non

  6. The distal forelimb musculature in aquatic and terrestrial turtles: phylogeny or environmental constraints?

    PubMed

    Abdala, Virginia; Manzano, Adriana S; Herrel, Anthony

    2008-08-01

    We compared the muscular anatomy of the distal front limb in terrestrial and aquatic chelonians to test whether observed differences between the two groups are associated with their divergent lifestyles and locomotor modes. Given the different use of the forelimb in the two environments (body support and propulsion on land vs. mainly propulsion in water) we expected that: (1) aquatic and terrestrial turtles would show differences in their muscular anatomy, with aquatic species having more individualized muscle bundlesto allow for the complex forearm movements observed during swimming, and (2) that terrestrial turtles would have more robust muscles to support their body weight against gravity. To address these questions, we examined the forelimb myology and associated tissues in six aquatic or semi-aquatic turtles (Phyrnops hilarii, Podocnemis unifilis, Trachemys scripta, Sacalia bealei, Cuora amboinensis and Mauremys caspica) and six terrestrial or semi-terrestrial turtles (Geochelone chilensis, Testudo graeca, Cuora galbinifrons, Glyptemys insculpta, Terrapene carolina and Rhinoclemmys pulcherrima). This paper describes the general structure of the forelimb musculature in all species, and quantifies muscle masses in those species with more than five specimens available (Ph. hilarii, Po. unifilis and Ge. chilensis). The general structure of the forelimb muscles in the strictly terrestrial species Ge. chilensis and Tes. graeca was found to be notably different from the pattern of the aquatic and semi-aquatic species examined, showing a distinct fusion of the different muscular bodies. Ter. carolina also show a distinctly terrestrial pattern, but a less extensive tendon development. R. pulcherrima and GI. insculpta were found to be morphologically intermediate; in the geoemydids the strictly terrestrial bauplan never appears. Quantitative differences in the robustness or mass of the distal forelimb muscles were also observed for the species investigated, supporting

  7. Ultra-low-dose naltrexone reduces the rewarding potency of oxycodone and relapse vulnerability in rats.

    PubMed

    Leri, Francesco; Burns, Lindsay H

    2005-10-01

    Ultra-low-dose opioid antagonists have been shown to enhance opioid analgesia and alleviate opioid tolerance and dependence. Our present studies in male Sprague-Dawley rats assessed the abuse potential of oxycodone+ultra-low-dose naltrexone (NTX) versus oxycodone alone. The lowest NTX dose (1 pg/kg/infusion), but not slightly higher doses (10 and 100 pg/kg/infusion), enhanced oxycodone (0.1 mg/kg/infusion) intravenous self-administration, suggesting a reduced rewarding potency per infusion. During tests of reinstatement performed in extinction conditions, co-self-administration of any of these three NTX doses significantly reduced drug-seeking precipitated by priming injections of oxycodone (0.25 mg/kg, s.c.), a drug-conditioned cue, or foot-shock stress. During self-administration on a progressive-ratio schedule, animals self-administering oxycodone (0.1 mg/kg/infusion)+NTX (1 pg/kg/infusion) reached a "break-point" sooner and showed a trend toward less responding compared to rats self-administering oxycodone alone (0.1 mg/kg/infusion). In the final experiment, the addition of ultra-low-dose NTX (10 pg/kg, s.c.) enhanced the acute stimulatory effect of oxycodone (1 mg/kg, s.c.), as well as locomotor sensitization produced by repeated oxycodone administration (7 x 1 mg/kg, s.c.). In summary, this work shows that ultra-low-dose NTX co-treatment augments the locomotor effects of oxycodone as it enhances opioid analgesia, but reduces oxycodone's rewarding potency and subsequent vulnerability to relapse.

  8. Linseed Dietary Fibers Reduce Apparent Digestibility of Energy and Fat and Weight Gain in Growing Rats

    PubMed Central

    Kristensen, Mette; Bach Knudsen, Knud Erik; Jørgensen, Henry; Oomah, David; Bügel, Susanne; Toubro, Søren; Tetens, Inge; Astrup, Arne

    2013-01-01

    Dietary fibers (DF) may affect energy balance, an effect often ascribed to the viscous nature of some water soluble DF, which affect luminal viscosity and thus multiple physiological processes. We have tested the hypothesis that viscous linseed DF reduce apparent nutrient digestibility, and limit weight gain, in a randomized feeding trial where 60 male, growing, Wistar rats, with an initial weight of ~200 g, were fed different diets (n = 10 per group): low DF control (C), 5% DF from cellulose (5-CEL), CEL + 5% DF from whole (5-WL) or ground linseed (5-GL), CEL + 5% DF from linseed DF extract (5-LDF), and CEL + 10% DF from linseed DF extract (10-LDF). Diets were provided ad libitum for 21 days. Feed intake and faecal output were measured during days 17–21. Faecal fat excretion increased with increasing DF content and was highest in the 10-LDF group. Apparent fat digestibility was highest with the C diet (94.9% ± 0.8%) and lowest (74.3% ± 0.6%) with the 10-LDF diet, and decreased in a non-linear manner with increasing DF (p < 0.001). Apparent fat digestibility also decreased with increased accessibility of DF (5-WL vs. 5-GL) and when the proportion of viscous DF increased (5-GL vs. 5-LDF). The 10-LDF resulted in a lower final body weight (258 ± 6.2 g) compared to C (282 ± 5.9 g), 5-CEL (281 ± 5.9 g), and 5-WL (285 ± 5.9 g) (p < 0.05). The 10-LDF diet reduced body fat compared to 5-CEL (p < 0.01). In conclusion, DF extracted from linseed reduced apparent energy and fat digestibility and resulted in restriction of body weight gain in growing rats. PMID:23966109

  9. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  10. Elevated Testosterone Reduces Uterine Blood Flow, Spiral Artery Elongation, and Placental Oxygenation in Pregnant Rats.

    PubMed

    Gopalakrishnan, Kathirvel; Mishra, Jay S; Chinnathambi, Vijayakumar; Vincent, Kathleen L; Patrikeev, Igor; Motamedi, Massoud; Saade, George R; Hankins, Gary D; Sathishkumar, Kunju

    2016-03-01

    Elevated maternal testosterone levels are shown to cause fetal growth restriction, eventually culminating in sex-specific adult-onset hypertension that is more pronounced in males than in females. In this study, we tested whether uteroplacental and fetoplacental disturbances underlie fetal growth restriction and if these changes vary in male and female placentas. Pregnant Sprague-Dawley rats were injected with vehicle (n=16) or testosterone propionate (0.5 mg/kg per day from gestation day 15-19; n=16). On gestation day 20, we quantified uterine artery blood flow using microultrasound, visualized placental arterial network using x-ray microcomputed tomography, determined fetoplacental hypoxia using pimonidazole and hypoxia-inducible factor-1α, and used Affymetrix array to determine changes in placental expression of genes involved in vascular development. Plasma testosterone levels increased 2-fold in testosterone-injected rats. Placental and fetal weights were lower in rats with elevated testosterone. Uterine artery blood flow was lower, and resistance index was higher in the testosterone group. Radial and spiral artery diameter and length, the number of fetoplacental arterial branches, and umbilical artery diameter were reduced in the testosterone group. In addition, markers of hypoxia in the placentas and fetuses were elevated in the testosterone group. The magnitude of changes in placental vasculature and hypoxia was greater in males than in females and was associated with sex-specific alteration of unique sets of genes involved in angiogenesis and blood vessel morphogenesis. The results demonstrate that elevated testosterone during gestation induces a decrease in uterine arterial blood flow and fetal sex-related uteroplacental vascular changes, which may set the stage for subsequent sex differences in adult-onset diseases.

  11. Preconditioning somatothermal stimulation on Qimen (LR14) reduces hepatic ischemia/reperfusion injury in rats

    PubMed Central

    2014-01-01

    Background In human beings or animals, ischemia/reperfusion (I/R) injury of the liver may occur in many clinical conditions, such as circulating shock, liver transplantation and surgery and several other pathological conditions. I/R injury has a complex pathophysiology resulting from a number of contributing factors. Therefore, it is difficult to achieve effective treatment or protection by individually targeting the mediators. This study aimed at studying the effects of local somatothermal stimulation preconditioning on the right Qimen (LR14) on hepatic I/R injury in rats. Methods Eighteen male Sprague-Dawley rats were randomly divided into three groups. The rats were preconditioned with thermal tolerance study, which included one dose of local somatothermal stimulation (LSTS) on right Qimen (LR14) at an interval of 12 h, followed by hepatic ischemia for 60 min and then reperfusion for 60 min. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) have been used to assess the liver functions, and liver tissues were taken for the measurements such as malondialdehyde (MDA), glutathione (GSH), catalase (CAT), superoxidase dismutase (SOD), and myeloperoxidase (MPO). Results The results show that the plasma ALT and AST activities were higher in the I/R group than in the control group. In addition, the plasma ALT and AST activities decreased in the groups that received LSTS. The hepatic SOD levels reduced significantly by I/R injury. Moreover, the hepatic MPO activity significantly increased by I/R injury while it decreased in the groups given LSTS. Conclusions Our findings show that LSTS provides a protective effects on the liver from the I/R injury. Therefore, LSTS might offer an easy and inexpensive intervention for patients who have suffered from I/R of the liver especially in the process of hepatotomy and hepatic transplantation. PMID:24417801

  12. Intermittent access to preferred food reduces the reinforcing efficacy of chow in rats.

    PubMed

    Cottone, Pietro; Sabino, Valentina; Steardo, Luca; Zorrilla, Eric P

    2008-10-01

    Intermittent, extended access to preferred diets increases their intake. However, the effects of such access on the acceptance and reinforcing efficacy of otherwise satisfying alternatives is less known. To investigate the role of nonnutritional contributions to the hypophagia that follows removal of preferred food, male Wistar rats were fed a chow diet (Chow A/I), preferred to their regular chow (Chow), which was equally consumed under 1-choice conditions to an even more preferred chocolate-flavored, sucrose-rich diet (Preferred). Rats then learned to obtain Chow A/I pellets under a progressive ratio schedule of reinforcement and were assigned to two matched groups. Each week, one group (n = 15) was diet-cycled, receiving Chow A/I for 5 days followed by the Preferred diet for 2 days. Controls received Chow A/I daily (n = 14). Progressive ratio sessions were performed daily during the 5 days that all subjects received Chow A/I in the home cage. Across 5 wk, diet-cycled rats progressively ate less of the otherwise palatable Chow A/I diet. Hypophagia was not due to greater prior intake or weight gain, motor impairment, or facilitated satiation and was associated with changes in progressive ratio performance that suggested a reduced reinforcing efficacy of the Chow A/I diet in diet-cycled animals. By week 4, diet-cycled animals began to overeat the preferred diet, especially during the first 6 h of renewed access, resembling a deprivation effect. The results suggest that intermittent access to highly preferred food, as practiced by many restrained eaters, may progressively decrease the acceptability of less palatable foods, and may promote relapse to more rewarding alternatives.

  13. ELEVATED TESTOSTERONE REDUCES UTERINE BLOOD FLOW, SPIRAL ARTERY ELONGATION AND PLACENTAL OXYGENATION IN PREGNANT RATS

    PubMed Central

    Gopalakrishnan, Kathirvel; Mishra, Jay S.; Chinnathambi, Vijayakumar; Vincent, Kathleen L.; Patrikeev, Igor; Motamedi, Massoud; Saade, George R.; Hankins, Gary D.; Sathishkumar, Kunju

    2016-01-01

    Elevated maternal testosterone levels are shown to cause fetal growth restriction, eventually culminating in sex-specific adult-onset hypertension that is more pronounced in males than females. In this study, we tested whether utero- and feto-placental disturbances underlie fetal growth restriction and if these changes vary in male and female placentas. Pregnant Sprague-Dawley rats were injected with vehicle (n=16) or testosterone propionate (0.5 mg/Kg/day from gestation day 15–19; n=16). On gestation day 20, we quantified uterine artery blood flow using microultrasound, visualized placental arterial network using x-ray microcomputed tomography, determined fetoplacental hypoxia using pimonidazole and hypoxia-inducible factor-1α, and used Affymetrix array to determine changes in placental expression of genes involved in vascular development. Plasma testosterone levels increased 2-fold in testosterone-injected rats. Placental and fetal weights were lower in rats with elevated testosterone. Uterine artery blood flow was lower and resistance index was higher in testosterone group. Radial and spiral artery diameter and length, number of fetoplacental arterial branches, and umbilical artery diameter were reduced in the testosterone group. In addition, markers of hypoxia in the placentas and fetuses were elevated in the testosterone group. The magnitude of changes in placental vasculature and hypoxia were greater in males than females and were associated with sex-specific alteration of unique sets of genes involved in angiogenesis and blood vessel morphogenesis. The results demonstrate that elevated testosterone during gestation induces a decrease in uterine arterial blood flow and fetal sex-related uteroplacental vascular changes, which may set the stage for subsequent sex differences in adult-onset diseases. PMID:26781277

  14. N-acetyl cysteine (NAC) treatment reduces mercury-induced neurotoxicity in the developing rat hippocampus

    PubMed Central

    Falluel-Morel, Anthony; Lin, Lulu; Sokolowski, Katie; McCandlish, Elizabeth; Buckley, Brian; DiCicco-Bloom, Emanuel

    2011-01-01

    Mercury is an environmental toxicant that can disrupt brain development. However, while progress has been made in defining its neurotoxic effects, we know far less about available therapies that can effectively protect brain in exposed individuals. We previously developed an animal model in which we defined the sequence of events underlying neurotoxicity: Methylmercury (MeHg) injection in postnatal rat acutely induced inhibition of mitosis and stimulated apoptosis in the hippocampus, that later resulted in intermediate term deficits in structure size and cell number. NAC is the N-acetyl derivative of L-cysteine used clinically for treatment of drug intoxication. Here, based on its known efficacy in promoting MeHg urinary excretion, we evaluated NAC for protective effects in the developing brain. In immature neurons and precursors MeHg (3µM) induced a >50% decrease in DNA synthesis at 24hr, an effect that was completely blocked by NAC co-incubation. In vivo, injection of MeHg (5µg/gbw) into 7 day-old rats induced a 22% decrease in DNA synthesis in whole hippocampus and a 4-fold increase in activated caspase-3 immunoreactive cells at 24hr, and reduced total cell numbers by 13% at 3 weeks. Treatment of MeHg exposed rats with repeated injections of NAC abolished MeHg toxicity. NAC prevented the reduction in DNA synthesis and the marked increase in caspase-3 immunoreactivity. Moreover, the intermediate term decrease in hippocampal cell number provoked by MeHg was fully blocked by NAC. Altogether, these results suggest that MeHg toxicity in the perinatal brain can be ameliorated by using NAC, opening potential avenues for therapeutic intervention. PMID:22420031

  15. Phytochemicals from Tradescantia albiflora Kunth Extracts Reduce Serum Uric Acid Levels in Oxonate-induced Rats

    PubMed Central

    Wang, Wen-Ling; Sheu, Shi-Yuan; Huang, Wen-Dar; Chuang, Ya-Ling; Tseng, Han-Chun; Hwang, Tzann-Shun; Fu, Yuan-Tsung; Kuo, Yueh-Hsiung; Yao, Chun-Hsu; Kuo, Tzong-Fu

    2016-01-01

    Background: Tradescantia albiflora (TA) Kunth (Commelinaceae) has been used for treating gout and hyperuricemia as folklore remedies in Taiwan. Therefore, it is worthwhile to study the effect of TA extracts on lowering uric acid activity. The hypouricemic effects of TA extracts on potassium oxonate (PO)-induced acute hyperuricemia were investigated for the first time. Materials and Methods: All treatments at the same volume (1 ml) were orally administered to the abdominal cavity of PO-induced hyperuricemic rats. One milliliter of TA extract in n-hexane (HE), ethyl acetate (EA), n-butanol (BuOH), and water fractions has 0.28, 0.21, 0.28, and 1.03 mg TA, respectively; and the plasma uric acid (PUA) level was measured for a consecutive 4 h after administration. Results: All four fractions' extracts derived from TA were observed to significantly reduce PUA compared with the PO group. The EA-soluble fraction (TA-EA) exhibited the best xanthine oxidase (XO) inhibitory activity. Following column chromatography, 12 phytochemicals were isolated and identified from the EA fraction. The IC50 values of isolated phytochemicals indicated that bracteanolide A (AR11) showed the remarkable XO inhibitory effect (IC50 value of 76.4 μg/ml). These findings showed that the in vivo hypouricemic effect in hyperuricemic rats was consistent with in vitro XO inhibitory activity, indicating that TA extracts and derived phytochemicals could be potential candidates as hypouricemic agents. SUMMARY Tradescantia albiflora extracts possess in vivo hypouricemic action in hyperuricemic ratsT. albiflora extracts exhibited strong inhibitory activity against xanthine oxidase (XO)Butenolide may play an important role in XO inhibitionThe extract bracteanolide A was demonstrated potent XO inhibitory activity in vitro. Abbreviations used: TA: Tradescantia albiflora, PO: potassium oxonate, HE: n-hexane, EA: ethyl acetate, BuOH: n-butanol, PUA: plasma uric acid, XO: xanthine oxidase, MeOH: methanol, IP

  16. Fenofibrate--a lipid-lowering drug--reduces voluntary alcohol drinking in rats.

    PubMed

    Karahanian, Eduardo; Quintanilla, Maria Elena; Fernandez, Katia; Israel, Yedy

    2014-11-01

    The administration of disulfiram raises blood acetaldehyde levels when ethanol is ingested, leading to an aversion to alcohol. This study was aimed at assessing the effect of fenofibrate on voluntary ethanol ingestion in rats. Fenofibrate reduces blood triglyceride levels by increasing fatty acid oxidation by liver peroxisomes, along with an increase in the activity of catalase, which can oxidize ethanol to acetaldehyde. UChB drinker rats were allowed to consume alcohol 10% v/v freely for 60 days, until consumption stabilized at around 7 g ethanol/kg/24 h. About 1-1.2 g ethanol/kg of this intake is consumed in the first 2 h of darkness of the circadian cycle. Fenofibrate subsequently administered (50 mg/kg/day by mouth [p.o.]) for 14 days led to a 60-70% (p < 0.001) reduction of 24-h ethanol consumption. When ethanol intake was determined within the first 2 h of darkness, the reduction was 85-90% (p < 0.001). We determined whether animals chronically allowed access to ethanol and subsequently treated with fenofibrate, would a) increase liver catalase activity, and b) increase blood acetaldehyde levels after a 24-h ethanol deprivation and the subsequent administration of 1 g ethanol/kg. The oral administration of 1 g ethanol/kg produced a rapid increase in blood (arterial) acetaldehyde in fenofibrate-treated animals versus controls also administered 1 g/kg ethanol (70 μM vs. 7 μM; p < 0.001). Liver catalase activity following fenofibrate treatment was increased 3-fold (p < 0.01). Other hepatic enzymes responsible for the metabolism of ethanol (alcohol dehydrogenase and aldehyde dehydrogenase) remained unchanged. No liver damage was induced, as measured by serum glutamic-pyruvic transaminase (GPT) activity. The effect of fenofibrate in reducing alcohol intake was fully reversible. Overall, in rats allowed chronic ethanol intake, by mouth (p.o.), fenofibrate administration increased liver catalase activity and reduced voluntary ethanol intake. The administration of

  17. Glycyrrhizinate reduces portal hypertension in isolated perfused rat livers with chronic hepatitis

    PubMed Central

    Zhao, Xin; Deng, Bo; Xu, Xue-Yan; Yang, Shi-Jun; Zhang, Tao; Song, Yi-Jun; Liu, Xiao-Ting; Wang, Yue-Qi; Cai, Da-Yong

    2013-01-01

    AIM: To investigate the effects of diammonium glycyrrhizinate (Gly) on portal hypertension (PHT) in isolated portal perfused rat liver (IPPRL) with carbon tetrachloride (CCl4)-induced chronic hepatitis. METHODS: PHT model was replicated with CCl4 in rats for 84 d. Model was identified by measuring the ascetic amounts, hepatic function, portal pressure in vivo, splenic index, and pathological alterations. Inducible nitric oxide synthase (iNOS) in liver was assessed by immunohistochemistry. IPPRLs were performed at d0, d28, d56, and d84. After phenylephrine-induced constriction, Gly was geometrically used to reduce PHT. Gly action was expressed as median effective concentration (EC50) and area under the curve (AUC). Underlying mechanism was exploited by linear correlation between AUC values of Gly and existed iNOS in portal triads. RESULTS: PHT model was confirmed with ascites, splenomegaly, serum biomarkers of hepatic injury, and elevated portal pressure. Pathological findings had shown normal hepatic structure at d0, degenerations at d28, fibrosis at d56, cirrhosis at d84 in PHT rats. Pseudo lobule ratios decreased and collagen ratios increased progressively along with PHT development. Gly does dose-dependently reduce PHT in IPPRLs with CCl4-induced chronic hepatitis. Gly potencies were increased gradually along with PHT development, characterized with its EC50 at 2.80 × 10-10, 3.03 × 10-11, 3.77 × 10-11 and 4.65×10-11 mol/L at d0, d28, d56 and d84, respectively. Existed iNOS was located at hepatocyte at d0, stellate cells at d28, stellate cells and macrophages at d56, and macrophages in portal triads at d84. Macrophages infiltrated more into portal triads and expressed more iNOS along with PHT development. AUC values of Gly were positively correlated with existed iNOS levels in portal triads. CONCLUSION: Gly reduces indirectly PHT in IPPRL with CCl4-induced chronic hepatitis. The underlying mechanisms may relate to rescue NO bioavailability from macrophage

  18. Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model

    PubMed Central

    Yu, De-gang; Ding, Hui-feng; Mao, Yuan-qing; Liu, Ming; Yu, Bo; Zhao, Xin; Wang, Xiao-qing; Li, Yang; Liu, Guang-wang; Nie, Shao-bo; Liu, Shen; Zhu, Zhen-an

    2013-01-01

    Aim: To investigate whether strontium ranelate (SR), a new antiosteoporotic agent, could attenuate cartilage degeneration and subchondral bone remodeling in osteoarthritis (OA). Methods: Medial meniscal tear (MMT) operation was performed in adult SD rats to induce OA. SR (625 or 1800 mg·kg−1·d−1) was administered via gavage for 3 or 6 weeks. After the animals were sacrificed, articular cartilage degeneration was evaluated using toluidine blue O staining, SOX9 immunohistochemistry and TUNEL assay. The changes in microarchitecture indices and tissue mineral density (TMD), chemical composition (mineral-to-collagen ratio), and intrinsic mechanical properties of the subchondral bones were measured using micro-CT scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: The high-dose SR significantly attenuated cartilage matrix and chondrocyte loss at 6 weeks, and decreased chondrocyte apoptosis, improved the expression of SOX9, a critical transcription factor responsible for the expression of anabolic genes type II collagen and aggrecan, at both 3 and 6 weeks. Meanwhile, the high-dose SR also significantly attenuated the subchondral bone remodeling at both 3 and 6 weeks, as shown by the improved microarchitecture indices, TMD, mineral-to-collagen ratio and intrinsic mechanical properties. In contrast, the low-dose SR did not significantly change all the detection indices of cartilage and bone at both 3 and 6 weeks. Conclusion: The high-dose SR treatment can reduce articular cartilage degeneration and subchondral bone remodeling in the rat MMT model of OA. PMID:23334238

  19. Prenatal ethanol exposure reduces the effects of excitatory amino acids in the rat hippocampus

    SciTech Connect

    Noble, E.P.; Ritchie, T. )

    1989-01-01

    Chronic alcohol ingestion during pregnancy can lead to the Fetal Alcohol Syndrome (FAS), a disorder marked by learning disabilities. A rat model of FAS was used by introducing pregnant Sprague-Dawley rats to a liquid diet containing 35% ethanol-derived calories (E), while a second group was pair-fed an isocaloric liquid diet without ethanol (P). A third group of pregnant dams received ad libitum lab chow (C). At parturition, pups from the E and P groups were cross fostered by C mothers and all groups received lab chow. During adulthood, male offspring were sacrificed and hippocampal and prefrontal cortical slices were prelabeled with (3H)inositol. Phosphoinositide (PI) hydrolysis was determined by measuring the accumulation of (3H)inositol phosphates in the presence of LiCl in response to activation of various excitatory amino acid (EAA) receptors. In hippocampal slices, ibotenate- and quisqualate-induced PI hydrolysis was reduced in E compared to P and C animals. Moreover, the inhibitory effect of N-methyl-D-aspartate (NMDA) on carbachol-induced PI hydrolysis, evident in P and C animals, was completely abolished in the hippocampus of E animals. In contrast, in the prefrontal cerebral cortex, this inhibitory effect of NMDA prevailed even in the E animals. The evidence suggests that prenatal ethanol exposure alters the activity of EAA receptors in the hippocampal generation of 2nd messengers.

  20. Decreased adrenoceptor stimulation in heart failure rats reduces NGF expression by cardiac parasympathetic neurons.

    PubMed

    Hasan, Wohaib; Smith, Peter G

    2014-04-01

    Postganglionic cardiac parasympathetic and sympathetic nerves are physically proximate in atrial cardiac tissue allowing reciprocal inhibition of neurotransmitter release, depending on demands from central cardiovascular centers or reflex pathways. Parasympathetic cardiac ganglion (CG) neurons synthesize and release the sympathetic neurotrophin nerve growth factor (NGF), which may serve to maintain these close connections. In this study we investigated whether NGF synthesis by CG neurons is altered in heart failure, and whether norepinephrine from sympathetic neurons promotes NGF synthesis. NGF and proNGF immunoreactivity in CG neurons in heart failure rats following chronic coronary artery ligation was investigated. NGF immunoreactivity was decreased significantly in heart failure rats compared to sham-operated animals, whereas proNGF expression was unchanged. Changes in neurochemistry of CG neurons included attenuated expression of the cholinergic marker vesicular acetylcholine transporter, and increased expression of the neuropeptide vasoactive intestinal polypeptide. To further investigate norepinephrine's role in promoting NGF synthesis, we cultured CG neurons treated with adrenergic receptor (AR) agonists. An 82% increase in NGF mRNA levels was detected after 1h of isoproterenol (β-AR agonist) treatment, which increased an additional 22% at 24h. Antagonist treatment blocked isoproterenol-induced increases in NGF transcripts. In contrast, the α-AR agonist phenylephrine did not alter NGF mRNA expression. These results are consistent with β-AR mediated maintenance of NGF synthesis in CG neurons. In heart failure, a decrease in NGF synthesis by CG neurons may potentially contribute to reduced connections with adjacent sympathetic nerves.

  1. Dietary supplementation of bitter gourd reduces the risk of hypercholesterolemia in cholesterol fed sprague dawley rats.

    PubMed

    Naz, Rabia; Anjum, Faqir Muhammad; Butt, Masood Sadiq; Mahr-Un-Nisa, -

    2016-09-01

    Functional and health endorsing benefits of various foods are often attributed to their phytochemistry. The bitter gourd holds potential in improving the health of the individuals owing to its incredible versatility in phytochemistry. However, the efficacy of different parts of bitter gourd needs attention of the researchers. In the current exploration, different parts of bitter gourd were evaluated for their cholesterol lowering potential in cholesterol fed Sprague dawley rats. For the purpose, four types of bitter gourd part i.e. whole fruit, seedless fruit, seeds, and seed extracts were used and compared with placebo in hypercholesterolemic rats. In placebo, momentous increase in serum cholesterol, triglycerides and LDL levels was observed. All parts attenuate the cholesterol 18.79 to 40.17% triglycerides 25.97 to 37.01% and LDL 14.49 to 26.09%. However, 1% extract powder was most effective in reducing the cholesterol and triglycerides. From the present study, it is deduced that bitter gourd extract can be supplemented in food products for the management of hypercholesterolemia. However, future studies in human subjects needs to be conducted for meticulousness of the present findings.

  2. Melatonin reduces pancreatic prostaglandins production and protects against caerulein-induced pancreatitis in rats.

    PubMed

    Chen, Han-Ming; Chen, Jih-Chang; Ng, Chip-Jin; Chiu, De-Fa; Chen, Miin-Fu

    2006-01-01

    Melatonin has been used to treat experimental pancreatitis, although not all the drug's therapeutic mechanisms of melatonin have been defined. Prostaglandins (PGs) are proinflammatory mediators that exert their effects mainly locally during inflammatory diseases. The present study was undertaken to examine whether treatment with melatonin influences local PG production. An acute pancreatitis model in male Sprague-Dawley rats (225-275 g) was established by continuously infusing caerulein (15 mg/kg/hr). Mean arterial pressure and pancreatic perfusion were monitored continuously. Melatonin was delivered via the intraperitoneal route at doses of either 2 or 10 mg/kg, 30 min after caerulein injection. Malondialdehyde and glutathione levels of the pancreas and liver and the trypsinogen activation peptide levels in the serum were measured at the end of the experiment (8 hr after infusion of caerulein). Intraperitoneal injection of melatonin (2 and 10 mg/kg) reduced the reduction in systemic arterial pressure and decreased pancreatic perfusion in the rat model of caerulein pancreatitis. Moreover, melatonin treatment changed local PG production toward control level. Higher dose of melatonin was somewhat more effective in preventing the caerulein-induced alterations than was the lower dose.

  3. Cationic peptides combined with betalactams reduce mortality from peritonitis in experimental rat model.

    PubMed

    Ghiselli, Roberto; Giacometti, Andrea; Cirioni, Oscar; Mocchegiani, Federico; Viticchi, Claudio; Scalise, Giorgio; Saba, Vittorio

    2002-11-01

    The efficacy of cationic peptides combined with betalactams was investigated in a peritonitis rat model. Intraabdominal sepsis was induced in adult Wistar rats via cecal ligation and single puncture. The study included eight drug-treated groups: each of them received intravenous polymyxin-E (1 mg/kg), buforin II (1 mg/kg), imipenem (20 mg/kg), amoxicillin-clavulanate (50 mg/kg), polymyxin-E (1 mg/kg) plus imipenem (20 mg/kg), or amoxicillin-clavulanate (50 mg/kg), and buforin II (1 mg/kg) plus imipenem (20 mg/kg), or amoxicillin-clavulanate (50 mg/kg). The study included an untreated control group that received intravenous isotonic sodium chloride solution. All compounds significantly reduced the lethality and the number of bacteria in abdominal fluid compared with saline treatment. Among compounds, imipenem showed the highest antimicrobial activity, while buforin II produced the highest reduction in plasma endotoxin and TNF-alpha levels. Overall, buforin II and imipenem association were the most effective therapeutic approach. Data presented here suggest the potential advantages of combining antimicrobial agents and compounds able to neutralize the biological effect of the endotoxin.

  4. Erdosteine protects rat testis tissue from hypoxic injury by reducing apoptotic cell death.

    PubMed

    Guven, A; Ickin, M; Uzun, O; Bakar, C; Balbay, E Gulec; Balbay, O

    2014-02-01

    The purpose of this study was to examine the effects of hypobaric hypoxia on testis morphology and the effects of erdosteine on testis tissue. Caspase-3 and hypoxia-inducible factor 1α expressions were detected by immunohistochemistry. Adult male Wistar rats were placed in a hypobaric hypoxic chamber. Rats in the erdosteine group were exposed to the same conditions and treated orally with erdosteine (20 mg kg(-1) daily) at the same time from the first day of hypoxic exposure for 2 weeks. The normoxia group was evaluated as the control. The hypoxia group showed decreased height of spermatogenic epithelium in some seminiferous tubules, vacuolisation in spermatogenic epithelial cells, deterioration and gaps in the basal membrane and an increase in blood vessels in the interstitial area. The erdosteine group showed amelioration of both epithelial cell vacuolisation and basal membrane deterioration. Numbers of hypoxia-inducible factor 1α-immunostained Sertoli and Leydig cells were significantly higher in the hypoxia group than in the erdosteine group. The number of seminiferous tubules with caspase-3-immunostained germ cells was highest in the hypoxia group and decreased in the erdosteine and normoxia groups respectively. Based on these observations, erdosteine protects testis tissue from hypoxic injury by reducing apoptotic cell death.

  5. Post-stroke protection from maladaptive effects of learning with the non-paretic forelimb by bimanual home cage experience in C57BL/6 mice

    PubMed Central

    Kerr, Abigail L.; Wolke, Malerie L.; Bell, Jared A.; Jones, Theresa A.

    2013-01-01

    Behavioral experience, in the form of skilled limb use, has been found to impact the structure and function of the central nervous system, affecting post-stroke behavioral outcome in both adaptive and maladaptive ways. Learning to rely on the less-affected, or non-paretic, body side is common following stroke in both humans and rodent models. In rats, it has been observed that skilled learning with the non-paretic forelimb following ischemic insult leads to impaired or delayed functional recovery of the paretic limb. Here we used a mouse model of focal motor cortical ischemic injury to examine the effects of non-paretic limb training following unilateral stroke. In addition, we exposed some mice to increased bimanual experience in the home cage following stroke to investigate the impact of coordinated dexterous limb use on the non-paretic limb training effect. Our results confirmed that skilled learning with the non-paretic limb impaired functional recovery following stroke in C56BL/6 mice, as it does in rats. Further, this effect was avoided when the skill learning of the non-paretic limb was coupled with increased dexterous use of both forelimbs in the home cage. These findings further establish the mouse as an appropriate model in which to study the neural mechanisms of recovery following stroke and extend previous findings to suggest that the dexterous coordinated use of the paretic and non-paretic limb can promote functional outcome following injury. Keywords: experience-dependent plasticity, learned nonuse, motor cortex, motor rehabilitation, stroke PMID:23756140

  6. The Tendons and Muscles of the Mouse Forelimb during Embryonic Development

    PubMed Central

    Watson, Spencer S.; Riordan, Timothy J.; Pryce, Brian A.; Schweitzer, Ronen

    2009-01-01

    The range and precision of limb movements are dependent on the specific patterns of muscles and tendons. To facilitate analyses of tendon and muscle phenotypes we compiled a description of these tissues in the forelimb of developing mouse embryos. Individual tendons, muscles and ligaments were annotated in a series of transverse sections through the forelimb of an embryo at day 18.5 of embryonic development (E18.5). Transverse sections present a distinctive and highly reproducible pattern of the muscles and tendons at different limb levels that can be used as a simple reference in analyses of mutant phenotypes. A comparable set of sections from an embryo at E14.5 was included to highlight structural features that change during the maturation of the musculoskeletal system. The ability to define the precise position of transverse sections along the proximal-distal axis of the limb may also be useful in studies of other features in developing limbs. PMID:19235726

  7. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography.

    PubMed

    Harrison, Thomas C; Ayling, Oliver G S; Murphy, Timothy H

    2012-04-26

    Cortical motor maps are the basis of voluntary movement, but they have proven difficult to understand in the context of their underlying neuronal circuits. We applied light-based motor mapping of Channelrhodopsin-2 mice to reveal a functional subdivision of the forelimb motor cortex based on the direction of movement evoked by brief (10 ms) pulses. Prolonged trains of electrical or optogenetic stimulation (100-500 ms) targeted to anterior or posterior subregions of motor cortex evoked reproducible complex movements of the forelimb to distinct positions in space. Blocking excitatory cortical synaptic transmission did not abolish basic motor map topography, but the site-specific expression of complex movements was lost. Our data suggest that the topography of movement maps arises from their segregated output projections, whereas complex movements evoked by prolonged stimulation require intracortical synaptic transmission.

  8. Is the left forelimb preference indicative of a stressful situation in horses?

    PubMed

    Siniscalchi, M; Padalino, B; Lusito, R; Quaranta, A

    2014-09-01

    Evidence for behavioural and brain lateralisation is now widespread among the animal kingdom; lateralisation of limb use (pawedness) occurs in several mammals including both feral and domestic horses. We investigated limb preferences in 14 Quarter Horse during different motor tasks (walking, stepping on and off a step, truck loading and unloading). Population lateralisation was observed in two tasks: horses preferentially used their left forelimb during truck loading and stepping off a step. The results also revealed that horses showed higher scores for anxious behaviours during truck loading suggesting that the use of the left forelimb in this task may reflect the main role of the right hemisphere in control of behaviour during stressful situation.

  9. Careful climbing in the Miocene: the forelimbs of Ardipithecus ramidus and humans are primitive.

    PubMed

    Lovejoy, C Owen; Simpson, Scott W; White, Tim D; Asfaw, Berhane; Suwa, Gen

    2009-10-02

    The Ardipithecus ramidus hand and wrist exhibit none of the derived mechanisms that restrict motion in extant great apes and are reminiscent of those of Miocene apes, such as Proconsul. The capitate head is more palmar than in all other known hominoids, permitting extreme midcarpal dorsiflexion. Ar. ramidus and all later hominids lack the carpometacarpal articular and ligamentous specializations of extant apes. Manual proportions are unlike those of any extant ape. Metacarpals 2 through 5 are relatively short, lacking any morphological traits associable with knuckle-walking. Humeral and ulnar characters are primitive and like those of later hominids. The Ar. ramidus forelimb complex implies palmigrady during bridging and careful climbing and exhibits none of the adaptations to vertical climbing, forelimb suspension, and knuckle-walking that are seen in extant African apes.

  10. Iron porphyrinate Fe(TPPS) reduces brain cell damage in rats intrastriatally lesioned by quinolinate.

    PubMed

    González-Cortés, Carolina; Salinas-Lara, Citlaltepetl; Gómez-López, Marcos Artemio; Tena-Suck, Martha Lilia; Pérez-De La Cruz, Verónica; Rembao-Bojórquez, Daniel; Pedraza-Chaverrí, José; Gómez-Ruiz, Celedonio; Galván-Arzate, Sonia; Ali, Syed F; Santamaría, Abel

    2008-01-01

    It has been recently demonstrated that the reactive nitrogen species (RNS) peroxynitrite (ONOO(-)) is involved in the neurotoxic pattern produced by quinolinic acid in the rat brain [V. Pérez-De La Cruz, C. González-Cortés, S. Galván-Arzate, O.N. Medina-Campos, F. Pérez-Severiano, S.F. Ali, J. Pedraza-Chaverrí, A. Santamaría, Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III), Neuroscience 135 (2005) 463-474.]. The aim of this work was to investigate whether ONOO(-) can also be responsible for morphological alterations and inflammatory events in the same paradigm. For this purpose, we evaluated the effect of a pre-treatment with the iron porphyrinate Fe(TPPS), a well-known ONOO(-) decomposition catalyst (10 mg/kg, i.p., 120 min before lesion), on the quinolinate-induced striatal cell damage and immunoreactivities to glial-fibrilar acidic protein (GFAP), interleukin 6 (IL-6) and inducible nitric oxide synthase (iNOS), one and seven days after the intrastriatal infusion of quinolinate (240 nmol/microl) to rats. The striatal tissue from animals lesioned by quinolinate showed a significant degree of damage and enhanced immunoreactivities to GFAP, IL-6 and iNOS, both at 1 and 7 days post-lesion. Pre-treatment of rats with Fe(TPPS) significantly attenuated or prevented all these markers at both post-lesion times tested, except for GFAP immunoreactivity at 7 days post-lesion and iNOS immunoreactivity at 1 day post-lesion. Altogether, our results suggest that ONOO(-) is actively participating in triggering inflammatory events and morphological alterations in the toxic model produced by quinolinate, since the use of agents affecting its formation, such as Fe(TPPS), are effective experimental tools to reduce the brain lesions associated to excitotoxic and oxidative damage.

  11. Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B1 exposure in rats and humans

    PubMed Central

    Robinson, A.; Johnson, N.M.; Strey, A.; Taylor, J.F.; Marroquin-Cardona, A.; Mitchell, N.J.; Afriyie-Gyawu, E.; Ankrah, N.A.; Williams, J.H.; Wang, J.S.; Jolly, P.E.; Nachman, R.J.; Phillips, T.D.

    2012-01-01

    Fumonisin B1 (FB1) is often a co-contaminant with aflatoxin (AF) in grains and may enhance AF’s carcinogenicity by acting as a cancer promoter. Calcium montmorillonite (i.e. NovaSil, NS) is a possible dietary intervention to help decrease chronic aflatoxin exposure where populations are at risk. Previous studies show that an oral dose of NS clay was able to reduce AF exposure in a Ghanaian population. In vitro analyses from our laboratory indicated that FB1 (like aflatoxin) could also be sorbed onto the surfaces of NS. Hence, our objectives were to evaluate the efficacy of NS clay to reduce urinary FB1 in a rodent model and then in a human population highly exposed to AF. In the rodent model, male Fisher rats were randomly assigned to either, FB1 control, FB1 + 2% NS or absolute control group. FB1 alone or with clay was given as a single dose by gavage. For the human trial, participants received NS (1.5 or 3 g day−1) or placebo (1.5 g day−1) for 3 months. Urines from weeks 8 and 10 were collected from the study participants for analysis. In rats, NS significantly reduced urinary FB1 biomarker by 20% in 24 h and 50% after 48 h compared to controls. In the humans, 56% of the urine samples analyzed (n = 186) had detectable levels of FB1. Median urinary FB1 levels were significantly (p < 0.05) decreased by > 90% in the high dose NS group (3 g day−1) compared to the placebo. This work indicates that our study participants in Ghana were exposed to FB1 (in addition to AFs) from the diet. Moreover, earlier studies have shown conclusively that NS reduces the bioavailability of AF and the findings from this study suggest that NS clay also reduces the bioavailability FB1. This is important since AF is a proven dietary risk factor for hepatocellular carcinoma (HCC) in humans and FB1 is suspected to be a dietary risk factor for HCC and esophageal cancer in humans. PMID:22324939

  12. Cephalic sensory influence on forelimb movement in newborn opossums, Monodelphis domestica.

    PubMed

    Adadja, T; Cabana, T; Pflieger, J-F

    2013-01-03

    Like other marsupials, the opossum Monodelphis domestica is born very immature and crawls, unaided by the mother, from the urogenital opening to a nipple where it attaches and pursues its development. If the alternate, rhythmic movements of the forelimbs which allow this locomotion are generated by the developing spinal motor networks, sensory information is nonetheless needed to guide the newborn to a nipple. Behavioral, anatomical and physiological studies suggest that the auditory and the visual systems are insufficiently developed in newborn opossums to influence spinal motor centers, while the vestibular, trigeminal, and olfactory systems are likelier candidates. The trigeminal, vestibular and olfactory regions of the brain were electrically stimulated to test their relative effectiveness at eliciting forelimb movement in newborn opossums, using in vitro preparations of brain-spinal cord with the limbs attached. The minimal stimulation of the cervical spinal cord needed to induce forelimb movement was considered as threshold (T). Stimulations of the trigeminal ganglion (5G) at ∼2T and of the vestibular complex at ∼20T could induce the same movement, and were not statistically different, in contrast to the ∼600T necessary for the olfactory bulb (OB). Neurofilament-200 immunohistochemistry and retrograde tracing with Texas-Red conjugated Dextran Amines were used to study trigeminal innervation of the facial skin and pathways by which trigeminal inputs may be relayed to the spinal cord. Numerous nerve fibers were observed in the snout dermis, especially in the maxillary region, but also elsewhere in the head skin. Some 5G cells project to the upper spinal cord, but more project to the caudal medulla where they could contact secondary trigeminal neurons or reticular cells projecting to the spinal cord. These results support a significant influence of the trigeminal and the vestibular systems, but not of olfaction, on forelimb movement of neonatal opossums.

  13. Force- and moment-generating capacities of muscles in the distal forelimb of the horse.

    PubMed

    Brown, Nicholas A T; Pandy, Marcus G; Kawcak, Christopher E; McIlwraith, C Wayne

    2003-07-01

    A detailed musculoskeletal model of the distal equine forelimb was developed to study the influence of musculoskeletal geometry (i.e. muscle paths) and muscle physiology (i.e. force-length properties) on the force- and moment-generating capacities of muscles crossing the carpal and metacarpophalangeal joints. The distal forelimb skeleton was represented as a five degree-of-freedom kinematic linkage comprised of eight bones (humerus, radius and ulna combined, proximal carpus, distal carpus, metacarpus, proximal phalanx, intermediate phalanx and distal phalanx) and seven joints (elbow, radiocarpal, intercarpal, carpometacarpal, metacarpophalangeal (MCP), proximal interphalangeal (pastern) and distal interphalangeal (coffin)). Bone surfaces were reconstructed from computed tomography scans obtained from the left forelimb of a Thoroughbred horse. The model was actuated by nine muscle-tendon units. Each unit was represented as a three-element Hill-type muscle in series with an elastic tendon. Architectural parameters specifying the force-producing properties of each muscle-tendon unit were found by dissecting seven forelimbs from five Thoroughbred horses. Maximum isometric moments were calculated for a wide range of joint angles by fully activating the extensor and flexor muscles crossing the carpus and MCP joint. Peak isometric moments generated by the flexor muscles were an order of magnitude greater than those generated by the extensor muscles at both the carpus and the MCP joint. For each flexor muscle in the model, the shape of the maximum isometric joint moment-angle curve was dominated by the variation in muscle force. By contrast, the moment-angle curves for the muscles that extend the MCP joint were determined mainly by the variation in muscle moment arms. The suspensory and check ligaments contributed more than half of the total support moment developed about the MCP joint in the model. When combined with appropriate in vivo measurements of joint kinematics

  14. Forelimb muscle architecture and myosin isoform composition in the groundhog (Marmota monax).

    PubMed

    Rupert, Joseph E; Rose, Jacob A; Organ, Jason M; Butcher, Michael T

    2015-01-15

    Scratch-digging mammals are commonly described as having large, powerful forelimb muscles for applying high force to excavate earth, yet studies quantifying the architectural properties of the musculature are largely unavailable. To further test hypotheses about traits that represent specializations for scratch-digging, we quantified muscle architectural properties and myosin expression in the forelimb of the groundhog (Marmota monax), a digger that constructs semi-complex burrows. Architectural properties measured were muscle moment arm, muscle mass (MM), belly length (ML), fascicle length (l(F)), pennation angle and physiological cross-sectional area (PCSA), and these metrics were used to estimate maximum isometric force, joint torque and power. Myosin heavy chain (MHC) isoform composition was determined in selected forelimb muscles by SDS-PAGE and densitometry analysis. Groundhogs have large limb retractors and elbow extensors that are capable of applying moderately high torque at the shoulder and elbow joints, respectively. Most of these muscles (e.g. latissimus dorsi and pectoralis superficialis) have high l(F)/ML ratios, indicating substantial shortening ability and moderate power. The unipennate triceps brachii long head has the largest PCSA and is capable of the highest joint torque at both the shoulder and elbow joints. The carpal and digital flexors show greater pennation and shorter fascicle lengths than the limb retractors and elbow extensors, resulting in higher PCSA/MM ratios and force production capacity. Moreover, the digital flexors have the capacity for both appreciable fascicle shortening and force production, indicating high muscle work potential. Overall, the forelimb musculature of the groundhog is capable of relatively low sustained force and power, and these properties are consistent with the findings of a predominant expression of the MHC-2A isoform. Aside from the apparent modifications to the digital flexors, the collective muscle

  15. Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury

    NASA Astrophysics Data System (ADS)

    Sunshine, Michael D.; Cho, Frances S.; Lockwood, Danielle R.; Fechko, Amber S.; Kasten, Michael R.; Moritz, Chet T.

    2013-06-01

    Objective. Intraspinal microstimulation (ISMS) is a promising method for reanimating paralyzed limbs following neurological injury. ISMS within the cervical and lumbar spinal cord is capable of evoking a variety of highly-functional movements prior to injury, but the ability of ISMS to evoke forelimb movements after cervical spinal cord injury is unknown. Here we examine the forelimb movements and muscles activated by cervical ISMS both before and after contusion injury. Approach. We documented the forelimb muscles activated and movements evoked via systematic stimulation of the rodent cervical spinal cord both before injury and three, six and nine weeks following a moderate C4/C5 lateralized contusion injury. Animals were anesthetized with isoflurane to permit construction of somatotopic maps of evoked movements and quantify evoked muscle synergies between cervical segments C3 and T1. Main results. When ISMS was delivered to the cervical spinal cord, a variety of responses were observed at 68% of locations tested, with a spatial distribution that generally corresponded to the location of motor neuron pools. Stimulus currents required to achieve movement and the number of sites where movements could be evoked were unchanged by spinal cord injury. A transient shift toward extension-dominated movements and restricted muscle synergies were observed at three and six weeks following injury, respectively. By nine weeks after injury, however, ISMS-evoked patterns were similar to spinally-intact animals. Significance. The results demonstrate the potential for cervical ISMS to reanimate hand and arm function following spinal cord injury. Robust forelimb movements can be evoked both before and during the chronic stages of recovery from a clinically relevant and sustained cervical contusion injury.

  16. Ebselen Alters Mitochondrial Physiology and Reduces Viability of Rat Hippocampal Astrocytes

    PubMed Central

    Santofimia-Castaño, Patricia; Salido, Ginés M.

    2013-01-01

    The seleno-organic compound and radical scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) have been extensively employed as an anti-inflammatory and neuroprotective compound. However, its glutathione peroxidase activity at the expense of cellular thiols groups could underlie certain deleterious actions of the compound on cell physiology. In this study, we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular viability, the intracellular free-Ca2+ concentration ([Ca2+]c), the mitochondrial free-Ca2+ concentration ([Ca2+]m), and mitochondrial membrane potential (ψm) were analyzed. The caspase-3 activity was also assayed. Our results show that cell viability was reduced by treatment of cells with ebselen, depending on the concentration employed. In the presence of ebselen, we observed an initial transient increase in [Ca2+]c that was then followed by a progressive increase to an elevated plateau. We also observed a transient increase in [Ca2+]m in the presence of ebselen that returned toward a value over the prestimulation level. The compound induced depolarization of ψm and altered the permeability of the mitochondrial membrane. Additionally, a disruption of the mitochondrial network was observed. Finally, we did not detect changes in caspase-3 activation in response to ebselen treatment. Collectively, these data support the likelihood of ebselen, depending on the concentration employed, reduces viability of rat hippocampal astrocytes via its action on the mitochondrial activity. These may be early effects that do not involve caspase-3 activation. We conclude that, depending on the concentration used, ebselen might exert deleterious actions on astrocyte physiology that could compromise cell function. PMID:23496767

  17. Androstenediol Reduces Demyelination-Induced Axonopathy in the Rat Corpus Callosum: Impact on Microglial Polarization

    PubMed Central

    Kalakh, Samah; Mouihate, Abdeslam

    2017-01-01

    Aims: We have previously shown that the neurosteroid androstenediol (ADIOL) promotes remyelination following gliotoxin-induced demyelination. However, the impact of this ADIOL on axonal recovery is not yet known. In the present study, we investigated the impact of ADIOL on axonal integrity following a focal demyelination in the corpus callosum. Methods: A 2 μl solution of either ethidium bromide (EB; 0.04%) or pyrogen-free saline were stereotaxically injected into the corpus callosum of Sprague Dawley rats. Each of these two rat groups was divided into two subgroups and received daily subcutaneous injections of either ADIOL (5 mg/kg) or vehicle. The brains were collected at 2, 7 and 14 days post-stereotaxic injection. Immunofluorescent staining was used to explore the impact of ADIOL on axonal integrity (neurofilament (NF)-M) and microglial activation (ionized calcium binding adapter molecule 1, Iba1). The inducible nitric oxide synthase (iNOS) and arginase-1 (arg-1), two major markers of microglial polarization towards the proinflammatory M1 and the regulatory M2 phenotypes respectively, were monitored using western blot. Results: ADIOL increased the density of NF fibers and decreased the extent of axonal damage in the vicinity of the demyelination lesion. ADIOL-induced decrease in axonal damage was manifested by decreased number of axonal spheroids at both 2 and 7 days post-demyelination insult. This reduced axonopathy was associated with decreased expression of iNOS and enhanced expression of arg-1 during the acute phase. Conclusion: These data strongly suggest that ADIOL reduces demyelination-induced axonal damage, likely by dampening the local inflammatory response in the white matter and shifting microglial polarization towards a reparative mode. PMID:28280460

  18. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats.

    PubMed

    Choi, In-Young; Lee, Jae-Chul; Ju, Chung; Hwang, Sunyoung; Cho, Geum-Sil; Lee, Hyuk Woo; Choi, Won Jun; Jeong, Lak Shin; Kim, Won-Ki

    2011-10-01

    A3 adenosine receptor (A3AR) is recognized as a novel therapeutic target for ischemic injury; however, the mechanism underlying anti-ischemic protection by the A3AR agonist remains unclear. Here, we report that 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyl-4'-thioadenosine (LJ529), a selective A3AR agonist, reduces inflammatory responses that may contribute to ischemic cerebral injury. Postischemic treatment with LJ529 markedly reduced cerebral ischemic injury caused by 1.5-hour middle cerebral artery occlusion, followed by 24-hour reperfusion in rats. This effect was abolished by the simultaneous administration of the A3AR antagonist MRS1523, but not the A2AAR antagonist SCH58261. LJ529 prevented the infiltration/migration of microglia and monocytes occurring after middle cerebral artery occlusion and reperfusion, and also after injection of lipopolysaccharides into the corpus callosum. The reduced migration of microglia by LJ529 could be related with direct inhibition of chemotaxis and down-regulation of spatiotemporal expression of Rho GTPases (including Rac, Cdc42, and Rho), rather than by biologically relevant inhibition of inflammatory cytokine/chemokine release (eg, IL-1β, TNF-α, and MCP-1) or by direct inhibition of excitotoxicity/oxidative stress (not affected by LJ529). The present findings indicate that postischemic activation of A3AR and the resultant reduction of inflammatory response should provide a promising therapeutic strategy for the treatment of ischemic stroke.

  19. (−)-Epicatechin Prevents Blood Pressure Increase and Reduces Locomotor Hyperactivity in Young Spontaneously Hypertensive Rats

    PubMed Central

    Berenyiova, A.; Drobna, M.; Lukac, S.

    2016-01-01

    This study investigated the effects of subchronic (−)-epicatechin (Epi) treatment on locomotor activity and hypertension development in young spontaneously hypertensive rats (SHR). Epi was administered in drinking water (100 mg/kg/day) for 2 weeks. Epi significantly prevented the development of hypertension (138 ± 2 versus 169 ± 5 mmHg, p < 0.001) and reduced total distance traveled in the open-field test (22 ± 2 versus 35 ± 4 m, p < 0.01). In blood, Epi significantly enhanced erythrocyte deformability, increased total antioxidant capacity, and decreased nitrotyrosine concentration. In the aorta, Epi significantly increased nitric oxide (NO) synthase (NOS) activity and elevated the NO-dependent vasorelaxation. In the left heart ventricle, Epi increased NOS activity without altering gene expressions of nNOS, iNOS, and eNOS. Moreover, Epi reduced superoxide production in the left heart ventricle and the aorta. In the brain, Epi increased nNOS gene expression (in the brainstem and cerebellum) and eNOS expression (in the cerebellum) but had no effect on overall NOS activity. In conclusion, Epi prevented the development of hypertension and reduced locomotor hyperactivity in young SHR. These effects resulted from improved cardiovascular NO bioavailability concurrently with increased erythrocyte deformability, without changes in NO production in the brain. PMID:27885334

  20. Dehydration-Induced Anorexia Reduces Astrocyte Density in the Rat Corpus Callosum

    PubMed Central

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2015-01-01

    Anorexia nervosa is an eating disorder associated with severe weight loss as a consequence of voluntary food intake avoidance. Animal models such as dehydration-induced anorexia (DIA) mimic core features of the disorder, including voluntary reduction in food intake, which compromises the supply of energy to the brain. Glial cells, the major population of nerve cells in the central nervous system, play a crucial role in supplying energy to the neurons. The corpus callosum (CC) is the largest white matter tract in mammals, and more than 99% of the cell somata correspond to glial cells in rodents. Whether glial cell density is altered in anorexia is unknown. Thus, the aim of this study was to estimate glial cell density in the three main regions of the CC (genu, body, and splenium) in a murine model of DIA. The astrocyte density was significantly reduced (~34%) for the DIA group in the body of the CC, whereas in the genu and the splenium no significant changes were observed. DIA and forced food restriction (FFR) also reduced the ratio of astrocytes to glial cells by 57.5% and 22%, respectively, in the body of CC. Thus, we conclude that DIA reduces astrocyte density only in the body of the rat CC. PMID:26090235

  1. The phylogeny of the red panda (Ailurus fulgens): evidence from the forelimb.

    PubMed

    Fisher, Rebecca E; Adrian, Brent; Barton, Michael; Holmgren, Jennifer; Tang, Samuel Y

    2009-12-01

    Within the order Carnivora, the phylogeny of the red panda (Ailurus fulgens) is contentious, with morphological and molecular studies supporting a wide range of possible relationships, including close ties to procyonids, ursids, mustelids and mephitids. This study provides additional morphological data, including muscle maps, for the forelimb of Ailurus, based on the dissection of four cadavers from the National Zoological Park, Washington, DC, USA. The red panda forelimb is characterized by a number of primitive features, including the lack of m. rhomboideus profundus, a humeral insertion for m. cleidobrachialis, the presence of mm. brachioradialis, articularis humeri and coracobrachialis, a single muscle belly for m. extensor digitorum lateralis with tendons to digits III-V, four mm. lumbricales, and the presence of mm. flexor digitorum brevis manus, adductores digiti I, II and V, and abductor digiti I and V. Red pandas resemble Ailuropoda, mustelids and some procyonids in possessing a soft tissue origin of m. flexor digitorum superficialis. In addition, red pandas are similar to ursids and procyonids in having a variable presence of m. biceps brachii caput breve. Furthermore, Ailurus and some ursids lack m. rhomboideus capitis. The forelimb muscle maps from this study represent a valuable resource for analyzing the functional anatomy of fossil ailurids and some notes on the Miocene ailurid, Simocyon batalleri, are presented.

  2. The phylogeny of the red panda (Ailurus fulgens): evidence from the forelimb

    PubMed Central

    Fisher, Rebecca E; Adrian, Brent; Barton, Michael; Holmgren, Jennifer; Tang, Samuel Y

    2009-01-01

    Within the order Carnivora, the phylogeny of the red panda (Ailurus fulgens) is contentious, with morphological and molecular studies supporting a wide range of possible relationships, including close ties to procyonids, ursids, mustelids and mephitids. This study provides additional morphological data, including muscle maps, for the forelimb of Ailurus, based on the dissection of four cadavers from the National Zoological Park, Washington, DC, USA. The red panda forelimb is characterized by a number of primitive features, including the lack of m. rhomboideus profundus, a humeral insertion for m. cleidobrachialis, the presence of mm. brachioradialis, articularis humeri and coracobrachialis, a single muscle belly for m. extensor digitorum lateralis with tendons to digits III–V, four mm. lumbricales, and the presence of mm. flexor digitorum brevis manus, adductores digiti I, II and V, and abductor digiti I and V. Red pandas resemble Ailuropoda, mustelids and some procyonids in possessing a soft tissue origin of m. flexor digitorum superficialis. In addition, red pandas are similar to ursids and procyonids in having a variable presence of m. biceps brachii caput breve. Furthermore, Ailurus and some ursids lack m. rhomboideus capitis. The forelimb muscle maps from this study represent a valuable resource for analyzing the functional anatomy of fossil ailurids and some notes on the Miocene ailurid, Simocyon batalleri, are presented. PMID:19930516

  3. Captopril reduces cardiac inflammatory markers in spontaneously hypertensive rats by inactivation of NF-kB

    PubMed Central

    2010-01-01

    Background Captopril is an angiotensin-converting enzyme (ACE) inhibitor widely used in the treatment of arterial hypertension and cardiovascular diseases. Our objective was to study whether captopril is able to attenuate the cardiac inflammatory process associated with arterial hypertension. Methods Left ventricle mRNA expression and plasma levels of pro-inflammatory (interleukin-1β (IL-1β) and IL-6) and anti-inflammatory (IL-10) cytokines, were measured in spontaneously hypertensive rats (SHR) and their control normotensive, Wistar-Kyoto (WKY) rats, with or without a 12-week treatment with captopril (80 mg/Kg/day; n = six animals per group). To understand the mechanisms involved in the effect of captopril, mRNA expression of ACE, angiotensin II type I receptor (AT1R) and p22phox (a subunit of NADPH oxidase), as well as NF-κB activation and expression, were measured in the left ventricle of these animals. Results In SHR, the observed increases in blood pressures, heart rate, left ventricle relative weight, plasma levels and cardiac mRNA expression of IL-1β and IL-6, as well as the reductions in the plasma levels and in the cardiac mRNA expression of IL-10, were reversed after the treatment with captopril. Moreover, the mRNA expressions of ACE, AT1R and p22phox, which were enhanced in the left ventricle of SHR, were reduced to normal values after captopril treatment. Finally, SHR presented an elevated cardiac mRNA expression and activation of the transcription nuclear factor, NF-κB, accompanied by a reduced expression of its inhibitor, IκB; captopril administration corrected the observed changes in all these parameters. Conclusion These findings show that captopril decreases the inflammation process in the left ventricle of hypertensive rats and suggest that NF-κB-driven inflammatory reactivity might be responsible for this effect through an inactivation of NF-κB-dependent pro-inflammatory factors. PMID:20462420

  4. Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus☆

    PubMed Central

    Chen, Zhihong; He, Yaqiang; Song, Chengjun; Dong, Zhijun; Su, Zhejun; Xue, Jingfeng

    2012-01-01

    In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway. PMID:25767499

  5. Reduced impact of emotion on choice behavior in presymptomatic BACHD rats, a transgenic rodent model for Huntington Disease.

    PubMed

    Adjeroud, Najia; Yagüe, Sara; Yu-Taeger, Libo; Bozon, Bruno; Leblanc-Veyrac, Pascale; Riess, Olaf; Allain, Philippe; Nguyen, Huu Phuc; Doyère, Valérie; El Massioui, Nicole

    2015-11-01

    Executive dysfunction and psychiatric symptoms are hallmarks of Huntington disease (HD), a neurodegenerative disorder genetically characterized by expanded CAG repeats in the HTT gene. Using the BACHD rat model of HD (97 CAG-CAA repeats), the present research seeks to characterize the progressive emergence of decision-making impairments in a rat version of the Iowa Gambling Task (RGT) and the impact of emotional modulation, whether positive or negative, on choice behavior. The choice efficiency shown both by WT rats (independent of their age) and the youngest BACHD rats (2 and 8months old) evidenced that they are able to integrate outcomes of past decisions to determine expected reward values for each option. However, 18months old BACHD rats made fewer choices during the RGT session and were less efficient in choosing advantageous options than younger animals. Presenting either chocolate pellets or electrical footshocks half-way through a second RGT session reduced exploratory activity (inefficient nose-poking) and choices with a weaker effect on BACHD animals than on WT. Choice efficiency was left intact in transgenic rats. Our results bring new knowledge on executive impairments and impact of emotional state on decision-making at different stages of the disease, increasing the face-validity of the BACHD rat model.

  6. Efficacy of hand-broadcast application of baits containing 0.005% diphacinone in reducing rat populations in Hawaiian forests

    USGS Publications Warehouse

    Foote, David; Lindsey, Gerald D.; Perry, Charlotte F.; Spurr, Eric

    2013-01-01

    Introduced black rats (Rattus rattus), Polynesian rats (R. exulans/i>), and Norway rats (R. norvegicus) impact insular bird, plant, and invertebrate populations worldwide. We investigated the efficacy of hand-broadcast application of Ramik® Green containing 0.005% diphacinone for rodent control in paired 4-ha treatment and non-treatment plots in both wet and mesic forest in Hawaiʽi. Radio telemetry of black rats, the predominant species, indicated 100% mortality in both treatment plots within about one week of bait application. Live trapping and non-toxic census bait block monitoring two to four weeks after each of 12 repeat bait applications in the wet forest, and three repeat bait applications in the mesic forest, indicated rat abundance was reduced on average by 84–88%. However, reinvasion could have occurred within this time. Rat populations in the treatment plots usually recovered to pre-poison levels within two to five months. House mice (Mus musculus), Indian mongooses (Herpestes auropunctatus), and feral cats (Felis catus) also ate bait or other animals that had eaten bait. This study demonstrates the efficacy of ground-based broadcast toxicant baits for the control of rats in Hawaiian montane wet forests.

  7. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    SciTech Connect

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-11-03

    In type 2 diabetes (T2DM) {beta}-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 {+-} 3.8%) than ZF rats (48.8 {+-} 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 {+-} 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity.

  8. Ketogenic diet prevents seizure and reduces myoclonic jerks in rats with cardiac arrest-induced cerebral hypoxia.

    PubMed

    Tai, Kwok-Keung; Truong, Daniel D

    2007-09-20

    Although the mechanism underlying the anti-epileptic effects of a ketogenic diet (KD) is not known, KD is reported to be an effective treatment for intractable epilepsy, in particular among children. Here, we evaluated whether a KD can reduce posthypoxic seizure and myoclonic jerks in a rat model of cardiac arrest-induced cerebral hypoxia. In this study, rats were divided into two groups: one group received a normal diet while the other group was fed a KD for 25 days before being subjected to cardiac arrest-induced cerebral hypoxia. We found that rats fed a normal diet developed seizures and severe myoclonic jerks in response to auditory stimuli after the hypoxic insults, whereas the rats on the KD did not develop seizure and showed much less severe myoclonic jerks in response to auditory stimuli. The results suggested that the KD has beneficial effects against posthypoxic seizure and myoclonus.

  9. 3,3',4',5,7-Pentamethylquercetin reduces angiotensin II-induced cardiac hypertrophy and apoptosis in rats.

    PubMed

    Mao, Zhangfan; Liang, Yuanxin; Du, Xinling; Sun, Zongquan

    2009-09-01

    Quercetin has been shown to possess beneficial pharmacological properties in treatment of heart disease, but lack of stability and bioavailability limits its clinical use. In this study, we investigated for the first time the effect of a methylated form of quercetin, 3,3',4',5,7-pentamethylquercetin (PMQ), on myocardial protection in rats. Angiotensin II was delivered to Sprague-Dawley rats subcutaneously, while PMQ (5 mg/kg) was administered by oral gavage; blood pressure was monitored daily. The production of NADPH oxidase was measured, and cardiac hypertrophy and apoptosis were detected. The results revealed that PMQ could downregulate the expression of the NADPH oxidase gene and reduce angiotensin II- induced cardiac hypertrophy and apoptosis in rats. Therefore, we believe that PMQ showed beneficial effects on myocardium in angiotensin II-administered rats, and its potential to be used for treatment of cardiovascular disease deserves further attention.

  10. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with

  11. Post-training glucocorticoid receptor activation during Pavlovian conditioning reduces Pavlovian-instrumental transfer in rats.

    PubMed

    Pielock, Steffi M; Sommer, Susanne; Hauber, Wolfgang

    2013-03-01

    Considerable evidence suggests that glucocorticoid receptor activation can enhance memory consolidation in Pavlovian learning tasks. For instance, post-training injections of the synthetic glucocorticoid receptor agonist dexamethasone increased conditioned responding to reward-predictive Pavlovian stimuli. Here we explored whether post-training dexamethasone injections can enhance appetitive Pavlovian learning and amplify the ability of Pavlovian stimuli to invigorate instrumental behaviour, a phenomenon termed Pavlovian-instrumental transfer (PIT). Animals were given 8 training days with two sessions per day, an instrumental training session in the morning and a Pavlovian training session in the afternoon. Dexamethasone or vehicle injections were administered daily immediately after Pavlovian training sessions. In a subsequent transfer test, we measured the general PIT effect, i.e. the enhancement of lever pressing for expected reward during presentation of an appetitive Pavlovian stimulus predictive for the same reward. Repeated high-dose (1.2 mg/kg, i.p.) dexamethasone injections elicited pronounced body weight loss, markedly reduced instrumental performance and left Pavlovian learning unaltered, whereas repeated low-dose (3 μg/kg, i.p.) dexamethasone injections inhibited body weight gain, slightly reduced instrumental performance and left Pavlovian learning unaltered during training. Importantly, in rats subjected to high- and low-dose dexamethasone injections, the overall response rates and the PIT effect were reduced in the transfer test. Thus, dexamethasone given after Pavlovian training was not able to amplify the invigorating effects of Pavlovian stimuli on instrumental action. Considerable evidence suggests that body weight changes after repeated low- and high-dose dexamethasone treatment as observed here are associated with muscle atrophy that could impair response capabilities. However, our data suggest that impaired response capabilities are not a

  12. Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats.

    PubMed

    Lucke, M; Schmidmaier, G; Sadoni, S; Wildemann, B; Schiller, R; Haas, N P; Raschke, M

    2003-05-01

    Antibiotic prophylaxis is a routine procedure in orthopedic surgery. Various local antibiotic delivery techniques are used to reduce bone- and soft tissue-related infection. The objective of this study was to evaluate the efficacy of a new biodegradable, gentamicin-loaded poly(D,L-lactide) (PDLLA) coating of orthopedic devices in preventing implant-related osteomyelitis. The medullary cavities of tibiae in 30 Sprague Dawley rats were contaminated with Staphylococcus aureus (10(3) colony forming units). Simultaneously titanium Kirschner wires, uncoated (group II), coated with PDLLA (group III), or coated with PDLLA + 10% gentamicin (group IV), were implanted. Ten animals that received phosphate-buffered saline and uncoated Kirschner wires served as controls (group I). Follow-up was 6 weeks. In weekly intervals X-rays of the tibiae were performed, blood counts were taken, and body temperature and weight were determined. After sacrifice infection was evaluated by histological and microbiological analysis. All animals of groups II and III developed microbiological, histological, and radiological signs of infection, including osseous destruction and soft tissue swelling. All animals of the control group remained sterile. Cultures of implants of group IV showed significantly reduced bacterial growth compared to cultures of groups II and III, and three implants of group IV remained sterile. Further radiological and histological signs of infection were significantly reduced in the gentamicin-coated group compared to groups II and III. No significant differences in body weight, body temperature, and blood parameters between all groups were observed. Local application of antibiotic-coated orthopedic devices containing PDLLA and 10% gentamicin significantly reduced implant-related infection in this animal model.

  13. Amitifadine, a triple monoamine re-uptake inhibitor, reduces nicotine self-administration in female rats

    PubMed Central

    Levin, Edward D; Wells, Corinne; Johnson, Joshua E; Rezvani, Amir H.; Bymaster, Frank P.; Rose, Jed E.

    2016-01-01

    A wider diversity of drug treatments to aid smoking cessation is needed to help tailor the most efficacious treatment for different types of smokers. This study was conducted to determine whether amitifadine, which inhibits re-uptake of dopamine, norepinephrine and serotonin, would decrease nicotine self-administration at doses that do not cause adverse side effects. Adult female Sprague-Dawley rats were trained to self-administer nicotine intravenous (IV) and were given acute doses of amitifadine in a repeated measures counterbalanced design. Effects of amitifadine on locomotor activity and food motivated responding were also evaluated. Chronic amitifadine effects were also examined. The 30 mg/kg amitifadine dose significantly reduced nicotine self-administration. The 5 and 10 mg/kg doses reduced nicotine self-administration during the first 15 min. of the session when the greatest amount of nicotine was self-administered. The 30 mg/kg amitifadine dose, but not the lower doses caused a significant reduction in locomotor activity averaged over the 1-hour session and reduced food motivated responding. The 10 mg/kg dose caused hypoactivity at the beginning of the session, but 5 mg/kg did not cause any hypoactivity. The effects of chronic amitifadine treatment (10 mg/kg) over the course of 15 sessions was also determined. Amitifadine caused a significant reduction in nicotine self-administration, which was not seen to diminish over two consecutive weeks of treatment and a week after enforced abstinence. Amitifadine significantly reduced nicotine self-administration. This prompts further research to determine if amitifadine might be an effective treatment for smoking cessation. PMID:26101069

  14. Amitifadine, a triple monoamine re-uptake inhibitor, reduces nicotine self-administration in female rats.

    PubMed

    Levin, Edward D; Wells, Corinne; Johnson, Joshua E; Rezvani, Amir H; Bymaster, Frank P; Rose, Jed E

    2015-10-05

    A wider diversity of drug treatments to aid smoking cessation is needed to help tailor the most efficacious treatment for different types of smokers. This study was conducted to determine whether amitifadine, which inhibits re-uptake of dopamine, norepinephrine and serotonin, would decrease nicotine self-administration at doses that do not cause adverse side effects. Adult female Sprague-Dawley rats were trained to self-administer nicotine intravenous (IV) and were given acute doses of amitifadine in a repeated measures counterbalanced design. Effects of amitifadine on locomotor activity and food motivated responding were also evaluated. Chronic amitifadine effects were also examined. The 30 mg/kg amitifadine dose significantly reduced nicotine self-administration. The 5 and 10 mg/kg doses reduced nicotine self-administration during the first 15 min of the session when the greatest amount of nicotine was self-administered. The 30 mg/kg amitifadine dose, but not the lower doses caused a significant reduction in locomotor activity averaged over the one-hour session and reduced food motivated responding. The 10 mg/kg dose caused hypoactivity at the beginning of the session, but 5 mg/kg did not cause any hypoactivity. The effects of chronic amitifadine treatment (10 mg/kg) over the course of 15 sessions was also determined. Amitifadine caused a significant reduction in nicotine self-administration, which was not seen to diminish over two consecutive weeks of treatment and a week after enforced abstinence. Amitifadine significantly reduced nicotine self-administration. This prompts further research to determine if amitifadine might be an effective treatment for smoking cessation.

  15. Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat.

    PubMed

    Gokulakrishnan, Ganga; Chang, Xiaoyan; Fleischmann, Ryan; Fiorotto, Marta L

    2017-03-01

    Perinatal skeletal muscle growth rates are a function of protein and myonuclear accretion. Precocious exposure of the fetus to glucocorticoids (GLC) in utero impairs muscle growth. Reduced muscle protein synthesis rates contribute to this response, but the consequences for myonuclear hyperplasia are unknown. To test the hypothesis that blunting of Pax7+ muscle progenitor cell proliferative activity by GLC in vivo also contributes to reduced fetal muscle growth, pregnant rats were administered dexamethasone (DEX: 1 mg/L drinking water) from embryonic day (ED) 13 to ED21. Their responses were compared to pair-fed (PF) and ad libitum-fed controls (CON). Bromodeoxyuridine (BrdU) was administered before delivery to measure myonuclear accretion. Fetal hind limb and diaphragm muscles were collected at term and analyzed for myofiber cross-sectional area (CSA), total and BrdU+ myonuclei, Pax7+ nuclei, MyoD and myogenin protein and mRNA abundance and myosin heavy chain (MyHC) isoform composition. Mean fiber CSA, myonuclei/myofiber and Pax7+ nuclei/myofiber ratios were reduced in DEX compared to those in CON and PF muscles; CSA/myonucleus, BrdU+/total myonuclei and BrdU+ myonuclei/Pax7+ nuclei were similar among groups. Myogenin abundance was reduced and MyHC-slow was increased in DEX fetuses. The data are consistent with GLC inhibition of muscle progenitor cell proliferation limiting satellite cell and myonuclear accretion. The response of PF-fed compared to CON muscles indicated that decreased food consumption by DEX dams contributed to the smaller myofiber CSA but did not affect Pax7+ nuclear accretion. Thus, the effect on satellite cell reserve and myonuclear number also contributes to the blunting of fetal muscle growth by GLC.

  16. Neuroprotection provided by dietary restriction in rats is further enhanced by reducing glucocortocoids.

    PubMed

    Qiu, Guang; Spangler, Edward L; Wan, Ruiqian; Miller, Marshall; Mattson, Mark P; So, Kwok-Fai; de Cabo, Rafael; Zou, Sige; Ingram, Donald K

    2012-10-01

    Glucocorticoids (GC)--corticosterone (CORT) in rodents and cortisol in primates--are stress-induced hormones secreted by adrenal glands that interact with the hypothalamic pituitary axis. High levels of cortisol in humans are observed in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), as well as in diabetes, post-traumatic stress syndrome, and major depression. Experimental models of diabetes in rats and mice have demonstrated that reduction of CORT reduces learning and memory deficits and attenuates loss of neuronal viability and plasticity. In contrast to the negative associations of elevated GC levels, CORT is moderately elevated in dietary restriction (DR) paradigms which are associated with many healthy anti-aging effects including neuroprotection. We demonstrate here in rats that ablating CORT by adrenalectomy (ADX) with replenishment to relatively low levels (30% below that of controls) prior to the onset of a DR regimen (ADX-DR) followed by central administration of the neurotoxin, kainic acid (KA), significantly attenuates learning deficits in a 14-unit T-maze task. The performance of the ADX-DR KA group did not differ from a control group (CON) that did not receive KA and was fed ad libitum (AL). By contrast, the sham-operated DR (SHAM-DR KA) group, SHAM-AL KA group, and ADX-AL KA group demonstrated poorer learning behavior in this task compared to the CON group. Stereological analysis revealed equivalent DR-induced neuroprotection in the SH-DR KA and ADX-DR KA groups, as measured by cell loss in the CA2/CA3 region of the hippocampus, while substantial cell loss was observed in SH-AL and ADX-AL rats. A separate set of experiments was conducted with similar dietary and surgical treatment conditions but without KA administration to examine markers of neurotrophic activity, brain-derived neurotrophic factor (BDNF), transcriptions factors (pCREB), and chaperone proteins (HSP-70). Under these conditions, we noted

  17. Neuroprotection provided by dietary restriction in rats is further enhanced by reducing glucocortocoids

    PubMed Central

    Qui, Guang; Spangler, Edward; Wan, Ruiqian; Miller, Marshall; Mattson, Mark; So, Kwi-fok; de Cabo, Rafael; Zou, Sige; Ingram, Donald

    2012-01-01

    Glucocorticoids (GC)--corticosterone (CORT) in rodents and cortisol in primates--are stress-induced hormones secreted by adrenal glands that interact with the hypothalamic pituitary axis. High levels of cortisol in humans are observed in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), as well as in diabetes, post-traumatic stress syndrome, and major depression. Experimental models of diabetes in rats and mice have demonstrated that reduction of CORT reduces learning and memory deficits and attenuates loss of neuronal viability and plasticity. In contrast to the negative associations of elevated GC levels, CORT is moderately elevated in dietary restriction (DR) paradigms which are associated with many healthy anti-aging effects including neuroprotection. We demonstrate here in rats that ablating CORT by adrenalectomy (ADX) with replenishment to relatively low levels (30% below that of controls) prior to the onset of a DR regimen (ADX-DR) followed by central administration of the neurotoxin, kainic acid (KA), significantly attenuates learning deficits in a 14-unit T-maze task. The performance of the ADX-DR KA group did not differ from a control group (CON) that did not receive KA and was fed ad libitum (AL). By contrast, the sham-operated DR (SHAM-DR KA) group, SHAM-AL KA group, and ADX-AL KA group demonstrated poorer learning behavior in this task compared to the CON group. Stereological analysis revealed equivalent DR-induced neuroprotection in the SH-DR KA and ADX-DR KA groups, as measured by cell loss in the CA2/CA3 region of the hippocampus, while substantial cell loss was observed in SH-AL and ADX-AL rats. A separate set of experiments was conducted with similar dietary and surgical treatment conditions but without KA administration to examine markers of neurotrophic activity, brain-derived neurotrophic factor (BDNF), transcriptions factors (pCREB), and chaperone proteins (HSP-70). Under these conditions, we noted

  18. Effects of carvedilol reduce conjunctivitis through changes in inflammation, NGF and VEGF levels in a rat model

    PubMed Central

    CHEN, YING; HONG, XIANFEI

    2016-01-01

    Carvedilol is a novel third generation β-blocker that acts as an antagonist of β and α adrenergic receptors, and is able to regulate various cell factors. In addition, it possesses antioxidant activity, is capable of reversing cardiac remodeling effects and has anti-arrhythmic effects. The present study aimed to investigate whether the effects of carvedilol were able to reduce conjunctivitis clinical scores. Initially, 24 Sprague Dawley (SD) rats were randomly divided into three equal groups as follows: Control group, model group and carvedilol group. The model and carvedilol group adult SD rats were injected with lipopolysaccharide (LPS) to induce conjunctivitis. In the carvedilol group, the eight SD rats with LPS-induced conjunctivitis also received 50 mg/kg/day of carvedilol for 4 weeks. Next, the effects carvedilol were assessed utilizing a system of clinical sign scores, and an enzyme-linked immunosorbent assay was used to determine the expression levels of interleukin-1β (IL-1β), IL-6, IL-8 and tumor necrosis factor-α (TNF-α). Finally, nuclear factor-κB (NF-κB), nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) were analyzed by western blotting. Carvedilol was observed to significantly reduce clinical sign scores in a dose-dependent manner (P<0.01), and reduce IL-1β, IL-6, IL-8 and TNF-α expression levels (P<0.01) in the LPS-induced rat model of conjunctivitis. Carvedilol was also able to significantly reduce the protein expression levels of NF-κB, and induce the protein expression levels of NGF and VEGF in the LPS-induced rat model of conjunctivitis (P<0.01). In conclusion, the effects of carvedilol may reduce conjunctivitis clinical scores through inflammation, NGF and VEGF in LPS-induced rat models. PMID:27168839

  19. Acetylpuerarin reduces inflammation and improves memory function in a rat model of Alzheimer's disease induced by Abeta1-42.

    PubMed

    Meng, Q H; Lou, F L; Hou, W X; Liu, M; Guo, H; Zhang, X M

    2013-11-01

    This study was performed to determine if acetylpuerarin (compound N-2211) could reduce amyloid-beta1-42 (Abeta1-42) induced learning and memory deficits and to examine its anti-neuroinflammatory effects in a rat model. Forty Wistar rats were randomly divided into four groups (n = 10 each): control, model (Abeta1-42 injected), low-dose and high-dose acetylpuerarin groups. The acetylpuerarin groups received peritoneal acetylpuerarin every day for 12 days after 2 weeks of Abeta1-42 (5 microg/1 microl) intrahippocampal injections. The Morris water maze (MWM) was used to assess rats' learning and memory abilities. Immunohistochemistry was used to assess expression levels of ionized calcium-binding adaptor molecule (Ibal), protein kinase C delta (PKCdelta), IkappaB kinase beta (IKKbeta), and inducible nitric oxide synthase (iNOS) in hippocampus. After Abeta1-42 injection, the learning and memory abilities of rats were reduced, and acetylpuerarin treatment ameliorated the observed deficits. Abeta1-42 injection resulted in microglia transforming from resting microglia into an activated state, but this was reduced by acetylpuerarin treatment. Furthermore, hippocampal expression of PKCdelta, IKKbeta, and iNOS increased following Abeta1-42 treatment, and acetylpuerarin could suppressed the levels of PKCdelta, iNOS, and IKKbeta. Acetylpuerarin improves learning and memory functions in Abeta1-42 induced rat models. These effects may be due to anti-neuroinflammatory effects.

  20. Chronic developmental lead exposure reduces neurogenesis in adult rat hippocampus but does not impair spatial learning.

    PubMed

    Gilbert, M E; Kelly, M E; Samsam, T E; Goodman, J H

    2005-08-01

    The dentate granule cell (DG) layer of the hippocampal formation has the distinctive property of ongoing neurogenesis that continues throughout adult life. Although the function of these newly generated neurons and the mechanisms that control their birth are unknown, age, activity, diet and psychosocial stress have all been demonstrated to regulate this type of neurogenesis. Little information on the impact of environmental insults on this process has appeared to date. Developmental lead (Pb) exposure has been well documented to impair cognitive function in children and animals and reduce activity-dependent synaptic plasticity in the hippocampus of rodents. Therefore, we examined the effects of this classic environmental neurotoxicant on hippocampal-dependent learning and adult neurogenesis in the hippocampus. Pregnant rats were exposed to a low level of Pb-acetate (0.2%) via the drinking water from late gestation (GD 16) until weaning on postnatal day 21 (PN 21). At weaning, half of the Pb-exposed animals were weaned to control drinking water and the remainder were maintained on Pb water until termination of the study. Animals were paired- housed and on PN 75 were administered a series of injections of a thymidine analog bromodeoxyuridine (BrdU), a marker of DNA synthesis that labels proliferating cells and their progeny. At 12-h intervals for 12 days, rats received an ip injection of BrdU (50 mg/kg). Subjects were sacrificed and perfused 24 h and 28 days after the last injection. Spatial learning was assessed in an independent group of animals beginning on PN 110 using a Morris water maze. No Pb-induced impairments were evident in water maze learning. Immunohistochemistry for the detection of BrdU-labeled cells was performed on 40-microm coronal sections throughout the hippocampus. Continuous exposure to Pb (Life) reduced the total number of BrdU-positive cells at 28 days without affecting the total number of labeled cells evident 24 h after the last injection

  1. Reduced effect of caffeine on twitch contraction of oesophageal striated muscle from stroke-prone spontaneously hypertensive rats.

    PubMed

    Sekiguchi, Fumiko; Kawata, Kyoko; Shimamura, Keiichi; Sunano, Satoru

    2003-04-01

    1. There are known differences in the sensitivity to caffeine between skeletal muscle (soleus) of normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). The present study was performed in order to examine differences in the effects of caffeine on twitch contraction between visceral striated muscle using the outer layer of the oesophagus from WKY rats and stroke-prone SHR (SHRSP). 2. Caffeine, at concentrations ranging from 0.3 to 10 mmol/L, exhibited potentiating effects on twitch contraction in preparations from both WKY rats and SHRSP. The potentiating effect of caffeine was markedly less prominent in preparations from SHRSP compared with preparations from WKY rats. 3. The rate of contraction and relaxation, the time to peak tension and 80% relaxation time were not significantly altered by caffeine at concentrations lower than 3 mmol/L in preparations from either strain. 4. With 10 mmol/L caffeine, the rate of relaxation was markedly reduced and the 80% relaxation time was prolonged, with no significant changes in the rate of contraction, in preparations from WKY rats. These changes were significantly smaller in preparations from SHRSP. 5. The duration of the action potential was greater in preparations from SHRSP than in preparations from WKY rats, although the membrane potential and the amplitude of the action potential were not significantly different between preparations from WKY rats and SHRSP. 6. Caffeine, at 10 mmol/L, prolonged the duration of the action potential in preparations from both strains. The effect of caffeine was not different between preparations from WKY rats and SHRSP. 7. The results of the present study suggest that caffeine augments release of Ca2+ from the sarcoplasmic reticulum (SR) at low concentrations and attenuates Ca2+ re-uptake at 10 mmol/L. Decreased reactivity of SR to caffeine may be a cause of the lesser potentiation of twitch contraction by caffeine in preparations from SHRSP.

  2. Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in rats.

    PubMed

    Martz, D; Rayos, G; Schielke, G P; Betz, A L

    1989-04-01

    Free radicals have been shown to play an important role in ischemia-reperfusion injury in several organ systems; however, the role of free radicals in central nervous system ischemia has been less well studied. Many potential free radical-generating systems exist. The primary products of these reactions, superoxide and hydrogen peroxide, may combine to produce hydroxyl radicals. Of the many potential sources of free radical generation, the enzyme xanthine oxidase has been shown to be important in ischemia in noncerebral tissue. We investigated the effect of the hydroxyl radical scavenger dimethylthiourea and the xanthine oxidase inhibitor allopurinol on infarct volume in a model of continuous partial ischemia. Male Sprague-Dawley rats were treated with dimethylthiourea or allopurinol before middle cerebral artery occlusion. Infarct volume was measured by triphenyltetrazolium chloride staining of brains removed 3 or 24 hours after occlusion. Stroke volume was reduced by 30% after dimethylthiourea treatment and by 32-35% after allopurinol treatment. At 24 hours after stroke, cortical tissue was more effectively protected than caudate tissue with both agents. Pretreatment with dimethylthiourea and allopurinol also significantly reduced cerebral edema formation and improved blood-brain barrier function as measured by fluorescein uptake. Our results imply that hydroxyl radicals are important in tissue injury secondary to partial cerebral ischemia and that xanthine oxidase may be the primary source of these radicals.

  3. Platelet-rich plasma reduces the oxidative damage determined by a skeletal muscle contusion in rats.

    PubMed

    Martins, Rodrigo Pereira; Hartmann, Diane Duarte; de Moraes, Jefferson Potiguara; Soares, Felix Alexandre Antunes; Puntel, Gustavo Orione

    2016-12-01

    Platelet-rich plasma (PRP) has received increasing attention and is widely used in clinical practice in order to stimulate human tissue healing. Contusions are very common injuries observed in sports and affect the function of the musculoskeletal system. This study investigated the effects of PRP on the oxidative damage determined by a contusion induced in gastrocnemius muscle of rats. PRP was injected intramuscularly immediately after injury and every 48 h, and the biochemical analysis was performed 1, 3, 5, or 7 days after the contusion onset in order to evaluate the changes characteristics of the healing process. The contusion increased the levels of oxidative stress markers such as thiobarbituric acid reactive substances and oxidized dichlorofluorescein both in skeletal muscle tissue and erythrocytes preparations, and PRP treatment significantly reduced these oxidative damage markers. Furthermore, the contusion decreased the cellular viability in the site of the lesion and PRP was effective in diminishing this effect. Moreover, PRP increased the levels of enzymatic antioxidants superoxide dismutase and catalase activities in the injured muscle, and also the non-protein thiols (-SH) group levels in erythrocytes. In conclusion PRP, in the form that was used in this study, was able to modulate the oxidative damage determined by a classical skeletal muscle injury possibly by reducing the impairment of myocytes mitochondrial function and improving their endogenous antioxidant defense systems.

  4. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    PubMed

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation.

  5. Superoxide dismutase reduces the impairment of endothelium-dependent relaxation in the spontaneously hypertensive rat aorta.

    PubMed

    Sekiguchi, Fumiko; Yanamoto, Aiko; Sunano, Satoru

    2004-04-01

    The involvement of the superoxide anion in endothelium-dependent relaxation (EDR) was examined in noradrenaline-contracted aortic smooth muscle preparations isolated from normotensive Wistar Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Acetylcholine (ACh, 10(-9)-10(-5) M) induced EDR in both WKY and SHRSP preparations in a concentration-dependent manner, but with a significantly smaller amplitude in those from SHRSP than in those from WKY. The ACh-induced EDR was inhibited by N(omega)-nitro-L-arginine (L-NOARG), in a concentration-dependent manner, both in WKY and SHRSP. The EDR produced in WKY in the presence of 3 x 10(-6) M L-NOARG was similar in magnitude to that produced in SHRSP in the absence of L-NOARG. Superoxide dismutase (SOD, 300 units/ml) increased the amplitude of EDR in SHRSP but not in WKY, with no alteration of the threshold or of the maximal amplitude. The maximal amplitude of EDR produced in SHRSP in the presence of SOD was still smaller than that in WKY. In WKY, a possible involvement of superoxide in the EDR was examined in aortae whose EDR was partially inhibited by treatment with a subthreshold concentration (3 x 10 (-6) M) of L-NOARG. In the L-NOARG-conditioned aorta, the reduced EDR was partially but significantly recovered by SOD. These results suggest that the impaired EDR in aortae of SHRSP may be causally related to a higher production of superoxide. The L-NOARG-induced inhibition of EDR in WKY may be produced, in part, by the reduction of effective NO due to its destruction by superoxide.

  6. ST depression, arrhythmia, vagal dominance, and reduced cardiac micro-RNA in particulate-exposed rats.

    PubMed

    Farraj, Aimen K; Hazari, Mehdi S; Haykal-Coates, Najwa; Lamb, Christina; Winsett, Darrell W; Ge, Yue; Ledbetter, Allen D; Carll, Alex P; Bruno, Maribel; Ghio, Andy; Costa, Daniel L

    2011-02-01

    Recently, investigators demonstrated associations between fine particulate matter (PM)-associated metals and adverse health effects. Residual oil fly ash (ROFA), a waste product of fossil fuel combustion from boilers, is rich in the transition metals Fe, Ni, and V, and when released as a fugitive particle, is an important contributor to ambient fine particulate air pollution. We hypothesized that a single-inhalation exposure to transition metal-rich PM will cause concentration-dependent cardiovascular toxicity in spontaneously hypertensive (SH) rats. Rats implanted with telemeters to monitor heart rate and electrocardiogram were exposed once by nose-only inhalation for 4 hours to 3.5 mg/m(3), 1.0 mg/m(3), or 0.45 mg/m(3) of a synthetic PM (dried salt solution), similar in composition to a well-studied ROFA sample consisting of Fe, Ni, and V. Exposure to the highest concentration of PM decreased T-wave amplitude and area, caused ST depression, reduced heart rate (HR), and increased nonconducted P-wave arrhythmias. These changes were accompanied by increased pulmonary inflammation, lung resistance, and vagal tone, as indicated by changes in markers of HR variability (increased root of the mean of squared differences of adjacent RR intervals [RMSSD], low frequency [LF], high frequency [HF], and decreased LF/HF), and attenuated myocardial micro-RNA (RNA segments that suppress translation by targeting messenger RNA) expression. The low and intermediate concentrations of PM had less effect on the inflammatory, HR variability, and micro-RNA endpoints, but still caused significant reductions in HR. In addition, the intermediate concentration caused ST depression and increased QRS area, whereas the low concentration increased the T-wave parameters. Thus, PM-induced cardiac dysfunction is mediated by multiple mechanisms that may be dependent on PM concentration and myocardial vulnerability (this abstract does not reflect the policy of the United States Environmental

  7. DENTAL MINERALIZATION AND SALIVARY ACTIVITY ARE REDUCED IN OFFSPRING OF SPONTANEOUSLY HYPERTENSIVE RATS (SHR)

    PubMed Central

    Elias, Gracieli Prado; dos Santos, Otoniel Antonio Macedo; Sassaki, Kikue Takebayashi; Delbem, Alberto Carlos Botazzo; Antoniali, Cristina

    2006-01-01

    Several pathologies have been diagnosed in children of hypertensive mothers; however, some studies that evaluated the alterations in their oral health are not conclusive. This study analyzed the salivary gland activity and dental mineralization of offsprings of spontaneously hypertensive rats (SHR). Thirty-day-old SHR males and Wistar rats were studied. The salivary flow was evaluated by injection of pilocarpine, the protein concentration and salivary amylase activity, by the Lowry method and kinetic method at 405 nm, respectively. Enamel and dentin mineralization of the mandibular incisors was quantified with aid of the microhardness meter. The results were analyzed by the ANOVA or Student's t test (p<0.05). It was noticed that the salivary flow rate (0.026 mL/min/100 g ± 0.002) and salivary protein concentration (2.26 mg/mL ± 0.14) of SHR offspring were reduced compared to Wistar normotensive offspring (0.036 mL/min/100 g ± 0.003 and 2.91 mg/mL ± 0.27, respectively), yet there was no alteration in amylase activity (SHR: 242.4 U/mL ± 36.9; Wistar: 163.8 U/mL ± 14.1). Microhardness was lower both in enamel (255.8 KHN ± 2.6) and dentin (59.9 KHN ± 0.8) for the SHR teeth compared to the Wistar teeth (enamel: 328.7 KHN ± 3.3 and dentin: 67.1 KHN ± 1.0). These results suggest that the SHR offspring are more susceptible to development of pathologies impairing oral health, once they presented lesser flow and salivary protein concentration and lower dental mineralization. PMID:19089272

  8. The addition of whole soy flour to cafeteria diet reduces metabolic risk markers in wistar rats

    PubMed Central

    2013-01-01

    Background Soybean is termed a functional food because it contains bioactive compounds. However, its effects are not well known under unbalanced diet conditions. This work is aimed at evaluating the effect of adding whole soy flour to a cafeteria diet on intestinal histomorphometry, metabolic risk and toxicity markers in rats. Methods In this study, 30 male adult Wistar rats were used, distributed among three groups (n = 10): AIN-93 M diet, cafeteria diet (CAF) and cafeteria diet with soy flour (CAFS), for 56 days. The following parameters were measured: food intake; weight gain; serum concentrations of triglycerides, total cholesterol, HDL-c, glycated hemoglobin (HbA1c), aspartate (AST) and alanine (ALT) aminotransferases and Thiobarbituric Acid Reactive Substances (TBARS); humidity and lipid fecal content; weight and fat of the liver. The villous height, the crypt depth and the thickness of the duodenal and ileal circular and longitudinal muscle layers of the animals were also measured. Results There was a significant reduction in the food intake in the CAF group. The CAFS showed lower serum concentrations of triglycerides and serum TBARS and a lower percentage of hepatic fat, with a corresponding increase in thickness of the intestinal muscle layers. In the CAF group, an increase in the HbA1c, ALT, lipid excretion, liver TBARS and crypt depth, was observed associated with lower HDL-c and villous height. The addition of soy did not promote any change in these parameters. Conclusions The inclusion of whole soy flour in a high-fat diet may be helpful in reducing some markers of metabolic risk; however, more studies are required to clarify its effects on unbalanced diets. PMID:24119309

  9. Reduced Endothelium-Dependent Relaxation to Anandamide in Mesenteric Arteries from Young Obese Zucker Rats

    PubMed Central

    Lobato, Nubia S.; Filgueira, Fernando P.; Prakash, Roshini; Giachini, Fernanda R.; Ergul, Adviye; Carvalho, Maria Helena C.; Webb, R. Clinton; Tostes, Rita C.; Fortes, Zuleica B.

    2013-01-01

    Impaired vascular function, manifested by an altered ability of the endothelium to release endothelium-derived relaxing factors and endothelium-derived contracting factors, is consistently reported in obesity. Considering that the endothelium plays a major role in the relaxant response to the cannabinoid agonist anandamide, the present study tested the hypothesis that vascular relaxation to anandamide is decreased in obese rats. Mechanisms contributing to decreased anandamide-induced vasodilation were determined. Resistance mesenteric arteries from young obese Zucker rats (OZRs) and their lean counterparts (LZRs) were used. Vascular reactivity was evaluated in a myograph for isometric tension recording. Protein expression and localization were analyzed by Western blotting and immunofluorescence, respectively. Vasorelaxation to anandamide, acetylcholine, and sodium nitroprusside, as well as to CB1, CB2, and TRPV1 agonists was decreased in endothelium-intact mesenteric arteries from OZRs. Incubation with an AMP-dependent protein kinase (AMPK) activator or a fatty acid amide hydrolase inhibitor restored anandamide-induced vascular relaxation in OZRs. CB1 and CB2 receptors protein expression was decreased in arteries from OZRs. Incubation of mesenteric arteries with anandamide evoked endothelial nitric oxide synthase (eNOS), AMPK and acetyl CoA carboxylase phosphorylation in LZRs, whereas it decreased phosphorylation of these proteins in OZRs. In conclusion, obesity decreases anandamide-induced relaxation in resistance arteries. Decreased cannabinoid receptors expression, increased anandamide degradation, decreased AMPK/eNOS activity as well as impairment of the response mediated by TRPV1 activation seem to contribute to reduce responses to cannabinoid agonists in obesity. PMID:23667622

  10. Reactive oxygen species and lipid peroxidation inhibitors reduce mechanical sensitivity in a chronic neuropathic pain model of spinal cord injury in rats.

    PubMed

    Hassler, Shayne N; Johnson, Kathia M; Hulsebosch, Claire E

    2014-11-01

    Chronic neuropathic pain is a common consequence of spinal cord injury (SCI), develops over time and negatively impacts quality of life, often leading to substance abuse and suicide. Recent evidence has demonstrated that reactive oxygen species (ROS) play a role in contributing to neuropathic pain in SCI animal models. This investigation examines four compounds that reduce ROS and the downstream lipid peroxidation products, apocynin, 4-oxo-tempo, U-83836E, and tirilazad, and tests if these compounds can reduce nocioceptive behaviors in chronic SCI animals. Apocynin and 4-oxo-tempo significantly reduced abnormal mechanical hypersensitivity measured in forelimbs and hindlimbs in a model of chronic SCI-induced neuropathic pain. Thus, compounds that inhibit ROS or lipid peroxidation products can be used to ameliorate chronic neuropathic pain. We propose that the application of compounds that inhibit reactive oxygen species (ROS) and related downstream molecules will also reduce the behavioral measures of chronic neuropathic pain. Injury or trauma to nervous tissue leads to increased concentrations of ROS in the surviving tissue. Further damage from ROS molecules to dorsal lamina neurons leads to membrane excitability, the physiological correlate of chronic pain. Chronic pain is difficult to treat with current analgesics and this research will provide a novel therapy for this disease.

  11. Central regulation of motor cortex neuronal responses to forelimb nerve inputs during precision walking in the cat

    PubMed Central

    Marple-Horvat, D E; Armstrong, D M

    1999-01-01

    The responses of neurones in forelimb motor cortex to impulse volleys evoked by single pulse electrical stimulation (at 1.5 or 2 times the threshold for most excitable nerve fibres) of the superficial radial (SR) and ulnar (UL) nerves of the contralateral forelimb were studied in awake cats both resting quietly and walking on a horizontal ladder. Nerve volley amplitude was monitored by recording the compound action potential elicited by the stimulus. In the resting animal 34/82 (41 %) cells yielded statistically significant responses to SR stimulation, and 20/72 (28 %) responded to UL stimulation. Some responses were confined to or began with an increase in firing probability (‘excitatory’ responses) and others with a decrease in firing (‘inhibitory’ responses), typically including a brief interruption of the spike train (zero rate). Cells responding to both nerves usually yielded responses similar in type. Most (78 %) response onset latencies were less than 30 ms. Responses involved the addition or subtraction of from 3.4 to 0.1 impulses stimulus−1 (most < 1 impulse stimulus−1). The distribution of response sizes was continuous down to the smallest values, i.e. there was no ‘gap’ which would represent a clear separation into ‘responsive’ and ‘unresponsive’ categories. Responses were commonest in the lateral part of the pericruciate cortex, and commoner among pyramidal tract neurones (PTNs) than non-PTNs. During ladder walking most cells generated a rhythmic step-related discharge; in assessing the size of responses to nerve stimulation (20 studied, from 13 cells) this activity was first subtracted. Response onset latencies (90 % < 30 ms) and durations showed little or no change. Although most cells were overall more active than during rest both ‘excitatory’ and ‘inhibitory’ responses in both PTNs and non-PTNs were often markedly reduced in large parts of the step cycle; over some (usually brief) parts responses approached or

  12. Exogenous Ketone Supplements Reduce Anxiety-Related Behavior in Sprague-Dawley and Wistar Albino Glaxo/Rijswijk Rats

    PubMed Central

    Ari, Csilla; Kovács, Zsolt; Juhasz, Gabor; Murdun, Cem; Goldhagen, Craig R.; Koutnik, Andrew P.; Poff, Angela M.; Kesl, Shannon L.; D’Agostino, Dominic P.

    2016-01-01

    Nutritional ketosis has been proven effective for seizure disorders and other neurological disorders. The focus of this study was to determine the effects of ketone supplementation on anxiety-related behavior in Sprague-Dawley (SPD) and Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. We tested exogenous ketone supplements added to food and fed chronically for 83 days in SPD rats and administered sub-chronically for 7 days in both rat models by daily intragastric gavage bolus followed by assessment of anxiety measures on elevated plus maze (EPM). The groups included standard diet (SD) or SD + ketone supplementation. Low-dose ketone ester (LKE; 1,3-butanediol-acetoacetate diester, ~10 g/kg/day, LKE), high dose ketone ester (HKE; ~25 g/kg/day, HKE), beta-hydroxybutyrate-mineral salt (βHB-S; ~25 g/kg/day, KS) and βHB-S + medium chain triglyceride (MCT; ~25 g/kg/day, KSMCT) were used as ketone supplementation for chronic administration. To extend our results, exogenous ketone supplements were also tested sub-chronically on SPD rats (KE, KS and KSMCT; 5 g/kg/day) and on WAG/Rij rats (KE, KS and KSMCT; 2.5 g/kg/day). At the end of treatments behavioral data collection was conducted manually by a blinded observer and with a video-tracking system, after which blood βHB and glucose levels were measured. Ketone supplementation reduced anxiety on EPM as measured by less entries to closed arms (sub-chronic KE and KS: SPD rats and KSMCT: WAG/Rij rats), more time spent in open arms (sub-chronic KE: SPD and KSMCT: WAG/Rij rats; chronic KSMCT: SPD rats), more distance traveled in open arms (chronic KS and KSMCT: SPD rats) and by delayed latency to entrance to closed arms (chronic KSMCT: SPD rats), when compared to control. Our data indicates that chronic and sub-chronic ketone supplementation not only elevated blood βHB levels in both animal models, but reduced anxiety-related behavior. We conclude that ketone supplementation may represent a promising anxiolytic strategy through a

  13. Exogenous Ketone Supplements Reduce Anxiety-Related Behavior in Sprague-Dawley and Wistar Albino Glaxo/Rijswijk Rats.

    PubMed

    Ari, Csilla; Kovács, Zsolt; Juhasz, Gabor; Murdun, Cem; Goldhagen, Craig R; Koutnik, Andrew P; Poff, Angela M; Kesl, Shannon L; D'Agostino, Dominic P

    2016-01-01

    Nutritional ketosis has been proven effective for seizure disorders and other neurological disorders. The focus of this study was to determine the effects of ketone supplementation on anxiety-related behavior in Sprague-Dawley (SPD) and Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. We tested exogenous ketone supplements added to food and fed chronically for 83 days in SPD rats and administered sub-chronically for 7 days in both rat models by daily intragastric gavage bolus followed by assessment of anxiety measures on elevated plus maze (EPM). The groups included standard diet (SD) or SD + ketone supplementation. Low-dose ketone ester (LKE; 1,3-butanediol-acetoacetate diester, ~10 g/kg/day, LKE), high dose ketone ester (HKE; ~25 g/kg/day, HKE), beta-hydroxybutyrate-mineral salt (βHB-S; ~25 g/kg/day, KS) and βHB-S + medium chain triglyceride (MCT; ~25 g/kg/day, KSMCT) were used as ketone supplementation for chronic administration. To extend our results, exogenous ketone supplements were also tested sub-chronically on SPD rats (KE, KS and KSMCT; 5 g/kg/day) and on WAG/Rij rats (KE, KS and KSMCT; 2.5 g/kg/day). At the end of treatments behavioral data collection was conducted manually by a blinded observer and with a video-tracking system, after which blood βHB and glucose levels were measured. Ketone supplementation reduced anxiety on EPM as measured by less entries to closed arms (sub-chronic KE and KS: SPD rats and KSMCT: WAG/Rij rats), more time spent in open arms (sub-chronic KE: SPD and KSMCT: WAG/Rij rats; chronic KSMCT: SPD rats), more distance traveled in open arms (chronic KS and KSMCT: SPD rats) and by delayed latency to entrance to closed arms (chronic KSMCT: SPD rats), when compared to control. Our data indicates that chronic and sub-chronic ketone supplementation not only elevated blood βHB levels in both animal models, but reduced anxiety-related behavior. We conclude that ketone supplementation may represent a promising anxiolytic strategy through a

  14. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats

    PubMed Central

    Hamlin, Marvin; Traughber, Terrance; Reinkensmeyer, David J.; de Leon, Ray D.

    2015-01-01

    Background Providing weight support facilitates locomotion in spinal cord injured animals. To control weight support, robotic systems have been developed for treadmill stepping and more recently for overground walking. New Method We developed a novel device, the body weight supported ambulatory rodent trainer (i.e. BART). It has a small pneumatic cylinder that moves along a linear track above the rat. When air is supplied to the cylinder, the rats are lifted as they perform overground walking. We tested the BART device in rats that received a moderate spinal cord contusion injury and in normal rats. Locomotor training with the BART device was not performed. Results All of the rats learned to walk in the BART device. In the contused rats, significantly greater paw dragging and dorsal stepping occurred in the hindlimbs compared to normal. Providing weight support significantly raised hip position and significantly reduced locomotor deficits. Hindlimb stepping was tightly coupled to forelimb stepping but only when the contused rats stepped without weight support. Three weeks after the contused rats received a complete spinal cord transection, significantly fewer hindlimb steps were performed. Comparison with Existing Methods Relative to rodent robotic systems, the BART device is a simpler system for studying overground locomotion. The BART device lacks sophisticated control and sensing capability, but it can be assembled relatively easily and cheaply. Conclusions These findings suggest that the BART device is a useful tool for assessing quadrupedal, overground locomotion which is a more natural form of locomotion relative to treadmill locomotion. PMID:25794460

  15. Dietary whey reduces energy intake and alters hypothalamic gene expression in obese phyto-oestrogen-deprived male rats.

    PubMed

    Andreoli, María F; Stoker, Cora; Lazzarino, Gisela P; Canesini, Guillermina; Luque, Enrique H; Ramos, Jorge G

    2016-09-01

    Removing dietary phyto-oestrogens in adult male rats causes obesity and diabetes. As whey proteins have been reported to reduce food intake and improve glucose homoeostasis, we investigated whether they could attenuate susceptibility to obesity and diabetes due to phyto-oestrogen deprivation. To this end, thirty male Wistar rats were fed a high-phyto-oestrogen (HP) or a phyto-oestrogen-free (PF) diet for 10 weeks; six rats from each group were killed. The remaining HP animals (six animals) continued receiving the HP diet for 6 weeks. The remaining PF rats (twelve rats) were divided in two groups: one was given the PF diet and the other a variation of the PF diet plus whey protein (PF-W). Body weight, food intake and adipose tissue weights were recorded. Hypothalamic mRNA expressions of orexigenic (neuropeptide Y, agouti-related protein (AgRP)) and anorexigenic (pro-opiomelanocortin (POMC), cocaine-amphetamine-related transcript (CART)) neuropeptides were quantified by real-time PCR. Serum glucose, insulin and total thyroxine (T4), thyroid-stimulating hormone, testosterone and oestradiol were assessed. After 10 weeks of PF diet, increased body weight, adiposity and energy intake, with up-regulation of AgRP and down-regulation of POMC', were observed. Longer treatment exacerbated these results, increased total T4 levels, reduced oestradiol levels and impaired glucose homoeostasis. PF-W reduced energy intake and increased POMC expression; however, body weight and adiposity remained unchanged. PF-W could not prevent the hormonal changes or the high circulating glucose levels induced by phyto-oestrogen deprivation, but reduced fasting insulin. These data demonstrate that, although 6 weeks of whey administration could not prevent obesity in phyto-oestrogen-deprived rats, the reduction in energy intake and circulating insulin could be beneficial with longer treatments.

  16. Three Intermittent Sessions of Cryotherapy Reduce the Secondary Muscle Injury in Skeletal Muscle of Rat

    PubMed Central

    Oliveira, Nuno M. L.; Rainero, Elaine P.; Salvini, Tania F.

    2006-01-01

    Although cryotherapy associated to compression is recommended as immediate treatment after muscle injury, the effect of intermittent sessions of these procedures in the area of secondary muscle injury is not established. This study examined the effect of three sessions of cryotherapy (30 min of ice pack each 2h) and muscle compression (sand pack) in the muscle-injured area. Twenty-four Wistar rats (312 ± 20g) were evaluated. In three groups, the middle belly of tibialis anterior (TA) muscle was injured by a frozen iron bar and received one of the following treatments: a) three sessions of cryotherapy; b) three sessions of compression; c) not treated. An uninjured group received sessions of cryotherapy. Frozen muscles were cross- sectioned (10 µm) and stained for the measurement of injured and uninjured muscle area. Injured muscles submitted to cryotherapy showed the smallest injured area (29.83 ± 6.6%), compared to compressed (39.2 ± 2.8%, p= 0.003) and untreated muscles (41.74 ± 4.0%, p = 0.0008). No difference was found between injured compressed and injured untreated muscles. In conclusion, three intermittent sessions of cryotherapy applied immediately after muscle damage was able to reduce the secondary muscle injury, while only the muscle compression did not provide the same effectiveness. Key Points Three sessions of cryotherapy (30 min each 2 hours) applied immediately after muscle damage reduce the secondary muscle injury. Sessions of compression applied after muscle damage are not able to reduce the secondary muscle injury. PMID:24259995

  17. Metformin and atorvastatin reduce adhesion formation in a rat uterine horn model.

    PubMed

    Yilmaz, Bulent; Aksakal, Orhan; Gungor, Tayfun; Sirvan, Levent; Sut, Necdet; Kelekci, Sefa; Soysal, Sunullah; Mollamahmutoglu, Leyla

    2009-03-01

    The aim of the present study was to determine whether atorvastatin and metformin are effective in preventing adhesions in a rat uterine horn model. A total of 40 non-pregnant, female Wistar albino rats, weighing 180-210 g, were used as a model for post-operative adhesion formation. The rats were randomized into four groups after seven standard lesions were inflicted in each uterine horn and lower abdominal sidewall using bipolar cauterization. The rats were given atorvastatin 2.5 mg/kg/day, p.o. (10 rats), atorvastatin 30 mg/kg/day, p.o. (10 rats), metformin 50 mg/kg/day, p.o. (10 rats) and no treatment was applied in the control group (10 rats). The animals were killed 2 weeks later and adhesions were scored both clinically and pathologically by authors blinded to groups. One rat in the control group died before the end of the 2 week period. Total clinical adhesion scores regarding extent, severity and degree of adhesions and histopathological findings including inflammation and fibrosis were significantly lower in the metformin (P < 0.001 and P < 0.01, respectively) and atorvastatin 30 mg/kg/day (P < 0.001 and P < 0.01, respectively) groups when compared with control group. Metformin and atorvastatin are both effective for prevention of adhesion formation in a rat uterine horn model.

  18. Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior.

    PubMed

    Moura Santos, Danielle; Ribeiro Marins, Fernanda; Limborço-Filho, Marcelo; de Oliveira, Marilene Luzia; Hamamoto, Daniele; Xavier, Carlos Henrique; Moreira, Fabrício Araújo; Santos, Robson Augusto Souza; Campagnole-Santos, Maria José; Peliky Fontes, Marco Antonio

    2017-03-13

    Angiotensin II (Ang II) acts as a pro-stress hormone, while other evidence indicates that angiotensin-(1-7) [Ang-(1-7)] attenuates physiological responses to emotional stress. To further test this hypothesis, in groups of 5-6 rats we evaluated autonomic, cardiovascular and behavioral parameters in male Sprague-Dawley (SD) and transgenic TGR(A1-7)3292 (TG) rats chronically overexpressing Ang-(1-7). Compared to SD rats, TG rats showed reduced baseline heart rate (HR; SD 380 ± 16 versus TG 329 ± 9 beats per minute (bpm), mean ± standard error of mean, p < .05) and renal sympathetic discharge (SD 138 ± 4 versus TG 117 ± 5 spikes/second, p < .05). TG rats had an attenuated tachycardic response to acute air-puff stress (ΔHR: SD 51 ± 20 versus TG 1 ± 3 bpm; p < .05), which was reversed by intracerebroventricular injection of the Mas receptor antagonist, A-779 (ΔHR: SD 51 ± 20 versus TG 63 ± 15 bpm). TG rats showed less anxious behavior on the elevated plus maze, as revealed by more entries into open arms (SD 2 ± 2 versus TG 47 ± 5% relative to total entries; p < .05), and more time spent in the open arms (SD 5 ± 4 versus TG 53 ± 9% relative to total time, p < .05). By contrast with SD rats, diazepam (1.5 mg/kg, intraperitoneally) did not further reduce anxious behavior in TG rats, indicating a ceiling anxiolytic effect of Ang-(1-7) overexpression. Ang-(1-7) concentrations in hypothalamus and plasma, measured by mass spectrometry were two- and three-fold greater, respectively, in TG rats than in SD rats. Hence, increased endogenous Ang-(1-7) levels in TG rats diminishes renal sympathetic outflow and attenuates cardiac reactivity to emotional stress, which may be via central Mas receptors, and reduces anxious behavior. Lay summaryWe used a genetically modified rat model that produces above normal amounts of a peptide hormone called angiotensin-(1-7) to test whether this peptide can

  19. Blunted hypothalamic ghrelin signaling reduces diet intake in rats fed a low-protein diet in late pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diet intake in pregnant rats fed a low-protein (LP) diet was significantly reduced during late pregnancy despite elevated plasma levels of ghrelin. In this study, we hypothesized that ghrelin signaling in the hypothalamus is blunted under a low-protein diet condition and therefore, it does not stimu...

  20. PHTHALATE ESTER-INDUCED GUBERNACULAR LESIONS ARE ASSOCIATED WITH REDUCED INSL-3 GENE EXPRESSION IN THE FETAL RAT TESTIS

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    VS Wilson, C Lambright, J Furr, J Ostby, C Wood, G Held, LE Gray Jr.
    U.S. EPA, ORD, NHEERL, Reproductive Toxicology...

  1. Lactobacillus gasseri PA-3 Uses the Purines IMP, Inosine and Hypoxanthine and Reduces Their Absorption in Rats

    PubMed Central

    Yamada, Naruomi; Saito-Iwamoto, Chizuru; Nakamura, Marie; Soeda, Misato; Chiba, Yoshika; Kano, Hiroshi; Asami, Yukio

    2017-01-01

    Excessive intake of purine-rich foods elevates serum levels of uric acid. Animal and fish meats contain high amounts of inosine and its related purines, and the reduction of taking those purines is crucial for the improvement of serum uric acid levels. We previously showed that Lactobacillus gasseri PA-3 (PA-3) incorporates adenosine and its related purines and that oral treatment with PA-3 reduced adenosine absorption in rats. This study investigated whether PA-3 also incorporates IMP (inosine 5′-monophosphate), inosine, and hypoxanthine, and whether it reduces their absorption in rats. PA-3 was incubated in vitro with radioisotope (RI)-labeled IMP, inosine, and hypoxanthine, and the incorporation of these compounds by PA-3 was evaluated. In addition, rats were orally administered PA-3 along with RI-labeled inosine 5′-monophosphate, inosine, or hypoxanthine, and the ability of PA-3 to attenuate the absorption of these purines was determined. PA-3 incorporated all three purines and displayed greater proliferation in the presence than in the absence of these purines. Oral administration of PA-3 to rats reduced the absorption of IMP, inosine, and hypoxanthine. These results indicate that PA-3 reduces the absorption of purines contained in foods and it is expected that PA-3 contributes attenuation of the excessive intake of dietary purines. PMID:28282902

  2. Fish oil supplementation reduces cachexia and tumor growth while improving renal function in tumor-bearing rats.

    PubMed

    Coelho, Isabela; Casare, Fernando; Pequito, Danielle C T; Borghetti, Gina; Yamazaki, Ricardo K; Brito, Gleisson A P; Kryczyk, Marcelo; Fernandes, Luiz Claudio; Coimbra, Terezila M; Fernandez, Ricardo

    2012-11-01

    The objective of the present work was to study the renal function of healthy and tumor-bearing rats chronically supplemented with fish oil (FO), a source of n-3 polyunsaturated fatty acids. Weanling male rats were divided in two groups, one control (C) and another orally supplemented for 70 days with FO (1 g/kg body weight). After this time, half the animals of each group were injected in the right flank with a suspension of Walker 256 tumor cells (W and WFO). The W group had less proteinemia reflecting cachectic proteolysis, FO reversed this fact. Tumor weight gain was also reduced in WFO. Glomerular filtration rate (GFR) was not different in FO or W compared to C, but was higher in WFO. Renal plasma flow (RPF) was higher in the FO supplemented groups. The W group had lower plasma osmolality than the C group, but FO supplementation resulted in normalization of this parameter. Fractional sodium excretion (FE(Na+)) of FO rats was similar to C. Proximal Na(+) reabsorption, evaluated by lithium clearance, was similar among the groups. Urinary thromboxane B(2) (TXB(2)) excretion was lower in the supplemented groups. The number of macrophages in renal tissue was higher in W compared to C rats, but was lower in WFO rats compared to W rats. In conclusion, FO supplementation resulted in less tumor growth and cachexia, and appeared to be renoprotective, as suggested by higher RPF and GFR.

  3. The calcium channel antagonist benidipine reduces plasma and cardiac endothelin-1 levels in type II diabetic rat model.

    PubMed

    Jesmin, Subrina; Sakuma, Ichiro; Hattori, Yuichi; Kitabatake, Akira; Miyauchi, Takashi

    2004-11-01

    Cardiovascular complications are the central feature of type 2 diabetes mellitus, and insulin resistance is an early clinical manifestation of type 2 diabetes mellitus. Calcium channel blockers are widely used to treat cardiovascular diseases in diabetic patients; however, it remains unknown how endothelin-1 (ET-1) is altered and associated with cardiac lesions at the insulin-resistant early stage of type 2 diabetes mellitus, and, if so, whether calcium channel blockers can reverse such alterations. We examined plasma and cardiac expression of ET-1 in male Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a spontaneous model of human type 2 diabetes mellitus. At 8 weeks of age, OLETF rats were treated for 12 weeks with a long acting calcium channel blocker, benidipine (3 mg/kg per day p.o.) (BEN, n = 15), or with vehicle (OLETF, n = 15), and age-matched genetic control, male Long-Evans Tokushima Otsuka (LETO) rats were also used (n = 15). Blood pressure was significantly higher in OLETF than LETO rats, and benidipine treatment of OLETF rats for 12 weeks did not reduce their blood pressure significantly. Plasma and cardiac levels of ET-1 were significantly higher in OLETF compared with LETO rats (both P < 0.01), and were reversed after benidipine treatment. Our results suggest that ET-1 plays a pivotal role in the pathogenesis of cardiac complications at the insulin-resistant stage of diabetes mellitus, and that benidipine treatment may have a beneficial effect on these complications.

  4. The alpha1 adrenergic receptor antagonist prazosin reduces heroin self-administration in rats with extended access to heroin administration.

    PubMed

    Greenwell, Thomas N; Walker, Brendan M; Cottone, Pietro; Zorrilla, Eric P; Koob, George F

    2009-01-01

    Previous studies have reported that noradrenergic antagonists alleviate some of the symptoms of opiate withdrawal and dependence. Clinical studies also have shown that modification of the noradrenergic system may help protect patients from relapse. The present study tested the hypothesis that a dysregulated noradrenergic system has motivational significance in heroin self-administration of dependent rats. Prazosin, an alpha1-adrenergic antagonist (0.5, 1.0, 1.5 and 2.0 mg/kg, i.p.), was administered to adult male Wistar rats with a history of limited (1 h/day; short access) or extended (12 h/day; long access) access to intravenous heroin self-administration. Prazosin dose-dependently reduced heroin self-administration in long-access rats but not short-access rats, with 2 mg/kg of systemic prazosin significantly decreasing 1 h and 2 h heroin intake. Prazosin also reversed some changes in meal pattern associated with extended heroin access, including the taking of smaller and briefer meals (at 3 h), while also increasing total food intake and slowing the eating rate within meals (both 3 h and 12 h). Thus, prazosin appears to stimulate food intake in extended access rats by restoring meals to the normal size and duration. The data suggest that the alpha1 adrenergic system may contribute to mechanisms that promote dependence in rats with extended access.

  5. Long-term caloric restriction reduces metabolic rate and heart rate under cool and thermoneutral conditions in FBNF1 rats.

    PubMed

    Knight, W David; Witte, M M; Parsons, A D; Gierach, M; Overton, J Michael

    2011-05-01

    The long-term metabolic and cardiovascular responses to caloric restriction (CR) are poorly understood. We examined the responses to one year of CR in FBNF1 rats housed in cool (COOL; T(a)=15 °C) or thermoneutral (TMN; T(a)=30 °C) conditions. Rats were acclimated to COOL or TMN for 2 months, instrumented for cardiovascular telemetry and studied in calorimeters. Baseline caloric intake, oxygen consumption (VO(2)), mean arterial blood pressure (MAP), and heart rate (HR) were determined prior to assignment to ad lib (AL) or CR groups (30-40% CR) within each T(a) (n = 8). Groups of rats were studied after 10 weeks CR, one year CR, and after 4 days of re-feeding. Both 10 weeks and one year of CR reduced HR and VO(2) irrespective of T(a). Evaluation of the relationship between metabolic organ mass (liver, heart, brain, and kidney mass) and energy expenditure revealed a clear shift induced by CR to reduce expenditure per unit metabolic mass in both COOL and TMN groups. Re-feeding resulted in prompt elevations of HR and VO(2) to levels observed in control rats. These findings are consistent with the hypothesis that long term CR produces sustained reductions in metabolic rate and heart rate in rats.

  6. Chitosan reduces plasma adipocytokines and lipid accumulation in liver and adipose tissues and ameliorates insulin resistance in diabetic rats.

    PubMed

    Hsieh, Yu-Lin; Yao, Hsien-Tsung; Cheng, Ron-Shan; Chiang, Meng-Tsan

    2012-05-01

    Chitosan is a natural product derived from chitin. To investigate the hypoglycemic and anti-obesity effects of chitosan, male Sprague-Dawley rats were divided into four groups: normal control, diabetic, and diabetic fed 5% or 7% chitosan. Diabetes was induced in rats by injecting streptozotocin/nicotinamide. After 10 weeks of feeding, the elevated plasma glucose, tumor necrosis factor-α, and interleukin-6 and lower adiponetin levels caused by diabetes were effectively reversed by chitosan treatment. In addition, 7% chitosan feeding also elevated plasma glucagon-like peptide-1 levels and lowered the insulin resistance index (homeostasis model assessment) in diabetic rats. Lower adipocyte granular intensities and higher lipolysis rates in adipose tissues were noted in the 7% chitosan group. Moreover, chitosan feeding reduced hepatic triglyceride and cholesterol contents and increased hepatic peroxisomal proliferator-activated receptor α expression in diabetic rats. Our results indicate that long-term administration of chitosan may reduce insulin resistance through suppression of lipid accumulation in liver and adipose tissues and amelioration of chronic inflammation in diabetic rats.

  7. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes

    PubMed Central

    Chen, Zhuo; Zuo, Xuezhi; He, Dongliang; Ding, Shibin; Xu, Fangyi; Yang, Huiqin; Jin, Xin; Fan, Ying; Ying, Li; Tian, Chong; Ying, Chenjiang

    2017-01-01

    Bisphenol A (BPA), a typical environmental endocrine-disrupting chemical, induces epigenetic inheritance. Whether histone acetylation plays a role in these effects of BPA is largely unknown. Here, we investigated histone acetylation in male rats after long-term exposure to a ‘safe’ dose of BPA. Twenty adult male rats received either BPA (50 μg/kg·bw/day) or a vehicle diet for 35 weeks. Decreased protein lysine-acetylation levels at approximately ~17 kDa and ~25 kDa, as well as decreased histone acetylation of H3K9, H3K27 and H4K12, were detected by Western blot analysis of testes from the treated rats compared with controls. Additionally, increased protein expression of deacetylase Sirt1 and reduced binding of Sirt1, together with increased binding of estrogen receptor β (ERβ) to caveolin-1 (Cav-1), a structural protein component of caveolar membranes, were detected in treated rats compared with controls. Moreover, decreased acetylation of Cav-1 was observed in the treated rats for the first time. Our study showed that long-term exposure to a ‘safe’ dose of BPA reduces histone acetylation in the male reproductive system, which may be related to the phenotypic paternal-to-offspring transmission observed in our previous study. The evidence also suggested that these epigenetic effects may be meditated by Sirt1 via competition with ERβ for binding to Cav-1. PMID:28067316

  8. Long-term exposure to a ‘safe’ dose of bisphenol A reduced protein acetylation in adult rat testes

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Zuo, Xuezhi; He, Dongliang; Ding, Shibin; Xu, Fangyi; Yang, Huiqin; Jin, Xin; Fan, Ying; Ying, Li; Tian, Chong; Ying, Chenjiang

    2017-01-01

    Bisphenol A (BPA), a typical environmental endocrine-disrupting chemical, induces epigenetic inheritance. Whether histone acetylation plays a role in these effects of BPA is largely unknown. Here, we investigated histone acetylation in male rats after long-term exposure to a ‘safe’ dose of BPA. Twenty adult male rats received either BPA (50 μg/kg·bw/day) or a vehicle diet for 35 weeks. Decreased protein lysine-acetylation levels at approximately ~17 kDa and ~25 kDa, as well as decreased histone acetylation of H3K9, H3K27 and H4K12, were detected by Western blot analysis of testes from the treated rats compared with controls. Additionally, increased protein expression of deacetylase Sirt1 and reduced binding of Sirt1, together with increased binding of estrogen receptor β (ERβ) to caveolin-1 (Cav-1), a structural protein component of caveolar membranes, were detected in treated rats compared with controls. Moreover, decreased acetylation of Cav-1 was observed in the treated rats for the first time. Our study showed that long-term exposure to a ‘safe’ dose of BPA reduces histone acetylation in the male reproductive system, which may be related to the phenotypic paternal-to-offspring transmission observed in our previous study. The evidence also suggested that these epigenetic effects may be meditated by Sirt1 via competition with ERβ for binding to Cav-1.

  9. Activation of PPAR-γ reduces HPA axis activity in diabetic rats by up-regulating PI3K expression.

    PubMed

    Torres, Rafael Carvalho; Magalhães, Nathalia Santos; E Silva, Patrícia M R; Martins, Marco A; Carvalho, Vinicius F

    2016-10-01

    Increased hypothalamus-pituitary-adrenal axis (HPA) activity in diabetes is strongly associated with several morbidities noted in patients with the disease. We previously demonstrated that hyperactivity of HPA axis under diabetic conditions is associated with up-regulation of adrenocorticotrophic hormone (ACTH) receptors (MC2R) in adrenal and down-regulation of glucocorticoid receptors (GR and MR) in pituitary. This study investigates the role of peroxisome proliferator-activated receptor (PPAR)-γ in HPA axis hyperactivity in diabetic rats. Diabetes was induced by intravenous injection of alloxan into fasted rats. The PPAR-γ agonist rosiglitazone and/or PI3K inhibitor wortmannin were administered daily for 18 consecutive days, starting 3days after diabetes induction. Plasma ACTH and corticosterone were evaluated by radioimmunoassay, while intensities of MC2R, proopiomelanocortin (POMC), GR, MR, PI3K p110α and PPAR-γ were assessed using immunohistochemistry. Rosiglitazone treatment inhibited adrenal hypertrophy and hypercorticoidism observed in diabetic rats. Rosiglitazone also significantly reversed the diabetes-induced increase in the MC2R expression in adrenal cortex. We noted that rosiglitazone reduced the number of corticotroph cells and inhibited both anterior pituitary POMC expression and plasma ACTH levels. Furthermore, rosiglitazone treatment was unable to restore the reduced expression of GR and MR in the anterior pituitary of diabetic rats. Rosiglitazone increased the number of PPAR-γ(+) cells and expression of PI3K p110α in both anterior pituitary and adrenal cortex of diabetic rats. In addition, wortmannin blocked the ability of rosiglitazone to restore corticotroph cell numbers, adrenal hypertrophy and plasma corticosterone levels in diabetic rats. In conclusion, our findings revealed that rosiglitazone down-regulates HPA axis hyperactivity in diabetic rats via a mechanism dependent on PI3K activation in pituitary and adrenal glands.

  10. Resistance Exercise Reduces Seizure Occurrence, Attenuates Memory Deficits and Restores BDNF Signaling in Rats with Chronic Epilepsy.

    PubMed

    de Almeida, Alexandre Aparecido; Gomes da Silva, Sérgio; Lopim, Glauber Menezes; Vannucci Campos, Diego; Fernandes, Jansen; Cabral, Francisco Romero; Arida, Ricardo Mario

    2017-04-01

    Epilepsy is a disease characterized by recurrent, unprovoked seizures. Cognitive impairment is an important comorbidity of chronic epilepsy. Human and animal model studies of epilepsy have shown that aerobic exercise induces beneficial structural and functional changes and reduces the number of seizures. However, little is yet understood about the effects of resistance exercise on epilepsy. We evaluated the effects of a resistance exercise program on the number of seizures, long-term memory and expression/activation of signaling proteins in rats with epilepsy. The number of seizures was quantified by video-monitoring and long-term memory was assessed by an inhibitory avoidance test. Using western blotting, multiplex and enzyme-linked immunosorbent assays, we determined the effects of a 4-week resistance exercise program on IGF-1 and BDNF levels and ERK, CREB, mTOR activation in the hippocampus of rats with epilepsy. Rats with epilepsy submitted to resistance exercise showed a decrease in the number of seizures compared to non-exercised epileptic rats. Memory deficits were attenuated by resistance exercise. Rats with epilepsy showed an increase in IGF-1 levels which were restored to control levels by resistance exercise. BDNF levels and ERK and mTOR activation were decreased in rats with epilepsy and resistance exercise restored these to control levels. In conclusion, resistance exercise reduced seizure occurrence and mitigated memory deficits in rats with epilepsy. These resistance exercise-induced beneficial effects can be related to changes in IGF-1 and BDNF levels and its signaling protein activation. Our findings indicate that the resistance exercise might be included as complementary therapeutic strategy for epilepsy treatment.

  11. Pentadecapeptide BPC 157 reduces bleeding time and thrombocytopenia after amputation in rats treated with heparin, warfarin or aspirin.

    PubMed

    Stupnisek, Mirjana; Franjic, Sandra; Drmic, Domagoj; Hrelec, Masa; Kolenc, Danijela; Radic, Bozo; Bojic, Davor; Vcev, Aleksandar; Seiwerth, Sven; Sikiric, Predrag

    2012-05-01

    Recently, in rat abdominal aorta terminoterminal-anastomosis the stable gastric pentadecapeptide BPC 157 prevents obstructive thrombus formation and rapidly destroys already formed obstructive thrombus. Also, BPC 157 wound healing may signify the clot as conductive matrix or "scaffold" to speed up wound healing process, and decrease bleeding. Here, in rats, BPC 157 (10 μg/kg, 10 ng/kg) improved always reduced bleeding time and amount of bleeding after (tail) amputation only, heparin (250 mg/kg, 25mg/kg, 10mg/kg i.v.), warfarin (1.5mg/kg i.g. once daily for 3 consecutive days), aspirin (0.1g/kg i.g. (once daily/3 consecutive days) or 1.0 g/kg i.p. once), and amputation associated with those agents application. BPC 157 counteracting regimens (i.v., i.p., i.g. (immediately after any challenge)) correspondingly follow the route of bleeding-agents application. All heparin-, warfarin-, and aspirin-rats and normal-rats that received BPC 157 exhibited lesser fall in platelets count. BPC 157 attenuated over-increased APTT-, TT-values in 10mg/kg heparin-rats, but did not influence heparin activity (anti-Xa test). Indicatively, unless counteracted in BPC 157 rats, excessive bleeding-acute thrombocytopenia (<20% of initial values in heparin-rats) approaches substantial fall in platelets count known in type II HIT. Also, BPC 157 markedly prolongs the survival time (heparin-rats, 25mg/kg, right foot amputation).

  12. Liquorice plant extract reduces ochratoxin A-induced nephrotoxicity in rats.

    PubMed

    Malekinejad, H; Farshid, A A; Mirzakhani, N

    2011-01-01

    To evaluate the protective effect of liquorice plant extract (LPE) on ochratoxin A-induced nephrotoxicity, rats were exposed to ochratoxin A for 28 consecutive days. Biochemical analyses showed that ochratoxin A elevated the serum level of creatinine, blood urea nitrogen (BUN), alkaline phosphatase (ALP), alanine aminotransaminase (ALT), and malondialdehyde (MDA) while antioxidant power of the serum was diminished significantly (P<0.05). Histopathological examinations revealed degenerative symptoms in proximal tubules, congestions in renal tissue, and a remarkable infiltration of the inflammatory cells as signs of ochratoxin A nephrotoxicity. Moreover, total antioxidant power of the serum and MDA generation was increased. The test compounds melatonin (MLT) and LPE alleviated most of the biochemical alterations. The results of the histopathological investigations of the kidneys supported these findings confirming the protective effects of the test compounds albeit with some differences in antioxidant potency. Taken together, our data may suggest that LPE like MLT could alleviate an ochratoxin A-reduced antioxidant power of serum and lower the toxin-induced MDA generation. Hence LPE might be considered as a practically antioxidant compound that may be beneficial in the prevention and treatment of ochratoxicosis.

  13. KGF-2 targets alveolar epithelia and capillary endothelia to reduce high altitude pulmonary oedema in rats

    PubMed Central

    She, Jun; Goolaerts, Arnaud; Shen, Jun; Bi, Jing; Tong, Lin; Gao, Lei; Song, Yuanlin; Bai, Chunxue

    2012-01-01

    High altitude pulmonary oedema (HAPE) severely affects non-acclimatized individuals and is characterized by alveolar flooding with protein- rich oedema as a consequence of blood-gas barrier disruption. Limited choice for prophylactic treatment warrants effective therapy against HAPE. Keratinocyte growth factor-2 (KGF-2) has shown efficiency in preventing alveolar epithelial cell DNA damages in vitro. In the current study, the effects of KGF-2 intratracheal instillation on mortality, lung liquid balance and lung histology were evaluated in our previously developed rat model of HAPE. We found that pre-treatment with KGF-2 (5 mg/kg) significantly decreased mortality, improved oxygenation and reduced lung wet-to-dry weight ratio by preventing alveolar-capillary barrier disruption demonstrated by histological examination and increasing alveolar fluid clearance up to 150%. In addition, KGF-2 significantly inhibited decrease of transendothelial permeability after exposure to hypoxia, accompanied by a 10-fold increase of Akt activity and inhibited apoptosis in human pulmonary microvascular endothelial cells, demonstrating attenuated endothelial apoptosis might contribute to reduction of endothelial permeability. These results showed the efficacy of KGF-2 on inhibition of endothelial cell apoptosis, preservation of alveolar-capillary barrier integrity and promotion of pulmonary oedema absorption in HAPE. Thus, KGF-2 may represent a potential drug candidate for the prevention of HAPE. PMID:22568566

  14. Subacute arsenic exposure through drinking water reduces the pharmacodynamic effects of ketoprofen in male rats.

    PubMed

    Ahmad, Wasif; Prawez, Shahid; Chanderashekara, H H; Tandan, Surendra Kumar; Sankar, Palanisamy; Sarkar, Souvendra Nath

    2012-03-01

    We evaluated the modulatory role of the groundwater contaminant arsenic on the pharmacodynamic responses of the nonsteroidal analgesic-antipyretic drug ketoprofen and the major pro-inflammatory mediators linked to the mechanism of ketoprofen's therapeutic effects. Rats were pre-exposed to sodium arsenite (0.4, 4 and 40 ppm) through drinking water for 28 days. The pharmacological effects of orally administered ketoprofen (5 mg/kg) were evaluated the following day. Pain, inflammation and pyretic responses were, respectively, assessed through formalin-induced nociception, carrageenan-induced inflammation and lipopolysaccharide-induced pyrexia. Arsenic inhibited ketoprofen's analgesic, anti-inflammatory and antipyretic effects. Further, arsenic enhanced cyclooxygenase-1 and cyclooxygenase-2 activities and tumor necrosis factor-α, interleukin-1β and prostaglandin-E(2) production in hind paw muscle. These results suggest a functional antagonism of ketoprofen by arsenic. This may relate to arsenic-mediated local release of tumor necrosis factor-α and interleukin-1β, which causes cyclooxygenase induction and consequent prostaglandin-E(2) release. In conclusion, subacute exposure to environmentally relevant concentrations of arsenic through drinking water may aggravate pain, inflammation and pyrexia and thereby, may reduce the therapeutic efficacy of ketoprofen.

  15. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle

    PubMed Central

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-01

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling. PMID:26725948

  16. French maritime pine bark extract Pycnogenol reduces thromboxane generation in blood from diabetic male rats.

    PubMed

    Nocun, Marek; Ulicna, Olga; Muchova, Jana; Durackova, Zdenka; Watala, Cezary

    2008-03-01

    The protective effect of Pycnogenol against cardiovascular diseases was clearly demonstrated. Nevertheless, little is known about its antithrombotic effect, especially in diabetes associated with enhanced thromboxane synthesis leading to severe vascular complications. Therefore, the main purpose of our study was to evaluate the effect of long-term Pycnogenol intake on synthesis of prothrombotic thromboxane A(2) (TXA(2)) in animal model of insulin-dependent diabetes. The levels of main plasma TXA(2) metabolite, thromboxane B(2) (TXB(2)), were assessed by enzyme-linked immunosorbent assay. Diabetes was induced in Wistar male rats by single injection of streptozotocin, resulting after 8 weeks in significant body weight reduction, increased plasma glucose concentrations, and decreased plasma C-peptide levels, compared to non-diabetic animals. There was no significant reduction of plasma glucose concentrations after Pycnogenol ingestion. It was found, however, that daily administration of either Pycnogenol (5mg/kg b.wt.) or acetylsalicylic acid (ASA, 10mg/kg b.wt.) significantly reduced plasma TXB(2) concentrations, and this inhibitory effect was higher in the latter case. Nonetheless, simultaneous administration of Pycnogenol and ASA did not improve effectiveness of ASA-mediated decrease in TXB(2) generation. The results of the present study suggest that Pycnogenol might have a beneficial antithrombotic effect when administered alone or as a supplementation of standard antiplatelet therapy in diabetic patients.

  17. Intracerebroventricular Catalase Reduces Hepatic Insulin Sensitivity and Increases Responses to Hypoglycemia in Rats.

    PubMed

    Pauliina Markkula, S; Lyons, David; Yueh, Chen-Yu; Riches, Christine; Hurst, Paul; Fielding, Barbara; Heisler, Lora K; Evans, Mark L

    2016-12-01

    Specialized metabolic sensors in the hypothalamus regulate blood glucose levels by influencing hepatic glucose output and hypoglycemic counterregulatory responses. Hypothalamic reactive oxygen species (ROS) may act as a metabolic signal-mediating responses to changes in glucose, other substrates and hormones. The role of ROS in the brain's control of glucose homeostasis remains unclear. We hypothesized that hydrogen peroxide (H2O2), a relatively stable form of ROS, acts as a sensor of neuronal glucose consumption and availability and that lowering brain H2O2 with the enzyme catalase would lead to systemic responses increasing blood glucose. During hyperinsulinemic euglycemic clamps in rats, intracerebroventricular catalase infusion resulted in increased hepatic glucose output, which was associated with reduced neuronal activity in the arcuate nucleus of the hypothalamus. Electrophysiological recordings revealed a subset of arcuate nucleus neurons expressing proopiomelanocortin that were inhibited by catalase and excited by H2O2. During hypoglycemic clamps, intracerebroventricular catalase increased glucagon and epinephrine responses to hypoglycemia, consistent with perceived lower glucose levels. Our data suggest that H2O2 represents an important metabolic cue, which, through tuning the electrical activity of key neuronal populations such as proopiomelanocortin neurons, may have a role in the brain's influence of glucose homeostasis and energy balance.

  18. Intracerebroventricular Catalase Reduces Hepatic Insulin Sensitivity and Increases Responses to Hypoglycemia in Rats

    PubMed Central

    Pauliina Markkula, S.; Lyons, David; Yueh, Chen-Yu; Riches, Christine; Hurst, Paul; Fielding, Barbara; Heisler, Lora K.

    2016-01-01

    Specialized metabolic sensors in the hypothalamus regulate blood glucose levels by influencing hepatic glucose output and hypoglycemic counterregulatory responses. Hypothalamic reactive oxygen species (ROS) may act as a metabolic signal-mediating responses to changes in glucose, other substrates and hormones. The role of ROS in the brain's control of glucose homeostasis remains unclear. We hypothesized that hydrogen peroxide (H2O2), a relatively stable form of ROS, acts as a sensor of neuronal glucose consumption and availability and that lowering brain H2O2 with the enzyme catalase would lead to systemic responses increasing blood glucose. During hyperinsulinemic euglycemic clamps in rats, intracerebroventricular catalase infusion resulted in increased hepatic glucose output, which was associated with reduced neuronal activity in the arcuate nucleus of the hypothalamus. Electrophysiological recordings revealed a subset of arcuate nucleus neurons expressing proopiomelanocortin that were inhibited by catalase and excited by H2O2. During hypoglycemic clamps, intracerebroventricular catalase increased glucagon and epinephrine responses to hypoglycemia, consistent with perceived lower glucose levels. Our data suggest that H2O2 represents an important metabolic cue, which, through tuning the electrical activity of key neuronal populations such as proopiomelanocortin neurons, may have a role in the brain's influence of glucose homeostasis and energy balance. PMID:27740870

  19. Topically Applied Metal Chelator Reduces Thermal Injury Progression in a Rat Model of Brass Comb Burn

    PubMed Central

    Wang, Cheng Z.; El Ayadi, Amina; Goswamy, Juhi; Finnerty, Celeste C.; Mifflin, Randy; Sousse, Linda; Enkhbaatar, Perenlei; Papaconstantinou, John; Herndon, David N.; Ansari, Naseem H.

    2016-01-01

    Oxidative stress may be involved in the cellular damage and tissue destruction as burn wounds continues to progress after abatement of the initial insult. Since iron and calcium ions play key roles in oxidative stress, this study tested whether topical application of Livionex formulation (LF) lotion, that contains disodium EDTA as a metal chelator and methyl sulfonyl methane (MSM) as a permeability enhancer, would prevent or reduce burn injury. Methods We used an established brass comb burn model with some modifications. Topical application of LF lotion was started 5 minutes post-burn, and repeated every 8 hours for 3 consecutive days. Rats were euthanized and skin harvested for histochemistry and immunohistochemistry. Formation of protein adducts of 4-hydroxynonenal (HNE), malonadialdehyde (MDA) and acrolein (ACR) and expression of aldehyde dehydrogenase (ALDH) isozymes, ALDH1 and ALDH2 were assessed. Results LF lotion-treated burn sites and interspaces showed mild morphological improvement compared to untreated burn sites. Furthermore, the lotion significantly decreased the immunostaining of lipid aldehyde-protein adducts including protein -HNE, -MDA and -ACR adducts, and restored the expression of aldehyde dehydrogenase isozymes in the unburned interspaces. Conclusion This data, for the first time, demonstrates that a topically applied EDTA-containing lotion protects burn injury progression with a concomitant decrease in the accumulation of reactive lipid aldehydes and protection of aldehyde dehydrogenase isozymes. Present studies are suggestive of therapeutic intervention of burn injury by this novel lotion. PMID:26392023

  20. Reduced glutathione attenuates liver injury induced by methyl parathion in rats.

    PubMed

    Jiang, Na; Lu, Lina; Wang, Tian; Zhang, Leiming; Xin, Wenyu; Fu, Fenghua

    2010-02-01

    The aim of this study was to investigate whether exogenous reduced glutathione (GSH) could protect liver injury induced by methyl parathion. Rats were allocated into four groups named as control, MP (methyl parathion poisoning), MP+GSH1 (methyl parathion poisoning treated with GSH 600 mg/kg), and MP+GSH2 (methyl parathion poisoning treated with GSH 1200 mg/kg). Each one of the last three groups was assigned into 6 h, 24 h, and 72 h sub-groups. The activities of acetylcholinesterase (AChE), glutamate pyruvate transaminase (GPT), and glutamic oxalacetic transaminase (GOT) in plasma, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) in liver were assayed. The malondialdehyde (MDA) in liver was also determined. Histopathological changes in liver were observed. Results showed that AChE activity was significantly inhibited by methyl parathion and attenuated after GSH administered. GSH could relieve hepatocellular edema and fatty degeneration, and attenuate the increased activities of GPT and GOT. GSH treatment increased the SOD and GPx activities, but had no effect on the MDA level. These results indicated that GSH could attenuate liver injury induced by methyl parathion.

  1. An In Vivo Model of Reduced Nucleus Pulposus Glycosaminoglycan Content in the Rat Lumbar Intervertebral Disc

    PubMed Central

    Boxberger, John I.; Auerbach, Joshua D.; Sen, Sounok; Elliott, Dawn M.

    2009-01-01

    Study Design An in vivo model resembling early stage disc degeneration in the rat lumbar spine. Objective Simulate the reduced glycosaminoglycan content and altered mechanics observed in intervertebral disc degeneration using a controlled injection of chondroitinase ABC (ChABC). Summary of Background Data Nucleus glycosaminoglycan reduction occurs early during disc degeneration; however, mechanisms through which degeneration progresses from this state are unknown. Animal models simulating this condition are essential for understanding disease progression and for development of therapies aimed at early intervention. Methods ChABC was injected into the nucleus pulposus, and discs were evaluated via micro-CT, mechanical testing, biochemical assays, and histology 4 and 12 weeks after injection. Results At 4 weeks, reductions in nucleus glycosaminoglycan level by 43%, average height by 12%, neutral zone modulus by 40%, and increases in range of motion by 40%, and creep strain by 25% were found. Neutral zone modulus and range of motion were correlated with nucleus glycosaminoglycan. At 12 weeks, recovery of some mechanical function was detected as range of motion and creep returned to control levels; however, this was not attributed to glycosaminoglycan restoration, because mechanics were no longer correlated with glycosaminoglycan. Conclusion An in vivo model simulating physiologic levels of glycosaminoglycan loss was created to aid in understanding the relationships between altered biochemistry, altered mechanics, and altered cellular function in degeneration. PMID:18197098

  2. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle.

    PubMed

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-04

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling.

  3. Stromal cell derived factor-1 (SDF-1) targeting reperfusion reduces myocardial infarction in isolated rat hearts.

    PubMed

    Jang, Young-Ho; Kim, June-Hong; Ban, Changill; Ahn, Kyohan; Cheong, Jae-Hun; Kim, Hyung-Hoi; Kim, Jung-Soo; Park, Yong-Hyun; Kim, Jun; Chun, Kook-Jin; Lee, Gyeong-Ho; Kim, Miju; Kim, Cheolmin; Xu, Zhelong

    2012-10-01

    Recent studies have shown that stromal cell derived factor-1 (SDF-1), first known as a cytokine involved in recruiting stem cells into injured organs, confers myocardial protection in myocardial infarction, which is not dependent on stem cell recruitment but related with modulation of ischemia-reperfusion (I/R) injury. However, the effect of SDF has been studied only in a preischemic exposure model, which is not clinically relevant if SDF is to be used as a therapeutic agent. Our study was aimed at evaluating whether or not SDF-1 confers cardioprotection during the reperfusion period. Hearts from SD rats were isolated and perfused with the Langendorff system. Proximal left coronary artery ligation, reperfusion, and SDF perfusion in KH buffer was done according to study protocol. Area of necrosis (AN) relative to area at risk (AR) was the primary endpoint of the study. Significant reduction of AN/AR by SDF in an almost dose-dependent manner was noted during both the preischemic exposure and reperfusion periods. In particular, infusion of a high concentration of SDF (25 nM/L) resulted in a dramatic reduction of infarct size, which was greater than that achieved with ischemic pre- or postconditioning. SDF perfusion during reperfusion was associated with a similar significant reduction of infarct size as preischemic SDF exposure. Further studies are warranted to assess the potential of SDF as a therapeutic agent for reducing I/R injury in clinical practice.

  4. IGL-1 solution reduces endoplasmic reticulum stress and apoptosis in rat liver transplantation

    PubMed Central

    Mosbah, I B; Zaouali, M A; Martel, C; Bjaoui, M; Abdennebi, H B; Hotter, G; Brenner, C; Roselló-Catafau, J

    2012-01-01

    Injury due to cold ischemia reperfusion (I/R) is a major cause of primary graft non-function following liver transplantation. We postulated that I/R-induced cellular damage during liver transplantation might affect the secretory pathway, particularly at the endoplasmic reticulum (ER). We examined the involvement of ER stress in organ preservation, and compared cold storage in University of Wisconsin (UW) solution and in Institute Georges Lopez-1 (IGL-1) solution. In one group of rats, livers were preserved in UW solution for 8 h at 4 °C, and then orthotopic liver transplantation was performed according to Kamada's cuff technique. In another group, livers were preserved in IGL-1 solution. The effect of each preservation solution on the induction of ER stress, hepatic injury, mitochondrial damage and cell death was evaluated. As expected, we found increased ER stress after liver transplantation. IGL-1 solution significantly attenuated ER damage by reducing the activation of three pathways of unfolded protein response and their effector molecules caspase-12, C/EBP homologous protein-10, X-box-binding protein 1, tumor necrosis factor-associated factor 2 and eukaryotic translation initiation factor 2. This attenuation of ER stress was associated with a reduction in hepatic injury and cell death. Our results show that IGL-1 solution may be a useful means to circumvent excessive ER stress reactions associated with liver transplantation, and may optimize graft quality. PMID:22402603

  5. Causal Link between the Cortico-Rubral Pathway and Functional Recovery through Forced Impaired Limb Use in Rats with Stroke

    PubMed Central

    Ishida, Akimasa; Isa, Kaoru; Umeda, Tatsuya; Kobayashi, Kazuto; Kobayashi, Kenta; Hida, Hideki

    2016-01-01

    Intensive rehabilitation is believed to induce use-dependent plasticity in the injured nervous system; however, its causal relationship to functional recovery is unclear. Here, we performed systematic analysis of the effects of forced use of an impaired forelimb on the recovery of rats after lesioning the internal capsule with intracerebral hemorrhage (ICH). Forced limb use (FLU) group rats exhibited better recovery of skilled forelimb functions and their cortical motor area with forelimb representation was restored and enlarged on the ipsilesional side. In addition, abundant axonal sprouting from the reemerged forelimb area was found in the ipsilateral red nucleus after FLU. To test the causal relationship between the plasticity in the cortico-rubral pathway and recovery, loss-of-function experiments were conducted using a double-viral vector technique, which induces selective blockade of the target pathway. Blockade of the cortico-rubral tract resulted in deficits of the recovered forelimb function in FLU group rats. These findings suggest that the cortico-rubral pathway is a substrate for recovery induced by intensive rehabilitation after ICH. SIGNIFICANCE STATEMENT The research aimed at determining the causal linkage between reorganization of the motor pathway induced by intensive rehabilitative training and recovery after stroke. We clarified the expansion of the forelimb representation area of the ipsilesional motor cortex by forced impaired forelimb use (FLU) after lesioning the internal capsule with intracerebral hemorrhaging (ICH) in rats. Anterograde tracing showed robust axonal sprouting from the forelimb area to the red nucleus in response to FLU. Selective blockade of the cortico-rubral pathway by the novel double-viral vector technique clearly revealed that the increased cortico-rubral axonal projections had causal linkage to the recovery of reaching movements induced by FLU. Our data demonstrate that the cortico-rubral pathway is responsible for the

  6. Reduced-calorie avocado paste attenuates metabolic factors associated with a hypercholesterolemic-high fructose diet in rats.

    PubMed

    Pahua-Ramos, María Elena; Garduño-Siciliano, Leticia; Dorantes-Alvarez, Lidia; Chamorro-Cevallos, German; Herrera-Martínez, Julieta; Osorio-Esquivel, Obed; Ortiz-Moreno, Alicia

    2014-03-01

    The objective of this study was to evaluate the effect of reduced-calorie avocado paste on lipid serum profile, insulin sensitivity, and hepatic steatosis in rats fed a hypercholesterolemic-high fructose diet. Thirty five male Wistar rats were randomly separated in five groups: Control group (ground commercial diet); hypercholesterolemic diet plus 60% fructose solution (HHF group); hypercholesterolemic diet plus 60% fructose solution supplemented with avocado pulp (HHF+A group); hypercholesterolemic diet plus 60% fructose solution supplemented with reduced-calorie avocado paste (HHF+P group); and hypercholesterolemic diet plus 60% fructose solution supplemented with a reduced-calorie avocado paste plus fiber (HHF+FP group). The A, P, and FP were supplemented at 2 g/kg/d. The study was carried out for seven weeks. Rats belonging to the HHF group exhibited significantly (P ≤ 0.05) higher total cholesterol, triglycerides, and insulin levels in serum as well as lower insulin sensitivity than the control group. Supplementation with reduced-calorie avocado paste showed a significant (P ≤ 0.05) decrease in total cholesterol (43.1%), low-density lipoprotein (45.4%), and triglycerides (32.8%) in plasma as well as elevated insulin sensitivity compared to the HHF group. Additionally, the liver enzymes alanine aminotransferase and aspartate aminotransferase decreased significantly in the HHF-P group (39.8 and 35.1%, respectively). These results are likely due to biocompounds present in the reduced-calorie avocado paste, such as polyphenols, carotenoids, chlorophylls, and dietary fibre, which are capable of reducing oxidative stress. Therefore, reduced-calorie avocado paste attenuates the effects of a hypercholesterolemic-high fructose diet in rats.

  7. Induction of ferroxidase enzymatic activity by copper reduces MPP+-evoked neurotoxicity in rats.

    PubMed

    Rubio-Osornio, Moisés; Montes, Sergio; Heras-Romero, Yessica; Guevara, Jorge; Rubio, Carmen; Aguilera, Penélope; Rivera-Mancia, Susana; Floriano-Sánchez, Esaú; Monroy-Noyola, Antonio; Ríos, Camilo

    2013-03-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by decreased dopamine, intracellular inclusions (Lewy bodies) and brain iron deposits. PD has also been related with reduced ferroxidase activity, diminished antioxidant defenses and lipid peroxidation. Striatal injection of 1-methyl-4-phenylpyridinium (MPP(+)) into rodents reproduces the major biochemical characteristics of PD, including oxidative stress. Copper (Cu) plays an important role as prosthetic group of several proteins involved in iron metabolism and antioxidant responses, such as ceruloplasmin (Cp). In the present study, intraperitoneal CuSO4 injection (10μmol/kg) produced an insignificant increase of Cu content in striatum and midbrain (17.5% and 7%, respectively). After 10 and 11h, Cu induced 6- and 4-fold increase Cp mRNA in midbrain and striatum, respectively. Cu-supplement also produced a time-dependent increase ferroxidase activity in striatal tissue, reaching a maximum 16h after Cu treatment in midbrain; while, ferrous iron content diminished 18% in striatum and 8% in midbrain. In regard the PD model, we found that MPP(+) (10μg/8μL, intrastriatal), induced a significant (P<0.05) reduction of striatal ferroxidase activity; this effect was reverted by Cu pre-treatment 16h before MPP(+). Likewise, Cu-supplement prevented lipid fluorescent products formation in striatum, evaluated (P<0.01) 6h after MPP(+). In the long term, apomorphine-evoked circling behavior was evaluated 6 days after MPP(+) injury; Cu pre-treatment significantly reduced (P<0.05) the apomorphine-induced ipsilateral turns in MPP(+)-lesioned rats. These results suggest that Cu-induced expression of Cp could be an interesting scope against the deleterious effects of iron deposits in PD.

  8. Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells

    PubMed Central

    Messner, Donald J.; Sivam, Gowsala; Kowdley, Kris V.

    2008-01-01

    Background/aims Iron overload can cause liver toxicity and increase the risk of liver failure or hepatocellular carcinoma in humans. Curcumin (diferuloylmethane), a component of the food spice turmeric, has antioxidant, iron binding, and hepatoprotective properties. The aim of this study was to quantify its effects on iron overload and resulting downstream toxic effects in cultured T51B rat liver epithelial cells. Methods T51B cells were loaded with ferric ammonium citrate (FAC) with or without the iron delivery agent 8-hydroxyquinoline. Cytotoxicity was measured by MTT assay. Iron uptake and iron bioavailability were documented by chemical assay, quench of calcein fluorescence, and ferritin induction. Reactive oxygen species (ROS) were measured by fluorescence assay using 2′,7′-dichlorodihydrofluorescein diacetate. Oxidative stress signaling to jnk, c-jun, and p38 was measured by western blot with phospho-specific antibodies. Results Curcumin bound iron, but did not block iron uptake or bioavailability in T51B cells given FAC. However, it reduced cytotoxicity, blocked generation of ROS, and eliminated signaling to cellular stress pathways caused by iron. Inhibition was observed over a wide range of FAC concentrations (50 – 500 μM), with an apparent IC50 in all cases between 5 and 10 μM curcumin. In contrast, desferoxamine blocked both iron uptake and toxic effects of iron at concentrations that depended on the FAC concentration. Effects of curcumin also differed from those of α-tocopherol, which did not bind iron and was less effective at blocking iron-stimulated ROS generation. Conclusions Curcumin reduced iron-dependent oxidative stress and iron toxicity in T51B cells without blocking iron uptake. PMID:18492020

  9. Tongxinluo improves the cognition by reducing β-amyloid accumulation in spontaneous hypertensive rats.

    PubMed

    Fei, Yu-Lang; Lv, Hong-Jun; Li, Yan-Bo; Liu, Jie; Qian, Yi-Hua; Yang, Wei-Na; Ma, Kai-Ge; Li, Hong-Bao; Qu, Qiu-Min

    2017-03-05

    β-amyloid (Aβ) accumulation in the brain is the major pathophysiology of Alzheimer disease (AD). Hypertension is a risk factor for AD by promoting Aβ deposition. Traditional Chinese medicinal compound tongxinluo (TXL) can improve blood circulation and endothelium-dependent vasodilation. This study investigates the effects of TXL on cognition and Aβ accumulation using spontaneously hypertensive rats (SHRs). TXL was intragastrically administered to SHRs at low-dose, mid-dose and high-dose for 15, 30 or 60 days. Cognition was evaluated with a Morris Water Maze (MWM). Aβ accumulation in the brain was detected by Thioflavin-S staining and ELISA. Western blot and RT-PCR were employed to exam the expression of receptor for advanced glycation end products (RAGE), low-density lipoprotein receptor-related protein-1 (LRP-1) and amyloid precursor protein (APP). After TXL treatment for 60 days, compared with the vehicle, the number of crossed platform and the time spent in the target quadrant increased in parallel with the increasing length of treatment in MWM. Moreover, the Aβ accumulation in the hippocampus significantly decreased compared to the vehicle group, both in Thioflavin-S staining and ELISA. Additionally, TXL reduced RAGE expression in a dose- and time-depended manner, but LRP-1 expression had no difference between TXL groups and vehicle groups. Furthermore, the β-secretase expression was significantly decreased compared to the vehicle group, but APP expression had no difference. In conclusion, TXL improved cognition and reduced Aβ accumulation in SHRs in a dose- and time-dependent manner, the underlying mechanism may involved in inhibiting RAGE and β-secretase expression.

  10. Heat shock protein 60 in rostral ventrolateral medulla reduces cardiovascular fatality during endotoxaemia in the rat.

    PubMed

    Chang, Alice Y W; Chan, Julie Y H; Chou, Jimmy L J; Li, Faith C H; Dai, Kuang-Yu; Chan, Samuel H H

    2006-07-15

    The rostral ventrolateral medulla (RVLM) is the origin of a 'life-and-death' signal that reflects central cardiovascular regulatory failure during brain stem death. Using an experimental endotoxaemia model, we evaluated the hypothesis that the 60 kDa heat shock protein 60 (HSP60) reduces cardiovascular fatality during brain stem death via an anti-apoptotic action in the RVLM. In Sprague-Dawley rats maintained under propofol anaesthesia, proteomic or Western blot analysis revealed a progressive augmentation of HSP60 expression in the RVLM after intravenous administration of Escherichia coli lipopolysaccharide (30 mg kg(-1)). Pretreatment with a microinjection of actinomycin D or cycloheximide into bilateral RVLM significantly blunted this HSP60 increase, whereas real-time PCR showed progressive augmentation of hsp60 mRNA. Intriguingly, superimposed on the augmented expression was a progressive decline in mitochondrial, or elevation in cytosolic, HSP60 in ventrolateral medulla. Loss-of-function manipulations in the RVLM using anti-HSP60 antiserum or antisense hsp60 oligonucleotide exacerbated mortality by potentiating the cardiovascular depression during experimental endotoxaemia, alongside intensified nucleosomal DNA fragmentation, elevated cytoplasmic histone-associated DNA fragments or augmented cytochromec-caspase-3 cascade of apoptotic signalling in the RVLM. Immunoprecipitation coupled with immunoblot analysis further revealed a progressive increase in the complex formed between HSP60 and mitochondrial or cytosolic Bax or mitochondrial Bcl-2 during endotoxaemia, alongside a dissociation of the cytosolic HSP60-Bcl-2 complex. We conclude that HSP60 redistributed from mitochondrion to cytosol in the RVLM confers neuroprotection against fatal cardiovascular depression during endotoxaemia via reduced activation of the cytochrome c-caspase-3 cascade of apoptotic signalling through enhanced interactions with mitochondrial or cytosolic Bax or Bcl-2.

  11. Pharmacological kynurenine 3-monooxygenase enzyme inhibition significantly reduces neuropathic pain in a rat model.

    PubMed

    Rojewska, Ewelina; Piotrowska, Anna; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna

    2016-03-01

    Recent studies have highlighted the involvement of the kynurenine pathway in the pathology of neurodegenerative diseases, but the role of this system in neuropathic pain requires further extensive research. Therefore, the aim of our study was to examine the role of kynurenine 3-monooxygenase (Kmo), an enzyme that is important in this pathway, in a rat model of neuropathy after chronic constriction injury (CCI) to the sciatic nerve. For the first time, we demonstrated that the injury-induced increase in the Kmo mRNA levels in the spinal cord and the dorsal root ganglia (DRG) was reduced by chronic administration of the microglial inhibitor minocycline and that this effect paralleled a decrease in the intensity of neuropathy. Further, minocycline administration alleviated the lipopolysaccharide (LPS)-induced upregulation of Kmo mRNA expression in microglial cell cultures. Moreover, we demonstrated that not only indirect inhibition of Kmo using minocycline but also direct inhibition using Kmo inhibitors (Ro61-6048 and JM6) decreased neuropathic pain intensity on the third and the seventh days after CCI. Chronic Ro61-6048 administration diminished the protein levels of IBA-1, IL-6, IL-1beta and NOS2 in the spinal cord and/or the DRG. Both Kmo inhibitors potentiated the analgesic properties of morphine. In summary, our data suggest that in neuropathic pain model, inhibiting Kmo function significantly reduces pain symptoms and enhances the effectiveness of morphine. The results of our studies show that the kynurenine pathway is an important mediator of neuropathic pain pathology and indicate that Kmo represents a novel pharmacological target for the treatment of neuropathy.

  12. Rho kinase inhibitors reduce neurally evoked contraction of the rat tail artery in vitro

    PubMed Central

    Yeoh, Melanie; Brock, James A

    2005-01-01

    The effects of Rho kinase inhibitors (Y27632, HA-1077) on contractions to electrical stimulation and to application of phenylephrine, clonidine or α,β-methylene adenosine 5′-triphosphate (α,β-mATP) were investigated in rat tail artery in vitro. In addition, continuous amperometry and intracellular recording were used to monitor the effects of Y27632 on noradrenaline (NA) release and postjunctional electrical activity, respectively. Y27632 (0.5 and 1 μM) and HA-1077 (5 μM) reduced neurally evoked contractions. In contrast, the protein kinase C inhibitor, Ro31-8220 (1 μM), had little effect on neurally evoked contraction. In the absence and the presence of Y27632 (0.5 μM), the reduction of neurally evoked contraction produced by the α-adrenoceptor antagonists prazosin (10 nM) and idazoxan (0.1 μM) was similar. The P2-purinoceptor antagonist, suramin (0.1 mM), had no inhibitory effect on neurally evoked contraction in the absence or the presence of Y27632 (1 μM). In the presence of Y27632, desensitization of P2X-purinoceptors with α,β-mATP (10 μM) increased neurally evoked contractions. Y27632 (1 μM) and H-1077 (5 μM) reduced sensitivity to phenylephrine and clonidine. In addition, Y27632 reduced contractions to α,β-mATP (10 μM). Y27632 (1 μM) had no effect on the NA-induced oxidation currents or the purinergic excitatory junction potentials and NA-induced slow depolarizations evoked by electrical stimulation. Rho kinase inhibitors reduce sympathetic nerve-mediated contractions of the tail artery. This effect is mediated at a postjunctional site, most likely by inhibition of Rho kinase-mediated ‘Ca2+ sensitization' of the contractile apparatus. PMID:16113686

  13. Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain

    PubMed Central

    Xie, Wenrui; Chen, Sisi; Strong, Judith A.; Li, Ai-Ling; Lewkowich, Ian P.

    2016-01-01

    Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a “microsympathectomy” by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal

  14. Agmatine induces gastric protection against ischemic injury by reducing vascular permeability in rats

    PubMed Central

    Masri, Abeer A Al; Eter, Eman El

    2012-01-01

    AIM: To investigate the effect of administration of agmatine (AGM) on gastric protection against ischemia reperfusion (I/R) injury. METHODS: Three groups of rats (6/group); sham, gastric I/R injury, and gastric I/R + AGM (100 mg/kg, i.p. given 15 min prior to gastric ischemia) were recruited. Gastric injury was conducted by ligating celiac artery for 30 min and reperfusion for another 30 min. Gastric tissues were histologically studied and immunostained with angiopoietin 1 (Ang-1) and Ang-2. Vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) were measured in gastric tissue homogenate. To assess whether AKt/phosphatidyl inositol-3-kinase (PI3K) mediated the effect of AGM, an additional group was pretreated with Wortmannin (WM) (inhibitor of Akt/PI3K, 15 μg/kg, i.p.), prior to ischemic injury and AGM treatment, and examined histologically and immunostained. Another set of experiments was run to study vascular permeability of the stomach using Evan’s blue dye. RESULTS: AGM markedly reduced Evan’s blue dye extravasation (3.58 ± 0.975 μg/stomach vs 1.175 ± 0.374 μg/stomach, P < 0.05), VEGF (36.87 ± 2.71 pg/100 mg protein vs 48.4 ± 6.53 pg/100 mg protein, P < 0.05) and MCP-1 tissue level (29.5 ± 7 pg/100 mg protein vs 41.17 ± 10.4 pg/100 mg protein, P < 0.01). It preserved gastric histology and reduced congestion. Ang-1 and Ang-2 immunostaining were reduced in stomach sections of AGM-treated animals. The administration of WM abolished the protective effects of AGM and extensive hemorrhage and ulcerations were seen. CONCLUSION: AGM protects the stomach against I/R injury by reducing vascular permeability and inflammation. This protection is possibly mediated by Akt/PI3K. PMID:22611311

  15. The forelimb of Tyrannosaurus rex: a pathetic vestigial organ or an integral part of a fearsome predator?

    NASA Astrophysics Data System (ADS)

    Lee, Scott A.; Thomas, Joshua

    2014-03-01

    The function of the forelimb of Tyrannosaurus rex remains a controversial topic since it was too short to transfer food directly to the mouth. Since Tyrannosaurus rex was bipedal, the forelimb was not involved in locomotion. Suggestions for its possible use include providing an initial push for a laying animal to stand or to hold position during mating. We report numerical calculations performed to determine the moment of inertia of the forearm and the torques generated by the muscles of the arm, based on three-dimensional representations of the forelimb. Our results imply that the forelimb was capable of very high angular accelerations, on the order of 130 radians/s2. This corresponds to a tangential acceleration of the manus on the order of 90 m/s2 or about 9g, indicating that the manus could be moved extremely quickly to control a struggling prey animal immediately before the death blow was delivered by the teeth of Tyrannosaurus rex. Rather than a pathetic vestigial organ, these calculations suggest that the forelimbs were an integral part of the predation tactics of Tyrannosaurus rex.

  16. Patterns of spatio-temporal correlations in the neural activity of the cat motor cortex during trained forelimb movements.

    PubMed

    Ghosh, Soumya; Putrino, David; Burro, Bianca; Ring, Alexander

    2009-06-01

    In order to study how neurons in the primary motor cortex (MI) are dynamically linked together during skilled movement, we recorded simultaneously from many cortical neurons in cats trained to perform a reaching and retrieval task using their forelimbs. Analysis of task-related spike activity in the MI of the hemisphere contralateral to the reaching forelimb (in identified forelimb or hindlimb representations) recorded through chronically implanted microwires, was followed by pairwise evaluation of temporally correlated activity in these neurons during task performance using shuffle corrected cross-correlograms. Over many months of recording, a variety of task-related modulations of neural activities were observed in individual efferent zones. Positively correlated activity (mainly narrow peaks at zero or short latencies) was seen during task performance frequently between neurons recorded within the forelimb representation of MI, rarely within the hindlimb area of MI, and never between forelimb and hindlimb areas. Correlated activity was frequently observed between neurons with different patterns of task-related activity or preferential activity during different task elements (reaching, feeding, etc.), and located in efferent zones with dissimilar representation as defined by intracortical microstimulation. The observed synchronization of action potentials among selected but functionally varied groups of MI neurons possibly reflects dynamic recruitment of network connections between efferent zones during skilled movement.

  17. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans.

    PubMed

    Fabre, Anne-Claire; Cornette, Raphael; Goswami, Anjali; Peigné, Stéphane

    2015-06-01

    Convergence in morphology can result from evolutionary adaptations in species living in environments with similar selective pressures. Here, we investigate whether the shape of the forelimb long bones has converged in environments imposing similar functional constraints, using musteloid carnivores as a model. The limbs of quadrupeds are subjected to many factors that may influence their shape. They need to support body mass without collapsing or breaking, yet at the same time resist the stresses and strains induced by locomotion. This likely imposes strong constraints on their morphology. Our geometric morphometric analyses show that locomotion, body mass and phylogeny all influence the shape of the forelimb. Furthermore, we find a remarkable convergence between: (i) aquatic and semi-fossorial species, both displaying a robust forelimb, with a shape that improves stability and load transfer in response to the physical resistance imposed by the locomotor environment; and (ii) aquatic and arboreal/semi-arboreal species, with both groups displaying a broad capitulum. This augments the degree of pronation/supination, an important feature for climbing as well as grasping and manipulation ability, behaviors common to aquatic and arboreal species. In summary, our results highlight how musteloids with different locomotor ecologies show differences in the anatomy of their forelimb bones. Yet, functional demands for limb movement through dense media also result in convergence in forelimb long-bone shape between diverse groups, for example, otters and badgers.

  18. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    PubMed

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg(-1)). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane.

  19. Effects of 'navicular' shoeing on equine distal forelimb kinematics on different track surface.

    PubMed

    Scheffer, C J; Back, W

    2001-11-01

    Orthopaedic shoeing applied for disorders such as navicular disease is mostly evaluated on hard track surfaces, but very often horses are ridden only on soft tracks. To compare the effects of normal shoes, eggbar shoes, and shoes with heel wedges (5 degrees) on the kinematics of the distal forelimb on hard and soft track surfaces, eleven sound Dutch Warmblood horses were led across three different tracks (an asphalt, a fibre/sand mix (= Agterberg), and a pure sand track) with three different shoe types (a normal shoe, an eggbar shoe, and a shoe with heel wedges). The hoof rotation and the maximal extension of the fetlock joint at midstance period were recorded by an infrared-light based gait analysis system (ProReflex) at walk and at trot. Statistical analysis revealed significant effects of track and shoe type, and a shoe-track interaction (p<0.05). On soft track surfaces, the equilibrium of the distal forelimb dictated a 1.5-4 degrees forward rotation of the normal or eggbar shod foot, the most on a sand track. The wedge effect on hoof rotation, however, was always significantly greater, but similar to that on the hard track surface (5 degrees forward rotation). The maximal fetlock extension was less on a soft surface, in particular on the sand track (p<0.05). This decrease was most pronounced when the horses were shod with heel wedges and was least pronounced with normal shoes. In conclusion, in particular the sand track allows a forward rotation of the hoof and thus relief of pressure in the navicular area, and a decrease in maximal fetlock extension and thus unloading of the fetlock joint. The extra forward rotation of the hoof induced by heel wedges on hard tracks was almost the same on soft track surfaces. Eggbars and fibre/sand mix tracks have intermediate effects on unloading of the distal forelimb.

  20. Progression of renal fibrosis in congenital CKD model rats with reduced number of nephrons.

    PubMed

    Yasuda, Hidenori; Tochigi, Yuki; Katayama, Kentaro; Suzuki, Hiroetsu

    2017-02-06

    A congenital reduction in the number of nephrons is a critical risk factor for both onset of chronic kidney disease (CKD) and its progression to end-stage kidney disease (ESKD). Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and show progressive CKD. This study used an immunohistological method to assess glomerular and interstitial pathogenesis in male HPK rats aged 35-210days. CD68 positive-macrophages were found to infiltrate into glomeruli in HPK rats aged 35 and 70days and to infiltrate into interstitial tissue in rats aged 140 and 210days. HPK rats aged 35 and 70days showed glomerular hypertrophy, loss of normal linear immunostaining of podocine, and increased expression of PDGFr-β, TGF-β, collagens, and fibronectin, with all of these alterations gradually deteriorating with age. α-SMA-positive myofibroblasts were rarely detected in glomerular tufts, whereas α-SMA-positive glomerular parietal epithelium (GPE) cells were frequently observed along Bowman's capsular walls. The numbers of PDGFr-β-positive fibroblasts in interstitial tissue were increased in rats aged 35days and older, whereas interstitial fibrosis, characterized by the increased expression of tubular PDGF-BB, the appearance of myofibroblasts doubly positive for PDGFr-β and α-SMA, and increased expression of collagens and fibronectin, were observed in rats aged 70 and older. These results clearly indicate that congenital CKD with only 20% of nephrons cause renal fibrosis in rats.

  1. Stimulus preexposure reduces generalization of conditioned taste aversions between alcohol and non-alcohol flavors in infant rats.

    PubMed

    Chotro, M Gabriela; Alonso, Gumersinda

    2003-02-01

    Results of 3 experiments showed that infant rats (age 13-17 days) generalize conditioned taste aversions between alcohol and non-alcohol tastes such as a mixture of sucrose and quinine, apple cider vinegar, or coffee. Nonreinforced preexposure to those tastes reduced generalized aversions between them. Generalization between alcohol and sucrose-quinine was reduced not only after preexposure to both tastes, but also when only the nonconditioned taste was preexposed, whereas with alcohol and vinegar, both tastes had to be preexposed to obtain that effect. In no case was generalization reduced when only the to-be-conditioned taste was preexposed. Previous experience with alcohol alone, as well as with similar gustatory stimuli, may enhance subjects' ability to differentiate them during infantile stages in rats.

  2. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines.

    PubMed

    Choi, Sujean; Disilvio, Briana; Fernstrom, Madelyn H; Fernstrom, John D

    2013-11-01

    Exercise raises brain serotonin release and is postulated to cause fatigue in athletes; ingestion of branched-chain amino acids (BCAA), by competitively inhibiting tryptophan transport into brain, lowers brain tryptophan uptake and serotonin synthesis and release in rats, and reputedly in humans prevents exercise-induced increases in serotonin and fatigue. This latter effect in humans is disputed. But BCAA also competitively inhibit tyrosine uptake into brain, and thus catecholamine synthesis and release. Since increasing brain catecholamines enhances physical performance, BCAA ingestion could lower catecholamines, reduce performance and thus negate any serotonin-linked benefit. We therefore examined in rats whether BCAA would reduce both brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Sedentary and exercising rats received BCAA or vehicle orally; tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis rates were measured 1 h later in brain. BCAA reduced brain tryptophan and tyrosine concentrations, and serotonin and catecholamine synthesis. These reductions in tyrosine concentrations and catecholamine synthesis, but not tryptophan or serotonin synthesis, could be prevented by co-administering tyrosine with BCAA. Complete essential amino acid mixtures, used to maintain or build muscle mass, were also studied, and produced different effects on brain tryptophan and tyrosine concentrations and serotonin and catecholamine synthesis. Since pharmacologically increasing brain catecholamine function improves physical performance, the finding that BCAA reduce catecholamine synthesis may explain why this treatment does not enhance physical performance in humans, despite reducing serotonin synthesis. If so, adding tyrosine to BCAA supplements might allow a positive action on performance to emerge.

  3. Fluoxetine, desipramine, and the dual antidepressant milnacipran reduce alcohol self-administration and/or relapse in dependent rats.

    PubMed

    Simon O'Brien, Emmanuelle; Legastelois, Rémi; Houchi, Hakim; Vilpoux, Catherine; Alaux-Cantin, Stéphanie; Pierrefiche, Olivier; André, Etienne; Naassila, Mickaël

    2011-06-01

    A few clinical studies have shown that dual antidepressants (serotonergic (5-HT) and noradrenergic (NE) transporter inhibitors, SNRIs) may be effective in alcoholism treatment. We studied the effect of the dual antidepressant milnacipran on ethanol operant self-administration in acutely withdrawn ethanol-dependent and in -non-dependent Wistar rats, and used fluoxetine and desipramine to dissect both 5-HT and NE components, respectively, in the effect of milnacipran. Milnacipran was also tested for relapse after protracted abstinence and on ethanol-induced (1.0 g/kg) conditioned place preference in control rats and ethanol-induced locomotor sensitization in DBA/2J female mice. Milnacipran dose dependently (5-40 mg/kg) attenuated the increased ethanol self-administration observed during early withdrawal and was more potent in preventing reinstatement in dependent rats after protracted abstinence as compared with non-dependent rats. Desipramine and fluoxetine (10 mg/kg) blocked ethanol self-administration during early withdrawal, and recovery was delayed in dependent animals, indicating a potent effect. Ethanol self-administration was also reduced 1 day after treatment with desipramine and fluoxetine but not with milnacipran. Finally, milnacipran prevented ethanol-induced place preference in ethanol-naive rats and reduced the magnitude of ethanol-induced sensitization associated with a delayed induction in mice. Desipramine (20 mg/kg) countered sensitization development and reduced its expression at 1 week after treatment; fluoxetine (10 mg/kg) reduced sensitization expression. Thus, 5-HT and NE transmissions during sensitization expression may mediate the effect of milnacipran on sensitization induction. These results support that SNRIs may have a potential use in alcoholism treatment.

  4. Forelimb movements in cats with complete or partial bulbar pyramid lesions.

    PubMed

    Dalmeida, R E; Yu, J

    1981-01-01

    Adult cats were trained to use a forelimb to open a hinged door against resistance for a food reward. Normal cats performed the task with only toe or wrist motions. Cats with unilateral complete bulbar pyramid section showed persistent deficits in distal limb movements with toe fanning, wrist stiffness and pulling from elbow and shoulder. Partial medial or lateral pyramid lesions produced similar but less severe effects. These results suggest a significant role of the corticospinal system in distal limb movements and a lack of topographical localization of pyramid fibers related to these movements in cats.

  5. Hypothalamic kiss1 mRNA and kisspeptin immunoreactivity are reduced in a rat model of polycystic ovary syndrome (PCOS).

    PubMed

    Brown, Russell E; Wilkinson, Diane A; Imran, Syed A; Caraty, Alain; Wilkinson, Michael

    2012-07-27

    significantly reduced. Since these rats exhibit many of the characteristics of polycystic ovary syndrome, we suggest that atypical kiss1 expression may contribute to the multiple tissue abnormalities observed in women with this disorder. However, and of some importance, our data do not appear to be consistent with the elevated levels of LH seen in women with PCOS; i.e. reduced levels of hypothalamic kiss1 mRNA and kisspeptin immunoreactivity observed in DHT-treated rats are unlikely to produce elevated LH secretion.

  6. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that

  7. Reduced contraction strength with increased intracellular [Ca2+] in left ventricular trabeculae from failing rat hearts

    PubMed Central

    Ward, Marie-Louise; Pope, Adèle J; Loiselle, Denis S; Cannell, Mark B

    2003-01-01

    Intracellular calcium ([Ca2+]i) and isometric force were measured in left ventricular (LV) trabeculae from spontaneously hypertensive rats (SHR) with failing hearts and normotensive Wistar-Kyoto (WKY) controls. At a physiological stimulation frequency (5 Hz), and at 37 °C, the peak stress of SHR trabeculae was significantly (P ≤; 0.05) reduced compared to WKY (8 ± 1 mN mm−2(n = 8)vs. 21 ± 5 mN mm−2(n = 8), respectively). No differences between strains in either the time-to-peak stress, or the time from peak to 50 % relaxation were detected. Measurements using fura-2 showed that in the SHR both the peak of the Ca2+ transient and the resting [Ca2+]i were increased compared to WKY (peak: 0.69 ± 0.08 vs. 0.51 ± 0.08 μm (P ≤ 0.1) and resting: 0.19 ± 0.02 vs. 0.09 ± 0.02 μm (P ≤ 0.05), SHR vs. WKY, respectively). The decay of the Ca2+ transient was prolonged in SHR, with time constants of: 0.063 ± 0.002 vs. 0.052 ± 0.003 s (SHR vs. WKY, respectively). Similar results were obtained at 1 Hz stimulation, and for[Ca2+]o between 0.5 and 5 mm. The decay of the caffeine-evoked Ca2+ transient was slower in SHR (9.8 ± 0.7 s (n = 8)vs. 7.7 ± 0.2 s (n = 8) in WKY), but this difference was removed by use of the SL Ca2+-ATPase inhibitor carboxyeosin. Histological examination of transverse sections showed that the fractional content of perimysial collagen was increased in SHR compared to WKY (18.0 ± 4.6 % (n = 10)vs. 2.9 ± 0.9 % (n = 11) SHR vs. WKY, respectively). Our results show that differences in the amplitude and the time course of the Ca2+ transient between SHR and WKY do not explain the reduced contractile performance of SHR myocardium per se. Rather, we suggest that, in this animal model of heart failure, contractile function is compromised by increased collagen, and its three-dimensional organisation, and not by reduced availability of intracellular Ca2+. PMID:12527740

  8. Pregnant rats treated with a serotonin precursor have reduced fetal weight and lower plasma volume and kallikrein levels.

    PubMed

    Salas, Sofía P; Giacaman, Andrea; Romero, William; Downey, Patricio; Aranda, Eduardo; Mezzano, Diego; Vío, Carlos P

    2007-10-01

    Pregnant women with preeclampsia have increased serotonin levels, suggesting a possible role of this amine in abnormal pregnancy. With the hypothesis that an increase in serotonin would reduce volume expansion and cause fetal growth restriction, we evaluated the maternal and fetal effects of the administration of the serotonin precursor 5-hidroxytryptophan (5-HTP) to Sprague-Dawley rats. At pregnancy day 13 (n=19) or in random cycle nonpregnant rats (n=10), animals were assigned to a single injection of 5-HTP (100 mg/kg IP) or to a control group. Animals were studied at day 21, after overnight urinary collection. Additional pregnant rats received ketanserin (1 mg/kg), a 5-HT(2) receptor antagonist, 1 hour before 5-HTP injection. In pregnant rats, 5-HTP lowered plasma volume (control: 22+/-1.1; 5-HTP: 17+/-0.7 mL; P<0.001) and creatinine clearance, whereas serum creatinine and urinary protein excretion were increased; no changes were observed in nonpregnant rats. Systolic blood pressure did not change significantly. Urinary kallikrein activity and plasma aldosterone levels decreased only in pregnant animals. Fetal (control: 5.5+/-0.1; 5-HTP: 4.2+/-0.2 g; P<0.001) and placental weights were reduced. In nonpregnant and pregnant animals, 5-HTP caused profound renal morphological alterations and decreased kallikrein immunostaining. Preadministration of ketanserin abolished all of the changes associated with the use of 5-HTP. These data indicate that the administration of a serotonin precursor to pregnant rats limits plasma volume expansion and fetal growth via 5-HT(2) receptors, suggesting a possible role for serotonin in abnormal pregnancy. We postulate that an increased vascular resistance, both at the placental and renal levels, mediates these effects.

  9. Ovarian Hormone Deprivation Reduces Oxytocin Expression in Paraventricular Nucleus Preautonomic Neurons and Correlates with Baroreflex Impairment in Rats

    PubMed Central

    De Melo, Vitor U.; Saldanha, Rayssa R. M.; Dos Santos, Carla R.; De Campos Cruz, Josiane; Lira, Vitor A.; Santana-Filho, Valter J.; Michelini, Lisete C.

    2016-01-01

    The prevalence of cardiovascular diseases including hypertension increases dramatically in women after menopause, however the mechanisms involved remain incompletely understood. Oxytocinergic (OTergic) neurons are largely present within the paraventricular nucleus of the hypothalamus (PVN). Several studies have shown that OTergic drive from PVN to brainstem increases baroreflex sensitivity and improves autonomic control of the circulation. Since preautonomic PVN neurons express different types of estrogen receptors, we hypothesize that ovarian hormone deprivation causes baroreflex impairment, autonomic imbalance and hypertension by negatively impacting OTergic drive and oxytocin levels in pre-autonomic neurons. Here, we assessed oxytocin gene and protein expression (qPCR and immunohistochemistry) within PVN subnuclei in sham-operated and ovariectomized Wistar rats. Conscious hemodynamic recordings were used to assess resting blood pressure and heart rate and the autonomic modulation of heart and vessels was estimated by power spectral analysis. We observed that the ovarian hormone deprivation in ovariectomized rats decreased baroreflex sensitivity, increased sympathetic and reduced vagal outflows to the heart and augmented the resting blood pressure. Of note, ovariectomized rats had reduced PVN oxytocin mRNA and protein expression in all pre-autonomic PVN subnuclei. Furthermore, reduced PVN oxytocin protein levels were positively correlated with decreased baroreflex sensitivity and negatively correlated with increased LF/HF ratio. These findings suggest that reduced oxytocin expression in OTergic neurons of the PVN contributes to the baroreflex dysfunction and autonomic dysregulation observed with ovarian hormone deprivation. PMID:27790154

  10. Long-term treatment with lanthanum carbonate reduces mineral and bone abnormalities in rats with chronic renal failure

    PubMed Central

    Damment, Stephen; Secker, Roger; Shen, Victor; Lorenzo, Victor; Rodriguez, Mariano

    2011-01-01

    Background. Lanthanum carbonate (FOSRENOL®, Shire Pharmaceuticals) is an effective non-calcium, non-resin phosphate binder for the treatment of hyperphosphataemia in patients with chronic kidney disease (CKD). In this study, we used a rat model of chronic renal failure (CRF) to examine the long-term effects of controlling serum phosphorus with lanthanum carbonate treatment on the biochemical and bone abnormalities associated with CKD–mineral and bone disorder (CKD–MBD). Methods. Rats were fed a normal diet (normal renal function, NRF), or a diet containing 0.75% adenine for 3 weeks to induce CRF. NRF rats continued to receive normal diet plus vehicle or normal diet supplemented with 2% (w/w) lanthanum carbonate for 22 weeks. CRF rats received a diet containing 0.1% adenine, with or without 2% (w/w) lanthanum carbonate. Blood and urine biochemistry were assessed, and bone histomorphometry was performed at study completion. Results. Treatment with 0.75% adenine induced severe CRF, as demonstrated by elevated serum creatinine. Hyperphosphataemia, hypocalcaemia, elevated calcium × phosphorus product and secondary hyperparathyroidism were evident in CRF + vehicle animals. Treatment with lanthanum carbonate reduced hyperphosphataemia and secondary hyperparathyroidism in CRF animals (P < 0.05), and had little effect in NRF animals. Bone histomorphometry revealed a severe form of bone disease with fibrosis in CRF + vehicle animals; lanthanum carbonate treatment reduced the severity of the bone abnormalities observed, particularly woven bone formation and fibrosis. Conclusions. Long-term treatment with lanthanum carbonate reduced the biochemical and bone abnormalities of CKD–MBD in a rat model of CRF. PMID:21098011

  11. Reduced connectivity and inter-hemispheric symmetry of the sensory system in a rat model of vulnerability to developing depression.

    PubMed

    Ben-Shimol, E; Gass, N; Vollmayr, B; Sartorius, A; Goelman, G

    2015-12-03

    Defining the markers corresponding to a high risk of developing depression in humans would have major clinical significance; however, few studies have been conducted since they are not only complex but also require homogeneous groups. This study compared congenital learned helpless (cLH) rats, selectively bred for high stress sensitivity and learned helplessness (LH) behavior, to congenital non-learned helpless (cNLH) rats that were bred for resistance to uncontrollable stress. Naïve cLH rats show some depression-like behavior but full LH behavior need additional stress, making this model ideal for studying vulnerability to depression. Resting-state functional connectivity obtained from seed correlation analysis was calculated for multiple regions that were selected by anatomy AND by a data-driven approach, independently. Significance was determined by t-statistic AND by permutation analysis, independently. A significant reduction in functional connectivity was observed by both analyses in the cLH rats in the sensory, motor, cingulate, infralimbic, accumbens and the raphe nucleus. These reductions corresponded primarily to reduced inter-hemispheric connectivity. The main reduction however was in the sensory system. It is argued that reduced connectivity and inter-hemispheric connectivity of the sensory system reflects an internal convergence state which may precede other depressive symptomatology and therefore could be used as markers for vulnerability to the development of depression.

  12. Forelimb anatomy and the discrimination of the predatory behavior of carnivorous mammals: the thylacine as a case study.

    PubMed

    Janis, Christine M; Figueirido, Borja

    2014-12-01

    Carnivorous mammals use their forelimbs in different ways to capture their prey. Most terrestrial carnivores have some cursorial (running) adaptations, but ambush predators retain considerable flexibility in their forelimb movement, important for grappling with their prey. In contrast, predators that rely on pursuit to run down their prey have sacrificed some of this flexibility for locomotor efficiency, in the greater restriction of the forelimb motion to the parasagittal plane. In this article, we measured aspects of the forelimb anatomy (44 linear measurements) in 36 species of carnivorous mammals of known predatory behavior, and used multivariate analyses to investigate how well the forelimb anatomy reflects the predatory mode (ambush, pursuit, or pounce-pursuit). A prime intention of this study was to establish morphological correlates of behavior that could then be applied to fossil mammals: for this purpose, five individuals of the recently extinct thylacine (Thylacinus cynocephalus) were also included as unknowns. We show that the three different types of predators can be distinguished by their morphology, both in analyses where all the forelimb bones are included together, and in the separate analyses of each bone individually. Of particular interest is the ability to distinguish between the two types of more cursorial predators, pursuit and pounce-pursuit, which have previously been considered as primarily size-based categories. Despite a prior consideration of the thylacine as a "pounce-pursuit" or an "ambush" type of predator, the thylacines did not consistently cluster with any type of predatory carnivores in our analyses. Rather, the thylacines appeared to be more generalized in their morphology than any of the extant carnivores. The absence of a large diversity of large carnivorous mammals in Australia, past and present, may explain the thylacine's generalized morphology.

  13. Memantine reduces consumption of highly palatable food in a rat model of binge eating

    PubMed Central

    Kos, Tomasz; Zhang, Yulei; Bisaga, Adam

    2010-01-01

    Excessive consumption of highly palatable food has been linked to the development of eating disorders and obesity, and can be modeled in non-food-deprived rats by offering them a limited (2-h daily) access to an optional dietary fat. Since the glutamatergic system has recently emerged as a viable target for binge-eating medication development, we compared the effects of subchronic treatment with glutamatergic receptor antagonists to the effects of a reference appetite-suppressing agent sibutramine on highly palatable food (lard) and normal chow intake. In three separate experiments, the consumption of a standard laboratory chow and lard were measured during 12 days of medication treatment and for 6 days afterwards. Generalized estimating equations analysis demonstrated that sibutramine (7.5 mg/kg, PO) significantly decreased lard consumption, with a concurrent increase in chow consumption. Sibutramine effects disappeared after treatment discontinuation. The NMDA receptor antagonist memantine (5 mg/kg, IP) significantly decreased lard consumption and increased chow consumption, comparable to effects of sibutramine; however, memantine’s effects persisted after treatment discontinuation. The effects of the mGluR5 antagonist MTEP (7.5 mg/kg, IP) on food consumption were in the same direction as seen with memantine, but the observed differences were not significant. In an additional control experiment, sibutramine and memantine reduced unlimited (24 h) chow intake during the treatment phase. Present results provide evidence that glutamatergic neurotransmission might be involved in the regulation of excessive consumption of highly palatable foods, and suggest that NMDA receptor may be an attractive target for developing obesity and disordered eating pharmacotherapies. PMID:20571841

  14. A neutral CB1 receptor antagonist reduces weight gain in rat.

    PubMed

    Chambers, Adam P; Vemuri, V Kiran; Peng, Yan; Wood, Jodianne T; Olszewska, Teresa; Pittman, Quentin J; Makriyannis, Alexandros; Sharkey, Keith A

    2007-12-01

    Cannabinoid (CB)1 receptor inverse agonists inhibit food intake in animals and humans but also potentiate emesis. It is not clear whether these effects result from inverse agonist properties or from the blockade of endogenous cannabinoid signaling. Here, we examine the effect of a neutral CB1 antagonist, AM4113, on food intake, weight gain, and emesis. Neutral antagonist and binding properties were confirmed in HEK-293 cells transfected with human CB1 or CB2 receptors. AM4113 had no effect on forskolin-stimulated cAMP production at concentrations up to 630 nM. The Ki value of AM4113 (0.80 +/- 0.44 nM) in competitive binding assays with the CB1/2 agonist [3H]CP55,940 was 100-fold more selective for CB1 over CB2 receptors. We determined that AM4113 antagonized CB1 receptors in brain by blocking hypothermia induced by CP55,940. AM4113 (0-20 mg/kg) significantly reduced food intake and weight gain in rat. Compared with AM251, higher doses of AM4113 were needed to produce similar effects on food intake and body weight. Unlike AM251 (5 mg/kg), a highly anorectic dose of AM4113 (10 mg/kg) did not significantly potentiate vomiting induced by the emetic morphine-6-glucoronide. We show that a centrally active neutral CB1 receptor antagonist shares the appetite suppressant and weight loss effects of inverse agonists. If these compounds display similar properties in humans, they could be developed into a new class of antiobesity agents.

  15. Cinnamaldehyde reduces IL-1beta-induced cyclooxygenase-2 activity in rat cerebral microvascular endothelial cells.

    PubMed

    Guo, Jian-You; Huo, Hai-Ru; Zhao, Bao-Sheng; Liu, Hong-Bin; Li, Lan-Fang; Ma, Yue-Ying; Guo, Shu-Ying; Jiang, Ting-Liang

    2006-05-10

    Cinnamaldehyde is a principle compound isolated from Guizhi-Tang, which is a famous traditional Chinese medical formula used to treat influenza, common cold and other pyretic conditions. The aim of the present study was to investigate the effects of cinnamaldehyde on expression and activity of cyclooxygenase (COX) and prostaglandin E(2) (PGE(2)) in rat cerebral microvascular endothelial cells (RCMEC). RCMEC were cultured, and identified by immunohistochemistry for von Willebrand factor in cytoplasm of the cells. Then cells were incubated in M199 medium containing interleukin (IL)-1beta in the presence or absence of cinnamaldehyde. After incubation, the medium was collected and the amount of PGE(2) was measured by enzyme-linked immunosorbent assay (ELISA). The cells were harvested, mRNA expression and activity of COX were analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR) with SYBR Green dye and ELISA respectively. Positive immunostaining for von Willebrand factor was present diffusely in the cytoplasm of >95% RCMEC. IL-1beta increased the mRNA expression and activity of COX-2, and production of PGE(2) in a dose- and time-dependent manner in RCMEC, while mRNA and activity of COX-1 were not significantly altered. Cinnamaldehyde significantly decreased IL-1beta-induced COX-2 activity and PGE(2) production in a dose-dependent manner, while it showed no inhibitory effect on IL-1beta-induced COX-2 mRNA expression in cultured RCMEC. In conclusion, cinnamaldehyde reduces IL-1beta-induced COX-2 activity, but not IL-1beta-induced COX-2 mRNA expression, and consequently inhibits production of PGE(2) in cultured RCMEC.

  16. Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro.

    PubMed Central

    Bemis, J C; Seegal, R F

    1999-01-01

    Consumption of contaminated Great Lakes fish by pregnant women is associated with decreased birth weight and deficits in cognitive function in their infants and children. These fish contain many known and suspected anthropogenic neurotoxicants, making it difficult to determine which contaminant(s) are responsible for the observed deficits. We have undertaken a series of experiments to determine the relevant toxicants by comparing the neurotoxic effects of two of these contaminants--polychlorinated biphenyls (PCBs) and methylmercury (MeHg)--both of which are recognized neurotoxicants. Striatal punches obtained from adult rat brain were exposed to PCBs only, MeHg only, or the two in combination, and tissue and media concentrations of dopamine (DA) and its metabolites were determined by high performance liquid chromatography. Exposure to PCBs only reduced tissue DA and elevated media DA in a dose-dependent fashion. Exposure to MeHg only did not significantly affect either measure. However, when striatal punches were simultaneously exposed to PCBs and MeHg, there were significantly greater decreases in tissue DA concentrations and elevations in media DA than those caused by PCBs only, in the absence of changes in media lactate dehydrogenase concentrations. Elevations in both tissue and media 3, 4-dihydroxyphenylacetic acid concentrations were also observed. We suggest that the significant interactions between these two toxicants may be due to a common site of action (i.e., toxicant-induced increases in intracellular calcium and changes in second messenger systems) that influences DA function. The synergism between these contaminants suggests that future revisions of fish-consumption guidelines should consider contaminant interactions. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10544155

  17. Probiotic treatment reduces depressive-like behaviour in rats independently of diet.

    PubMed

    Abildgaard, Anders; Elfving, Betina; Hokland, Marianne; Wegener, Gregers; Lund, Sten

    2017-05-01

    The gut microbiota has recently emerged as an important regulator of brain physiology and behaviour in animals, and ingestion of certain bacteria (probiotics) therefore appear to be a potential treatment for major depressive disorder (MDD). However, some conceptual and mechanistical aspects need further elucidation. We therefore aimed at investigating whether the habitual diet may interact with the effect of probiotics on depression-related behaviour and further examined some potentially involved mechanisms underlying the microbe-mediated behavioural effects. Forty male Sprague-Dawley rats were fed a control (CON) or high-fat diet (HFD) for ten weeks and treated with either a multi-species probiotic formulation or vehicle for the last five weeks. Independently of diet, probiotic treatment markedly reduced depressive-like behaviour in the forced swim test by 34% (95% CI: 22-44%). Furthermore, probiotic treatment skewed the cytokine production by stimulated blood mononuclear cells towards IFNγ, IL2 and IL4 at the expense of TNFα and IL6. In addition, probiotics lowered hippocampal transcript levels of factors involved in HPA axis regulation (Crh-r1, Crh-r2 and Mr), whereas HFD increased these levels. A non-targeted plasma metabolomics analysis revealed that probiotics raised the level of indole-3-propionic acid, a potential neuroprotective agent. Our findings clearly support probiotics as a potential treatment strategy in MDD. Importantly, the efficacy was not attenuated by intake of a "Western pattern" diet associated with MDD. Mechanistically, the HPA axis, immune system and microbial tryptophan metabolism could be important in this context. Importantly, our study lend inspiration to clinical trials on probiotics in depressed patients.

  18. Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis

    PubMed Central

    Hammell, D.C.; Zhang, L.P.; Ma, F.; Abshire, S.M.; McIlwrath, S.L.; Stinchcomb, A.L.; Westlund, K.N.

    2015-01-01

    Background Current arthritis treatments often have side-effects attributable to active compounds as well as route of administration. Cannabidiol (CBD) attenuates inflammation and pain without side-effects, but CBD is hydrophobic and has poor oral bioavailability. Topical drug application avoids gastrointestinal administration, first pass metabolism, providing more constant plasma levels. Methods This study examined efficacy of transdermal CBD for reduction in inflammation and pain, assessing any adverse effects in a rat complete Freund’s adjuvant-induced monoarthritic knee joint model. CBD gels (0.6, 3.1, 6.2 or 62.3 mg/day) were applied for 4 consecutive days after arthritis induction. Joint circumference and immune cell invasion in histological sections were measured to indicate level of inflammation. Paw withdrawal latency (PWL) in response to noxious heat stimulation determined nociceptive sensitization, and exploratory behaviour ascertained animal’s activity level. Results Measurement of plasma CBD concentration provided by transdermal absorption revealed linearity with 0.6–6.2 mg/day doses. Transdermal CBD gel significantly reduced joint swelling, limb posture scores as a rating of spontaneous pain, immune cell infiltration and thickening of the synovial membrane in a dose-dependent manner. PWL recovered to near baseline level. Immunohistochemical analysis of spinal cord (CGRP, OX42) and dorsal root ganglia (TNFα) revealed dose-dependent reductions of pro-inflammatory biomarkers. Results showed 6.2 and 62 mg/day were effective doses. Exploratory behaviour was not altered by CBD indicating limited effect on higher brain function. Conclusions These data indicate that topical CBD application has therapeutic potential for relief of arthritis pain-related behaviours and inflammation without evident side-effects. PMID:26517407

  19. Post-operative pain behavior in rats is reduced after single high-concentration capsaicin application.

    PubMed

    Pospisilova, Eva; Palecek, Jiri

    2006-12-05

    Surgical procedures associated with tissue injury are often followed by increased sensitivity to innocuous and noxious stimuli in the vicinity of the surgical wound. The aim of this study was to evaluate the role of transient receptor potential vanilloid 1 receptor (TRPV1) containing nociceptors in this process, by their functional inactivation using a high-concentration intradermal injection of capsaicin in a rat plantar incision model. Paw withdrawal responses to mechanical stimuli (von Frey filaments 10-367mN) and to radiant heat applied on plantar skin were tested in animals treated with capsaicin or the vehicle 6 days and 24h before or 2h after the incision was made. In the vehicle-treated animals, mechanical and thermal sensitivity increased significantly 1-96h following the incision. Capsaicin applied 24h before the surgery was most effective and significantly diminished the development of post-incisional mechanical allodynia and hyperalgesia. Thermal hypoalgesia was present in the incised paw after the capsaicin treatment. Capsaicin application 6 days before the incision induced thermal hypoalgesia before the incision but did not prevent completely the thermal hyperalgesia after the incision, while there was also a reduction of mechanical hypersensitivity. Application of the capsaicin injection after the incision showed its first effect at 2h after the injection and at 24h the effect was comparable with the 6 days pretreatment. Our results show an important role of TRPV1-containing nociceptors in the development of post-surgical hypersensitivity and suggest that local, high-concentration capsaicin treatment could be used to reduce it.

  20. Enzymatically synthesized glycogen reduces lipid accumulation in diet-induced obese rats.

    PubMed

    Furuyashiki, Takashi; Ogawa, Rui; Nakayama, Yoko; Honda, Kazuhisa; Kamisoyama, Hiroshi; Takata, Hiroki; Yasuda, Michiko; Kuriki, Takashi; Ashida, Hitoshi

    2013-09-01

    Based on a recent study indicating that enzymatically synthesized glycogen (ESG) possesses a dietary, fiber-like action, we hypothesized that ESG can reduce the risk of obesity. In this study, the antiobesity effects of ESG were investigated in a model of diet-induced obesity. Male Sprague-Dawley rats were divided into 4 groups and fed a normal or high-fat diet, with or without 20% ESG, for 4 weeks. Body weight, food intake, lipid deposition in the white adipose tissues and liver, fecal lipid excretion, and plasma lipid profiles were measured. At week 3, the body fat mass was measured using an x-ray computed tomography system, which showed that ESG significantly suppressed the high-fat diet-induced lipid accumulation. Similar results were observed in the weight of the adipose tissue after the experiment. Moreover, ESG significantly suppressed the lipid accumulation in the liver but increased fecal lipid excretion. The plasma concentrations of triacylglycerol and nonesterified fatty acid were lowered after a high-fat diet, whereas the total bile acid concentration was increased by ESG. However, the hepatic messenger RNA (mRNA) levels of enzymes related to lipid metabolism were not affected by ESG. Conversely, the mRNA levels of long-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase were up-regulated by ESG in the muscle. These results suggest that the combined effects of increased fecal lipid excretion, increased mRNA levels of enzymes that oxidize fatty acids in the muscle, and increased total bile acid concentration in the plasma mediate the inhibitory effect of ESG on lipid accumulation.

  1. Motivational State, Reward Value, and Pavlovian Cues Differentially Affect Skilled Forelimb Grasping in Rats

    ERIC Educational Resources Information Center

    Mosberger, Alice C.; de Clauser, Larissa; Kasper, Hansjörg; Schwab, Martin E.

    2016-01-01

    Motor skills represent high-precision movements performed at optimal speed and accuracy. Such motor skills are learned with practice over time. Besides practice, effects of motivation have also been shown to influence speed and accuracy of movements, suggesting that fast movements are performed to maximize gained reward over time as noted in…

  2. Three-dimensional skeletal kinematics of the shoulder girdle and forelimb in walking Alligator

    PubMed Central

    Baier, David B; Gatesy, Stephen M

    2013-01-01

    Crocodylians occupy a key phylogenetic position for investigations of archosaur locomotor evolution. Compared to the well-studied hindlimb, relatively little is known about the skeletal movements and mechanics of the forelimb. In this study, we employed manual markerless XROMM (X-ray Reconstruction Of Moving Morphology) to measure detailed 3-D kinematics of the shoulder girdle and forelimb bones of American alligators (Alligator mississippiensis) walking on a treadmill. Digital models of the interclavicle, scapulocoracoid, humerus, radius and ulna were created using a 3-D laser scanner. Models were articulated and aligned to simultaneously recorded frames of fluoroscopic and standard light video to reconstruct and measure joint motion. Joint coordinate systems were established for the coracosternal, glenohumeral and elbow joints. Our analysis revealed that the limb joints only account for about half of fore/aft limb excursion; the remaining excursion results from shoulder girdle movements and lateral bending of the vertebral column. Considerable motion of each scapulocoracoid relative to the vertebral column is consistent with coracosternal mobility. The hemisellar design of the glenohumeral joint permits some additional translation, or sliding in the fore-aft plane, but this movement does not have much of an effect on the distal excursion of the bone. PMID:24102540

  3. Planar Covariation of Hindlimb and Forelimb Elevation Angles during Terrestrial and Aquatic Locomotion of Dogs

    PubMed Central

    Catavitello, Giovanna; Ivanenko, Yuri P.; Lacquaniti, Francesco

    2015-01-01

    The rich repertoire of locomotor behaviors in quadrupedal animals requires flexible inter-limb and inter-segmental coordination. Here we studied the kinematic coordination of different gaits (walk, trot, gallop, and swim) of six dogs (Canis lupus familiaris) and, in particular, the planar covariation of limb segment elevation angles. The results showed significant variations in the relative duration of rearward limb movement, amplitude of angular motion, and inter-limb coordination, with gait patterns ranging from a lateral sequence of footfalls during walking to a diagonal sequence in swimming. Despite these differences, the planar law of inter-segmental coordination was maintained across different gaits in both forelimbs and hindlimbs. Notably, phase relationships and orientation of the covariation plane were highly limb specific, consistent with the functional differences in their neural control. Factor analysis of published muscle activity data also demonstrated differences in the characteristic timing of basic activation patterns of the forelimbs and hindlimbs. Overall, the results demonstrate that the planar covariation of inter-segmental coordination has emerged for both fore- and hindlimbs and all gaits, although in a limb-specific manner. PMID:26218076

  4. Select forelimb muscles have evolved superfast contractile speed to support acrobatic social displays

    PubMed Central

    Fuxjager, Matthew J; Goller, Franz; Dirkse, Annika; Sanin, Gloria D; Garcia, Sarah

    2016-01-01

    Many species perform rapid limb movements as part of their elaborate courtship displays. However, because muscle performance is constrained by trade-offs between contraction speed and force, it is unclear how animals evolve the ability to produce both unusually fast appendage movement and limb force needed for locomotion. To address this issue, we compare the twitch speeds of forelimb muscles in a group of volant passerine birds, which produce different courtship displays. Our results show that the two taxa that perform exceptionally fast wing displays have evolved 'superfast' contractile kinetics in their main humeral retractor muscle. By contrast, the two muscles that generate the majority of aerodynamic force for flight show unmodified contractile kinetics. Altogether, these results suggest that muscle-specific adaptations in contractile speed allow certain birds to circumvent the intrinsic trade-off between muscular speed and force, and thereby use their forelimbs for both rapid gestural displays and powered locomotion. DOI: http://dx.doi.org/10.7554/eLife.13544.001 PMID:27067379

  5. Functional anatomy of the gibbon forelimb: adaptations to a brachiating lifestyle.

    PubMed

    Michilsens, Fana; Vereecke, Evie E; D'Août, Kristiaan; Aerts, Peter

    2009-09-01

    It has been shown that gibbons are able to brachiate with very low mechanical costs. The conversion of muscle activity into smooth, purposeful movement of the limb depends on the morphometry of muscles and their mechanical action on the skeleton. Despite the gibbon's reputation for excellence in brachiation, little information is available regarding either its gross musculoskeletal anatomy or its more detailed muscle-tendon architecture. We provide quantitative anatomical data on the muscle-tendon architecture (muscle mass, physiological cross-sectional area, fascicle length and tendon length) of the forelimb of four gibbon species, collected by detailed dissections of unfixed cadavers. Data are compared between different gibbon species and with similar published data of non-brachiating primates such as macaques, chimpanzees and humans. No quantitative differences are found between the studied gibbon species. Both their forelimb anatomy and muscle dimensions are comparable when normalized to the same body mass. Gibbons have shoulder flexors, extensors, rotator muscles and elbow flexors with a high power or work-generating capacity and their wrist flexors have a high force-generating capacity. Compared with other primates, the elbow flexors of gibbons are particularly powerful, suggesting that these muscles are particularly important for a brachiating lifestyle. Based on this anatomical study, the shoulder flexors, extensors, rotator muscles, elbow flexors and wrist flexors are expected to contribute the most to brachiation.

  6. Functional and biomechanic aspects of the scapular girdle and forelimbs of Unaysaurus tolentinoiLeal et al., 2004 (Saurischia: Sauropodomorpha)

    NASA Astrophysics Data System (ADS)

    Vargas-Peixoto, Dilson; Da-Rosa, Átila Augusto Stock; Gallo de França, Marco Aurélio

    2015-08-01

    This study presents evidence about the biomechanics and forelimbs functionality of the basal sauropodomorph Unaysaurus tolentinoi (upper portion of the SM2 sequence, Santa Maria Supersequence, Upper Triassic from southern Brazil). Maximum and minimum motion angles were inferred in the joints, disregarding the presence and/or thickness of cartilage. Furthermore, processes and external structures of the bones were analyzed in attributing the functionality of forelimbs. Unaysaurus tolentinoi had well-developed grapple ability. However, the preserved elements and their osteological features are not conclusive about strictly bipedalism or quadrupedalism in U. tolentinoi.

  7. Salmon calcitonin reduces oxaliplatin-induced cold and mechanical allodynia in rats.

    PubMed

    Aoki, Manahito; Mori, Asami; Nakahara, Tsutomu; Sakamoto, Kenji; Ishii, Kunio

    2013-01-01

    Oxaliplatin is commonly used anti-cancer drugs, but it frequently causes peripheral neuropathic pain. Recently, we reported that elcatonin, a synthetic analog of eel calcitonin, attenuated the oxaliplatin- and paclitaxel-induced cold and mechanical allodynia in rats. In the present study, we determined whether salmon calcitonin also had anti-allodynic effects on oxaliplatin-induced neuropathy in rats. The rats were treated with a single dose of oxaliplatin (6 mg/kg, intraperitoneally (i.p.)). Oxaliplatin resulted in cold and mechanical allodynia. We assessed the anti-allodynic effects of subcutaneously administered salmon calcitonin (20 U/kg/d) by cold stimulation (8°C) directly to the hind paw of the rats and by using the von Frey test. Salmon calcitonin almost completely reversed the effects of both cold and mechanical allodynia. These results suggest that salmon calcitonin is also useful for treatment of oxaliplatin-induced neuropathy clinically.

  8. Poloxamer-188 Reduces Muscular Edema After Tourniquet-Induced Ischemia-Reperfusion Injury in Rats

    DTIC Science & Technology

    2011-05-01

    pathophysiology , evaluation, and diagnosis of compartment syndrome. Hand Clin. 1998; 14:371–383. 5. Ritenour AE, Dorlac WC, Fang R, et al. Complications...received a second bolus of either P-188 (P-188) or vehicle (Vehicle) via a tail vein catheter. Sixteen hours later, rats were killed; muscle weights...release and (2) 240 minutes after tourniquet release. Rats were lightly anesthetized (1.5% isoflurane) before the second injection. This administration

  9. Synaptic plasticity of the interpositorubral pathway functionally related to forelimb flexion movements.

    PubMed

    Pananceau, M; Rispal-Padel, L; Meftah, E M

    1996-06-01

    1. Some connections from the afferents to the magnocellular red nucleus (RNm), like the corticorubral synapses, have plastic properties that are thought to contribute to long-term changes such as functional readaptation, motor learning, and the establishment of conditioned responses. Because previous studies have focused on corticorubral synaptic reorganization after these events, we attempted to investigate cerebellorubral connections in intact adult cats during associative conditioning by pairing electrical stimulation of interpositus nucleus [the conditional stimulus (CS)] with electrical simulation of the forelimb [the unconditional stimulus (UCS)]. A large increase in the amplitude of the forelimb flexion (conditioned response) induced by the CS was observed after several days of paired CS-UCS presentations. 2. For this purpose, both behavioral and electrophysiological methods were used to correlate synaptic plasticity with changes in the motor responses. The somatotopically organized sensorimotor network functionally related to the control of the elbow joint movements was studied in awake adult cats. This circuit was defined on the basis of sites at which elbow flexions could be evoked both as a CS and a UCS. The CS was applied in the cerebellar interpositus nucleus (IN) site and the UCS was given to the skin on the dorsum of the distal part of the forepaw. Daily classical conditioning consisted of repetitive pairings of CS and UCS with an interstimulus interval (ISI) of 100 ms. 3. The transmission efficacy resulting from the conditioning was tested in various targets of the cerebellar efferent pathway, including the RNm. Electrophysiological responses evoked in these relay structures by the CS and the forelimb angular deviations were simultaneously recorded throughout each daily conditioning session. The surface areas of the rubral responses to CS and the percentage response rate, the angular deviation (amplitude), and the latency of the motor responses were

  10. Perinatal exposure to mixtures of endocrine disrupting chemicals reduces female rat follicle reserves and accelerates reproductive aging.

    PubMed

    Johansson, Hanna Katarina Lilith; Jacobsen, Pernille Rosenskjold; Hass, Ulla; Svingen, Terje; Vinggaard, Anne Marie; Isling, Louise Krag; Axelstad, Marta; Christiansen, Sofie; Boberg, Julie

    2016-06-01

    Exposure to endocrine disrupting chemicals (EDCs) during development can have negative consequences later in life. In this study we investigated the effect of perinatal exposure to mixtures of human relevant EDCs on the female reproductive system. Rat dams were exposed to a mixture of phthalates, pesticides, UV-filters, bisphenol A, butylparaben, as well as paracetamol. The compounds were tested together (Totalmix) or in subgroups with anti-androgenic (AAmix) or estrogenic (Emix) potentials. Paracetamol was tested separately. In pre-pubertal rats, a significant reduction in primordial follicle numbers was seen in AAmix and PM groups, and reduced plasma levels of prolactin was seen in AAmix. In one-year-old animals, the incidence of irregular estrous cycles was higher after Totalmix-exposure and reduced ovary weights were seen in Totalmix, AAmix, and PM groups. These findings resemble premature ovarian insufficiency in humans, and raises concern regarding potential effects of mixtures of EDCs on female reproductive function.

  11. Chronic estradiol replacement to aged female rats reduces anxiety-like and depression-like behavior and enhances cognitive performance.

    PubMed

    Walf, Alicia A; Paris, Jason J; Frye, Cheryl A

    2009-07-01

    Decline in the ovarian steroid, estradiol (E(2)), with the menopause transition may influence cognitive and affective processing of older women and there is evidence that hormone replacement therapies (HRTs) with E(2)-mimetics may provide benefit in some, but not all, women. The parameters that play a role in determining whether the response to HRTs is positive are of interest. It may be that the likelihood for positive responses is related to the timing of E(2)-replacement following E(2) decline. As such, in the present study an animal model was utilized to investigate this. We investigated the effects of long- versus short-term E(2)-replacement by examining cognitive (object placement task), anxiety (open field, mirror maze, light-dark transition task), and depression (forced swim task) behavior of female rats that were ovariectomized (OVX) at middle-age (14 months) or older (19 months) and implanted with E(2)-filled implants at the time of surgery or after a delay of 5 months, or OVX at 14 months of age and never replaced with E(2). Rats were tested at 20 months of age. The hypothesis that was tested was that rats would have reduced anxiety and depression behavior and improved cognitive performance with E(2)-replacement at ovarian cessation, compared to a delay in E(2)-replacement. Performance in the object placement task was improved in rats that were OVX and then received continuous E(2)-replacement, compared to those that were OVX and continuously administered placebo vehicle. In the open field and forced swim task, there was an increase in anti-anxiety and anti-depression behavior, respectively, among rats that were OVX and then received continuous E(2)-replacement, compared to OVX rats administered vehicle or those that experienced a delay in E(2)-replacement. In the mirror maze and light-dark transition task, E(2)-replacement at OVX, or after a delay, reduced anxiety-like behavior. Thus, E(2)-replacement reduced anxiety and depression behavior and improved

  12. Yacon diet (Smallanthus sonchifolius, Asteraceae) improves hepatic insulin resistance via reducing Trb3 expression in Zucker fa/fa rats

    PubMed Central

    Satoh, H; Audrey Nguyen, M T; Kudoh, A; Watanabe, T

    2013-01-01

    Objective: Yacon is a perennial plant forming a clump of >20 big, edible underground tubers. Yacon, which originates from South America, has become increasingly popular in the Japanese diet for tubers have a lower caloric value and a high fiber content. Recent studies have suggested that yacon feeding ameliorates diabetes as indicated by reduced blood glucose. Methods: We fed male Zucker fa/fa rats for 5 weeks with isocaloric normal chow diet containing from 6.5% control aroid or 6.5% yacon. Insulin sensitivity was evaluated by euglycemic-hyperinsulinemic clamp study. Results: Body weight was comparable between yacon- and aroid-fed rats. In the basal state, yacon feeding had an effect to lower fasting glucose levels from 184.1±4.1 to 167.8±2.7 mg dl−1 (P<0.01), as well as basal hepatic glucose output (HGO) from 9.9±0.4 to 7.4 ± 0.2 mg kg−1 per min (P<0.01). During the clamp studies, the glucose infusion rate required to maintain euglycemia was increased by 12.3% in yacon-fed rat. The insulin suppression of HGO was also increased in yacon-fed rats compared with control rats (85.3±2.4% vs 77.0±3.0% P<0.05), whereas the glucose disposal rate was not different between the two groups. Consistent with the clamp data, the insulin-stimulated phosphorylation of Akt was significantly enhanced in liver but not in skeletal muscle. Furthermore, tribbles 3 (Trb3) expression, which is a negative regulator of Akt activity, was markedly reduced in the liver of yacon-fed rats compared with control rats. Conclusion: These results indicate that the effect of yacon feeding to reduce blood glucose is likely due to its beneficial effects on hepatic insulin sensitivity in the insulin resistant state. PMID:23712282

  13. 5α-Reduced Neurosteroids Sex-Dependently Reverse Central Prenatal Programming of Neuroendocrine Stress Responses in Rats

    PubMed Central

    Donadio, Marcio V.; Yao, Song T.; Greenwood, Mike; Seckl, Jonathan R.; Murphy, David; Russell, John A.

    2015-01-01

    Maternal social stress during late pregnancy programs hypothalamo-pituitary-adrenal (HPA) axis hyper-responsiveness to stressors, such that adult prenatally stressed (PNS) offspring display exaggerated HPA axis responses to a physical stressor (systemic interleukin-1β; IL-1β) in adulthood, compared with controls. IL-1β acts via a noradrenergic relay from the nucleus tractus solitarii (NTS) to corticotropin releasing hormone neurons in the paraventricular nucleus (PVN). Neurosteroids can reduce HPA axis responses, so allopregnanolone and 3β-androstanediol (3β-diol; 5α-reduced metabolites of progesterone and testosterone, respectively) were given subacutely (over 24 h) to PNS rats to seek reversal of the “programmed” hyper-responsive HPA phenotype. Allopregnanolone attenuated ACTH responses to IL-1β (500 ng/kg, i.v.) in PNS females, but not in PNS males. However, 3β-diol normalized HPA axis responses to IL-1β in PNS males. Impaired testosterone and progesterone metabolism or increased secretion in PNS rats was indicated by greater plasma testosterone and progesterone concentrations in male and female PNS rats, respectively. Deficits in central neurosteroid production were indicated by reduced 5α-reductase mRNA levels in both male and female PNS offspring in the NTS, and in the PVN in males. In PNS females, adenovirus-mediated gene transfer was used to upregulate expression of 5α-reductase and 3α-hydroxysteroid dehydrogenase mRNAs in the NTS, and this normalized hyperactive HPA axis responses to IL-1β. Thus, downregulation of neurosteroid production in the brain may underlie HPA axis hyper-responsiveness in prenatally programmed offspring, and administration of 5α-reduced steroids acutely to PNS rats overrides programming of hyperactive HPA axis responses to immune challenge in a sex-dependent manner. PMID:25589761