Sample records for rat heart comparison

  1. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in anmore » apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to

  2. Comparison of 2 heterotopic heart transplant techniques in rats: cervical and abdominal heart.

    PubMed

    Ma, Yi; Wang, Guodong

    2011-04-01

    Heterotopic heart transplant in rats has been accepted as the most commonly used animal model to investigate the mechanisms of transplant immunology. Many ingenious approaches to this model have been reported. We sought to improve this model and compare survival rates and histologic features of acute rejection in cervical and abdominal heart transplants. Rats were divided into cervical and abdominal groups. Microsurgical techniques were introduced for vascular anastomoses. In the abdominal heart transplant group, the donor's thoracic aorta was anastomosed end-to-side to the recipient's infrarenal abdominal aorta, and the donor's pulmonary artery was anastomosed to the recipient's inferior vena cava. In the cervical heart transplant group, the donor's thoracic aorta was anastomosed to the recipient's common carotid artery, and the donor's pulmonary artery was anastomosed to the recipient's external jugular vein. Survival time of the 2 models was followed and pathology was examined. Histologic features of allogeneic rejection also were compared in the cervical and abdominal heart transplant groups. The mean time to recover the donor's hearts was 7.4 ± 2.2 minutes in the cervical group and 7.2 ± 1.8 minutes in the abdominal group. In the cervical and abdominal heart transplant models, the mean recipient's operative time was 23.2 ± 2.6 minutes and 21.6 ± 2.8 minutes. Graft survival was 98% and 100% in the cervical and abdominal heart transplant groups. There was no significant difference in graft survival between the 2 methods. Heart allografts rejected at 5.7 and 6.2 days in the cervical and abdominal transplant groups. There was no difference in the histologic features of acute allogenic rejection in cervical and abdominal heart transplant. Both cervical and abdominal heart transplants can achieve a high rate of success. The histologic features of acute allogeneic rejection in the models are comparable.

  3. Comparison of Carbon Dioxide and Argon Euthanasia: Effects on Behavior, Heart Rate, and Respiratory Lesions in Rats

    PubMed Central

    Burkholder, Tanya H; Niel, Lee; Weed, James L; Brinster, Lauren R; Bacher, John D; Foltz, Charmaine J

    2010-01-01

    In this study we compared rat (n = 16) responses to euthanasia with either gradual-fill CO2 or rapid induction argon gas by evaluating the animals' heart rate via radiotelemetry, behavior, and vocalizations. We also evaluated the histologic effects of the gases. Rats were placed in an open test chamber 24 h before the start of the experiment. During baseline tests, rats were exposed to oxygen to evaluate the effects of the noise and movement of gas entering the chamber; 1 wk later, rats were euthanized by gas displacement with either 10%/min CO2 or 50%/min argon gas. Rats tended to have higher heart rats and were more active during the baseline test, but these parameters were normal before the euthanasia experiment, suggesting that the rats had acclimated to the equipment. Heart rate, behavior, and ultrasonic vocalizations were recorded for 2 min after gas introduction in both groups. All rats appeared conscious throughout the test interval. The heart rates of rats exposed to argon did not change, whereas those of rats exposed to CO2 declined significantly. Unlike those exposed to CO2, rats euthanized with argon gas gasped and demonstrated seizure-like activity. There were no differences in the pulmonary lesions resulting from death by either gas. Our results suggest that argon as a sole euthanasia agent is aversive to rats. CO2 using a 10%/min displacement may be less aversive than more rapid displacements. Future research investigating methods of euthanasia should allow sufficient time for the rats to acclimate to the test apparatus. PMID:20819391

  4. Comparison of carbon dioxide and argon euthanasia: effects on behavior, heart rate, and respiratory lesions in rats.

    PubMed

    Burkholder, Tanya H; Niel, Lee; Weed, James L; Brinster, Lauren R; Bacher, John D; Foltz, Charmaine J

    2010-07-01

    In this study we compared rat (n = 16) responses to euthanasia with either gradual-fill CO(2) or rapid induction argon gas by evaluating the animals' heart rate via radiotelemetry, behavior, and vocalizations. We also evaluated the histologic effects of the gases. Rats were placed in an open test chamber 24 h before the start of the experiment. During baseline tests, rats were exposed to oxygen to evaluate the effects of the noise and movement of gas entering the chamber; 1 wk later, rats were euthanized by gas displacement with either 10%/min CO(2) or 50%/min argon gas. Rats tended to have higher heart rats and were more active during the baseline test, but these parameters were normal before the euthanasia experiment, suggesting that the rats had acclimated to the equipment. Heart rate, behavior, and ultrasonic vocalizations were recorded for 2 min after gas introduction in both groups. All rats appeared conscious throughout the test interval. The heart rates of rats exposed to argon did not change, whereas those of rats exposed to CO(2) declined significantly. Unlike those exposed to CO(2), rats euthanized with argon gas gasped and demonstrated seizure-like activity. There were no differences in the pulmonary lesions resulting from death by either gas. Our results suggest that argon as a sole euthanasia agent is aversive to rats. CO(2) using a 10%/min displacement may be less aversive than more rapid displacements. Future research investigating methods of euthanasia should allow sufficient time for the rats to acclimate to the test apparatus.

  5. Heart Rate Changes in Electroacupuncture Treated Polycystic Ovary in Rats.

    PubMed

    Ramadoss, Mukilan; Ramanathan, Gunasekaran; Subbiah, Angelie Jessica; Natrajan, Chidambaranathan

    2016-03-01

    Polycystic Ovary Syndrome (PCOS) is a common metabolic disorder, it affects both humans and animals. It may induce coronary heart disease, obesity and hyperandrogenism. Previous studies show that Low frequency Electroacupuncture (EA) have an effect on PCOS, however the exact pathway is unclear. To find the effect of EA on autonomic activity of the heart in Estradiol Valerate (EV) induced PCOS rats. Heart rate variability (HRV) was assessed in 3 groups: 1) Control; 2) PCOS rats; and 3) PCOS rats after EA treatment (n=8 in each group). From the time domain analysis and frequency domain analysis (linear measures) HRV analysis was done. EA stimulation was given at low frequency of 2Hz for 15 min on alternate days for 4-5 weeks. Collected data were statistically analysed using One-Way Analysis of Variance with the application of multiple comparisons of Tukey test. EA treatment group shows significant reduction in Heart Rate (HR) and low frequency, high frequency ratio (LF/HF); and increase in RR interval, Total Power (TP) when compared to PCOS group. The study concludes that EA treatment has a significant effect on reducing sympathetic tone and decreasing HR in PCOS.

  6. Hyperthyroidism results in increased glycolytic capacity in the rat heart. A 31P-NMR study.

    PubMed

    Seymour, A M; Eldar, H; Radda, G K

    1990-11-12

    We have investigated the metabolic adaptations that occur in the thyroxine-treated rat heart. Rats were made hyperthyroid by daily intra-peritoneal injections of thyroxine (35 micrograms/100 g body weight) over seven days. 31P-NMR investigations of isolated glucose-perfused isometric hearts showed that thyroxine treatment caused an increase in Pi (from 4.9 mumols.(g dry wt.)-1 in control hearts to 11.7 mumols.(g dry wt.)-1 in hyperthyroid hearts), a decrease in phosphocreatine (from 36.5 mumols.(g dry wt.)-1 to 21.8 mumols.(g dry wt.)-1) with no change in ATP or ADP concentrations under the same conditions of cardiac work. The unidirectional exchange flux Pi----ATP was measured by saturation transfer NMR in hyperthyroid rat hearts. This exchange (which has been shown to contain a significant glycolytic component) increased by 2.2-fold in thyroxine-treated hearts in comparison to control hearts (to 3.6 mumols.(g dry wt.)-1.s-1, from 1.6 mumols.(g dry wt.)-1.s-1). In parallel experiments, NMR analysis of extracts from hyperthyroid rat hearts showed significantly elevated levels of glucose 6-phosphate, and fructose 6-phosphate. Measurements of enzyme activities isolated from hyperthyroid and control tissue showed a 40% increase in phosphofructokinase activity. These data together with the increased concentration of Pi show that both glycolytic and glycogenolytic fluxes are increased in the hyperthyroid rat heart. This metabolic adaptation may be necessary to cope with the increased number and activity of Na+/K(+)-ATPase pumps that occur in response to thyroxine treatment.

  7. Comparison of the Physiology of the Spaceflight and Hindlimb Suspended Rat

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Booth, F. W.

    1994-01-01

    The suspended rat has been used extensively as a simulation of the spaceflight animal. In suspension, hindlimbs are unloaded from the acceleration of gravity, much as they are in spaceflight. Comparisons of data from spaceflight (microgravity) and suspended (1G) rats have suggested that suspension my be an appropriate model, but no direct comparisons had been made between the spaceflight and suspended rat. Cosmos 2044 afforded the first opportunity to directly compare the effects of hindlimb suspension (HS) and spaceflight (SF) on a broad range of physiological and histological parameters. This paper reports on the comparison of skelton, skeletal muscle, heart, neural, pulmonary, kidney, liver, intestine, blood plasma, immune function, red blood cells, and endocrine and reproductive functions and systems.

  8. Eotaxin/CCL11 expression by infiltrating macrophages in rat heart transplants during ongoing acute rejection.

    PubMed

    Zweifel, Martin; Mueller, Christoph; Schaffner, Thomas; Dahinden, Clemens; Matozan, Katja; Driscoll, Robert; Mohacsi, Paul

    2009-10-01

    Eotaxin/CCL11 chemokine is expressed in different organs, including the heart, but its precise cellular origin in the heart is unknown. Eotaxin is associated with Th2-like responses and exerts its chemotactic effect through the chemokine receptor-3 (CCR3), which is also expressed on mast cells (MC). The aim of our study was to find the cellular origin of eotaxin in the heart, and to assess whether expression is changing during ongoing acute heart transplant rejection, indicating a correlation with mast cell infiltration which we observed in a previous study. In a model of ongoing acute heart transplant rejection in the rat, we found eotaxin mRNA expression within infiltrating macrophages, but not in mast cells, by in situ-hybridization. A five-fold increase in eotaxin protein in rat heart transplants during ongoing acute rejection was measured on day 28 after transplantation, compared to native and isogeneic control hearts. Eotaxin concentrations in donor hearts on day 28 after transplantation were significantly higher compared to recipient hearts, corroborating an origin of eotaxin from cells within the heart, and not from the blood. The quantitative comparison of eotaxin mRNA expression between native hearts, isografts, and allografts, respectively, revealed no statistically significant difference after transplantation, probably due to an overall increase in the housekeeping gene's 18S rRNA during rejection. Quantitative RT-PCR showed an increase in mRNA expression of CCR3, the receptor for eotaxin, during ongoing acute rejection of rat heart allografts. Although a correlation between increasing eotaxin expression by macrophages and mast cell infiltration is suggestive, functional studies will elucidate the role of eotaxin in the process of ongoing acute heart transplant rejection.

  9. Hyperpolarized ketone body metabolism in the rat heart.

    PubMed

    Miller, Jack J; Ball, Daniel R; Lau, Angus Z; Tyler, Damian J

    2018-06-01

    The aim of this work was to investigate the use of 13 C-labelled acetoacetate and β-hydroxybutyrate as novel hyperpolarized substrates in the study of cardiac metabolism. [1- 13 C]Acetoacetate was synthesized by catalysed hydrolysis, and both it and [1- 13 C]β-hydroxybutyrate were hyperpolarized by dissolution dynamic nuclear polarization (DNP). Their metabolism was studied in isolated, perfused rat hearts. Hyperpolarized [1- 13 C]acetoacetate metabolism was also studied in the in vivo rat heart in the fed and fasted states. Hyperpolarization of [1- 13 C]acetoacetate and [1- 13 C]β-hydroxybutyrate provided liquid state polarizations of 8 ± 2% and 3 ± 1%, respectively. The hyperpolarized T 1 values for the two substrates were 28 ± 3 s (acetoacetate) and 20 ± 1 s (β-hydroxybutyrate). Multiple downstream metabolites were observed within the perfused heart, including acetylcarnitine, citrate and glutamate. In the in vivo heart, an increase in acetylcarnitine production from acetoacetate was observed in the fed state, as well as a potential reduction in glutamate. In this work, methods for the generation of hyperpolarized [1- 13 C]acetoacetate and [1- 13 C]β-hydroxybutyrate were investigated, and their metabolism was assessed in both isolated, perfused rat hearts and in the in vivo rat heart. These preliminary investigations show that DNP can be used as an effective in vivo probe of ketone body metabolism in the heart. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  10. Prevention of anemia alleviates heart hypertrophy in copper deficient rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lure, M.D.; Fields, M.; Lewis, C.G.

    1991-03-11

    The present investigation was designed to examine the role of anemia in the cardiomegaly and myocardial pathology of copper deficiency. Weanling rats were fed a copper deficient diet containing either starch (ST) or fructose (FRU) for five weeks. Six rats consuming the FRU diet were intraperitoneally injected once a week with 1.0 ml/100g bw of packed red blood cells (RBC) obtained from copper deficient rats fed ST. FRU rats injected with RBC did not develop anemia. Additionally, none of the injected rats exhibited heart hypertrophy or gross pathology and all survived. In contrast, non-injected FRU rats were anemic, exhibited severemore » signs of copper deficiency which include heart hypertrophy with gross pathology, and 44% died. Maintaining the hematocrit with RBC injections resulted in normal heart histology and prevented the mortality associated with the fructose x copper interaction. The finding suggest that the anemia associated with copper deficiency contributes to heart pathology.« less

  11. Effect of suprachiasmatic lesions on diurnal heart rate rhythm in the rat

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Winget, C. M.

    1977-01-01

    Heart rate and locomotor activity of rats kept under 12L/12D illumination regimen were recorded every six minutes for ten days using implantable radio transmitters. Some of the rats then received bilateral RF lesions into the suprachiasmatic nucleus (SCN). Control sham operations were performed on the rest of the animals. After recovery from surgery, recording of heart rate and locomotor activity was continued for ten days. SCN-lesioned rats showed no significant diurnal fluctuation in heart rate, while normal and sham-operated rats showed the normal diurnal rhythm in that function. The arrhythmic diurnal heart-rate pattern of SCN rats appeared to be correlated with their sporadic activity pattern. The integrity of the suprachiasmatic nucleus is therefore necessary for the generation and/or expression of diurnal rhythmicity in heart rate in the rat.

  12. Altered carnitine transport in pressure-overload hypertrophied rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Rourke, B.; Foster, K.; Reibel, D.K.

    1986-03-01

    The authors have previously observed reduced carnitine levels in hypertrophied hearts of rats subjected to aortic constriction. In an attempt to determine the mechanism for reduced myocardial carnitine content, carnitine transport was examined in isolated perfused hearts. Hearts were excised from sham-operated and aortic-constricted rats 3 weeks following surgery and perfused at 60 mm Hg aortic pressure with buffer containing various concentrations of L-/sup 14/C-carnitine. Carnitine uptake by control and hypertrophied hearts was linear throughout 30 minutes of perfusion with 40 ..mu..M carnitine. Total carnitine uptake was significantly reduced by 25% in hypertrophied hearts at each time point examined. Themore » reduction in uptake by hypertrophied hearts was also evident when hearts were perfused with 100 or 200 ..mu..M carnitine. When 0.05 mM mersalyl acid was included in the buffer to inhibit the carrier-mediated component of transport, no difference in carnitine uptake was observed indicating that the transport of carnitine by diffusion was unaltered in the hypertrophied myocardium. Carrier-mediated carnitine uptake (total uptake - uptake by diffusion) was significantly reduced by approximately 40% in hypertrophied hearts at all concentrations examined. Thus, the reduction in carnitine content in the pressure-overload hypertrophied rat heart appears to be due to a reduction in carrier-mediated carnitine uptake by the heart.« less

  13. Effects of thyroid state on respiration of perfused rat and guinea pig hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, L.C.; Wallace, P.G.; Berry, M.N.

    1987-09-01

    The effects of thyroid state on the respiration of the isolated heart were investigated using retrograde perfused rat and guinea pig hearts. In both species, hypothyroidism caused a marked depression in circulating thyroid hormone concentrations and in the respiration of the isolated, retrograde perfused heart. Hypothyroidism was caused by injecting animals with Na{sup 131}I. The effects on myocardial respiration could be attributed to changes in the contraction frequency and in the oxygen consumption per beat, with little contribution from basal respiration. Treatment of animals with thyroxine elevated plasma thyroid hormones to a similar extent in rats and guinea pigs. Inmore » the latter, thyroxine treatment was associated with substantial increases in the contraction frequency and the oxygen consumption per beat of the isolated heart. In contrast, only small changes were apparent in the retrograde perfused rat heart, observations that were confirmed in rat hearts perfused at near physiological work loads. It was concluded that rat hearts isolated from normal animals function at near maximal thyroid state, in contrast to the guinea pig heart, which requires higher circulating concentrations of thyroid hormones to attain maximal responses.« less

  14. Localization of alpha 1-adrenoceptors in rat and human hearts by immunocytochemistry.

    PubMed

    Schulze, W; Fu, M L

    1996-01-01

    The localization of the alpha 1 adrenoceptors (alpha 1-AR) in the heart tissues from rat and human and in the cultured heart cells from neonatal rats was studied by indirect immunofluorescence and postembedding electronmicroscopical immuno-gold technique. With antipeptide antibodies directed against the second extracellular loop of the human alpha 1-AR (AS sequence 192-218), this receptor was found to be localized along the sarcolemma in both human and rat hearts. Similar localization sites were detected in cultivated rat neonatal cardiomyocytes. Beside the localization in cardiomyocytes, alpha 1-AR were identified in endothelial cells of capillaries and smooth muscle cells of coronary vessels, in neuronal endings, in mast cells of cultivated heart cells but not, or in less amount in fibroblasts. Interestingly, in the right atrium of rat heart the localization of alpha 1-AR was found to be near or on atrial natriuretic factor (ANF) granules, providing the basis for the alpha-adrenergic influence on ANF release. The immunocytochemical studies further confirm and complete the findings known by using autoradiographic binding studies with specific ligands.

  15. Moxonidine-induced central sympathoinhibition improves prognosis in rats with hypertensive heart failure.

    PubMed

    Honda, Nobuhiro; Hirooka, Yoshitaka; Ito, Koji; Matsukawa, Ryuichi; Shinohara, Keisuke; Kishi, Takuya; Yasukawa, Keiji; Utsumi, Hideo; Sunagawa, Kenji

    2013-11-01

    Enhanced central sympathetic outflow is an indicator of the prognosis of heart failure. Although the central sympatholytic drug moxonidine is an established therapeutic strategy for hypertension, its benefits for hypertensive heart failure are poorly understood. In the present study, we investigated the effects of central sympathoinhibition by intracerebral infusion of moxonidine on survival in a rat model of hypertensive heart failure and the possible mechanisms involved. As a model of hypertensive heart failure, we fed Dahl salt-sensitive rats an 8% NaCl diet from 7 weeks of age. Intracerebroventricular (ICV) infusion of moxonidine (moxonidine-ICV-treated group [Mox-ICV]) or vehicle (vehicle-ICV-treated group [Veh-ICV]) was performed at 14-20 weeks of age, during the increased heart failure phase. Survival rates were examined, and sympathetic activity, left ventricular function and remodelling, and brain oxidative stress were measured. Hypertension and left ventricular hypertrophy were established by 13 weeks of age. At around 20 weeks of age, Veh-ICV rats exhibited overt heart failure concomitant with increased urinary norepinephrine (uNE) excretion as an index of sympathetic activity, dilated left ventricle, decreased percentage fractional shortening, and myocardial fibrosis. Survival rates at 21 weeks of age (n = 28) were only 23% in Veh-ICV rats, and 76% (n = 17) in Mox-ICV rats with concomitant decreases in uNE, myocardial fibrosis, collagen type I/III ratio, brain oxidative stress, and suppressed left ventricular dysfunction. Moxonidine-induced central sympathoinhibition attenuated brain oxidative stress, prevented cardiac dysfunction and remodelling, and improved the prognosis in rats with hypertensive heart failure. Central sympathoinhibition can be effective for the treatment of hypertensive heart failure.

  16. Complete inhibition of creatine kinase in isolated perfused rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fossel, E.T.; Hoefeler, H.

    1987-01-01

    Transient exposure of an isolated isovolumic perfused rat heart to low concentrations (0.5 mM) of perfusate-born iodoacetamide resulted in complete inhibition of creatine kinase and partial inhibition of glyceraldehyde-3-phosphate dehydrogenase in the heart. At low levels of developed pressure, hearts maintained mechanical function, ATP, and creatine phosphate levels at control values. However, iodoacetamide-inhibited hearts were unable to maintain control values of end diastolic pressure or peak systolic pressure as work load increased. Global ischemia resulted in loss of all ATP without loss of creatine phosphate, indicating lack of active creatine kinase. These results indicate that isovolumic perfused rat hearts aremore » able to maintain normal function and normal levels of high-energy phosphates without active creatine kinase at low levels of developed pressure. /sup 31/P-NMR of the heart was carried out.« less

  17. Effects of simvastatin on cardiohemodynamic responses to ischemia-reperfusion in isolated rat hearts.

    PubMed

    Zheng, Xia; Hu, Shen-Jiang

    2006-03-01

    Simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has long been thought to exert its benefits by reducing cholesterol synthesis, and has been shown to significantly reduce cardiovascular events and mortality in patients with or without coronary artery disease. However, it is still unknown whether acute administration of simvastatin beneficially affects the cardiac function prior or during ischemia-reperfusion. The aim of this study is to evaluate the cardioprotective effect of acute simvastatin treatment on isolated rat hearts or isolated ischemia-reperfusion hearts. Hearts were isolated from male Sprague-Dawley rats and attached to a Langendorff apparatus. The isolated hearts with or without ischemia (15 min) and reperfusion (60 min) were perfused with different concentrations of simvastatin. The parameters of cardiac function (such as left ventricular developed pressure [LVDP], +dp/dt max, and -dp/dt max), heart rate, and coronary flow were recorded. Simvastatin (3-30 micromol/l) significantly increased LVDP, +dp/dt max, and -dp/dt max in isolated rat hearts perfused for 60 min. Heart rate was depressed by 30 micromol/l simvastatin and the coronary flow was increased by 10 and 30 micromol/l simvastatin. At a concentration of 100 micromol/l simvastatin, worsening of heart function and subsequent cardiac arrest occurred. Administration of simvastatin (3-30 micromol/l) significantly preserved cardiac function detected by LVDP, +dp/dt max, and -dp/dt max in the isolated ischemia/reperfused (15/60 min) rat hearts. Simvastatin also significantly decreased heart rate at 30 micromol/l, and increased coronary flow at 10 and 30 micromol/l in these rat hearts. However, the protective effect of simvastatin reverted to increased damage at 100 micromol/l. Only 3 micromol/l simvastatin pretreatment before 15/60 min ischemia-reperfusion altered LVDP, +dp/dt max, and -dp/dt max. Both heart rate and coronary flow were unaltered after simvastatin

  18. Alterations in Glutathione Redox Metabolism, Oxidative Stress, and Mitochondrial Function in the Left Ventricle of Elderly Zucker Diabetic Fatty Rat Heart

    PubMed Central

    Raza, Haider; John, Annie; Howarth, Frank C.

    2012-01-01

    The Zucker diabetic fatty (ZDF) rat is a genetic model in which the homozygous (FA/FA) male animals develop obesity and type 2 diabetes. Morbidity and mortality from cardiovascular complications, due to increased oxidative stress and inflammatory signals, are the hallmarks of type 2 diabetes. The precise molecular mechanism of contractile dysfunction and disease progression remains to be clarified. Therefore, we have investigated molecular and metabolic targets in male ZDF (30–34 weeks old) rat heart compared to age matched Zucker lean (ZL) controls. Hyperglycemia was confirmed by a 4-fold elevation in non-fasting blood glucose (478.43 ± 29.22 mg/dL in ZDF vs. 108.22 ± 2.52 mg/dL in ZL rats). An increase in reactive oxygen species production, lipid peroxidation and oxidative protein carbonylation was observed in ZDF rats. A significant increase in CYP4502E1 activity accompanied by increased protein expression was also observed in diabetic rat heart. Increased expression of other oxidative stress marker proteins, HO-1 and iNOS was also observed. GSH concentration and activities of GSH-dependent enzymes, glutathione S-transferase and GSH reductase, were, however, significantly increased in ZDF heart tissue suggesting a compensatory defense mechanism. The activities of mitochondrial respiratory enzymes, Complex I and Complex IV were significantly reduced in the heart ventricle of ZDF rats in comparison to ZL rats. Western blot analysis has also suggested a decreased expression of IκB-α and phosphorylated-JNK in diabetic heart tissue. Our results have suggested that mitochondrial dysfunction and increased oxidative stress in ZDF rats might be associated, at least in part, with altered NF-κB/JNK dependent redox cell signaling. These results might have implications in the elucidation of the mechanism of disease progression and designing strategies for diabetes prevention. PMID:23203193

  19. Role of neuropeptide Y in renal sympathetic vasoconstriction: studies in normal and congestive heart failure rats.

    PubMed

    DiBona, G F; Sawin, L L

    2001-08-01

    Sympathetic nerve activity, including that in the kidney, is increased in heart failure with increased plasma concentrations of norepinephrine and the vasoconstrictor cotransmitter neuropeptide Y (NPY). We examined the contribution of NPY to sympathetically mediated alterations in kidney function in normal and heart failure rats. Heart failure rats were created by left coronary ligation and myocardial infarction. In anesthetized normal rats, the NPY Y(1) receptor antagonist, H 409/22, at two doses, had no effect on heart rate, arterial pressure, or renal hemodynamic and excretory function. In conscious severe heart failure rats, high-dose H 409/22 decreased mean arterial pressure by 8 +/- 2 mm Hg but had no effect in normal and mild heart failure rats. During graded frequency renal sympathetic nerve stimulation (0 to 10 Hz), high-dose H 409/22 attenuated the decreases in renal blood flow only at 10 Hz (-36% +/- 5%, P <.05) in normal rats but did so at both 4 (-29% +/- 4%, P <.05) and 10 Hz (-33% +/- 5%, P <.05) in heart failure rats. The glomerular filtration rate, urinary flow rate, and sodium excretion responses to renal sympathetic nerve stimulation were not affected by high-dose H 409/22 in either normal or heart failure rats. NPY does not participate in the regulation of kidney function and arterial pressure in normal conscious or anesthetized rats. When sympathetic nervous system activity is increased, as in heart failure and intense renal sympathetic nerve stimulation, respectively, a small contribution of NPY to maintenance of arterial pressure and to sympathetic renal vasoconstrictor responses may be identified.

  20. PPAR ligands improve impaired metabolic pathways in fetal hearts of diabetic rats.

    PubMed

    Kurtz, Melisa; Capobianco, Evangelina; Martinez, Nora; Roberti, Sabrina Lorena; Arany, Edith; Jawerbaum, Alicia

    2014-10-01

    In maternal diabetes, the fetal heart can be structurally and functionally affected. Maternal diets enriched in certain unsaturated fatty acids can activate the nuclear receptors peroxisome proliferator-activated receptors (PPARs) and regulate metabolic and anti-inflammatory pathways during development. Our aim was to investigate whether PPARα expression, lipid metabolism, lipoperoxidation, and nitric oxide (NO) production are altered in the fetal hearts of diabetic rats, and to analyze the putative effects of in vivo PPAR activation on these parameters. We found decreased PPARα expression in the hearts of male but not female fetuses of diabetic rats when compared with controls. Fetal treatments with the PPARα ligand leukotriene B4 upregulated the expression of PPARα and target genes involved in fatty acid oxidation in the fetal hearts. Increased concentrations of triglycerides, cholesterol, and phospholipids were found in the hearts of fetuses of diabetic rats. Maternal treatments with diets supplemented with 6% olive oil or 6% safflower oil, enriched in unsaturated fatty acids that can activate PPARs, led to few changes in lipid concentrations, but up-regulated PPARα expression in fetal hearts. NO production, which was increased in the hearts of male and female fetuses in the diabetic group, and lipoperoxidation, which was increased in the hearts of male fetuses in the diabetic group, was reduced by the maternal treatments supplemented with safflower oil. In conclusion, impaired PPARα expression, altered lipid metabolism, and increased oxidative and nitridergic pathways were evidenced in hearts of fetuses of diabetic rats and were regulated in a gender-dependent manner by treatments enriched with PPAR ligands. © 2014 Society for Endocrinology.

  1. Effects of severe caloric restriction from birth on the hearts of adult rats.

    PubMed

    Melo, Dirceu Sousa; Riul, Tania Regina; Esteves, Elizabeth Adriana; Moraes, Patrícia Lanza; Ferreira, Fernanda Oliveira; Gavioli, Mariana; Alves, Márcia Netto Magalhães; Almeida, Pedro William Machado; Guatimosim, Silvia; Ferreira, Anderson José; Dias Peixoto, Marco Fabricio

    2013-08-01

    There has been increasing evidence suggesting that a severe caloric restriction (SCR) (above 40%) has beneficial effects on the hearts of rats. However, most of the reports have focused on the effects of SCR that started in adulthood. We investigated the consequences of SCR on the hearts of rats subjected to SCR since birth (CR50). From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Thereafter, a maximal aerobic test was performed to indirectly evaluate global cardiovascular function. Indices of contractility (+dT/dt) and relaxation (-dT/dt) were analyzed in isolated heart preparation, and cardiomyocyte diameter, number, density, and myocardium collagen content were obtained through histologic analysis. Ventricular myocytes were isolated, using standard methods to evaluate phosphorylated AKT levels, and Ca(2+) handling was evaluated with a combination of Western blot analysis, intracellular Ca(2+) imaging, and confocal microscopy. CR50 rats exhibited increased aerobic performance and cardiac function, as shown by the increase in ±dT/dt. Despite the smaller cardiomyocyte diameter, CR50 rats had an increased heart-body weight ratio, increased cardiomyocyte density and number, and similar levels of myocardium collagen content, compared with AL rats. AKT was hyperphosphorylated in cardiomyocytes from CR50 rats, and there were no significant differences in Ca(2+) transient and SERCA2 levels in cardiomyocytes between CR50 and AL rats. Collectively, these observations reveal the beneficial effects of a 50% caloric restriction on the hearts of adult rats restricted since birth, which might involve cardiomyocyte AKT signaling.

  2. [Effect of hyperglycaemia on fetal heart in pregnant rats].

    PubMed

    Zou, Yan; Ding, Yiling

    2009-02-01

    To investigate the effect of hyperglycaemia on the cardiomyodial change of rat fetus. Thirty clean SD pregnant rats were randomly dividing into group A, B and C, 10 in each group. Group A were injected intraperitoneally 50 mg/kg streptozotocin on the 6th day of pregnancy, Group B were injected the same dose on the 13th day of pregnancy, while Group C were injected intraperitoneally 0.1 mmol/L citrate buffer solution on the 6th day of pregnancy. All rats were killed on the 21st day of pregnancy, the total fetus, live fetus, weight, and length of fetus were recorded. The blood glucose in the fetal rats was measured, and the fetal hearts were collected. The fetal hearts were pathologically examined under light microscope and electron microscope. Immunohistochemical staining was applied to determine Caspase-3 in the heart of fetus. (1) The blood glucose of pregnant rats in the 3 groups showed no difference before intervening (P>0.05). There was significant difference between Group A and C, Group B and C after intervening (P<0.01), but no significant difference between Group A and B was found (P>0.05). (2 )The fetus in Group A and B was heavier and longer than in Group C, with significant difference (P<0.01), but not between Group A and B (P>0.05). The blood glucose of fetus in Group A and B was lower than that in Group C, with significant difference (P<0.01), but not between Group A and B (P>0.05). The rate of fetal death in Group A, B, and C were 31.96%,12.84%, and 3.88%, respectively. Significant deviation existed in the 3 groups (P<0.01). (3) Under light microscope, fetal hearts in Group A and B showed disorder, cardiac muscle cells swelled. There were vacuoles in cytolymph and necrosis in the myocardial tissue. Significant deviation in the integral of fetal necrosis existed in the 3 groups (P<0.01). (4) Caspase-3 was detected in the fetal hearts, the positive area ratio and mean OD value had significant deviation in the 3 groups (P<0.01).(5) Under the electron

  3. Fatty acid utilization in pressure-overload hypertrophied rat hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reibel, D.K.; O'Rourke, B.

    1986-03-05

    The authors have previously shown that the levels of total tissue coenzyme A and carnitine are reduced in hypertrophied hearts of rats subjected to aortic constriction. It was therefore of interest to determine if these changes were associated with alterations in fatty acid oxidation by the hypertrophied myocardium. Hearts were excised from sham-operated and aortic-constricted rats and perfused at 10 cm H/sub 2/O left atrial filling pressure with a ventricular afterload of 80 cm of H/sub 2/O with buffer containing 1.2 mM /sup 14/C-linoleate. Heart rate and peak systolic pressure were not different in control and hypertrophied hearts. /sup 14/CO/submore » 2/ production was linear in both groups of hearts between 10 and 30 minutes of perfusion. The rate of fatty acid oxidation determined by /sup 14/CO/sub 2/ production during this time was 0.728 +/- 0.06 ..mu..moles/min/g dry in control hearts and 0.710 +/- 0.02 ..mu..moles/min/g dry in hypertrophied hearts. Comparable rates of fatty acid oxidation were associated with comparable rates of O/sub 2/ consumption in the two groups of hearts (39.06 +/- 3.50 and 36.78 +/- 2.39 ..mu..moles/g dry/min for control and hypertrophied hearts, respectively). The data indicate that the ability of the hypertrophied heart to oxidize fatty acids under these perfusion conditions is not impaired in spite of significant reductions in tissue levels of coenzyme A and carnitine.« less

  4. Mathematical model of the metabolism of 123I-16-iodo-9-hexadecenoic acid in an isolated rat heart. Validation by comparison with experimental measurements.

    PubMed

    Dubois, F; Depresseux, J C; Bontemps, L; Demaison, L; Keriel, C; Mathieu, J P; Pernin, C; Marti-Batlle, D; Vidal, M; Cuchet, P

    1986-01-01

    The aim of the present study was to demonstrate that it is possible to estimate the intracellular metabolism of a fatty acid labelled with iodine using external radioactivity measurements. 123I-16-iodo-9-hexadecenoic acid (IHA) was injected close to the coronary arteries of isolated rat hearts perfused according to the Langendorff technique. The time course of the cardiac radioactivity was measured using an INa crystal coupled to an analyser. The obtained curves were analysed using a four-compartment mathematical model, with the compartments corresponding to the vascular-IHA (O), intramyocardial free-IHA (1), esterified-IHA (2) and iodide (3) pools. Curve analysis using this model demonstrated that, as compared to substrate-free perfusion, the presence of glucose (11 mM) increased IHA storage and decreased its oxidation. These changes were enhanced by the presence of insulin. A comparison of these results with measurements of the radioactivity levels within the various cellular fractions validated our proposed mathematical model. Thus, using only a mathematical analysis of a cardiac time-activity curve, it is possible to obtain quantitative information about IHA distribution in the different intracellular metabolic pathways. This technique is potentially useful for the study of metabolic effects of ischaemia or anoxia, as well as for the study of the influence of various substrates or drugs on IHA metabolism in isolated rat hearts.

  5. Neonatal Lipopolysaccharide Exposure Gender-Dependently Increases Heart Susceptibility to Ischemia/Reperfusion Injury in Male Rats.

    PubMed

    Zhang, Peng; Lv, Juanxiu; Li, Yong; Zhang, Lubo; Xiao, Daliao

    2017-01-01

    Background: Adverse stress exposure during the early neonatal period has been shown to cause aberrant development, resulting in an increased risk of adult disease. We tested the hypothesis that neonatal exposure to lipopolysaccharide (LPS) does not alter heart function at rest condition but causes heart dysfunction under stress stimulation later in life. Methods: Saline control or LPS were administered to neonatal rats via intraperitoneal injection. Experiments were conducted in 6 week-old male and female rats. Isolated hearts were perfused in a Langendorff preparation. Results: Neonatal LPS exposure exhibited no effects on the body weight of the developing rats, but induced decreases in the left ventricle (LV) to the body weight ratio in male rats. Neonatal LPS exposure showed no effects on the baseline heart function determined by in vivo and ex vivo experiments, but caused decreases in the post-ischemic recovery of the LV function in male but not female rats. Neonatal LPS-mediated LV dysfunction was associated with an increase in myocardial infarct size and the LDH release in the male rats. Conclusion: The present study provides novel evidence that neonatal immune challenges could induce gender-dependent long-term effects on cardiac development and heart function, which reinforces the notion that adverse stress exposure during the early neonatal period can aggravate heart functions and the development of a heart ischemia-sensitive phenotype later in life.

  6. Mesenchymal Stem Cells from Fetal Heart Attenuate Myocardial Injury after Infarction: An In Vivo Serial Pinhole Gated SPECT-CT Study in Rats

    PubMed Central

    Garikipati, Venkata Naga Srikanth; Jadhav, Sachin; Pal, Lily; Prakash, Prem; Dikshit, Madhu; Nityanand, Soniya

    2014-01-01

    Mesenchymal stem cells (MSC) have emerged as a potential stem cell type for cardiac regeneration after myocardial infarction (MI). Recently, we isolated and characterized mesenchymal stem cells derived from rat fetal heart (fC-MSC), which exhibited potential to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. In the present study, we investigated the therapeutic efficacy of intravenously injected fC-MSC in a rat model of MI using multi-pinhole gated SPECT-CT system. fC-MSC were isolated from the hearts of Sprague Dawley (SD) rat fetuses at gestation day 16 and expanded ex vivo. One week after induction of MI, 2×106 fC-MSC labeled with PKH26 dye (n = 6) or saline alone (n = 6) were injected through the tail vein of the rats. Initial in vivo tracking of 99mTc-labeled fC-MSC revealed a focal uptake of cells in the anterior mid-ventricular region of the heart. At 4 weeks of fC-MSC administration, the cells labeled with PKH26 were located in abundance in infarct/peri-infarct region and the fC-MSC treated hearts showed a significant increase in left ventricular ejection fraction and a significant decrease in the end diastolic volume, end systolic volume and left ventricular myo-mass in comparison to the saline treated group. In addition, fC-MSC treated hearts had a significantly better myocardial perfusion and attenuation in the infarct size, in comparison to the saline treated hearts. The engrafted PKH26-fC-MSC expressed cardiac troponin T, endothelial CD31 and smooth muscle sm-MHC, suggesting their differentiation into all major cells of cardiovascular lineage. The fC-MSC treated hearts demonstrated an up-regulation of cardio-protective growth factors, anti-fibrotic and anti-apoptotic molecules, highlighting that the observed left ventricular functional recovery may be due to secretion of paracrine factors by fC-MSC. Taken together, our results suggest that fC-MSC therapy may be a new therapeutic strategy for MI and multi

  7. Hyperoxic preconditioning fails to confer additional protection against ischemia-reperfusion injury in acute diabetic rat heart.

    PubMed

    Pourkhalili, Khalil; Hajizadeh, Sohrab; Akbari, Zahra; Dehaj, Mansour Esmaili; Akbarzadeh, Samad; Alizadeh, Alimohammad

    2012-01-01

    Experimental studies show that detrimental effects of ischemia-reperfusion (I/R) injury can be attenuated by hyperoxic preconditioning in normal hearts, however, there are few studies about hyperoxia effects in diseased myocardium. The present study was designed to assess the cardioprotective effects of hyperoxia pretreatment (≥ 95 % O2) in acute diabetic rat hearts. Normal and one week acute diabetic rats were either exposed to 60 (H60) and 180 (H180) min of hyperoxia or exposed to normal atmospheric air (21 % O2). Then hearts were isolated immediately and subjected to 30 min of regional ischemia followed by 120 min of reperfusion. Infarct size, cardiomyocyte apoptosis, enzymes release and ischemia induced arrhythmias were determined. Heart of diabetic control rats had less infarct size and decreased LDH and CK-MB release compared to normal hearts. 60 and 180 min of hyperoxia reduced myocardial infarct size and enzymes release in normal hearts. 180 min of hyperoxia also decreased cardiomyocytes apoptosis in normal state. On the other hand, protective values of hyperoxia were not significantly different in diabetic hearts. Moreover, hyperoxia reduced severity of ventricular arrhythmias in normal rat hearts whereas; it did not confer any additional antiarrhythmic protection in diabetic hearts. These findings suggest that diabetic hearts are less susceptible to ischemia-induced arrhythmias and infarction. Hyperoxia greatly protects rat hearts against I/R injury in normal hearts, however, it could not provide added cardioprotective effects in acute phase of diabetes.

  8. A RAT MODEL OF HEART FAILURE INDUCED BY ISOPROTERENOL AND A HIGH SALT DIET

    EPA Science Inventory

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4wk) isoproterenol (ISO) infusion in Spontaneously Hypertensive Heart Failure (SHHF) rats caused cardiac injury with minimal hypertrophy. O...

  9. Bisphenol A Exposure and Cardiac Electrical Conduction in Excised Rat Hearts

    PubMed Central

    Jaimes, Rafael; Asfour, Huda; Swift, Luther M.; Wengrowski, Anastasia M.; Sarvazyan, Narine; Kay, Matthew W.

    2014-01-01

    Background: Bisphenol A (BPA) is used to produce polycarbonate plastics and epoxy resins that are widely used in everyday products, such as food and beverage containers, toys, and medical devices. Human biomonitoring studies have suggested that a large proportion of the population may be exposed to BPA. Recent epidemiological studies have reported correlations between increased urinary BPA concentrations and cardiovascular disease, yet the direct effects of BPA on the heart are unknown. Objectives: The goal of our study was to measure the effect of BPA (0.1–100 μM) on cardiac impulse propagation ex vivo using excised whole hearts from adult female rats. Methods: We measured atrial and ventricular activation times during sinus and paced rhythms using epicardial electrodes and optical mapping of transmembrane potential in excised rat hearts exposed to BPA via perfusate media. Atrioventricular activation intervals and epicardial conduction velocities were computed using recorded activation times. Results: Cardiac BPA exposure resulted in prolonged PR segment and decreased epicardial conduction velocity (0.1–100 μM BPA), prolonged action potential duration (1–100 μM BPA), and delayed atrioventricular conduction (10–100 μM BPA). These effects were observed after acute exposure (≤ 15 min), underscoring the potential detrimental effects of continuous BPA exposure. The highest BPA concentration used (100 μM) resulted in prolonged QRS intervals and dropped ventricular beats, and eventually resulted in complete heart block. Conclusions: Our results show that acute BPA exposure slowed electrical conduction in excised hearts from female rats. These findings emphasize the importance of examining BPA’s effect on heart electrophysiology and determining whether chronic in vivo exposure can cause or exacerbate conduction abnormalities in patients with preexisting heart conditions and in other high-risk populations. Citation: Posnack NG, Jaimes R III, Asfour H

  10. Shenfu Formula reduces cardiomyocyte apoptosis in heart failure rats by regulating microRNAs.

    PubMed

    Yan, Xu; Wu, Hongjin; Ren, Jianxun; Liu, Yuna; Wang, Shengqi; Yang, Jiyuan; Qin, Shuyan; Wu, Delin

    2018-05-07

    Shenfu decoction consists of the water extract from the dried root or rootstalk of Panax ginseng C. A. Mey (Asian ginseng) and the lateral root of Aconitum carmichaeli Debx (Fuzi, Heishunpian in Chinese). Shenfu Formula has been used as a folk Chinese medicine for thousands of years. Recent studies have shown that Shenfu injection can enhance cardiac function and regulate arrhythmia. Shenfu Formula plays an important role in the treatment of heart failure. However, its microRNA-mediated mechanisms are still not fully understood. Thus, we established a heart failure model in rats to investigate the microRNA mechanism of Shenfu Formula in cardiac function and apoptosis. The heart failure animal model was established via left-anterior descending coronary artery ligation in rats. Seven days after surgery, Shenfu Formula was given to the heart failure rats, which were selected by echocardiography with an LVEF<45%. After Shenfu Formula was given intragastrically for 30 days, blood samples were drawn, the heart was excised after echocardiography, and echocardiographic parameters and apoptosis-related proteins were further examined. Fas/Fas-L and Bcl-2/Bax proteins were analyzed by Western blot, and microRNAs were evaluated using Affymetrix GeneChip miRNA arrays. Shenfu Formula increased the left ventricular ejection fraction, improved the hemodynamic index of heart failure rats, and decreased serum brain natriuretic peptide (BNP) levels. Shenfu Formula also decreased the positive rate of myocardial cells as detected by the TUNEL method and significantly suppressed caspase 3 expression. Moreover, we found that Shenfu formula can regulate the initiative factors Fas/Fas-L in the intrinsic pathway and Bcl-2/Bax in the extrinsic apoptosis pathway to suppress apoptosis in heart failure rats. Finally, Shenfu formula potentially alters the balance of microRNAs involved in activating and inhibiting apoptosis, ultimately suppressing apoptosis; this leads to changes in the gene

  11. Vascular calcification abrogates the nicorandil mediated cardio-protection in ischemia reperfusion injury of rat heart.

    PubMed

    Ravindran, Sriram; Murali, Jeyashri; Amirthalingam, Sunil Kumar; Gopalakrishnan, Senthilkumar; Kurian, Gino A

    2017-02-01

    The present study was aimed to determine the efficacy of nicorandil in treating cardiac reperfusion injury with an underlying co-morbidity of vascular calcification (VC). Adenine diet was used to induce VC in Wistar rat and the heart was isolated to induce global ischemia reperfusion (IR) by Langendorff method, with and without the nicorandil (7.5mg/kg) pre-treatment and compared with those fed on normal diet. The adenine-treated rats displayed abnormal ECG changes and altered mitochondrial integrity compared to a normal rat heart. These hearts, when subjected to IR increased the infarct size, cardiac injury (measured by lactate dehydrogenase and creatine kinase activity in the coronary perfusate) and significantly altered the hemodynamics compared to the normal perfused heart. Nicorandil pretreatment in rat fed on normal diet enhanced the hemodynamics significantly (P<0.05) along with a substantial reduction in the mitochondrial dysfunction (measured by high ADP to oxygen consumption ratio, respiratory control ratio, enzyme activities and less swelling behavior) when subjected to IR. However, this cardio-protective effect of nicorandil was absent in rat heart with underlying calcification. Our results suggest that, the protective effect of nicorandil, a known mitochondrial ATP linked K + channel opener, against myocardial reperfusion injury was confined to normal rat heart. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Abolition of reperfusion-induced arrhythmias in hearts from thiamine-deficient rats.

    PubMed

    Oliveira, Fernando A; Guatimosim, Silvia; Castro, Carlos H; Galan, Diogo T; Lauton-Santos, Sandra; Ribeiro, Angela M; Almeida, Alvair P; Cruz, Jader S

    2007-07-01

    Extensive work has been done regarding the impact of thiamine deprivation on the nervous system. In cardiac tissue, chronic thiamine deficiency is described to cause changes in the myocardium that can be associated with arrhythmias. However, compared with the brain, very little is known about the effects of thiamine deficiency on the heart. Thus this study was undertaken to explore whether thiamine deprivation has a role in cardiac arrhythmogenesis. We examined hearts isolated from thiamine-deprived and control rats. We measured heart rate, diastolic and systolic tension, and contraction and relaxation rates. Whole cell voltage clamp was performed in rat isolated cardiac myocytes to measure L-type Ca(2+) current. In addition, we investigated the global intracellular calcium transients by using confocal microscopy in the line-scan mode. The hearts from thiamine-deficient rats did not degenerate into ventricular fibrillation during 30 min of reperfusion after 15 min of coronary occlusion. The antiarrhythmogenic effects were characterized by the arrhythmia severity index. Our results suggest that hearts from thiamine-deficient rats did not experience irreversible arrhythmias. There was no change in L-type Ca(2+) current density. Inactivation kinetics of this current in Ca(2+)-buffered cells was retarded in thiamine-deficient cardiac myocytes. The global Ca(2+) release was significantly reduced in thiamine-deficient cardiac myocytes. The amplitude of caffeine-releasable Ca(2+) was lower in thiamine-deficient myocytes. In summary, we have found that thiamine deprivation attenuates the incidence and severity of postischemic arrhythmias, possibly through a mechanism involving a decrease in global Ca(2+) release.

  13. American ginseng acutely regulates contractile function of rat heart.

    PubMed

    Jiang, Mao; Murias, Juan M; Chrones, Tom; Sims, Stephen M; Lui, Edmund; Noble, Earl G

    2014-01-01

    Chronic ginseng treatments have been purported to improve cardiac performance. However reports of acute administration of ginseng on cardiovascular function remain controversial and potential mechanisms are not clear. In this study, we examined the effects of acute North American ginseng (Panax quinquefolius) administration on rat cardiac contractile function by using electrocardiogram (ECG), non-invasive blood pressure (BP) measurement, and Langendorff isolated, spontaneously beating, perfused heart measurements (LP). Eight-week old male Sprague-Dawley rats (n = 8 per group) were gavaged with a single dose of water-soluble American ginseng at 300 mg/kg body weight. Heart rate (HR) and BP were measured prior to and at 1 and 24 h after gavaging (ECG and BP). Additional groups were used for each time point for Langendorff measurements. HR was significantly decreased (ECG: 1 h: 6 ± 0.2%, 24 h: 8 ± 0.3%; BP: 1 h: 8.8 ± 0.2%, 24 h: 13 ± 0.4% and LP: 1 h: 22 ± 0.4%, 24 h: 19 ± 0.4%) in rats treated with water-soluble ginseng compared with pre or control measures. An initial marked decrease in left ventricular developed pressure was observed in LP hearts but BP changes were not observed in BP group. A direct inhibitory effect of North American ginseng was observed on cardiac contractile function in LP rats and on fluorescence measurement of intracellular calcium transient in freshly isolated cardiac myocytes when exposed to ginseng (1 and 10 μg/ml). Collectively these data present evidence of depressed cardiac contractile function by acute administration of North American ginseng in rat. This acute reduction in cardiac contractile function appears to be intrinsic to the myocardium.

  14. GPER mediates cardiotropic effects in spontaneously hypertensive rat hearts.

    PubMed

    De Francesco, Ernestina Marianna; Angelone, Tommaso; Pasqua, Teresa; Pupo, Marco; Cerra, Maria Carmela; Maggiolini, Marcello

    2013-01-01

    Estrogens promote beneficial effects in the cardiovascular system mainly through the estrogen receptor (ER)α and ERβ, which act as ligand-gated transcription factors. Recently, the G protein-coupled estrogen receptor (GPER) has been implicated in the estrogenic signaling in diverse tissues, including the cardiovascular system. In this study, we demonstrate that left ventricles of male Spontaneously Hypertensive Rats (SHR) express higher levels of GPER compared to normotensive Wistar Kyoto (WKY) rats. In addition, we show that the selective GPER agonist G-1 induces negative inotropic and lusitropic effects to a higher extent in isolated and Langendorff perfused hearts of male SHR compared to WKY rats. These cardiotropic effects elicited by G-1 involved the GPER/eNOS transduction signaling, as determined by using the GPER antagonist G15 and the eNOS inhibitor L-NIO. Similarly, the G-1 induced activation of ERK1/2, AKT, GSK3β, c-Jun and eNOS was abrogated by G15, while L-NIO prevented only the eNOS phosphorylation. In hypoxic Langendorff perfused WKY rat heart preparations, we also found an increased expression of GPER along with that of the hypoxic mediator HIF-1α and the fibrotic marker CTGF. Interestingly, G15 and L-NIO prevented the ability of G-1 to down-regulate the expression of both HIF-1α and CTGF, which were found expressed to a higher extent in SHR compared to WKY rat hearts. Collectively, the present study provides novel data into the potential role played by GPER in hypertensive disease on the basis of its involvement in myocardial inotropism and lusitropism as well as the expression of the apoptotic HIF-1α and fibrotic CTGF factors. Hence, GPER may be considered as a useful target in the treatment of some cardiac dysfunctions associated with stressful conditions like the essential hypertension.

  15. American ginseng acutely regulates contractile function of rat heart

    PubMed Central

    Jiang, Mao; Murias, Juan M.; Chrones, Tom; Sims, Stephen M.; Lui, Edmund; Noble, Earl G.

    2014-01-01

    Chronic ginseng treatments have been purported to improve cardiac performance. However reports of acute administration of ginseng on cardiovascular function remain controversial and potential mechanisms are not clear. In this study, we examined the effects of acute North American ginseng (Panax quinquefolius) administration on rat cardiac contractile function by using electrocardiogram (ECG), non-invasive blood pressure (BP) measurement, and Langendorff isolated, spontaneously beating, perfused heart measurements (LP). Eight-week old male Sprague–Dawley rats (n = 8 per group) were gavaged with a single dose of water-soluble American ginseng at 300 mg/kg body weight. Heart rate (HR) and BP were measured prior to and at 1 and 24 h after gavaging (ECG and BP). Additional groups were used for each time point for Langendorff measurements. HR was significantly decreased (ECG: 1 h: 6 ± 0.2%, 24 h: 8 ± 0.3%; BP: 1 h: 8.8 ± 0.2%, 24 h: 13 ± 0.4% and LP: 1 h: 22 ± 0.4%, 24 h: 19 ± 0.4%) in rats treated with water-soluble ginseng compared with pre or control measures. An initial marked decrease in left ventricular developed pressure was observed in LP hearts but BP changes were not observed in BP group. A direct inhibitory effect of North American ginseng was observed on cardiac contractile function in LP rats and on fluorescence measurement of intracellular calcium transient in freshly isolated cardiac myocytes when exposed to ginseng (1 and 10 μg/ml). Collectively these data present evidence of depressed cardiac contractile function by acute administration of North American ginseng in rat. This acute reduction in cardiac contractile function appears to be intrinsic to the myocardium. PMID:24672484

  16. Symbolic dynamics for arrhythmia identification from heart variability of rats with cardiac failures

    NASA Astrophysics Data System (ADS)

    Letellier, C.; Roulin, E.; Loriot, S.; Morin, J.-P.; Dionnet, F.

    2004-12-01

    Heart rate variability of rats is investigated using concepts from the nonlinear dynamical system theory. Among the important techniques offered, symbolic dynamics is very appealing by its power to investigate patterns which can be repeated in a time series. The present analysis was performed in six control rats and six chronic cardiac insufficient rats (myocardial infarction due to left descendent coronary artery ligation). Rats are left in clean atmosphere or exposed to atmosphere containing diluted engine emission pollutants. The evolution of the heart rate variability is then investigated with a three element symbolic dynamics which allows to distinguish extrasystoles from tachycardia or bradycardia using the symbol sequences.

  17. Hypothyroidism and oxidative stress: differential effect on the heart of virgin and pregnant rats.

    PubMed

    Carmona, Y V; Coria, M J; Oliveros, L B; Gimenez, M S

    2014-01-01

    The present study investigates the effects of hypothyroidism on both the redox state and the thyroid hormone receptors expression in the heart ventricle of virgin and pregnant rats.Hypothyroid state was induced by 6-n-propyl-2-thiouracil in drinking water given to Wistar rats starting 8 days before mating until day 21 of pregnancy or for 30 days in virgin rats. Serum paraoxonase-1 (PON-1) activity, serum and heart nitrites, and thiobarbituric acid-reactive substances (TBARS) were analyzed. Heart protein oxidation, as carbonyls, and copper-zinc superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx), and catalase (CAT) activities, were determined. In addition, heart expressions of NADPH oxidase (NOX-2), CAT, SOD, GPx, and thyroid receptors (TRα and TRβ) mRNA were assessed by RT-PCR. Inducible and endothelial Nitric Oxide Synthase (iNOS and eNOS) were determined by Western blot. Hypothyroidism in the heart of virgin rats decreased TRα and TRβ expressions, and induced oxidative stress, leading to a decrease of nitrites and an increase of carbonyls, NOX-2 mRNA, and GPx activity. A decreased PON-1 activity suggested low protection against oxidative stress in blood circulation. Pregnancy reduced TRα and TRβ mRNA expressions and induced oxidative stress by increasing nitrite and TBARS levels, SOD and CAT activities and NOX-2, eNOS and iNOS expressions, while hypothyroidism, emphasized the decreases of TRα mRNA levels and did not alter the redox state in the heart. TR expressions and redox balance of rat hearts depend on the physiological state. Pregnancy per se seems to protect the heart against oxidative stress induced by hypothyroidism. Supporting Information for this article is available online at http://www.thieme-connect.de/ejournals/toc/hmr. © Georg Thieme Verlag KG Stuttgart · New York.

  18. [Effect of the sharply strengthened motor activity on heart pumping ability of rats and mechanisms of its regulation].

    PubMed

    Nikitin, A S; Abzalov, R A; Abzalov, N I; Vafina, E Z

    2013-08-01

    The indicators of heart pumping ability of rats at a muscular loading of the maximum power and also in the conditions of transition from sharply strengthened motor activity regime on a strengthened motor activity regime at adrenergic influence stimulation and blockade were investigated. At rats of 100-daily age at the strengthened motor activity heart rate is less, and blood stroke volume is more, than in the rats, subject to muscular loading of the maximum power. The adrenergic influence on the heart's pumping ability of sharply strengthened motor activity rats is much more, than of unlimited motor activity rats. At the α1-adrenoreceptors blockade at 100-daily rats the decreasing in intensity of muscular loading causes increased in adrenergic influence on heart pumping ability.

  19. Bisphenol A exposure and cardiac electrical conduction in excised rat hearts.

    PubMed

    Posnack, Nikki Gillum; Jaimes, Rafael; Asfour, Huda; Swift, Luther M; Wengrowski, Anastasia M; Sarvazyan, Narine; Kay, Matthew W

    2014-04-01

    Bisphenol A (BPA) is used to produce polycarbonate plastics and epoxy resins that are widely used in everyday products, such as food and beverage containers, toys, and medical devices. Human biomonitoring studies have suggested that a large proportion of the population may be exposed to BPA. Recent epidemiological studies have reported correlations between increased urinary BPA concentrations and cardiovascular disease, yet the direct effects of BPA on the heart are unknown. The goal of our study was to measure the effect of BPA (0.1-100 μM) on cardiac impulse propagation ex vivo using excised whole hearts from adult female rats. We measured atrial and ventricular activation times during sinus and paced rhythms using epicardial electrodes and optical mapping of transmembrane potential in excised rat hearts exposed to BPA via perfusate media. Atrioventricular activation intervals and epicardial conduction velocities were computed using recorded activation times. Cardiac BPA exposure resulted in prolonged PR segment and decreased epicardial conduction velocity (0.1-100 μM BPA), prolonged action potential duration (1-100 μM BPA), and delayed atrioventricular conduction (10-100 μM BPA). These effects were observed after acute exposure (≤ 15 min), underscoring the potential detrimental effects of continuous BPA exposure. The highest BPA concentration used (100 μM) resulted in prolonged QRS intervals and dropped ventricular beats, and eventually resulted in complete heart block. Our results show that acute BPA exposure slowed electrical conduction in excised hearts from female rats. These findings emphasize the importance of examining BPA's effect on heart electrophysiology and determining whether chronic in vivo exposure can cause or exacerbate conduction abnormalities in patients with preexisting heart conditions and in other high-risk populations.

  20. Optical metabolic imaging of irradiated rat heart exposed to ischemia-reperfusion injury

    NASA Astrophysics Data System (ADS)

    la Cour, Mette Funding; Mehrvar, Shima; Heisner, James S.; Motlagh, Mohammad Masoudi; Medhora, Meetha; Ranji, Mahsa; Camara, Amadou K. S.

    2018-01-01

    Whole thoracic irradiation (WTI) is known to cause deterioration in cardiac function. Whether irradiation predisposes the heart to further ischemia and reperfusion (IR) injury is not well known. The aim of this study is to examine the susceptibility of rat hearts to IR injury following a single fraction of 15 Gy WTI and to investigate the role of mitochondrial metabolism in the differential susceptibility to IR injury. After day 35 of irradiation, ex vivo hearts from irradiated and nonirradiated rats (controls) were exposed to 25-min global ischemia followed by 60-min IR, or hearts were perfused without IR for the same protocol duration [time controls (TC)]. Online fluorometry of metabolic indices [redox state: reduced nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD), and NADH/FAD redox ratio] and functional variables [systolic left ventricular pressure (LVP), diastolic LVP (diaLVP), coronary flow (CF), and heart rate were recorded in the beating heart; developed LVP (dLVP) and rate pressure product (RPP)] were derived. At the end of each experimental protocol, hearts were immediately snap frozen in liquid N2 for later three-dimensional imaging of the mitochondrial redox state using optical cryoimaging. Irradiation caused a delay in recovery of dLVP and RPP after IR when compared to nonirradiated hearts but recovered to the same level at the end of reperfusion. CF in the irradiated hearts recovered better than the control hearts after IR injury. Both fluorometry and 3-D cryoimaging showed that in WTI and control hearts, the redox ratio increased during ischemia (reduced) and decreased on reperfusion (oxidized) when compared to their respective TCs; however, there was no significant difference in the redox state between WTI and controls. In conclusion, our results show that although irradiation of rat hearts compromised baseline cardiovascular function, it did not alter cardiac mitochondrial redox state and induce greater

  1. The efficiency coefficient of the rat heart and muscular system after physical training and hypokinesia

    NASA Technical Reports Server (NTRS)

    Alyukhin, Y. S.; Davydov, A. F.

    1982-01-01

    The efficiency of an isolated heart did not change after prolonged physical training of rats for an extreme load. The increase in oxygen consumption by the entire organism in 'uphill' running as compared to the resting level in the trained rats was 14% lower than in the control animals. Prolonged hypokinesia of the rats did not elicit a change in the efficiency of the isolated heart.

  2. Improvement of Heart Failure by Human Amniotic Mesenchymal Stromal Cell Transplantation in Rats.

    PubMed

    Razavi Tousi, Seyed Mohammad Taghi; Faghihi, Mahdieh; Nobakht, Maliheh; Molazem, Mohammad; Kalantari, Elham; Darbandi Azar, Amir; Aboutaleb, Nahid

    2016-07-06

    Background: Recently, stem cells have been considered for the treatment of heart diseases, but no marked improvement has been recorded. This is the first study to examine the functional and histological effects of the transplantation of human amniotic mesenchymal stromal cells (hAMSCs) in rats with heart failure (HF). Methods: This study was conducted in the years 2014 and 2015. 35 male Wistar rats were randomly assigned into 5 equal experimental groups (7 rats each) as 1- Control 2- Heart Failure (HF) 3- Sham 4- Culture media 5- Stem Cell Transplantation (SCT). Heart failure was induced using 170 mg/kg/d of isoproterenol subcutaneously injection in 4 consecutive days. The failure confirmed by the rat cardiac echocardiography on day 28. In SCT group, 3×10 6 cells in 150 µl of culture media were transplanted to the myocardium. At the end, echocardiographic and hemodynamic parameters together with histological evaluation were done. Results: Echocardiography results showed that cardiac ejection fraction in HF group increased from 58/73 ± 9% to 81/25 ± 6/05% in SCT group (p value < 0.001). Fraction shortening in HF group was increased from 27/53 ± 8/58% into 45/55 ± 6/91% in SCT group (p value < 0.001). Furthermore, hAMSCs therapy significantly improved mean diastolic blood pressure, mean arterial pressure, left ventricular systolic pressure, rate pressure product, and left ventricular end-diastolic pressure compared to those in the HF group, with the values reaching the normal levels in the control group. A marked reduction in fibrosis tissue was also found in the SCT group (p value < 0.001) compared with the animals in the HF group. Conclusion: The transplantation of hAMSCs in rats with heart failure not only decreased the level of fibrosis but also conferred significant improvement in heart performance in terms of echocardiographic and hemodynamic parameters.

  3. Simultaneous fluorometry and phosphorometry of Langendorff perfused rat heart: ex vivo animal studies

    NASA Astrophysics Data System (ADS)

    Ranji, Mahsa; Jaggard, Dwight L.; Apreleva, Sofia V.; Vinogradov, Sergei A.; Chance, Britton

    2006-10-01

    Fluorescence imaging of intrinsic fluorophores of tissue is a powerful method to assess metabolic changes at the cellular and intracellular levels. At the same time, exogenous phosphorescent probes can be used to accurately measure intravascular tissue oxygenation. Heart failure is the leading cause of death in America. A rat heart can potentially model the human heart to study failures or other abnormalities optically. We report simultaneous fluorescence and phosphorescence measurements performed on a rat heart. We have used two different optical systems to acquire fluorescence signals of flavoprotein and nicotinamide adenine dinucleotide—the two intrinsic fluorophores of mitochondria—and the phosphorescence signal of an intravascular oxygen probe to extract intracellular and intravascular metabolism loads, respectively.

  4. The treatment with pyridostigmine improves the cardiocirculatory function in rats with chronic heart failure.

    PubMed

    Sabino, João Paulo J; da Silva, Carlos Alberto Aguiar; de Melo, Rubens Fernando; Fazan, Rubens; Salgado, Helio C

    2013-01-01

    Sympathetic hyperactivity and its outcome in heart failure have been thoroughly investigated to determine the focus of pharmacologic approaches targeting the sympathetic nervous system in the treatment of this pathophysiological condition. On the other hand, therapeutic approaches aiming to protect the reduced cardiac parasympathetic function have not received much attention. The present study evaluated rats with chronic heart failure (six to seven weeks after coronary artery ligation) and the effects of an increased parasympathetic function by pyridostigmine (an acetylcholinesterase inhibitor) on the following aspects: arterial pressure (AP), heart rate (HR), baroreceptor and Bezold-Jarisch reflex, pulse interval (PI) and AP variability, cardiac sympathetic and parasympathetic tonus, intrinsic heart rate (i-HR) and cardiac function. Conscious rats with heart failure exhibited no change in HR, Bezold-Jarisch reflex, PI variability and cardiac sympathetic tonus. On the other hand, these animals presented hypotension and reduced baroreflex sensitivity, power in the low frequency (LF) band of the systolic AP spectrum, cardiac parasympathetic tonus and i-HR, while anesthetized rats exhibited reduced cardiac performance. Pyridostigmine prevented the attenuation of all the parameters examined, except basal AP and cardiac performance. In conclusion, the blockade of acetylcholinesterase with pyridostigmine was revealed to be an important pharmacological approach, which could be used to increase parasympathetic function and to improve a number of cardiocirculatory parameters in rats with heart failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Onset of decreased heart work is correlated with increased heart rate and shortened QT interval in high-carbohydrate fed overweight rats.

    PubMed

    Durak, Aysegul; Olgar, Yusuf; Tuncay, Erkan; Karaomerlioglu, Irem; Kayki Mutlu, Gizem; Arioglu Inan, Ebru; Altan, Vecdi Melih; Turan, Belma

    2017-11-01

    Mechanical activity of the heart is adversely affected in metabolic syndrome (MetS) characterized by increased body mass and marked insulin resistance. Herein, we examined the effects of high carbohydrate intake on cardiac function abnormalities by evaluating in situ heart work, heart rate, and electrocardiograms (ECGs) in rats. MetS was induced in male Wistar rats by adding 32% sucrose to drinking water for 22-24 weeks and was confirmed by insulin resistance, increased body weight, increased blood glucose and serum insulin, and increased systolic and diastolic blood pressures in addition to significant loss of left ventricular integrity and increased connective tissue around myofibrils. Analysis of in situ ECG recordings showed a markedly shortened QT interval and decreased QRS amplitude with increased heart rate. We also observed increased oxidative stress and decreased antioxidant defense characterized by decreases in serum total thiol level and attenuated paraoxonase and arylesterase activities. Our data indicate that increased heart rate and a shortened QT interval concomitant with higher left ventricular developed pressure in response to β-adrenoreceptor stimulation as a result of less cyclic AMP release could be regarded as a natural compensation mechanism in overweight rats with MetS. In addition to the persistent insulin resistance and obesity associated with MetS, one should consider the decreased heart work, increased heart rate, and shortened QT interval associated with high carbohydrate intake, which may have more deleterious effects on the mammalian heart.

  6. Myocardial myostatin in spontaneously hypertensive rats with heart failure.

    PubMed

    Damatto, R L; Lima, A R R; Martinez, P F; Cezar, M D M; Okoshi, K; Okoshi, M P

    2016-07-15

    Myostatin has been shown to regulate skeletal and cardiac muscle growth. However, its status on long-term hypertrophied myocardium has not been addressed. The purpose of this study was to evaluate the expression of myocardial myostatin and its antagonist follistatin in spontaneously hypertensive rats (SHR) with heart failure. Eighteen-month-old SHR were evaluated to identify clinical features of heart failure such as tachypnea/labored respiration and weight loss. After heart failure was detected, rats were subjected to echocardiogram and euthanized. Age-matched normotensive Wistar-Kyoto (WKY) rats were used as controls. Myostatin and follistatin protein expression was assessed by Western blotting. Statistical analysis was performed by Student's t test. All SHR (n=8) presented right ventricular hypertrophy and five had lung congestion. SHR had left chambers hypertrophy and dilation (left atrial diameter: WKY 5.73±0.59; SHR 7.28±1.17mm; p=0.004; left ventricular (LV) diastolic diameter/body weight ratio: WKY 19.6±3.1; SHR 27.7±4.7mm/kg; p=0.001), and LV systolic dysfunction (midwall fractional shortening: WKY 34.9±3.31; SHR 24.8±3.20%; p=0.003). Myocyte diameter (WKY 23.1±1.50, SHR 25.5±1.33μm; p=0.004) and myocardial interstitial collagen fraction (WKY 4.86±0.01; SHR 8.36±0.02%; p<0.001) were increased in the SHR. Myostatin (WKY 1.00±0.16; SHR 0.77±0.23 arbitrary units; p=0.035) and follistatin (WKY 1.00±0.35; SHR 0.49±0.18 arbitrary units; p=0.002) expression was lower in SHR. Myostatin and follistatin expression negatively correlated with LV diastolic diameter-to-body weight ratio and LV systolic diameter, and positively correlated with midwall fractional shortening. Myostatin and follistatin protein expression is reduced in the long-term hypertrophied myocardium from spontaneously hypertensive rats with heart failure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Curcumin mediated attenuation of carbofuran induced toxicity in the heart of Wistar rats.

    PubMed

    Jaiswal, S K; Gupta, V K; Siddiqi, N J; Sharma, B

    2017-07-31

    Carbofuran is used to improve the agricultural productivity as well as to protect the house hold and industrial products, but due to accumulation in the biological system, it causes serious side effects in many non-targets mammalian systems. The aim of present study is to evaluate the carbofuran induced oxidative stress in rat heart and its attenuation by using herbal product curcumin. Rats were divided into four groups; one group received 20 % LD50 of carbofuran another group of rats received same doses of carbofuran was  pretreated with curcumin (100 mg kg-1 body weight) and remaining two other groups served as control and curcumin treated animals. The activity of lactate dehydrogenase (LDH) in the heart tissues and serum was evaluated and the activity of enzymatic antioxidants superoxide dismutase (SOD) and catalase (CAT) was estimated in the heart tissues. The level of malondialdehyde (MDA) in heart tissues was also measured. The Total cholesterol (TC) and high density lipoprotein (HDL) was measured in the serum of the entire animals group. The results of present study showed that the activity of LDH in heart tissues were decreased and in serum was elevated. The MDA level was significantly elevated due to exposure of carbofuran. The enzymatic antioxidants, SOD and CAT activities were also inhibited. The ratio of pro-oxidant (P)/antioxidant (A) was also found to be sharply increased in the rat heart tissues of carbofuran exposed animals. The alterations in all the parameter were recovered by the pretreatment of curcumin (100 mg kg-1 body weight).

  8. N-acetylcysteine prevents nitrosative stress-associated depression of blood pressure and heart rate in streptozotocin diabetic rats.

    PubMed

    Nagareddy, Prabhakara Reddy; Xia, Zhengyuan; MacLeod, Kathleen M; McNeill, John H

    2006-04-01

    Previous studies have indicated that cardiovascular abnormalities such as depressed blood pressure and heart rate occur in streptozotocin (STZ) diabetic rats. Chronic diabetes, which is associated with increased expression of inducible nitric oxide synthase (iNOS) and oxidative stress, may produce peroxynitrite/nitrotyrosine and cause nitrosative stress. We hypothesized that nitrosative stress causes cardiovascular depression in STZ diabetic rats and therefore can be corrected by reducing its formation. Control and STZ diabetic rats were treated orally for 9 weeks with N-acetylcysteine (NAC), an antioxidant and inhibitor of iNOS. At termination, the mean arterial blood pressure (MABP) and heart rate (HR) were measured in conscious rats. Nitrotyrosine and endothelial nitric oxide synthase (eNOS) and iNOS expression were assessed in the heart and mesenteric arteries by immunohistochemistry and Western blot experiments. Untreated diabetic rats showed depressed MABP and HR that was prevented by treatment with NAC. In untreated diabetic rats, levels of 15-F(2t)-isoprostane, an indicator of lipid peroxidation increased, whereas plasma nitric oxide and antioxidant concentrations decreased. Furthermore, decreased eNOS and increased iNOS expression were associated with elevated nitrosative stress in blood vessel and heart tissue of untreated diabetic rats. N-acetylcysteine treatment of diabetic rats not only restored the antioxidant capacity but also reduced the expression of iNOS and nitrotyrosine and normalized the expression of eNOS to that of control rats in heart and superior mesenteric arteries. The results suggest that nitrosative stress depress MABP and HR following diabetes. Further studies are required to elucidate the mechanisms involved in nitrosative stress mediated depression of blood pressure and heart rate.

  9. The Influence of a High Salt Diet on a Rat Model of Isoproterenol-Induced Heart Failure

    EPA Science Inventory

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4 weeks) isoproterenol (ISO) infusion exacerbated cardiomyopathy in Spontaneously Hypertensive Heart Failure (SHHF) rats. Others have shown...

  10. Importance of Pulmonary Vein Preferential Fibrosis for Atrial Fibrillation Promotion in Hypertensive Rat Hearts.

    PubMed

    Iwasaki, Yu-Ki; Yamashita, Takeshi; Sekiguchi, Akiko; Hayami, Noriyuki; Shimizu, Wataru

    2016-06-01

    Hypertension is one of the independent risk factors for atrial fibrillation (AF). Pulmonary veins (PVs) play an important role as the substrate for AF and triggers of AF. The purpose of this study was to determine the structural remodelling of the PVs and its effect on promoting AF in hypertensive (HT) rat hearts. Eighteen-week-old Dahl salt-sensitive HT rats and their controls were used for histological and immunohistological analyses, and electrophysiological studies were performed in Langendorff perfused hearts. Masson-trichrome staining revealed that hypertension significantly increased the fibrosis in the PVs, particularly in subendocardial and perivascular areas, compared with that in control rats, however, at this early stage of hypertension, left atrial fibrosis was not prominent. In the HT rat hearts with PVs, electrical stimulation significantly increased the number of repetitive atrial firing and atrial tachycardia inducibility, which significantly diminished after the excision of the PVs. An immunofluorescent analysis revealed that HT rats had PV specific endocardial smooth muscle actin (αSMA)-positive cells with remarkable proliferation of platelet-derived growth factor (PDGF)-C and vascular endothelial growth factor (VEGF), which was lacking in the left atrial structures of the control and the HT rats. Pretreatment with imatinib, a PDGF receptor activity blocker, in HT rats reduced the αSMA-positive cell proliferation and fibrosis in the PVs and also induced a significant reduction in VEGF expression. Also, the drug pretreatment effectively prevented repetitive atrial firing promotion without affecting the blood pressure. PV preferential fibrosis might play an important role in the arrhythmogenic substrate of AF in HT rat hearts. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  11. Delayed Repolarization Underlies Ventricular Arrhythmias in Rats With Heart Failure and Preserved Ejection Fraction.

    PubMed

    Cho, Jae Hyung; Zhang, Rui; Kilfoil, Peter J; Gallet, Romain; de Couto, Geoffrey; Bresee, Catherine; Goldhaber, Joshua I; Marbán, Eduardo; Cingolani, Eugenio

    2017-11-21

    Heart failure with preserved ejection fraction (HFpEF) represents approximately half of heart failure, and its incidence continues to increase. The leading cause of mortality in HFpEF is sudden death, but little is known about the underlying mechanisms. Dahl salt-sensitive rats were fed a high-salt diet (8% NaCl) from 7 weeks of age to induce HFpEF (n=38). Rats fed a normal-salt diet (0.3% NaCl) served as controls (n=13). Echocardiograms were performed to assess systolic and diastolic function from 14 weeks of age. HFpEF-verified and control rats underwent programmed electrical stimulation. Corrected QT interval was measured by surface ECG. The mechanisms of ventricular arrhythmias (VA) were probed by optical mapping, whole-cell patch clamp to measure action potential duration and ionic currents, and quantitative polymerase chain reaction and Western blotting to investigate changes in ion channel expression. After 7 weeks of a high-salt diet, 31 of 38 rats showed diastolic dysfunction and preserved ejection fraction along with signs of heart failure and hence were diagnosed with HFpEF. Programmed electric stimulation demonstrated increased susceptibility to VA in HFpEF rats ( P <0.001 versus controls). The arrhythmogenicity index was increased ( P <0.001) and the corrected QT interval on ECG was prolonged ( P <0.001) in HFpEF rats. Optical mapping of HFpEF hearts demonstrated prolonged action potentials ( P <0.05) and multiple reentry circuits during induced VA. Single-cell recordings of cardiomyocytes isolated from HFpEF rats confirmed a delay of repolarization ( P =0.001) and revealed downregulation of transient outward potassium current ( I to ; P <0.05). The rapid components of the delayed rectifier potassium current ( I Kr ) and the inward rectifier potassium current ( I K1 ) were also downregulated ( P <0.05), but the current densities were much lower than for I to . In accordance with the reduction of I to , both Kcnd3 transcript and Kv4.3 protein levels

  12. Na(+)/Ca(2+) exchanger inhibition exerts a positive inotropic effect in the rat heart, but fails to influence the contractility of the rabbit heart.

    PubMed

    Farkas, A S; Acsai, K; Nagy, N; Tóth, A; Fülöp, F; Seprényi, G; Birinyi, P; Nánási, P P; Forster, T; Csanády, M; Papp, J G; Varró, A; Farkas, A

    2008-05-01

    The Na(+)/Ca(2+) exchanger (NCX) may play a key role in myocardial contractility. The operation of the NCX is affected by the action potential (AP) configuration and the intracellular Na(+) concentration. This study examined the effect of selective NCX inhibition by 0.1, 0.3 and 1.0 microM SEA0400 on the myocardial contractility in the setting of different AP configurations and different intracellular Na(+) concentrations in rabbit and rat hearts. The concentration-dependent effects of SEA0400 on I(Na/Ca) were studied in rat and rabbit ventricular cardiomyocytes using a patch clamp technique. Starling curves were constructed for isolated, Langendorff-perfused rat and rabbit hearts. The cardiac sarcolemmal NCX protein densities of both species were compared by immunohistochemistry. SEA0400 inhibited I(Na/Ca) with similar efficacy in the two species; there was no difference between the inhibitions of the forward or reverse mode of the NCX in either species. SEA0400 increased the systolic and the developed pressure in the rat heart in a concentration-dependent manner, for example, 1.0 microM SEA0400 increased the maximum systolic pressures by 12% relative to the control, whereas it failed to alter the contractility in the rabbit heart. No interspecies difference was found in the cardiac sarcolemmal NCX protein densities. NCX inhibition exerted a positive inotropic effect in the rat heart, but it did not influence the contractility of the rabbit heart. This implies that the AP configuration and the intracellular Na(+) concentration may play an important role in the contractility response to NCX inhibition.

  13. Microtubule stabilization with paclitaxel does not protect against infarction in isolated rat hearts.

    PubMed

    Rodríguez-Sinovas, Antonio; Abad, Elena; Sánchez, Jose A; Fernández-Sanz, Celia; Inserte, Javier; Ruiz-Meana, Marisol; Alburquerque-Béjar, Juan José; García-Dorado, David

    2015-01-01

    What is the central question of this study? The microtubule network is disrupted during myocardial ischaemia-reperfusion injury. It was suggested that prevention of microtubule disruption with paclitaxel might reduce cardiac infarct size; however, the effects on infarction have not been studied. What is the main finding and its importance? Paclitaxel caused a reduction in microtubule disruption and cardiomyocyte hypercontracture during ischaemia-reperfusion. However, it induced a greater increase in cytosolic calcium, which may explain the lack of effect against infarction that we have seen in isolated rat hearts. The large increase in perfusion pressure induced by paclitaxel in this model may have clinical implications, because detrimental effects of the drug were reported after its clinical application. Microtubules play a major role in the transmission of mechanical forces within the myocardium and in maintenance of organelle function. However, this intracellular network is disrupted during myocardial ischaemia-reperfusion. We assessed the effects of prevention of microtubule disruption with paclitaxel on ischaemia-reperfusion injury in isolated rat cardiomyocytes and hearts. Isolated rat cardiomyocytes were submitted to normoxia (1 h) or 45 min of simulated ischaemia (pH 6.4, 0% O2 , 37 °C) and reoxygenation, without or with treatment with the microtubule stabilizer, paclitaxel (10(-5) M), or the inhibitor of microtubule polymerization, colchicine (5 × 10(-6) M). Simulated ischaemia leads to microtubule disruption before the onset of ischaemic contracture. Paclitaxel attenuated both microtubule disruption and the incidence of hypercontracture, whereas treatment with colchicine mimicked the effects of simulated ischaemia and reoxygenation. In isolated normoxic rat hearts, treatment with paclitaxel induced concentration-dependent decreases in heart rate and left ventricular developed pressure and increases in perfusion pressure. Despite protection against

  14. Is rate-pressure product of any use in the isolated rat heart? Assessing cardiac 'effort' and oxygen consumption in the Langendorff-perfused heart.

    PubMed

    Aksentijević, Dunja; Lewis, Hannah R; Shattock, Michael J

    2016-02-01

    What is the central question of this study? Rate-pressure product (RPP) is commonly used as an index of cardiac 'effort'. In canine and human hearts (which have a positive force-frequency relationship), RPP is linearly correlated with oxygen consumption and has therefore been widely adopted as a species-independent index of cardiac work. However, given that isolated rodent hearts demonstrate a negative force-frequency relationship, its use in this model requires validation. What is the main finding and its importance? Despite its widespread use, RPP is not correlated with oxygen consumption (or cardiac 'effort') in the Langendorff-perfused isolated rat heart. This lack of correlation was also evident when perfusions included a range of metabolic substrates, insulin or β-adrenoceptor stimulation. Langendorff perfusion of hearts isolated from rats and mice has been used extensively for physiological, pharmacological and biochemical studies. The ability to phenotype these hearts reliably is, therefore, essential. One of the commonly used indices of function is rate-pressure product (RPP); a rather ill-defined index of 'work' or, more correctly, 'effort'. Rate-pressure product, as originally described in dog or human hearts, was shown to be correlated with myocardial oxygen consumption (MV̇O2). Despite its widespread use, the application of this index to rat or mouse hearts (which, unlike the dog or human, have a negative force-frequency relationship) has not been characterized. The aim of this study was to examine the relationship between RPP and MV̇O2 in Langendorff-perfused rat hearts. Paced hearts (300-750 beats min(-1)) were perfused either with Krebs-Henseleit (KH) buffer (11 mm glucose) or with buffer supplemented with metabolic substrates and insulin. The arteriovenous oxygen consumption (MV̇O2) was recorded. Metabolic status was assessed using (31) P magnetic resonance spectroscopy and lactate efflux. Experiments were repeated in the presence of

  15. Perinatal hypothyroidism modulates antioxidant defence status in the developing rat liver and heart.

    PubMed

    Zhang, Hongmei; Dong, Yan; Su, Qing

    2017-02-01

    In the present study, we investigated oxidative stress parameters and antioxidant defence status in perinatal hypothyroid rat liver and heart. We found that the proteincarbonyl content did not differ significantly between the three groups both in the pup liver and in the heart. The OH˙ level was significantly decreased in the hypothyroid heart but not in the liver compared with controls. A slight but not significant decrease in SOD activity was observed in both perinatal hypothyroid liver and heart. A significantly increased activity of CAT was observed in the liver but not in the heart of hypothyroid pups. The GPx activity was considerably increased compared with controls in the perinatal hypothyroid heart and was unaltered in the liver of hypothyroid pups. We also found that vitamin E levels in the liver decreased significantly in hypothyroidism and were unaltered in the heart of perinatal hypothyroid rats. The GSH content was elevated significantly in both hypothyroid liver and heart. The total antioxidant capacity was higher in the liver of the hypothyroid group but not in the hypothyroid heart. Thyroxine replacement could not repair the above changes to normal. In conclusion, perinatal hypothyroidism modulates the oxidative stress status of the perinatal liver and heart.

  16. Activity of cholinesterases of blood and heart in rats of different sex and age during muscular loads and hypokinesia

    NASA Technical Reports Server (NTRS)

    Rozanova, V. D.; Antonova, G. A.

    1979-01-01

    The activity of acetylcholinesterase (Ache) and butyrilcholinesterase (Bche) in the blood and the heart of 3 and 13 month old control male rats is considerably lower than in female rats. In 25 month old rats, no sex differences in the Ache and Bche were revealed in the heart. In 3 and 13 month old male and female rats, under conditions of muscular exercises, the Ache and Bche activity is lower, and in hypokinetic male rats -- higher than that in respective control animals. In all the rats, irrespective of sex, age, and motor conditions, Ache and Bche activity tended to decrease from the sinoatrial node to the heart apex.

  17. Low vagally-mediated heart rate variability and increased susceptibility to ventricular arrhythmias in rats bred for high anxiety.

    PubMed

    Carnevali, Luca; Trombini, Mimosa; Graiani, Gallia; Madeddu, Denise; Quaini, Federico; Landgraf, Rainer; Neumann, Inga D; Nalivaiko, Eugene; Sgoifo, Andrea

    2014-04-10

    In humans, there is a documented association between anxiety disorders and cardiovascular disease. Putative underlying mechanisms may include an impairment of the autonomic nervous system control of cardiac function. The primary objective of the present study was to characterize cardiac autonomic modulation and susceptibility to arrhythmias in genetic lines of rats that differ largely in their anxiety level. To reach this goal, electrocardiographic recordings were performed in high-anxiety behavior (HAB, n=10) and low-anxiety behavior (LAB, n=10) rats at rest, during stressful stimuli and under autonomic pharmacological manipulations, and analyzed by means of time- and frequency-domain indexes of heart rate variability. During resting conditions, HAB rats displayed a reduced heart rate variability, mostly in terms of lower parasympathetic (vagal) modulation compared to LAB rats. In HAB rats, this relatively low cardiac vagal control was associated with smaller heart rate responsiveness to acute stressors compared to LAB counterparts. In addition, beta-adrenergic pharmacological stimulation induced a larger incidence of ventricular tachyarrhythmias in HABs compared to LABs. At sacrifice, a moderate increase in heart-body weight ratio was observed in HAB rats. We conclude that high levels of anxiety-related behavior in rats are associated with signs of i) impaired autonomic modulation of heart rate (low vagally-mediated heart rate variability), ii) poor adaptive heart rate responsiveness to stressful stimuli, iii) increased arrhythmia susceptibility, and iv) cardiac hypertrophy. These results highlight the utility of the HAB/LAB model for investigating the mechanistic basis of the comorbidity between anxiety disorders and cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Cardioprotective properties of citicoline against hyperthyroidism-induced reperfusion damage in rat hearts.

    PubMed

    Hernández-Esquivel, Luz; Pavón, Natalia; Buelna-Chontal, Mabel; González-Pacheco, Héctor; Belmont, Javier; Chávez, Edmundo

    2015-06-01

    Hyperthyroidism represents an increased risk factor for cardiovascular morbidity, especially when the heart is subjected to an ischemia/reperfusion process. The aim of this study was to explore the possible protective effect of the nucleotide citicoline on the susceptibility of hyperthyroid rat hearts to undergo reperfusion-induced damage, which is associated with mitochondrial dysfunction. Hence, we analyzed the protective effect of citicoline on the electrical behavior and on the mitochondrial function in rat hearts. Hyperthyroidism was established after a daily i.p. injection of triiodothyronine (at 2 mg/kg of body weight) during 5 days. Thereafter, citicoline was administered i.p. (at 125 mg/kg of body weight) for 5 days. In hyperthyroid rat hearts, citicoline protected against reperfusion-induced ventricular arrhythmias. Moreover, citicoline maintained the accumulation of mitochondrial Ca(2+), allowing mitochondria to reach a high transmembrane electric gradient that protected against the release of cytochrome c. It also preserved the activity of the enzyme aconitase that inhibited the release of cytokines. The protection also included the inhibition of oxidative stress-induced mDNA disruption. We conclude that citicoline protects against the reperfusion damage that is found in the hyperthyroid myocardium. This effect might be due to its inhibitory action on the permeability transition in mitochondria.

  19. Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure.

    PubMed

    Vegter, Eline L; Ovchinnikova, Ekaterina S; Silljé, Herman H W; Meems, Laura M G; van der Pol, Atze; van der Velde, A Rogier; Berezikov, Eugene; Voors, Adriaan A; de Boer, Rudolf A; van der Meer, Peter

    2017-01-01

    We recently identified a set of plasma microRNAs (miRNAs) that are downregulated in patients with heart failure in comparison with control subjects. To better understand their meaning and function, we sought to validate these circulating miRNAs in 3 different well-established rat and mouse heart failure models, and correlated the miRNAs to parameters of cardiac function. The previously identified let-7i-5p, miR-16-5p, miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-30e-5p, miR-199a-3p, miR-223-3p, miR-423-3p, miR-423-5p and miR-652-3p were measured by means of quantitative real time polymerase chain reaction (qRT-PCR) in plasma samples of 8 homozygous TGR(mREN2)27 (Ren2) transgenic rats and 8 (control) Sprague-Dawley rats, 6 mice with angiotensin II-induced heart failure (AngII) and 6 control mice, and 8 mice with ischemic heart failure and 6 controls. Circulating miRNA levels were compared between the heart failure animals and healthy controls. Ren2 rats, AngII mice and mice with ischemic heart failure showed clear signs of heart failure, exemplified by increased left ventricular and lung weights, elevated end-diastolic left ventricular pressures, increased expression of cardiac stress markers and reduced left ventricular ejection fraction. All miRNAs were detectable in plasma from rats and mice. No significant differences were observed between the circulating miRNAs in heart failure animals when compared to the healthy controls (all P>0.05) and no robust associations with cardiac function could be found. The previous observation that miRNAs circulate in lower levels in human patients with heart failure could not be validated in well-established rat and mouse heart failure models. These results question the translation of data on human circulating miRNA levels to experimental models, and vice versa the validity of experimental miRNA data for human heart failure.

  20. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart

    PubMed Central

    Seeley, Sarah L.; Stoops, Thorne S.; D’Souza, Manoranjan S.

    2017-01-01

    Background We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Methods Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Results Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Conclusions Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse. PMID:28575091

  1. Repeated exposure to methamphetamine induces sex-dependent hypersensitivity to ischemic injury in the adult rat heart.

    PubMed

    Rorabaugh, Boyd R; Seeley, Sarah L; Stoops, Thorne S; D'Souza, Manoranjan S

    2017-01-01

    We previously reported that adult female, but not male rats that were prenatally exposed to methamphetamine exhibit myocardial hypersensitivity to ischemic injury. However, it is unknown whether hypersensitivity to ischemic injury develops when rats are exposed to methamphetamine during adulthood. The goal of this study was to determine whether methamphetamine exposure during adulthood sensitizes the heart to ischemic injury. Adult male and female rats received daily injections of methamphetamine (5 mg/kg) or saline for 10 days. Their hearts were isolated on day 11 and subjected to a 20 min ischemic insult on a Langendorff isolated heart apparatus. Cardiac contractile function was measured by an intraventricular balloon, and infarct size was measured by triphenyltetrazolium chloride staining. Hearts from methamphetamine-treated females exhibited significantly larger infarcts and suppressed postischemic recovery of contractile function compared to hearts from saline-treated females. In contrast, methamphetamine had no effect on infarct size or contractile recovery in male hearts. Subsequent experiments demonstrated that hypersensitivity to ischemic injury persisted in female hearts following a 1 month period of abstinence from methamphetamine. Myocardial protein kinase C-ε expression, Akt phosphorylation, and ERK phosphorylation were unaffected by adult exposure to methamphetamine. Exposure of adult rats to methamphetamine sex-dependently increases the extent of myocardial injury following an ischemic insult. These data suggest that women who have a heart attack might be at risk of more extensive myocardial injury if they have a recent history of methamphetamine abuse.

  2. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    PubMed

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  3. Is rate–pressure product of any use in the isolated rat heart? Assessing cardiac ‘effort’ and oxygen consumption in the Langendorff‐perfused heart

    PubMed Central

    Aksentijević, Dunja; Lewis, Hannah R.

    2016-01-01

    New Findings What is the central question of this study? Rate–pressure product (RPP) is commonly used as an index of cardiac ‘effort’. In canine and human hearts (which have a positive force–frequency relationship), RPP is linearly correlated with oxygen consumption and has therefore been widely adopted as a species‐independent index of cardiac work. However, given that isolated rodent hearts demonstrate a negative force–frequency relationship, its use in this model requires validation. What is the main finding and its importance? Despite its widespread use, RPP is not correlated with oxygen consumption (or cardiac ‘effort’) in the Langendorff‐perfused isolated rat heart. This lack of correlation was also evident when perfusions included a range of metabolic substrates, insulin or β‐adrenoceptor stimulation. Langendorff perfusion of hearts isolated from rats and mice has been used extensively for physiological, pharmacological and biochemical studies. The ability to phenotype these hearts reliably is, therefore, essential. One of the commonly used indices of function is rate–pressure product (RPP); a rather ill‐defined index of ‘work’ or, more correctly, ‘effort’. Rate–pressure product, as originally described in dog or human hearts, was shown to be correlated with myocardial oxygen consumption (MV˙O2). Despite its widespread use, the application of this index to rat or mouse hearts (which, unlike the dog or human, have a negative force–frequency relationship) has not been characterized. The aim of this study was to examine the relationship between RPP and MV˙O2 in Langendorff‐perfused rat hearts. Paced hearts (300–750 beats min−1) were perfused either with Krebs–Henseleit (KH) buffer (11 mm glucose) or with buffer supplemented with metabolic substrates and insulin. The arteriovenous oxygen consumption (MV˙O2) was recorded. Metabolic status was assessed using 31P magnetic resonance spectroscopy and lactate efflux

  4. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage.

    PubMed

    Kumaran, Kandaswamy Senthil; Prince, Ponnian Stanely Mainzen

    2010-11-01

    Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat's heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients.

  5. On the mechanism of tachyphylaxis to tyramine in the isolated rat heart

    PubMed Central

    Axelrod, J.; Gordon, Edna; Hertting, G.; Kopin, I. J.; Potter, L. T.

    1962-01-01

    Tyramine was shown to release [3H]-catecholamines from an isolated rat heart previously perfused with [3H]-noradrenaline. With successive injections of tyramine the amount of [3H]-catecholamine released fell progressively and there was a parallel decrease in the increment of amplitude and rate of contraction of the heart. Reserpinized hearts were shown to take up less [3H]-noradrenaline than normal hearts. Release of radioactivity and loss of responsiveness to tyramine occurred more rapidly in the reserpinized heart. In the same preparation the uptake of [14C]-tyramine exceeded the quantity of the noradrenaline released. ImagesFig. 4 PMID:13863453

  6. Subacute pyridostigmine exposure increases heart rate recovery and cardiac parasympathetic tone in rats.

    PubMed

    Bharadwaj, Manushree; Pope, Carey; Davis, Michael; Katz, Stuart; Cook, Christian; Maxwell, Lara

    2017-08-01

    Heart rate recovery (HRR) describes the rapid deceleration of heart rate after strenuous exercise and is an indicator of parasympathetic tone. A reduction in parasympathetic tone occurs in patients with congestive heart failure, resulting in prolonged HRR. Acetylcholinesterase inhibitors, such as pyridostigmine, can enhance parasympathetic tone by increasing cholinergic input to the heart. The objective of this study was to develop a rodent model of HRR to test the hypothesis that subacute pyridostigmine administration decreases cholinesterase activity and accelerates HRR in rats. Ten days after implantation of radiotelemetry transmitters, male Sprague Dawley rats were randomized to control (CTL) or treated (PYR; 0.14 mg/mL pyridostigmine in the drinking water, 29 days) groups. Rats were exercised on a treadmill to record HRR, and blood samples were collected on days 0, 7, 14, and 28 of pyridostigmine administration. Total cholinesterase and acetylcholinesterase (AChE) activity in plasma was decreased by 32%-43% and 57%-80%, respectively, in PYR rats on days 7-28, while plasma butyrylcholinesterase activity did not significantly change. AChE activity in red blood cells was markedly reduced by 64%-66%. HRR recorded 1 minute after exercise was higher in the PYR group on days 7, 14 and 28, and on day 7 when HRR was estimated at 3 and 5 minutes. Autonomic tone was evaluated pharmacologically using sequential administration of muscarinic (atropine) and adrenergic (propranolol) blockers. Parasympathetic tone was increased in PYR rats as compared with the CTL group. These data support the study hypothesis that subacute pyridostigmine administration enhances HRR by increasing cardiac parasympathetic tone. © 2017 John Wiley & Sons Australia, Ltd.

  7. Oxymatrine attenuated isoproterenol-induced heart failure in rats via regulation of COX-2/PGI2 pathway.

    PubMed

    Zhou, Ru; Xu, Qingbin; Xu, Yehua; Xiong, Aiqin; Wang, Yang; Ma, Ping

    2016-12-01

    Oxymatrine (OMT) is an active constituent of traditional Chinese herb Sophora japonica Ait which has been shown to exert potent anti-inflammatory,anti-oxidant and anti-fibrosis properties. Our previous studies have demonstrated that OMT has protective effects on isoproterenol-induced heart failure in rats through regulation of DDAH/ADMA metabolism pathway.In this study,we further investigated whether OMT could attenuate isoproterenol-induced heart failure through the regulation of COX-2/PGI 2 pathway. Heart failure was induced in Sprague-Dawley rats by 5mg/kg isoproterenol subcutaneous injection for 7days. The rats were maintained on normal diet and randomly divided into five groups: control, isoproterenol, isoproterenol with OMT (50, 100mg/kg), and OMT alone groups (n=12 in each group). Serum brain natruretic peptide (BNP, a heart failure biomarker), histopathological variables, expression of Cytosolic phospholipase A 2 (cPLA 2 ), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and Prostacyclin synthase (PGIS) were analysed. Administration of OMT significantly reduced the increased BNP in plasm of isoproterenol-induced rats, attenuated cardiac fibrosis,suppressed overexpression of myocardial COX-1 expression, up-regulated COX-2 and PGIS expression, but had no effects on isoproterenol-induced elevated protein cPLA 2 . And compared with control group, any indexes in sham rats treated with OMT (100mg/kg) alone were unaltered. These results demonstrated that OMT has cardioprotective effects on isoproterenol-induced heart failure in rats by regulating COX-2/PGI 2 pathway. Copyright © 2016. Published by Elsevier Masson SAS.

  8. Myotoxic effects of clenbuterol in the rat heart and soleus muscle.

    PubMed

    Burniston, Jatin G; Ng, Yeelan; Clark, William A; Colyer, John; Tan, Lip-Bun; Goldspink, David F

    2002-11-01

    Myocyte-specific necrosis in the heart and soleus muscle of adult male Wistar rats was investigated in response to a single subcutaneous injection of the anabolic beta(2)-adrenergic receptor agonist clenbuterol. Necrosis was immunohistochemically detected by administration of a myosin antibody 1 h before the clenbuterol challenge and quantified by using image analysis. Clenbuterol-induced myocyte necrosis occurred against a background of zero damage in control muscles. In the heart, the clenbuterol-induced necrosis was not uniform, being more abundant in the left subendocardium and peaking 2.4 mm from the apex. After position (2.4 mm from the apex), dose (5 mg clenbuterol/kg), and sampling time (12 h) were optimized, maximum cardiomyocyte necrosis was found to be 1.0 +/- 0.2%. In response to the same parameters (i.e., 5 mg of clenbuterol and sampled at 12 h), skeletal myocyte necrosis was 4.4 +/- 0.8% in the soleus. These data show significant myocyte-specific necrosis in the heart and skeletal muscle of the rat. Such irreversible damage in the heart suggests that clenbuterol may be damaging to long-term health.

  9. The effect of repeated diazepam administration on myocardial function in the ischemia-reperfused isolated rat heart.

    PubMed

    Shackebaei, Dareuosh; Kayhani, Bijan; Godini, Aliashraf; Pourshanazari, Aliasghar; Reshadat, Sohyla

    2009-06-01

    To evaluate whether repeated diazepam administration affects the heart in ischemia-reperfusion. This study was performed at the Medical Biology Research Center, Kermanshah, Iran, from March to September 2008. Four groups of rats were subjected to a daily injection of diazepam (group 1 [0.5 mg/kg for 21 days], group II [2.5 mg/kg for 5 days], and group III [5 mg/kg for 5 days] intraperitoneally), and saline solution (21 days) in the control groups. Isolated, perfused hearts were subjected to 40 minutes global ischemia, and 45 minutes reperfusion. The left ventricular developed pressure (LVDP), heart rate, and coronary flow were measured. Rate pressure product (RPP) was calculated. In reperfusion, released lactate dehydrogenase (LDH) enzyme in effluent was measured. It was observed that the recovery of the RPP and LVDP in reperfusion significantly decreased in the test group III (n=9) in comparison to the control (n=8). During the reperfusion period, the released LDH significantly increased in test group II (n=8) and group III in comparison with the control. The results show that repeated administration of diazepam (5 mg/kg for 5 days) reduced the cardiac performance in reperfusion, and significantly exacerbated the ischemia-reperfusion injury. It is probably mediated by the changing of cardiac susceptibility in ischemia due to repeated administration of diazepam.

  10. Neuromuscular electrical stimulation improves GLUT-4 and morphological characteristics of skeletal muscle in rats with heart failure.

    PubMed

    de Leon, E B; Bortoluzzi, A; Rucatti, A; Nunes, R B; Saur, L; Rodrigues, M; Oliveira, U; Alves-Wagner, A B; Xavier, L L; Machado, U F; Schaan, B D; Dall'Ago, P

    2011-02-01

    Changes in skeletal muscle morphology and metabolism are associated with limited functional capacity in heart failure, which can be attenuated by neuromuscular electrical stimulation (ES). The purpose of the present study was to analyse the effects of ES upon GLUT-4 protein content, fibre structure and vessel density of the skeletal muscle in a rat model of HF subsequent to myocardial infarction. Forty-four male Wistar rats were assigned to one of four groups: sham (S), sham submitted to ES (S+ES), heart failure (HF) and heart failure submitted to ES (HF+ES). The rats in the ES groups were submitted to ES of the left leg during 20 days (2.5 kHz, once a day, 30 min, duty cycle 50%- 15 s contraction/15 s rest). After this period, the left tibialis anterior muscle was collected from all the rats for analysis. HF+ES rats showed lower values of lung congestion when compared with HF rats (P = 0.0001). Although muscle weight was lower in HF rats than in the S group, thus indicating hypotrophy, 20 days of ES led to their recovery (P < 0.0001). In both groups submitted to ES, there was an increase in muscle vessel density (P < 0.04). Additionally, heart failure determined a 49% reduction in GLUT-4 protein content (P < 0.03), which was recovered by ES (P < 0.01). In heart failure, ES improves morphological changes and raises GLUT-4 content in skeletal muscle. © 2010 The Authors. Acta Physiologica © 2010 Scandinavian Physiological Society.

  11. Aldosterone induces a vascular inflammatory phenotype in the rat heart.

    PubMed

    Rocha, Ricardo; Rudolph, Amy E; Frierdich, Gregory E; Nachowiak, Denise A; Kekec, Beverly K; Blomme, Eric A G; McMahon, Ellen G; Delyani, John A

    2002-11-01

    Vascular inflammation was examined as a potential mechanism of aldosterone-mediated myocardial injury in uninephrectomized rats receiving 1% NaCl-0.3% KCl to drink for 1, 2, or 4 wk and 1) vehicle, 2) aldosterone infusion (0.75 microg/h), or 3) aldosterone infusion (0.75 microg/h) plus the selective aldosterone blocker eplerenone (100 mg. kg(-1). day(-1)). Aldosterone induced severe hypertension at 4 wk [systolic blood pressure (SBP), 210 +/- 3 mmHg vs. vehicle, 131 +/- 2 mmHg, P < 0.001], which was partially attenuated by eplerenone (SBP, 180 +/- 7 mmHg; P < 0.001 vs. aldosterone alone and vehicle). No significant increases in myocardial interstitial collagen fraction or hydroxyproline concentration were detected throughout the study. However, histopathological analysis of the heart revealed severe coronary inflammatory lesions, which were characterized by monocyte/macrophage infiltration and resulted in focal ischemic and necrotic changes. The histological evidence of coronary lesions was preceded by and associated with the elevation of cyclooxygenase-2 (up to approximately 4-fold), macrophage chemoattractant protein-1 (up to approximately 4-fold), and osteopontin (up to approximately 13-fold) mRNA expression. Eplerenone attenuated proinflammatory molecule expression in the rat heart and subsequent vascular and myocardial damage. Thus aldosterone and salt treatment in uninephrectomized rats led to severe hypertension and the development of a vascular inflammatory phenotype in the heart, which may represent one mechanism by which aldosterone contributes to myocardial disease.

  12. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease.

    PubMed

    Cheung, Carlos Chun Ho; Soon, Choong Yee; Chuang, Chia-Lin; Phillips, Anthony R J; Zhang, Shaoping; Cooper, Garth J S

    2015-09-01

    Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P < 0.0001) at concentrations that only moderately impaired function of control hearts. To our knowledge, this is the first report describing the acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease

  13. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes.

    PubMed

    Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin

    2013-08-01

    We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.

  14. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage

    PubMed Central

    Kumaran, Kandaswamy Senthil

    2010-01-01

    Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat’s heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients. PMID:20376586

  15. Parasympathetic activation by pyridostigmine on chemoreflex sensitivity in heart-failure rats.

    PubMed

    Sabino, João Paulo J; da Silva, Carlos Alberto Aguiar; Giusti, Humberto; Glass, Mogens Lesner; Salgado, Helio C; Fazan, Rubens

    2013-12-01

    We evaluated the effects of parasympathetic activation by pyridostigmine (PYR) on chemoreflex sensitivity in a rat model of heart failure (HF rats). HF rats demonstrated higher pulmonary ventilation (PV), which was not affected by PYR. When HF and control rats treated or untreated with PYR were exposed to 15% O2, all groups exhibited prompt increases in respiratory frequency (RF), tidal volume (TV) and PV. When HF rats were exposed to 10% O2 they showed greater PV response which was prevented by PYR. The hypercapnia triggered by either 5% CO2 or 10% CO2 promoted greater RF and PV responses in HF rats. PYR blunted the RF response in HF rats but did not affect the PV response. In conclusion, PYR prevented increased peripheral chemoreflex sensitivity, partially blunted central chemoreflex sensitivity and did not affect basal PV in HF rats. © 2013.

  16. The effect of endotoxin on heart rate dynamics in diabetic rats.

    PubMed

    Meamar, Morvarid; Dehpour, Tara; Mazloom, Roham; Sharifi, Fatemeh; Raoufy, Mohammad R; Dehpour, Ahmad R; Mani, Ali R

    2015-05-01

    The effect of endotoxin on heart rate variability (HRV) was assessed in diabetic and controls rats using a telemetric system. Endotoxin induced a reduction in sample entropy of cardiac rhythm in control animals. However, this effect was significantly blunted in streptozotocin-induced diabetic rats. Since uncoupling of cardiac pacemaker from cholinergic control is linked to reduced HRV in endotoxemia, chronotropic responsiveness to cholinergic stimulation was assessed in isolated atria. Endotoxemia was associated with impaired responsiveness to carbacholine in control rats. However, endotoxemia did not impair cholinergic responsiveness in diabetic atria. These findings corroborates with development of endotoxin tolerance in diabetic rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart.

    PubMed

    Rocha, Ricardo; Martin-Berger, Cynthia L; Yang, Pochang; Scherrer, Rachel; Delyani, John; McMahon, Ellen

    2002-12-01

    We studied the role of aldosterone (aldo) in myocardial injury in a model of angiotensin (Ang) II-hypertension. Wistar rats were given 1% NaCl (salt) to drink and randomized into one of the following groups (n = 10; treatment, 21 d): 1) vehicle control (VEH); 2) Ang II infusion (25 ng/min, sc); 3) Ang II infusion plus the selective aldo blocker, eplerenone (epl, 100 mg/kg.d, orally); 4) Ang II infusion in adrenalectomized (ADX) rats; and 5) Ang II infusion in ADX rats with aldo treatment (20 micro g/kg.d, sc). ADX rats received also dexamethasone (12 micro g/kg.d, sc). Systolic blood pressure increased with time in all treatment groups except the VEH group (VEH, 136 +/- 6; Ang II/NaCl, 203 +/- 12; Ang II/NaCl/epl, 196 +/- 10; Ang II/NaCl/ADX, 181 +/- 7; Ang II/NaCl/ADX/aldo, 236 +/- 8 mm Hg). Despite similar levels of hypertension, epl and ADX attenuated the increase in heart weight/body weight induced by Ang II. Histological examination of the hearts evidenced myocardial and vascular injury in the Ang II/salt (7 of 10 hearts with damage, P < 0.05 vs. VEH) and Ang II/salt/ADX/aldo groups (10 of 10 hearts with damage, P < 0.05). Injury included arterial fibrinoid necrosis, perivascular inflammation (primarily macrophages), and focal infarctions. Vascular lesions were associated with expression of the inflammatory mediators cyclooxygenase 2 (COX-2) and osteopontin in the media of coronary arteries. Myocardial injury, COX-2, and osteopontin expression were markedly attenuated by epl treatment (1 of 10 hearts with damage, P < 0.05 vs. Ang II/salt) and adrenalectomy (2 of 10 hearts with damage, P < 0.05 vs. Ang II/salt). Our data indicate that aldo plays a major role in Ang II-induced vascular inflammation in the heart and implicate COX-2 and osteopontin as potential mediators of the damage.

  18. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh

    2010-05-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solutionmore » containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.« less

  19. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundantmore » mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.« less

  20. Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart.

    PubMed Central

    Nichols, B J; Rigoulet, M; Denton, R M

    1994-01-01

    The regulatory properties of NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase in extracts of yeast and rat heart mitochondria were studied under identical conditions. Yeast NAD(+)-isocitrate dehydrogenase exhibits a low K0.5 for isocitrate and is activated by AMP and ADP, but is insensitive to ATP and Ca2+. In contrast, the rat heart NAD(+)-isocitrate dehydrogenase was insensitive to AMP, but was activated by ADP and by Ca2+ in the presence of ADP or ATP. Both yeast and rat heart oxoglutarate dehydrogenase were stimulated by ADP, but only the heart enzyme was activated by Ca2+. All the enzymes studied were activated by decreases in pH, but to differing extents. The effects of Ca2+, adenine nucleotides and pH were through K0.5 for isocitrate or 2-oxoglutarate. These observations are discussed with reference to the deduced amino acid sequences of the constituent subunits of the enzymes, where they are available. PMID:7980405

  1. Heart Rate Variability in Nonlinear Rats with Different Orientation and Exploratory Activity in the Open Field.

    PubMed

    Kur'yanova, E V; Teplyi, D L; Zhukova, Yu D; Zhukovina, N V

    2015-12-01

    The basic behavioral activity of nonlinear rats was evaluated from the sum of crossed peripheral and central squares and peripheral and central rearing postures in the open fi eld test. This index was low (<20 episodes), intermediate (20-29 episodes), or high (>30 episodes). Male rats with high score of orientation and exploratory activity were characterized by higher indexes of total heart rate variability than rats with low or intermediate activity. Specimens with a greater contribution of VLF waves into the total power spectrum of heart rate variability were shown to dominate among the rats with high behavioral activity. Our results are consistent with the notions of a suprasegmental nature of VLF waves.

  2. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats.

    PubMed

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-10-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Beneficial effect of prolonged heme oxygenase 1 activation in a rat model of chronic heart failure.

    PubMed

    Collino, Massimo; Pini, Alessandro; Mugelli, Niccolò; Mastroianni, Rosanna; Bani, Daniele; Fantozzi, Roberto; Papucci, Laura; Fazi, Marilena; Masini, Emanuela

    2013-07-01

    We and others have previously demonstrated that heme oxygenase 1 (HO-1) induction by acute hemin administration exerts cardioprotective effects. Here, we developed a rat model of heart failure to investigate whether a long-term induction of HO-1 by chronic hemin administration exerted protective effects. Sprague Dawley rats that underwent permanent ligation of the left coronary artery were closely monitored for survival rate analysis and sacrificed on day 28 post-operation. Administration of hemin (4 mg/kg body weight) every other day for 4 weeks induced a massive increase in HO-1 expression and activity, as shown by the increased levels of the two main metabolic products of heme degradation, bilirubin and carbon monoxide (CO). These effects were associated with significant improvement in survival and reduced the extension of myocardial damage. The ischemic hearts of the hemin-treated animals displayed reduced oxidative stress and apoptosis in comparison with the non-treated rats, as shown by the decreased levels of lipid peroxidation, free-radical-induced DNA damage, caspase-3 activity and Bax expression. Besides, chronic HO-1 activation suppressed the elevated levels of myeloperoxidase (MPO) activity, interleukin 1β (IL-1β) production and tumor necrosis factor-α (TNFα) production that were evoked by the ischemic injury, and increased the plasma level of the anti-inflammatory cytokine IL-10. Interestingly, HO-1 inhibitor zinc protoporphyrin IX (ZnPP-IX; 1 mg/kg) lowered bilirubin and CO concentrations to control values, thus abolishing all the cardioprotective effects of hemin. In conclusion, the results demonstrate that chronic HO-1 activation by prolonged administration of hemin improves survival and exerts protective effects in a rat model of myocardial ischemia by exerting a potent antioxidant activity and disrupting multiple levels of the apoptotic and inflammatory cascade.

  4. Effects of insulin treatment on heart rhythm, body temperature and physical activity in streptozotocin-induced diabetic rat.

    PubMed

    Howarth, F C; Jacobson, M; Shafiullah, M; Adeghate, E

    2006-04-01

    1. Streptozotocin (STZ)-induced diabetic cardiomyopathy is frequently associated with depressed diastolic/systolic function and altered heart rhythm. 2. The effects of insulin treatment on heart rhythm, body temperature and physical activity in STZ-induced diabetic rats were investigated using biotelemetry techniques. 3. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar - Lead II configuration. Electrocardiogram, physical activity and body temperature data were recorded with a telemetry system for 10 days before STZ treatment, for 20 days following administration of STZ (60 mg/kg) and thereafter, for 30 days while rats received daily insulin. 4. Heart rate, physical activity and body temperature declined rapidly 3-5 days after administration of STZ. Pre-STZ heart rate was 362 +/- 7 b.p.m., falling to 266 +/- 12 b.p.m. 5-15 days after STZ with significant recovery to 303 +/- 14 b.p.m. 10-20 days after commencement of insulin. Pre-STZ body temperature was 37.5 +/- 0.1C, falling to 37.2 +/- 0.2C 5-15 days after STZ with significant recovery to 37.5 +/- 0.1C 10-20 days after commencement of insulin. Physical activity and heart rate variability were also reduced after STZ but there was no significant recovery during insulin replacement. 5. Defective autonomic regulation and/or mechanisms of control that are intrinsic to the heart may underlie disturbances in heart rhythm in the STZ-induced diabetic rat.

  5. Effects of late administration of pentoxifylline and tocotrienols in an image-guided rat model of localized heart irradiation.

    PubMed

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil; Corry, Peter M; Moros, Eduardo G; Singh, Awantika; Compadre, Cesar M; Hauer-Jensen, Martin; Boerma, Marjan

    2013-01-01

    Radiation-induced heart disease (RIHD) is a long-term side effect of radiotherapy of intrathoracic, chest wall and breast tumors when radiation fields encompass all or part of the heart. Previous studies have shown that pentoxifylline (PTX) in combination with α-tocopherol reduced manifestations of RIHD in rat models of local heart irradiation. The relative contribution of PTX and α-tocopherol to these beneficial effects are not known. This study examined the effects of PTX alone or in combination with tocotrienols, forms of vitamin E with potential potent radiation mitigation properties. Rats received localized X-irradiation of the heart with an image-guided irradiation technique. At 3 months after irradiation rats received oral treatment with vehicle, PTX, or PTX in combination with a tocotrienol-enriched formulation. At 6 months after irradiation, PTX-treated rats showed arrhythmia in 5 out of 14 animals. PTX alone or in combination with tocotrienols did not alter cardiac radiation fibrosis, left ventricular protein expression of the endothelial markers von Willebrand factor and neuregulin-1, or phosphorylation of the signal mediators Akt, Erk1/2, or PKCα. On the other hand, tocotrienols reduced cardiac numbers of mast cells and macrophages, but enhanced the expression of tissue factor. While this new rat model of localized heart irradiation does not support the use of PTX alone, the effects of tocotrienols on chronic manifestations of RIHD deserve further investigation.

  6. Pathological alterations in liver injury following congestive heart failure induced by volume overload in rats

    PubMed Central

    Shaqura, Mohammed; Mohamed, Doaa M.; Aboryag, Noureddin B.; Bedewi, Lama; Dehe, Lukas; Treskatsch, Sascha; Shakibaei, Mehdi; Schäfer, Michael

    2017-01-01

    Heart failure has emerged as a disease with significant public health implications. Following progression of heart failure, heart and liver dysfunction are frequently combined in hospitalized patients leading to increased morbidity and mortality. Here, we investigated the underlying pathological alterations in liver injury following heart failure. Heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. Sham operated and ACF rats were compared for their morphometric and hemodynamic data, for histopathological and ultrastructural changes in the liver as well as differences in the expression of apoptotic factors. ACF-induced heart failure is associated with light microscopic signs of apparent congestion of blood vessels, increased apoptosis and breakdown of hepatocytes and inflammatory cell inifltration were observed. The glycogen content depletion associated with the increased hepatic fibrosis, lipid globule formation was observed in ACF rats. Moreover, cytoplasmic organelles are no longer distinguishable in many ACF hepatocytes with degenerated fragmented rough endoplasmic reticulum, shrunken mitochondria and heavy cytoplasm vacuolization. ACF is associated with the upregulation of the hepatic TUNEL-positive cells and proapoptotic factor Bax protein concomitant with the mitochondrial leakage of cytochrome C into the cell cytoplasm and the transfer of activated caspase 3 from the cytoplasm into the nucleus indicating intrinsic apoptotic events. Taken together, the results demonstrate that ACF-induced congestive heart failure causes liver injury which results in hepatocellular apoptotic cell death mediated by the intrinsic pathway of mitochondrial cytochrome C leakage and subsequent transfer of activated caspase 3 into to the nucleus to initiate overt DNA fragmentation and cell death. PMID:28934226

  7. Effect of hyperthyroidism on the transport of pyruvate in rat-heart mitochondria.

    PubMed

    Paradies, G; Ruggiero, F M

    1988-08-17

    A comparative study of the transport of pyruvate in heart mitochondria from normal and triiodothyronine-treated rats has been carried out. It has been found that the rate of carrier-mediated (alpha-cyanocinnamate-sensitive) pyruvate uptake is significantly enhanced in mitochondria from triiodothyronine-treated rats as compared with mitochondria from control rats. The kinetic parameters of the pyruvate uptake indicate that only the Vmax of this process is enhanced whilst there is no change in the Km value. The enhanced rate of pyruvate uptake is not dependent on the increase of the transmembrane delta pH value (both mitochondria from normal and triiodothyronine-treated rats exhibit the same delta pH value) neither does it depend on the increase of the pyruvate carrier molecules (titration of these last with alpha-cyanocinnamate gives the same total number of binding sites). the pyruvate-dependent oxygen uptake is stimulated by 35-40% in mitochondria from hyperthyroid rats when compared with mitochondria from control rats. There is, however, no difference in either the respiratory control ratios or in the ADP/O ratios between these two types of mitochondria. The heart mitochondrial phospholipid composition is altered significantly in hyperthyroid rats; in particular, negatively charged phospholipid such as cardiolipin and phosphatidylserine were found to increase by more than 50%. Minor alterations were found in the pattern of fatty acids with an increase of 20:4/18:2 ratio. It is suggested that the changes in the kinetic parameters of pyruvate transport in mitochondria from hyperthyroid rats involve hormone-mediated changes in the lipid composition of the mitochondrial membranes which in turn modulate the activity of the pyruvate carrier.

  8. Negative inotropic effects of diadenosine tetraphosphate are mediated by protein kinase C and phosphodiesterases stimulation in the rat heart.

    PubMed

    Pakhomov, Nikolai; Pustovit, Ksenia; Potekhina, Victoria; Filatova, Tatiana; Kuzmin, Vladislav; Abramochkin, Denis

    2018-02-05

    Extracellular diadenosine polyphosphates (Ap n A) are recently considered as an endogenous signaling compounds with transmitter-like activity which present in numerous tissues, including heart. It has been demonstrated previously that extracellular Ap n A cause alteration of the heart functioning via purine receptors in different mammalian species. Nevertheless, principal intracellular pathways which underlie Ap n A action in the heart remain unknown. In the present study the role of the P2Y-associated intracellular regulatory pathway in the mediation of diadenosine tetraphosphate (Ap 4 A) effects in the rat heart has been investigated for the first time. Extracellular Ap 4 A caused significant decreasing of the ventricular inotropy. Ap 4 A evoked reduction of the left ventricle contractility in the isolated Langendorff-perfused rat hearts, decreasing of the Ca 2+ transients in the enzymatically isolated ventricular cardiomyocytes and induced shortening of action potentials in the ventricle multicellular preparations. The inhibitory effects of Ap 4 A in the rat heart were significantly attenuated by protein kinase C (PKC) inhibitor chelerythrine but these effects were not affected by NO-synthase inhibitor L-NAME and guanylyl cyclase (sGC) inhibitor ODQ. In addition, substantial attenuation of Ap 4 A-caused negative inotropy in the left ventricle was produced by nonselective phsophodiesterase (PDE) inhibitor IBMX, while PDE type 2 inhibitor EHNA was ineffective. In conclusion, our results allow suggesting that Ap 4 A-induced inhibitory effects in the rat heart are mediated by PKC, but not by NO/sGC/PKG-related signaling pathway. In addition, PDE stimulation may contribute to Ap 4 A-caused inhibition of the rat heart contractility. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Preconditioning potential of purmorphamine: a hedgehog activator against ischaemic reperfusion injury in ovariectomised rat heart.

    PubMed

    Sharma, Shweta; Kaur, Avileen; Sharma, Saurabh

    2018-04-01

    The present study was been designed to investigate the role and pharmacological potential of hedgehog in oestrogen-deficient rat heart. Oestrogen deficiency was produced in female Wistar rats by the surgical removal of both ovaries and these animals were used four weeks later. Isolated rat heart was subjected to 30 min ischaemia followed by 120 min of reperfusion (I/R). The heart was subjected to pharmacological preconditioning with the hedgehog agonist purmorphamine (1μM) and GDC-0449, a hedgehog antagonist, in the last episode of reperfusion before I/R. Myocardial infarction was assessed in terms of the increase in lactate dehydrogenase (LDH), creatinine kinase-MB (CK-MB), myeloperoxidase (MPO) level and infarct size (triphenyltetrazolium chloride staining). Immunohistochemistry analysis was done for the assessment of tumour necrosis factor (TNF)-α level in cardiac tissue. eNOS expression was estimated by rt-PCR. Pharmacological preconditioning with purmorphamine significantly attenuated I/R-induced myocardial infarction, TNF-α, MPO level and release of LDH and CK-MB compared to the I/R control group. However, GDC-0449 prevented the ameliorative preconditioning effect of estradiol. It may be concluded that the hedgehog agonist purmorphamine prevents the ovariectomised heart from ischaemic reperfusion injury.

  10. [Influence exogenous nicotinamide adenine dinucleotide (NAD+) on contractile and bioelectric activity of the rat heart].

    PubMed

    Pustovit, K B; Kuz'min, V S; Sukhova, G S

    2014-04-01

    This study is aimed to the investigation of the nicotinamide adenine dinucleotide (NAD+) effects and mechanisms of action in a heart. NAD+ (mcM) induces multiphase alternation of contractile activity of isolated rat heart: short positive inotropic action is followed by a negative inotropic phase. NAD+ (1-100 mcM) induces decreasing of action potential duration (APD) in rat atrial myocardium (from 45 +/- 0.82 ms in control experiments to 39 +/- 1.05 (n = 8) and 32 +/- 2 (n = 8) during application of 10 and 100 mcM of NAD+, respectively). Significant APD increase (from 45 +/- 0.82 ms to 74 +/- 1.89 (n = 8) ms) was observed during washing out of NAD+ (100 mcM). ATP or adenosine was unable to increase APD both during application or washing out. NAD+ induced APD decrease was not suppressed by P1-antagonist theophylline. P1-purinoreceptor and metabolite independent direct action of NAD+ in rat heart is suggested. Activation of P2X or P2Y receptors, cyclic ADP-ribose accumulation in cardiomyocytes is proposed as a main mechanism of NAD(+)-induced effects in the heart.

  11. [Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart].

    PubMed

    Peng, Long-yun; Ma, Hong; He, Jian-gui; Gao, Xiu-ren; Zhang, Yan; He, Xiao-hong; Zhai, Yuan-sheng; Zhang, Xue-jiao

    2006-08-01

    To explore the effects of ischemic postconditioning on ischemia/reperfusion injury in isolated hypertrophied rat heart and investigate the signal transduction pathway changes induced by ischemia postconditioning. Cardiac hypertrophy was induced in rats by abdominal aortic banding, and isolated hypertrophied rat heart ischemia/reperfusion model was made by Langendorff technique to evaluate the effects of ischemia postconditioning on left ventricular systole pressure, coronary artery flow, creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) release, myocardial infarction size, and the level of myocardial phospho-protein kinase B/Akt (Ser473), phospho-glycogen synthase kinase-3beta (Ser9). Following groups were studied (n = 12 each group): IR, 30 min ischemia (I)/60 min Reperfusion (R); Post: 30 min ischemia, 6 circles of 10 s I/10 s R followed by 60 min R; Post Wort: 30 min ischemia, 6 circles of 10 s I/10 s R, wortmannin (10(-7) mol/L) followed by 60 min R; Wort: 30 min ischemia, wortmannin (10(-7) mol/L) followed by 60 min R. Left ventricular systolic pressure and coronary artery flow were significantly increased, myocardial infarction size and the release of CPK, LDH significantly reduced in Post group compared to that in IR group. Phospho-protein kinase B/Akt (Ser473) and phospho-glycogen synthase kinase-3beta (Ser9) levels were also significantly higher in Post group than that in IR group. Phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin prevented the increase of phospho-protein kinase B/Akt (Ser473) and phospho-glycogen synthase kinase-3beta (Ser9) induced by ischemic postconditioning, but only partly abolished the cardioprotection of ischemic postconditioning. Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart. The cardioprotective effects of ischemic postconditioning were partly mediated through PI3K/Akt/GSK-3beta signaling pathway.

  12. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat.

    PubMed

    Aydin, Mehmet Salih; Caliskan, Ahmet; Kocarslan, Aydemir; Kocarslan, Sezen; Yildiz, Ali; Günay, Samil; Savik, Emin; Hazar, Abdussemet; Yalcin, Funda

    2014-01-01

    Previous studies have demonstrated that curcumin (CUR) has protective effects against ischemia reperfusion injury to various organs. We aimed to determine whether CUR has favorable effects on tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Thirty rats were divided into three groups as sham, control and treatment (CUR) group. Control and CUR groups underwent abdominal aorta ischemia for 60 min followed by a 120 min period of reperfusion. In the CUR group, CUR was given 5 min before reperfusion at a dose of 200 mg/kg via an intraperitoneal route. Total antioxidant capacity (TAC), total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured, and lung, renal and heart tissue histopathology were evaluated with light microscopy. TOS and OSI activity in blood samples were statistically decreased in sham and CUR groups compared to the control group (p < 0.001 for TOS and OSI). Renal, lung, heart injury scores of sham and CUR groups were statistically decreased compared to control group (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in CUR group than in the control group. CUR administered intraperitoneally was effective in reducing oxidative stress and histopathologic injury in an acute abdominal aorta I/R rat model. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Tissue distribution comparison between healthy and fatty liver rats after oral administration of hawthorn leaf extract.

    PubMed

    Yin, Jingjing; Qu, Jianguo; Zhang, Wenjie; Lu, Dongrui; Gao, Yucong; Ying, Xixiang; Kang, Tingguo

    2014-05-01

    Hawthorn leaves, a well-known traditional Chinese medicine, have been widely used for treating cardiovascular and fatty liver diseases. The present study aimed to investigate the therapeutic basis treating fatty liver disease by comparing the tissue distribution of six compounds of hawthorn leaf extract (HLE) in fatty liver rats and healthy rats after oral administration at first day, half month and one month, separately. Therefore, a sensitive and specific HPLC method with internal standard was developed and validated to determine chlorogenic acid, vitexin-4''-O-glucoside, vitexin-2''-O-rhamnoside, vitexin, rutin and hyperoside in the tissues including heart, liver, spleen, kidney, stomach and intestine. The results indicated that the six compounds in HLE presented some bioactivity in treating rat fatty liver as the concentrations of the six compounds varied significantly in inter- and intragroup comparisons (healthy and/or fatty liver group). Copyright © 2013 John Wiley & Sons, Ltd.

  14. Comparison of 16-iodohexadecanoic acid (IHDA) and 15-p-iodophenylpentadecanoic acid (IPPA) metabolism and kinetics in the isolated rat heart.

    PubMed

    DeGrado, T R; Holden, J E; Ng, C K; Raffel, D M; Gatley, S J

    1988-01-01

    Time courses of radioactivity (residue curves) were obtained following bolus injection into working rat hearts of two 125I-labeled long chain fatty acids: 16-iodohexadecanoic acid (IHDA) and 15-p-iodophenylpentadecanoic acid (IPPA). Residue curves were analyzed in terms of a rapid vascular washout component, an early tissue clearance component, and a very slow late component. For IHDA and IPPA in control hearts, early myocardial clearance kinetics were rate limited by the diffusion of catabolites. Sensitivity of the kinetics to impaired fatty acid oxidation was examination by pretreatment of animals with 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). Decreased fatty acid oxidation was indicated in IHDA and IPPA residue curves by a decrease in the relative size of the early clearance component. Analysis of radiolabeled species in coronary effluent and heart homogenates showed that back diffusion of IPPA was slower than that of IHDA; this discrepancy was most apparent in POCA hearts. In vitro binding assays suggested higher tissue:albumin relative affinity for IPPA than for IHDA. Thus, IPPA early clearance kinetics were more closely related to the clearance of labeled catabolite(s) and were therefore more sensitive to the oxidation rate of long chain fatty acids.

  15. Effects of Red Palm Oil on Myocardial Antioxidant Enzymes, Nitric Oxide Synthase and Heart Function in Spontaneously Hypertensive Rats.

    PubMed

    Katengua-Thamahane, Emma; Szeiffova Bacova, Barbara; Bernatova, Iveta; Sykora, Matus; Knezl, Vladimir; Van Rooyen, Jacques; Tribulova, Narcis

    2017-11-21

    The purpose of this study was to investigate the effect of antioxidants rich red palm oil (RPO) supplementation on cardiac oxidative stress known as crucial factor deteriorating heart function in hypertension. 3-month-old, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were fed standard rat chow without or with RPO (0.2 mL/day/5 weeks). General characteristic of rats were registered. Left ventricular tissue (LV) was used to determine expression of superoxide dismutases (SOD1, SOD2) and glutathione peroxidases (Gpx) as well as activity of nitric oxide synthase (NOS). Functional parameters of the heart were examined during basal conditions and at the early-phase of post-ischemic reperfusion using Langendorff-perfused system. RPO intake significantly reduced elevated blood pressure and total NOS activity as well as increased lowered expression of mitochondrial SOD2 in SHR hearts during basal condition. Moreover, RPO supplementation resulted in suppression of elevated heart rate, increase of reduced coronary flow and enhancement of systolic and diastolic heart function at the early-phase of post-ischemic reperfusion. It is concluded that SHR benefit from RPO intake due to decrease of blood pressure, amelioration of oxidative stress and protection of heart function that was deteriorated by post-ischemic reperfusion.

  16. Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart

    PubMed Central

    Ashmore, Tom; Fernandez, Bernadette O; Branco-Price, Cristina; West, James A; Cowburn, Andrew S; Heather, Lisa C; Griffin, Julian L; Johnson, Randall S; Feelisch, Martin; Murray, Andrew J

    2014-01-01

    Hypoxic exposure is associated with impaired cardiac energetics in humans and altered mitochondrial function, with suppressed complex I-supported respiration, in rat heart. This response might limit reactive oxygen species generation, but at the cost of impaired electron transport chain (ETC) activity. Dietary nitrate supplementation improves mitochondrial efficiency and can promote tissue oxygenation by enhancing blood flow. We therefore hypothesised that ETC dysfunction, impaired energetics and oxidative damage in the hearts of rats exposed to chronic hypoxia could be alleviated by sustained administration of a moderate dose of dietary nitrate. Male Wistar rats (n = 40) were given water supplemented with 0.7 mmol l−1 NaCl (as control) or 0.7 mmol l−1 NaNO3, elevating plasma nitrate levels by 80%, and were exposed to 13% O2 (hypoxia) or normoxia (n = 10 per group) for 14 days. Respiration rates, ETC protein levels, mitochondrial density, ATP content and protein carbonylation were measured in cardiac muscle. Complex I respiration rates and protein levels were 33% lower in hypoxic/NaCl rats compared with normoxic/NaCl controls. Protein carbonylation was 65% higher in hearts of hypoxic rats compared with controls, indicating increased oxidative stress, whilst ATP levels were 62% lower. Respiration rates, complex I protein and activity, protein carbonylation and ATP levels were all fully protected in the hearts of nitrate-supplemented hypoxic rats. Both in normoxia and hypoxia, dietary nitrate suppressed cardiac arginase expression and activity and markedly elevated cardiac l-arginine concentrations, unmasking a novel mechanism of action by which nitrate enhances tissue NO bioavailability. Dietary nitrate therefore alleviates metabolic abnormalities in the hypoxic heart, improving myocardial energetics. PMID:25172947

  17. Effects of Late Administration of Pentoxifylline and Tocotrienols in an Image-Guided Rat Model of Localized Heart Irradiation

    PubMed Central

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil; Corry, Peter M.; Moros, Eduardo G.; Singh, Awantika; Compadre, Cesar M.; Hauer-Jensen, Martin; Boerma, Marjan

    2013-01-01

    Radiation-induced heart disease (RIHD) is a long-term side effect of radiotherapy of intrathoracic, chest wall and breast tumors when radiation fields encompass all or part of the heart. Previous studies have shown that pentoxifylline (PTX) in combination with α-tocopherol reduced manifestations of RIHD in rat models of local heart irradiation. The relative contribution of PTX and α-tocopherol to these beneficial effects are not known. This study examined the effects of PTX alone or in combination with tocotrienols, forms of vitamin E with potential potent radiation mitigation properties. Rats received localized X-irradiation of the heart with an image-guided irradiation technique. At 3 months after irradiation rats received oral treatment with vehicle, PTX, or PTX in combination with a tocotrienol-enriched formulation. At 6 months after irradiation, PTX-treated rats showed arrhythmia in 5 out of 14 animals. PTX alone or in combination with tocotrienols did not alter cardiac radiation fibrosis, left ventricular protein expression of the endothelial markers von Willebrand factor and neuregulin-1, or phosphorylation of the signal mediators Akt, Erk1/2, or PKCα. On the other hand, tocotrienols reduced cardiac numbers of mast cells and macrophages, but enhanced the expression of tissue factor. While this new rat model of localized heart irradiation does not support the use of PTX alone, the effects of tocotrienols on chronic manifestations of RIHD deserve further investigation. PMID:23894340

  18. Beneficial effect of zinc chloride and zinc ionophore pyrithione on attenuated cardioprotective potential of preconditioning phenomenon in STZ-induced diabetic rat heart.

    PubMed

    Jamwal, Sumit; Kumar, Kushal; Reddy, B V Krishna

    2016-05-01

    Ischemic preconditioning (IPC) is well demonstrated to produce cardioprotection by phosphorylation and subsequent inactivation of glycogen synthase kinase-3β (GSk-3β) in the normal rat heart, but its effect is attenuated in the diabetic rat heart. This study was designed to investigate the effect of zinc chloride and zinc ionophore pyrithione (ZIP) on the attenuated cardioprotective potential of IPC in the diabetic rat heart. Diabetes mellitus (DM) was induced by a single intraperitoneal administration of streptozotocin (STZ) (50 mg/kg; i.p). The isolated perfused rat heart was subjected to 30 minutes of ischemia followed by 120 minutes of reperfusion. Myocardial infarct size was estimated by triphenyltetrazolium chloride (TTC) staining and cardiac injury was measured by estimating lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in the coronary effluent. Also, GSK-3β was measured and neutrophil accumulation was measured by estimating myeloperoxidase (MPO) levels. IPC significantly decreased the myocardial infarct size, the release of LDH and CK-MB, the GSK-3β levels and the MPO levels in the normal rat heart. Pre- and post-ischemic treatment with zinc chloride and zinc ionophore pyrithione (ZIP) in the normal and diabetic rat hearts significantly decreased the myocardial infarct size, the level of CK-MB and LDH in the coronary effluent and GSK-3β and MPO levels. Our results suggest that pharmacological preconditioning with zinc chloride and ZIP significantly restored the attenuated cardioprotective potential of IPC in the diabetic rat heart. © The Author(s) 2015.

  19. Cardioprotective effect of hyperthyroidism on the stunned rat heart during ischaemia-reperfusion: energetics and role of mitochondria.

    PubMed

    Ragone, María Inés; Bonazzola, Patricia; Colareda, Germán A; Consolini, Alicia E

    2015-06-01

    What is the central question of this study? Hyperthyroidism is a cardiac risk factor, but thyroid therapy is used on myocardial stunning. What is the consequence of hyperthyroidism for mitochondrial metabolism and Ca(2+) handling of the postischaemic stunned heart? What is the main finding and its importance? Hyperthyroidism reduced stunning and improved muscle economy of the postischaemic rat heart. The activities of the mitochondrial sodium-calcium exchanger and mitochondrial K(+) channel in hyperthyroid rat hearts were different from those in the euthyroid rat hearts. These findings contribute to the understanding of mitochondrial bioenergetics in pathology and support thyroid therapy in the stunning induced by ischaemia. Transient ischaemia and hyperthyroidism are cardiovascular risk factors. Nevertheless, 3,5,3'-triiodothyronine/thyroxine therapy has been used to revert myocardial stunning. We studied the influence of hyperthyroidism on the role played by mitochondria in myocardial stunning consequent to ischaemia-reperfusion. Rats were injected s.c. daily with 20 μg kg(-1) triiodothyronine for 15 days (HpT group). Isolated ventricles from either HpT or euthyroid (EuT) rats were perfused in a calorimeter, and left intraventricular pressure (in millimetres of mercury) and heat release (Ht; in milliwatts per gram) were measured. Stunning was evoked by 20 min of no-flow ischaemia and 45 min reperfusion. The HpT hearts developed higher postischaemic contractile recovery (PICR) and improved total muscle economy (P/Ht) with lower diastolic contracture (ΔLVEDP) than EuT hearts. Release of Ca(2+) from the sarcoplasmic reticulum during reperfusion with 10 mm caffeine in low-[Na(+) ] Krebs solution evoked a higher contracture in EuT than in HpT hearts. Blockade of the mitochondrial sodium-calcium exchanger with clonazepam increased ΔLVEDP and reduced P/Ht and PICR in HpT but not in EuT hearts. The clonazepam-induced dysfunction in HpT hearts was reduced by

  20. Beneficial effects of exercise training in heart failure are lost in male diabetic rats.

    PubMed

    Boudia, Dalila; Domergue, Valérie; Mateo, Philippe; Fazal, Loubina; Prud'homme, Mathilde; Prigent, Héloïse; Delcayre, Claude; Cohen-Solal, Alain; Garnier, Anne; Ventura-Clapier, Renée; Samuel, Jane-Lise

    2017-12-01

    Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve

  1. Autonomic control of ultradian and circadian rhythms of blood pressure, heart rate, and baroreflex sensitivity in spontaneously hypertensive rats.

    PubMed

    Oosting, J; Struijker-Boudier, H A; Janssen, B J

    1997-04-01

    To examine the influence of the autonomic nervous system on ultradian and circadian rhythms of blood pressure, heart rate and baroreflex sensitivity of heart rate (BRS) in spontaneously hypertensive rats (SHR). Spontaneous fluctuations in blood pressure, heart rate and BRS in SHR were recorded continuously for 24 h using a computerized system and compared with those in Wistar-Kyoto (WKY) rats. Furthermore, 24 h recordings were performed in SHR during cardiac autonomic blockade by metoprolol and methyl-atropine, vascular autonomic blockade by prazosin, ganglionic blockade by hexamethonium and vagal stimulation by a low dose of scopolamine. The magnitudes of the ultradian fluctuations in blood pressure, heart rate and BRS were assessed by wide-band spectral analysis techniques. The BRS was lower in SHR than it was in WKY rats throughout the 24 h cycle. In both strains high values were found during the light, resting period, whereas low values were found during the first hours of the dark, active period. The circadian rhythmicity of the blood pressure in SHR was abolished completely during the infusions of prazosin and hexamethonium. In contrast, the circadian rhythmicities of the blood pressure and heart rate were not altered by infusions of metoprolol, methyl-atropine and the low dose of scopolamine. Power spectra of the blood pressure and heart rate lacked predominant peaks at ultradian frequencies and showed 1/f characteristics. In the absence of autonomic tone, the ultradian fluctuations in heart rate, but not in blood pressure, were decreased. The ultradian BRS spectra had no 1/f shape, but showed a major peak at approximately equal to 20 min for 71% of the WKY rats and 42% of the SHR. The influence of the autonomic nervous system on the blood pressure and heart rats in SHR is frequency-dependent. The circadian, but not ultradian, blood pressure rhythmicity is controlled by vascular autonomic activity. Conversely, the circadian, but not ultradian, heart rate

  2. Changes in histopathology and tumor necrosis factor-α levels in the hearts of rats following asphyxial cardiac arrest.

    PubMed

    Lee, Jung Hoon; Lee, Tae-Kyeong; Kim, In Hye; Lee, Jae Chul; Won, Moo-Ho; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Myoung Chul; Ohk, Taek Geun; Moon, Joong Bum; Cho, Jun Hwi; Park, Chan Woo; Tae, Hyun-Jin

    2017-09-01

    Post cardiac arrest (CA) syndrome is associated with a low survival rate in patients who initially have return of spontaneous circulation (ROSC) after CA. The aim of this study was to examine the histopathology and inflammatory response in the heart during the post CA syndrome. We induced asphyxial CA in male Sprague-Dawley rats and determined the survival rate of these rats during the post resuscitation phase. Survival of the rats decreased after CA: 66.7% at 6 hours, 36.7% at 1 day, and 6.7% at 2 days after ROSC following CA. The rats were sacrificed at 6 hours, 12 hours, 1 day, and 2 days after ROSC, and their heart tissues were examined. Histopathological scores increased at 12 hours post CA and afterwards, histopathological changes were not significant. In addition, levels of tumor necrosis factor-α immunoreactivity gradually increased after CA. The survival rate of rats 2 days post CA was very low, even though histopathological and inflammatory changes in the heart were not pronounced in the early stage following CA.

  3. Effect of dietary palm olein oil on oxidative stress associated with ischemic-reperfusion injury in isolated rat heart

    PubMed Central

    Narang, Deepak; Sood, Subeena; Thomas, Mathew Kadali; Dinda, Amit Kumar; Maulik, Subir Kumar

    2004-01-01

    Background Palm olein oil (PO), obtained from refining of palm oil is rich in monounsaturated fatty acid and antioxidant vitamins and is widely used as oil in diet in many parts of the world including India. Palm oil has been reported to have beneficial effects in oxidative stress associated with hypertension and arterial thrombosis. Oxidative stress plays a major role in the etiopathology of myocardial ischemic-reperfusion injury (IRI) which is a common sequel of ischemic heart disease. Antioxidants have potent therapeutic effects on both ischemic heart disease and ischemic-reperfusion injury. Information on the effect of PO on ischemic-reperfusion injury is, however, lacking. In the present study, the effect of dietary palm olein oil on oxidative stress associated with IRI was investigated in an isolated rat heart model. Wistar rats (150–200 gm) of either sex were divided into three different groups (n = 16). Rats were fed with palm olein oil supplemented commercial rat diet, in two different doses [5% v / w (PO 5) and 10% v / w (PO 10) of diet] for 30 days. Control rats (C) were fed with normal diet. After 30 days, half the rats from each group were subjected to in vitro myocardial IRI (20 min of global ischemia, followed by 40 min of reperfusion). Hearts from all the groups were then processed for biochemical and histopathological studies. One way ANOVA followed by Bonferroni test was applied to test for significance and values are expressed as mean ± SE (p < 0.05). Results There was a significant increase in myocardial catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities with no significant change in myocardial thiobarbituric acid reactive substances (TBARS) only in group PO 5 as compared to group C. There was no light microscopic evidence of tissue injury. A significant rise in myocardial TBARS and depletion of myocardial endogenous antioxidants (SOD, CAT and GPx) along with significant myocyte injury was observed in

  4. Protective effects of hydroalcoholic extract from rhizomes of Cynodon dactylon (L.) Pers. on compensated right heart failure in rats.

    PubMed

    Garjani, Alireza; Afrooziyan, Arash; Nazemiyeh, Hossein; Najafi, Moslem; Kharazmkia, Ali; Maleki-Dizaji, Nasrin

    2009-08-05

    The rhizomes of Cynodon dactylon are used for the treatment of heart failure in folk medicine. In the present study, we investigated the effects of hydroalcoholic extract of C. dactylon rhizomes on cardiac contractility in normal hearts and on cardiac functions in right-heart failure in rats. Right-heart failure was induced by intraperitoneal injection of monocrotaline (50 mg/kg). Two weeks later, the animals were treated orally with different doses of the extract for fifteen days. At the end of the experiments cardiac functions and markers of myocardial hypertrophy were measured. The treated rats showed very less signs of fatigue, peripheral cyanosis and dyspnea. The survival rate was high in the extract treated groups (90%). Administration of C. dactylon in monocrotaline-injected rats led to profound improvement in cardiac functions as demonstrated by decreased right ventricular end diastolic pressure (RVEDP) and elevated mean arterial pressure. RVdP/dtmax, and RVdP/dt/P as indices of myocardial contractility were also markedly (p < 0.001; using one way ANOVA) increased by the extract. The extract reduced heart and lung congestion by decreasing tissue wet/dry and wet/body weight ratios (p < 0.01). In the isolated rat hearts, the extract produced a remarkable (P < 0.001) positive inotropic effect concomitant with a parallel decrease in LVEDP. The results of this study indicated that C. dactylon exerted a strong protective effect on right heart failure, in part by positive inotropic action and improving cardiac functions.

  5. Effect of uridine derivatives on myocardial stunning during postischemic reperfusion of rat heart.

    PubMed

    Sapronov, N S; Eliseev, V V; Rodionova, O M

    2000-10-01

    Uridine and uridine-5'-monophosphate prevent myocardial stunning during postischemic reperfusion of isolated rat heart. Uridine-5'-diphosphate does not prevent postischemic myocardial dysfunction, while uridine-5'-triphosphate aggravates it.

  6. Cordyceps sinensis protects against liver and heart injuries in a rat model of chronic kidney disease: a metabolomic analysis.

    PubMed

    Liu, Xia; Zhong, Fang; Tang, Xu-long; Lian, Fu-lin; Zhou, Qiao; Guo, Shan-mai; Liu, Jia-fu; Sun, Peng; Hao, Xu; Lu, Ying; Wang, Wei-ming; Chen, Nan; Zhang, Nai-xia

    2014-05-01

    To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to (1)H-NMR-based metabolomic analysis. Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The (1)H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines.

  7. Cordyceps sinensis protects against liver and heart injuries in a rat model of chronic kidney disease: a metabolomic analysis

    PubMed Central

    Liu, Xia; Zhong, Fang; Tang, Xu-long; Lian, Fu-lin; Zhou, Qiao; Guo, Shan-mai; Liu, Jia-fu; Sun, Peng; Hao, Xu; Lu, Ying; Wang, Wei-ming; Chen, Nan; Zhang, Nai-xia

    2014-01-01

    Aim: To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. Methods: Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to 1H-NMR-based metabolomic analysis. Results: Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. Conclusion: Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The 1H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines. PMID:24632844

  8. Endocannabinoids protect the rat isolated heart against ischaemia

    PubMed Central

    Lépicier, Philippe; Bouchard, Jean-François; Lagneux, Caroline; Lamontagne, Daniel

    2003-01-01

    The purpose of this study was to determine whether endocannabinoids can protect the heart against ischaemia and reperfusion. Rat isolated hearts were exposed to low-flow ischaemia (0.5–0.6 ml min−1) and reperfusion. Functional recovery as well as CK and LDH overflow into the coronary effluent were monitored. Infarct size was determined at the end of the experiments. Phosphorylation levels of p38, ERK1/2, and JNK/SAPK kinases were measured by Western blots. None of the untreated hearts recovered from ischaemia during the reperfusion period. Perfusion with either 300 nM palmitoylethanolamide (PEA) or 300 nM 2-arachidonoylglycerol (2-AG), but not anandamide (up to 1 μM), 15 min before and throughout the ischaemic period, improved myocardial recovery and decreased the levels of coronary CK and LDH. PEA and 2-AG also reduced infarct size. The CB2-receptor antagonist, SR144528, blocked completely the cardioprotective effect of both PEA and 2-AG, whereas the CB1-receptor antagonist, SR141716A, blocked partially the effect of 2-AG only. In contrast, both ACEA and JWH015, two selective agonists for CB1- and CB2- receptors, respectively, reduced infarct size at a concentration of 50 nM. PEA enhanced the phosphorylation level of p38 MAP kinase during ischaemia. PEA perfusion doubled the baseline phosphorylation level of ERK1/2, and enhanced its increase upon reperfusion. The cardioprotective effect of PEA was completely blocked by the p38 MAP kinase inhibitor, SB203580, and significantly reduced by the ERK1/2 inhibitor, PD98059, and the PKC inhibitor, chelerythrine. In conclusion, endocannabinoids exert a strong cardioprotective effect in a rat model of ischaemia–reperfusion that is mediated mainly through CB2-receptors, and involves p38, ERK1/2, as well as PKC activation. PMID:12813004

  9. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao

    Preconditioning against myocardial ischemia–reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct sizemore » and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. - Highlights: • Morphine and ischemic preconditioning are cardioprotective in normal rat hearts. • Ischemic preconditioning fails to confer cardioprotection in rats with heart failure. • Morphine retains cardioprotection in doxorubicin-induced heart failure. • Morphine exerts cardioprotection via the ERK/GSK-β pathway independent of PI3K/Akt.« less

  10. The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure.

    PubMed

    Hwee, Darren T; Kennedy, Adam R; Hartman, James J; Ryans, Julie; Durham, Nickie; Malik, Fady I; Jasper, Jeffrey R

    2015-04-01

    Heart failure-mediated skeletal myopathy, which is characterized by muscle atrophy and muscle metabolism dysfunction, often manifests as dyspnea and limb muscle fatigue. We have previously demonstrated that increasing Ca(2+) sensitivity of the sarcomere by a small-molecule fast skeletal troponin activator improves skeletal muscle force and exercise performance in healthy rats and models of neuromuscular disease. The objective of this study was to investigate the effect of a novel fast skeletal troponin activator, CK-2127107 (2-aminoalkyl-5-N-heteroarylpyrimidine), on skeletal muscle function and exercise performance in rats exhibiting heart failure-mediated skeletal myopathy. Rats underwent a left anterior descending coronary artery ligation, resulting in myocardial infarction and a progressive decline in cardiac function [left anterior descending coronary artery heart failure (LAD-HF)]. Compared with sham-operated control rats, LAD-HF rat hindlimb and diaphragm muscles exhibited significant muscle atrophy. Fatigability was increased during repeated in situ isokinetic plantar flexor muscle contractions. CK-2127107 produced a leftward shift in the force-Ca(2+) relationship of skinned, single diaphragm, and extensor digitorum longus fibers. Exercise performance, which was assessed by rotarod running, was lower in vehicle-treated LAD-HF rats than in sham controls (116 ± 22 versus 193 ± 31 seconds, respectively; mean ± S.E.M.; P = 0.04). In the LAD-HF rats, a single oral dose of CK-2127107 (10 mg/kg p.o.) increased running time compared with vehicle treatment (283 ± 47 versus 116 ± 22 seconds; P = 0.0004). In summary, CK-2127107 substantially increases exercise performance in this heart failure model, suggesting that modulation of skeletal muscle function by a fast skeletal troponin activator may be a useful therapeutic in heart failure-associated exercise intolerance. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Reiki improves heart rate homeostasis in laboratory rats.

    PubMed

    Baldwin, Ann Linda; Wagers, Christina; Schwartz, Gary E

    2008-05-01

    To determine whether application of Reiki to noise-stressed rats can reduce their heart rates (HRs) and blood pressures. In a previous study, we showed that exposure of rats to 90 dB white noise for 15 minutes caused their HRs and blood pressures to significantly increase. Reiki has been shown to significantly decrease HR and blood pressure in a small group of healthy human subjects. However, use of humans in such studies has the disadvantage that experimental interpretations are encumbered by the variable of belief or skepticism regarding Reiki. For that reason, noise-stressed rats were used as an animal model to test the efficacy of Reiki in reducing elevated HR and blood pressure. Three unrestrained, male Sprague-Dawley rats implanted with radiotelemetric transducers were exposed daily for 8 days to a 15-minute white noise regimen (90 dB). For the last 5 days, the rats received 15 minutes of Reiki immediately before the noise and during the noise period. The experiment was repeated on the same animals but using sham Reiki. The animals were housed in a quiet room in University of Arizona Animal Facility. Mean HRs and blood pressure were determined before Reiki/sham Reiki, during Reiki/sham Reiki, and during the noise in each case. Reiki, but not sham Reiki, significantly reduced HR compared to initial values. With Reiki, there was a high correlation between change in HR and initial HR, suggesting a homeostatic effect. Reiki, but not sham Reiki, significantly reduced the rise in HR produced by exposure of the rats to loud noise. Neither Reiki nor sham Reiki significantly affected blood pressure. Reiki is effective in modulating HR in stressed and unstressed rats, supporting its use as a stress-reducer in humans.

  12. Minoxidil accelerates heart failure development in rats with ascending aortic constriction.

    PubMed

    Turcani, M; Jacob, R

    1998-06-01

    To test the ability of the heart to express characteristic geometric features of concentric and eccentric hypertrophy concurrently, constriction of the ascending aorta was performed in 4-week-old rats. Simultaneously, these rats were treated with an arteriolar dilator minoxidil. An examination 6 weeks after induction of the hemodynamic overload revealed no signs of congestion in systemic or pulmonary circulation in rats with aortic constriction or minoxidil-treated sham-operated rats. The magnitude of hemodynamic overload caused by aortic constriction or minoxidil treatment could be considered as equivalent, because the same enlargement of left ventricular pressure-volume area was necessary to compensate for either pressure or volume overload. Myocardial contractility decreased in rats with aortic constriction, and the compensation was achieved wholly by the marked concentric hypertrophy. Volume overload in minoxidil-treated rats was compensated partially by the eccentric hypertrophy and partially by the increased myocardial contractility. In contrast, increased lung weight and pleural effusion were found in all minoxidil-treated rats with aortic constriction. Unfavorable changes in left ventricular mass and geometry, relatively high chamber stiffness, and depressed ventricular and myocardial function were responsible for the massive pulmonary congestion.

  13. Nkx2.5 enhances the efficacy of mesenchymal stem cells transplantation in treatment heart failure in rats.

    PubMed

    Deng, Bo; Wang, Jin Xin; Hu, Xing Xing; Duan, Peng; Wang, Lin; Li, Yang; Zhu, Qing Lei

    2017-08-01

    The aim of this study is to determine whether Nkx2.5 transfection of transplanted bone marrow mesenchymal stem cells (MSCs) improves the efficacy of treatment of adriamycin-induced heart failure in a rat model. Nkx2.5 was transfected in MSCs by lentiviral vector transduction. The expressions of Nkx2.5 and cardiac specific genes in MSCs and Nkx2.5 transfected mesenchymal stem cells (MSCs-Nkx2.5) were analyzed with quantitative real-time PCR and Western blot in vitro. Heart failure models of rats were induced by adriamycin and were then randomly divided into 3 groups: injected saline, MSCs or MSCs-Nkx2.5 via the femoral vein respectively. Four weeks after injection, the cardiac function, expressions of cardiac specific gene, fibrosis formation and collagen volume fraction in the myocardium as well as the expressions of GATA4 and MEF2 in rats were analyzed with echocardiography, immunohistochemistry, Masson staining, quantitative real-time PCR and Western blot, respectively. Nkx2.5 enhanced cardiac specific gene expressions including α-MHC, TNI, CKMB, connexin-43 in MSCs-Nkx2.5 in vitro. Both MSCs and MSCs-Nkx2.5 improved cardiac function, promoted the differentiation of transplanted MSCs into cardiomyocyte-like cells, decreased fibrosis formation and collagen volume fraction in the myocardium, as well as increased the expressions of GATA4 and MEF2 in adriamycin-induced rat heart failure models. Moreover, the effect was much more remarkable in MSCs-Nkx2.5 than in MSCs group. This study has found that Nkx2.5 enhances the efficacy of MSCs transplantation in treatment adriamycin-induced heart failure in rats. Nkx2.5 transfected to transplanted MSCs provides a potential effective approach to heart failure. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Protective effects of hydroalcoholic extract from rhizomes of Cynodon dactylon (L.) Pers. on compensated right heart failure in rats

    PubMed Central

    Garjani, Alireza; Afrooziyan, Arash; Nazemiyeh, Hossein; Najafi, Moslem; Kharazmkia, Ali; Maleki-Dizaji, Nasrin

    2009-01-01

    Background The rhizomes of Cynodon dactylon are used for the treatment of heart failure in folk medicine. In the present study, we investigated the effects of hydroalcoholic extract of C. dactylon rhizomes on cardiac contractility in normal hearts and on cardiac functions in right-heart failure in rats. Methods Right-heart failure was induced by intraperitoneal injection of monocrotaline (50 mg/kg). Two weeks later, the animals were treated orally with different doses of the extract for fifteen days. At the end of the experiments cardiac functions and markers of myocardial hypertrophy were measured. Results The treated rats showed very less signs of fatigue, peripheral cyanosis and dyspnea. The survival rate was high in the extract treated groups (90%). Administration of C. dactylon in monocrotaline-injected rats led to profound improvement in cardiac functions as demonstrated by decreased right ventricular end diastolic pressure (RVEDP) and elevated mean arterial pressure. RVdP/dtmax, and RVdP/dt/P as indices of myocardial contractility were also markedly (p < 0.001; using one way ANOVA) increased by the extract. The extract reduced heart and lung congestion by decreasing tissue wet/dry and wet/body weight ratios (p < 0.01). In the isolated rat hearts, the extract produced a remarkable (P < 0.001) positive inotropic effect concomitant with a parallel decrease in LVEDP. Conclusion The results of this study indicated that C. dactylon exerted a strong protective effect on right heart failure, in part by positive inotropic action and improving cardiac functions. PMID:19653918

  15. [ATP-synthetase activity, respiration and cytochromes of rat heart mitochondria in aging and hyperthyroidism].

    PubMed

    Lemeshko, V V; Kaliman, P A; Belostotskaia, L I; Uchitel', A A

    1982-04-01

    The ATP-synthetase activity, the rate of oxygen uptake under different metabolic conditions, the tightness of coupling of respiration to oxidative phosphorylation and the cytochrome contents in heart mitochondria of rats from different age groups were studied under normal conditions and in hyperthyroidism. It was found that heart mitochondria of aged animals did not practically differ in terms of their functional activity from those of the young animals. Administration of thyroxin to the animals from all age groups produced no significant effects on the state of mitochondria, increasing the rate of ATP synthesis on alpha-glycerophosphate, which was especially well-pronounced in aged animals, and the cytochrome content in 1-month-old rats.

  16. Comparison between the Hypolipidemic Activity of Parsley and Carob in Hypercholesterolemic Male Rats

    PubMed Central

    Al-Seeni, Madeha N.; Al-Ghamdi, Habibah B.

    2017-01-01

    Hypercholesterolemia is commonly associated with obesity that leads to heart diseases and diabetes. The hepatocardioprotective activity of parsley and carob methanol extract was tested in hypercholesterolemic male rats. Twenty-four male albino rats were divided into four groups (n = 6). Group 1 was the negative control group fed with fat rich diet, group 2 (G2) was hypercholesterolemic rats fed with fat rich diet with 2% cholesterol, and group 3 and group 4 (G3 and G4) were hypercholesterolemic rats supplemented with 2% cholesterol and cotreated with 20% w/w parsley seed methanol extract and 20% w/w carob legume methanol extract, respectively. The experiment was conducted for eight weeks. The positive hypercholesterolemic rats showed significant increase in serum levels of total cholesterol, triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL), lactate dehydrogenase (LDH), creatine kinase-mb, liver function enzymes, and decrease in the high density lipoproteins (HDL). Moreover, heart and liver tissues were ameliorated and nearly restored their normal appearance. It could be concluded that both parsley and carob extracts supplementations have a protective effect against hyperlipidemia and improved the histological alteration in heart and liver tissues. The methanol extract of parsley appeared to be more efficient than that of carob in lowering hypercholesterolemia. PMID:29094044

  17. Studies on Pentoxifylline and Tocopherol Combination for Radiation-Induced Heart Disease in Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Hui; Department of Radiotherapy, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong; Xiong Mai

    Purpose: To investigate whether the application of pentoxifylline (PTX) and tocopherol l (Vit. E) could modify the development of radiation-induced heart disease and downregulate the expression of transforming growth factor (TGF)-{beta}1mRNA in rats. Methods and Materials: A total of 120 Sprague-Dawley rats were separated into four groups: control group, irradiated group, experimental group 1, and experiment group 2. Supplementation was started 3 days before irradiation; in experimental group 1, injection of PTX (15 mg/kg/d) and Vit. E (5.5 mg/kg/d) continued till the 12th week postirradiation, whereas in experimental group 2 it was continued until the 24th week postirradiation. All ratsmore » were administrated a single dose of 20 Gy irradiation to the heart except the control group. Histopathologic evaluation was performed at various time points (Days 1, 2, 4, 8, and 12 and 24th week) up to 24 weeks after irradiation. Changes of levels of TGF-{beta}1 mRNA expression were also investigated at the same time points using competitive polymerase chain reaction. Results: Compared with the irradiated group, levels of TGF-{beta}1 mRNA of the rat hearts were relatively low in the two experimental groups on the 12th week postirradiation. In experimental group 1, there was a rebound expression of TGF-{beta}1 mRNA on the 24th week postirradiation, whereas that of the experimental group 2 remained low (p < 0.05). The proportions of collagen fibers of the two experimental groups were lower than that of irradiated group (p < 0.05). A rebound could be observed in the experimental group 1. Conclusion: PTX and Vit. E downregulated the expression of TGF-{beta}1 mRNA. The irradiated rat hearts showed a marked pathologic response to the drugs. The withdrawal of drugs in the 12th week postirradiation could cause rebound effects of the development of fibrosis.« less

  18. Hypoxic preconditioning facilitates acclimatization to hypobaric hypoxia in rat heart.

    PubMed

    Singh, Mrinalini; Shukla, Dhananjay; Thomas, Pauline; Saxena, Saurabh; Bansal, Anju

    2010-12-01

    Acute systemic hypoxia induces delayed cardioprotection against ischaemia-reperfusion injury in the heart. As cobalt chloride (CoCl₂) is known to elicit hypoxia-like responses, it was hypothesized that this chemical would mimic the preconditioning effect and facilitate acclimatization to hypobaric hypoxia in rat heart. Male Sprague-Dawley rats treated with distilled water or cobalt chloride (12.5 mg Co/kg for 7 days) were exposed to simulated altitude at 7622 m for different time periods (1, 2, 3 and 5 days). Hypoxic preconditioning with cobalt appreciably attenuated hypobaric hypoxia-induced oxidative damage as observed by a decrease in free radical (reactive oxygen species) generation, oxidation of lipids and proteins. Interestingly, the observed effect was due to increased expression of the antioxidant proteins hemeoxygenase and metallothionein, as no significant change was observed in antioxidant enzyme activity. Hypoxic preconditioning with cobalt increased hypoxia-inducible factor 1α (HIF-1α) expression as well as HIF-1 DNA binding activity, which further resulted in increased expression of HIF-1 regulated genes such as erythropoietin, vascular endothelial growth factor and glucose transporter. A significant decrease was observed in lactate dehydrogenase activity and lactate levels in the heart of preconditioned animals compared with non-preconditioned animals exposed to hypoxia. The results showed that hypoxic preconditioning with cobalt induces acclimatization by up-regulation of hemeoxygenase 1 and metallothionein 1 via HIF-1 stabilization. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society of Great Britain.

  19. Cardioprotective Effects of Astragalin against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart.

    PubMed

    Qu, Daoxu; Han, Jichun; Ren, Huanhuan; Yang, Wenxiao; Zhang, Xinjie; Zheng, Qiusheng; Wang, Dong

    2016-01-01

    This study aims to evaluate the cardioprotective effects of astragalin against myocardial ischemia/reperfusion (I/R) injury in isolated rat heart. The cardioprotective effects of astragalin on myocardial I/R injury were investigated on Langendorff apparatus. Adult male Sprague-Dawley rats were randomly divided into five groups. The results showed that astragalin pretreatment improved myocardial function. Compared with I/R group, lactate dehydrogenase (LDH) and creatine kinase (CK) activities in coronary flow decreased in astragalin pretreatment groups, whereas superoxide dismutase (SOD) activity and glutathione/glutathione disulfide (GSH/GSSG) ratio significantly increased. The levels of malondialdehyde (MDA), intracellular reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) decreased in astragalin-treated groups. The infarct size (IS) and apoptosis rate in hearts from astragalin-treated groups were lower than those in hearts from the I/R group. Western blot analysis also revealed that astragalin preconditioning significantly reduced Bax level, whereas Bcl-2 was increased in the myocardium. Therefore, astragalin exhibited cardioprotective effects via its antioxidative, antiapoptotic, and anti-inflammatory activities.

  20. Cardioprotective Effects of Astragalin against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart

    PubMed Central

    Qu, Daoxu; Ren, Huanhuan; Yang, Wenxiao; Zhang, Xinjie; Zheng, Qiusheng; Wang, Dong

    2016-01-01

    This study aims to evaluate the cardioprotective effects of astragalin against myocardial ischemia/reperfusion (I/R) injury in isolated rat heart. The cardioprotective effects of astragalin on myocardial I/R injury were investigated on Langendorff apparatus. Adult male Sprague-Dawley rats were randomly divided into five groups. The results showed that astragalin pretreatment improved myocardial function. Compared with I/R group, lactate dehydrogenase (LDH) and creatine kinase (CK) activities in coronary flow decreased in astragalin pretreatment groups, whereas superoxide dismutase (SOD) activity and glutathione/glutathione disulfide (GSH/GSSG) ratio significantly increased. The levels of malondialdehyde (MDA), intracellular reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) decreased in astragalin-treated groups. The infarct size (IS) and apoptosis rate in hearts from astragalin-treated groups were lower than those in hearts from the I/R group. Western blot analysis also revealed that astragalin preconditioning significantly reduced Bax level, whereas Bcl-2 was increased in the myocardium. Therefore, astragalin exhibited cardioprotective effects via its antioxidative, antiapoptotic, and anti-inflammatory activities. PMID:26788251

  1. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes.

    PubMed

    Zimmermann, W H; Fink, C; Kralisch, D; Remmers, U; Weil, J; Eschenhagen, T

    2000-04-05

    A technique is presented that allows neonatal rat cardiac myocytes to form spontaneously and coherently beating 3-dimensional engineered heart tissue (EHT) in vitro, either as a plane biconcaval matrix anchored at both sides on Velcro-coated silicone tubes or as a ring. Contractile activity was monitored in standard organ baths or continuously in a CO(2) incubator for up to 18 days (=26 days after casting). Long-term measurements showed an increase in force between days 8 and 18 after casting and stable forces thereafter. At day 10, the twitch amplitude (TA) of electrically paced EHTs (average length x width x thickness, 11 x 6 x 0.4 mm) was 0.51 mN at length of maximal force development (L(max)) and a maximally effective calcium concentration. EHTs showed typical features of neonatal rat heart: a positive force-length and a negative force-frequency relation, high sensitivity to calcium (EC(50) 0.24 mM), modest positive inotropic (increase in TA by 46%) and pronounced positive lusitropic effect of isoprenaline (decrease in twitch duration by 21%). Both effects of isoprenaline were sensitive to the muscarinic receptor agonist carbachol in a pertussis toxin-sensitive manner. Adenovirus-mediated gene transfer of beta-galactosidase into EHTs reached 100% efficiency. In summary, EHTs retain many of the physiological characteristics of rat cardiac tissue and allow efficient gene transfer with subsequent force measurement. Copyright 2000 John Wiley & Sons, Inc.

  2. 1H nuclear magnetic resonance studies of sarcoplasmic oxygenation in the red cell-perfused rat heart.

    PubMed

    Jelicks, L A; Wittenberg, B A

    1995-05-01

    The proximal histidine N delta H proton of deoxymyoglobin experiences a large hyperfine shift resulting in its 1H nuclear magnetic resonance (NMR) signal appearing at approximately 76 ppm (at 35 degrees C), downfield of the diamagnetic spectral region. 1H NMR of this proton is used to monitor sarcoplasmic oxygen pressure in isolated perfused rat heart. This method monitors intracellular oxygenation in the whole heart and does not reflect oxygenation in a limited region. The deoxymyoglobin resonance intensity is reduced upon conversion of myoglobin to the ferric form by sodium nitrite. 1H resonances of the N delta H protons of the alpha and beta subunits of bovine deoxyhemoglobin do not interfere with the measurement of myoglobin deoxygenation in blood-perfused rat heart. We find that steady-state myoglobin deoxygenation is increased progressively (and reversibly) as oxygenation of the perfusing medium is decreased in both saline and red blood cell-perfused hearts at constant work output. An eightfold increase in the heart rate of the blood-perfused heart resulted in no change in the deoxymyoglobin signal intensity. Intracellular PO2 of myoglobin-containing cells is maintained remarkably constant in changing work states.

  3. β1-Adrenergic blocker bisoprolol reverses down-regulated ion channels in sinoatrial node of heart failure rats.

    PubMed

    Du, Yuan; Zhang, Junbo; Xi, Yutao; Wu, Geru; Han, Ke; Huang, Xin; Ma, Aiqun; Wang, Tingzhong

    2016-06-01

    Bisoprolol, an antagonist of β1-adrenergic receptors, is effective in reducing the morbidity and mortality in patients with heart failure (HF). It has been found that HF is accompanied with dysfunction of the sinoatrial node (SAN). However, whether bisoprolol reverses the decreased SAN function in HF and how the relevant ion channels in SAN change were relatively less studied. SAN function and messenger RNA (mRNA) expression of sodium channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel subunits were assessed in sham-operated rats, abdominal arterio-venous shunt (volume overload)-induced HF rats, and bisoprolol- treated HF rats. SAN cells of rats were isolated by laser capture microdissection. Quantitative real-time PCR analysis was used to quantify mRNA expression of sodium channels and HCN channel subunits in SAN. Intrinsic heart rate declined and sinus node recovery time prolonged in HF rats, indicating the suppressed SAN function, which could be improved by bisoprolol treatment. Nav1.1, Nav1.6, and HCN4 mRNA expressions were reduced in SAN in HF rats compared with that in control rats. Treatment with bisoprolol could reverse both the SAN function and the Nav1.1, Nav1.6, and HCN4 mRNA expression partially. These data indicated that bisoprolol is effective in HF treatment partially due to improved SAN function by reversing the down-regulation of sodium channels (Nav1.1 and Nav1.6) and HCN channel (HCN4) subunits in SAN in failing hearts.

  4. Validation of the Nonin 8600V Pulse Oximeter for heart rate and oxygen saturation measurements in rats.

    PubMed

    Bernard, Susan L; An, Dowon; Glenny, Robb W

    2004-05-01

    This report validates the use and limitations of the Nonin Pulse Oximeter for measuring heart rate and oxygen saturation in rats. Eight anesthetized Sprague-Dawley rats were intubated and catheterized. Oxygen saturation was directly measured from arterial blood by using a Radiometer OSM3 Hemoximeter adjusted for rat blood as well as indirectly by using the Nonin Pulse Oximeter. Oxygen saturation was changed by varying the level of inhaled oxygen. Heart rate was measured in two ways: 1) by using the signal from the Nonin Pulse Oximeter and 2) by counting the pressure pulses from the transduced blood pressure. There was excellent agreement between heart rate values measured by the Nonin Pulse Oximeter and that measured by counting the pulses from the arterial blood pressure recording. The Nonin Pulse Oximeter underestimated oxygen saturations by about 3% to 5% compared to the Hemoximeter. Overall, the pulse oximeter reflected important trends in oxygen saturations, making it a useful tool for laboratory animal medicine.

  5. [Evaluation of intraventricular dyssynchrony by quantitative tissue velocity imaging in rats of post-infarction heart failure].

    PubMed

    Wang, Yan; Zhu, Wenhui; Duan, Xingxing; Zhao, Yongfeng; Liu, Wengang; Li, Ruizhen

    2011-04-01

    To evaluate intraventricular systolic dyssynchrony in rats with post-infarction heart failure by quantitative tissue velocity imaging combining synchronous electrocardiograph. A total of 60 male SD rats were randomly assigned to 3 groups: a 4 week post-operative group and an 8 week post-operation group (each n=25, with anterior descending branch of the left coronary artery ligated), and a sham operation group (n=10, with thoracotomy and open pericardium, but no ligation of the artery). The time to peak systolic velocity of regional myocardial in the rats was measured and the index of the left intraventricular dyssynchrony was calculated. All indexes of the heart function became lower as the heart failure worsened except the left ventricle index in the post-operative groups. All indexes of the dyssynchrony got longer in the post-operative groups (P<0.05), while the changes in the sham operation group were not significantly different (P>0.05). Quantitative tissue velocity imaging combining synchronous electrocardiograph can analyse the intraventricular systolic dyssynchrony accurately.

  6. Effect of Noradrenergic Neurotoxin DSP-4 and Maprotiline on Heart Rate Spectral Components in Stressed and Resting Rats.

    PubMed

    Kur'yanova, E V; Zhukova, Yu D; Teplyi, D L

    2017-07-01

    The effects of intraperitoneal DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, a noradrenergic neurotoxin) and maprotiline (an inhibitor of norepinephrine reuptake in synapses) on spectral components of heart rhythm variability were examined in outbred male and female rats treated with these agents in daily doses of 10 mg/kg for 3 days. At rest, DSP-4 elevated LF and VLF spectral components in male and female rats. Maprotiline elevated LF and VLF components in males at rest, increased HR and reduced all spectral components in resting females. Stress against the background of DSP-4 treatment sharply increased heart rate and reduced the powers of all spectral components (especially LF and VLF components). In maprotiline-treated rats, stress increased the powers of LF and VLF components. Thus, the central noradrenergic system participates in the formation of LF and VLF spectral components of heart rate variability at rest and especially during stressful stimulation, which can determine the phasic character of changes in the heart rate variability observed in stressed organism.

  7. Intrauterine programming of lipid metabolic alterations in the heart of the offspring of diabetic rats is prevented by maternal diets enriched in olive oil.

    PubMed

    Capobianco, Evangelina; Pelesson, Magalí; Careaga, Valeria; Fornes, Daiana; Canosa, Ivana; Higa, Romina; Maier, Marta; Jawerbaum, Alicia

    2015-10-01

    Maternal diabetes can program metabolic and cardiovascular diseases in the offspring. The aim of this work was to address whether an olive oil supplemented diet during pregnancy can prevent lipid metabolic alterations in the heart of the offspring of mild diabetic rats. Control and diabetic Wistar rats were fed during pregnancy with either a standard diet or a 6% olive oil supplemented diet. The heart of adult offspring from diabetic rats showed increases in lipid concentrations (triglycerides in males and phospholipids, cholesterol, and free fatty acids in females), which were prevented with the maternal diets enriched in olive oil. Maternal olive oil supplementation increased the content of unsaturated fatty acids in the hearts of both female and male offspring from diabetic rats (possibly due to a reduction in lipoperoxidation), increased the expression of Δ6 desaturase in the heart of male offspring from diabetic rats, and increased the expression of peroxisome proliferator activated receptor α in the hearts of both female and male offspring from diabetic rats. Relevant alterations in cardiac lipid metabolism were evident in the adult offspring of a mild diabetic rat model, and regulated by maternal diets enriched in olive oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Induction of endoplasmic reticulum stress and changes in expression levels of Zn2+-transporters in hypertrophic rat heart.

    PubMed

    Olgar, Yusuf; Ozdemir, Semir; Turan, Belma

    2018-03-01

    Clinical and experimental studies have shown an association between intracellular free Zn 2+ ([Zn 2+ ] i )-dyshomeostasis and cardiac dysfunction besides [Ca 2+ ] i -dyshomeostasis. Since [Zn 2+ ] i -homeostasis is regulated through Zn 2+ -transporters depending on their subcellular distributions, one can hypothesize that any imbalance in Zn 2+ -homeostasis via alteration in Zn 2+ -transporters may be associated with the induction of ER stress and apoptosis in hypertrophic heart. We used a transverse aortic constriction (TAC) model to induce hypertrophy in young male rat heart. We confirmed the development of hypertrophy with a high ratio of heart to body weight and cardiomyocyte capacitance. The expression levels of ER stress markers GRP78, CHOP/Gadd153, and calnexin are significantly high in TAC-group in comparison to those of controls (SHAM-group). Additionally, we detected high expression levels of apoptotic status marker proteins such as the serine kinase GSK-3β, Bax-to-Bcl-2 ratio, and PUMA in TAC-group in comparison to SHAM-group. The ratios of phospho-Akt to Akt and phospho-NFκB to the NFκB are significantly higher in TAC-group than in SHAM-group. Furthermore, we observed markedly increased phospho-PKCα and PKCα levels in TAC-group. We, also for the first time, determined significantly increased ZIP7, ZIP14, and ZnT8 expressions along with decreased ZIP8 and ZnT7 levels in the heart tissue from TAC-group in comparison to SHAM-group. Furthermore, a roughly calculated total expression level of ZIPs responsible for Zn 2+ -influx into the cytosol (increased about twofold) can be also responsible for the markedly increased [Zn 2+ ] i detected in hypertrophic cardiomyocytes. Taking into consideration the role of increased [Zn 2+ ] i via decreased ER-[Zn 2+ ] in the induction of ER stress in cardiomyocytes, our present data suggest that differential changes in the expression levels of Zn 2+ -transporters can underlie mechanical dysfunction, in part due to the

  9. Can fish oil supplementation and physical training improve oxidative metabolism in aged rat hearts?

    PubMed

    da Silva Pedroza, Anderson Apolonio; Lopes, Andréia; Mendes da Silva, Rosângela F; Braz, Glauber Ruda; Nascimento, Luciana P; Ferreira, Diorginis Soares; dos Santos, Ângela Amâncio; Batista-de-Oliveira-Hornsby, Manuella; Lagranha, Claudia J

    2015-09-15

    It is well known that in the aging process a variety of physiological functions such as cardiac physiology and energy metabolism decline. Imbalance in production and elimination of reactive oxygen species (ROS) may induce oxidative stress. Research shows that oxidative stress is an important factor in the aging process. Studies suggest that ɷ-3 polyunsaturated fatty acids (PUFAs) and moderate physical exercise modulate the ROS system. Therefore, the present study aimed to investigate whether ɷ-3 present in fish oil supplementation coupled with moderate physical training could improve antioxidant and metabolic enzymes in the hearts of adult and aged rats and, if these effects could be associated to glycemia, plasma lipid profile or murinometric parameters. Adult (weighing 315.1±9.3g) and aged rats (weighing 444.5±11.8g) exercised and receive fish oil supplementation for 4weeks. Then they were used to evaluate murinometric parameters, fasting glucose and lipid profile. After this, their hearts were collected to measure the levels of malondialdehyde (MDA), antioxidant enzyme activity (superoxide dismutase-SOD, catalase-CAT, glutathione peroxidase-GPx) and oxidative metabolism marker (citrate synthase-CS activity). Fish oil supplementation increases HDL concentration and activity of CAT and CS. Moreover, physical training coupled with fish oil supplementation induces additional effects on SOD, GPx and CS activity mainly in aged rats. Our data suggest that combined treatment in aged rat hearts improves the antioxidant capacities and metabolic enzyme that can prevent the deleterious effects of aging. Copyright © 2015. Published by Elsevier Inc.

  10. Effects of hawthorn on the progression of heart failure in a rat model of aortic constriction.

    PubMed

    Hwang, Hyun Seok; Boluyt, Marvin O; Converso, Kimber; Russell, Mark W; Bleske, Barry E

    2009-06-01

    To determine the effects of hawthorn (Crataegus oxycantha) on left ventricular remodeling and function in pressure overload-induced heart failure in an animal model. Randomized, parallel, dose-ranging animal study. University research facility. Seventy-four male Sprague-Dawley rats; 44 were included in the final analysis. Rats underwent a sham operation or aortic constriction. Rats subjected to the sham operation were treated with vehicle (10% agar-agar), and those subjected to aortic constriction were treated with vehicle or hawthorn (C. oxycantha special extract WS 1442) 1.3, 13, or 130 mg/kg for 5 months. Rats and their hearts were weighed, and echocardiographic measurements were performed at baseline and at 2, 3, 4, and 5 months after aortic constriction. Protein expression for markers of fibrosis and for atrial natriuretic factor was also measured. Aortic constriction increased the left ventricular:body weight ratio by 53% in vehicle-treated rats; Hawthorn treatment did not significantly affect the aortic constriction-induced increase in this ratio. Left ventricular volumes and dimensions at systole and diastole significantly increased 5 months after aortic constriction compared with baseline in rats given vehicle (> 20% increase, p<0.05) but not in those given hawthorn 130 mg/kg (< 10% increase). After aortic constriction, the velocity of circumferential shortening significantly decreased in the vehicle group but not in the medium- or high-dose groups. In the aortic constriction-vehicle group, the induced increases in messenger RNA expression for atrial natriuretic factor (approximately 1000%) and fibronectin (approximately 80%) were significantly attenuated by high-dose hawthorn treatment by approximately 80% and 50%, respectively. Hawthorn treatment exhibited modest beneficial effects on cardiac remodeling and function during long-term, pressure overload-induced heart failure in rats.

  11. Long term effects of fetal undernutrition on rat heart. Role of hypertension and oxidative stress

    PubMed Central

    Rodríguez-Rodríguez, Pilar; López de Pablo, Angel L.; García-Prieto, Concha F.; Somoza, Beatriz; Quintana-Villamandos, Begoña; Gómez de Diego, José J.; Gutierrez-Arzapalo, Perla Y.; Ramiro-Cortijo, David; González, M. Carmen

    2017-01-01

    Background and aims Fetal undernutrition is a risk factor for heart disease in both genders, despite the protection of women against hypertension development. Using a rat model of maternal undernutrition (MUN) we aimed to assess possible sex differences in the development of cardiac alterations and the implication of hypertension and cardiac oxidative stress. Methods Male and female offspring from rats fed ad libitum (control) or with 50% of the normal daily intake during the second half of gestation (MUN) were used. Heart weight/body weight ratio (HW/BW), hemodynamic parameters (anaesthetized rats) and plasma brain natriuretic peptide (BNP, ELISA) were assessed in 21-day, 6-month and 22-month old rats. Plasma testosterone (ELISA) and cardiac protein expression of enzymes related to reactive oxygen species synthesis (p22phox, xanthine-oxidase) and degradation (catalase, Cu/Zn-SOD, Mn-SOD, Ec-SOD) were evaluated in 21-day and 6-month old rats (Western Blot). Heart structure and function was studied at the age of 22 months (echocardiography). Results At the age of 21 days MUN males exhibited significantly larger HW/BW and cardiac p22phox expression while females had reduced p22phox expression, compared to their respective sex-matched controls. At the age of 6-months, MUN males showed significantly larger blood pressure and cardiac xanthine-oxidase expression; MUN females were normotensive and had a lower cardiac expression of antioxidant enzymes, compared to their respective sex-matched controls. At the age of 22 months, both MUN males and females showed larger HW/BW and left ventricular mass and lower ejection fraction compared to sex-matched controls; only MUN males exhibited hypertension and a larger plasma BNP compared to aged male controls. Conclusions 1) During perinatal life females exposed to fetal undernutrition are protected from cardiac alterations, but in ageing they exhibit ventricular hypertrophy and functional loss, like MUN males; 2) cardiac oxidative

  12. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mgmore » protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.« less

  13. Heart Alterations after Domoic Acid Administration in Rats

    PubMed Central

    Vieira, Andres C.; Cifuentes, José Manuel; Bermúdez, Roberto; Ferreiro, Sara F.; Castro, Albina Román; Botana, Luis M.

    2016-01-01

    Domoic acid (DA) is one of the best known marine toxins, causative of important neurotoxic alterations. DA effects are documented both in wildlife and experimental assays, showing that this toxin causes severe injuries principally in the hippocampal area. In the present study we have addressed the long-term toxicological effects (30 days) of DA intraperitoneal administration in rats. Different histological techniques were employed in order to study DA toxicity in heart, an organ which has not been thoroughly studied after DA intoxication to date. The presence of DA was detected by immunohistochemical assays, and cellular alterations were observed both by optical and transmission electron microscopy. Although histological staining methods did not provide any observable tissue damage, transmission electron microscopy showed several injuries: a moderate lysis of myofibrils and loss of mitochondrial conformation. This is the first time the association between heart damage and the presence of the toxin has been observed. PMID:26978401

  14. Renal denervation in male rats with heart failure improves ventricular sympathetic nerve innervation and function

    PubMed Central

    Pinkham, Maximilian I.; Loftus, Michael T.; Amirapu, Satya; Guild, Sarah-Jane; Quill, Gina; Woodward, William R.; Habecker, Beth A.

    2017-01-01

    Heart failure is characterized by the loss of sympathetic innervation to the ventricles, contributing to impaired cardiac function and arrhythmogenesis. We hypothesized that renal denervation (RDx) would reverse this loss. Male Wistar rats underwent myocardial infarction (MI) or sham surgery and progressed into heart failure for 4 wk before receiving bilateral RDx or sham RDx. After additional 3 wk, left ventricular (LV) function was assessed, and ventricular sympathetic nerve fiber density was determined via histology. Post-MI heart failure rats displayed significant reductions in ventricular sympathetic innervation and tissue norepinephrine content (nerve fiber density in the LV of MI+sham RDx hearts was 0.31 ± 0.05% vs. 1.00 ± 0.10% in sham MI+sham RDx group, P < 0.05), and RDx significantly increased ventricular sympathetic innervation (0.76 ± 0.14%, P < 0.05) and tissue norepinephrine content. MI was associated with an increase in fibrosis of the noninfarcted ventricular myocardium, which was attenuated by RDx. RDx improved LV ejection fraction and end-systolic and -diastolic areas when compared with pre-RDx levels. This is the first study to show an interaction between renal nerve activity and cardiac sympathetic nerve innervation in heart failure. Our findings show denervating the renal nerves improves cardiac sympathetic innervation and function in the post-MI failing heart. PMID:28052866

  15. Studies on long chain cis- and trans-acyl-CoA esters and Acyl-CoA dehydrogenase from rat heart mitochondria.

    PubMed

    Korsrud, G O; Conacher, H B; Jarvis, G A; Beare-Rogers, J L

    1977-02-01

    The beta-oxidation of long chain fatty acids was investigated in a preparation of rat heart mitochondria. The acyl-CoA esters of the cis and trans isomers of delta9-hexadecenoic, delta9-octadecenoic, delta11-eicosenoic, and delta13-docosenoic acids were prepared. Rates of the acyl-CoA reaction were determined with an extract from rat heart mitochondria. The apparent Michaelis constant (Km) and maximum velocity (Vmax) were calculated for each substrate. In general, apparent Vmax values decreased with increasing chain length of the monoenoic substrates. Reduced activity of acyl-CoA dehydrogenase with long chain acyl-CoA esters could have contributed to accumulation of lipids in hearts of rats fed diets containing long chain fatty acids.

  16. Neonatal hyperthyroidism on rat heart: interrelation with nitric oxide and sex.

    PubMed

    Rodríguez, L; Detomaso, F; Braga, P; Prendes, M; Perosi, F; Cernadas, G; Balaszczuk, A; Fellet, A

    2015-06-01

    To clarify the mechanism mediating the effect of hyperthyroidism on cardiac function during the second month of life in rats. Male and female Sprague-Dawley rats were assigned to a control or to a triiodothyronine (T3)-treated group. Treatment of each group was started on the third day after birth. Control rats (Eut) received 0.9 NaCl [0.1 ml/100 g body weight (BW)] every second day during 60 days and T3-treated rats (Hyper) received subcutaneous (SC) T3 injections every second day during 60 days. Hyperthyroidism decreased left ventricle volume only in male rats. Female euthyroid rats presented higher atrial nitric oxide synthase (NOS) activity than male rats and hormonal treatment decreased this enzyme's activity in both sexes. Euthyroid male and female rats had similar atrial NOS protein levels, but females had higher caveolin (cav) 3 protein levels. T3 treatment increased this protein only in males. Female rats had lower ventricular NOS activity than male rats; hyperthyroidism increased NOS activity in both sexes but this effect was associated with lower cav 3 protein levels. Hyperthyroidism did not change cav 1 protein levels in both male and female rats. The results of this study demonstrating clinically relevant sex-related differences in the pathophysiology of the hyperthyroid heart have raised new questions regarding the mechanisms responsible for the observed differences. This study suggests that sex-related intrinsic factors such as nitric oxide may modulate the response to hyperthyroidism that leads to cardiovascular dysfunction.

  17. Chronic mercury exposure impairs the sympathovagal control of the rat heart.

    PubMed

    Simões, M R; Azevedo, B F; Fiorim, J; Jr Freire, D D; Covre, E P; Vassallo, D V; Dos Santos, L

    2016-11-01

    Mercury is known to cause harmful neural effects affecting the cardiovascular system. Here, we evaluated the chronic effects of low-dose mercury exposure on the autonomic control of the cardiovascular system. Wistar rats were treated for 30 days with HgCl 2 (1st dose 4.6 μg/kg followed by 0.07 μg/kg per day, intramuscular) or saline. The femoral artery and vein were then cannulated for evaluation of autonomic control of the hemodynamic function, which was evaluated in awake rats. The following tests were performed: baroreflex sensitivity, Von Bezold-Jarisch reflex, heart rate variability (HRV) and pharmacological blockade with methylatropine and atenolol to test the autonomic tone of the heart. Exposure to HgCl 2 for 30 days slightly increased the mean arterial pressure and heart rate (HR). There was a significant reduction in the baroreflex gain of animals exposed to HgCl 2 . Moreover, haemodynamic responses to the activation of the Von Bezold-Jarisch reflex were also reduced. The changes in the spectral analysis of HRV suggested a shift in the sympathovagal balance toward a sympathetic predominance after mercury exposure, which was confirmed by autonomic pharmacological blockade in the HgCl 2 group. This group also exhibited reduced intrinsic HR after the double block suggesting that the pacemaker activity of the sinus node was also affected. These findings suggested that the autonomic modulation of the heart was significantly altered by chronic mercury exposure, thus reinforcing that even at low concentrations such exposure might be associated with increased cardiovascular risk. © 2016 John Wiley & Sons Australia, Ltd.

  18. Dexamethasone Treatment of Newborn Rats Decreases Cardiomyocyte Endowment in the Developing Heart through Epigenetic Modifications

    PubMed Central

    Gay, Maresha S.; Li, Yong; Xiong, Fuxia; Lin, Thant; Zhang, Lubo

    2015-01-01

    The potential adverse effect of synthetic glucocorticoid, dexamethasone therapy on the developing heart remains unknown. The present study investigated the effects of dexamethasone on cardiomyocyte proliferation and binucleation in the developing heart of newborn rats and evaluated DNA methylation as a potential mechanism. Dexamethasone was administered intraperitoneally in a three day tapered dose on postnatal day 1 (P1), 2 and 3 to rat pups in the absence or presence of a glucocorticoid receptor antagonist Ru486, given 30 minutes prior to dexamethasone. Cardiomyocytes from P4, P7 or P14 animals were analyzed for proliferation, binucleation and cell number. Dexamethasone treatment significantly increased the percentage of binucleated cardiomyocytes in the hearts of P4 pups, decreased myocyte proliferation in P4 and P7 pups, reduced cardiomyocyte number and increased the heart to body weight ratio in P14 pups. Ru486 abrogated the effects of dexamethasone. In addition, 5-aza-2'-deoxycytidine (5-AZA) blocked the effects of dexamethasone on binucleation in P4 animals and proliferation at P7, leading to recovered cardiomyocyte number in P14 hearts. 5-AZA alone promoted cardiomyocyte proliferation at P7 and resulted in a higher number of cardiomyocytes in P14 hearts. Dexamethasone significantly decreased cyclin D2, but not p27 expression in P4 hearts. 5-AZA inhibited global DNA methylation and blocked dexamethasone-mediated down-regulation of cyclin D2 in the heart of P4 pups. The findings suggest that dexamethasone acting on glucocorticoid receptors inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via increased DNA methylation in a gene specific manner. PMID:25923220

  19. The Anabolic Androgenic Steroid Nandrolone Decanoate Disrupts Redox Homeostasis in Liver, Heart and Kidney of Male Wistar Rats

    PubMed Central

    Frankenfeld, Stephan P.; Oliveira, Leonardo P.; Ortenzi, Victor H.; Rego-Monteiro, Igor CC.; Chaves, Elen A.; Ferreira, Andrea C.; Leitão, Alvaro C.; Carvalho, Denise P.; Fortunato, Rodrigo S.

    2014-01-01

    The abuse of anabolic androgenic steroids (AAS) may cause side effects in several tissues. Oxidative stress is linked to the pathophysiology of most of these alterations, being involved in fibrosis, cellular proliferation, tumorigenesis, amongst others. Thus, the aim of this study was to determine the impact of supraphysiological doses of nandrolone decanoate (DECA) on the redox balance of liver, heart and kidney. Wistar male rats were treated with intramuscular injections of vehicle or DECA (1 mg.100 g−1 body weight) once a week for 8 weeks. The activity and mRNA levels of NADPH Oxidase (NOX), and the activity of catalase, glutathione peroxidase (GPx) and total superoxide dismutase (SOD), as well as the reduced thiol and carbonyl residue proteins, were measured in liver, heart and kidney. DECA treatment increased NOX activity in heart and liver, but NOX2 mRNA levels were only increased in heart. Liver catalase and SOD activities were decreased in the DECA-treated group, but only catalase activity was decreased in the kidney. No differences were detected in GPx activity. Thiol residues were decreased in the liver and kidney of treated animals in comparison to the control group, while carbonyl residues were increased in the kidney after the treatment. Taken together, our results show that chronically administered DECA is able to disrupt the cellular redox balance, leading to an oxidative stress state. PMID:25225984

  20. The anabolic androgenic steroid nandrolone decanoate disrupts redox homeostasis in liver, heart and kidney of male Wistar rats.

    PubMed

    Frankenfeld, Stephan P; Oliveira, Leonardo P; Ortenzi, Victor H; Rego-Monteiro, Igor C C; Chaves, Elen A; Ferreira, Andrea C; Leitão, Alvaro C; Carvalho, Denise P; Fortunato, Rodrigo S

    2014-01-01

    The abuse of anabolic androgenic steroids (AAS) may cause side effects in several tissues. Oxidative stress is linked to the pathophysiology of most of these alterations, being involved in fibrosis, cellular proliferation, tumorigenesis, amongst others. Thus, the aim of this study was to determine the impact of supraphysiological doses of nandrolone decanoate (DECA) on the redox balance of liver, heart and kidney. Wistar male rats were treated with intramuscular injections of vehicle or DECA (1 mg.100 g(-1) body weight) once a week for 8 weeks. The activity and mRNA levels of NADPH Oxidase (NOX), and the activity of catalase, glutathione peroxidase (GPx) and total superoxide dismutase (SOD), as well as the reduced thiol and carbonyl residue proteins, were measured in liver, heart and kidney. DECA treatment increased NOX activity in heart and liver, but NOX2 mRNA levels were only increased in heart. Liver catalase and SOD activities were decreased in the DECA-treated group, but only catalase activity was decreased in the kidney. No differences were detected in GPx activity. Thiol residues were decreased in the liver and kidney of treated animals in comparison to the control group, while carbonyl residues were increased in the kidney after the treatment. Taken together, our results show that chronically administered DECA is able to disrupt the cellular redox balance, leading to an oxidative stress state.

  1. Molecular perturbations restrict potential for liver repopulation of hepatocytes isolated from non-heart-beating donor rats.

    PubMed

    Enami, Yuta; Joseph, Brigid; Bandi, Sriram; Lin, Juan; Gupta, Sanjeev

    2012-04-01

    Organs from non-heart-beating donors are attractive for use in cell therapy. Understanding the nature of molecular perturbations following reperfusion/reoxygenation will be highly significant for non-heart-beating donor cells. We studied non-heart-beating donor rats for global gene expression with Affymetrix microarrays, hepatic tissue integrity, viability of isolated hepatocytes, and engraftment and proliferation of transplanted cells in dipeptidyl peptidase IV-deficient rats. In non-heart-beating donors, liver tissue was morphologically intact for >24 hours with differential expression of 1, 95, or 372 genes, 4, 16, or 34 hours after death, respectively, compared with heart-beating donors. These differentially expressed genes constituted prominent groupings in ontological pathways of oxidative phosphorylation, adherence junctions, glycolysis/gluconeogenesis, and other discrete pathways. We successfully isolated viable hepatocytes from non-heart-beating donors, especially up to 4 hours after death, although the hepatocyte yield and viability were inferior to those of hepatocytes from heart-beating donors (P < 0.05). Similarly, although hepatocytes from non-heart-beating donors engrafted and proliferated after transplantation in recipient animals, this was inferior to hepatocytes from heart-beating donors (P < 0.05). Gene expression profiling in hepatocytes isolated from non-heart-beating donors showed far greater perturbations compared with corresponding liver tissue, including representation of pathways in focal adhesion, actin cytoskeleton, extracellular matrix-receptor interactions, multiple ligand-receptor interactions, and signaling in insulin, calcium, wnt, Jak-Stat, or other cascades. Liver tissue remained intact over prolonged periods after death in non-heart-beating donors, but extensive molecular perturbations following reperfusion/reoxygenation impaired the viability of isolated hepatocytes from these donors. Insights into molecular changes in

  2. Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses.

    PubMed

    Songstad, Nils Thomas; Kaspersen, Knut-Helge Frostmo; Hafstad, Anne Dragøy; Basnet, Purusotam; Ytrehus, Kirsti; Acharya, Ganesh

    2015-01-01

    To investigate the effects of high intensity interval training (HIIT) on the maternal heart, fetuses and placentas of pregnant rats. Female Sprague-Dawley rats were randomly assigned to HIIT or sedentary control groups. The HIIT group was trained for 6 weeks with 10 bouts of high intensity uphill running on a treadmill for four minutes (at 85-90% of maximal oxygen consumption) for five days/week. After three weeks of HIIT, rats were mated. After six weeks (gestational day 20 in pregnant rats), echocardiography was performed to evaluate maternal cardiac function. Real-time PCR was performed for the quantification of gene expression, and oxidative stress and total antioxidant capacity was assessed in the tissue samples. Maternal heart weight and systolic function were not affected by HIIT or pregnancy. In the maternal heart, expression of 11 of 22 genes related to cardiac remodeling was influenced by pregnancy but none by HIIT. Litter size, fetal weight and placental weight were not affected by HIIT. Total antioxidant capacity, malondialdehyde content, peroxidase and superoxide dismutase activity measured in the placenta, fetal heart and liver were not influenced by HIIT. HIIT reduced the expression of eNOS (p = 0.03), hypoxia-inducible factor 1α (p = 0.04) and glutathione peroxidase 4.2 (p = 0.02) in the fetal liver and increased the expression of vascular endothelial growth factor-β (p = 0.014), superoxide dismutase 1 (p = 0.001) and tissue inhibitor of metallopeptidase 3 (p = 0.049) in the fetal heart. Maternal cardiac function and gene expression was not affected by HIIT. Although HIIT did not affect fetal growth, level of oxidative stress and total antioxidant capacity in the fetal tissues, some genes related to oxidative stress were altered in the fetal heart and liver indicating that protective mechanisms may be activated.

  3. Effects of High Intensity Interval Training on Pregnant Rats, and the Placenta, Heart and Liver of Their Fetuses

    PubMed Central

    Hafstad, Anne Dragøy; Basnet, Purusotam; Ytrehus, Kirsti; Acharya, Ganesh

    2015-01-01

    Objective To investigate the effects of high intensity interval training (HIIT) on the maternal heart, fetuses and placentas of pregnant rats. Methods Female Sprague-Dawley rats were randomly assigned to HIIT or sedentary control groups. The HIIT group was trained for 6 weeks with 10 bouts of high intensity uphill running on a treadmill for four minutes (at 85–90% of maximal oxygen consumption) for five days/week. After three weeks of HIIT, rats were mated. After six weeks (gestational day 20 in pregnant rats), echocardiography was performed to evaluate maternal cardiac function. Real-time PCR was performed for the quantification of gene expression, and oxidative stress and total antioxidant capacity was assessed in the tissue samples. Results Maternal heart weight and systolic function were not affected by HIIT or pregnancy. In the maternal heart, expression of 11 of 22 genes related to cardiac remodeling was influenced by pregnancy but none by HIIT. Litter size, fetal weight and placental weight were not affected by HIIT. Total antioxidant capacity, malondialdehyde content, peroxidase and superoxide dismutase activity measured in the placenta, fetal heart and liver were not influenced by HIIT. HIIT reduced the expression of eNOS (p = 0.03), hypoxia-inducible factor 1α (p = 0.04) and glutathione peroxidase 4.2 (p = 0.02) in the fetal liver and increased the expression of vascular endothelial growth factor-β (p = 0.014), superoxide dismutase 1 (p = 0.001) and tissue inhibitor of metallopeptidase 3 (p = 0.049) in the fetal heart. Conclusions Maternal cardiac function and gene expression was not affected by HIIT. Although HIIT did not affect fetal growth, level of oxidative stress and total antioxidant capacity in the fetal tissues, some genes related to oxidative stress were altered in the fetal heart and liver indicating that protective mechanisms may be activated. PMID:26566220

  4. Involvement of atrial natriuretic peptide in abrogated cardioprotective effect of ischemic preconditioning in ovariectomized rat heart.

    PubMed

    Vishwakarma, V K; Goyal, A; Gupta, J K; Upadhyay, P K; Yadav, H N

    2018-07-01

    Nitric oxide (NO) is an effective mediator of ischemic preconditioning (IPC)-induced cardioprotection. Atrial natriuretic peptide (ANP) is downregulated after ovariectomy, which results in reduction in the level of NO. The present study deals with the investigation of the role of ANP in abrogated cardioprotective effect of IPC in the ovariectomized rat heart. Heart was isolated from ovariectomized rat and mounted on Langendorff's apparatus, subjected to 30 min of ischemia and 120 min of reperfusion. IPC was given by four cycles of 5 min of ischemia and 5 min of reperfusion with Krebs-Henseleit solution. The myocardial infract size was estimated employing triphenyltetrazolium chloride stain, and coronary effluent was analyzed for creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) release to consider the degree of myocardial injury. The cardiac release of NO was estimated by measuring the level of nitrite in coronary effluent. IPC-mediated cardioprotection was significantly attenuated in ovariectomized rat as compared to normal rat, which was restored by perfusion with ANP. However, this observed cardioprotection was significantly attenuated by perfusion with L-NAME, an endothelial nitric oxide synthase inhibitor, and Glibenclamide, a K ATP channel blocker, alone or in combination noted in terms of increase in myocardial infract size, release of CK-MB and LDH, and also decrease in release of NO. Thus, it is suggested that ANP restores the attenuated cardioprotective effect of IPC in the ovariectomized rat heart which may be due to increase in the availability of NO and consequent increase activation of mitochondrial K ATP channels.

  5. Pulmonary hypertension due to left heart disease causes intrapulmonary venous arterialization in rats.

    PubMed

    Fujimoto, Yoshitaka; Urashima, Takashi; Kawachi, Fumie; Akaike, Toru; Kusakari, Yoichiro; Ida, Hiroyuki; Minamisawa, Susumu

    2017-11-01

    A rat model of left atrial stenosis-associated pulmonary hypertension due to left heart diseases was prepared to elucidate its mechanism. Five-week-old Sprague-Dawley rats were randomly divided into 2 groups: left atrial stenosis and sham-operated control. Echocardiography was performed 2, 4, 6, and 10 weeks after surgery, and cardiac catheterization and organ excision were subsequently performed at 10 weeks after surgery. Left ventricular inflow velocity, measured by echocardiography, significantly increased in the left atrial stenosis group compared with that in the sham-operated control group (2.2 m/s, interquartile range [IQR], 1.9-2.2 and 1.1 m/s, IQR, 1.1-1.2, P < .01), and the right ventricular pressure-to-left ventricular systolic pressure ratio significantly increased in the left atrial stenosis group compared with the sham-operated control group (0.52, IQR, 0.54-0.60 and 0.22, IQR, 0.15-0.27, P < .01). The right ventricular weight divided by body weight was significantly greater in the left atrial stenosis group than in the sham-operated control group (0.54 mg/g, IQR, 0.50-0.59 and 0.39 mg/g, IQR, 0.38-0.43, P < .01). Histologic examination revealed medial hypertrophy of the pulmonary vein was thickened by 1.6 times in the left atrial stenosis group compared with the sham-operated control group. DNA microarray analysis and real-time polymerase chain reaction revealed that transforming growth factor-β mRNA was significantly elevated in the left atrial stenosis group. The protein levels of transforming growth factor-β and endothelin-1 were increased in the lung of the left atrial stenosis group by Western blot analyses. We successfully established a novel, feasible rat model of pulmonary hypertension due to left heart diseases by generating left atrial stenosis. Although pulmonary hypertension was moderate, the pulmonary hypertension due to left heart diseases model rats demonstrated characteristic intrapulmonary venous arterialization and

  6. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    NASA Astrophysics Data System (ADS)

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak; Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd

    2016-10-01

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes ( n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  7. Multiscale entropy analysis of heart rate variability in heart failure, hypertensive, and sinoaortic-denervated rats: classical and refined approaches.

    PubMed

    Silva, Luiz Eduardo Virgilio; Lataro, Renata Maria; Castania, Jaci Airton; da Silva, Carlos Alberto Aguiar; Valencia, Jose Fernando; Murta, Luiz Otavio; Salgado, Helio Cesar; Fazan, Rubens; Porta, Alberto

    2016-07-01

    The analysis of heart rate variability (HRV) by nonlinear methods has been gaining increasing interest due to their ability to quantify the complexity of cardiovascular regulation. In this study, multiscale entropy (MSE) and refined MSE (RMSE) were applied to track the complexity of HRV as a function of time scale in three pathological conscious animal models: rats with heart failure (HF), spontaneously hypertensive rats (SHR), and rats with sinoaortic denervation (SAD). Results showed that HF did not change HRV complexity, although there was a tendency to decrease the entropy in HF animals. On the other hand, SHR group was characterized by reduced complexity at long time scales, whereas SAD animals exhibited a smaller short- and long-term irregularity. We propose that short time scales (1 to 4), accounting for fast oscillations, are more related to vagal and respiratory control, whereas long time scales (5 to 20), accounting for slow oscillations, are more related to sympathetic control. The increased sympathetic modulation is probably the main reason for the lower entropy observed at high scales for both SHR and SAD groups, acting as a negative factor for the cardiovascular complexity. This study highlights the contribution of the multiscale complexity analysis of HRV for understanding the physiological mechanisms involved in cardiovascular regulation. Copyright © 2016 the American Physiological Society.

  8. Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart.

    PubMed

    Ravingerová, Tána; Matejíková, Jana; Neckár, Jan; Andelová, Eva; Kolár, Frantisek

    2007-03-01

    Endogenous cardiac protection against prolonged ischemic insult can be achieved by repeated brief episodes of ischemia (hypoxia) or by cardiac adaptation to various stresses such as chronic hypoxia. Activation of phosphatidylinositol 3-kinase (PI3K)/Akt is involved in antiapoptotic effects, however, it is not clear whether it is required for overall heart salvage including protection against myocardial infarction and arrhythmias. We focussed on the potential common role of PI3K/Akt in anti-infarct protection, in the experimental settings of long-term adaptation to chronic intermittent hypobaric hypoxia (IHH; 8 h/day, 25-30 exposures, in vivo rats) and acute ischemic preconditioning (IP; Langendorff-perfused hearts). In addition, we explored the role of PI3K/Akt in susceptibility to ischemic ventricular arrhythmias. In normoxic open-chest rats, PI3K/Akt inhibitor LY294002 (LY; 0.3 mg/kg) given 5 min before test occlusion/reperfusion (I/R) did not affect infarct size (IS) normalized to the size of area at risk (AR). In hypoxic rats, LY partially attenuated IS-limiting effect of IHH (IS/AR 59.7 +/- 4.1% vs. 51.8 +/- 4.4% in the non-treated rats; p > 0.05) and increased IS/AR to its value in normoxic rats (64.9 +/- 5.1%). In the isolated hearts, LY (5 muM) applied 15 min prior to I/R completely abolished anti-infarct protection by IP (IS/AR 55.0 +/- 4.9% vs. 15.2 +/- 1.2% in the non-treated hearts and 42.0 +/- 5.5% in the non-preconditioned controls; p < 0.05). In the non-preconditioned hearts, PI3K/Akt inhibition did not modify IS/AR, on the other hand, it markedly suppressed arrhythmias. In the LY-treated isolated hearts, the total number of ventricular premature beats and the incidence of ventricular tachycardia (VT) was reduced from 518 +/- 71 and 100% in the controls to 155 +/- 15 and 12.5%, respectively (p < 0.05). Moreover, bracketing of IP with LY did not reverse antiarrhythmic effect of IP. These results suggest that activation of PI3K/Akt cascade plays a role

  9. Chronic heat improves mechanical and metabolic response of trained rat heart on ischemia and reperfusion.

    PubMed

    Levy, E; Hasin, Y; Navon, G; Horowitz, M

    1997-05-01

    Cardiac mechanics and metabolic performance were studied in isolated perfused hearts of rats subjected to a combined chronic stress of heat acclimation and swimming training (EXAC) or swimming training alone (EX). Diastolic (DP) and systolic pressures (SP), coronary flow (CF), and oxygen consumption were measured during normoperfusion (80 mmHg), and the appearance of ischemic contracture (IC), DP, and SP were measured during progressive graded ischemia, total ischemia (TI), and reperfusion insults. ATP, phosphocreatine, and intracellular pH were measured during TI and reperfusion with 31P nuclear magnetic resonance spectroscopy. During normoperfusion, SP and cardiac efficiency (derived from rate-pressure product-oxygen consumption relationships) were the highest in the 2-mo EXAC hearts (P < 0.0001). During progressive graded ischemia, the development of IC (percentage of total hearts) was similar in both EXAC and EX hearts; the only significant difference was confined to the 1- vs. 2-mo groups. The onset of IC was delayed in the EXAC hearts and, on reperfusion, recovery, particularly of DP, was significantly improved in the latter. After TI, EXAC hearts retained 30% of the ATP pool and there was a delayed decline in intracellular pH. On reperfusion, these hearts also displayed improved ATP and phosphocreatine recovery, the 2-mo EXAC heart demonstrating significantly faster high-energy phosphate salvage, improved diastolic function, and pulse pressure recovery. The data attest to the beneficial effects of heat acclimation on cardiac mechanics of trained rats during normoperfusion and cardiac protection on ischemia and reperfusion. Possibly, energy sparing, lesser acidosis, and shorter duration of IC on ischemia and improved energy salvage on reperfusion contribute synergistically to this potent beneficial effect.

  10. Effects of gonadectomy and hormonal replacement on rat hearts.

    PubMed

    Scheuer, J; Malhotra, A; Schaible, T F; Capasso, J

    1987-07-01

    To evaluate the effects of sex hormones on heart function and biochemistry, gonadectomy (GX) was performed in postpubertal male (M) and female (F) rats and compared with sham-operated controls (SH). The groups were MSH; MGX; MGX replaced with testosterone 3 mg/day s.c. (MGX + T), FSH, and FGX replaced with estrogen 2 mg/day (FGX + E), progesterone 0.4 mg/day (FGX + P), estrogen and progesterone (FGX + EP), or testosterone 2 mg/day (FGX + T). Body weight was decreased in MGX and was decreased further in MGX + T. Heart weight was decreased in both MGX and MGX + T. Body weights were increased in FGX and FTX + P and were increased further in FGX + T but were normal in FGX + E and FGX + EP. Heart weights were unchanged in F groups except in FGX + T, where it was increased. Cardiac performance in perfused hearts, as measured by stroke work, ejection fraction, fractional shortening and mean velocity of circumferential fiber shortening, was decreased in MGX but was slightly increased in MGX + T. Papillary muscle studies showed increases in time to peak tension and one-half relaxation in MGX, but these were decreased in MGX + T. Isotonic shortening studies showed decreased velocity of shortening in MGX and increased velocity in MGX + T. Heart function was significantly decreased in FGX and FGX + P compared with FSH but was similar to FSH in FGX + E and FGX + EP. FGX + T had greater stroke work and ejection fraction than FSH and FGX.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Fructose-rich diet induces gender-specific changes in expression of the renin-angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta.

    PubMed

    Bundalo, Maja M; Zivkovic, Maja D; Romic, Snjezana Dj; Tepavcevic, Snezana N; Koricanac, Goran B; Djuric, Tamara M; Stankovic, Aleksandra D

    2016-01-01

    The cardiovascular renin-angiotensin system (RAS) could be affected by gender and dietary regime. We hypothesized that male rats will be more susceptible to activation of RAS in the heart and aorta, as a response to a fructose-rich diet (FRD). Both male and female Wistar rats were given a 10% (w/v) fructose solution for 9 weeks. We measured the biochemical parameters, blood pressure (BP) and heart rate. We used Western blot and real-time polymerase chain reaction (PCR) to quantify protein and gene expression. In the male rats, the FRD elevated BP and expression of cardiac angiotensin-converting enzyme (ACE), while the expression of angiotensin-converting enzyme 2 (ACE2) and angiotensin II Type 2 receptor (AT2R) were significantly decreased. In female rats, there were no changes in cardiac RAS expression due to FRD. Furthermore, the ACE/AT1R axis was overexpressed in the FRD male rats' aortae, while only AT1R was upregulated in the FRD female rats' aortae. ACE2 expression remained unchanged in the aortae of both genders receiving the FRD. The FRD induced gender-specific changes in the expression of the RAS in the heart and aortae of male rats. Further investigations are required in order to get a comprehensive understanding of the underlying mechanisms of gender-specific fructose-induced cardiovascular pathologies. © The Author(s) 2016.

  12. Does inducible NOS have a protective role against hypoxia/reoxygenation injury in rat heart?

    PubMed

    Rus, Alma; del Moral, Maria Luisa; Molina, Francisco; Peinado, Maria Angeles

    2011-01-01

    The present study analyzes the role of the nitric oxide (NO) derived from inducible NO synthase (iNOS) under cardiac hypoxia/reoxygenation situations. For this, we have designed a follow-up study of different parameters of cell and tissue damage in the heart of Wistar rats submitted for 30 min to acute hypobaric hypoxia, with or without prior treatment with the selective iNOS inhibitor N-(3-(aminomethyl)benzyl) acetamidine or 1400W (10 mg/kg). The rats were studied at 0 h, 12 h, and 5 days of reoxygenation, analyzing NO production (NOx), lipid peroxidation, apoptosis, and protein nitration expression and location. This is the first time-course study which analyzes the effects of the iNOS inhibition by 1400W during hypoxia/reoxygenation in the adult rat heart. The results show that when 1400W was administered before the hypoxic episode, NOx levels fell, while both the lipid peroxidation level and the percentage of apoptotic cells rose throughout the reoxygenation period. Levels of nitrated proteins expression fell only at 12 h post-hypoxia. The inhibition of iNOS raises the peroxidative and apoptotic level in the hypoxic heart indicating that this isoform may have a protective effect on this organ against hypoxia/reoxygenation injuries, and challenging the conventional wisdom that iNOS is deleterious under these conditions. These findings could help in the design of new treatments based on NO pharmacology against hypoxia/reoxygenation dysfunctions. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. [Effect of Zishen Huoxue Recipe on Pathomorphology in Coronary Heart Disease Rats with Shen Deficiency Blood Stasis Syndrome].

    PubMed

    Zhou, Sheng-fang; Liu, Ru-xiu; Luo, He-wei; Li, Hui; Guan, Xuan-ke; Yin, Lin-lin; Li, Li; Hu, Dong-peng

    2016-01-01

    To observe the effect of Zishen Huoxue Recipe (ZHR) on pathomorphology in coronary heart disease (CHD) rats with Shen deficiency blood stasis syndrome (SDBSS). Totally 60 healthy Wistar rats were divided into the blank control group, the model group, high, middle, and low dose ZHR groups according to random digit table, 12 in each group. Myocardial ischemia SDBSS rat model was prepared by ligating the left anterior descending coronary artery and injecting hydrocortisone. ZHR physic liquor was administered to rats in high, middle, and low dose ZHR groups at the daily dose of 21.6, 10.8, 5.4 g/kg by gastrogavage for 7 successive days, equal volume of pure water was administered to rats in the blank control group and the model group by gastrogavage for 7 successive days. Rat heart was collected for pathomorphological observation under light microscope. In the model group the heart muscle fiber was swollen and deformed with widened space, loose and dropsy tissues. Blood vessels in myocardial mesenchymal were dilated, infiltrated with more inflammatory cells. Myocardial cells were markedly swollen, degenerated, or necrotic, with caryolysis or disappearance of partial nuclear. A large amount of collagen fibrous tissue became hyperplasia. Endocardial blood vessels were swollen and degenerated with infiltration of few inflammatory cells. Epicardium tissue and structure were destroyed and got hyperplasia. Swollen, degenerated, or necrotic vessels could be seen, with infiltration of more inflammatory cells and collagen deposition. Pathomorphological injuries were alleviated in each ZHR group. The higher ZHR concentration, the milder the injury degree of myocardial tissue, the more limited range of damage. ZHR could attenuate pathomorphological injuries of myocardial ischemia rats with SDBSS and regulate myocardial function, thus improving myocardial ischemia in CHD rats with SDBSS.

  14. Dietary linoleate preserves cardiolipin and attenuates mitochondrial dysfunction in the failing rat heart

    PubMed Central

    Mulligan, Christopher M.; Sparagna, Genevieve C.; Le, Catherine H.; De Mooy, Anthony B.; Routh, Melissa A.; Holmes, Michael G.; Hickson-Bick, Diane L.; Zarini, Simona; Murphy, Robert C.; Xu, Fred Y.; Hatch, Grant M.; McCune, Sylvia A.; Moore, Russell L.; Chicco, Adam J.

    2012-01-01

    Aims Cardiolipin (CL) is a tetra-acyl phospholipid that provides structural and functional support to several proteins in the inner mitochondrial membrane. The majority of CL in the healthy mammalian heart contains four linoleic acid acyl chains (L4CL). A selective loss of L4CL is associated with mitochondrial dysfunction and heart failure in humans and animal models. We examined whether supplementing the diet with linoleic acid would preserve cardiac L4CL and attenuate mitochondrial dysfunction and contractile failure in rats with hypertensive heart failure. Methods and results Male spontaneously hypertensive heart failure rats (21 months of age) were administered diets supplemented with high-linoleate safflower oil (HLSO) or lard (10% w/w; 28% kilocalorie fat) or without supplemental fat (control) for 4 weeks. HLSO preserved L4CL and total CL to 90% of non-failing levels (vs. 61–75% in control and lard groups), and attenuated 17–22% decreases in state 3 mitochondrial respiration observed in the control and lard groups (P < 0.05). Left ventricular fractional shortening was significantly higher in HLSO vs. control (33 ± 2 vs. 29 ± 2%, P < 0.05), while plasma insulin levels were lower (5.4 ± 1.1 vs. 9.1 ± 2.3 ng/mL; P < 0.05), with no significant effect of lard supplementation. HLSO also increased serum concentrations of several eicosanoid species compared with control and lard diets, but had no effect on plasma glucose or blood pressure. Conclusion Moderate consumption of HLSO preserves CL and mitochondrial function in the failing heart and may be a useful adjuvant therapy for this condition. PMID:22411972

  15. Biochemical and histopathologic analysis of the effects of periodontitis on left ventricular heart tissues of rats.

    PubMed

    Köse, O; Arabacı, T; Gedikli, S; Eminoglu, D Ö; Kermen, E; Kızıldağ, A; Kara, A; Ozkanlar, S; Yemenoglu, H

    2017-04-01

    Current epidemiological works have suggested that chronic infections, such as periodontitis, are associated with an increased risk of cardiovascular diseases, including hypertrophy and heart failure. However, mechanisms behind the association are not known. The aim of this study was to evaluate the effects of periodontitis on the serum lipid levels, inflammatory marker levels and left ventricular heart muscle tissues of rats. Eighteen male Sprague-Dawley rats were randomly divided into two groups: control (without ligature) and experimental periodontitis (EP; ligatured). Periodontitis was induced by placing ligatures (3.0 silk) at a submarginal position of the lower first molar teeth for 5 wk. Serum samples were collected for biochemical studies (C-reactive protein, interleukin-1β, tumor necrosis factor-α and serum lipids), after which the rats were killed and heart tissue samples were obtained for histopathological and immunological studies (nuclear factor kappa B and β-myosin heavy chain). Significant increases in C-reactive protein and interleukin-1β levels and no statistically significant increase in tumor necrosis factor-α level were observed in the EP group compared to the control group. In addition, total cholesterol, low-density lipoprotein cholesterol and triglyceride levels were significantly higher in the EP group. Stereological and immunological findings showed that the number of nuclear factor kappa B-p65- and β-myosin heavy chain-positive cardiomyocytes increased significantly in the left ventricular tissue samples of the rats with periodontitis. Early chronic phase effects of periodontitis on heart tissue are in the form of degenerative and hypotrophic changes. Prolonging the exposure to systemic inflammatory stress may increase the risk of occurrence of hypertrophic changes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Inhalation of diluted diesel engine emission impacts heart rate variability and arrhythmia occurrence in a rat model of chronic ischemic heart failure.

    PubMed

    Anselme, Frédéric; Loriot, Stéphane; Henry, Jean-Paul; Dionnet, Frédéric; Napoleoni, Jean-Gérard; Thuillez, Christian; Morin, Jean-Paul

    2007-04-01

    Both increase in cardiac arrhythmia incidence and decrease in heart rate variability (HRV) have been described following human and experimental animal exposures to air pollutants. However, the potential causal relationship between these two factors remains unclear. Incidence of ventricular arrhythmia and HRV were evaluated during and after a 3 h period of Diesel engine exhaust exposure in ten healthy and ten chronic ischemic heart failure (CHF, 3 months after coronary ligation) Wistar rats using implantable ECG telemetry. Air pollutants were delivered to specifically designed whole body individual exposure chambers at particulate matter concentrations similar to those measured inside cabins of cars inserted in congested urban traffic. Recordings were obtained from unrestrained and unsedated vigil rats. Immediate decrease in RMSSD was observed in both healthy (6.64 +/- 2.62 vs. 4.89 +/- 1.67 ms, P < 0.05) and CHF rats (8.01 +/- 0.89 vs. 6.6 +/- 1.37 ms, P < 0.05) following exposure. An immediate 200-500% increase in ventricular premature beats was observed in CHF rats only. Whereas HRV progressively returned to baseline values within 2.5 h after exposure start, the proarrhythmic effect persisted as late as 5 h after exposure termination in CHF rats. Persistence of ventricular proarrhythmic effects after HRV normalization suggests that HRV reduction is not the mechanism of cardiac arrhythmias in this model. Our methodological approach, closely reflecting the real clinical situations, appeared to be a unique tool to provide further insight into the pathophysiological mechanisms of traffic related airborne pollution health impact.

  17. Cyclic AMP-receptor proteins in heart muscle of rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Mednieks, Maija I.; Popova, Irina A.; Grindeland, Richard E.

    1991-01-01

    The cellular compartmentalization of the cyclic AMP-receptor proteins in heart ventricular tissue obtained from rats flown on the Cosmos 1887 is determined. Photoaffinity labeling of soluble and particular cell fractions with a (32P)-8-azido analog of cyclic AMP is followed by electrophoretic separation of the proteins and by autoradiographic identification of the labeled isoforms of cAPK R subunits. It is shown that RII in the particulate subcellular fraction was significantly decreased in heart cells from rats in the flight group when compared to controls. Protein banding patterns in both the cytoplasmic fraction and in a fraction enriched in chromatin-bound proteins exhibited some variability in tissues of individual animals, but showed no changes that could be directly attributed to flight conditions. No significant change was apparent in the distribution of RI or RII cyclic AMP binding in the soluble fractions. It is inferred that the cardiac cell integrity or its protein content is not compromised under flight conditions.

  18. [Effect of 2,3-butanedione monoxime on calcium paradox-induced heart injury in rats].

    PubMed

    Kong, Ling-Heng; Gu, Xiao-Ming; Su, Xing-Li; Sun, Na; Wei, Ming; Zhu, Juan-Xia; Chang, Pan; Zhou, Jing-Jun

    2016-05-01

    To investigate the Effect of 2,3-butanedione monoxime (BDM) on calcium paradox-induced heart injury and its underlying mechanisms. Thirty-two adult male SD rats were randomized into 4 groups, namely the control group, BDM treatment control group, calcium paradox group, and BDM treatment group. Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion and the left ventricular pressure (LVP) and left ventricular end-diastolic pressure (LVEDP) were monitored. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Lactate dehydrogenase (LDH) content in the coronary flow was determined. Triphenyltetrazolium chloride staining was used to measure the infarct size, and myocardial cell apoptosis was tested with TUNEL method. Western blotting was used to determine the expression of cleaved caspase-3 and cytochrome c. Compared with the control group, BDM at 20 mmol/L had no effect on cardiac performance, cell death, apoptotic index or the content of LDH, cleaved caspase-3 and cytochrome c at the end of perfusion under control conditions (P>0.05). Calcium paradox treatment significantly decreased the cardiac function and the level of LVDP and induced a larger infarct size (P<0.01), an increased myocardial apoptosis index (P<0.01), and up-regulated expressions of cleaved caspase-3 and cytochrome c (P<0.01). BDM (20 mmol/L) significantly attenuated these effects induced by calcium paradox, and markedly down-regulated the levels of LVEDP and LDH (P<0.01), lowered myocardial apoptosis index, decreased the content of cleaved caspase-3 and cytochrome c (P<0.01), increased LVDP, and reduced the infarct size (P<0.01). BDM suppresses cell apoptosis and contracture and improves heart function and cell survival in rat hearts exposed to calcium paradox, suggesting the value of BDM as an potential drug for myocardial ischemia reperfusion injur.

  19. Autonomic control of the heart is altered in Sprague-Dawley rats with spontaneous hydronephrosis

    PubMed Central

    Arnold, Amy C.; Shaltout, Hossam A.; Gilliam-Davis, Shea; Kock, Nancy D.

    2011-01-01

    The renal medulla plays an important role in cardiovascular regulation, through interactions with the autonomic nervous system. Hydronephrosis is characterized by substantial loss of renal medullary tissue. However, whether alterations in autonomic control of the heart are observed in this condition is unknown. Thus we assessed resting hemodynamics and baroreflex sensitivity (BRS) for control of heart rate in urethane/chloralose-anesthetized Sprague-Dawley rats with normal or hydronephrotic kidneys. While resting arterial pressure was similar, heart rate was higher in rats with hydronephrosis (290 ± 12 normal vs. 344 ± 11 mild/moderate vs. 355 ± 13 beats/min severe; P < 0.05). The evoked BRS to increases, but not decreases, in pressure was lower in hydronephrotic rats (1.06 ± 0.06 normal vs. 0.72 ± 0.10 mild/moderate vs. 0.63 ± 0.07 ms/mmHg severe; P < 0.05). Spectral analysis methods confirmed reduced parasympathetic function in hydronephrosis, with no differences in measures of indirect sympathetic activity among conditions. As a secondary aim, we investigated whether autonomic dysfunction in hydronephrosis is associated with activation of the renin-angiotensin system (RAS). There were no differences in circulating angiotensin peptides among conditions, suggesting that the impaired autonomic function in hydronephrosis is independent of peripheral RAS activation. A possible site for angiotensin II-mediated BRS impairment is the solitary tract nucleus (NTS). In normal and mild/moderate hydronephrotic rats, NTS administration of the angiotensin II type 1 receptor antagonist candesartan significantly improved the BRS, suggesting that angiotensin II provides tonic suppression to the baroreflex. In contrast, angiotensin II blockade produced no significant effect in severe hydronephrosis, indicating that at least within the NTS baroreflex suppression in these animals is independent of angiotensin II. PMID:21460193

  20. Human Catestatin Peptides Differentially Regulate Infarct Size in the Ischemic-Reperfused Rat Heart

    PubMed Central

    Brar, Bhawanjit K.; Helgeland, Erik; Mahata, Sushil K.; Zhang, Kuixing; O'Connor, Daniel T.; Helle, Karen B.; Jonassen, Anne K.

    2010-01-01

    In acute myocardial infarction increased plasma levels of chromogranin A is correlated with decreased survival. At the human chromogranin A gene locus there are two naturally occurring amino acid substitution variants within the catestatin region, i.e. Gly364 Ser and Pro370Leu, displaying differential potencies towards inhibition of nicotinic cholinergic agonist-evoked catecholamine secretion from sympathochromaffin cells and different degrees of processing from the prohormone. Here, we examine whether two of the variants and the wild type catestatin may affect the development of infarct size during ischemic reperfusion in the Langendorff rat heart model. The hearts were subjected to regional ischemia followed by reperfusion in the presence or absence of synthetic variants of human catestatin. Compared to the Gly364Ser variant both the wild type and the Pro370Leu variant increased infarct size while decreasing the cardiac levels of phosphorylated Akt and two of its downstream targets, FoxO1 and BAD. In conclusion, these findings suggest that, in contrast to the Gly364Ser variant, the wild type catestatin and the Pro370Leu variant (allele frequency ~0.3%) increased myocardial infarct size via a mechanism involving dephosphorylation of Akt and the two downstream targets during ischemic reperfusion in the isolated rat heart. PMID:20655339

  1. Bi-ventricular finite element model of right ventricle overload in the healthy rat heart.

    PubMed

    Masithulela, Fulufhelo

    2016-11-25

    The recognition of RV overpressure is critical to human life, as this may signify morbidity and mortality. Right ventricle (RV) dysfunction is understood to have an impact on the performance of the left ventricle (LV), but the mechanisms remain poorly understood. It is understood that ventricular compliance has the ability to affect cardiac performance. In this study, a bi-ventricular model of the rat heart was used in preference to other, single-ventricle models. Finite element analysis (FEA) of the bi-ventricular model provides important information on the function of the healthy heart. The passive myocardium was modelled as a nearly incompressible, hyperelastic, transversely isotropic material using finite element (FE) methods. Bi-ventricular geometries of healthy rat hearts reconstructed from magnetic resonance images were imported in Abaqus©. In simulating the normal passive filling of the rat heart, pressures of 4.8 kPa and 0.0098 kPa were applied to the inner walls of the LV and RV respectively. In addition, to simulate the overpressure of the RV, pressures of 2.4 kPa and 4.8 kPa were applied to the endocardial walls of the LV and RV respectively. As boundary conditions, the circumferential and longitudinal displacements at the base were set to zero. The radial displacements at the base were left free. The results show that the average circumferential stress at the mid-wall in the overloaded model increased from 2.8 kPa to 18.2 kPa. The average longitudinal stress increased from 1.5 kPa to 9.7 kPa. Additionally, in the radial direction, the average stress increased from 0.1 kPa to 0.6 kPa in the mid-wall. The average circumferential strain was found to be 0.138 and 0.100 on the endocardium of the over pressured and healthy model respectively. The average circumferential stress at the epicardium, mid-wall and endocardium in the case of a normal heart is 10 times lower than in the overloaded heart model. The finite analysis method is able to provide

  2. Meat product based on porcine hearts and aortas ameliorates serum lipid profile and inflammation in hyperlipidemic rats

    NASA Astrophysics Data System (ADS)

    Chernukha, I. M.; Kotenkova, E. A.; Fedulova, L. V.

    2017-09-01

    The biological effect of porcine hearts and aortas in a hyperlipidemic rat model was confirmed. Porcine heart and aorta mixture in a 3:1 ratio was blended, canned and sterilized at 115°C and 0.23 Mpa for 40 min. Administration of experimental meat product to the animal model decreased total cholesterol, triglycerides and cholesterol low density lipoproteins by 31.8% (P<0.05), 28.2%, and 21.6% (P<0.05), respectively, compared to those of hyperlipidemic control rats, as well significantly reducing the serum atherogenic index by 41.3% (P<0.05) in rats fed the experimental meat product compared with hyperlipidemic control rats. Normalization of white blood cell populations was also detected. Monocyte and granulocyte counts in blood of rats fed the meat product decreased by 71.1% (P<0.05) and 57.6% (P<0.05) compared to those of the hyperlipidemic control animals. The granulocyte/leucocyte ratio was also reduced by an average of 38.6% (P<0.05) in rats fed the meat product compared with hyperlipidemic control rats. The data confirmed the hypolipidemic action of the sterilized meat product. Normalization of white blood cell populations led us to hypothesize an anti-inflammatory action of the new meat product, which, therefore, could be recommended as a part of maintenance therapy for people with lipid disorders or atherosclerosis.

  3. Activation of N-methyl-d-aspartate receptors reduces heart rate variability and facilitates atrial fibrillation in rats.

    PubMed

    Shi, Shaobo; Liu, Tao; Wang, Dandan; Zhang, Yan; Liang, Jinjun; Yang, Bo; Hu, Dan

    2017-07-01

    The goal of this study was to assess the effects of N-methyl-d-aspartate (NMDA) receptors activation on heart rate variability (HRV) and susceptibility to atrial fibrillation (AF). Rats were randomized for treatment with saline, NMDA (agonist of NMDA receptors), or NMDA plus MK-801 (antagonist of NMDA receptors) for 2 weeks. Heart rate variability was evaluated by using implantable electrocardiogram telemeters. Atrial fibrillation susceptibility was assessed with programmed stimulation in isolated hearts. Compared with the controls, the NMDA-treated rats displayed a decrease in the standard deviation of normal RR intervals, the standard deviation of the average RR intervals, the mean of the 5-min standard deviations of RR intervals, the root mean square of successive differences, and high frequency (HF); and an increase in low frequency (LF) and LF/HF (all P< 0.01). Additionally, the NMDA-treated rats showed prolonged activation latency and reduced effective refractory period (all P< 0.01). Importantly, AF was induced in all NMDA-treated rats. While atrial fibrosis developed, connexin40 downgraded and metalloproteinase 9 upgraded in the NMDA-treated rats (all P< 0.01). Most of the above alterations were mitigated by co-administering with MK-801. These results indicate that NMDA receptors activation reduces HRV and enhances AF inducibility, with cardiac autonomic imbalance, atrial fibrosis, and degradation of gap junction protein identified as potential mechanistic contributors. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  4. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetani, K.; Fukushima, K.

    2013-03-15

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 msmore » using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for

  5. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt.

    PubMed

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao; Wang, Bin; Wu, Yun-Xiang; Zhang, Shu-Jie; Irwin, Michael G; Wong, Tak-Ming; Zhang, Ye

    2015-11-01

    Preconditioning against myocardial ischemia-reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct size and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Antioxidant effects of melatonin in heart tissue after induction of experimental periodontitis in rats.

    PubMed

    Özdem, Muhsin; Kırzıoğlu, Fatma Y; Yılmaz, Hacı R; Vural, Hüseyin; Fentoğlu, Özlem; Uz, Efkan; Koçak, Ahmet; Yiğit, Ayşe

    2017-01-01

    The aim of this study was to evaluate the effects of melatonin on the oxidative stress in heart tissues after induction of experimental periodontitis in rats. Thirty Wistar Albino male rats were divided into four groups as follows: healthy + saline solution (Hs, n = 7), healthy + melatonin (Hm, n = 7), periodontitis + saline solution (Ps, n = 8), and periodontitis + melatonin (Pm, n = 8). Experimental periodontitis was induced using a ligature placed at the gingival margin of the maxillary second molars. Melatonin was applied intraperitoneally (10 mg/kg) every day for 2 weeks. After sacrificing the rats, serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) levels, and melatonin levels were evaluated. The Pm group exhibited lower alveolar bone loss than the Ps group. Melatonin levels increased in the periodontitis groups, and the Pm group had lower MDA levels and higher GSH-Px levels than the Ps group. These findings suggest that melatonin administration reduces MDA and increases GSH-Px levels in heart tissue, and these effects may be due to its antioxidant properties. Further studies are needed to understand the effects of melatonin on the association between periodontitis and cardiovascular disease.

  7. Chronic intermittent hypobaric hypoxia attenuates radiation induced heart damage in rats.

    PubMed

    Wang, Jun; Wu, Yajing; Yuan, Fang; Liu, Yixian; Wang, Xuefeng; Cao, Feng; Zhang, Yi; Wang, Sheng

    2016-09-01

    Radiation-induced heart damage (RIHD) is becoming an increasing concern for patients and clinicians due to the use of radiotherapy for thoracic tumor. Chronic intermittent hypobaric hypoxia (CIHH) preconditioning has been documented to exert a cardioprotective effect. Here we hypothesized that CIHH was capable of attenuating functional and structural damage in a rat model of RIHD. Male adult Sprague-Dawley rats were randomly divided into 4 groups: control, radiation, CIHH and CIHH plus radiation. Cardiac function was measured using Langendorff perfusion in in vitro rat hearts. Cardiac fibrosis, oxidative stress and endoplasmic reticulum stress (ERS) was assessed by quantitative analysis of protein expression. No significant difference between any two groups was observed in baseline cardiac function as assessed by left ventricular end diastolic pressure (LVEDP), left ventricular developing pressure (LVDP) and the derivative of left ventricular pressure (±LVdp/dt). When challenged by ischemia/reperfusion, LVEDP was increased but LVDP and ±LVdp/dt was decreased significantly in radiation group compared with controls, accompanied by an enlarged infarct size and decreased coronary flow. Importantly, CIHH dramatically improved radiation-induced damage of cardiac function and blunted radiation-induced cardiac fibrosis in the perivascular and interstitial area. Furthermore, CIHH abrogated radiation-induced increase in malondialdehyde and enhanced total superoxide dismutase activity, as well as downregulated expression levels of ERS markers like GRP78 and CHOP. CIHH pretreatment alleviated radiation-induced damage of cardiac function and fibrosis. Such a protective effect was closely associated with suppression of oxidative stress and ERS responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Modulation of fatty acid metabolism is involved in the alleviation of isoproterenol-induced rat heart failure by fenofibrate

    PubMed Central

    LI, PING; LUO, SHIKE; PAN, CHUNJI; CHENG, XIAOSHU

    2015-01-01

    Heart failure is a disease predominantly caused by an energy metabolic disorder in cardiomyocytes. The present study investigated the inhibitory effects of fenofibrate (FF) on isoproterenol (ISO)-induced hear failure in rats, and examined the underlying mechanisms. The rats were divided into CON, ISO (HF model), FF and FF+ISO (HF animals pretreated with FF) groups. The cardiac structure and function of the rats were assessed, and contents of free fatty acids and glucose metabolic products were determined. In addition, myocardial cells were isolated from neonatal rats and used in vitro to investigate the mechanisms by which FF relieves heart failure. Western blot analysis was performed to quantify the expression levels of peroxisome proliferator-activated receptor (PPAR)α and uncoupling protein 2 (UCP2). FF effectively alleviated the ISO-induced cardiac structural damage, functional decline, and fatty acid and carbohydrate metabolic abnormalities. Compared with the ISO group, the serum levels of brain natriuretic peptide (BNP), free fatty acids, lactic acid and pyruvic acid were decreased in the FF animals. In the cultured myocardial cells, lactic acid and pyruvic acid contents were lower in the supernatants obtained from the FF animals, with lower levels of mitochondrial ROS production and cell necrosis, compared with the ISO group, whereas PPARα upregulation and UCP2 downregulation occurred in the FF+ISO group. The results demonstrated that FF efficiently alleviated heart failure in the ISO-induced rat model, possibly via promoting fatty acid oxidation. PMID:26497978

  9. Combination treatment with a calcium channel blocker and an angiotensin blocker in a rat systolic heart failure model with hypertension.

    PubMed

    Namba, Masashi; Kim, Shokei; Zhan, Yumei; Nakao, Takafumi; Iwao, Hiroshi

    2002-05-01

    The mechanism and treatment of hypertensive systolic heart failure are not well defined. We compared the effect of an angiotensin-converting enzyme inhibitor (cilazapril, 10 mg/kg), an angiotensin receptor blocker (candesartan, 3 mg/kg), a calcium channel blocker (benidipine, 1, 3 or 6 mg/kg), and the same calcium channel blocker combined with renin-angiotensin blockers on systolic heart failure in Dahl salt-sensitive (DS) rats. DS rats were fed an 8% Na diet from 6 weeks of age and then subjected to the above drug treatments. Benidipine (1 mg/kg), cilazapril, and candesartan had compatible hypotensive effects and similar beneficial effects on cardiac hypertrophy, gene expression, and survival rate. The combination of benidipine with cilazapril or candesartan was found to have no additional beneficial effects on the above parameters, with the exception of a reduction in atrial natriuretic polypeptide gene expression. On the other hand, candesartan normalized serum creatinine, but serum creatinine was unaffected by either benidipine at 1 or 3 mg/kg or cilazapril. Further, the combined use of benidipine and either candesartan or cilazapril resulted in an additional reduction of urinary albumin excretion in DS rats. Thus systolic heart failure in DS rats is mainly mediated by hypertension, while renal dysfunction of DS rats is due to both hypertension and the AT1 receptor itself. These findings suggest that the combination of a calcium channel blocker with an AT1 receptor blocker or ACE inhibitor may be more effective in treating the renal dysfunction associated with systolic heart failure than monotherapy with either agent alone. However, further studies will be needed before reaching any definitive conclusion on the efficacy of this combination therapy in patients with heart failure.

  10. β1 -Adrenoceptor, but not β2 -adrenoceptor, subtype regulates heart rate in type 2 diabetic rats in vivo.

    PubMed

    Cook, Rosalind F; Bussey, Carol T; Mellor, Kimberley M; Cragg, Patricia A; Lamberts, Regis R

    2017-08-01

    What is the central question of the study? The sympathetic system regulates heart rate via β-adrenoceptors; this is impaired during diabetes. However, the specific β-adrenoceptor subtype contributions in heart rate regulation in diabetes in vivo are unknown. What is the main finding and its importance? Telemetric recordings in conscious non-diabetic and type 2 diabetic rats demonstrated that the β 1 -adrenoceptor subtype, and not the β 2 -adrenoceptor, regulated the lower resting heart rate and increased β-adrenoceptor responsiveness in diabetes in vivo. This provides new physiological insight into the dysregulation of heart rate in type 2 diabetes, which is important for improving therapeutic strategies targeting the diabetic chronotropic incompetence. β-Adrenoceptor blockers are widely used to reduce heart rate, the strongest predictor of mortality in cardiac patients, but are less effective in diabetic patients. This study aimed to determine the specific contributions of β 1 - and β 2 -adrenoceptor subtypes to chronotropic responses in type 2 diabetes in vivo, which are currently unknown. Type 2 diabetic and non-diabetic rats were implanted with radiotelemeters to measure arterial blood pressure and derive heart rate in conscious conditions. Vascular access ports were implanted to inject isoprenaline (β 1 - and β 2 -adrenoceptor agonist, 0.1-300 μg kg -1 ) in the presence of atenolol (β 1 -adrenoceptor antagonist, 2000 μg kg -1 ) or nadolol (β 1 - and β 2 -adrenoceptor agonist, 4000 μg kg -1 ) to determine the chronotropic contributions of the β-adrenoceptor subtypes. Resting heart rate was reduced in diabetic rats (388 ± 62 versus 290 ± 37 beats min -1 non-diabetic versus diabetic, P < 0.05, mean ± SD), which remained after atenolol or nadolol administration. Overall β-adrenoceptor chronotropic responsiveness was increased in diabetic rats (change in heart rate at highest dose of isoprenaline: 135 ± 66 versus 205 ± 28

  11. Rapid Responses and Mechanism of Action for Low-Dose Bisphenol S on ex Vivo Rat Hearts and Isolated Myocytes: Evidence of Female-Specific Proarrhythmic Effects

    PubMed Central

    Gao, Xiaoqian; Ma, Jianyong; Chen, Yamei

    2015-01-01

    Background Bisphenol S (BPS) has increasingly been used as a substitute for bisphenol A (BPA) in some “BPA-free” consumer goods and in thermal papers. Wide human exposure to BPS has been reported; however, the biological and potential toxic effects of BPS are poorly understood. Objective In this study, we sought to elucidate the sex-specific rapid effect of BPS in rat hearts and its underlying mechanism. Methods We examined the rapid effects of BPS in rat hearts using electrophysiology, confocal and conventional fluorescence imaging, and immunoblotting. Treatment was administered via acute perfusion of excised hearts or isolated cardiac myocytes. Results In female rat hearts acutely exposed to 10–9 M BPS, the heart rate was increased; in the presence of catecholamine-induced stress, the frequency of ventricular arrhythmia events was markedly increased. BPS-exposed hearts showed increased incidence of arrhythmogenic-triggered activities in female ventricular myocytes and altered myocyte Ca2+ handling, particularly spontaneous Ca2+ release from the sarcoplasmic reticulum. The dose responses of BPS actions were inverted U-shaped. The impact of BPS on myocyte Ca2+ handling was mediated by estrogen receptor β signaling and by rapid increases in the phosphorylation of key Ca2+ handling proteins, including ryanodine receptor and phospholamban. The proarrhythmic effects of BPS were female specific; male rat hearts were not affected by BPS at the organ, myocyte, or protein levels. Conclusion Rapid exposure to low-dose BPS showed proarrhythmic impact on female rat hearts; these effects at the organ, cellular, and molecular levels are remarkably similar to those reported for BPA. Evaluation of the bioactivity and safety of BPS and other BPA analogs is necessary before they are used as BPA alternatives in consumer products. Citation Gao X, Ma J, Chen Y, Wang HS. 2015. Rapid responses and mechanism of action for low-dose bisphenol S on ex vivo rat hearts and isolated

  12. Protectant activity of defibrotide in cardioplegia followed by ischemia/reperfusion injury in the isolated rat heart.

    PubMed

    Rossoni, G; Pompilio, G; Biglioli, P; Alamanni, F; Tartara, P; Rona, P; Porqueddu, M; Berti, F

    1999-01-01

    Previous studies have shown that defibrotide, a polydeoxyribonucleotide obtained by depolymerization of DNA from porcine tissues, has important protective effects on myocardial ischemia, which may be associated with a prostacyclin-related mechanism. The purpose of this study was to investigate the direct effects of defibrotide (given in cardioplegia or after ischemia) on a model of rat heart recovery after cardioplegia followed by ischemia/reperfusion injury. Isolated rat hearts, undergoing 5 minutes of warm cardioplegic arrest followed by 20 minutes of global ischemia and 30 minutes of reperfusion, were studied using the modified Langendorff model. The cardioplegia consisted of St. Thomas' Hospital solution augmented with defibrotide (50, 100, and 200 microg/mL) or without defibrotide (controls). Left ventricular mechanical function and the levels of creatine kinase, lactate dehydrogenase, and 6-keto-prostaglandin F1alpha (6-keto-PGF1alpha; the stable metabolite of prostacyclin) were measured during preischemic and reperfusion periods. After global ischemia, hearts receiving defibrotide in the cardioplegic solution (n = 8) manifested in a concentration-dependent fashion lower left ventricular end-diastolic pressure (p < 0.001), higher left ventricular developed pressure (p < 0.01), and lower coronary perfusion pressure (p < 0.001) compared to the control group. After reperfusion, hearts receiving defibrotide in the cardioplegic solution also had, in a dose-dependent way, lower levels of creatine-kinase (p < 0.01), lactate dehydrogenase (p < 0.001), and higher levels of 6-keto-PGF1alpha (p < 0.001) compared to the control group. Furthermore, when defibrotide was given alone to the hearts at the beginning of reperfusion (n = 7), the recovery of postischemic left ventricular function was inferior (p < 0.05) to that obtained when defibrotide was given in cardioplegia. Defibrotide confers to conventional crystalloid cardioplegia a potent concentration

  13. [Influence of low frequency magnetic field used in magnetotherapy on interleukin 6 (IL-6) contents in rat heart and brain].

    PubMed

    Ciejka, Elżbieta; Skibska, Beata; Gorąca, Anna

    2017-06-27

    The human population is exposed ever more frequently to magnetic fields (MF). This is due to both technological progress and development of the economy as well as to advances made in medical science. That is why the thorough understanding and systematized knowledge about mechanisms by which MF exerts its effects on living organisms play such an important role. In this context the health of MF-exposed people is the subject of particular concern. The aim of the study was to evaluate the effect of extremely low frequency magnetic field (ELFMF) used in magnetotherapy on the concentration of interleukin 6 (IL-6) in rat heart and brain. The male rats were randomly divided into 3 experimental groups: group I - control, without contact with magnetic field; group II - exposed to bipolar, rectangular magnetic field 40 Hz, induction "peak-to-peak" 7 mT 30 min/day for 2 weeks; and group III - exposed to bipolar, rectangular magnetic field 40 Hz, 7 mT 60 min/day for 2 weeks. Concentration of IL-6 in the heart and brain of animals was measured after MF exposure. Exposure to ELFMF: 40 Hz, induction "peak-to-peak" 7 mT 30 min/day for 2 weeks caused a significant IL-6 increase in rat hearts compared to the control group (p < 0.05) and a non-significant IL-6 decrease in rat brain. The magnetic field applied for 60 min resulted in non-significant IL-6 increase in rat hearts compared to the control group and significant IL-6 decrease in rat brain (p < 0.05). The influence of magnetic field on inflammation in the body varies depending on the MF parameters and the affected tissues or cells. Med Pr 2017;68(4):517-523. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  14. The Caspase 1 Inhibitor VX-765 Protects the Isolated Rat Heart via the RISK Pathway.

    PubMed

    Do Carmo, Helison; Arjun, Sapna; Petrucci, Orlando; Yellon, Derek M; Davidson, Sean M

    2018-04-01

    Protecting the heart from ischaemia-reperfusion (IR) injury is a major goal in patients presenting with an acute myocardial infarction. Pyroptosis is a novel form of cell death in which caspase 1 is activated and cleaves interleukin 1β. VX-785 is a highly selective, prodrug caspase 1 inhibitor that is also clinically available. It has been shown to be protective against acute IR in vivo rat model, and therefore might be a promising possibility for future cardioprotective therapy. However, it is not known whether protection by VX-765 involves the reperfusion injury salvage kinase (RISK) pathway. We therefore investigated whether VX-765 protects the isolated, perfused rat heart via the PI3K/Akt pathway and whether protection was additive with ischaemic preconditioning (IPC). Langendorff-perfused rat hearts were subject to ischaemia and reperfusion injury in the presence of 30 μM VX-765, with precedent IPC, or the combination of VX-765 and IPC. VX-765 reduced infarct size (28 vs 48% control; P < 0.05) to a similar extent as IPC (30%; P < 0.05). The PI3 kinase inhibitor, wortmannin, abolished the protective effect of VX-765. Importantly in the model used, we were unable to show additive protection with VX-765 + IPC. The caspase 1 inhibitor, VX-765, was able to reduce myocardial infarction in a model of IR injury. However, the addition of IPC did not demonstrate any further protection.

  15. Rat Cytomegalovirus Vaccine Prevents Accelerated Chronic Rejection in CMV‐Naïve Recipients of Infected Donor Allograft Hearts

    PubMed Central

    Hwee, Y. K.; Kreklywich, C. N.; Andoh, T.; Denton, M.; Smith, P.; Hart, E.; Broekel, R.; Pallett, C.; Rogers, K.; Streblow, A. D.; Chuop, M.; Perry, A.; Slifka, M.; Messaoudi, I.; Orloff, S. L.

    2015-01-01

    Cytomegalovirus accelerates transplant vascular sclerosis (TVS) and chronic rejection (CR) in solid organ transplants; however, the mechanisms involved are unclear. We determined the efficacy of a CMV vaccine in preventing CMV‐accelerated rat cardiac allograft rejection in naïve recipients of CMV+ donor hearts. F344 donor rats were infected with RCMV 5 days prior to heterotopic cardiac transplantation into CMV‐naïve or H2O2‐inactivated RCMV‐vaccinated Lewis recipients. Recipients of RCMV‐infected donor hearts rejected at POD59, whereas vaccinated recipients exhibited a significantly prolonged time to rejection‐POD97, similar to recipients of uninfected donor hearts (POD108). Although all of the donor hearts were preinfected, the vaccinated recipients had lower graft and PBMC viral loads at POD 7 compared to unvaccinated controls. Adoptive T cell and passive antibody transfers from vaccinated Lewis rats into naïve recipients demonstrate that both T‐cell and B‐cell arms of the adaptive immune response provide protection against CMV‐accelerated rejection. Similar findings were obtained when testing three different adjuvants in passive transfer experiments. We have determined that the timing of the vaccine prior to transplantation and the specific adjuvant play critical roles in mediating anti‐viral responses and promoting graft survival. CMV vaccination prior to transplantation may effectively increase graft survival. PMID:25766876

  16. Amelioration of oxidative and inflammatory status in hearts of cholesterol-fed rats supplemented with oils or oil-products with extra virgin olive oil components.

    PubMed

    Katsarou, Ageliki I; Kaliora, Andriana C; Chiou, Antonia; Kalogeropoulos, Nick; Papalois, Apostolos; Agrogiannis, George; Andrikopoulos, Nikolaos K

    2016-04-01

    The contribution of extra virgin olive oil (EVOO) macro- and micro-constituents in heart oxidative and inflammatory status in a hypercholesterolemic rat model was evaluated. Fatty acid profile as well as α-tocopherol, sterol, and squalene content was identified directly in rat hearts to distinguish the effect of individual components or to enlighten the potential synergisms. Oils and oil-products with discernible lipid and polar phenolic content were used. Wistar rats were fed a high-cholesterol diet solely, or supplemented with one of the following oils, i.e., EVOO, sunflower oil (SO), and high-oleic sunflower oil (HOSO) or oil-products, i.e., phenolics-deprived EVOO [EVOO(-)], SO enriched with the EVOO phenolics [SO(+)], and HOSO enriched with the EVOO phenolics [HOSO(+)]. Dietary treatment lasted 9 weeks; at the end of the intervention blood and heart samples were collected. High-cholesterol-diet-induced dyslipidemia was shown by increase in serum total cholesterol, low-density lipoprotein cholesterol, and triacylglycerols. Dyslipidemia resulted in increased malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α) levels, while glutathione and interleukin 6 levels remained unaffected in all intervention groups. Augmentation observed in MDA and TNF-α was attenuated in EVOO, SO(+), and HOSO(+) groups. Heart squalene and cholesterol content remained unaffected among all groups studied. Heart α-tocopherol was determined by oil α-tocopherol content. Variations were observed for heart β-sitosterol, while heterogeneity was reported with respect to heart fatty acid profile in all intervention groups. Overall, we suggest that the EVOO-polar phenolic compounds decreased MDA and TNF-α in hearts of cholesterol-fed rats.

  17. Promising effects of xanthine oxidase inhibition by allopurinol on autonomic heart regulation estimated by heart rate variability (HRV) analysis in rats exposed to hypoxia and hyperoxia

    PubMed Central

    Ziółkowski, Wiesław; Badtke, Piotr; Zajączkowski, Miłosz A.; Flis, Damian J.; Figarski, Adam; Smolińska-Bylańska, Maria; Wierzba, Tomasz H.

    2018-01-01

    Background It has long been suggested that reactive oxygen species (ROS) play a role in oxygen sensing via peripheral chemoreceptors, which would imply their involvement in chemoreflex activation and autonomic regulation of heart rate. We hypothesize that antioxidant affect neurogenic cardiovascular regulation through activation of chemoreflex which results in increased control of sympathetic mechanism regulating heart rhythm. Activity of xanthine oxidase (XO), which is among the major endogenous sources of ROS in the rat has been shown to increase during hypoxia promote oxidative stress. However, the mechanism of how XO inhibition affects neurogenic regulation of heart rhythm is still unclear. Aim The study aimed to evaluate effects of allopurinol-driven inhibition of XO on autonomic heart regulation in rats exposed to hypoxia followed by hyperoxia, using heart rate variability (HRV) analysis. Material and methods 16 conscious male Wistar rats (350 g): control-untreated (N = 8) and pretreated with Allopurinol-XO inhibitor (5 mg/kg, followed by 50 mg/kg), administered intraperitoneally (N = 8), were exposed to controlled hypobaric hypoxia (1h) in order to activate chemoreflex. The treatment was followed by 1h hyperoxia (chemoreflex suppression). Time-series of 1024 RR-intervals were extracted from 4kHz ECG recording for heart rate variability (HRV) analysis in order to calculate the following time-domain parameters: mean RR interval (RRi), SDNN (standard deviation of all normal NN intervals), rMSSD (square root of the mean of the squares of differences between adjacent NN intervals), frequency-domain parameters (FFT method): TSP (total spectral power) as well as low and high frequency band powers (LF and HF). At the end of experiment we used rat plasma to evaluate enzymatic activity of XO and markers of oxidative stress: protein carbonyl group and 8-isoprostane concentrations. Enzymatic activity of superoxide dismutase (SOD), catalase (CAT) and glutathione

  18. Promising effects of xanthine oxidase inhibition by allopurinol on autonomic heart regulation estimated by heart rate variability (HRV) analysis in rats exposed to hypoxia and hyperoxia.

    PubMed

    Zajączkowski, Stanisław; Ziółkowski, Wiesław; Badtke, Piotr; Zajączkowski, Miłosz A; Flis, Damian J; Figarski, Adam; Smolińska-Bylańska, Maria; Wierzba, Tomasz H

    2018-01-01

    It has long been suggested that reactive oxygen species (ROS) play a role in oxygen sensing via peripheral chemoreceptors, which would imply their involvement in chemoreflex activation and autonomic regulation of heart rate. We hypothesize that antioxidant affect neurogenic cardiovascular regulation through activation of chemoreflex which results in increased control of sympathetic mechanism regulating heart rhythm. Activity of xanthine oxidase (XO), which is among the major endogenous sources of ROS in the rat has been shown to increase during hypoxia promote oxidative stress. However, the mechanism of how XO inhibition affects neurogenic regulation of heart rhythm is still unclear. The study aimed to evaluate effects of allopurinol-driven inhibition of XO on autonomic heart regulation in rats exposed to hypoxia followed by hyperoxia, using heart rate variability (HRV) analysis. 16 conscious male Wistar rats (350 g): control-untreated (N = 8) and pretreated with Allopurinol-XO inhibitor (5 mg/kg, followed by 50 mg/kg), administered intraperitoneally (N = 8), were exposed to controlled hypobaric hypoxia (1h) in order to activate chemoreflex. The treatment was followed by 1h hyperoxia (chemoreflex suppression). Time-series of 1024 RR-intervals were extracted from 4kHz ECG recording for heart rate variability (HRV) analysis in order to calculate the following time-domain parameters: mean RR interval (RRi), SDNN (standard deviation of all normal NN intervals), rMSSD (square root of the mean of the squares of differences between adjacent NN intervals), frequency-domain parameters (FFT method): TSP (total spectral power) as well as low and high frequency band powers (LF and HF). At the end of experiment we used rat plasma to evaluate enzymatic activity of XO and markers of oxidative stress: protein carbonyl group and 8-isoprostane concentrations. Enzymatic activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were measures in

  19. Comparison of the cardiovascular effects of meptazinol and naloxone following haemorrhagic shock in rats and cats.

    PubMed Central

    Chance, E.; Paciorek, P. M.; Todd, M. H.; Waterfall, J. F.

    1985-01-01

    The cardiovascular effects of the opioid mixed agonist-antagonist, meptazinol, and the opioid antagonist, naloxone, have been evaluated in conscious rats, anaesthetized rats and anaesthetized cats following the induction of haemorrhagic shock. The mean arterial pressure of conscious rats decreased by 17-29 mmHg following a haemorrhage of 20% of blood volume. Meptazinol (17 mg kg-1, i.m.) administered after haemorrhage evoked a rapid and sustained increase in mean arterial pressure to pre-haemorrhage levels. Naloxone (10 mg kg-1, i.v.) also increased mean arterial pressure to a level significantly higher than post-haemorrhage values. Neither haemorrhage nor subsequent drug treatments evoked significant changes in the heart rates of conscious rats. In anaesthetized rats, 20% haemorrhage evoked decreases in mean arterial pressure, heart rate and cardiac output. Blood flow to the heart, skin, skeletal muscle, kidneys, spleen and liver (arterial) was decreased. Meptazinol and naloxone increased blood pressure and total peripheral resistance, but did not significantly alter heart rate or cardiac output. Hepatic arterial flow decreased further in both drug and vehicle treated groups. In addition meptazinol slightly reduced skeletal muscle flow. In anaesthetized cats 40% haemorrhage decreased mean arterial pressure by 46 +/- 3 mmHg. An intravenous infusion of either meptazinol or naloxone (cumulative 2 mg kg-1, i.v.) partially restored blood pressure. In experimental animal models of haemorrhagic shock, meptazinol has a similar cardiovascular profile to naloxone. The established analgesic activity of meptazinol may confer an advantage in some shock states. PMID:4052729

  20. Direct effects of Vaccinium myrtillus L. fruit extracts on rat heart mitochondrial functions.

    PubMed

    Trumbeckaitė, S; Burdulis, D; Raudonė, L; Liobikas, J; Toleikis, A; Janulis, V

    2013-04-01

    In this study, the direct influence of bilberry (Vaccinium myrtillus) fruit extracts (aqueous and ethanolic) rich in anthocyanins on the oxidative phosphorylation of isolated rat heart mitochondria was investigated in vitro. Higher concentrations of bilberry extracts concentration-dependently inhibited mitochondrial state 3 respiration (by 23%-61%) with pyruvate plus malate, mildly (by 1.2- to 1.3-fold) uncoupled the oxidative phosphorylation, and increased (by 30%-87%) the state 4 respiration rate in the presence of exogenous cytochrome c. Succinate oxidation was less affected. Pure anthocyanins, the main components of used extracts, malvidin-3-glucoside, malvidin-3-galactoside, and cyanidin-3-galactoside, had no effect on oxidation of pyruvate plus malate. A statistically significant decrease in H2 O2 production by mitochondria was found in the presence of bilberry fruit extracts. Our findings show that bilberry fruit anthocyanin-rich extracts possess direct effects on rat heart mitochondrial function in vitro. These findings give the first insights into the mechanism(s) of their action on cellular energy metabolism. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Effect of sex and dietary fat intake on the fatty acid composition of phospholipids and triacylglycerol in rat heart

    PubMed Central

    Slater-Jefferies, Joanne L.; Hoile, Samuel P.; Lillycrop, Karen A.; Townsend, Paul A.; Hanson, Mark A.; Burdge, Graham C.

    2010-01-01

    Variations in the fatty acid composition of lipids in the heart alter its function and susceptibility to ischaemic injury. We investigated the effect of sex and dietary fat intake on the fatty acid composition of phospholipids and triacylglycerol in rat heart. Rats were fed either 40 or 100 g/kg fat (9:1 lard:soybean oil) from weaning until day 105. There were significant interactive effects of sex and fat intake on the proportions of fatty acids in heart phospholipids, dependent on phospholipid classes. 20:4n-6, but not 22:6n-3, was higher in phospholipids in females than males fed a low, but not a high, fat diet. There was no effect of sex on the composition of triacylglycerol. These findings suggest that sex is an important factor in determining the incorporation of dietary fatty acids into cardiac lipids. This may have implications for sex differences in susceptibility to heart disease. PMID:20719489

  2. [The effects of nicergoline on the heart rate in the normotensive or spontaneously hypertensive rat. Possible participation of central alpha-1 receptors].

    PubMed

    Huchet, A M; Schmitt, H

    1986-01-01

    The cardiovascular effects of nicergoline, a preferential alpha 1-adrenoceptor blocking drug, were studied in anaesthetized normotensive or spontaneously hypertensive (SH) rats. Nicergoline (300 micrograms/kg, i.v.) significantly reduced blood pressure and heart rate in control, bivagotomized or beta-blocked normotensive or SH rats. In bilaterally vagotomized and beta-blocked rats, nicergoline reduced mean blood pressure but did no longer modify heart rate. Thus, it is postulated that nicergoline could reduce the sympathetic tone and increase the vagal nerve activity, possibly by inhibiting central alpha 1-adrenoceptors. The nicergoline--induced bradycardia was greater in bivagotomized SHR than in normotensive ones. Intracerebroventricular injections of nicergoline (30 micrograms/kg) did not modify heart rate in normotensive control, bivagotomized or beta-blocked rats. On the contrary, nicergoline (30 micrograms/kg) injected into the cisterna magna induced a significant bradycardia in the three groups of normotensive rats. Blood pressure was reduced in the same way in all groups centrally treated by nicergoline. In conclusion, it seems that nicergoline reduces blood pressure by peripheral alpha-adrenoceptor blockade and modulates the autonomic nervous activity by inhibiting alpha 1-adrenoceptors mainly localized in the brainstem.

  3. Methylphenidate clinically oral doses improved brain and heart glutathione redox status and evoked renal and cardiac tissue injury in rats.

    PubMed

    Loureiro-Vieira, Sara; Costa, Vera Marisa; Duarte, José Alberto; Duarte-Araújo, Margarida; Gonçalves-Monteiro, Salomé; Maria de Lourdes, Bastos; Carvalho, Félix; Capela, João Paulo

    2018-04-01

    Methylphenidate (MPH) is a first-line stimulant drug to treat attention deficit hyperactivity disorder (ADHD). Overdiagnosis of ADHD and MPH abuse lead to serious concerns about the possible long-term adverse consequences of MPH in healthy children and adolescents. We aimed to evaluate MPH effects in adolescent male Wistar rats (postnatal day 40) using an oral dose scheme (2 daily MPH doses 5 mg/kg in a 5% sucrose solution, 5 h apart, for 7 days) that mimics the therapeutic doses given to human adolescents. Twenty-four hours after the last MPH administration, rats were sacrificed and brain areas [cerebellum, prefrontal cortex (PFC), hippocampus, and striatum], peripheral organs (liver, heart, and kidneys), and blood were collected for biochemical and histological analysis. MPH treatment did not alter rats' body temperature or weight, neither food or water intake throughout the experiment. The ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) significantly increased in the PFC and hippocampus of MPH-treated rats, meanwhile protein carbonylation remained unchanged in the brain. In the heart, the GSH/GSSG ratio and GSH levels were significantly increased, with decreased GSSG, while histology revealed significant damage, namely interstitial edema, vascular congestion, and presence of a fibrin-like material in the interstitial space. In the kidneys, MPH treatment resulted in extensive necrotic areas with cellular disorganization and cell infiltration, and immunohistochemistry analysis revealed a marked activation of nuclear factor-ĸB. This study showed that clinically relevant oral MPH doses improve the GSH redox status in the brain and heart, but evoke heart and kidney tissue damage to adolescent rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Effects of propranolol treatment on left ventricular function and intracellular calcium regulation in rats with postinfarction heart failure

    PubMed Central

    Litwin, Sheldon E; Katz, Sarah E; Morgan, James P; Douglas, Pamela S

    1999-01-01

    Chronic treatment with beta-adrenergic blocking agents can improve survival in patients with heart failure. The mechanisms underlying the beneficial effects and whether these effects are generalizable to ischaemic heart failure are unresolved.We performed echocardiographic-Doppler examinations in rats (n=28) 1 and 6 weeks after myocardial infarction (MI) or sham surgery. Rats were randomized to no treatment or propranolol (500 mg/l in drinking water) after the first echocardiogram. Isometric contractions and intracellular Ca transients were recorded simultaneously in noninfarcted left ventricular (LV) papillary muscles.Untreated MI rats had significant LV dilatation (10.6±0.4* vs 8.9±0.3 mm, MI vs control), impaired systolic function (fractional shortening=11±2* vs 38±2%), and a restrictive LV diastolic filling pattern. MI rats receiving propranolol had similar LV chamber sizes (10.6±0.5 mm) and systolic function (13±2%). The propranolol treated animals had higher LV end-diastolic pressures (27±2* vs 20±3 mmHg) and a more restricted LV diastolic filling pattern (increased ratio of early to late filling velocities and more rapid E wave deceleration rate). Contractility of papillary muscles from untreated MI rats was depressed (1.6±0.3 vs 2.4±0.5 g mm−2). In addition, Ca transients were prolonged and the inotropic response to isoproterenol was blunted. Propranolol treatment did not improve force development (1.6±0.3 g mm−2) or the duration of Ca transients during isoproterenol stimulation.Chronic propranolol treatment in rats with postinfarction heart failure did not improve LV remodeling or systolic function. LV diastolic pressures and filling patterns were worsened by propranolol. Treatment also did not produce appreciable improvement in contractility, intracellular Ca regulation or beta-adrenergic responsiveness in the noninfarcted myocardium. PMID:10455325

  5. Soy Protein Alleviates Hypertension and Fish Oil Improves Diastolic Heart Function in the Han:SPRD-Cy Rat Model of Cystic Kidney Disease.

    PubMed

    Ibrahim, Naser H M; Thandapilly, Sijo J; Jia, Yong; Netticadan, Thomas; Aukema, Harold

    2016-05-01

    Abnormalities in cardiac structure and function are very common among people with chronic kidney disease, in whom cardiovascular disease is the major cause of death. Dietary soy protein and fish oil reduce kidney disease progression in the Han:SPRD-Cy model of cystic renal disease. However, the effects of these dietary interventions in preventing alterations in cardiac structure and function due to kidney disease (reno-cardiac syndrome) in a cystic kidney disease model are not known. Therefore, weanling Han:SPRD-Cy diseased (Cy/+) and normal (+/+) rats were given diets containing either casein or soy protein, and either soy or fish oil in a three-way design for 8 weeks. Diseased rats had larger hearts, augmented left ventricular mass, and higher systolic and mean arterial blood pressure compared to the normal rats. Assessment of cardiac function using two-dimensional guided M-mode and pulse-wave Doppler echocardiography revealed that isovolumic relaxation time was prolonged in the diseased compared to normal rats, reflecting a diastolic heart dysfunction, and fish oil prevented this elevation. Soy protein resulted in a small improvement in systolic and mean arterial pressure but did not improve diastolic heart function, while fish oil prevented diastolic heart dysfunction in this model of cystic kidney disease.

  6. Fructose-rich diet induces gender-specific changes in expression of the renin–angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta

    PubMed Central

    Bundalo, Maja M; Zivkovic, Maja D; Romic, Snjezana Dj; Tepavcevic, Snezana N; Koricanac, Goran B; Djuric, Tamara M; Stankovic, Aleksandra D

    2016-01-01

    Introduction: The cardiovascular renin–angiotensin system (RAS) could be affected by gender and dietary regime. We hypothesized that male rats will be more susceptible to activation of RAS in the heart and aorta, as a response to a fructose-rich diet (FRD). Materials and methods: Both male and female Wistar rats were given a 10% (w/v) fructose solution for 9 weeks. We measured the biochemical parameters, blood pressure (BP) and heart rate. We used Western blot and real-time polymerase chain reaction (PCR) to quantify protein and gene expression. Results: In the male rats, the FRD elevated BP and expression of cardiac angiotensin-converting enzyme (ACE), while the expression of angiotensin-converting enzyme 2 (ACE2) and angiotensin II Type 2 receptor (AT2R) were significantly decreased. In female rats, there were no changes in cardiac RAS expression due to FRD. Furthermore, the ACE/AT1R axis was overexpressed in the FRD male rats’ aortae, while only AT1R was upregulated in the FRD female rats’ aortae. ACE2 expression remained unchanged in the aortae of both genders receiving the FRD. Conclusions: The FRD induced gender-specific changes in the expression of the RAS in the heart and aortae of male rats. Further investigations are required in order to get a comprehensive understanding of the underlying mechanisms of gender-specific fructose-induced cardiovascular pathologies. PMID:27121972

  7. Influence of the hypothalamic paraventricular nucleus (PVN) on heart rate variability (HRV) in rat hearts via electronic lesion.

    PubMed

    Deng, Xin; Feng, Xuhui; Li, Sen; Gao, Ya; Yu, Bingzhi; Li, Gensong

    2015-01-01

    Previous literatures have indicated that hypothalamic paraventricular nucleus (PVN) neurons are important for regulating the level of sympathetic and vagal nervous activity. Sympathovagal balance is closely related to heart rate variability (HRV). However, it still requires further elucidation regarding the effect of PVN on HRV by regulating sympathovagal balance. To detect the influence of the PVN on HRV, we evaluated the changes in time domain (including standard deviation of the R-R intervals (SDNN), and the root mean square of successive differences (RMSSD)) and frequency domain (including low frequency (LFnu), high frequency (HFnu) and the ratio of LF/HF) in HRV upon appropriate electronic stimulation, and lesions on the PVN of the rat in vivo. Cardiac vagal modulation was evaluated by HFnu; sympathetic modulation was evaluated by LFnu. Sympathovagal balance was evaluated by LF/HF and SDNN. Upon electronic stimulating (less than 0.6 mA) to the PVN of rats, we found that LFnu and HFnu changed correspondingly but recovered after the stimulation. When the PVN of the rats was injured, the RR intervals were enhanced with the rats' unilaterally or bilaterally injured PVN, especially the bilateral lesion. Meanwhile, LFnu, LF/HF and SDNN decreased gradually, accompanied with an increase of HFnu levels. So these PVN changes may indicate alterations of the sympathovagal balance.

  8. Juniperus communis Linn oil decreases oxidative stress and increases antioxidant enzymes in the heart of rats administered a diet rich in cholesterol.

    PubMed

    Gumral, Nurhan; Kumbul, Duygu Doguc; Aylak, Firdevs; Saygin, Mustafa; Savik, Emin

    2015-01-01

    It has been asserted that consumption of dietary cholesterol (Chol) raises atherosclerotic cardiovascular diseases and that Chol causes an increase in free radical production. Hypercholesterolemic diet has also been reported to cause changes in the antioxidant system. In our study, different doses of Juniperus communis Linn (JCL) oil, a tree species growing in Mediterranean and Isparta regions and having aromatic characteristics, were administered to rats; and the levels of antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and thiobarbituric acid reactive substances assay (TBARS) were examined in the heart tissue of rats. In this study, 35 Wistar Albino male adult rats weighing approximately 250-300 g were used. The rats were divided into five groups of seven each. The control group was administered normal pellet chow, and the Chol group was administered pellet chow including 2% Chol, while 50 JCL, 100 JCL, and 200 JCL groups were administered 50, 100, and 200 mg/kg JCL oil dissolved in 0.5% sodium carboxy methyl cellulose, respectively, in addition to the pellet chow containing 2% Chol, by gavage. After 30 days, the experiment was terminated and the antioxidant enzyme activities were examined in the heart tissue of rats. While consumption of dietary Chol decreases the activities of SOD, GSH-Px, and CAT in heart tissue of rats (not significant), administeration of 200 mg/kg JCL oil in addition to Chol led to a significant increase in the activity of antioxidant enzymes. Administering Chol led to a significant increase in TBARS level. Administering 100 and 200 mg/kg JCL oil together with Chol prevented significantly the increase in lipid peroxides. As a result of the study, JCL oil showed oxidant-antioxidant effect in the heart tissue of rats. © The Author(s) 2012.

  9. Resistance to Reperfusion Injury Following Short Term Postischemic Administration of Natural Honey in Globally Ischemic Isolated Rat Heart

    PubMed Central

    Vaez, Haleh; Samadzadeh, Mehrban; Zahednezhad, Fahimeh; Najafi, Moslem

    2012-01-01

    Purpose: Results of our previous study revealed that preischemic perfusion of honey before zero flow global ischemia had cardioprotective effects in rat. The present study investigated potential resistance to reperfusion injury following short term postischemic administration of natural honey in globally ischemic isolated rat heart. Methods: Male Wistar rats were divided into five groups (n=10-13). The rat hearts were isolated, mounted on a Langendorff apparatus, allowed to equilibrate for 30 min then subjected to 30 min global ischemia. In the control group, the hearts were reperfused with drug free normal Krebs-Henseleit (K/H) solution before ischemia and during 120 min reperfusion. In the treatment groups, reperfusion was initiated with K/H solution containing different concentration of honey (0.25, 0.5, 1 and 2%) for 15 min and was resumed until the end of 120 min with normal K/H solution. Results: In the control group, VEBs number was 784±199, while in honey concentration of 0.25, 0.5, 1 and 2%, it decreased to 83±23 (P<0.001), 138±48 (P<0.01), 142±37 (P<0.001) and 157±40 (P<0.01), respectively. Number and duration of VT and time spent in reversible VF were also reduced by honey. In the control group, the infarct size was 54.1±7.8%, however; honey (0.25, 0.5, 1 and 2%) markedly lowered the value to 12.4±2.4, 12.7±3.3, 11.3±2.6 and 7.9±1.7 (P<0.001), respectively. Conclusion: Postischemic administration of natural honey in global ischemia showed protective effects against ischemia/reperfusion (I/R) injuries in isolated rat heart. Antioxidant and radical scavenging activity, lipoperoxidation inhibition, reduction of necrotized tissue, presence of rich energy sources, various type of vitamins, minerals and enzymes and formation of NO-contain metabolites may probably involve in those cardioprotective effects. PMID:24312792

  10. Detrimental effects of acute hyperglycaemia on the rat heart.

    PubMed

    Mapanga, R F; Joseph, D; Symington, B; Garson, K-L; Kimar, C; Kelly-Laubscher, R; Essop, M Faadiel

    2014-03-01

    Hyperglycaemia is an important risk factor for acute myocardial infarction. It can lead to increased induction of non-oxidative glucose pathways (NOGPs) - polyol and hexosamine biosynthetic pathways, advanced glycation end products and protein kinase C - that may contribute to cardiovascular diseases onset. However, the precise underlying mechanisms remain poorly understood. Here we hypothesized that acute hyperglycaemia increases myocardial oxidative stress and NOGP activation resulting in cardiac dysfunction during ischaemia-reperfusion and that inhibition of, and/or shunting flux away from NOGPs [by benfotiamine (BFT) treatment], leads to cardioprotection. We employed several experimental systems: (i) Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mm glucose vs. controls (11 mm glucose) ± global ischaemia and reperfusion ± BFT (first 20 min of reperfusion); (ii) Infarct size determination as per the ischaemic protocol, but with regional ischaemia and reperfusion ± BFT treatment; in separate experiments, NOGP inhibitors were also employed for (i) and (ii); and (iii) In vivo coronary ligations performed on streptozotocin-treated rats ± BFT treatment (early reperfusion). Acute hyperglycaemia generated myocardial oxidative stress, NOGP activation and apoptosis, but caused no impairment of cardiac function during pre-ischaemia, thereby priming hearts for later damage. Following ischaemia-reperfusion (under hyperglycaemic conditions), such effects were exacerbated together with cardiac contractile dysfunction. Moreover, inhibition of respective NOGPs and shunting away by BFT treatment (in part) improved cardiac function during ischaemia-reperfusion. Coordinate NOGP activation in response to acute hyperglycaemia results in contractile dysfunction during ischaemia-reperfusion, allowing for the development of novel cardioprotective agents. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. Nitric oxide averts hypoxia-induced damage during reoxygenation in rat heart.

    PubMed

    Rus, Alma; Molina, Francisco; Peinado, M Ángeles; Del Moral, M Luisa

    2011-12-01

    Nitric oxide (NO), synthesized by the hemoproteins NO synthases (NOS), is known to play important roles in physiological and pathological conditions in the heart, including hypoxia/reoxygenation (H/R). This work investigates the role that endogenous NO plays in the cardiac H/R-induced injury. A follow-up study was conducted in Wistar rats subjected to 30 min of hypoxia, with or without prior treatment using the nonselective NOS inhibitor L-NAME (1.5 mM). The rats were studied at 0 h, 12 h, and 5 days of reoxygenation, analysing parameters of cell, and tissue damage (lipid peroxidation, apoptosis, and protein nitration), as well as in situ NOS activity and NO production (NOx). The results showed that after L-NAME administration, in situ NOS activity was almost completely eliminated in all the experimental groups, and consequently, NOx levels fell. Contrarily, the lipid peroxidation level and the percentage of apoptotic cells rose throughout the reoxygenation period. These results reveal that NOS inhibition exacerbates the peroxidative and apoptotic damage observed before the treatment with L-NAME in the hypoxic heart, pointing to a cardioprotective role of NOS-derived NO against H/R-induced injury. These findings could open the possibility of future studies to design new therapies for H/R-dysfunctions based on NO-pharmacology. Copyright © 2011 Wiley Periodicals, Inc.

  12. Effects of CGS 21680, a selective A2A adenosine receptor agonist, on cardiac output and vascular resistance in acute heart failure in the anaesthetized rat

    PubMed Central

    Nekooeian, Ali A; Tabrizchi, Reza

    1998-01-01

    The effects of CGS 21680, a selective A2A adenosine receptor agonist, on cardiac output, blood pressure, mean circulatory filling pressure (Pmcf), arterial and venous resistances, heart rate and left ventricular end-diastolic pressure were assessed in rats with acute heart failure by means of coronary artery occlusion.Animals (n=6 in each group) were divided into five groups: group I, sham-operated vehicle-treated (0.9% saline; 0.018 mL min−1); groups II-V, subject to coronary artery occlusion and treated with vehicle (0.9% saline; 0.018 ml min−1) and CGS 21680 (0.1, 0.3 and 1.0 μg kg−1 min−1), respectively. Haemodynamic measurements were taken one hour after completion of surgery, ninety minutes after coronary artery occlusion (except in group I), and fifteen minutes after infusion of saline or CGS 21680.Baseline haemodynamic measurements before occlusion were found not to differ significantly between the different groups of animals. However, after occlusion, cardiac output, rate of rise in left ventricular pressure (+dP/dt) and blood pressure were significantly reduced when compared to corresponding values in sham-operated animals. In addition, occlusion of the coronary artery resulted in a significant elevation in venous resistance, Pmcf and left ventricular end-diastolic pressure as compared to corresponding values in sham-operated animals.Infusion with CGS 21680 at the highest dose significantly reduced blood pressure, arterial resistance and left ventricular end-diastolic pressure when compared to occluded vehicle-treated animals (group II). Administration of CGS 21680 at the highest dose also significantly increased cardiac output (28%) and heart rate (10%) in comparison to occluded vehicle-treated animals. In addition, the highest dose of CGS 21680 significantly reduced Pmcf (9%) and venous resistance (62%) in comparison to occluded vehicle-treated animals. Administration of CGS 21680 did not significantly affect +dP/dt when compared

  13. Effects of CGS 21680, a selective A2A adenosine receptor agonist, on cardiac output and vascular resistance in acute heart failure in the anaesthetized rat.

    PubMed

    Nekooeian, A A; Tabrizchi, R

    1998-04-01

    1. The effects of CGS 21680, a selective A2A adenosine receptor agonist, on cardiac output, blood pressure, mean circulatory filling pressure (Pmcf), arterial and venous resistances, heart rate and left ventricular end-diastolic pressure were assessed in rats with acute heart failure by means of coronary artery occlusion. 2. Animals (n=6 in each group) were divided into five groups: group I, sham-operated vehicle-treated (0.9% saline; 0.018 mL min(-1)); groups II-V, subject to coronary artery occlusion and treated with vehicle (0.9% saline; 0.018 ml min(-1)) and CGS 21680 (0.1, 0.3 and 1.0 microg kg(-1) min(-1)), respectively. Haemodynamic measurements were taken one hour after completion of surgery, ninety minutes after coronary artery occlusion (except in group I), and fifteen minutes after infusion of saline or CGS 21680. 3. Baseline haemodynamic measurements before occlusion were found not to differ significantly between the different groups of animals. However, after occlusion, cardiac output, rate of rise in left ventricular pressure (+ dP/dt) and blood pressure were significantly reduced when compared to corresponding values in sham-operated animals. In addition, occlusion of the coronary artery resulted in a significant elevation in venous resistance, Pmcf and left ventricular end-diastolic pressure as compared to corresponding values in sham-operated animals. 4. Infusion with CGS 21680 at the highest dose significantly reduced blood pressure, arterial resistance and left ventricular end-diastolic pressure when compared to occluded vehicle-treated animals (group II). Administration of CGS 21680 at the highest dose also significantly increased cardiac output (28%) and heart rate (10%) in comparison to occluded vehicle-treated animals. In addition, the highest dose of CGS 21680 significantly reduced Pmcf (9%) and venous resistance (62%) in comparison to occluded vehicle-treated animals. Administration of CGS 21680 did not significantly affect +dP/dt when

  14. Rapid negative inotropic effect induced by TNF-α in rat heart perfused related to PKC activation.

    PubMed

    Jude, B; Vetel, S; Giroux-Metges, M A; Pennec, J P

    2018-07-01

    Myocardial depression, frequently observed in septic shock, is mediated by circulating molecules such as cytokines. TNF-α appears to be the most important pro-inflammatory cytokine released during the early phase of a septic shock. It was previously shown that TNF-α had a negative inotropic effect on myocardium. Now, the aim of this study was to investigate the effects of the activation of PKC by TNF-α on heart function, and to determine if this cytokine could induce a decrease of membrane excitability. Isolated rat hearts (n = 6) were perfused with Tyrode solution containing TNF-α at 20 ng/ml during 30 min by using a Langendorff technique. Expressions of PKC-α and PKC-ε were analysed by western blot on membrane and cytosol proteins extracted from ventricular myocardium. Patch clamp was performed on freshly isolated cardiomyocytes (n = 8). Compared to control situation, 30 min of TNF-α perfusion led to cardiac dysfunction with a decrease of the heart rate (-83%), the force (-20%) and speed of relaxation (-18%) and the coronary flow (-25%). This is associated with an activation and a membrane targeting of both PKC-α and PKC-ε isoforms in ventricle with respectively +123% and +54% compared to control hearts. Nevertheless, TNF-α had no significant effect on voltage-gated sodium current (109.0%+/- 12.5) after addition of the cytokine when compared to control. These results showed that TNF-α had a negative inotropic effect on the isolated rat heart and can induce PKC activation leading to an impaired contractility of the heart. However the early heart dysfunction induced by the cytokine was not associated to a decrease of cardiomyocytes membrane excitability as it has been evidenced in skeletal muscle fibres. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Distinct Endothelial Cell Responses in the Heart and Kidney Microvasculature Characterize the Progression of Heart Failure With Preserved Ejection Fraction in the Obese ZSF1 Rat With Cardiorenal Metabolic Syndrome.

    PubMed

    van Dijk, Christian G M; Oosterhuis, Nynke R; Xu, Yan Juan; Brandt, Maarten; Paulus, Walter J; van Heerebeek, Loek; Duncker, Dirk J; Verhaar, Marianne C; Fontoura, Dulce; Lourenço, André P; Leite-Moreira, Adelino F; Falcão-Pires, Inês; Joles, Jaap A; Cheng, Caroline

    2016-04-01

    The combination of cardiac and renal disease driven by metabolic risk factors, referred to as cardiorenal metabolic syndrome (CRMS), is increasingly recognized as a critical pathological entity. The contribution of (micro)vascular injury to CRMS is considered to be substantial. However, mechanistic studies are hampered by lack of in vivo models that mimic the natural onset of the disease. Here, we evaluated the coronary and renal microvasculature during CRMS development in obese diabetic Zucker fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1) rats. Echocardiographic, urine, and blood evaluations were conducted in 3 groups (Wistar-Kyoto, lean ZSF1, and obese ZSF1) at 20 and 25 weeks of age. Immunohistological evaluation of renal and cardiac tissues was conducted at both time points. At 20 and 25 weeks, obese ZSF1 rats showed higher body weight, significant left ventricular hypertrophy, and impaired diastolic function compared with all other groups. Indices of systolic function did not differ between groups. Obese ZSF1 rats developed hyperproliferative vascular foci in the subendocardium, which lacked microvascular organization and were predilection sites of inflammation and fibrosis. In the kidney, obese ZSF1 animals showed regression of the peritubular and glomerular microvasculature, accompanied by tubulointerstitial damage, glomerulosclerosis, and proteinuria. The obese ZSF1 rat strain is a suitable in vivo model for CRMS, sharing characteristics with the human syndrome during the earliest onset of disease. In these rats, CRMS induces microvascular fibrotic responses in heart and kidneys, associated with functional impairment of both organs. © 2016 American Heart Association, Inc.

  16. Hypolipidemic and anti-inflammatory effects of aorta and heart tissues of cattle and pigs in the atherosclerosis rat model.

    PubMed

    Chernukha, Irina M; Fedulova, Liliya V; Kotenkova, Elena A; Takeda, Shiro; Sakata, Ryoichi

    2018-05-01

    The aim of this study was to investigate the effects of aorta and heart tissues obtained from cattle and pigs on atherosclerosis disorders. Atherosclerosis model rats were provided with the respective diets consisting of aorta and heart tissues. Administration of each tissue suppressed body weight gain as compared to that of the control. In particular, the aorta tissues of pigs and cattle demonstrated significant suppressions in body weight gain in the model rats. The aorta tissues of pigs and cattle showed a significant increase and decrease in the serum high-density lipoproteins and atherogenic index, respectively, which was correlated with the increase in apolipoprotein A1. Hematological analysis revealed that aorta tissues of pigs and cattle clearly reduced the ratio of granulocytes/lymphocytes in the atherosclerosis rats. Serum vascular cellular adhesion molecule-1 levels in the atherosclerosis rats, which were administered these aorta tissues, were also significantly reduced. Additionally, there was an increase in von Willebrand factor in the rat serum. Based on the results obtained, the aorta tissues of pigs and cattle, in particular, demonstrated positive effects in the atherosclerosis rats due to the alteration of lipid metabolism and reduction in inflammation related to atherosclerosis. © 2018 Japanese Society of Animal Science.

  17. Chronic effects of aerobic exercise on gene expression of LOX-1 receptor in the heart of rats fed with high fat diet

    PubMed Central

    Riahi, Simin; Mohammadi, Mohammad Taghi; Sobhani, Vahid; Soleimany, Mansureh

    2015-01-01

    Objective(s): Lectin-like low density lipoprotein receptor (LOX-1) has pivot role in vascular complications, which is upregulated in numerous pathological conditions. Since exercise has beneficial effects in prevention of hyperlipidemic complications, present study examined protective effects of aerobic exercise through reduction of LOX-1 expression in heart during dyslipidemia. Materials and Methods: Four groups of rats were used (N=25): Normal, Normal and exercise, High fat and High fat and exercise. High fat diet (HFD) was made by adding 10% animal oil, 2% cholesterol and 0.5% colic acid to standard rodent chow. Exercise protocol consisted of swimming 1 hr/day, and 5 days/week for 8 weeks. Plasma lipids were evaluated at the end of experiment, 48 hr after final session of exercise. At the end, rats were sacrificed and heart was removed for determination of malondialdehyde (MDA) content, and LOX-1 expression. Results: HFD meaningfully changed lipid profile (>50%), but chronic exercise had no significant effects on lipid profile. LOX-1 expression was significantly increased in heart of rats fed with HFD, while swimming exercise considerably reduced gene expression of LOX-1. MDA content was significantly enhanced in rats fed with HFD (4.37±0.6 nmol/mg, P<0.01) compared to normal group (1.56±0.48 nmol/mg), whereas swimming exercise decreased MDA level of heart in rats fed with HFD (2.28±0.32, P<0.01). Conclusion: Findings indicated that swimming exercise is able to diminish heart expression of LOX-1 receptor concomitant reduction of oxidative stress. Since these parameters are involved in generation of dyslipidemic complications, swimming exercise is a good candidate to reduce these complications. PMID:26557970

  18. A butter diet induces higher levels of n-3 PUFA and of n-3/n-6 PUFA ratio in rat serum and hearts than a safflower oil diet.

    PubMed

    Hirai, K; Ozeki, Y; Nakano, T; Takezoe, R; Nakanishi, M; Asano, Y; Higuchi, H

    2001-01-01

    The effects of a 47-week diet of butter or safflower oil as fat in combination with casein or soy protein as protein were observed for the serum concentrations of lipids and fatty acid compositions in rat serum and heart. Serum total cholesterol (Chol) did not differ among the four experimental diet groups. In the butter groups, significantly higher low-density lipoprotein (LDL)-Chol and lower high-density lipoprotein (HDL)-Chol were observed than in the safflower oil groups (p<0.005, respectively). Higher levels of α-tocopherol were found in the butter groups than in the safflower oil groups (p<0.05) and in the casein groups than in the soy protein groups (p<0.01). In comparison with the safflower oil groups, the butter groups showed higher n-3 polyunsaturated fatty acids (PUFA) contents and lower n-6 PUFA contents in serum and the hearts (p<0.005). The ratios of n-3/n-6 PUFA in the butter groups in serum, 0.26 and 0.18, and in the hearts, 0.37 and 0.36, (butter-casein diet and butter-soy protein diet, respectively) were higher than those of the safflower oil groups of under 0.01 in serum and 0.02 and 0.03 in the hearts (safflower oil-casein diet and safflower oil-soy protein diet, respectively) (p<0.005). In the soy protein groups, higher n-3 PUFA contents in the hearts were found than those of the casein groups (p<0.05). This study suggested that the butter diet induces higher levels of n-3 PUFA and a higher n-3/n-6 PUFA ratio than the safflower oil diet in rat serum and hearts over a long feeding period.

  19. Hydroxyl radicals' production and ECG parameters during ischemia and reperfusion in rat, guinea pig and rabbit isolated heart.

    PubMed

    Paulova, Hana; Stracina, Tibor; Jarkovsky, Jiri; Novakova, Marie; Taborska, Eva

    2013-06-01

    Ischemic and reperfusion injury is a serious condition related to numerous biochemical and electrical abnormalities of the myocardium. It has been repeatedly studied in various animal models. In this study, the production of hydroxyl radicals and electrophysiological parameters were compared in three species. Rat, guinea pig and rabbit isolated hearts were perfused according to Langendorff under strictly identical conditions. The heart rate and arrhythmia were monitored during ischemia and reperfusion periods at defined time intervals; the production of hydroxyl radical was determined by HPLC as 2.5-dihydroxybenzoic acid (2.5-DHBA) formed by salicylic acid hydroxylation. Relationship between arrhythmias and production of 2.5-DHBA was studied. The inter-species differences were observed in timing of arrhythmias onset and their severity, and in the production of 2.5-DHBA in both ischemia and reperfusion. The most considerable changes were observed in rats, where arrhythmias appeared early and with highest severity during ischemia on one side and the regular rhythm was restored early and completely during reperfusion. The corresponding changes in the production of 2.5-DHBA were observed. It can be concluded that rat isolated heart is the most suitable model for evaluation of ischemia/reperfusion injury under given experimental conditions.

  20. Antioxidant N-acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats.

    PubMed

    Xia, Zhengyuan; Nagareddy, Prabhakara R; Guo, Zhixin; Zhang, Wei; McNeill, John H

    2006-02-01

    Increased oxidative stress and reduced nitric oxide (NO) bioactivity are key features of diabetes mellitus that eventually result in cardiovascular abnormalities. We assessed whether N-acetylcysteine (NAC), an antioxidant and glutathione precursor, could prevent the hyperglycaemia induced increase in oxidative stress, restore NO availability and prevent depression of arterial blood pressure and heart rate in vivo in experimental diabetes. Control (C) and streptozotocin-induced diabetic (D) rats were treated or not treated with NAC in drinking water for 8 weeks, initiated 1 week after induction of diabetes. At termination, plasma levels of free 15-F2t-isoprostane, a specific marker of oxygen free radical induced lipid peroxidation, was increased while the plasma total antioxidant concentration was decreased in untreated diabetic rats as compared to control rats (P<0.05). This was accompanied by a significant reduction of plasma levels of nitrate and nitrite, stable metabolites of NO, (P<0.05, D vs. C) and a reduced endothelial NO synthase protein expression in the heart and in aortic and mesenteric artery tissues. Systolic, diastolic and mean arterial blood pressures (SBP, DBP and MAP) and heart rate (HR) were reduced in diabetic rats (P<0.05 vs. C) and NAC normalised the changes that occurred in the diabetic rats. The protective effects may be attributable to restoration of NO bioavailability in the circulation.

  1. Novel Insights into the Cardio-Protective Effects of FGF21 in Lean and Obese Rat Hearts

    PubMed Central

    Chen, Jing; Ramanjaneya, Manjunath; Bari, Muhammad F.; Bhudia, Sunil K.; Hillhouse, Edward W.; Tan, Bee K.; Randeva, Harpal S.

    2014-01-01

    Aims Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia. PMID:24498293

  2. Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats

    EPA Science Inventory

    Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 g/m3 ...

  3. The effect of nandrolone treatment with and without enforced swimming on histological and biochemical changes in the heart and coronary artery of male rats

    PubMed Central

    Tofighi, Asghar; Shirpoor, Minoo; Ansari, Mohammad Hasan Khadem; Shirpoor, Alireza; Zerehpoosh, Mitra

    2017-01-01

    Objective: Chronic anabolic androgenic steroid (AAS) consumption increases incidence of cardiovascular abnormalities in athletes and mechanisms underlying those abnormalities continue to be investigated. This study examines whether nandrolone consumption induced cardiac and coronary artery wall abnormalities via oxidative stress. It was also designed to determine whether enforced swimming augmented possible cardiotoxic effects of nandrolone in rat heart. Methods: Twenty-four male Wistar rats were divided into 3 groups: control, nandrolone, and nandrolone with enforced swimming. Nandrolone group received 10 mg/kg body weight nandrolone 3 times a week for 6 weeks. Nandrolone group with enforced swimming received the same amount of nandrolone and was forced to swim with excess weight of 20% body weight. Results: After 6 weeks of treatment, results indicated proliferation of heart muscle and coronary smooth muscle cells and lipid peroxidation; significant rise in levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), nicotinamide adenine dinucleotide phosphate oxidase, homocysteine (Hcy), apolipoprotein B, low-density lipoprotein, and cholesterol, as well as severe fibrosis in heart tissue and around coronary arteries of nandrolone and nandrolone with enforced swimming groups compared with control group. Conclusion: These findings strongly support idea that nandrolone intake by sedentary rats and exercised rats induced heart abnormality mediated by oxidative stress, which was manifest in increased lipid peroxidation, Hcy, and 8-OHdG in heart tissue. PMID:27752030

  4. Repeat exposure to group A streptococcal M protein exacerbates cardiac damage in a rat model of rheumatic heart disease.

    PubMed

    Gorton, Davina; Sikder, Suchandan; Williams, Natasha L; Chilton, Lisa; Rush, Catherine M; Govan, Brenda L; Cunningham, Madeleine W; Ketheesan, Natkunam

    2016-12-01

    Rheumatic fever and rheumatic heart disease (RF/RHD) develop following repeated infection with group A streptococci (GAS). We used the Rat Autoimmune Valvulitis (RAV) model of RF/RHD to demonstrate that repetitive booster immunization with GAS-derived recombinant M protein (rM5) resulted in an enhanced anti-cardiac myosin antibody response that may contribute to the breaking of immune tolerance leading to RF/RHD and increased infiltration of heart valves by mononuclear cells. With each boost, more inflammatory cells were observed infiltrating heart tissue which could lead to severe cardiac damage. We also found evidence that both complement and anti-M protein antibodies in serum from rM5-immunized rats have the potential to contribute to inflammation in heart valves by activating cardiac endothelium. More importantly, we have demonstrated by electrocardiography for the first time in the RAV model that elongation of P-R interval follows repetitive boost with rM5. Our observations provide experimental evidence for cardiac alterations following repeated exposure to GAS M protein with immunological and electrophysiological features resembling that seen in humans following recurrent GAS infection.

  5. Renal denervation improves cardiac function in rats with chronic heart failure: Effects on expression of β-adrenoceptors

    PubMed Central

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.

    2016-01-01

    Chronic activation of the sympathetic drive contributes to cardiac remodeling and dysfunction during chronic heart failure (HF). The present study was undertaken to assess whether renal denervation (RDN) would abrogate the sympathoexcitation in HF and ameliorate the adrenergic dysfunction and cardiac damage. Ligation of the left coronary artery was used to induce HF in Sprague-Dawley rats. Four weeks after surgery, RDN was performed, 1 wk before the final measurements. At the end of the protocol, cardiac function was assessed by measuring ventricular hemodynamics. Rats with HF had an average infarct area >30% of the left ventricle and left ventricular end-diastolic pressure (LVEDP) >20 mmHg. β1- and β2-adrenoceptor proteins in the left ventricle were reduced by 37 and 49%, respectively, in the rats with HF. RDN lowered elevated levels of urinary excretion of norepinephrine and brain natriuretic peptide levels in the hearts of rats with HF. RDN also decreased LVEDP to 10 mmHg and improved basal dP/dt to within the normal range in rats with HF. RDN blunted loss of β1-adrenoceptor (by 47%) and β2-adrenoceptor (by 100%) protein expression and improved isoproterenol (0.5 μg/kg)-induced increase in +dP/dt (by 71%) and −dP/dt (by 62%) in rats with HF. RDN also attenuated the increase in collagen 1 expression in the left ventricles of rats with HF. These findings demonstrate that RDN initiated in chronic HF condition improves cardiac function mediated by adrenergic agonist and blunts β-adrenoceptor expression loss, providing mechanistic insights for RDN-induced improvements in cardiac function in the HF condition. PMID:27288440

  6. Respiratory muscle training improves hemodynamics, autonomic function, baroreceptor sensitivity, and respiratory mechanics in rats with heart failure

    PubMed Central

    Jaenisch, Rodrigo B.; Hentschke, Vítor S.; Quagliotto, Edson; Cavinato, Paulo R.; Schmeing, Letiane A.; Xavier, Léder L.

    2011-01-01

    Respiratory muscle training (RMT) improves functional capacity in chronic heart-failure (HF) patients, but the basis for this improvement remains unclear. We evaluate the effects of RMT on the hemodynamic and autonomic function, arterial baroreflex sensitivity (BRS), and respiratory mechanics in rats with HF. Rats were assigned to one of four groups: sedentary sham (n = 8), trained sham (n = 8), sedentary HF (n = 8), or trained HF (n = 8). Trained animals underwent a RMT protocol (30 min/day, 5 day/wk, 6 wk of breathing through a resistor), whereas sedentary animals did not. In HF rats, RMT had significant effects on several parameters. It reduced left ventricular (LV) end-diastolic pressure (P < 0.01), increased LV systolic pressure (P < 0.01), and reduced right ventricular hypertrophy (P < 0.01) and pulmonary (P < 0.001) and hepatic (P < 0.001) congestion. It also decreased resting heart rate (HR; P < 0.05), indicating a decrease in the sympathetic and an increase in the vagal modulation of HR. There was also an increase in baroreflex gain (P < 0.05). The respiratory system resistance was reduced (P < 0.001), which was associated with the reduction in tissue resistance after RMT (P < 0.01). The respiratory system and tissue elastance (Est) were also reduced by RMT (P < 0.01 and P < 0.05, respectively). Additionally, the quasistatic Est was reduced after RMT (P < 0.01). These findings show that a 6-wk RMT protocol in HF rats promotes an improvement in hemodynamic function, sympathetic and vagal heart modulation, arterial BRS, and respiratory mechanics, all of which are benefits associated with improvements in cardiopulmonary interaction. PMID:21903877

  7. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension

    PubMed Central

    Benoist, David; Stones, Rachel; Drinkhill, Mark J.; Benson, Alan P.; Yang, Zhaokang; Cassan, Cecile; Gilbert, Stephen H.; Saint, David A.; Cazorla, Olivier; Steele, Derek S.; Bernus, Olivier

    2012-01-01

    Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca2+ handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca2+ transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca2+-ATPase activity, increased sarcoplasmic reticular Ca2+-release fraction, and increased Ca2+ spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca2+ handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs. PMID:22427523

  8. Heart dysfunction induced by choline-deficiency in adult rats: the protective role of L-carnitine.

    PubMed

    Strilakou, Athina A; Lazaris, Andreas C; Perelas, Apostolos I; Mourouzis, Iordanis S; Douzis, Ioannis Ch; Karkalousos, Petros L; Stylianaki, Aikaterini Th; Pantos, Costas I; Liapi, Charis A

    2013-06-05

    Choline is a B vitamin co-factor and its deficiency seems to impair heart function. Carnitine, a chemical analog of choline, has been used as adjunct in the management of cardiac diseases. The study investigates the effects of choline deficiency on myocardial performance in adult rats and the possible modifications after carnitine administration. Wistar Albino rats (n=24), about 3 months old, were randomized into four groups fed with: (a) standard diet (control-CA), (b) choline deficient diet (CDD), (c) standard diet and carnitine in drinking water 0.15% w/v (CARN) and (d) choline deficient diet and carnitine (CDD+CARN). After four weeks of treatment, we assessed cardiac function under isometric conditions using the Langendorff preparations [Left Ventricular Developed Pressure (LVDP-mmHg), positive and negative first derivative of LVDP were evaluated], measured serum homocysteine and brain natriuretic peptide (BNP) levels and performed histopathology analyses. In the CDD group a compromised myocardium contractility compared to control (P=0.01), as assessed by LVDP, was noted along with a significantly impaired diastolic left ventricular function, as assessed by (-) dp/dt (P=0.02) that were prevented by carnitine. Systolic force, assessed by (+) dp/dt, showed no statistical difference between groups. A significant increase in serum BNP concentration was found in the CDD group (P<0.004) which was attenuated by carnitine (P<0.05), whereas homocysteine presented contradictory results (higher in the CDD+CARN group). Heart histopathology revealed a lymphocytic infiltration of myocardium and valves in the CDD group that was reduced by carnitine. In conclusion, choline deficiency in adult rats impairs heart performance; carnitine acts against these changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Co-administration of trientine and flaxseed oil on oxidative stress, serum lipids and heart structure in diabetic rats.

    PubMed

    Rezaei, Ali; Heidarian, Esfandiar

    2013-08-01

    The administration of flaxseed oil or flaxseed oil plus trientine in diabetic rats reduced triglyceride, very low density lipoprotein, and total cholesterol. Furthermore, the combined treatment significantly increased superoxide dismutase activity and attenuated serum Cu2+. The results suggest that the administration of flaxseed oil plus trientine is useful in controlling serum lipid abnormalities, oxidative stress, restoring heart structure, and reducing serum Cu2+ in diabetic rats.

  10. Effects of Arginase Inhibition in Hypertensive Hyperthyroid Rats.

    PubMed

    Rodríguez-Gómez, Isabel; Manuel Moreno, Juan; Jimenez, Rosario; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Wangensteen, Rosemary; Vargas, Félix

    2015-12-01

    This study analyzed the effects of chronic administration of N[omega]-hydroxy-nor-l-arginine (nor-NOHA), an inhibitor of arginase, on the hemodynamic, oxidative stress, morphologic, metabolic, and renal manifestations of hyperthyroidism in rats. Four groups of male Wistar rats were used: control, nor-NOHA-treated (10 mg/kg/day), thyroxine (T4)-treated (75 μg/rat/day), and thyroxine- plus nor-NOHA-treated rats. All treatments were maintained for 4 weeks. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, morphologic, metabolic, plasma, and renal variables were measured. Arginase I and II protein abundance and arginase activity were measured in aorta, heart, and kidney. The T4 group showed increased arginase I and II protein abundance, arginase activity, SBP, HR, plasma nitrates/nitrites (NOx), brainstem and urinary isoprostanes, proteinuria and cardiac and renal hypertrophy in comparison to control rats. In hyperthyroid rats, chronic nor-NOHA prevented the increase in SBP and HR and decreased proteinuria in association with an increase in plasma NOx and a decrease in brainstem and urinary isoprostanes. In normal rats, nor-NOHA treatment did not significantly change any hemodynamic, morphologic, or renal variables. Acute nor-NOHA administration did not affect renal or systemic hemodynamic variables in normal or T4-treated rats. Hyperthyroidism in rats is associated with the increased expression and activity of arginase in aorta, heart, and kidney. Chronic arginase inhibition with nor-NOHA suppresses the characteristic hemodynamic manifestations of hyperthyroidism in association with a reduced oxidative stress. These results indicate an important role for arginase pathway alterations in the cardiovascular and renal abnormalities of hyperthyroidism. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Effect of housing rats in dim light or long nights on heart rate.

    PubMed

    Azar, Toni A; Sharp, Jody L; Lawson, David M

    2008-07-01

    Housing laboratory animals under lighting conditions that more closely mimic the natural environment may improve their wellbeing. This study examined the effects of dim light or a long-night photocycle on resting heart rate (HR) of rats and their HR responses to acute procedures. Male and female Sprague-Dawley (SD) and spontaneously hypertensive (SHR) rats, instrumented with radiotelemetry transmitters and housed individually under a 12:12-h light:dark photocycle with 10 lx illumination (dim light) or under an 8:16-h light:dark photocycle with 200 lx illumination (long nights), were compared with control rats individually housed under a 12:12-h light:dark photocycle with 200 lx illumination. Dim light and long nights significantly reduced the HR of undisturbed SD and SHR male and SHR female rats during the day and at night; however, the HR of undisturbed SD females was not affected. When rats were subjected acutely to husbandry, experimental, or stressful procedures, dim light or long nights (or both) reduced HR responses to some procedures, did not alter responses to others, and increased responses to yet other procedures. The pattern of effects varied between strains and between male and female rats. Because basal HR was reduced when rats were housed under 10 lx illumination or an 8:16-h light:dark photocycle, we concluded that housing rats under 12:12-h light:dark, 200 lx ambient light conditions was potentially stressful, We also concluded that dim light or long nights did not uniformly reduce the increased HR responses induced by acute procedures.

  12. Protective effects of low-dose rosuvastatin on isoproterenol-induced chronic heart failure in rats by regulation of DDAH-ADMA-NO pathway.

    PubMed

    Zhou, Ru; Ma, Ping; Xiong, Aiqin; Xu, Yehua; Wang, Yang; Xu, Qingbin

    2017-04-01

    Cardiovascular disease is the leading cause of death with high morbidity and mortality, and chronic heart failure is the terminal phase of it. This study aimed to investigate the protective effects of the low-dose rosuvastatin on isoproterenol-induced chronic heart failure and to explore the possible related mechanisms. Male Sprague Dawley rats were given isoproterenol 5 mg/kg once a day for 7 days to establish heart failure model by subcutaneous injection. Simultaneously, low-dose rosuvastatin (5 mg/kg) was orally administrated from day 1 to day 14. Protective effects were evaluated by hemodynamic parameter, histopathological variables, serum asymmetric dimethylarginine (ADMA), cardiac troponin I (cTnI), brain natriuretic peptide (BNP) and myocardial nitric oxide (NO), and the levels of dimethylarginine dimethylaminohydrolase 2 (DDAH2), arginine methyltransferases 1 (PRMT1) and endothelial nitric oxide synthase (eNOS) expression were analyzed. Therapeutic rosuvastatin (5 mg/kg) significantly attenuated isoproterenol-induced hypertrophy, remodeling and dysfunction of ventricle, reduced the increased serum content of ADMA, cTnI, and BNP, and elevated myocardial NO in rats (P<.05). Besides, rosuvastatin also significantly inhibited fibrosis of myocardium, normalized the increased PRMT1 and decreased DDAH2 expression. Low-dose rosuvastatin exerted cardioprotective effects on isoproterenol-induced heart failure in rats by modulating DDAH-ADMA-NO pathway, and it may present the new therapeutic value in ameliorating chronic heart failure. © 2016 John Wiley & Sons Ltd.

  13. Methylene blue improves mitochondrial respiration and decreases oxidative stress in a substrate-dependent manner in diabetic rat hearts.

    PubMed

    Duicu, Oana M; Privistirescu, Andreea; Wolf, Adrian; Petruş, Alexandra; Dănilă, Maria D; Raţiu, Corina D; Muntean, Danina M; Sturza, Adrian

    2017-11-01

    Diabetic cardiomyopathy has been systematically associated with compromised mitochondrial energetics and increased generation of reactive oxygen species (ROS) that underlie its progression to heart failure. Methylene blue is a redox drug with reported protective effects mainly on brain mitochondria. The purpose of the present study was to characterize the effects of acute administration of methylene blue on mitochondrial respiration, H 2 O 2 production, and calcium sensitivity in rat heart mitochondria isolated from healthy and 2 months (streptozotocin-induced) diabetic rats. Mitochondrial respiratory function was assessed by high-resolution respirometry. H 2 O 2 production and calcium retention capacity were measured spectrofluorimetrically. The addition of methylene blue (0.1 μmol·L -1 ) elicited an increase in oxygen consumption of mitochondria energized with complex I and II substrates in both normal and diseased mitochondria. Interestingly, methylene blue elicited a significant increase in H 2 O 2 release in the presence of complex I substrates (glutamate and malate), but had an opposite effect in mitochondria energized with complex II substrate (succinate). No changes in the calcium retention capacity of healthy or diabetic mitochondria were found in the presence of methylene blue. In conclusion, in cardiac mitochondria isolated from diabetic and nondiabetic rat hearts, methylene blue improved respiratory function and elicited a dichotomic, substrate-dependent effect on ROS production.

  14. Eotaxin/CCL11 levels correlate with myocardial fibrosis and mast cell density in native and transplanted rat hearts.

    PubMed

    Zweifel, M; Matozan, K; Dahinden, C; Schaffner, T; Mohacsi, P

    2010-09-01

    Myocardial fibrosis contributes to hemodynamic and cardiac functional alterations commonly observed posttransplantation. Cardiac mast cells (MC) have been linked to fibrosis in posttransplantation hearts. Eotaxin, which has been shown to be involved in fibrogenesis, has been demonstrated to be increased in production in cardiac macrophages. The aim of our study was to correlate myocardial fibrosis during heart transplant rejection in the rat with eotaxin/chemokine [c-c motif] ligand 11 (CCL11) expression, and with various subtypes of infiltrating cardiac MC, namely connective-type MC (CTMC) and mucosa-type MC (MMC). We used tissues from 2 previous studies of ongoing acute rejection in allogeneic Brown-Norway to Lewis rat and an isogeneic Brown-Norway to Brown-Norway heterotopic heart transplantation models under cyclosporin/prednisolone immunosuppression. Collagen fibrils were stained with Masson's trichrome with myocardial fibrosis expressed as percent fibrotic area per total section area. Eotaxin/CCL11 previously measured in heart tissue using enzyme-linked immunosorbent assay (ELISA) was correlated with the extent of myocardial fibrosis. We compared values from native hearts (n = 4) as well as transplants on days 5, 16, and 28 (n = 4 in each group). The area of myocardial fibrosis was significantly increased in the allogeneic compared with the isogeneic group at day 16 (38% vs 21%) and at day 28 (49% vs 22%) after transplantation. Myocardial fibrosis correlated significantly with eotaxin/CCL11 concentrations and the density of MMC, but not with CTMC in heart tissue. Eotaxin-triggered MC infiltration of the heart may contribute to myocardial fibrosis after transplantation. Targeting eotaxin/CCL11 with monoclonal antibodies, such as bertilimumab, could reduce MC infiltration, possibly resulting in decreased myocardial fibrosis and improved contractile function after heart transplantation. 2010 Elsevier Inc. All rights reserved.

  15. Renal sympathetic denervation improves myocardial apoptosis in rats with isoproterenol-induced heart failure by downregulation of tumor necrosis factor-α and nuclear factor-κB.

    PubMed

    Yao, Wei; Wang, Neng; Qian, Jin; Bai, Lu; Zheng, Xiaoxin; Hou, Guo; Qiu, Xuan; Yang, Bo

    2017-11-01

    Chronic congestive heart failure (CHF) is the end outcome of organic heart diseases and one of the major diseases harmful to human health. Renal sympathetic denervation (RSD) is the anatomical basis of transcatheter renal sympathetic nerve ablation within the renal artery. To date, the roles of norepinephrine and angiotensin II (Ang II) in myocardial apoptosis and their underlying mechanisms have not been well explored. The aim of the present study was to verify the hypothesis that RSD is likely to inhibit myocardial apoptosis by inhibiting the release of norepinephrine and Ang II. An isoproterenol-induced CHF rat model was established, and the effects of RSD on myocardial apoptosis were examined using flow cytometry and TUNEL staining. The expression of factors associated with myocardial apoptosis, including p53, tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), caspase-2 and -3, were measured using quantitative polymerase chain reaction and western blot analysis. The results indicated that the mRNA levels of p53, TNF-α, NF-κB, caspase-2 and -3 were significantly reduced in the myocardial tissues of rats in the CHF+RSD group when compared with the levels in the CHF+sham group (P<0.01 for all). In addition, the protein levels of p53, TNF-α, NF-κB and caspases-2 and -3 were decreased by 42.6, 41.3, 46.7, 30.0 and 35.8%, respectively, in myocardial tissues of rats in the CHF+RSD group in comparison with the CHF+sham group (P<0.01 for all). Furthermore, myocardial apoptosis was improved in rats in the CHF+RSD group compared with that in the CHF+sham group (P<0.01). In conclusion, the present study provides a theoretical basis for application of RSD in the treatment of CHF.

  16. Renal sympathetic denervation improves myocardial apoptosis in rats with isoproterenol-induced heart failure by downregulation of tumor necrosis factor-α and nuclear factor-κB

    PubMed Central

    Yao, Wei; Wang, Neng; Qian, Jin; Bai, Lu; Zheng, Xiaoxin; Hou, Guo; Qiu, Xuan; Yang, Bo

    2017-01-01

    Chronic congestive heart failure (CHF) is the end outcome of organic heart diseases and one of the major diseases harmful to human health. Renal sympathetic denervation (RSD) is the anatomical basis of transcatheter renal sympathetic nerve ablation within the renal artery. To date, the roles of norepinephrine and angiotensin II (Ang II) in myocardial apoptosis and their underlying mechanisms have not been well explored. The aim of the present study was to verify the hypothesis that RSD is likely to inhibit myocardial apoptosis by inhibiting the release of norepinephrine and Ang II. An isoproterenol-induced CHF rat model was established, and the effects of RSD on myocardial apoptosis were examined using flow cytometry and TUNEL staining. The expression of factors associated with myocardial apoptosis, including p53, tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), caspase-2 and −3, were measured using quantitative polymerase chain reaction and western blot analysis. The results indicated that the mRNA levels of p53, TNF-α, NF-κB, caspase-2 and −3 were significantly reduced in the myocardial tissues of rats in the CHF+RSD group when compared with the levels in the CHF+sham group (P<0.01 for all). In addition, the protein levels of p53, TNF-α, NF-κB and caspases-2 and −3 were decreased by 42.6, 41.3, 46.7, 30.0 and 35.8%, respectively, in myocardial tissues of rats in the CHF+RSD group in comparison with the CHF+sham group (P<0.01 for all). Furthermore, myocardial apoptosis was improved in rats in the CHF+RSD group compared with that in the CHF+sham group (P<0.01). In conclusion, the present study provides a theoretical basis for application of RSD in the treatment of CHF. PMID:29104628

  17. Characterization of Maze Performance in Adrenalectomized Sleep Disrupted Rats: A Comparison of Radial Arm Maze Performance between Adrenalectomized and Sham Adrenalectomized Sleep Disrupted Rats

    DTIC Science & Technology

    2007-01-01

    AFRL-HE-BR-TR-2007-0008 Characterization of Maze Performance in Adrenalectomized Sleep Disrupted Rats: A Comparison of Radial Arm Maze Performance ...Sept 2005-Dec 2006 To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Characterization of Maze Performance in Adrenalectomized Sleep Disrupted Rats...A Comparison of Radial Arm Maze Performance Between Adrenalectomized and Sham Adrenalectomized Sleep Disrupted Rats 5b. GRANT NUMBER FA86500-05

  18. Cardiac support device (ASD) delivers bone marrow stem cells repetitively to epicardium has promising curative effects in advanced heart failure.

    PubMed

    Yue, Shizhong; Naveed, Muhammad; Gang, Wang; Chen, Dingding; Wang, Zhijie; Yu, Feng; Zhou, Xiaohui

    2018-05-12

    Ventricular restraint therapy is a non-transplant surgical option for the management of advanced heart failure (HF). To augment the therapeutic applications, it is hypothesized that ASD shows remarkable capabilities not only in delivering stem cells but also in dilated ventricles. Male SD rats were divided into four groups (n = 6): normal, HF, HF + ASD, and HF + ASD-BMSCs respectively. HF was developed by left anterior descending (LAD) coronary artery ligation in all groups except normal group. Post-infarcted electrocardiography (ECG) and brain natriuretic peptide (BNP) showed abnormal heart function in all model groups and HF + ASD-BMSCs group showed significant improvement as compared to other HF, HF + ASD groups on day 30. Masson's trichrome staining was used to study the histology, and a large blue fibrotic area has been observed in HF and HF + ASD groups and quantification of fibrosis was assessed. ASD-treated rats showed normal heart rhythm, demonstrated by smooth -ST and asymmetrical T-wave. The mechanical function of the heart such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP) and heart rate was brought to normal when treated with ASD-BMSCs. This effect was more prominent than that of ASD therapy alone. In comparison to HF group, the SD rats in HF + ASD-BMBCs group showed a significant decline in BNP levels. So ASD can deliver BMSCs to the cardiomyocytes successfully and broaden the therapeutic efficacy, in comparison to the restraint device alone. An effective methodology to manage the end-stage HF has been proved.

  19. [Swim training attenuates myocardial remodeling and the pulmonary congestion in wistar rats with secondary heart failure to myocardial infarction].

    PubMed

    Portes, Leslie Andrews; Tucci, Paulo José Ferreira

    2006-07-01

    To evaluate the effects of swimming on pulmonary water content in animals with heart failure (HF) after myocardial infarction (MI). After coronary occlusion, MI size 20% 40% of the LV large. The animals swam for 60 min/day, 5 days/week for 8 weeks. The wet weight of lung, liver, atriums, LV and right ventricle (RV) as well as the dry weight of the liver and lung were determined. ANOVA and Tukey test were used for statistical analysis. An increase in the atrium/body weight ratio was noted in the sedentary animals with moderate (MImod-SED: n=8) and large (MIlg-SED: n=10) infarctions in comparison to the sedentary control (C-SED: n=14) and trained (C-TR: n=16) rats. An increase in the RV/body weight and LV/body weight ratios was noted in the MIlg-SED. The heart/body weight ratio was higher in MIlg-SED when compared to the other groups. The infarcted trained animals presented diminished hypertrophy. The pulmonary water content was higher in MIlg-SED animals (81+/-0.4%) than in C-SED animals (79+/-0.4%). No differences were found for the other comparisons (C-TR: 79+/-0.4%; MImod-SED: 80+/-0.3%; MImod-TR: 80+/-0.6%; MIlg-TR: 79+/-0.7%). The increase of cardiac mass and pulmonary water content presented by MIlg-SED was diminished in the trained animals. The results suggest that the practice of physical exercise can diminish HF and contribute to favorable cardiac remodeling.

  20. (-)-Terpinen-4-ol changes intracellular Ca2+ handling and induces pacing disturbance in rat hearts.

    PubMed

    Gondim, Antonio Nei Santana; Lara, Aline; Santos-Miranda, Artur; Roman-Campos, Danilo; Lauton-Santos, Sandra; Menezes-Filho, José Evaldo Rodrigues; de Vasconcelos, Carla Maria Lins; Conde-Garcia, Eduardo Antonio; Guatimosim, Silvia; Cruz, Jader S

    2017-07-15

    (-)-Terpinen-4-ol is a naturally occurring plant monoterpene and has been shown to have a plethora of biological activities. The objective of this study was to investigate the effects of (-)-terpinen-4-ol on the rat heart, a key player in the control and maintenance of arterial blood pressure. The effects of (-)-terpinen-4-ol on the rat heart were investigated using isolated left atrium isometric force measurements, in vivo electrocardiogram (ECG) recordings, patch clamp technique, and confocal microscopy. It was observed that (-)-terpinen-4-ol reduced contraction force in an isolated left atrium at millimolar concentrations. Conversely, it induced a positive inotropic effect and extrasystoles at micromolar concentrations, suggesting that (-)-terpinen-4-ol may have arrhythmogenic activity on cardiac tissue. In anaesthetized animals, (-)-terpinen-4-ol also elicited rhythm disturbance, such as supraventricular tachycardia and atrioventricular block. To investigate the cellular mechanism underlying the dual effect of (-)-terpinen-4-ol on heart muscle, experiments were performed on isolated ventricular cardiomyocytes to determine the effect of (-)-terpinen-4-ol on L-type Ca 2+ currents, Ca 2+ sparks, and Ca 2+ transients. The arrhythmogenic activity of (-)-terpinen-4-ol in vitro and in vivo may be explained by its effect on intracellular Ca 2+ handling. Taken together, our data suggest that (-)-terpinen-4-ol has cardiac arrhythmogenic activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Reduction of coenzyme q10 content: a possible effect of isoproterenol on heart failure and myocardial infarction in rat.

    PubMed

    Khorrami, A; Garjani, A; Ghanbarzadeh, S; Andalib, S

    2014-04-01

    Myocardial infarction (MI) was induced by subcutaneous injection of isoproterenol (ISO) to investigate the effect of ISO on Coenzyme Q10 (CoQ10) content of myocardium and subsequent effects on lipid peroxidation, electrocardiogram pattern and hemodynamic parameters of the rat's heart.36 male Wistar rats were divided randomly into 6 groups. To induce heart failure (HF) and MI, 10 and 100 mg/kg of ISO was administered subcutaneously for 10 and 2 consecutive days, respectively. The effects of ISO on myocardium CoQ10 content, concentration of malondialdehyde, ECG pattern and hemodynamic parameters of heart were analyzed.ISO-treated rats showed significant alteration in heart hemodynamic parameters such as reduction of left-ventricular systolic pressure, maximum and minimum rate of developed left ventricular pressure, besides increase of left ventricular end-diastolic pressure. Significant depletion of heart CoQ10 content (from 4.57 and 4.55 µg/100 mg tissue in control groups to 2.85 and 2.89 µg/100 mg tissue in ISO-induced HF and MI groups respectively) and increase in tissue levels of malondialdehyde (47.1 and 53.8 nmol/100 mg tissue in ISO-induced HF and MI groups, respectively) were also observed in ISO-treated animals compared with the normal animals (17.4 and 18.8 nmol/100 mg tissue in control groups, respectively). Additionally CoQ10 improved ISO effects on hemodynamic parameters and ECG pattern in ISO-induced HF and myocardial injury.The present findings have demonstrated that the cardiotoxic effects of ISO such as oxidative damage and hemodynamic declination might be related to depletion of CoQ10 concentration. © Georg Thieme Verlag KG Stuttgart · New York.

  2. G-protein coupled estrogen receptor 1 expression in rat and human heart: Protective role during ischaemic stress.

    PubMed

    Patel, Vanlata H; Chen, Jing; Ramanjaneya, Manjunath; Karteris, Emmanouil; Zachariades, Elena; Thomas, Peter; Been, Martin; Randeva, Harpal S

    2010-08-01

    G-protein coupled estrogen receptor 1, GPER, formerly known as GPR30, is a seven transmembrane domain receptor that mediates rapid estrogen responses in a wide variety of cell types. To date, little is known about the role of GPER during ischaemia/reperfusion injury. In this study, we report both mRNA and protein expression of GPER in the rat and human heart. The role of GPER in estrogen protection against ischaemic stress in the rat heart was also assessed using the isolated Langendorff system. Pre-treatment with 17beta-estradiol (E2) significantly decreased infarct size, (61.48+/-2.2% to 27.92+/-2.9% (P<0.001). Similarly, treatment with the GPER agonist G1 prior to 30-min global ischaemia followed by 120-min reperfusion significantly reduced infarct size from 61.48+/-2.2% to 23.85+/-3.2% (P<0.001), whilst addition of GPR30 antibody, abolished the protective effect of G1 (infarct size: 55.42+/-1.3%). The results suggest that GPER under cardiac stress exerts direct protection in the heart and may serve as a potential therapeutic target for cardiac drug therapy.

  3. In female rat heart mitochondria, oophorectomy results in loss of oxidative phosphorylation.

    PubMed

    Pavón, Natalia; Cabrera-Orefice, Alfredo; Gallardo-Pérez, Juan Carlos; Uribe-Alvarez, Cristina; Rivero-Segura, Nadia A; Vazquez-Martínez, Edgar Ricardo; Cerbón, Marco; Martínez-Abundis, Eduardo; Torres-Narvaez, Juan Carlos; Martínez-Memije, Raúl; Roldán-Gómez, Francisco-Javier; Uribe-Carvajal, Salvador

    2017-02-01

    Oophorectomy in adult rats affected cardiac mitochondrial function. Progression of mitochondrial alterations was assessed at one, two and three months after surgery: at one month, very slight changes were observed, which increased at two and three months. Gradual effects included decrease in the rates of oxygen consumption and in respiratory uncoupling in the presence of complex I substrates, as well as compromised Ca 2+ buffering ability. Malondialdehyde concentration increased, whereas the ROS-detoxifying enzyme Mn 2+ superoxide dismutase (MnSOD) and aconitase lost activity. In the mitochondrial respiratory chain, the concentration and activity of complex I and complex IV decreased. Among other mitochondrial enzymes and transporters, adenine nucleotide carrier and glutaminase decreased. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase also decreased. Data strongly suggest that in the female rat heart, estrogen depletion leads to progressive, severe mitochondrial dysfunction. © 2017 Society for Endocrinology.

  4. Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats

    PubMed Central

    Toledo, Camilo; Andrade, David C.; Lucero, Claudia; Arce‐Alvarez, Alexis; Díaz, Hugo S.; Aliaga, Valentín; Schultz, Harold D.; Marcus, Noah J.; Manríquez, Mónica; Faúndez, Marcelo

    2017-01-01

    Key points Heart failure with preserved ejection fraction (HFpEF) is associated with disordered breathing patterns, and sympatho‐vagal imbalance.Although it is well accepted that altered peripheral chemoreflex control plays a role in the progression of heart failure with reduced ejection fraction (HFrEF), the pathophysiological mechanisms underlying deterioration of cardiac function in HFpEF are poorly understood.We found that central chemoreflex is enhanced in HFpEF and neuronal activation is increased in pre‐sympathetic regions of the brainstem.Our data showed that activation of the central chemoreflex pathway in HFpEF exacerbates diastolic dysfunction, worsens sympatho‐vagal imbalance and markedly increases the incidence of cardiac arrhythmias in rats with HFpEF. Abstract Heart failure (HF) patients with preserved ejection fraction (HFpEF) display irregular breathing, sympatho‐vagal imbalance, arrhythmias and diastolic dysfunction. It has been shown that tonic activation of the central and peripheral chemoreflex pathway plays a pivotal role in the pathophysiology of HF with reduced ejection fraction. In contrast, no studies to date have addressed chemoreflex function or its effect on cardiac function in HFpEF. Therefore, we tested whether peripheral and central chemoreflexes are hyperactive in HFpEF and if chemoreflex activation exacerbates cardiac dysfunction and autonomic imbalance. Sprague‐Dawley rats (n = 32) were subjected to sham or volume overload to induce HFpEF. Resting breathing variability, chemoreflex gain, cardiac function and sympatho‐vagal balance, and arrhythmia incidence were studied. HFpEF rats displayed [mean ± SD; chronic heart failure (CHF) vs. Sham, respectively] a marked increase in the incidence of apnoeas/hypopnoeas (20.2 ± 4.0 vs. 9.7 ± 2.6 events h−1), autonomic imbalance [0.6 ± 0.2 vs. 0.2 ± 0.1 low/high frequency heart rate variability (LF/HFHRV)] and cardiac arrhythmias (196.0 ± 239.9 vs. 19.8

  5. Cardioprotective Effects of Total Flavonoids Extracted from Xinjiang Sprig Rosa rugosa against Acute Ischemia/Reperfusion-Induced Myocardial Injury in Isolated Rat Heart.

    PubMed

    Hou, Xuejiao; Han, Jichun; Yuan, Changsheng; Ren, Huanhuan; Zhang, Ya; Zhang, Tao; Xu, Lixia; Zheng, Qiusheng; Chen, Wen

    2016-01-01

    This study evaluated the antioxidative and cardioprotective effects of total flavonoids extracted from Xinjiang sprig Rosa rugosa on ischemia/reperfusion (I/R) injury using an isolated Langendorff rat heart model. The possible mechanism of Xinjiang sprig rose total flavonoid (XSRTF) against I/R injury was also studied. XSRTF (5, 10, and 20 µg/mL) dissolved in Krebs-Henseleit buffer was administered to isolated rat heart. The XSRTF showed remarkable scavenging effects against 1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and superoxide anion radicals in vitro. XSRTF pretreatment improved the heart rate, increased LVDP, and decreased CK and LDH levels in coronary flow. This pretreatment also increased SOD activity and GSH/GSSG ratio but decreased MDA, TNF-α, and CRP levels and IL-8 and IL-6 activities. The infarct size and cell apoptosis in the hearts from the XSRTF-treated group were lower than those in the hearts from the I/R group. Therefore, the cardioprotective effects of XSRTF may be attributed to its antioxidant, antiapoptotic, and anti-inflammatory activities.

  6. Alterations of Ca(v)1.2 and 5-hydroxytryptamine in rat hearts after positional asphyxia.

    PubMed

    Li, X-F; Huang, Q-Y

    2015-01-01

    We investigated alterations of cardiac Ca(v)1.2 and 5-hydroxytryptamine (5-HT) associated with positional asphyxia. Male rats were divided into five groups: a control group with no restraint, group 1 restrained for 1 h, group 2 restrained for 2 h, group 3 restrained for 4 h, and group 4 restrained for 8 h. The rats that were restrained for 8 h ultimately suffered fatal asphyxia. After the restraint periods, the rats were sacrificed and immunohistochemistry was performed to evaluate the expressions of Ca(v)1.2 and 5-HT in the heart. Sections were analyzed by digital image analysis. Cardiac expression of Ca(v)1.2 and 5-HT proteins were significantly decreased by positional asphyxia in the rat, shown by integrated optical density (IOD) compared to controls. Our findings indicate that Ca(v)1.2 and 5-HT alterations could cause abnormal cardiac function, and the proteins investigated here may be useful for investigating the mechanisms underlying positional asphyxia.

  7. Effects of long-term treatment with eicosapentaenoic acid on the heart subjected to ischemia/reperfusion and hypoxia/reoxygenation in rats.

    PubMed

    Takeo, S; Nasa, Y; Tanonaka, K; Yabe, K; Nojiri, M; Hayashi, M; Sasaki, H; Ida, K; Yanai, K

    1998-11-01

    The effects of eicosapentaenoic acid (EPA) and long-term treatment with EPA-ethylester (EPA-E) were examined in perfused rat hearts subjected to ischemia/reperfusion and adult rat cardiomyocytes subjected to hypoxia/reoxygenation. EPA (0.1 microM) improved postischemic contractile dysfunction of the ischemic/reperfused heart. EPA (10 microM) attenuated hypoxia/reoxygenation-induced morphological deterioration of cardiomyocytes. The results suggest the presence of direct cardioprotective effects of EPA. Rats were orally treated for 4 weeks with 1 g/kg/day of EPA-E to elucidate ex vivo effects of EPA, and the fatty acid composition of cardiac phospholipids was determined. The percent ratio of EPA in total fatty acids of cardiac phospholipids increased whereas that of arachidonic acid decreased. The percent ratio of n-3/n-6 fatty acid did not increase. Treatment with EPA-E did not improve the post-ischemic contractile function, but attenuated the ischemia/reperfusion-induced release of prostaglandins during reperfusion. Treatment with EPA-E preserved a better morphological appearance of the cardiomyocytes subjected to hypoxia/reoxygenation. The results suggest that the mechanisms responsible for cytoprotective effects of hypoxic/reoxygenated cardiomyocytes or inhibition of metabolic alterations of the ischemic/reperfused heart by long-term EPA-E treatment did not contribute substantially to recovery of post-ischemic contractile dysfunction. The direct in vitro effects of EPA may play a role in the protection of the heart from ischemia/reperfusion or hypoxia/reoxygenation injury.

  8. Comparison of epicardial deformation in passive and active isolated rabbit hearts

    NASA Astrophysics Data System (ADS)

    Ho, Andrew; Tang, Liang; Chiang, Fu-Pen; Lin, Shien-Fong

    2007-02-01

    Mechanical deformation of isolated rabbit hearts through passive inflation techniques have been a viable form of replicating heart motion, but its relation to the heart's natural active contractions remain unclear. The mechanical properties of the myocardium may show diverse characteristics while in tension and compression. In this study, epicardial strain was measured with the assistance of computer-aided speckle interferometry (CASI)1. CASI tracks the movement of clusters of particles for measuring epicardial deformation. The heart was cannulated and perfused with Tyrode's solution. Silicon carbide particles were applied onto the myocardium to form random speckle pattern images while the heart was allowed to actively contract and stabilize. High resolution videos (1000x1000 pixels) of the left ventricle were taken with a complementary metal oxide semiconductor (CMOS) camera as the heart was actively contracting through electrical pacing at various cycle lengths between 250-800 ms. A latex balloon was then inserted into the left ventricle via left atrium and videos were taken as the balloon was repeatedly inflated and deflated at controlled volumes (1-3 ml/cycle). The videos were broken down into frames and analyzed through CASI. Active contractions resulted in non-uniform circular epicardial and uniaxial contractions at different stages of the motion. In contrast, the passive heart demonstrated very uniform expansion and contraction originating from the source of the latex balloon. The motion of the active heart caused variations in deformation, but in comparison to the passive heart, had a more enigmatic displacement field. The active heart demonstrated areas of large displacement and others with relatively no displacement. Application of CASI was able to successfully distinguish the motions between the active and passive hearts.

  9. Combinatorial effect of nicotine and black tea on heart rate variability: Useful or harmful?

    PubMed

    Joukar, S; Sheibani, M

    2017-06-01

    The effect of nicotine on heart rate variability (HRV) is controversial. Autonomic nervous system is the main regulator of heart rhythm, and heart rate variability is an appropriate index to assessment of the effects of the autonomic system on heart. In this study, the combination effect of nicotine and black tea consumption on sympatho-vagal balance and heart rate variability was investigated in rats. Male Wistar rats were randomized into four groups as control, tea (2.5 g/100 cc, daily), nicotine (2 mg/kg/d) and tea plus nicotine groups which treated for 28 days, and in the 29th day, their electrocardiograms (lead II) were recorded. The mean of high-frequency power (HF) in tea, nicotine and tea plus nicotine groups was significantly more than control group (P < .05), and low-frequency power/high-frequency power (LF/HF) ratio in the nicotine and tea + nicotine groups was significantly less than control group (P < .05). LF values did not differ significantly among groups. Mean of standard deviation of normal RR intervals (SDNN) and square root of the mean squared differences of successive RR intervals (RMSSD) increased significantly in tea, nicotine and tea + nicotine groups in comparison with control group (P < .05) Overall, 4-week administration of black tea, nicotine or their combination with dosages used in this study can increase the heart rate variability and improve the sympatho-vagal balance in rat. © 2017 John Wiley & Sons Ltd.

  10. Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria.

    PubMed

    Paradies, G; Ruggiero, F M

    1990-04-05

    The effect of aging on the activity of the pyruvate translocator and on the lipid composition in rat-heart mitochondria has been investigated. It has been found that the rate of pyruvate transport in mitochondria from aged rats (28 months old) is markedly reduced (38%) as compared with that obtained with mitochondria from young adults rats (4 months old). Kinetic analysis of the pyruvate transport shows that only the Vmax of this process is decreased, while there is no change in the Km values. The age-related decrement in the activity of the pyruvate carrier is not due to a decrease in the transmembrane delta pH value, neither does it depend on a decrease in the total number of the pyruvate carrier molecules, titrated with radioactive alpha-cyanocinnamate. The lower activity of the pyruvate translocator in mitochondria from aged rats is associated to a parallel decrement of the rate of pyruvate-dependent oxygen uptake. There is, however no appreciable difference in either the respiratory control ratios or in the ADP/O ratios between these two types of mitochondrion. The Arrhenius plot characteristics differ for pyruvate transport activity in mitochondria from aged rats as compared with young rats in that the break point of the biphasic plot is shifted to a higher temperature. The heart mitochondrial lipid composition is significantly altered in aged rats. The total cholesterol increases (43%), the phospholipids decrease (15%) and the cholesterol/phospholipid molar ratio increases (68%). Among phospholipids, cardiolipin shows the greatest alteration (28% decrease in aged rats). The lower activity of the pyruvate carrier in mitochondria from aged rats may be ascribed to changes in the lipid domain surrounding the carrier molecule in the membrane.

  11. The Actions of Lyophilized Apple Peel on the Electrical Activity and Organization of the Ventricular Syncytium of the Hearts of Diabetic Rats

    PubMed Central

    Martínez-Ladrón de Guevara, Elideth; Pérez-Hernández, Nury; Villalobos-López, Miguel Ángel; Pérez-Ishiwara, David Guillermo; Salas-Benito, Juan Santiago; Martínez Martínez, Alejandro; Hernández-García, Vicente

    2016-01-01

    This study was designed to examine the effects of lyophilized red delicious apple peel (RDP) on the action potentials (APs) and the input resistance-threshold current relationship. The experiments were performed on isolated papillary heart muscles from healthy male rats, healthy male rats treated with RDP, diabetic male rats, and diabetic male rats treated with RDP. The preparation was superfused with oxygenated Tyrode's solution at 37°C. The stimulation and the recording of the APs, the input resistance, and the threshold current were made using conventional electrophysiological methods. The RDP presented no significant effect in normal rats. Equivalent doses in diabetic rats reduced the APD and ARP. The relationship between input resistance and threshold current established an inverse correlation. The results indicate the following: (1) The functional structure of the cardiac ventricular syncytium in healthy rats is heterogeneous, in terms of input resistance and threshold current. Diabetes further accentuates the heterogeneity. (2) As a consequence, conduction block occurs and increases the possibility of reentrant arrhythmias. (3) These modifications in the ventricular syncytium, coupled with the increase in the ARP, are the adequate substrate so that, with diabetes, the heart becomes more arrhythmogenic. (4) RDP decreases the APD, the ARP, and most syncytium irregularity caused by diabetes. PMID:26839897

  12. Heart rate, body temperature and physical activity are variously affected during insulin treatment in alloxan-induced type 1 diabetic rat.

    PubMed

    Howarth, F C; Jacobson, M; Shafiullah, M; Ljubisavljevic, M; Adeghate, E

    2011-01-01

    Diabetes mellitus is associated with a variety of cardiovascular complications including impaired cardiac muscle function. The effects of insulin treatment on heart rate, body temperature and physical activity in the alloxan (ALX)-induced diabetic rat were investigated using in vivo biotelemetry techniques. The electrocardiogram, physical activity and body temperature were recorded in vivo with a biotelemetry system for 10 days before ALX treatment, for 20 days following administration of ALX (120 mg/kg) and thereafter, for 15 days whilst rats received daily insulin. Heart rate declined rapidly after administration of ALX. Pre-ALX heart rate was 321+/-9 beats per minute, falling to 285+/-12 beats per minute 15-20 days after ALX and recovering to 331+/-10 beats per minute 5-10 days after commencement of insulin. Heart rate variability declined and PQ, QRS and QT intervals were prolonged after administration of ALX. Physical activity and body temperature declined after administration of ALX. Pre-ALX body temperature was 37.6+/-0.1 °C, falling to 37.3+/-0.1 °C 15-20 days after ALX and recovering to 37.8+/-0.1 °C 5-10 days after commencement insulin. ALX-induced diabetes is associated with disturbances in heart rhythm, physical activity and body temperature that are variously affected during insulin treatment.

  13. NF-κB involvement in hyperoxia-induced myocardial damage in newborn rat hearts.

    PubMed

    Zara, Susi; De Colli, Marianna; Rapino, Monica; Di Valerio, Valentina; Marconi, Guya Diletta; Cataldi, Amelia; Macchi, Veronica; De Caro, Raffaele; Porzionato, Andrea

    2013-11-01

    Premature newborns are frequently exposed to hyperoxia ventilation and some literature data indicate the possibility of hyperoxia-induced myocardial damage. Since nuclear factor κB (NF-κB) is a crucial signaling molecule involved in physiological response to hyperoxia in different cell types as well as in various tissues, our attention has been focused on the role played by NF-κB pathway in response to moderate and severe hyperoxia exposure in rat neonatal heart tissue. Akt and IκBα levels, involved in NF-κB activation, along with the balance between apoptotic and survival pathways have also been investigated. Experimental design of the study has involved exposure of newborn rats to room air (controls), 60 % O2 (moderate hyperoxia), or 95 % O2 (severe hyperoxia) for the first two postnatal weeks. Morphological analysis shows a less compact tissue in rat heart exposed to moderate hyperoxia and a decreased number of nuclei in samples exposed to severe hyperoxia. A significant increase of NF-κB positive nuclei percentage and p-IκBα expression in samples exposed to 95 % hyperoxia compared to control and to 60 % hyperoxia is evidenced; in parallel, an increase of pAkt/Akt ratio in both samples exposed to 95 and 60 % hyperoxia is shown. Furthermore, a more evident cytochrome c/Apaf-1 immunocomplex and a decreased Bcl2 expression in 95 % hyperoxia-exposed sample compared to 60 % exposed one is evidenced. In conclusion, our findings suggest the involvement of the NF-κB pathway and Akt signaling in the mechanisms of myocardial hyperoxic damage in the newborns, with particular reference to the induction of oxidative stress-related apoptosis.

  14. Intermittent noise stress causes baroreflex desensitization and decreased heart rate variability in Wistar Kyoto rats exposed to ozone

    EPA Science Inventory

    This study shows that intermittent noise stress worsens the cardiopulmonary response of rats to ozone. It increases electrical disturbances and causes dysfunction the homeostatic regulation of the heart and vasculature. Although the acute cardiovascular health impacts o...

  15. Melatonin Supplementation Ameliorates Energy Charge and Oxidative Stress Induced by Acute Exercise in Rat Heart Tissue

    PubMed Central

    Cimen, Behzat; Uz, Ali; Cetin, Ihsan; Cimen, Leyla; Cetin, Aysun

    2017-01-01

    Background Regular physical exercises may help people to be more resistant to everyday problems; however, how acute and intense exercises affect the heart tissues functioning with maximum capacity and how melatonin changes the effect of acute and intense exercises are still not obvious. We aimed to comprehend whether melatonin intravenous injection supports the oxidative/antioxidative conditions and energy charge in heart tissues of rats exposed to acute swimming exercise. Methods Thirty Wistar-albino male rats were categorized into 3 groups with equal number of subjects. Control group performed no application, and acute intensive swimming exercise group were subjected to acute intensive swimming exercise for 30 minutes, and melatonin group were applied 25 mg/kg single dose melatonin administration prior to 30 minutes acute intensive swimming exercise. The levels of malondialdehyde (MDA), and superoxide dismutase, catalase and glutathione peroxidase activities were measured by spectrophotometric method; and the levels of 3-nitrotyrosine (3-NT) and energy charge were determined by a high performance liquid chromatography. Results Tissue MDA and 3-NT levels of the acute intensive exercise group were found to be higher than the control group. It was also found that the melatonin administration increased the energy charge and antioxidant activities, while decreased tissue MDA and 3-NT levels in heart tissues. Our results provide evidence for melatonin that can exert potent protective effects on oxidative stress and energy charge for heart tissues in acute swimming exercise. Conclusions These findings suggest that the direct beneficial effects of melatonin could be potentially applied on prevention of oxidative stress and energy deficit. PMID:28959107

  16. [Sodium hydrosulfide improves cardiac functions and structures in rats with chronic heart failure].

    PubMed

    Li, Xiao-hui; Zhang, Chao-ying; Zhang, Ting

    2011-11-22

    To explore the effects of sodium hydrosulfide (NaHS), a hydrogen sulphide (H(2)S) donor, on cardiac functions and structures in rats with chronic heart failure induced by volume overload and examine its influence on cardiac remodelling. A total of 47 SD rats (120 - 140 g) were randomly divided into 5 groups:shunt group (n = 11), sham group (n = 8), shunt + NaHS group (n = 10), sham + NaHS group (n = 8) and shunt + phentolamine group (n = 10). The rat model of chronic heart failure was induced by abdominal aorta-inferior vena cava puncture. At Week 8 post-operation, hemodynamic parameters, microstructures and ultrastructures of myocardial tissues were analyzed. Extracellular collagen content in myocardial tissues was analyzed after Sirius red staining. Right ventricular hydroxyproline concentration was determined and compared. At Week 8 post-operation, compared with the sham operation and shunt + NaHS groups, the shunt group showed significantly increased right ventricular systolic pressure (RVSP) and right ventricular end diastolic pressure (RVEDP) (mm Hg: 35.2 ± 3.9 vs 21.4 ± 3.7 and 28.1 ± 2.7, 32 ± 5 vs 21 ± 4 and 26 ± 4, all P < 0.05, 1 mm Hg = 0.133 kPa). The RV peak rate of contraction and relaxation markedly decreased (RV ± dp/dt max) (mm Hg/s: 1528 ± 113 vs 2336 ± 185 and 1835 ± 132, 1331 ± 107 vs 2213 ± 212 and 1768 ± 116, all P < 0.05). It was found microscopically that myocardial fibers in the shunt group were irregularly arranged, partially cytolysis and infiltrated by inflammatory cells. Electron microscopy revealed that myocardial fibers thickened non-uniformly in the shunt group, some fiber mitochondria were highly swollen and contained vacuoles. And sarcoplasmic reticulum appeared slightly dilated. Polarized microscopy indicated that, collagen content (particularly type-I collagen) increased in the shunt group compared with the sham operation group. Additionally, compared with the shunt group, the shunt and NaHS treatment groups showed

  17. Effect of Stimulation of Neurotransmitter Systems on Heart Rate Variability and β-Adrenergic Responsiveness of Erythrocytes in Outbred Rats.

    PubMed

    Kur'yanova, E V; Tryasuchev, A V; Stupin, V O; Teplyi, D L

    2017-05-01

    We studied heart rate variability and β-adrenergic responsiveness of erythrocytes and changes in these parameters in response to single administration of β-adrenoblocker propranolol (2 mg/kg) in outbred male rats against the background of activation of the noradrenergic, serotonergic, and dopaminergic neurotransmitter systems achieved by 4-fold injections maprotiline (10 mg/kg), 5-hydroxytryptophan (50 mg/kg) combined with fluoxetine (3 mg/kg), and L-DOPA (20 mg/kg) with amantadine (20 mg/kg), respectively. Stimulation of the noradrenergic system moderately enhanced the heart rhythm rigidity and β-adrenergic responsiveness of erythrocytes. In addition, it markedly augmented the moderating effect of subsequently administered propranolol on LF and VLF components in the heart rate variability and reversed the effect of propranolol on β-adrenergic responsiveness of erythrocytes. Stimulation of the serotonergic system dramatically decreased all components in the heart rate variability and pronouncedly enhanced β-adrenergic responsiveness of erythrocytes. Subsequent injection of propranolol slightly restored all components in the heart rate variability and decreased β-adrenergic responsiveness of erythrocytes to the control level. Stimulation of the dopaminergic system made the heart rate more rigid due to decrease of all components in the heart rate variability; in addition, it slightly but significantly enhanced β-adrenergic responsiveness of erythrocytes. Subsequent injection of propranolol produced no significant effects on all components in the heart rate variability and on β-adrenergic responsiveness of erythrocytes. Stimulation of noradrenergic, serotonergic, and dopaminergic neurotransmitter systems produced unidirectional and consorted effects on heart rate variability and β-adrenergic responsiveness of erythrocytes, although the magnitudes of these effects were different. Probably, the changes in the heart rate variability in rats with stimulated

  18. Hesperidin Produces Cardioprotective Activity via PPAR-γ Pathway in Ischemic Heart Disease Model in Diabetic Rats

    PubMed Central

    Agrawal, Yogeeta O.; Sharma, Pankaj Kumar; Shrivastava, Birendra; Ojha, Shreesh; Upadhya, Harshita M.; Arya, Dharamvir Singh; Goyal, Sameer N.

    2014-01-01

    The present study investigated the effect of hesperidin, a natural flavonoid, in cardiac ischemia and reperfusion (I/R) injury in diabetic rats. Male Wistar rats with diabetes were divided into five groups and were orally administered saline once daily (IR-sham and IR-control), Hesperidin (100 mg/kg/day; IR-Hesperidin), GW9962 (PPAR-γ receptor antagonist), or combination of both for 14 days. On the 15th day, in the IR-control and IR-treatment groups, rats were subjected to left anterior descending (LAD) coronary artery occlusion for 45 minutes followed by a one-hour reperfusion. Haemodynamic parameters were recorded and rats were sacrificed; hearts were isolated for biochemical, histopathological, ultrastructural and immunohistochemistry. In the IR-control group, significant ventricular dysfunctions were observed along with enhanced expression of pro-apoptotic protein Bax. A decline in cardiac injury markers lactate dehydrogenase activity, CK-MB and increased content of thiobarbituric acid reactive substances, a marker of lipid peroxidation, and TNF-α were observed. Hesperidin pretreatment significantly improved mean arterial pressure, reduced left ventricular end-diastolic pressure, and improved both inotropic and lusitropic function of the heart (+LVdP/dt and –LVdP/dt) as compared to IR-control. Furthermore, hesperidin treatment significantly decreased the level of thiobarbituric acid reactive substances and reversed the activity of lactate dehydrogenase towards normal value. Hesperidin showed anti-apoptotic effects by upregulating Bcl-2 protein and decreasing Bax protein expression. Additionally, histopathological and ultrastructural studies reconfirmed the protective action of hesperidin. On the other hand, GW9662, selective PPAR-γ receptor antagonist, produced opposite effects and attenuated the hesperidin induced improvements. The study for the first time evidence the involvement of PPAR-γ pathway in the cardioprotective activity of hesperidin in I

  19. Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors.

    PubMed

    Pustovit, Ksenia B; Kuzmin, Vladislav S; Abramochkin, Denis V

    2016-03-01

    Diadenosine polyphosphates (Ap(n)As) are endogenously produced molecules which have been identified in various tissues of mammalian organism, including myocardium. Ap(n)As contribute to the blood clotting and are also widely accepted as regulators of blood vascular tone. Physiological role of Ap(n)As in cardiac muscle has not been completely elucidated. The present study aimed to investigate the effects of diadenosine tetra- (Ap4A) and penta- (Ap5A) polyphosphates on contractile function and action potential (AP) waveform in rat supraventricular and ventricular myocardium. We have also demonstrated the effects of A4pA and Ap5A in myocardial sleeves of pulmonary veins (PVs), which play a crucial role in genesis of atrial fibrillation. APs were recorded with glass microelectrodes in multicellular myocardial preparations. Contractile activity was measured in isolated Langendorff-perfused rat hearts. Both Ap4A and Ap5A significantly reduced contractility of isolated Langendorff-perfused heart and produced significant reduction of AP duration in left and right auricle, interatrial septum, and especially in right ventricular wall myocardium. Ap(n)As also shortened APs in rat pulmonary veins and therefore may be considered as potential proarrhythmic factors. Cardiotropic effects of Ap4A and Ap5A were strongly antagonized by selective blockers of P2 purine receptors suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), while P1 blocker DPCPX was not effective. We conclude that Ap(n)As may be considered as new class of endogenous cardioinhibitory compounds. P2 purine receptors play the central role in mediation of Ap4A and Ap5A inhibitory effects on electrical and contractile activity in different regions of the rat heart.

  20. Recombinant proteins secreted from tissue-engineered bioartificial muscle improve cardiac dysfunction and suppress cardiomyocyte apoptosis in rats with heart failure.

    PubMed

    Rong, Shu-Ling; Wang, Yong-Jin; Wang, Xiao-Lin; Lu, Yong-Xin; Wu, Yin; Liu, Qi-Yun; Mi, Shao-Hua; Xu, Yu-Lan

    2010-12-01

    Tissue-engineered bioartificial muscle-based gene therapy represents a promising approach for the treatment of heart diseases. Experimental and clinical studies suggest that systemic administration of insulin-like growth factor-1 (IGF-1) protein or overexpression of IGF-1 in the heart exerts a favorable effect on cardiovascular function. This study aimed to investigate a chronic stage after myocardial infarction (MI) and the potential therapeutic effects of delivering a human IGF-1 gene by tissue-engineered bioartificial muscles (BAMs) following coronary artery ligation in Sprague-Dawley rats. Ligation of the left coronary artery or sham operation was performed. Primary skeletal myoblasts were retrovirally transduced to synthesize and secrete recombinant human insulin-like growth factor-1 (rhIGF-1), and green fluorescent protein (GFP), and tissue-engineered into implantable BAMs. The rats that underwent ligation were randomly assigned to 2 groups: MI-IGF group (n = 6) and MI-GFP group (n = 6). The MI-IGF group received rhIGF-secreting BAM (IGF-BAMs) transplantation, and the MI-GFP group received GFP-secreting BAM (GFP-BAMs) transplantation. Another group of rats served as the sham operation group, which was also randomly assigned to 2 subgroups: S-IGF group (n = 6) and S-GFP group (n = 6). The S-IGF group underwent IGF-1-BAM transplantation, and S-GFP group underwent GFP-BAM transplantation. IGF-1-BAMs and GFP-BAMs were implanted subcutaneously into syngeneic rats after two weeks of operation was performed. Four weeks after the treatment, hemodynamics was performed. IGF-1 was measured by radioimmunoassay, and then the rats were sacrificed and ventricular samples were subjected to immunohistochemistry. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine the mRNA expression of bax and Bcl-2. TNF-α and caspase 3 expression in myocardium was examined by Western blotting. Primary rat myoblasts were retrovirally transduced to secrete rhIGF-1 and

  1. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se; Sköld, Anna-Carin; Ericson, Ann-Christin

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effectmore » on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.« less

  2. The cardioprotective effect of thymoquinone on ischemia-reperfusion injury in isolated rat heart via regulation of apoptosis and autophagy.

    PubMed

    Xiao, Junhui; Ke, Zun-Ping; Shi, Yan; Zeng, Qiutang; Cao, Zhe

    2018-06-22

    Thymoquinone (TQ), as the active constituents of black cumin (Nigella sativa) seed oil, has been reported to have potential protective effects on the cardiovascular system. This study aimed to investigate the effects and the underlying mechanisms of TQ on myocardial ischemia-reperfusion (I/R) injury in Langendorff-perfused rat hearts. Wister rat hearts were subjected to I/R and the experimental group were pretreated with TQ prior to I/R. Hemodynamic parameters, myocardial infarct size, cardiac marker enzymes, superoxide dismutase (SOD), malondialdehyde (MDA) content, and cardiomyocyte apoptosis were assayed. Compared with the untreated group, TQ preconditioning significantly improved cardiac function, reduced infarct size, decreased cardiac lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) levels, suppressed enedoxidative stress, and apoptosis. In addition, TQ treatment promoted autophagy, which was partially reversed by chloroquine (CQ), a kind of autophagy blocker. Our study suggests that TQ can protect heart against I/R injury, which is associated with anti-oxidative and anti-apoptotic effects through activation of autophagy. © 2018 Wiley Periodicals, Inc.

  3. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Xinchun

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, andmore » improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.« less

  4. The investigation of the possible protective influence of selenium on antioxidant barrier in heart of rats exposed to lithium.

    PubMed

    Musik, Irena; Kocot, Joanna; Lewandowska, Anna; Żelazowska, Renata; Kiełczykowska, Małgorzata

    2015-07-01

    Selenium is an essential element possessing antioxidant properties and the treatment with it has displayed protective effects against toxicity of different substances occurring in the environment and food as well as against the side effects of some drugs. Lithium is used in medicine although numerous side effects can occur during therapy, including disturbances of the heart. For these reasons studies to find protective adjuvants have been performed. In the current study the possibility of selenium (as sodium selenite) application as a protective adjuvant in lithium treatment was studied. Male Wistar rats were treated: control - with saline; Li-group - with Li2CO3 (2.7 mg Li/kg b.w.); Se-group - with Na2SeO3 (0.5 mg Se/kg b.w.); Li+Se-group simultaneously with Li2CO3 and Na2SeO3 (2.7 mg Li/kg b.w. and 0.5 mg Se/kg b.w., respectively) by a stomach tube for a period of three weeks, once a day. In heart homogenate activities of antioxidant enzymes - catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx), concentrations of low-molecular-weight antioxidants - ascorbic acid (AA) and reduced glutathione (GSH) as well as total antioxidant status (TAS) values were determined. GPx/SOD and CAT/SOD ratios were evaluated. In comparison with control selenium caused no significant changes of the studied parameters except for GPx, whereas lithium slightly disturbed TAS and markedly GPx, CAT and CAT/SOD ratio. In Li-treated rats co-administration of selenium displayed tendency towards restoring the impaired parameters. The results suggest that research on selenium application as an adjuvant in lithium therapy is worthy to be continued. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. [The effect of uridine and uridine nucleotides on isolated rat heart performance in regional myocardial ischemia].

    PubMed

    Eliseev, V V; Rodionova, O M; Sapronov, N S; Selizarova, N O

    2002-01-01

    We studied the effects of uridine, uridine-5'-monophosphate (UMP), uridine-5'-diphosphate (UDP) and uridine-5'-triphosphate on contractility, coronary flow and heart rate in isolated perfused rat hearts under 60-minute regional ischemia of the left ventricle. All the compounds (50 mumol/l) induced a positive inotropic effect but had no effect on the heart rate. Uridine and UMP prevented the development of the contracture. UDP and especially UTP increased coronary flow. Probably, a protective effect of uridine and UMP is due to activation of myocardial glycogen synthesis while favourable effects of UDP and UTP on contractility and coronary flow are explained by their influence on P2U-receptors of cardiomyocytes. In addition, coronary dilatation induced by UDP and UTP promoted the reduction of the damaged zone.

  6. Fish Oil Supplementation Reduces Heart Levels of Interleukin-6 in Rats with Chronic Inflammation due to Epilepsy

    PubMed Central

    Nejm, Mariana Bocca; Haidar, André Abou; Hirata, Aparecida Emiko; Oyama, Lila Missae; de Almeida, Antonio-Carlos Guimarães; Cysneiros, Roberta Monterazzo; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Scorza, Fulvio Alexandre

    2017-01-01

    Sudden unexpected death in epilepsy (SUDEP) is a major cause of premature death related to epilepsy. The causes of SUDEP remain unknown, but cardiac arrhythmias and asphyxia have been suggested as a major mechanism of this event. Inflammation has been implicated in the pathogenesis of both epilepsy and ventricular arrhythmia, with interleukin-6 (IL-6) being recognized as a crucial orchestrator of inflammatory states. Our group previously reported that levels of IL-6 were increased in the hearts of epileptic rats. In this scenario, anti-inflammatory actions are among the beneficial effects of fish oil dietary supplementation. This investigation revealed that elevated levels of IL-6 in the heart were markedly reduced in epileptic rats that were treated in the long-term with fish oil, suggesting protective anti-inflammatory actions against dangerously high levels of IL-6. Based on these findings, our results suggest beneficial effects of long-term intake of fish oil in reducing the inflammation associated with chronic epilepsy. PMID:28649227

  7. Aerobic exercise training rescues cardiac protein quality control and blunts endoplasmic reticulum stress in heart failure rats.

    PubMed

    Bozi, Luiz H M; Jannig, Paulo R; Rolim, Natale; Voltarelli, Vanessa A; Dourado, Paulo M M; Wisløff, Ulrik; Brum, Patricia C

    2016-11-01

    Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Inhibition of warm ischemic injury to rat liver, pancreas, and heart grafts by controlling the nutritional status of both donor and recipient.

    PubMed

    Nishihara, V; Sumimoto, R; Fukuda, Y; Southard, J H; Asahara, T; Dohi, K

    1997-01-01

    In this study, we tested the effect of donor fasting with or without the use of an essential fatty acids deficiency (EFAD) diet in the recipient using rat heart, pancreas, and liver transplant models. We then compared the survivals, tumor necrosis factor alpha (TNF-alpha) response, and white cell accumulation in rats in order to clarify the mechanisms of the beneficial effect of donor fasting and recipient EFAD. It was found that when the grafts were obtained from fasted donors and then transplanted into fed recipients, the survival rate was significantly higher for all three grafts than for those obtained from fed rats and transplanted into fed rats. The best survival was seen for pancreas grafts obtained from fasted donors and then transplanted into EFAD recipients. TNF-alpha secretion was significantly suppressed in both fasted and EFAD rats, and both the total cell count and neutrophil count were suppressed in EFAD rats. These results clearly indicate that in addition to liver grafts, both heart and pancreas grafts obtained from fasted animals are more tolerant to warm ischemic injury. Furthermore, the combination of donor fasting and recipient EFAD acts synergistically to inhibit the post-transplantation inflammatory reaction (through decreased TNF-alpha secretion and white cell accumulation), thus resulting in an improved survival.

  9. Secondhand Smoke Exposure Reduced the Compensatory Effects of IGF-I Growth Signaling in the Aging Rat Hearts

    PubMed Central

    Wu, Jia-Ping; Hsieh, Dennis Jine-Yuan; Kuo, Wei-Wen; Han, Chien-Kuo; Pai, Peiying; Yeh, Yu-Lan; Lin, Chien-Chung; Padma, V. Vijaya; Day, Cecilia Hsuan; Huang, Chih-Yang

    2015-01-01

    Background: Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease. Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage. This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance. Methods: Rats were placed into a SHS exposure chamber and exposed to smog. Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week. After 4 weeks the rats underwent morphological and functional studies. Left ventricular sections were stained with hematoxylin-eosin for histopathological examination. TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot. Results: Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats. These biological markers were enhanced in aging SHS-exposed rats. The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats. Further decrease in the activity of this pathway was observed in aging SHS-exposed rats. TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure. Conclusions: Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke. PMID:26392808

  10. In utero exposure to venlafaxine, a serotonin-norepinephrine reuptake inhibitor, increases cardiac anomalies and alters placental and heart serotonin signaling in the rat.

    PubMed

    Laurent, Laetitia; Huang, Chunwei; Ernest, Sheila R; Berard, Anick; Vaillancourt, Cathy; Hales, Barbara F

    2016-12-01

    Human studies are inconsistent with respect to an association between treatment with selective serotonin and serotonin-norepinephrine reuptake inhibitors (SSRI/SNRIs) and an increase in the incidence of congenital heart defects. Here we tested the hypothesis that in utero exposure to venlafaxine, a highly prescribed SNRI, increases the incidence of fetal heart defects and alters placental and fetal heart serotonin signaling in the rat. Timed-pregnant Sprague Dawley rats were gavaged daily with venlafaxine hydrochloride (0, 3, 10, 30, or 100 mg/kg/day) from gestation day 8 to 20. On gestation day 21, fetuses were examined for external and internal malformations; placentas and fetal hearts were collected for the analysis of gene expression. Venlafaxine had no effect on the number of live fetuses, fetal body weights, or external morphology in the absence of maternal toxicity. However, venlafaxine significantly increased the placental index (fetal body/placental weight ratio) and the incidence of fetal cardiac anomalies. Venlafaxine exposure decreased placental expression of the serotonin transporter (SERT/Slc6a4) at the transcript and protein levels. In contrast, venlafaxine increased SERT expression in the hearts of female, but not male, fetuses. Expression of the serotonin 2B receptor (5-HT 2B /Htr2b) and of fibroblast growth factor 8 was induced in fetal hearts. In utero venlafaxine exposure altered the placental index and induced fetal cardiac anomalies in rats. We propose that the increased incidence of cardiac anomalies is mediated through alterations in serotonin signaling in the placenta and fetal heart. Birth Defects Research (Part A), 2016. © 2016 Wiley Periodicals, Inc. Birth Defects Research (Part A) 106:1044-1055, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Partially silencing brain toll-like receptor 4 prevents in part left ventricular remodeling with sympathoinhibition in rats with myocardial infarction-induced heart failure.

    PubMed

    Ogawa, Kiyohiro; Hirooka, Yoshitaka; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2013-01-01

    Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure.

  12. Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Sárközy, Márta; Szűcs, Gergő; Fekete, Veronika; Pipicz, Márton; Éder, Katalin; Gáspár, Renáta; Sója, Andrea; Pipis, Judit; Ferdinandy, Péter; Csonka, Csaba; Csont, Tamás

    2016-08-05

    There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein-protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein-protein interaction analysis

  13. Dynamic characteristics of heart rate control by the autonomic nervous system in rats.

    PubMed

    Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru

    2010-09-01

    We estimated the transfer function of autonomic heart rate (HR) control by using random binary sympathetic or vagal nerve stimulation in anaesthetized rats. The transfer function from sympathetic stimulation to HR response approximated a second-order, low-pass filter with a lag time (gain, 4.29 +/- 1.55 beats min(1) Hz(1); natural frequency, 0.07 +/- 0.03 Hz; damping coefficient, 1.96 +/- 0.64; and lag time, 0.73 +/- 0.12 s). The transfer function from vagal stimulation to HR response approximated a first-order, low-pass filter with a lag time (gain, 8.84 +/- 4.51 beats min(1) Hz(1); corner frequency, 0.12 +/- 0.06 Hz; and lag time, 0.12 +/- 0.08 s). These results suggest that the dynamic characteristics of HR control by the autonomic nervous system in rats are similar to those of larger mammals.

  14. The effect of Mastin® on expression of Nrf2 in the rat heart with subtotally nephrectomy chronic Kidney disease model

    NASA Astrophysics Data System (ADS)

    Nathania, J.; Soetikno, V.

    2017-08-01

    Chronic kidney disease (CKD) is increasingly prevalent in Indonesia and worldwide. One of the major causes of morbidity and mortality in CKD is the complication of cardiovascular disease. Mastin® is a supplement that is locally produced in Indonesia and is made from extract of mangosteen pericarp, which is reported to have antioxidative, anti-inflammatory, and antitumor properties. The present study aimed to investigate whether Mastin® could improve antioxidant responses in the rat heart during CKD by measuring the expression of nuclear factor erythroid-2-related factor (Nrf)2, a master regulator of antioxidant response elements. RNA was extracted from the heart tissue of three groups of rats: a normal group, a nephrectomy group, and a nephrectomy with Mastin® group. Two-step real-time RT-PCR was then conducted to calculate the relative expression of the Nrf2 gene. Nrf2 expression was markedly decreased in the nephrectomy group vs the normal group, but slightly increas ed in the nephrectomy with Mastin® group vs the nephrectomy group. CKD resulted in impaired activation of the Nrf2 pathway in the rat heart. Although the administration of Mastin® slightly increased Nrf2 expression, it was not enough to confer cardioprotective effects through the Nrf2 pathway.

  15. Short-Term Thyroid Hormone Excess Affects the Heart but Does not Affect Adrenal Activity in Rats

    PubMed Central

    Szkudlarek, Ariani Cavazzani; Aldenucci, Bruno; Miyagui, Nelson Itiro; Silva, Ilana Kassouf; Moraes, Rosana Nogueira; Ramos, Helton Estrela; Fogaça, Rosalva Tadeu Hochmuller

    2014-01-01

    Background Hyperthyroidism (Hy) exerts a broad range of influences on a variety of physiological parameters. Its disruptive effect on cardiovascular system is one of its most remarkable impacts. Moreover, Hy has been clinically associated with stress - induced hyperactivation of the hypothalamic-pituitary-adrenal axis. Objective Evaluate the impact of short-term Hy on cardiac performance and adrenal activity of rats. Methods Induction of Hy in Wistar rats through injections of T3 (150 µg/kg) for 10 days (hyperthyroid group - HG) or vehicle (control group). The cardiovascular performance was evaluated by: echocardiography (ECHO); heart weight/body weight (mg/gr) ratio; contractility of isolated papillary muscles (IPM) and direct measurement of blood pressures. Adrenal activity was evaluated by adrenal weight/body weight (mg/gr) ratio and 24-hour fecal corticosterone (FC) levels on the, 5th and 10th days of T3 treatment. Results In HG, the ECHO showed reduction of the End Systolic and End Diastolic Volumes, Ejection, Total Diastolic and Isovolumic Relaxation Times, Diastolic and Systolic Areas and E/A ratio. Heart Rate, Ejection Fraction and Cardiac Output increased. The heart weight/body weight ratio was higher. Similarly, in IPM, the maximum rate of force decay during relaxation was higher in all extracellular calcium concentrations. Systolic blood pressure (SBP) levels were higher. (p ≤ 0.05). On the other hand, there was no difference in the adrenal weight/body weight ratio or in the 24-hour FC levels. Conclusions Hy induces positive inotropic, chronotropic and lusitropic effects on the heart by direct effects of T3 and increases SBP. Those alterations are not correlated with changes in the adrenal activity. PMID:24676225

  16. TNF-α receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats.

    PubMed

    Yu, Yang; Wei, Shun-Guang; Weiss, Robert M; Felder, Robert B

    2017-10-01

    In systolic heart failure (HF), circulating proinflammatory cytokines upregulate inflammation and renin-angiotensin system (RAS) activity in cardiovascular regions of the brain, contributing to sympathetic excitation and cardiac dysfunction. Important among these is the subfornical organ (SFO), a forebrain circumventricular organ that lacks an effective blood-brain barrier and senses circulating humors. We hypothesized that the tumor necrosis factor-α (TNF-α) receptor 1 (TNFR1) in the SFO contributes to sympathetic excitation and cardiac dysfunction in HF rats. Rats received SFO microinjections of a TNFR1 shRNA or a scrambled shRNA lentiviral vector carrying green fluorescent protein, or vehicle. One week later, some rats were euthanized to confirm the accuracy of the SFO microinjections and the transfection potential of the lentiviral vector. Other rats underwent coronary artery ligation (CL) to induce HF or a sham operation. Four weeks after CL, vehicle- and scrambled shRNA-treated HF rats had significant increases in TNFR1 mRNA and protein, NF-κB activity, and mRNA for inflammatory mediators, RAS components and c-Fos protein in the SFO and downstream in the hypothalamic paraventricular nucleus, along with increased plasma norepinephrine levels and impaired cardiac function, compared with vehicle-treated sham-operated rats. In HF rats treated with TNFR1 shRNA, TNFR1 was reduced in the SFO but not paraventricular nucleus, and the central and peripheral manifestations of HF were ameliorated. In sham-operated rats treated with TNFR1 shRNA, TNFR1 expression was also reduced in the SFO but there were no other effects. These results suggest a key role for TNFR1 in the SFO in the pathophysiology of systolic HF. NEW & NOTEWORTHY Activation of TNF-α receptor 1 in the subfornical organ (SFO) contributes to sympathetic excitation in heart failure rats by increasing inflammation and renin-angiotensin system activity in the SFO and downstream in the hypothalamic

  17. Protein synthesis by perfused hearts from normal and insulin-deficient rats. Effect of insulin in the presence of glucose and after depletion of glucose, glucose 6-phosphate and glycogen

    PubMed Central

    Chain, Ernst B.; Sender, Peter M.

    1973-01-01

    In the absence of glucose, insulin stimulated the incorporation of 14C-labelled amino acids into protein by perfused rat hearts that had been previously substantially depleted of endogenous glucose, glucose 6-phosphate and glycogen by substrate-free perfusion. This stimulation was also demonstrated in hearts perfused with buffer containing 2-deoxy-d-glucose, an inhibitor of glucose utilization. It is concluded that insulin exerts an effect on protein synthesis independent of its action on glucose metabolism. Streptozotocin-induced diabetes was found to have no effect either on 14C-labelled amino acid incorporation by the perfused heart or on the polyribosome profile and amino acid-incorporating activity of polyribosomes prepared from the non-perfused hearts of these insulin-deficient rats, which show marked abnormalities in glucose metabolism. Protein synthesis was not diminished in the perfused hearts from rats treated with anti-insulin antiserum. The significance of these findings is discussed in relation to the reported effects of insulin deficiency on protein synthesis in skeletal muscle. PMID:4269308

  18. Protective effect of crataegus extract on the cardiac mechanical dysfunction in isolated perfused working rat heart.

    PubMed

    Nasa, Y; Hashizume, H; Hoque, A N; Abiko, Y

    1993-09-01

    The effect of the water-soluble fraction of Crataegus (Crataegus extract) on the cardiac mechanical and metabolic function was studied in the isolated, perfused working rat heart during ischemia and reperfusion. Ischemia (15 min) was produced by removing afterload pressure, and reperfusion (20 min) was produced by returning it to the original pressure. In the control (no drug) heart, ischemia decreased mechanical function to the lowest level, which did not recover even after the end of reperfusion. Crataegus extract (0.01 or 0.05%) was applied to the heart from 5 min before ischemia through the first 10 min after reperfusion. With the high concentration of Crataegus extract (0.05%) the mechanical function recovered during reperfusion incompletely without increasing coronary flow, but the low concentration of Crataegus extract (0.01%) did not. In the heart treated with the high concentration of Crataegus extract, the reperfusion-induced recovery of the energy metabolism was accelerated, and the level of lactate during ischemia was lower than that in the control heart, although the myocardial levels of free fatty acids during ischemia and reperfusion were not greatly affected. These results demonstrate that Crataegus extract (0.05%) has a cardioprotective effect on the ischemic-reperfused heart, and that the cardioprotective effect is not accompanied by an increase in coronary flow.

  19. Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart.

    PubMed

    Mourouzis, I; Dimopoulos, A; Saranteas, T; Tsinarakis, N; Livadarou, E; Spanou, D; Kokkinos, A D; Xinaris, C; Pantos, C; Cokkinos, D V

    2009-01-01

    There is accumulating evidence showing that ischemic preconditioning (PC) may lose its cardioprotective effect in the diseased states. The present study investigated whether PC can be effective in hypothyroidism, a clinical condition which is common and often accompanies cardiac diseases such as heart failure and myocardial infarction. Hypothyroidism was induced in rats by 3-week administration of 6n-propyl-2-thiouracil in water (0.05 %). Normal and hypothyroid hearts (HYPO) were perfused in Langendorff mode and subjected to 20 min of zero-flow global ischemia and 45 min of reperfusion. A preconditioning protocol (PC) was also applied prior to ischemia. HYPO hearts had significantly improved post-ischemic recovery of left ventricular developed pressure, end-diastolic pressure and reduced lactate dehydrogenase release. Furthermore, phospho-JNK and p38 MAPK levels after ischemia and reperfusion were 4.0 and 3.0 fold lower in HYPO as compared to normal hearts (P<0.05). A different response to PC was observed in normal than in HYPO hearts. PC improved the post-ischemic recovery of function and reduced the extent of injury in normal hearts but had no additional effect on the hypothyroid hearts. This response, in the preconditioned normal hearts, resulted in 2.5 and 1.8 fold smaller expression of the phospho-JNK and phospho-p38 MAPK levels at the end of reperfusion, as compared to non-PC hearts (P<0.05), while in HYPO hearts, no additional reduction in the phosphorylation of these kinases was observed after PC. Hypothyroid hearts appear to be tolerant to ischemia-reperfusion injury. This response may be, at least in part, due to the down-regulation of ischemia-reperfusion induced activation of JNKs and p38 MAPK kinases. PC is not associated with further reduction in the activation of these kinases in the hypothyroid hearts and fails to confer added protection in those hearts.

  20. Atherogenic diet induced lipid accumulation induced NFκB level in heart, liver and brain of Wistar rat and diosgenin as an anti-inflammatory agent.

    PubMed

    Binesh, Ambika; Devaraj, Sivasithamparam Niranjali; Halagowder, Devaraj

    2018-03-01

    Atherogenic Diet (AD) was given to rats to understand the key role of inflammatory mediators in atherosclerotic lesion formation, as a serendipitous study, the diet induced inflammatory mediators in liver and brain, whereas pancreas, kidney and spleen were not affected. The efficacy of diosgenin in ameliorating atherosclerotic progression in heart and suppression of inflammatory mediators in liver and brain of Wistar rat fed on AD diet was investigated. Atherogenic diet triggered inflammatory mediators in heart, liver and brain by upregulating TNF-α, COX-2 and NFkBp65 which are the inflammatory hub, played a key role in pathophysiologic conditions. Endothelial dysfunction, liver tissue with prominent steatosis and the stress evoked in the brain by the atherogenic diet triggered these inflammatory mediators. TNF-α and COX-2 expression was upregulated and its elevation was associated with NFkBp65 activation in heart, liver and brain of atherogenic diet induced rat. Diosgenin downregulated these inflammatory mediators, thereby prevented the atherosclerotic disease progression and concomitant suppression of inflammatory mediators in liver and brain. Copyright © 2018. Published by Elsevier Inc.

  1. Morphological and biochemical examination of Cosmos 1887 rat heart tissue. Part 1: Ultrastructure

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Popova, I. A.; Kato, K.; Stevenson, J.; Miquel, J.; Sapp, W.

    1990-01-01

    Morphological changes were observed in the left ventricle of rat heart tissue from animals flown on the Cosmos 1887 biosatellite for 12.5 days. These tissues were compared to the synchronous and vivarium control hearts. While many normal myofibrils were observed, others exhibited ultrastructural alterations, i.e., damaged and irregular-shaped mitochondria and generalized myofibrillar edema. Analysis of variance (ANOVA) of the volume density data revealed a statistically significant increase in glycogen and a significant decrease in mitochondria compared to the synchronous and vivarium controls. Point counting indicated an increase in lipid and myeloid bodies and a decrease in microtubules, but these changes were not statistically significant. In addition, the flight animals exhibited some patchy loss of protofibrils (actin and myosin filaments) and some abnormal supercontracted myofibrils that were not seen in the controls. This study was undertaken to gain insight into the mechanistic aspects of cardiac changes in both animals and human beings as a consequence of space travel. Cardiac hypotrophy and fluid shifts have been observed after actual or simulated weightlessness and raise concerns about the functioning of the heart and circulatory system during and after travel in space.

  2. Attenuation of Ca2+ homeostasis, oxidative stress, and mitochondrial dysfunctions in diabetic rat heart: insulin therapy or aerobic exercise?

    PubMed

    da Silva, Márcia F; Natali, Antônio J; da Silva, Edson; Gomes, Gilton J; Teodoro, Bruno G; Cunha, Daise N Q; Drummond, Lucas R; Drummond, Filipe R; Moura, Anselmo G; Belfort, Felipe G; de Oliveira, Alessandro; Maldonado, Izabel R S C; Alberici, Luciane C

    2015-07-15

    We tested the effects of swimming training and insulin therapy, either alone or in combination, on the intracellular calcium ([Ca(2+)]i) homeostasis, oxidative stress, and mitochondrial functions in diabetic rat hearts. Male Wistar rats were separated into control, diabetic, or diabetic plus insulin groups. Type 1 diabetes mellitus was induced by streptozotocin (STZ). Insulin-treated groups received 1 to 4 UI of insulin daily for 8 wk. Each group was divided into sedentary or exercised rats. Trained groups were submitted to swimming (90 min/day, 5 days/wk, 8 wk). [Ca(2+)]i transient in left ventricular myocytes (LVM), oxidative stress in LV tissue, and mitochondrial functions in the heart were assessed. Diabetes reduced the amplitude and prolonged the times to peak and to half decay of the [Ca(2+)]i transient in LVM, increased NADPH oxidase-4 (Nox-4) expression, decreased superoxide dismutase (SOD), and increased carbonyl protein contents in LV tissue. In isolated mitochondria, diabetes increased Ca(2+) uptake, susceptibility to permeability transition pore (MPTP) opening, uncoupling protein-2 (UCP-2) expression, and oxygen consumption but reduced H2O2 release. Swimming training corrected the time course of the [Ca(2+)]i transient, UCP-2 expression, and mitochondrial Ca(2+) uptake. Insulin replacement further normalized [Ca(2+)]i transient amplitude, Nox-4 expression, and carbonyl content. Alongside these benefits, the combination of both therapies restored the LV tissue SOD and mitochondrial O2 consumption, H2O2 release, and MPTP opening. In conclusion, the combination of swimming training with insulin replacement was more effective in attenuating intracellular Ca(2+) disruptions, oxidative stress, and mitochondrial dysfunctions in STZ-induced diabetic rat hearts. Copyright © 2015 the American Physiological Society.

  3. [Effects of Salvianolate on Myosin Heavy Chain in Cardiomyocytes of Congestive Heart Failure Rats].

    PubMed

    Chen, Cheng; Zou, Xiang-gu; Qiu, Shan-dong; Chen, Hui; Chen, Yong-zhong; Lin, Xiu-ming

    2015-07-01

    To explore the effect of Salvianolate on myosin heavy chain (MHC) in cardiomyocytes of congestive heart failure (CHF) rats. Sixty male SD rats were divided into 6 groups according to random digit table, i.e., the normal control group (NCG), the model group, the Captopril group (CAG), the low dose Salvianolate group (LSG), the high dose Salvianolate group (HSG), the Captopril and high dose Salvianolate group (CSG), 10 in each group. CHF rat model was established with peritoneal injection of adriamycin in all rats except those in the NCG. Equal volume of normal saline was peritoneally injected to rats in the NCG, once per week for 6 successive weeks. Corresponding medication was started from the 5th week of injecting adriamycin. Rats in the CAG were administered with Captopril solution at the daily dose of 10 mg/kg by gastrogavage. Rats in the LSG and the HSG were administered with Salvianolate solution at the daily dose of 24.219 mg/kg and 48.438 mg/kg respectively by gastrogavage. Salvianolate was dissolved in 2 mL 5% glucose solution and administered by peritoneal injection. Rats in the CSG were peritoneally injected with high dose Salvianolate solution and administered with Captopril solution by gastrogavage. Two mL normal saline was peritoneally injected to rats in the model group, once per day for 8 successive weeks. Eight weeks later, the cardiac function and myocardial hypertrophy indices were detected by biological signal collecting and processing system. mRNA expression levels of alpha-MHC and beta-MHC in cardiac muscle were detected by fluorescence quantitative PCR. Expressions of protein kinase C (PKC) in cardiac muscle were detected by Western blot. Compared with the normal control group, heart mass index (HMI) and left ventricular mass index (LVMI) obviously increased in the model group (P < 0.01). Compared with the model group, HMI and LVMI decreased in HSG, CAG, and CSG groups (P < 0.05, P < 0.01). It was more obviously lowered in the CSG group than

  4. [Effects of flunarizine and vitamin C on hemodynamics in rat heart subjected to ischemia-reperfusion].

    PubMed

    Xian, Y; Lan, T; Wang, Y

    1998-09-01

    Langendorff perfusion isolated rat heart was subjected to total global ischemia (coronary flow rate is equal to zero) for 10 minutes and reperfusion for 15 minutes. The heart rate (HR), left ventricular developed pressure (LVDP), coronary flow rate (CFR), electrocardiogram (ECG) and the effects of calcium antagonist-flunarizine (FNZ) and/or oxygen free radical scavenger--vitamine C on the above parameters were observed. The results showed that FNZ dilated coronary vessel (P < 0.01) and had a slight negative chronotropic effect, but it had no effect on LVP. Vitamine C did not affect HR, LVP and CFR. The recovery of the product of HR and LVDP-Rate Pressure Product (RPP) in the FNZ + Vit. C group, Vit. C group and FNZ group was significantly higher than that in the control group (P < 0.05) at ten minutes reperfusion. All the results suggest that FNZ and Vit. C may improve the recovery of heart function after reperfusion.

  5. Improvement of Heart Redox States Contributes to the Beneficial Effects of Selenium Against Penconazole-Induced Cardiotoxicity in Adult Rats.

    PubMed

    Chaâbane, Mariem; Tir, Meriem; Hamdi, Safa; Boudawara, Ons; Jamoussi, Kamel; Boudawara, Tahia; Ghorbel, Raoudha Ellouze; Zeghal, Najiba; Soudani, Nejla

    2016-02-01

    The present study was performed to evaluate the protective effect of selenium (Se) against penconazole (PEN)-induced oxidative stress in the cardiac tissue of adult rats. Male Wistar rats were divided into four groups of six each. The first group represented the controls. For the second group (PEN), no treatment was performed during the first 6 days, and then, the rats received intraperitoneally 67 mg/kg body weight (bw) of PEN every 2 days from day 7 until day 15, the sacrifice day. For the third group (Se + PEN), Se was administered daily through the diet at a dose of 0.5 mg/kg of diet for 15 days. Rats of this group received also every 2 days PEN (67 mg/kg bw) from day 7 until day 15. The fourth group (Se) received daily, through the diet, Se (0.5 mg/Kg of diet) during 15 days. Our results showed that Se reduced significantly the elevated cardiac levels of malondialdehyde and protein carbonyl following PEN treatment, and attenuated DNA fragmentation induced by this fungicide. In addition, Se modulated the alterations of antioxidant status: enzymatic (superoxide dismutase, glutathione peroxidase, and catalase) and nonenzymatic (glutathione and vitamin C) antioxidants in the heart of PEN-treated rats. This trace element was also able to alleviate perturbations of lipid profile. The protective effect of selenium was further evident through the histopathological changes produced by PEN in the heart tissue. Taken together, our results indicated that Se might be beneficial against PEN-induced cardiac oxidative damage in rats.

  6. Free radicals generated by electrolysis reduces nitro blue tetrazolium in isolated rat heart.

    PubMed

    Chahine, R; Huet, M P; Oliva, L; Nadeau, R

    1997-02-01

    Oxygen free radicals (OFR) are highly cytotoxic when produced in the myocardium under certain pathological conditions. In isolated rat hearts perfused retrogradely, OFR were generated by electrolysis of the Krebs-Henseleit buffer (two platinum electrodes, DC current, 10 mA, 1 min). In order to find evidence that OFR are produced, we used nitro blue tetrazolium (NBT) a soluble compound which yields a dark blue formazan pigment in the presence of reducing agents. Hearts were subdivided into: control, electrolysed, NBT (3.3 mg/ml) perfusion during electrolysis in the presence or absence of scavengers. The xanthine-xanthine oxidase (XXO) system known to produce superoxide radical was used as a reference. Specimens were fixed with formaldehyde and stained with eosine or Kernechtrot in preparation for light microscopical examination. Several areas of acute necrosis expressed by hyalinisation and loss of striation were observed in electrolysed hearts which present a pattern of wavy disrupted myofibers and an increase in interstitial spaces. A very faint deposition of formazan was observed in some rare areas of NBT perfused heart. Only the electrolysed group perfused with NBT and the one perfused with XXO plus NBT presented an extensive formazan deposition, mostly in the areas of fibre necrosis. Formazan was barely detectable when superoxide dismutase plus catalase were perfused in the XXO system, while it was still apparent when perfused in electrolysed hearts. These results support the hypothesis that electrolysis can be used to generate different species of OFR and to evaluate the protective action of scavenger and antioxidants against OFR-induced myocardial damage.

  7. Growth hormone-releasing hormone promotes survival of cardiac myocytes in vitro and protects against ischaemia-reperfusion injury in rat heart.

    PubMed

    Granata, Riccarda; Trovato, Letizia; Gallo, Maria Pia; Destefanis, Silvia; Settanni, Fabio; Scarlatti, Francesca; Brero, Alessia; Ramella, Roberta; Volante, Marco; Isgaard, Jorgen; Levi, Renzo; Papotti, Mauro; Alloatti, Giuseppe; Ghigo, Ezio

    2009-07-15

    The hypothalamic neuropeptide growth hormone-releasing hormone (GHRH) stimulates GH synthesis and release in the pituitary. GHRH also exerts proliferative effects in extrapituitary cells, whereas GHRH antagonists have been shown to suppress cancer cell proliferation. We investigated GHRH effects on cardiac myocyte cell survival and the underlying signalling mechanisms. Reverse transcriptase-polymerase chain reaction analysis showed GHRH receptor (GHRH-R) mRNA in adult rat ventricular myocytes (ARVMs) and in rat heart H9c2 cells. In ARVMs, GHRH prevented cell death and caspase-3 activation induced by serum starvation and by the beta-adrenergic receptor agonist isoproterenol. The GHRH-R antagonist JV-1-36 abolished GHRH survival action under both experimental conditions. GHRH-induced cardiac cell protection required extracellular signal-regulated kinase (ERK)1/2 and phosphoinositide-3 kinase (PI3K)/Akt activation and adenylyl cyclase/cAMP/protein kinase A signalling. Isoproterenol strongly upregulated the mRNA and protein of the pro-apoptotic inducible cAMP early repressor, whereas GHRH completely blocked this effect. Similar to ARVMs, in H9c2 cardiac cells, GHRH inhibited serum starvation- and isoproterenol-induced cell death and apoptosis through the same signalling pathways. Finally, GHRH improved left ventricular recovery during reperfusion and reduced infarct size in Langendorff-perfused rat hearts, subjected to ischaemia-reperfusion (I/R) injury. These effects involved PI3K/Akt signalling and were inhibited by JV-1-36. Our findings suggest that GHRH promotes cardiac myocyte survival through multiple signalling mechanisms and protects against I/R injury in isolated rat heart, indicating a novel cardioprotective role of this hormone.

  8. Reduction of the spermatogonial population in rat testes flown on Space Lab-3

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Stevenson, J.; Corbett, R.; Sapp, W.; Williams, C.

    1985-01-01

    Quantization of the testicular spermatogonial population reduction in six rats is performed 12 hours after their return from seven days aboard Space Lab-3. The observed 7.1 percent organ weight loss, and 7.5 percent stage six spermatogonial cell population reduction in comparison with control rats correlate very well. Accurate dosimetry was not conducted on board, but radiation can not be considered the primary cause of the observed change. The decrease in protein kinase in the heart of these rats indicates that stress from adapting to weightlessness, the final jet flight, or other sources, is an important factor.

  9. The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-ɛ and p38 MAPK

    PubMed Central

    Weber, Nina C; Toma, Octavian; Wolter, Jessica I; Obal, Detlef; Müllenheim, Jost; Preckel, Benedikt; Schlack, Wolfgang

    2004-01-01

    Xenon is an anesthetic with minimal hemodynamic side effects, making it an ideal agent for cardiocompromised patients. We investigated if xenon induces pharmacological preconditioning (PC) of the rat heart and elucidated the underlying molecular mechanisms. For infarct size measurements, anesthetized rats were subjected to 25 min of coronary artery occlusion followed by 120 min of reperfusion. Rats received either the anesthetic gas xenon, the volatile anesthetic isoflurane or as positive control ischemic preconditioning (IPC) during three 5-min periods before 25-min ischemia. Control animals remained untreated for 45 min. To investigate the involvement of protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK), rats were pretreated with the PKC inhibitor calphostin C (0.1 mg kg−1) or the p38 MAPK inhibitor SB203580 (1 mg kg−1). Additional hearts were excised for Western blot and immunohistochemistry. Infarct size was reduced from 50.9±16.7% in controls to 28.1±10.3% in xenon, 28.6±9.9% in isoflurane and to 28.5±5.4% in IPC hearts. Both, calphostin C and SB203580, abolished the observed cardioprotection after xenon and isoflurane administration but not after IPC. Immunofluorescence staining and Western blot assay revealed an increased phosphorylation and translocation of PKC-ɛ in xenon treated hearts. This effect could be blocked by calphostin C but not by SB203580. Moreover, the phosphorylation of p38 MAPK was induced by xenon and this effect was blocked by calphostin C. In summary, we demonstrate that xenon induces cardioprotection by PC and that activation of PKC-ɛ and its downstream target p38 MAPK are central molecular mechanisms involved. Thus, the results of the present study may contribute to elucidate the beneficial cardioprotective effects of this anesthetic gas. PMID:15644876

  10. Renin-Angiotensin-Aldosterone Signaling Inhibitors-Losartan, Enalapril, and Cardosten-Prevent Infarction-induced Heart Failure Development in Rats.

    PubMed

    Kiss, Krisztina; Fekete, Veronika; Pálóczi, János; Sárközy, Márta; Murlasits, Zsolt; Pipis, Judit; Kheyfets, Irina A; Dugina, Julia L; Sergeeva, Svetlana A; Epstein, Oleg I; Csonka, Csaba; Csont, Tamás; Ferdinandy, Péter; Bencsik, Péter

    2016-01-01

    The activation of the renin-angiotensin-aldosterone system (RAAS) plays an important role in the pathophysiology of congestive heart failure, which is the reason that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin 2 receptor blockers (ARBs) have become established therapies for heart failure. However, it is still not known whether preventive treatment with losartan or enalapril can reduce symptoms of infarction-induced heart failure. Ultra-low dose (ULD) drug therapy is thought to exert specific activity, with a lower chance of side effects. OBJECTIVES • The research team had hypothesized that preventive treatment with inhibitors of RAAS signaling-losartan, enalapril, and a preparation of a ULD antibody (ie, cardosten), which target the angiotensin type 1 (AT1) receptor-might alleviate pathological hypertrophy and/or functional decline in infarction-induced heart failure. The research team treated male Wistar rats orally for 30 d with 20 mg/kg of losartan, 10 mg/kg enalapril, 5 or 7.5 mL/kg of cardosten, or a control solution, started 1 d prior to permanent coronary occlusion. A sham-operated group functioned as a second control group. The study was conducted at the Department of Biochemistry of the Faculty of Medicine at the University of Szeged in Szeged, Hungary, in cooperation with the Pharmahungary Group, also in Szeged, Hungary, and with OOO "NPF" Materia Medica Holding Ltd in Moscow, Russia. To determine cardiac functional parameters in vivo, the research team inserted a catheter into the left ventricle of the rats and measured the parameters of ventricular pressure, and cardiac output was determined by thermodilution. Morphological parameters were measured after heart isolation in transverse sections by a digital caliper. A total of 30 d after permanent coronary ligation, both losartan and enalapril, significantly decreased mean arterial blood pressure (MABP), attenuated the development of the left-ventricular anterior-wall and septum

  11. Longitudinal Evaluation of Fatty Acid Metabolism in Normal and Spontaneously Hypertensive Rat Hearts with Dynamic MicroSPECT Imaging

    DOE PAGES

    Reutter, Bryan W.; Huesman, Ronald H.; Brennan, Kathleen M.; ...

    2011-01-01

    The goal of this project is to develop radionuclide molecular imaging technologies using a clinical pinhole SPECT/CT scanner to quantify changes in cardiac metabolism using the spontaneously hypertensive rat (SHR) as a model of hypertensive-related pathophysiology. This paper quantitatively compares fatty acid metabolism in hearts of SHR and Wistar-Kyoto normal rats as a function of age and thereby tracks physiological changes associated with the onset and progression of heart failure in the SHR model. The fatty acid analog, 123 I-labeled BMIPP, was used in longitudinal metabolic pinhole SPECT imaging studies performed every seven months for 21 months. The uniqueness ofmore » this project is the development of techniques for estimating the blood input function from projection data acquired by a slowly rotating camera that is imaging fast circulation and the quantification of the kinetics of 123 I-BMIPP by fitting compartmental models to the blood and tissue time-activity curves.« less

  12. Intermedin improves cardiac function and sympathetic neural remodeling in a rat model of post myocardial infarction heart failure

    PubMed Central

    Xu, Bin; Xu, Hao; Cao, Heng; Liu, Xiaoxiao; Qin, Chunhuan; Zhao, Yanzhou; Han, Xiaolin; Li, Hongli

    2017-01-01

    Emerging evidence has suggested that intermedin (IMD), a novel member of the calcitonin gene-related peptide (CGRP) family, has a wide range of cardioprotective effects. The present study investigated the effects of long-term administration of IMD on cardiac function and sympathetic neural remodeling in heart failure (HF) rats, and studied potential underlying mechanism. HF was induced in rats by myocardial infarction (MI). Male Sprague Dawley rats were randomly assigned to either saline or IMD (0.6 µg/kg/h) treatment groups for 4 weeks post-MI. Another group of sham-operated rats served as controls. Cardiac function was assessed by echocardiography, cardiac catheterization and plasma level of B-type natriuretic peptide (BNP). Cardiac sympathetic neural remodeling was assessed by immunohistochemistical study of tyrosine hydroxylase (TH) and growth associated protein 43 (GAP43) immunoreactive nerve fibers. The protein expression levels of nerve growth factor (NGF), TH and GAP43 in the ventricular myocardium were studied by western blotting. Ventricular fibrillation threshold (VFT) was determined to evaluate the incidence of ventricular arrhythmia. Oxidative stress was assessed by detecting the activity of superoxide dismutase and the level of malondialdehyde. Compared with rats administrated with saline, IMD significantly improved cardiac function, decreased the plasma BNP level, attenuated sympathetic neural remodeling, increased VFT and suppressed oxidative stress. In conclusion, these results indicated that IMD prevents ventricle remodeling and improves the performance of a failing heart. In addition, IMD attenuated sympathetic neural remodeling and reduced the incidence of ventricular arrhythmia, which may contribute to its anti-oxidative property. These results implicate IMD as a potential therapeutic agent for the treatment of HF. PMID:28627670

  13. A novel experimental model of erectile dysfunction in rats with heart failure using volume overload.

    PubMed

    Silva, Fábio Henrique; Veiga, Frederico José Reis; Mora, Aline Gonçalves; Heck, Rodrigo Sader; De Oliveira, Caroline Candida; Gambero, Alessandra; Franco-Penteado, Carla Fernanda; Antunes, Edson; Gardner, Jason D; Priviero, Fernanda Bruschi Marinho; Claudino, Mário Angelo

    2017-01-01

    Patients with heart failure (HF) display erectile dysfunction (ED). However, the pathophysiology of ED during HF remains poorly investigated. This study aimed to characterize the aortocaval fistula (ACF) rat model associated with HF as a novel experimental model of ED. We have undertaken molecular and functional studies to evaluate the alterations of the nitric oxide (NO) pathway, autonomic nervous system and oxidative stress in the penis. Male rats were submitted to ACF for HF induction. Intracavernosal pressure in anesthetized rats was evaluated. Concentration-response curves to contractile (phenylephrine) and relaxant agents (sodium nitroprusside; SNP), as well as to electrical field stimulation (EFS), were obtained in the cavernosal smooth muscle (CSM) strips from sham and HF rats. Protein expression of endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) and phosphodiestarese-5 in CSM were evaluated, as well as NOX2 (gp91phox) and superoxide dismutase (SOD) mRNA expression. SOD activity and thiobarbituric acid reactive substances (TBARs) were also performed in plasma. HF rats display erectile dysfunction represented by decreased ICP responses compared to sham rats. The neurogenic contractile responses elicited by EFS were greater in CSM from the HF group. Likewise, phenylephrine-induced contractions were greater in CSM from HF rats. Nitrergic response induced by EFS were decreased in the cavernosal tissue, along with lower eNOS, nNOS and phosphodiestarese-5 protein expressions. An increase of NOX2 and SOD mRNA expression in CSM and plasma TBARs of HF group were detected. Plasma SOD activity was decreased in HF rats. ED in HF rats is associated with decreased NO bioavailability in erectile tissue due to eNOS/nNOS dowregulation and NOX2 upregulation, as well as hypercontractility of the penis. This rat model of ACF could be a useful tool to evaluate the molecular alterations of ED associated with HF.

  14. Protective Effect of Antenatal Antioxidant on Nicotine-Induced Heart Ischemia-Sensitive Phenotype in Rat Offspring.

    PubMed

    Xiao, DaLiao; Wang, Lei; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Zhang, Lubo

    2016-01-01

    Fetal nicotine exposure increased risk of developing cardiovascular disease later in life. The present study tested the hypothesis that perinatal nicotine-induced programming of heart ischemia-sensitive phenotype is mediated by enhanced reactive oxygen species (ROS) in offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth, in the absence or presence of a ROS inhibitor, N-acetyl-cysteine (NAC) in drinking water. Experiments were conducted in 8 month old age male offspring. Isolated hearts were perfused in a Langendorff preparation. Perinatal nicotine treatment significantly increased ischemia and reperfusion-induced left ventricular injury, and decreased post-ischemic recovery of left ventricular function and coronary flow rate. In addition, nicotine enhanced cardiac ROS production and significantly attenuated protein kinase Cε (PKCε) protein abundance in the heart. Although nicotine had no effect on total cardiac glycogen synthase kinase-3β (GSK3β) protein expression, it significantly increased the phosphorylation of GSK3β at serine 9 residue in the heart. NAC inhibited nicotine-mediated increase in ROS production, recovered PKCε gene expression and abrogated increased phosphorylation of GSK3β. Of importance, NAC blocked perinatal nicotine-induced increase in ischemia and reperfusion injury in the heart. These findings provide novel evidence that increased oxidative stress plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the heart, and suggest potential therapeutic targets of anti-oxidative stress in the treatment of ischemic heart disease.

  15. Reduced density and altered regulation of rat atrial L-type Ca2+ current in heart failure.

    PubMed

    Bond, Richard C; Bryant, Simon M; Watson, Judy J; Hancox, Jules C; Orchard, Clive H; James, Andrew F

    2017-03-01

    Constitutive regulation by PKA has recently been shown to contribute to L-type Ca 2+ current ( I CaL ) at the ventricular t-tubule in heart failure. Conversely, reduction in constitutive regulation by PKA has been proposed to underlie the downregulation of atrial I CaL in heart failure. The hypothesis that downregulation of atrial I CaL in heart failure involves reduced channel phosphorylation was examined. Anesthetized adult male Wistar rats underwent surgical coronary artery ligation (CAL, N =10) or equivalent sham-operation (Sham, N =12). Left atrial myocytes were isolated ~18 wk postsurgery and whole cell currents recorded (holding potential=-80 mV). I CaL activated by depolarizing pulses to voltages from -40 to +50 mV were normalized to cell capacitance and current density-voltage relations plotted. CAL cell capacitances were ~1.67-fold greater than Sham ( P ≤ 0.0001). Maximal I CaL conductance ( G max ) was downregulated more than 2-fold in CAL vs. Sham myocytes ( P < 0.0001). Norepinephrine (1 μmol/l) increased G max >50% more effectively in CAL than in Sham so that differences in I CaL density were abolished. Differences between CAL and Sham G max were not abolished by calyculin A (100 nmol/l), suggesting that increased protein dephosphorylation did not account for I CaL downregulation. Treatment with either H-89 (10 μmol/l) or AIP (5 μmol/l) had no effect on basal currents in Sham or CAL myocytes, indicating that, in contrast to ventricular myocytes, neither PKA nor CaMKII regulated basal I CaL Expression of the L-type α 1C -subunit, protein phosphatases 1 and 2A, and inhibitor-1 proteins was unchanged. In conclusion, reduction in PKA-dependent regulation did not contribute to downregulation of atrial I CaL in heart failure. NEW & NOTEWORTHY Whole cell recording of L-type Ca 2+ currents in atrial myocytes from rat hearts subjected to coronary artery ligation compared with those from sham-operated controls reveals marked reduction in current density

  16. Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats.

    PubMed

    de Andrade, Luiz Henrique Soares; de Moraes, Wilson Max Almeida Monteiro; Matsuo Junior, Eduardo Hiroshi; de Orleans Carvalho de Moura, Elizabeth; Antunes, Hanna Karen Moreira; Montemor, Jairo; Antonio, Ednei Luiz; Bocalini, Danilo Sales; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-04-01

    The activity of the ubiquitin proteasome system (UPS) and the level of oxidative stress contribute to the transition from compensated cardiac hypertrophy to heart failure in hypertension. Moreover, aerobic exercise training (AET) is an important therapy for the treatment of hypertension, but its effects on the UPS are not completely known. The aim of this study was to evaluate the effect of AET on UPS's activity and oxidative stress level in heart of spontaneously hypertensive rats (SHR). A total of 53 Wistar and SHR rats were randomly divided into sedentary and trained groups. The AET protocol was 5×/week in treadmill for 13 weeks. Exercise tolerance test, non-invasive blood pressure measurement, echocardiographic analyses, and left ventricle hemodynamics were performed during experimental period. The expression of ubiquitinated proteins, 4-hydroxynonenal (4-HNE), Akt, phospho-Akt(ser473), GSK3β, and phospho-GSK3β(ser9) were analyzed by western blotting. The evaluation of lipid hydroperoxide concentration was performed using the xylenol orange method, and the proteasomal chymotrypsin-like activity was measured by fluorimetric assay. Sedentary hypertensive group presented cardiac hypertrophy, unaltered expression of total Akt, phospho-Akt, total GSK3β and phospho-GSK3β, UPS hyperactivity, increased lipid hydroperoxidation as well as elevated expression of 4-HNE but normal cardiac function. In contrast, AET significantly increased exercise tolerance, decreased resting systolic blood pressure and heart rate in hypertensive animals. In addition, the AET increased phospho-Akt expression, decreased phospho-GSK3β, and did not alter the expression of total Akt, total GSK3β, and ubiquitinated proteins, however, significantly attenuated 4-HNE levels, lipid hydroperoxidation, and UPS's activity toward normotensive group levels. Our results provide evidence for the main effect of AET on attenuating cardiac ubiquitin proteasome hyperactivity and oxidative stress in SHR

  17. Dietary Phenolic Acids of Macrotyloma uniflorum (Horse Gram) Protect the Rat Heart Against Isoproterenol-Induced Myocardial Infarction.

    PubMed

    Panda, Vandana; Laddha, Ankit; Nandave, Mukesh; Srinath, Sudhamani

    2016-07-01

    The present study investigates the cardioprotective activity of the Macrotyloma uniflorum seed extract (MUSE) and its phenolic acids (p-coumaric acid and ferulic acid) in isoproterenol (ISO)-induced myocardial infarction in rats. The previously mentioned phenolic acids were isolated and quantified from MUSE by HPLC. Pretreatment of gemfibrozil (reference standard), MUSE (250 and 500 mg/kg) and the phenolic acids for 30 days to rats treated with ISO (85 mg/kg) on the last 2 days resulted in a significant attenuation of the ISO-elevated levels of serum marker enzymes (aspartate aminotransferase, lactate dehydrogenase and creatine phosphokinase MB), total cholesterol, triglycerides, uric acid, C-reactive protein and malondialdehyde and a restoration of the levels of the ISO-depleted marker enzymes, reduced glutathione and the antioxidant enzymes-superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in heart. Restoration of the ISO-altered electrocardiogram pattern and haemodynamic parameters (left ventricular end diastolic pressure, heart rate, systolic, diastolic and mean arterial pressure) was also brought about by treatment with MUSE and the phenolic acids. It may be concluded that MUSE treatment to ISO-challenged rats exhibits a significant cardioprotective effect probably because of the potent antioxidant activity of its phenolic acids that salvage the myocardium from the deleterious effects of ISO. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Oxygen radical system in chronic infarcted rat heart: the effect of combined beta blockade and ACE inhibition.

    PubMed

    Theres, H; Wagner, K D; Schulz, S; Strube, S; Leiterer, K P; Romberg, D; Günther, J; Scholz, H; Baumann, G; Schimke, I

    2000-05-01

    In vitro experiments suggest that beta blockade and angiotensin-converting enzyme (ACE) inhibition may protect the failing heart by reduction of myocardial oxidative stress. To test this hypothesis in an in vivo model, the beta blocker metoprolol (350 mg) and the ACE inhibitor ramipril (1 mg) were given either alone or in combination to rats (per kilogram body weight per day) for 6 weeks after myocardial infarction. Left ventricular end-diastolic pressure (LVEDP), contractile function of papillary muscles, enzymatic antioxidative defense (indicated by the activities of the superoxide dismutase isoenzymes and glutathione peroxidase), and the extent of lipid peroxidation were studied. Placebo-treated rats showed cardiac hypertrophy, increased LVEDP, lower rates of contraction and relaxation, as well as a deficit in the myocardial antioxidative defense associated with increased lipid peroxide levels, when compared with sham-operated animals. Combined beta blockade and ACE inhibition improved the antioxidative defense, reduced hypertrophy and LVEDP, and enhanced rates of contraction. Thus prolonged beta blockade and ACE inhibition after infarction may decrease myocardial oxidative stress and thereby could be beneficial in heart failure.

  19. Getting to the Heart of the Matter: Age-related Changes in Diastolic Heart Function in the Longest-lived Rodent, the Naked Mole Rat

    PubMed Central

    Grimes, Kelly M.; Lindsey, Merry L.; Gelfond, Jonathan A. L.

    2012-01-01

    The naked mole rat is an extremely long-lived (>31 years) small (35 g) rodent. Moreover, it maintains good health for most of its long life. We hypothesized that naked mole rats also show attenuated cardiac aging. With age, cardiac muscle can become less compliant, causing a decline in early diastolic filling (E) and a compensatory increase in atrial contraction-induced late filling (A). This results in decreased left ventricular E/A ratio. Doppler imaging showed no significant differences in E/A ratios (p = .48) among old (18–20 years) breeders and nonbreeders despite differences in estrogen levels. A cross-sectional study of 1- to 20-year-old naked mole rats (n = 76) revealed that E/A ratios declined with age in females (n = 40; p = .002) but not in males (n = 36; p = 0.45). Despite this, neither gender shows increased morbidity or mortality with age. These findings suggest that, notwithstanding the previously observed high lipid peroxidation in heart tissue, NMRs must possess mechanisms to stave off progression to fatal cardiac disease. PMID:22367435

  20. Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat.

    PubMed

    Li, Guohu; Xiao, Yuhui; Estrella, Jaymie L; Ducsay, Charles A; Gilbert, Raymond D; Zhang, Lubo

    2003-07-01

    Epidemiologic studies showed an association between adverse intrauterine environment and ischemic heart disease in the adult. We tested the hypothesis that prenatal hypoxia increased the susceptibility of adult heart to ischemia-reperfusion (I-R) injury. Time-dated pregnant rats were divided between normoxic and hypoxic (10.5% oxygen from day 15 to 21) groups. Hearts of 6-month-old male progeny were studied using Langendorff preparation and were subjected to two protocols of I-R: 10 minutes of ischemia and 3 hours of reperfusion (I-R(10)) or 25 minutes of ischemia and 3 hours of reperfusion (I-R(25)). Prenatal hypoxia did not change basal left ventricular (LV) function. I-R(10) produced myocardial stunning and a transient decrease in LV function in control hearts but caused myocardial infarction and a persistent decrease in postischemic recovery of LV function in hypoxic hearts. I-R(25) caused myocardial infarction in both control and hypoxic hearts, which was significantly higher in hypoxic hearts. The postischemic recovery of LV function was significantly reduced in hypoxic hearts. I-R(25)-induced activation of caspase-3 and apoptosis in the left ventricle were significantly higher in hypoxic than control hearts. There was a significant decrease in LV heat shock protein 70 and endothelial nitric oxide synthase levels in hypoxic hearts. Prenatal hypoxia did not change beta(1)-adrenoreceptor levels but significantly increased beta(2)-adrenoreceptor in the left ventricle. In addition, it increased G(s)alpha but decreased G(i)alpha. Prenatal chronic hypoxia increases the susceptibility of adult heart to I-R injury. Several possible mechanisms may be involved, including an increase in beta(2)-adrenoreceptor and the G(s)alpha/G(i)alpha ratio, and a decrease in heat shock protein 70 and endothelial nitric oxide synthase in the left ventricle.

  1. Zero Flow Global Ischemia-Induced Injuries in Rat Heart Are Attenuated by Natural Honey

    PubMed Central

    Najafi, Moslem; Zahednezhad, Fahimeh; Samadzadeh, Mehrban; Vaez, Haleh

    2012-01-01

    Purpose: In the present study, effects of preischemic administration of natural honey on cardiac arrhythmias and myocardial infarction size during zero flow global ischemia were investigated in isolated rat heart. Methods: The isolated hearts were subjected to 30 min zero flow global ischemia followed by 120 min reperfusion then perfused by a modified drug free Krebs-Henseleit solution throughout the experiment (control) or the solution containing 0.25, 0.5, 1 and 2% of natural honey for 15 min before induction of global ischemia (treated groups), respectively. Cardiac arrhythmias were determined based on the Lambeth conventions and the infarct size was measured by computerized planimetry. Results: Myocardial infarction size was 55.8±7.8% in the control group, while preischemic perfusion of honey (0.25, 0.5, 1 and 2%) reduced it to 39.3±11, 30.6±5.5 (P<0.01), 17.9±5.6 (P<0.001) and 8.7±1.1% (P<0.001), respectively. A direct linear correlation between honey concentrations and infarction size reduction was observed (R2=0.9948). In addition, total number of ventricular ectopic beats were significantly decreased by all used concentrations of honey (P<0.05) during reperfusion time. Honey (0.25, 0.5 and 1 %) also lowered incidence of irreversible ventricular fibrillation (P<0.05). Moreover, number and duration of ventricular tachycardia were reduced in all honey treated groups. Conclusion: Preischemic administration of natural honey before zero flow global ischemia can protect isolated rat heart against ischemia/reperfusion injuries as reduction of infarction size and arrhythmias. Maybe, antioxidant and free radical scavenging activities of honey, reduction of necrotized tissue and providing energy sources may involve in these cardioprotective effects of honey. PMID:24312788

  2. Qiliqiangxin Affects L Type Ca2+ Current in the Normal and Hypertrophied Rat Heart

    PubMed Central

    Wei, Yidong; Liu, Xiaoyu; Hou, Lei; Che, Wenliang; The, Erlinda; Jhummon, Muktanand Vikash

    2012-01-01

    Qiliqiangxin capsule is newly developed Chinese patent drug and proved to be effective and safe for the treatment of patients with chronic heart failure. We compared the effects of different dose Qiliqiangxin on L type Ca2+ current (I Ca-L) between normal and hypertrophied myocytes. A total of 40 healthy Sprague—Dawley rats were used in the study. The rats were randomly divided into two groups (control group and hypertrophy group). Cardiac hypertrophy was induced by pressure overload produced by partial ligation of the abdominal aorta. The control group was the sham-operated group. After 1 month, cardiac ventricular myocytes were isolated from the hearts of rats. Ventricular myocytes were exposed to 10 and 50 μmol/L Qiliqiangxin, and whole cell patch-clamp technique was used to study the effects of Qiliqiangxin on I Ca-L. The current densities of I Ca-L were similar in control group (−12.70 ± 0.53 pA/pF, n = 12) and in hypertrophy group (−12.39 ± 0.62 pA/pF, n = 10). They were not statistically significant. 10 and 50 μmol/L Qiliqiangxin can decrease I Ca-L peak current 48.6%±16.8% and 59.0%±4.4% in control group. However, the peak current was only reduced 16.73%±8.03% by 50 μmol/L Qiliqiangxin in hypertrophied myocytes. The inhibited action of Qiliqiangxin on I Ca-L of hypertrophy group was lower than in control group. Qiliqiangxin affected L-type Ca2+ channel and blocked I Ca-L, as well as affected cardiac function finally. Qiliqiangxin has diphasic action that is either class IV antiarrhythmic agent or the agent of effect cardiac function. PMID:22536279

  3. A comparison of two recorders for obtaining in-flight heart rate data.

    PubMed

    Dahlstrom, Nicklas; Nahlinder, Staffan

    2006-09-01

    : Measurement of mental workload has been widely used for evaluation of aircraft design, mission analysis and assessment of pilot performance during flight operations. Heart rate is the psychophysiological measure that has been most frequently used for this purpose. The risk of interference with flight safety and pilot performance, as well as the generally constrained access to flights, make it difficult for researchers to collect in-flight heart rate data. Thus, this study was carried out to investigate whether small, non-intrusive sports recorders can be used for in-flight data collection for research purposes. Data was collected from real and simulated flights with student pilots using the Polar Team System sports recorder and the Vitaport II, a clinical and research recording device. Comparison of the data shows that in-flight heart rate data from the smaller and less intrusive sports recorder have a correlation of.981 with that from the clinical recorder, thus indicating that the sports recorder is reliable and cost-effective for obtaining heart rate data for many research situations.

  4. The effects of verapamil and its combinations with glutamate and glycine on cardiodynamics, coronary flow and oxidative stress in isolated rat heart.

    PubMed

    Stojic, Isidora; Srejovic, Ivan; Zivkovic, Vladimir; Jeremic, Nevena; Djuric, Marko; Stevanovic, Ana; Milanovic, Tamara; Djuric, Dragan; Jakovljevic, Vladimir

    2017-02-01

    The role of N-methyl-D-aspartate receptor (NMDA-R) in heart is still unclear. For these ionotropic glutamate receptors is characteristic the necessity of both co-agonists, glutamate and glycine, for their activation, which primarily allows influx of calcium. The aim of the present study was to examine the effects of verapamil, as a calcium channel blocker, alone and its combination with glycine and/or glutamate on cardiac function, coronary flow, and oxidative stress in isolated rat heart or to examine the effects of potential activation of NMDA-R in isolated rat heart. The hearts of male Wistar albino rats were excised and perfused according to Langendorff technique, and cardiodynamic parameters and coronary flow were determined during the administration of verapamil and its combinations with glutamate and/or glycine. The oxidative stress biomarkers, including thiobarbituric acid-reactive substances, nitrites, superoxide anion radical, and hydrogen peroxide, were each determined spectrophotometrically from coronary venous effluent. The greatest decline in parameters of cardiac contractility and systolic pressure was in the group that was treated with verapamil only, while minimal changes were observed in group treated with all three tested substances. Also, the largest changes in coronary flow were in the group treated only with verapamil, and at least in the group that received all three tested substances, as well as the largest increase in oxidative stress parameters. Based on the obtained results, it can be concluded that NMDA-R activation allows sufficient influx of calcium to increase myocardial contractility and systolic pressure, as well as short-term increase of oxidative stress.

  5. Interaction of small G protein signaling modulator 3 with connexin 43 contributes to myocardial infarction in rat hearts.

    PubMed

    Lee, Chang Youn; Choi, Jung-Won; Shin, Sunhye; Lee, Jiyun; Seo, Hyang-Hee; Lim, Soyeon; Lee, Seahyoung; Joo, Hyun-Chul; Kim, Sang Woo; Hwang, Ki-Chul

    2017-09-16

    Connexin 43 (Cx43), a ubiquitous connexin expressed in the heart and skin, is associated with a variety of hereditary conditions. Therefore, the characterization of Cx43-interacting proteins and their dynamics is important to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication but also to identify novel and unanticipated biological functions of Cx43. In the present study, we observed potential targets of Cx43 to determine new molecular functions in cardio-protection. MALDI-TOF mass spectrometry analysis of Cx43 co-immunoprecipitated proteins showed that Cx43 interacts with several proteins related to metabolism. In GeneMANIA network analysis, SGSM3, which has not been previously associated with Cx43, was highly correlated with Cx43 in heart functions, and high levels of SGSM3 appeared to induce the turnover of Cx43 through lysosomal degradation in myocardial infarcted rat hearts. Moreover, we confirmed that lysosomal degradation of Cx43 is dependent upon the interaction between SGSM3 and Cx43 in H9c2 cardiomyocytes. The functional importance of the interaction between SGSM3 and Cx43 was confirmed by results showing that Cx43 expression was enhanced by SGSM3 siRNA knockdown in H9c2 cells. In summary, the results of this study elucidate the molecular mechanisms in which Cx43 with SGSM3 is degraded in myocardial infarcted rat hearts, which may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Role of endothelin-1 and big endothelin-1 in modulating coronary vascular tone, contractile function and severity of ischemia in rat hearts.

    PubMed

    Grover, G J; Sleph, P G; Fox, M; Trippodo, N C

    1992-12-01

    The effect of endothelin-1 (ET-1) and big ET-1 on coronary flow and contractile function was determined in isolated nonischemic and ischemic rat hearts. Both ET-1 (IC50 = 12 pMol) and big ET-1 (IC50 = 2 nMol) reduced coronary flow in a concentration-dependent manner, although ET-1 was > 100-fold more potent. Both compounds decreased contractility, an effect which was lost when coronary flow was held constant, indicating that ET-1 and big ET-1 decrease contractility secondary to reducing coronary flow. Mechanical reduction in coronary flow to levels equivalent to those seen for ET-1 or big ET-1 caused similar reductions in contractility. Both 30 pMol ET-1 and 10 nMol big ET-1 pretreatment significantly reduced the time to contracture in globally ischemic rat hearts, suggesting a proischemic effect. Phosphoramidon (100 microM, endothelin-converting enzyme inhibitor) and BQ-123 (0.3 microM, ETA receptor antagonist) abolished the preischemic increase in coronary perfusion pressure induced by big ET-1 as well as its proischemic effect, whereas only BQ-123 abolished the cardiac effect of ET-1. Neither phosphoramidon nor BQ-123 had an effect on severity of ischemia when given alone. Phosphoramidon was also given i.v. to rats subjected to coronary occlusion and reperfusion and was found to significantly reduce infarct size 24 hr postischemia. Thus, in isolated rat hearts, big ET-1 appears to be converted to ET-1 and is a potent coronary constrictor.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts.

    PubMed

    Rosic, Gvozden; Selakovic, Dragica; Joksimovic, Jovana; Srejovic, Ivan; Zivkovic, Vladimir; Tatalović, Nikola; Orescanin-Dusic, Zorana; Mitrovic, Slobodanka; Ilic, Milena; Jakovljevic, Vladimir

    2016-02-03

    The aim of this study was to evaluate the effects of chronic NAC administration along with cisplatin on cisplatin-induced cardiotoxicity by means of coronary flow (CF), cardiodynamic parameters, oxidative stress markers and morphological changes in isolated rat heart. Isolated hearts of Wistar albino rats (divided into four groups: control, cisplatin, NAC and cisplatin+NAC group) were perfused according to Langendorff technique at constant coronary perfusion pressure starting at 50 and gradually increased to 65, 80, 95 and 110 cm H2O to evaluate cardiodynamic parameters within autoregulation range. Samples of coronary venous effluent (CVE) were collected for determination of CF and biochemical assays, and heart tissue samples for biochemical assays and histopathological examination. Cisplatin treatment decreased CF and heart rate, and increased left ventricular systolic pressure and maximum left ventricular pressure development rate. Cisplatin increased H2O2 and TBARS, but decreased NO2(-) levels in CVE. In tissue samples, cisplatin reduced pathological alterations in myocardium and coronary vessels, with no changes in the amount of total glutathione, as well as in activity of glutathione peroxidase and glutathione reductase. NAC coadministration, by reducing oxidative damage, attenuated cisplatin-induced changes of cardiodynamic and oxidative stress parameters, as well as morphological changes in myocardium and coronary vasculature. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Chronic diabetes alters function and expression of ryanodine receptor calcium-release channels in rat hearts.

    PubMed

    Bidasee, Keshore R; Nallani, Karuna; Henry, Bruce; Dincer, U Deniz; Besch, Henry R

    2003-07-01

    Alteration in cardiac function is one of the hallmarks of diabetes and in late stage is manifested as a decrease in contractility. While it is established that the release of calcium ions from internal sarcoplasmic reticulum via type 2 ryanodine receptor calcium-release channels (RyR2) is vital for efficient contraction, the relationship between diabetes-induced decrease in cardiac performance and alterations in expression and/or function of RyR2 is not well delineated. The present study was designed to address this question and to determine whether changes to RyR2 induced by chronic diabetes could be minimized with insulin-treatment. When paced at 3.3 Hz (200 beats per minute), hearts from 8-week streptozotocin-induced diabetic rats showed decreased responsiveness to isoproterenol stimulation; +dT/dt and -dT/dt were 56.5 +/- 11.4% and 42.1 +/- 12.1% that of control, respectively. Hearts from 8-week diabetic rats expressed 51.2% less RyR2 than controls, In addition, RyR2 from diabetic rats also showed decreased ability to bind the specific ligand [3H]ryanodine (22.4 +/- 1.8% less [3H]ryanodine per microg of RyR2 protein), suggesting dysfunction. Two-weeks of insulin treatment, initiated after 6 weeks of untreated diabetes was able to minimize loss in function and expression of RyR2. Taken collectively, these data suggest that the decrease in cardiac contractility induced by chronic diabetes results in part from decreases in expression and alteration in function of RyR2 and these changes could be attenuated with insulin treatment.

  9. Vitamin E and Hippophea rhamnoides L. extract reduce nicotine-induced oxidative stress in rat heart.

    PubMed

    Gumustekin, Kenan; Taysi, Seyithan; Alp, Hamit Hakan; Aktas, Omer; Oztasan, Nuray; Akcay, Fatih; Suleyman, Halis; Akar, Sedat; Dane, Senol; Gul, Mustafa

    2010-06-01

    The effects of vitamin E and Hippophea rhamnoides L. extract (HRe-1) on nicotine-induced oxidative stress in rat heart were investigated. There were eight rats per group and supplementation period was 3 weeks. The groups were: nicotine [0.5 mg kg(-1)day(-1), intraperitoneal (i.p.)]; nicotine plus vitamin E [75 mg kg(-1)day(-1), intragastric (i.g.)]; nicotine plus HRe-1 (250 mg kg(-1)day(-1), i.g.); and the control group (receiving only vehicles). Nicotine increased the malondialdehyde level, which was prevented by both vitamin E and HRe-1. Glutathione peroxidase (GPx) activity in nicotine plus vitamin E supplemented group was higher than the others. Glutathione S-transferase (GST) activity in nicotine plus HRe-1 supplemented group was increased compared with the control group. Catalase activity was higher in nicotine group compared with others. GPx activity in nicotine plus vitamin E supplemented group was elevated compared with the others. Total and non-enzymatic superoxide scavenger activities in nicotine plus vitamin E supplemented group were lower than nicotine plus HRe-1 supplemented group. Superoxide dismutase (SOD) activity was higher in nicotine plus HRe-1 supplemented group compared with others. Glutathione reductase activity and nitric oxide level were not affected. Increased SOD and GST activities might have taken part in the prevention of nicotine-induced oxidative stress in HRe-1 supplemented group in rat heart. Flavonols such as quercetin, and isorahmnetin, tocopherols such as alpha-tocopherol and beta-tocopherol and carotenoids such as alpha-carotene and beta-carotene, reported to be present in H. rhamnoides L. extracts may be responsible for the antioxidant effects of this plant extract. 2010 John Wiley & Sons, Ltd.

  10. Super, Red Palm and Palm Oleins Improve the Blood Pressure, Heart Size, Aortic Media Thickness and Lipid Profile in Spontaneously Hypertensive Rats

    PubMed Central

    Boon, Chee-Meng; Ng, Mei-Han; Choo, Yuen-May; Mok, Shiueh-Lian

    2013-01-01

    Background Oleic acid has been shown to lower high blood pressure and provide cardiovascular protection. Curiosity arises as to whether super olein (SO), red palm olein (RPO) and palm olein (PO), which have high oleic acid content, are able to prevent the development of hypertension. Methodology/Principal Findings Four-week-old male spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were fed 15% SO, RPO or PO supplemented diet for 15 weeks. After 15 weeks of treatment, the systolic blood pressure (SBP) of SHR treated with SO, RPO and PO were 158.4±5.0 mmHg (p<0.001), 178.9±2.7 mmHg (p<0.001) and 167.7±2.1 mmHg (p<0.001), respectively, compared with SHR controls (220.9±1.5 mmHg). Bradycardia was observed with SO and PO. In contrast, the SBP and heart rate of treated WKY rats were not different from those of WKY controls. The SO and PO significantly reduced the increased heart size and thoracic aortic media thickness observed in untreated SHR but RPO reduced only the latter. No such differences, however, were observed between the treated and untreated WKY rats. Oil Red O enface staining of thoracic-abdominal aorta did not show any lipid deposition in all treated rats. The SO and RPO significantly raised serum alkaline phosphatase levels in the SHR while body weight and renal biochemical indices were unaltered in both strains. Serum lipid profiles of treated SHR and WKY rats were unchanged, with the exception of a significant reduction in LDL-C level and total cholesterol/HDL ratio (atherogenic index) in SO and RPO treated SHR compared with untreated SHR. Conclusion The SO, RPO and PO attenuate the rise in blood pressure in SHR, accompanied by bradycardia and heart size reduction with SO and PO, and aortic media thickness reduction with SO, RPO and PO. The SO and RPO are antiatherogenic in nature by improving blood lipid profiles in SHR. PMID:23409085

  11. EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER (EPM) ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. L.B. Wichers1, J.P. Nolan2, W.H. Rowan2, M.J. Campen3, T.P. Jenkins4, D.L. Costa2, and W.P. Watkinson2. 1UNC SPH, Chap...

  12. Oral administration of eicosapentaenoic acid or docosahexaenoic acid modifies cardiac function and ameliorates congestive heart failure in male rats.

    PubMed

    Yamanushi, Tomoko T; Kabuto, Hideaki; Hirakawa, Eiichiro; Janjua, Najma; Takayama, Fusako; Mankura, Mitsumasa

    2014-04-01

    This study assessed the effects of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) on normal cardiac function (part 1) and congestive heart failure (CHF) (part 2) through electrocardiogram analysis and determination of EPA, DHA, and arachidonic acid (AA) concentrations in rat hearts. In part 2, pathologic assessments were also performed. For part 1 of this study, 4-wk-old male rats were divided into a control group and 2 experimental groups. The rats daily were orally administered (1 g/kg body weight) saline, EPA-ethyl ester (EPA-Et; E group), or DHA-ethyl ester (DHA-Et; D group), respectively, for 28 d. ECGs revealed that QT intervals were significantly shorter for groups E and D compared with the control group (P ≤ 0.05). Relative to the control group, the concentration of EPA was higher in the E group and concentrations of EPA and DHA were higher in the D group, although AA concentrations were lower (P ≤ 0.05). In part 2, CHF was produced by subcutaneous injection of monocrotaline into 5-wk-old rats. At 3 d before monocrotaline injection, rats were administered either saline, EPA-Et, or DHA-Et as mentioned above and then killed at 21 d. The study groups were as follows: normal + saline (control), CHF + saline (H group), CHF + EPA-Et (HE group), and CHF + DHA-Et (HD group). QT intervals were significantly shorter (P ≤ 0.05) in the control and HD groups compared with the H and HE groups. Relative to the H group, concentrations of EPA were higher in the HE group and those of DHA were higher in the control and HD groups (P ≤ 0.05). There was less mononuclear cell infiltration in the myocytes of the HD group than in the H group (P = 0.06). The right ventricles in the H, HE, and HD groups showed significantly increased weights (P ≤ 0.05) compared with controls. The administration of EPA-Et or DHA-Et may affect cardiac function by modification of heart fatty acid composition, and the administration of DHA-Et may ameliorate CHF.

  13. Aldosterone synthase inhibition improves cardiovascular function and structure in rats with heart failure: a comparison with spironolactone.

    PubMed

    Mulder, Paul; Mellin, Virginie; Favre, Julie; Vercauteren, Magali; Remy-Jouet, Isabelle; Monteil, Christelle; Richard, Vincent; Renet, Sylvanie; Henry, Jean Paul; Jeng, Arco Y; Webb, Randy L; Thuillez, Christian

    2008-09-01

    Inhibition of aldosterone synthase, the key enzyme in aldosterone formation, could be an alternative strategy for mineralocorticoid-receptor antagonists in congestive heart failure (CHF), but its effect in CHF is unknown. We compared, in rats with CHF, the effects of a 7 day and a 12 week treatment with the aldosterone synthase inhibitor FAD286 (4 mg kg(-1) day(-1)) with those induced by spironolactone (80 mg kg(-1) day(-1)). FAD286/spironolactone increased cardiac output without modifying arterial pressure. Long-term FAD286 and spironolactone reduced left ventricular (LV) end-diastolic pressure, LV relaxation constant, and LV dilatation, and these effects were more marked with FAD286, whereas both drugs reduced LV hypertrophy and collagen accumulation to the same extent. Long-term FAD286/spironolactone prevented CHF-related enhancement in LV ACE and reduction in LV ACE-2, but only FAD286 prevented the reduction in LV AT(2) receptors. FAD286, but not long-term spironolactone, reduced the CHF-related enhancements in LV reactive oxygen species, reduced-oxidized glutathione ratio, and aortic nicotinamide adenine dinucleotide phosphate oxidase activity. FAD286 normalized the CHF-induced impairment of endothelium-dependent vasodilatation. In experimental CHF, FAD286 and spironolactone improve LV haemodynamics, remodelling, and function, but only FAD286 persistently normalizes LV 'redox status'. These results suggest that aldosterone synthase inhibition is a potential therapeutic strategy for the treatment of CHF.

  14. Self-emulsifying drug delivery system improves preventive effect of curcuminoids on chronic heart failure in rats.

    PubMed

    Jiang, Yunbin; Wang, Junzhi; Wang, Yunhong; Ke, Xiumei; Zhang, Chuanhui; Yang, Rongping

    2018-05-01

    Several studies have reported the preventive or therapeutic effect of curcuminoids on chronic heart failure (CHF), but their application was limited due to low solubility and bioavailability. Our previous study indicates that self-emulsifying drug delivery system (SEDDS) improves the solubility and bioavailability of curcuminoids. Thus, the aim of this work was to investigate whether SEDDS could improve preventive effect of curcuminoids on CHF in rats. CHF model was were established by coronary artery ligation. Ninety rats were randomly and averagely divided into sham, model, low- or high-dose suspension or SEDDS of curcuminoids (66.68 or 266.68 mg/kg) groups. Hemodynamic indices were recorded by multipurpose polygraph. Serum oxidative indices, B-type natriuretic peptide (BNP) and heart weight index were determined by kits and electronic balance. Myocardial infarct area, ventricular dilatation degree and collagen volume fraction of myocardial interstitium were analyzed by Masson staining, picric acid and sirius red staining, light microscopy and image analysis system. Myocardial histopathology was observed by hematoxylin and eosin staining, Masson staining and light microscopy. Reduction of ventricular pump function, increase of BNP level and heart weight index, myocardial lipid peroxidation damage, myocardial infarction, myocardial fibrosis, and cardiac enlargement were detected or observed in model group relative to those in sham group. After treatment with suspension or SEDDS of curcuminoids, the above-mentioned pathological changes were obviously reversed relative to those in model group. Meanwhile, the ameliorative effect of SEDDS of curcuminoids was markedly better than that of suspension of curcuminoids. This work provides a valuable reference from pharmacodynamics for development of curcuminoids pharmaceutics.

  15. Alpha lipoic acid protects the heart against myocardial post ischemia-reperfusion arrhythmias via KATP channel activation in isolated rat hearts.

    PubMed

    Dudek, Magdalena; Knutelska, Joanna; Bednarski, Marek; Nowiński, Leszek; Zygmunt, Małgorzata; Bilska-Wilkosz, Anna; Iciek, Małgorzata; Otto, Monika; Żytka, Iwona; Sapa, Jacek; Włodek, Lidia; Filipek, Barbara

    2014-06-01

    The cardiovascular effects of alpha lipoic acid were evaluated in isolated rat hearts exposed to ischemia-reperfusion injury in vitro. Alpha-lipoic acid raised the level of sulfane sulfur playing an important role in the release of hydrogen sulfide. H2S was shown to prevent the post-reperfusion arrhythmias and to protect the cardiomyocytes from death caused by hypoxia. The activation of potassium ATP-sensitive channels (K(ATP) channels) is one of the most important mechanisms of action of hydrogen sulfide in the cardiovascular system. The aim of this study was to investigate whether alpha lipoic acid can prevent the occurrence of post-reperfusion arrhythmias in vitro using a Langendorff model of ischemia-reperfusion in rats affecting the K(ATP) channels. Alpha lipoic acid significantly improved post-reperfusion cardiac function (reducing incidence of arrhythmias), especially in a dose of 10(-7)M. These cardiovascular effects of this compound on the measured parameters were reversed by glibenclamide, a selective K(ATP) blocker. Alpha lipoic acid increased the level of sulfane sulfur in the hearts. This may suggest that the positive effects caused by alpha lipoic acid in the cardiovascular system are not only related to its strong antioxidant activity, and the influence on the activity of such enzymes as aldehyde dehydrogenase 2, as previously suggested, but this compound can affect K(ATP) channels. It is possible that this indirect effect of alpha lipoic acid is connected with changes in the release of sulfane sulfur and hydrogen sulfide. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Abnormalities of capillary microarchitecture in a rat model of coronary ischemic congestive heart failure

    PubMed Central

    Chen, Jiqiu; Yaniz-Galende, Elisa; Kagan, Heather J.; Liang, Lifan; Hekmaty, Saboor; Giannarelli, Chiara

    2015-01-01

    The aim of the present study is to explore the role of capillary disorder in coronary ischemic congestive heart failure (CHF). CHF was induced in rats by aortic banding plus ischemia-reperfusion followed by aortic debanding. Coronary arteries were perfused with plastic polymer containing fluorescent dye. Multiple fluorescent images of casted heart sections and scanning electric microscope of coronary vessels were obtained to characterize changes in the heart. Cardiac function was assessed by echocardiography and in vivo hemodynamics. Stenosis was found in all levels of the coronary arteries in CHF. Coronary vasculature volume and capillary density in remote myocardium were significantly increased in CHF compared with control. This occurred largely in microvessels with a diameter of ≤3 μm. Capillaries in CHF had a tortuous structure, while normal capillaries were linear. Capillaries in CHF had inconsistent diameters, with assortments of narrowed and bulged segments. Their surfaces appeared rough, potentially indicating endothelial dysfunction in CHF. Segments of main capillaries between bifurcations were significantly shorter in length in CHF than in control. Transiently increasing preload by injecting 50 μl of 30% NaCl demonstrated that the CHF heart had lower functional reserve; this may be associated with congestion in coronary microcirculation. Ischemic coronary vascular disorder is not limited to the main coronary arteries, as it occurs in arterioles and capillaries. Capillary disorder in CHF included stenosis, deformed structure, proliferation, and roughened surfaces. This disorder in the coronary artery architecture may contribute to the reduction in myocyte contractility in the setting of heart failure. PMID:25659485

  17. An Inhibitor of the δPKC Interaction with the d Subunit of F1Fo ATP Synthase Reduces Cardiac Troponin I Release from Ischemic Rat Hearts: Utility of a Novel Ammonium Sulfate Precipitation Technique

    PubMed Central

    Ogbi, Mourad; Obi, Ijeoma; Johnson, John A.

    2013-01-01

    We have previously reported protection against hypoxic injury by a cell-permeable, mitochondrially-targeted δPKC-d subunit of F1Fo ATPase (dF1Fo) interaction inhibitor [NH2-YGRKKRRQRRRMLA TRALSLIGKRAISTSVCAGRKLALKTIDWVSFDYKDDDDK-COOH] in neonatal cardiac myo-cytes. In the present work we demonstrate the partitioning of this peptide to the inner membrane and matrix of mitochondria when it is perfused into isolated rat hearts. We also used ammonium sulfate ((NH4)2SO4) and chloroform/methanol precipitation of heart effluents to demonstrate reduced card-iac troponin I (cTnI) release from ischemic rat hearts perfused with this inhibitor. 50% (NH4)2SO4 saturation of perfusates collected from Langendorff rat heart preparations optimally precipitated cTnI, allowing its detection in Western blots. In hearts receiving 20 min of ischemia followed by 30, or 60 min of reperfusion, the Mean±S.E. (n = 5) percentage of maximal cTnI release was 30±7 and 60±17, respectively, with additional cTnI release occurring after 150 min of reperfusion. Perfusion of hearts with the δPKC-dF1Fo interaction inhibitor, prior to 20 min of ischemia and 60–150 min of reperfusion, reduced cTnI release by 80%. Additionally, we found that when soybean trypsin inhibitor (SBTI), was added to rat heart effluents, it could also be precipitated using (NH4)2SO4 and detected in western blots. This provided a convenient method for normalizing protein recoveries between groups. Our results support the further development of the δPKC-dF1Fo inhibitor as a potential therapeutic for combating cardiac ischemic injury. In addition, we have developed an improved method for the detection of cTnI release from perfused rat hearts. PMID:23936451

  18. Experimental hypothyroidism increases content of collagen and glycosaminoglycans in the heart.

    PubMed

    Drobnik, J; Ciosek, J; Slotwinska, D; Stempniak, B; Zukowska, D; Marczynski, A; Tosik, D; Bartel, H; Dabrowski, R; Szczepanowska, A

    2009-09-01

    The connective tissue matrix of the heart remains under regulatory influence of the thyroid hormones. Some conflicting data describe the connective tissue changes in subjects with thyroid gland disorders. The aim of the study was to assess the changes of the connective tissue accumulation in the heart of rats in the state of hypothyroidism and to answer the question whether TSH is involved in mechanism of the observed phenomena. Hypothyroidism in rats was induced by methylotiouracil treatment or by thyreoidectomy. The thyroid hormones [freeT3 (fT3), freeT4 (fT4)] and pituitary TSH were measured in plasma with radioimmunological method. The glycosaminoglycans (GAG) and total collagen were measured in heart muscle of both left and right ventricles. Cells from the rat's heart were isolated and cultured. The cells were identified as myofibroblasts by electron microscopy method. The effects of TSH in concentrations ranging from 0.002 to 20 mIU/ml, on connective tissue accumulation in heart myofibroblasts cultures were tested. The primary hypothyroidism was developed both in groups with thyroidectomy and with methylthiouracil. The levels of fT3 and fT4 both in rats with thyreoidectomy and animals treated with methylthiouracil were decreased and TSH level in these two experimental groups was elevated. In the heart of the rats with experimental hypothyroidism increased content of both GAG and collagen was found. Myofibroblast number in culture was increased by TSH. Regardless of the method of its induction, hypothyroidism increased collagen and GAG contents in the heart. TSH is not involved in regulation of collagen and glycosaminoglycans accumulation in the heart of rats affected with primary hypothyroidism.

  19. The effects of the modulation of NMDA receptors by homocysteine thiolactone and dizocilpine on cardiodynamics and oxidative stress in isolated rat heart.

    PubMed

    Srejovic, Ivan; Jakovljevic, Vladimir; Zivkovic, Vladimir; Barudzic, Nevena; Radovanovic, Ana; Stanojlovic, Olivera; Djuric, Dragan M

    2015-03-01

    In light of the limited data concerning the role of N-methyl-D-aspartate (NMDA) receptors in cardiac function, the aim of the present study was to determine the role of NMDA receptors in cardiac function, as well as the possible role played by the oxidative stress induced by the overstimulation of NMDA receptors in isolated rat heart. The hearts of male, Wistar albino rats (n = 24, 12 in each experimental group, BM 180-200 g) were retrogradely perfused at a constant perfusion pressure (70 cm H₂O₂), using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent administration of DL-homocysteine thiolactone (DL-Hcy TLHC) alone, the combination of DL-Hcy TLHC and dizocilpine (MK-801), and MK-801 alone. In the second experimental group, the order of the administration of each of the substances was reversed. The oxidative stress biomarkers, including thiobarbituric acid reactive substances (TBARS), NO(2)(-), O(2)(-) and H₂O₂, were each determined spectrophotometrically. DL-Hcy TLHC and MK-801 depressed cardiac function. DL-Hcy TLHC decreased oxidative stress, a finding that contrasted with the results of the experiments in which MK-801 was administered first. The findings of this study were suggestive of the likely role played by NMDA receptors in the regulation of cardiac function and coronary circulation in isolated rat heart.

  20. Maintained functionality of an implantable radiotelemetric blood pressure and heart rate sensor after magnetic resonance imaging in rats.

    PubMed

    Nölte, I; Gorbey, S; Boll, H; Figueiredo, G; Groden, C; Lemmer, B; Brockmann, M A

    2011-12-01

    Radiotelemetric sensors for in vivo assessment of blood pressure and heart rate are widely used in animal research. MRI with implanted sensors is regarded as contraindicated as transmitter malfunction and injury of the animal may be caused. Moreover, artefacts are expected to compromise image evaluation. In vitro, the function of a radiotelemetric sensor (TA11PA-C10, Data Sciences International) after exposure to MRI up to 9.4 T was assessed. The magnetic force of the electromagnetic field on the sensor as well as radiofrequency (RF)-induced sensor heating was analysed. Finally, MRI with an implanted sensor was performed in a rat. Imaging artefacts were analysed at 3.0 and 9.4 T ex vivo and in vivo. Transmitted 24 h blood pressure and heart rate were compared before and after MRI to verify the integrity of the telemetric sensor. The function of the sensor was not altered by MRI up to 9.4 T. The maximum force exerted on the sensor was 273 ± 50 mN. RF-induced heating was ruled out. Artefacts impeded the assessment of the abdomen and thorax in a dead rat, but not of the head and neck. MRI with implanted radiotelemetric sensors is feasible in principal. The tested sensor maintains functionality up to 9.4 T. Artefacts hampered abdominal and throacic imaging in rats, while assessment of the head and neck is possible.

  1. Agonist of inward rectifier K+ channels enhances the protection of ischemic postconditioning in isolated rat hearts.

    PubMed

    Liao, Z; Feng, Z; Long, C

    2014-07-01

    Selective inhibition of inward rectifier K + channels could abolish the protection mediated by ischemic preconditioning, but the roles of these channels in ischemic postconditioning have not been well characterized. Our study aims to evaluate the effect of inward rectifier K + channels on the protection induced by ischemic postconditioning. Langendorff-perfused rat hearts (n=8 per group) were split into four groups: postconditioning hearts (IPO group); ischemic postconditioning with BaCl 2 hearts (PB group); ischemic postconditioning with zacopride hearts (PZ group); and without ischemic postconditioning (CON group). After suffering 30 minutes of global ischemia, groups IPO, PB and PZ went through 10 seconds of ischemic postconditioning with three different perfusates: respectively, Krebs-Henseleit buffer (IPO group); 20 μmol/L BaCl 2 (antagonist of the channel, PB group); 1 μmol/L zacopride (agonist of the channel, PZ group). At the end of reperfusion, the myocardial performance was better preserved in the PZ group than the other three groups. The PB group showed no significant differences from the CON group. Our study has shown that the I K1 channel agonist zacopride is associated with the enhancement of ischemic postconditioning. © The Author(s) 2014.

  2. Hyperglycemia raises the threshold of levosimendan- but not milrinone-induced postconditioning in rat hearts

    PubMed Central

    2012-01-01

    Background The authors examined whether milrinone and levosimendan could exert cardiac postconditioning effects in rats under normoglycemia and hyperglycemia, and whether the effects could be mediated by mitochondrial permeability transition pore (mPTP). Methods Wistar rats underwent 30-min coronary artery occlusion followed by 2-h reperfusion. The rats received milrinone or levosimendan just before reperfusion under normoglycemic or hyperglycemic conditions with or without atractyloside, an mPTP opener. Results Under normoglycemia, both 30 μg/kg milrinone (29 ± 12%) and 10 μg/kg levosimendan (33 ± 13%) reduced infarct size compared with that in the control (58 ± 7%). Under hyperglycemia, milrinone (34 ± 13%) reduced infarct size at the same dose as under normoglycemia. In contrast, neither 10 nor 30 μg/kg levosimendan protected hyperglycemic hearts, and only 100 μg/kg levosimendan (32 ± 9%) reduced infarct size compared with that in the hyperglycemic control (58 ± 13%). All of these cardioprotective effects under normoglycemia and hyperglycemia are abolished by atractyloside. Conclusion Milrinone and levosimendan exert postconditioning effects via inhibition of mPTP opening. Hyperglycemia raises the threshold of levosimendan-induced postconditioning, while milrinone-induced postconditioning is not influenced by hyperglycemia. PMID:22239823

  3. Hyperglycemia raises the threshold of levosimendan- but not milrinone-induced postconditioning in rat hearts.

    PubMed

    Matsumoto, Shuhei; Cho, Sungsam; Tosaka, Shinya; Higashijima, Ushio; Maekawa, Takuji; Hara, Tetsuya; Sumikawa, Koji

    2012-01-12

    The authors examined whether milrinone and levosimendan could exert cardiac postconditioning effects in rats under normoglycemia and hyperglycemia, and whether the effects could be mediated by mitochondrial permeability transition pore (mPTP). Wistar rats underwent 30-min coronary artery occlusion followed by 2-h reperfusion. The rats received milrinone or levosimendan just before reperfusion under normoglycemic or hyperglycemic conditions with or without atractyloside, an mPTP opener. Under normoglycemia, both 30 μg/kg milrinone (29 ± 12%) and 10 μg/kg levosimendan (33 ± 13%) reduced infarct size compared with that in the control (58 ± 7%). Under hyperglycemia, milrinone (34 ± 13%) reduced infarct size at the same dose as under normoglycemia. In contrast, neither 10 nor 30 μg/kg levosimendan protected hyperglycemic hearts, and only 100 μg/kg levosimendan (32 ± 9%) reduced infarct size compared with that in the hyperglycemic control (58 ± 13%). All of these cardioprotective effects under normoglycemia and hyperglycemia are abolished by atractyloside. Milrinone and levosimendan exert postconditioning effects via inhibition of mPTP opening. Hyperglycemia raises the threshold of levosimendan-induced postconditioning, while milrinone-induced postconditioning is not influenced by hyperglycemia.

  4. The effects of interferon-alpha/beta in a model of rat heart transplantation

    NASA Technical Reports Server (NTRS)

    Slater, A. D.; Klein, J. B.; Sonnenfeld, G.; Ogden, L. L. 2nd; Gray, L. A. Jr

    1992-01-01

    Interferons have multiple immunologic effects. One such effect is the activation of expression of cell surface antigens. Interferon alpha/beta enhance expression of class I but not class II histocompatibility antigens. Contradictory information has been published regarding the effect of interferon-alpha/beta administration in patients with kidney transplantation. In a model of rat heart transplantation we demonstrated that administration of interferon-alpha/beta accelerated rejection in a dose-dependent fashion in the absence of maintenance cyclosporine. Animals treated with maintenance cyclosporine had evidence of increased rejection at 20 days that was resolved completely at 45 days with cyclosporine alone.

  5. A novel experimental model of erectile dysfunction in rats with heart failure using volume overload

    PubMed Central

    Silva, Fábio Henrique; Veiga, Frederico José Reis; Mora, Aline Gonçalves; Heck, Rodrigo Sader; De Oliveira, Caroline Candida; Gambero, Alessandra; Franco-Penteado, Carla Fernanda; Antunes, Edson; Gardner, Jason D.; Priviero, Fernanda Bruschi Marinho

    2017-01-01

    Background Patients with heart failure (HF) display erectile dysfunction (ED). However, the pathophysiology of ED during HF remains poorly investigated. Objective This study aimed to characterize the aortocaval fistula (ACF) rat model associated with HF as a novel experimental model of ED. We have undertaken molecular and functional studies to evaluate the alterations of the nitric oxide (NO) pathway, autonomic nervous system and oxidative stress in the penis. Methods Male rats were submitted to ACF for HF induction. Intracavernosal pressure in anesthetized rats was evaluated. Concentration-response curves to contractile (phenylephrine) and relaxant agents (sodium nitroprusside; SNP), as well as to electrical field stimulation (EFS), were obtained in the cavernosal smooth muscle (CSM) strips from sham and HF rats. Protein expression of endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) and phosphodiestarese-5 in CSM were evaluated, as well as NOX2 (gp91phox) and superoxide dismutase (SOD) mRNA expression. SOD activity and thiobarbituric acid reactive substances (TBARs) were also performed in plasma. Results HF rats display erectile dysfunction represented by decreased ICP responses compared to sham rats. The neurogenic contractile responses elicited by EFS were greater in CSM from the HF group. Likewise, phenylephrine-induced contractions were greater in CSM from HF rats. Nitrergic response induced by EFS were decreased in the cavernosal tissue, along with lower eNOS, nNOS and phosphodiestarese-5 protein expressions. An increase of NOX2 and SOD mRNA expression in CSM and plasma TBARs of HF group were detected. Plasma SOD activity was decreased in HF rats. Conclusion ED in HF rats is associated with decreased NO bioavailability in erectile tissue due to eNOS/nNOS dowregulation and NOX2 upregulation, as well as hypercontractility of the penis. This rat model of ACF could be a useful tool to evaluate the molecular alterations of ED associated with HF. PMID

  6. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract.

    PubMed

    Heshmati, Elaheh; Shirpoor, Alireza; Kheradmand, Fatemeh; Alizadeh, Mohammad; Gharalari, Farzaneh Hosseini

    2018-01-01

    Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca 2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.

  7. Cardio Protective Effects of Lumbrokinase and Dilong on Second-Hand Smoke-Induced Apoptotic Signaling in the Heart of a Rat Model.

    PubMed

    Liao, Hung-En; Lai, Chao-Hung; Ho, Tsung-Jung; Yeh, Yu-Lan; Jong, Gwo-Ping; Kuo, Wu-Hsien; Chung, Li-Chin; Pai, Pei-ying; Wen, Su-Ying; Huang, Chih-Yang

    2015-06-30

    Exposure to second-hand tobacco smoke (SHS) has been epidemiologically linked to heart disease among non-smokers. However, the molecular mechanism behind SHS-induced cardiac disease is not well known. This study found that SD rats exposed to cigarette smoke at a dose of 10 cigarettes for 30 min twice a day for 1 month had a reduced left ventricle-to-tibia length ratio (mg/mm), increased cardiomyocyte apoptosis by TUNEL assay and a wider interstitial space by H&E staining. However, lumbrokinase and dilong both reversed the effects of SHS. Western blotting demonstrated significantly increased expression of the pro-apoptotic protein caspase-3 in the hearts of the rats exposed to SHS. Elevated protein expression levels of Fas, FADD and the apoptotic initiator activated caspase-8, a molecule in the death-receptor-dependent pathway, coupled with increased t-Bid and apoptotic initiator activated caspase-9 were found. Molecules in the mitochondria-dependent pathway, which disrupts mitochondrial membrane potential, were also found in rats exposed to SHS. These factors indicate myocardial apoptosis. However, treatment with lumbrokinase and dilong inhibited SHS-induced apoptosis. Regarding regulation of the survival pathway, we found in western blot analysis that cardiac protein expression of pAkt, Bcl2, and Bcl-xL was significantly down-regulated in rats exposed to SHS. These effects were reversed with lumbrokinase and dilong treatment. The effects of SHS on cardiomyocytes were also found to be mediated by the Fas death receptor-dependent apoptotic pathway, an unbalanced mitochondria membrane potential and decreased survival signaling. However, treatment with both lumbrokinase and dilong inhibited the effects of SHS. Our data suggest that lumbrokinase and dilong may prevent heart disease in SHS-exposed non-smokers.

  8. Isovolumic loading of the failing heart by intraventricular placement of a spring expander attenuates cardiac atrophy after heterotopic heart transplantation.

    PubMed

    Pokorný, Martin; Mrázová, Iveta; Šochman, Jan; Melenovský, Vojtěch; Malý, Jiří; Pirk, Jan; Červenková, Lenka; Sadowski, Janusz; Čermák, Zdeněk; Volenec, Karel; Vacková, Šárka; Maxová, Hana; Červenka, Luděk; Netuka, Ivan

    2018-05-09

    Cardiac atrophy is the most common complication of prolonged application of the left ventricle assist device in patients with advanced heart failure. Our aim was to evaluate the course of unloading-induced cardiac atrophy in rats with failing hearts, and to examine if increased isovolumic loading obtained by intraventricular implantation of an especially designed spring expander would attenuate this process. Heterotopic abdominal heart transplantation (HT x ) was used as a rat model of heart unloading. Heart failure (HF) was induced by volume overload achieved by creation of the aorto-caval fistula. The degree of cardiac atrophy was assessed as the weight ratio of the heterotopically transplanted heart (HW) to the control heart. Isovolumic loading was increased by intraventricular implantation of a stainless steel three-branch spring expander. The course of cardiac atrophy was evaluated on days 7, 14, 21 and 28 after HT x Seven-days unloading by HT x in failing hearts sufficed to substantially decrease HW (-59 ± 3%), the decrease progressed when measured on days 14, 21 and 28 after HT x Implantation of the spring expander significantly reduced the decreases in whole HW at all the time-points (-39 ± 3 vs. -59 ± 3, -52 ± 2 vs. -69 ± 3, -51 ± 2 vs. - 71 ± 2 and -44 ± 2 vs. -71 ± 3%, respectively; p<0.05 in each case). We conclude that the enhanced isovolumic heart loading obtained by implantation of the spring expander attenuates the development of unloading-induced cardiac atrophy in the failing rat heart. ©2018 The Author(s).

  9. Protection of ischaemic-reperfused rat heart by dimethylamiloride is associated with inhibition of mitochondrial permeability transition.

    PubMed

    Prendes, María G Marina; Torresín, Emilia; González, Marcela; Fernández, María A; Perazzo, Juan C; Savino, Enrique A; Varela, Alicia

    2008-02-01

    1. The aim of the present study was to assess whether protection afforded by the Na(+)/H(+) exchanger blocker dimethylamiloride (DMA) is associated with inhibition of mitochondrial permeability transition (MPT). The effects of DMA were compared with those of cyclosporine (Cs) A, an inhibitor of MPT. 2. Rat hearts were Langendorff perfused with Krebs'-bicarbonate medium containing 10 mmol/L glucose and were subjected to 25 min no-flow global ischaemia and 30 min reperfusion in the presence or absence of 10 micromol/L DMA or 0.2 micromol/L CsA. Cell viability was measured using tetrazolium stain. The MPT was determined by loading hearts with 2-deoxy-[(3)H]-glucose (2DG), which enters mitochondria only during MPT. Total heart 2DG content as an estimation of the extent of tissue damage was also measured. To assess whether DMA has any direct effect on glycolysis, a cell-free heart extract containing all the glycolytic enzymes was used. 3. Dimethylamiloride improved functional recovery (rate-pressure product) from 24 +/- 7 to 68 +/- 11% (P < 0.01) at reperfusion end, attenuated the increase in left ventricular end-diastolic pressure (from 29 +/- 7 to 6 +/- 3% 10 min after reperfusion onset; P < 0.01), improved cell viability (from 21.2 +/- 6.6 to 69.6 +/- 7.1% at reperfusion end; P < 0.05) and lessened lactate accumulation at the end of ischaemia (119 +/- 15 vs 163 +/- 14 micromol/g dry weight; P < 0.05). Dimethylamiloride limited MPT: 2DG mitochondrial entrapment, being 33.1 +/- 14.2 and 96.3 +/- 14.0 at reperfusion end in the treated and control hearts, respectively (P < 0.05), and concomitantly raised total 2DG content (51.3 +/- 4.4 vs 86.8 +/- 1.7 x 10(3) d.p.m./g wet weight in control and treated groups, respectively; P < 0.05). Cyclosporine A improved functional recovery and attenuated the amplitude of ventricular diastolic pressure in ischaemic-reperfused hearts. It also reduced mitochondrial entrapment (67.3 +/- 7.7%; P < 0.05 vs control) and increased total cell

  10. Influence of antipsychotic agents on heart rate variability in male WKY rats: implications for cardiovascular safety.

    PubMed

    Wang, Ying-Chieh; Chen, Chun-Yu; Kuo, Terry B J; Lai, Ching-Jung; Yang, Cheryl C H

    2012-06-01

    Sudden cardiac death is higher among schizophrenic patients and is associated with parasympathetic hypoactivity. Antipsychotic agents are highly suspected to be a precipitating factor. Thus, we aimed to test if the antipsychotics haloperidol, risperidone and clozapine affect cardiac autonomic function, excluding the confounding effect of altered sleep structure by the drugs. In this study, haloperidol, risperidone and clozapine were given separately by intraperitoneal injection to male Wistar-Kyoto rats for 5 days. Electroencephalogram (EEG), electromyogram (EMG) and electrocardiographic signals were recorded at baseline and 5 days after drug treatments. Sleep scoring was based on EEG and EMG signals. Cardiac autonomic function was assessed using heart rate variability analysis. Clozapine increased heart rate and suppressed cardiac sympathetic and parasympathetic activity. Cardiac acceleration was more severe during sleep. Haloperidol tended to decrease heart rate while risperidone mildly increased heart rate; however, their effects were less obvious than those of clozapine. There was a significant drug-by-stage interaction on several heart rate variability measures. Taking this evidence as a whole, we conclude that haloperidol has a better level of cardiovascular safety than either risperidone or clozapine. Application of this approach to other psychotropic agents in the future will be a useful and helpful way to evaluate the cardiovascular safety of the various psychotropic medications that are in clinical use. Copyright © 2012 S. Karger AG, Basel.

  11. Hydroxytyrosol and its complex forms (secoiridoids) modulate aorta and heart proteome in healthy rats: Potential cardio-protective effects.

    PubMed

    Catalán, Úrsula; Rubió, Laura; López de Las Hazas, Maria-Carmen; Herrero, Pol; Nadal, Pedro; Canela, Núria; Pedret, Anna; Motilva, Maria-José; Solà, Rosa

    2016-10-01

    Hydroxytyrosol (HT) is the major phenolic compound in virgin olive oil (VOO) in both free and complex forms (secoiridoids; SEC). Proteomics of cardiovascular tissues such as aorta or heart represents a promising tool to uncover the mechanisms of action of phenolic compounds in healthy animals. Twelve female Wistar rats were separated into three groups: a standard diet and two diets supplemented in phenolic compounds (HT and SEC) adjusted to 5 mg/kg/day during 21 days. Proteomic analyses of aorta and heart tissues were performed by nano-LC and MS. Ingenuity Pathway Analysis was used to generate interaction networks. HT or SEC modulated aorta and heart proteome compared to the standard diet. The top-scored networks were related to Cardiovascular System. HT and SEC downregulated proteins related to proliferation and migration of endothelial cells and occlusion of blood vessels in aorta and proteins related to heart failure in heart tissue. SEC showed higher fold change values compared to HT, attributed to higher concentration of HT detected in heart tissue. Changes at proteomic level in cardiovascular tissues may partially account for the underlying mechanisms of VOO phenols cardiovascular protection being the SEC effects higher than free HT. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Establishing the framework to support bioartificial heart fabrication using fibrin-based three-dimensional artificial heart muscle.

    PubMed

    Hogan, Matthew; Mohamed, Mohamed; Tao, Ze-Wei; Gutierrez, Laura; Birla, Ravi

    2015-02-01

    Only 3000 heart transplants are performed in the USA every year, leaving some 30 000-70 000 Americans without proper care. Current treatment modalities for heart failure have saved many lives yet still do not correct the underlying problems of congestive heart failure. Tissue engineering represents a potential field of study wherein a combination of cells, scaffolds, and/or bioreactors can be utilized to create constructs to mimic, replace, and/or repair defective tissue. The focus of this study was to generate a bioartificial heart (BAH) model using artificial heart muscle (AHM), composed of fibrin gel and neonatal rat cardiac myocytes, and a decellularized scaffold, formed by subjecting an adult rat heart to a series of decellularization solutions. By suturing the AHM around the outside of the decellularized heart and culturing while suspended in media, we were able to retain functional cardiac cells on the scaffold as evinced by visible contractility. Observed contractility rate was correlated with biopotential measurements to confirm essential functionality of cardiac constructs. Cross-sections of the BAH show successful decellularization of the scaffold and contiguous cell-rich AHM around the perimeter of the heart. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. A Comparison of Psychotomimetic Drug Effects on Rat Brain Norepinephrine Metabolism

    DTIC Science & Technology

    1973-02-19

    189, No. I Copyright a 1974 by The Williams & Wilkins Co. inted in U.S.A. 7:’... .. .A K. (PA COMPARISON OF PSYCHOTOMIMETIC,_RUG EFFECTS ON...GOLDSTEIN, WILLIAM BOGGAN AND DANIEL X. FREEDMAN: A comparison of psychotomimetic drug effects on rat brain norepinephrine metabolism. J. Pharmacol. Exp...Thor. 189: 42-50,1974. V The effects of LSD, psilocybin, mescaline, amphetamine and cold water swimming stress on the metabolism of ’H-norepinephrine

  14. The Heart Protection Effect of Alcalase Potato Protein Hydrolysate Is through IGF1R-PI3K-Akt Compensatory Reactivation in Aging Rats on High Fat Diets

    PubMed Central

    Hu, Wei-Syun; Ting, Wei-Jen; Chiang, Wen-Dee; Pai, Peiying; Yeh, Yu-Lan; Chang, Chung-Ho; Lin, Wan-Teng; Huang, Chih-Yang

    2015-01-01

    The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway. PMID:25950762

  15. The Heart Protection Effect of Alcalase Potato Protein Hydrolysate Is through IGF1R-PI3K-Akt Compensatory Reactivation in Aging Rats on High Fat Diets.

    PubMed

    Hu, Wei-Syun; Ting, Wei-Jen; Chiang, Wen-Dee; Pai, Peiying; Yeh, Yu-Lan; Chang, Chung-Ho; Lin, Wan-Teng; Huang, Chih-Yang

    2015-05-05

    The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway.

  16. beta-Methyl-15-p-iodophenylpentadecanoic acid metabolism and kinetics in the isolated rat heart.

    PubMed

    DeGrado, T R; Holden, J E; Ng, C K; Raffel, D M; Gatley, S J

    1989-01-01

    The use of 15-p-iodophenyl-beta-methyl-pentadecanoic acid (beta Me-IPPA) as an indicator of long chain fatty acid (LCFA) utilization in nuclear medicine studies was evaluated in the isolated, perfused, working rat heart. Time courses of radioactivity (residue curves) were obtained following bolus injections of both beta Me-IPPA and its straight chain counterpart 15-p-iodophenyl-pentadecanoic acid (IPPA). IPPA kinetics clearly indicated flow independent impairment of fatty acid oxidation caused by the carnitine palmitoyltransferase I inhibitor 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). In contrast, beta Me-IPPA kinetics were insensitive to changes in fatty acid oxidation rate and net utilization of long chain fatty acid. Analysis of radiolabeled species in coronary effluent and heart homogenates showed the methylated fatty acid to be readily incorporated into complex lipids but a poor substrate for oxidation. POCA did not significantly alter metabolism of the tracer, suggesting that the tracer is poorly metabolized beyond beta Me-IPPA-CoA in the oxidative pathway.

  17. The safety assessment of saffron (Crocus sativus L.) on sympathovagal balance and heart rate variability; a comparison with amiodarone.

    PubMed

    Joukar, Siyavash; Dehesh, Mohammad-Moein

    2015-12-01

    Dry stigmas of the Crocus sativus L. (Saffron) are well known in world as a popular flavouring and therapeutic agent. The anxiolytic, antidepressant, anticonvulsant and antiarrhythmic effects of saffron suggest that it may affect the autonomic control of the heart. This study assessed its safety on cardiac sympathovagal balance and heart rate variability in rat. Experimental groups were control, Saf50, Saf100, Saf200 (received saffron at dosages of 50 and 100 and 200 mg/kg/d, orally, respectively) and Amio (received 30 mg/mL/kg/d of amiodarone, orally, for 7 days) groups. On day 8, the frequency domain and time domain indices of animals' electrocardiograms were calculated. The heart rate decreased and RR interval increased in Saf200 and Amio groups (P<.05 vs other groups). Square root of the mean squared differences of successive RR intervals enhanced in all treated groups, however, was only significant in Amio group (P<.05). The SD1/SD2 ratio was higher in Saf200 and Amio groups. Both low-frequency (LF) and high-frequency (HF) parameters were higher, and the LF/HF ratio was non-significantly lower in treated groups. The findings suggest that saffron not only has no harmful effect on activity of cardiac autonomic nervous system, but it may improve the stability of heart sympathovagal balance in normal rat. © 2016 John Wiley & Sons Ltd.

  18. Ginger extract mitigates ethanol-induced changes of alpha and beta - myosin heavy chain isoforms gene expression and oxidative stress in the heart of male wistar rats.

    PubMed

    Shirpoor, Alireza; Zerehpoosh, Mitra; Ansari, Mohammad Hasan Khadem; Kheradmand, Fatemeh; Rasmi, Yousef

    2017-09-01

    The association between ethanol consumption and heart abnormalities, such as chamber dilation, myocyte damage, ventricular hypertrophy, and hypertension is well known. However, underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on alpha and beta - myosin heavy chain (MHC) isoforms gene expression transition and oxidative stress in rats' heart. It was also planned to find out whether ginger extract mitigated the abnormalities induced by ethanol in rats' heart. Male wistar rats were divided into three groups of eight animals as follows: Control, ethanol, and ginger extract treated ethanolic (GETE) groups. After six weeks of treatment, the results revealed a significant increase in the β-MHC gene expression, 8- OHdG amount, and NADPH oxidase level. Furthermore, a significant decrease in the ratio of α-MHC/β-MHC gene expression to the amount of paraoxonase enzyme in the ethanol group compared to the control group was found. The consumption of Ginger extract along with ethanol ameliorated the changes in MHC isoforms gene expression and reduced the elevated amount of 8-OHdG and NADPH oxidase. Moreover, compared to the consumption of ethanol alone, it increased the paraoxonase level significantly. These findings indicate that ethanol-induced heart abnormalities may in part be associated with MHC isoforms changes mediated by oxidative stress, and that these effects can be alleviated by using ginger extract as an antioxidant molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Seasonal superoxide overproduction and endothelial activation in guinea-pig heart; seasonal oxidative stress in rats and humans.

    PubMed

    Konior, Anna; Klemenska, Emilia; Brudek, Magdalena; Podolecka, Ewa; Czarnowska, Elżbieta; Beręsewicz, Andrzej

    2011-04-01

    Seasonality in endothelial dysfunction and oxidative stress was noted in humans and rats, suggesting it is a common phenomenon of a potential clinical relevance. We aimed at studying (i) seasonal variations in cardiac superoxide (O(2)(-)) production in rodents and in 8-isoprostane urinary excretion in humans, (ii) the mechanism of cardiac O(2)(-) overproduction occurring in late spring/summer months in rodents, (iii) whether this seasonal O(2)(-)-overproduction is associated with a pro-inflammatory endothelial activation, and (iv) how the summer-associated changes compare to those caused by diabetes, a classical cardiovascular risk factor. Langendorff-perfused guinea-pig and rat hearts generated ~100% more O(2)(-), and human subjects excreted 65% more 8-isoprostane in the summer vs. other seasons. Inhibitors of NADPH oxidase, xanthine oxidase, and NO synthase inhibited the seasonal O(2)(-)-overproduction. In the summer vs. other seasons, cardiac NADPH oxidase and xanthine oxidase activity, and protein expression were increased, the endothelial NO synthase and superoxide dismutases were downregulated, and, in guinea-pig hearts, adhesion molecules upregulation and the endothelial glycocalyx destruction associated these changes. In guinea-pig hearts, the summer and a streptozotocin-induced diabetes mediated similar changes, yet, more severe endothelial activation associated the diabetes. These findings suggest that the seasonal oxidative stress is a common phenomenon, associated, at least in guinea-pigs, with the endothelial activation. Nonetheless, its biological meaning (regulatory vs. deleterious) remains unclear. Upregulated NADPH oxidase and xanthine oxidase and uncoupled NO synthase are the sources of the seasonal O(2)(-)-overproduction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Long-term low dose dietary resveratrol supplement reduces cardiovascular structural and functional deterioration in chronic heart failure in rats.

    PubMed

    Ahmet, Ismayil; Tae, Hyun-Jin; Lakatta, Edward G; Talan, Mark

    2017-03-01

    A short-term exposure to resveratrol at high dosages exerts a remarkable cardioprotective effect. Whether a long-term exposure to resveratrol at low dosages that can be obtained through consumption of a resveratrol-rich diet is beneficial to heart diseases is unknown. We tested the effects of a resveratrol-enriched diet on cardiovascular remodeling of chronic heart failure (CHF) in rats resulting from permanent ligation of left coronary artery. Two weeks after surgery, rats were started on either a resveratrol-enriched (R; 5 mg/kg per day; n = 23) or normal (Control; n = 23) diet for next 10 months. Serial echocardiography in Control showed a significant decline in LV ejection fraction, increases in LV end-systolic and end-diastolic volumes, and expansion in myocardial infarct from pre-treatment values. In R, compared with Control, there were substantial improvements in those parameters. End-point LV pressure-volume loop analysis showed a significantly improved LV systolic function and AV-coupling, an index of energy transfer efficacy between the heart and aortic tree, in R compared with Control (p < 0.05). Aortic pulse wave velocity, a measure of arterial stiffness, was significantly lower in R (389 ± 15 cm/s; p < 0.05) compared with Control (489 ± 38 cm/s). These results demonstrated that long-term dietary resveratrol supplement reduces cardiovascular structural and functional deterioration in CHF.

  1. Effects of electromagnetic radiation from 3G mobile phone on heart rate, blood pressure and ECG parameters in rats.

    PubMed

    Colak, Cengiz; Parlakpinar, Hakan; Ermis, Necip; Tagluk, Mehmet Emin; Colak, Cemil; Sarihan, Ediz; Dilek, Omer Faruk; Turan, Bahadir; Bakir, Sevtap; Acet, Ahmet

    2012-08-01

    Effects of electromagnetic energy radiated from mobile phones (MPs) on heart is one of the research interests. The current study was designed to investigate the effects of electromagnetic radiation (EMR) from third-generation (3G) MP on the heart rate (HR), blood pressure (BP) and ECG parameters and also to investigate whether exogenous melatonin can exert any protective effect on these parameters. In this study 36 rats were randomized and evenly categorized into 4 groups: group 1 (3G-EMR exposed); group 2 (3G-EMR exposed + melatonin); group 3 (control) and group 4 (control + melatonin). The rats in groups 1 and 2 were exposed to 3G-specific MP's EMR for 20 days (40 min/day; 20 min active (speech position) and 20 min passive (listening position)). Group 2 was also administered with melatonin for 20 days (5 mg/kg daily during the experimental period). ECG signals were recorded from cannulated carotid artery both before and after the experiment, and BP and HR were calculated on 1st, 3rd and 5th min of recordings. ECG signals were processed and statistically evaluated. In our experience, the obtained results did not show significant differences in the BP, HR and ECG parameters among the groups both before and after the experiment. Melatonin, also, did not exhibit any additional effects, neither beneficial nor hazardous, on the heart hemodynamics of rats. Therefore, the strategy (noncontact) of using a 3G MP could be the reason for ineffectiveness; and use of 3G MP, in this perspective, seems to be safer compared to the ones used in close contact with the head. However, further study is needed for standardization of such an assumption.

  2. Rats' Memory for Time and Relational Responding in the Duration-Comparison Procedure

    ERIC Educational Resources Information Center

    Santi, Angelo; Hoover, Claire; Simmons, Sabrina

    2011-01-01

    Rats were trained in a duration-comparison task to press one lever if the comparison duration ("c") was 1.2-s shorter than a standard duration ("s"), and another lever if c was 1.2-s longer than s. The interval between s and c duration was 1 s. The 10 duration pairs used during training controlled for the absolute duration of "c" and the total…

  3. Effects of two newly synthesized analogues of lidocaine on rat arterial blood pressure and heart rate.

    PubMed

    Al Rasheed, N M; Al Sayed, M I; Al Zuhair, H H; Al Obaid, A R; Fatani, A J

    2001-04-01

    Two new analogues of lidocaine were synthesized at the College of Pharmacy, King Saud University: compound I (Methyl-2-[2-(N,N-diethylamino) acetamido]-3-cyano-4,5-dimethylbenzoate) and compound II (Methyl-2-[2-(piperidino) acetamido]-3-cyano-4,5-dimethylbenzoate). Their influence on the arterial blood pressure and the heart rate of urethane-anaesthetized rats was studied and compared with the actions of lidocaine. Compounds I, II and lidocaine induced significant dose-dependent decreases in the arterial blood pressure and heart rate, which usually returned to basal values within 3-5 min. There were significant differences in the potency of the three compounds in producing their effects on blood pressure and heart rate (P< 0.0001, ANOVA). Compound II was 14 and 6 times more potent in reducing blood pressure and 8 and 2 times more capable of reducing the heart rate than lidocaine and compound I, respectively. The results of this study also indicated the ineffectiveness of antagonists of autonomic, histaminergic and 5-HT receptor, and various vasodilators in blocking the actions of the three compounds on blood pressure and heart rate. Pretreatment with CaCl(2)significantly reduced the hypotension and bradycardia induced by the three compounds, suggesting the involvement of calcium channels, probably of the L type. Several possible mechanisms are postulated. In conclusion, the results direct attention to the capability of the two new compounds to decrease blood pressure and heart rate; affects that may have clinical potential. Copyright 2001 Academic Press.

  4. In vivo dose response relationship between physostigmine and cholinesterase activity in RBC and tissues of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somani, S.M.; Dube, S.N.

    1989-01-01

    Dose response of physostigmine (Phy) was studied in rat using various doses. Rats were sacrificed 15 min after Phy administration. Blood and tissues were analyzed for ChE activity by radiometric method and Phy concentration by HPLC method. A comparison of ChE values in different tissues of rats indicated that ChE activity was highest in brain and least in diaphragm. The enzyme activity was eleven times more in brain as compared to diaphragm. Phy produced a dose-dependent inhibition of ChE in RBC, brain and diaphragm from 50 to 200 {mu}g/kg, then ChE inhibition was plateaued from 200 to 500 {mu}g/kg inmore » these tissues. A dose related ChE inhibition was seen in heart and thigh muscle from 50 to 500 {mu}g/kg. Phy concentration increased linearly from 50 to 400 {mu}g/kg in plasma, brain, heart and thigh muscle. These results indicate that ChE inhibition is linear up to 200 {mu}g/kg in RBC, 150 {mu}g/kg in brain and 300 {mu}g/kg in heart. This linearity is not consistent in other tissues.« less

  5. In vitro sensitivity of cholinesterases and [3H]oxotremorine-M binding in heart and brain of adult and aging rats to organophosphorus anticholinesterases.

    PubMed

    Mirajkar, Nikita; Pope, Carey N

    2008-10-15

    Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [(3)H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [(3)H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders.

  6. IN VITRO SENSITIVITY OF CHOLINESTERASES AND [3H]OXOTREMORINE-M BINDING IN HEART AND BRAIN OF ADULT AND AGING RATS TO ORGANOPHOSPHORUS ANTICHOLINESTERASES

    PubMed Central

    Mirajkar, Nikita; Pope, Carey N.

    2008-01-01

    Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [3H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [3H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders. PMID:18761328

  7. Losartan corrects abnormal frequency response of renal vasculature in congestive heart failure.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2003-11-01

    In congestive heart failure, renal blood flow is decreased and renal vascular resistance is increased in a setting of increased activity of both the sympathetic nervous and renin-angiotensin systems. The renal vasoconstrictor response to renal nerve stimulation is enhanced. This is associated with an abnormality in the low-pass filter function of the renal vasculature wherein higher frequencies (> or =0.01 Hz) within renal sympathetic nerve activity are not normally attenuated and are passed into the renal blood flow signal. This study tested the hypothesis that excess angiotensin II action mediates the abnormal frequency response characteristics of the renal vasculature in congestive heart failure. In anesthetized rats, the renal vasoconstrictor response to graded frequency renal nerve stimulation was significantly greater in congestive heart failure than in control rats. Losartan attenuated the renal vasoconstrictor response to a significantly greater degree in congestive heart failure than in control rats. In control rats, the frequency response of the renal vasculature was that of a first order (-20 dB/frequency decade) low-pass filter with a corner frequency (-3 dB, 30% attenuation) of 0.002 Hz and 97% attenuation (-30 dB) at > or =0.1 Hz. In congestive heart failure rats, attenuation did not exceed 45% (-5 dB) over the frequency range of 0.001-0.6 Hz. The frequency response of the renal vasculature was not affected by losartan treatment in control rats but was completely restored to normal by losartan treatment in congestive heart failure rats. The enhanced renal vasoconstrictor response to renal nerve stimulation and the associated abnormality in the frequency response characteristics of the renal vasculature seen in congestive heart failure are mediated by the action of angiotensin II on renal angiotensin II AT1 receptors.

  8. Effect of progesterone-carbachol derivative on perfusion pressure and coronary resistance in isolated rat heart: via activation of the M2 muscarinic receptor.

    PubMed

    Figueroa-Valverde, Lauro; Diaz-Cedillo, Francisco; Garcia-Cervera, Elodia; Gomez, Eduardo Pool; Lopez-Ramos, Maria

    2014-01-01

    The present study was designed to investigate the effects of progesterone-carbachol derivative on perfusion pressure and coronary resistance in rats. An additional aim was to identify the molecular mechanisms involved. The Langendorff model was used to measure perfusion pressure and coronary resistance changes in isolated rat heart after progesterone-carbachol derivative alone and after the following compounds; mifepristone (progesterone receptor blocker), yohimbine (α2 adreno-receptor antagonist), ICI 118,551 (selective β2 receptor blocker), atropine (non-selective muscarinic receptor antagonist), methoctramine (antagonist of M2 receptor) and L-NAME (inhibitor of nitric oxide synthase). The results show that progesterone-carbachol derivative [10(-9) mM] significantly decreased perfusion pressure (P=0.005) and coronary resistance (P=0.006) in isolated rat heart. Additionally, the effect of progesterone-carbachol on perfusion pressure [10(-9) to 10(-4) mM] was only blocked in the presence of methoctramine and L-NAME. These data suggest that progesterone derivative exert its effect on perfusion pressure via activation of the M2 muscarinic. In addition, this phenomenon involves stimulation of nitric oxide synthase (NOS).

  9. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.

    PubMed

    Cunha, Telma F; Bechara, Luiz R G; Bacurau, Aline V N; Jannig, Paulo R; Voltarelli, Vanessa A; Dourado, Paulo M; Vasconcelos, Andrea R; Scavone, Cristóforo; Ferreira, Júlio C B; Brum, Patricia C

    2017-04-01

    We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF. NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen

  10. Factors affecting the supply of glucose to the heart of the rat, in vivo.

    PubMed Central

    Daniel, P M; Love, E R; Pratt, O E

    1980-01-01

    1. The influx of glucose into the heart of intact, living, anaesthetized rats was measured when the levels of insulin the blood were (a) low (as a result of fasting), (b) normal, and (c) high (as a result of injecting insulin). The findings showed that the transport of glucose into cardiac cells is carrier-mediated and is strongly insulin-independent. 2. The major barrier to the supply glucose to the heart from the circulating blood is at the surface membrane of the cardiac cells, rather than at the endothelium of the cardiac capillaries. 3. The extracellular space of the heart was measured and was found to be approximately 25% of the cardiac tissue. 4. During life, glucose, as well as its analogue, 3-O-methylglucose passes across the membranes of the cells of the heart by means of a transport system which is strongly dependent upon insulin and appears to be carried-mediated. A likely explanation for the effect of insulin is that it increases considerably the affinity of the transport carrier for glucose. Saturation of the carrier takes place when the levels of insulin and of glucose in the blood are high. However, when the concentration of insulin is low, e.g. during a fast, the affinity of the carrier for glucose is reduced so that saturation cannot be demonstrated. 5. It is suggested that the low level of insulin that is found in the blood in the early morning, which is due to the night fast, may lead to the cardiac dysfunction which often develops at that time. PMID:6788938

  11. Aerobic training and l-arginine supplementation promotes rat heart and hindleg muscles arteriogenesis after myocardial infarction.

    PubMed

    Ranjbar, Kamal; Rahmani-Nia, Farhad; Shahabpour, Elham

    2016-09-01

    Arteriogenesis is a main defense mechanism to prevent heart and local tissues dysfunction in occlusive artery disease. TGF-β and angiostatin have a pivotal role in arteriogenesis. We tested the hypothesis that aerobic training and l-arginine supplementation promotes cardiac and skeletal muscles arteriogenesis after myocardial infarction (MI) parallel to upregulation of TGF-β and downregulation of angiostatin. For this purpose, 4 weeks after LAD occlusion, 50 male Wistar rats were randomly distributed into five groups: (1) sham surgery without MI (sham, n = 10), (2) control-MI (Con-MI, n = 10), (3) l-arginine-MI (La-MI, n = 10), (4) exercise training-MI (Ex-MI, n = 10), and (5) exercise and l-arginine-MI (Ex + La-MI). Exercise training groups running on a treadmill for 10 weeks with moderate intensity. Rats in the l-arginine-treated groups drank water containing 4 % l-arginine. Arteriolar density with different diameters (11-25, 26-50, 51-75, and 76-150 μm), TGF-β, and angiostatin gene expression were measured in cardiac (area at risk) and skeletal (soleus and gastrocnemius) muscles. Smaller arterioles decreased in cardiac after MI. Aerobic training and l-arginine increased the number of cardiac arterioles with 11-25 and 26-50 μm diameters parallel to TGF-β overexpression. In gastrocnemius muscle, the number of arterioles/mm(2) was only increased in the 11 to 25 μm in response to training with and without l-arginine parallel to angiostatin downregulation. Soleus arteriolar density with different size was not different between experimental groups. Results showed that 10 weeks aerobic exercise training and l-arginine supplementation promotes arteriogenesis of heart and gastrocnemius muscles parallel to overexpression of TGF-β and downregulation of angiostatin in MI rats.

  12. Short-term effects of β2-AR blocker ICI 118,551 on sarcoplasmic reticulum SERCA2a and cardiac function of rats with heart failure.

    PubMed

    Gong, Haibin; Li, Yanfei; Wang, Lei; Lv, Qian; Wang, Xiuli

    2016-09-01

    The study was conducted to examine the effects of ICI 118,551 on the systolic function of cardiac muscle cells of rats in heart failure and determine the molecular mechanism of selective β2-adrenergic receptor (β2-AR) antagonist on these cells. The chronic heart failure model for rats was prepared through abdominal aortic constriction and separate cardiac muscle cells using the collagenase digestion method. The rats were then divided into Sham, HF and HF+ICI 50 nM goups and cultivated for 48 h. β2-AR, Gi/Gs and sarcoplasmic reticulum Ca 2+ -ATPase (SERCA2a) protein expression levels in the cardiac muscle cells were evaluated by western blotting and changes in the systolic function of cardiac muscle cells based on the boundary detection system of contraction dynamics for individual cells was measured. The results showed that compared with the Sham group, the survival rate, percentage of basic contraction and maximum contraction amplitude percentage of cardiac muscle cells with heart failure decreased, Gi protein expression increased while Gs and SERCA2a protein expression decreased. Compared with the HF group, the maximum contraction amplitude percentage of cardiac muscle cells in group HF+ICI 50 nM decreased, the Gi protein expression level increased while the SERCA2a protein expression level decreased. Following the stimulation of Ca 2+ and ISO, the maximum contraction amplitude percentage of cardiac muscle cells in the HF+ICI 50 nM group was lower than that in group HF. This indicated that ICI 118,551 has negative inotropic effects on cardiac muscle cells with heart failure, which may be related to Gi protein. Systolic function of cardiac muscle cells with heart failure can therefore be reduced by increasing Gi protein expression and lowering SERCA2a protein expression.

  13. AT1 and aldosterone receptors blockade prevents the chronic effect of nandrolone on the exercise-induced cardioprotection in perfused rat heart subjected to ischemia and reperfusion.

    PubMed

    Marques-Neto, Silvio Rodrigues; Ferraz, Emanuelle Baptista; Rodrigues, Deivid Carvalho; Njaine, Brian; Rondinelli, Edson; Campos de Carvalho, Antônio Carlos; Nascimento, Jose Hamilton Matheus

    2014-04-01

    Myocardial tolerance to ischaemia/reperfusion (I/R) injury is improved by exercise training, but this cardioprotection is impaired by the chronic use of anabolic androgenic steroids (AAS). The present study evaluated whether blockade of angiotensin II receptor (AT1-R) with losartan and aldosterone receptor (mineralocorticoid receptor, MR) with spironolactone could prevent the deleterious effect of AAS on the exercise-induced cardioprotection. Male Wistar rats were exercised and treated with either vehicle, nandrolone decanoate (10 mg/kg/week i.m.) or the same dose of nandrolone plus losartan or spironolactone (20 mg/kg/day orally) for 8 weeks. Langendorff-perfused hearts were subjected to I/R and evaluated for the postischaemic recovery of left ventricle (LV) function and infarct size. mRNA and protein expression of angiotensin II type 1 receptor (AT1-R), mineralocorticoid receptor (MR), and KATP channels were determined by reverse-transcriptase polymerase chain reaction and Western blotting. Postischaemic recovery of LV function was better and infarct size was smaller in the exercised rat hearts than in the sedentary rat hearts. Nandrolone impaired the exercise-induced cardioprotection, but this effect was prevented by losartan (AT1-R antagonist) and spironolactone (MR antagonist) treatments. Myocardial AT1-R and MR expression levels were increased, and the expression of the KATP channel subunits SUR2a and Kir6.1 was decreased and Kir6.2 increased in the nandrolone-treated rat hearts. The nandrolone-induced changes of AT1-R, MR, and KATP subunits expression was normalized by the losartan and spironolactone treatments. The chronic nandrolone treatment impairs the exercise-induced cardioprotection against ischaemia/reperfusion injury by activating the cardiac renin-angiotensin-aldosterone system and downregulating KATP channel expression.

  14. Endothelial nitric oxide synthase expression in systemic and pulmonary circulation of streptozotocin induced diabetic rats: comparison using image analysis.

    PubMed

    Sridulyakul, P; Chakraphan, D; Bhattarakosol, P; Patumraj, S

    2003-01-01

    To compare the level of endothelial nitric oxide synthase (eNOS) expression produced in heart and lung vascular tissue, the protein content was determined using Western blot analysis with the enhancement of image processing. Heart and lung extracts from 12 and 24 weeks from control (CON) and streptozotocin-induced diabetic (DM) rats were collected for Western blot analysis. Using monoclonal antibody against rat eNOS protein (140 kDa), the eNOS-protein bands were detected with enhanced chemiluminescence (ECL; Amersham) and exposured to film (Hyperfilm-ECL; Amersham). Images of eNOS bands on each film were then scanned and saved to digital files. Using Global Lab Image software, the number of pixels in each digital file was counted and calibrated for eNOS-protein content. For the CON and DM groups, the mean values of eNOS-protein contents were calculated and expressed as a percentage of total protein content, 5 micrograms. It was found that the eNOS level in DM hearts was significantly decreased, as compared to age-matched CON hearts. On the other hand, eNOS levels in DM lungs was increased, compared to CON lungs. Therefore, it may be concluded that high, not low, flow-mediated eNOS expression is a good measure of hyperglycemic-induced endothelial dysfunction.

  15. Improvement of exercise capacity of rats with chronic heart failure by long-term treatment with trandolapril

    PubMed Central

    Yamaguchi, Fuminari; Kawana, Ken-ichiro; Tanonaka, Kouichi; Kamano, Isamu; Igarashi, Takahiro; Gen, Eigyoku; Fujimoto, Yoko; Maki, Toshiyuki; Sanbe, Atsushi; Nasa, Yoshihisa; Takeo, Satoshi

    1999-01-01

    The effects of long-term treatment with trandolapril, an angiotensin I-converting enzyme inhibitor, on exercise capacity of rats with chronic heart failure (CHF) following coronary artery ligation were examined. CHF was developed by 8 weeks after the coronary artery ligation. The running time of rats with CHF in the treadmill test was shortened to approximately 65% of that of sham-operated rats (16.3±1.2 vs 25.1±1.6 min, n=7; P<0.05). ATP, creatine phosphate (CP), and lactate contents of the gracilis muscle of rats with CHF were similar to those of sham-operated rats before running. After running, ATP and CP were decreased and lactate was increased in both rats with CHF and sham-operated rats. There were no significant differences in the levels of energy metabolites between rats with CHF and sham-operated rats. The rates of decrease in ATP and CP and rate of increase in lactate in the gracilis muscle of rats with CHF during exercise were greater than those of sham operated rats (2.5, 2.0 and 1.5 fold high, respectively), suggesting wastage of energy during exercise in the animals with CHF. Myofibrillar Ca2+-stimulated ATPase (Ca-ATPase) activity of skeletal muscle of rats with CHF was increased over that of the sham-operated control (62.03±1.88 vs 52.34±1.19 μmol Pi mg−1 protein h−1 n=7; P<0.05). The compositions of myosin heavy chain (MHC) isoforms of gracilis muscle were altered by CHF; decreases in MHC types I and IIb and an increase in MHC type IIa were found (P<0.05). Rats with CHF were treated with 1 mg kg−1 day−1 trandolapril from the 2nd to 8th week after surgery. Treatment with trandolapril prolonged the running time, reversed the rates of decrease in ATP and CP and the rate of increase in lactate, and restored the Ca-ATPase activity (51.11±0.56 μmol Pi mg−1 protein h−1, n=7; P<0.05) and composition ratio of MHC isoforms in the gracilis muscle. The results suggest that long-term trandolapril treatment of rats with CHF

  16. Local delivery of a PKCε-activating peptide limits ischemia reperfusion injury in the aged female rat heart.

    PubMed

    Lancaster, T S; Jefferson, S J; Korzick, D H

    2011-11-01

    Reduced efficacy of cardioprotective interventions in the aged female heart, including estrogen replacement, highlights the need for alternative therapeutics to reduce myocardial ischemia-reperfusion (I/R) injury in postmenopausal women. Here, we sought to determine the efficacy of protein kinase-Cε (PKCε)-mediated cardioprotection in the aged, estradiol-deficient rat heart. Infarct size and functional recovery were assessed in Langendorff-perfused hearts from adult (5 mo) or aged (23 mo) female Fisher 344 ovary-intact or ovariectomized (OVX) rats administered a PKCε-activator, receptor for activated C kinase (ψεRACK) prior to 47-min ischemia and 60-min reperfusion. Proteomic analysis was conducted on left ventricular mitochondrial fractions treated with ψεRACK prior to I/R, utilizing isobaric tags for relative and absolute quantitation (iTRAQ) 8plex labeling and tandem mass spectrometry. Real-time PCR was utilized to assess connexin 43 (Cx43) and RACK2 mRNA post-I/R. Greater infarct size in aged OVX (78%) vs. adult (37%) was reduced by ψεRACK (35%, P < 0.0001) and associated with greater mitochondrial PKCε localization (P < 0.0003). Proteomic analysis revealed three novel mitochondrial targets of PKCε-mediated cardioprotection with aging (P < 0.05): the antioxidant enzymes glutathione peroxidase (GPX) and MnSOD2, and heat shock protein 10. Finally, decreased levels of Cx43 and RACK2 mRNA seen with age were partially abrogated by administration of ψεRACK (P < 0.05). The mechanisms described here may represent important therapeutic candidates for the treatment of acute myocardial infarction in postmenopausal women and age-associated estradiol deficiency.

  17. COMPARISON OF DETOXIFICATION AND BIOACTIVATION PATHWAYS FOR BROMODICHLOROMETHANE IN THE RAT

    EPA Science Inventory

    Comparison of Detoxification and Bioactivation pathways FOR Bromodichloromethane in the Rat
    M.K. Ross1, C.R. Eklund2, and R.A. Pegram2
    1Curriculum in Toxicology, UNC-CH, Chapel Hill, NC
    2ETD, NHEERL/ORD, USEPA, Research Triangle Park, NC

    Bromodichloromethane (BDCM...

  18. Haemodynamic effects of a selective adenosine A2A receptor agonist, CGS 21680, in chronic heart failure in anaesthetized rats.

    PubMed

    Nekooeian, A A; Tabrizchi, R

    1998-10-01

    1. Recently we demonstrated that the administration of an A2A adenosine receptor agonist, CGS 21680, to anaesthetized rats with acute heart failure (1 h post-coronary artery ligation) resulted in an increase in cardiac output. In the present investigation, the effects of CGS 21680 on cardiac output, vascular resistance, heart rate, blood pressure and mean circulatory filling pressure (Pmcf) were investigated in anaesthetized rats with chronic heart failure (8 weeks post-coronary artery ligation). 2. Experiments were conducted in five groups (n = 6) of animals: sham-operated vehicle-treated (0.9% NaCl; 0.037 mL kg(-1) min(-1)) animals in which the occluder was placed but not pulled to ligate the coronary artery; coronary artery-ligated vehicle-treated animals; and coronary artery-ligated CGS 21680-treated (0.1. 0.3 or 1.0 microg kg(-1) min(-1)) animals. 3. Baseline blood pressure, cardiac output and rate of rise in left ventricular pressure (+dP/dt) were significantly reduced in animals with coronary artery ligation when compared to sham-operated animals. Coronary artery ligation resulted in a significant increase in left ventricular end-diastolic pressure, Pmcf and venous resistance when compared to sham-operated animals. 4. Administration of CGS 21680 at 0.3 and 1.0 microg kg(-1) min(-1) significantly (n = 6; P<0.05) increased cardiac output by 19+/-4% and 39+/-5%, and heart rate by 14+/-2% and 15+/-1%, respectively, when compared to vehicle treatment in coronary artery-ligated animals. Administration of CGS 21680 also significantly reduced blood pressure and arterial resistance when compared to coronary artery-ligated vehicle-treated animals. Infusion of CGS 21680 also significantly reduced venous resistance when compared to vehicle-treated coronary artery-ligated animals. 5. The results show that heart failure is characterized by reduced cardiac output, and increased left ventricular end-diastolic pressure, venous resistance and Pmcf. Acute treatment with CGS

  19. Haemodynamic effects of a selective adenosine A2A receptor agonist, CGS 21680, in chronic heart failure in anaesthetized rats

    PubMed Central

    Nekooeian, Ali A; Tabrizchi, Reza

    1998-01-01

    Recently we demonstrated that the administration of an A2A adenosine receptor agonist, CGS 21680, to anaesthetized rats with acute heart failure (1 h post-coronary artery ligation) resulted in an increase in cardiac output. In the present investigation, the effects of CGS 21680 on cardiac output, vascular resistance, heart rate, blood pressure and mean circulatory filling pressure (Pmcf) were investigated in anaesthetized rats with chronic heart failure (8 weeks post-coronary artery ligation).Experiments were conducted in five groups (n=6) of animals: sham-operated vehicle-treated (0.9% NaCl; 0.037 mL kg−1 min−1) animals in which the occluder was placed but not pulled to ligate the coronary artery; coronary artery-ligated vehicle-treated animals; and coronary artery-ligated CGS 21680-treated (0.1, 0.3 or 1.0 μg kg−1 min−1) animals.Baseline blood pressure, cardiac output and rate of rise in left ventricular pressure (+dP/dt) were significantly reduced in animals with coronary artery ligation when compared to sham-operated animals. Coronary artery ligation resulted in a significant increase in left ventricular end-diastolic pressure, Pmcf and venous resistance when compared to sham-operated animals.Administration of CGS 21680 at 0.3 and 1.0 μg kg−1 min−1 significantly (n=6; P<0.05) increased cardiac output by 19±4% and 39±5%, and heart rate by 14±2% and 15±1%, respectively, when compared to vehicle treatment in coronary artery-ligated animals. Administration of CGS 21680 also significantly reduced blood pressure and arterial resistance when compared to coronary artery-ligated vehicle-treated animals. Infusion of CGS 21680 also significantly reduced venous resistance when compared to vehicle-treated coronary artery-ligated animals.The results show that heart failure is characterized by reduced cardiac output, and increased left ventricular end-diastolic pressure, venous resistance and Pmcf. Acute treatment with CGS 21680 in

  20. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue.

    PubMed

    Jacob, Fabian; Yonis, Amina Y; Cuello, Friederike; Luther, Pradeep; Schulze, Thomas; Eder, Alexandra; Streichert, Thomas; Mannhardt, Ingra; Hirt, Marc N; Schaaf, Sebastian; Stenzig, Justus; Force, Thomas; Eschenhagen, Thomas; Hansen, Arne

    2016-01-01

    Left ventricular dysfunction is a frequent and potentially severe side effect of many tyrosine kinase inhibitors (TKI). The mode of toxicity is not identified, but may include impairment of mitochondrial or sarcomeric function, autophagy or angiogenesis, either as an on-target or off-target mechanism. We studied concentration-response curves and time courses for nine TKIs in three-dimensional, force generating engineered heart tissue (EHT) from neonatal rat heart cells. We detected a concentration- and time-dependent decline in contractile force for gefitinib, lapatinib, sunitinib, imatinib, sorafenib, vandetanib and lestaurtinib and no decline in contractile force for erlotinib and dasatinib after 96 hours of incubation. The decline in contractile force was associated with an impairment of autophagy (LC3 Western blot) and appearance of autophagolysosomes (transmission electron microscopy). This study demonstrates the feasibility to study TKI-mediated force effects in EHTs and identifies an association between a decline in contractility and inhibition of autophagic flux.

  1. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue

    PubMed Central

    Cuello, Friederike; Luther, Pradeep; Schulze, Thomas; Eder, Alexandra; Streichert, Thomas; Mannhardt, Ingra; Hirt, Marc N.; Schaaf, Sebastian; Stenzig, Justus; Force, Thomas

    2016-01-01

    Introduction Left ventricular dysfunction is a frequent and potentially severe side effect of many tyrosine kinase inhibitors (TKI). The mode of toxicity is not identified, but may include impairment of mitochondrial or sarcomeric function, autophagy or angiogenesis, either as an on-target or off-target mechanism. Methods and Results We studied concentration-response curves and time courses for nine TKIs in three-dimensional, force generating engineered heart tissue (EHT) from neonatal rat heart cells. We detected a concentration- and time-dependent decline in contractile force for gefitinib, lapatinib, sunitinib, imatinib, sorafenib, vandetanib and lestaurtinib and no decline in contractile force for erlotinib and dasatinib after 96 hours of incubation. The decline in contractile force was associated with an impairment of autophagy (LC3 Western blot) and appearance of autophagolysosomes (transmission electron microscopy). Conclusion This study demonstrates the feasibility to study TKI-mediated force effects in EHTs and identifies an association between a decline in contractility and inhibition of autophagic flux. PMID:26840448

  2. Effects of a hot-water extract of porcini (Boletus aestivalis) mushrooms on the blood pressure and heart rate of spontaneously hypertensive rats.

    PubMed

    Midoh, Naoki; Miyazawa, Noriko; Eguchi, Fumio

    2013-01-01

    The repeated once-daily oral administration of a hot-water extract of porcini, Boletus aestivalis, mushrooms (WEP) to spontaneously hypertensive rats (SHR) for 18 weeks decreased the systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate. The WEP administration also decreased blood urea nitrogen (BUN), creatinine (Cre), and triglyceride (TG), and increased high-density lipoprotein-cholesterol (HDL-C) in the blood, suggesting that WEP improved the status of hypertension, as well as the high heart rate and metabolic abnormalities involved in hypertension.

  3. A comparison of human exposures to fiberglass with those used in a recent rat chronic inhalation study.

    PubMed

    Hesterberg, T W; Hart, G A

    1994-12-01

    In a recent rat inhalation study, 2 years of exposure to high concentrations of fiberglass (FG) resulted in no treatment-related fibrosis or thoracic tumors. To determine the relevancy of this study for human risk assessment, it is important to compare the rat experimental exposure levels with those of humans. Data on human exposures were taken from several studies and included FG manufacturing, installation and removal, and ambient air. FG levels in the rat aerosol were 200,000-fold higher than indoor air, > 2000-fold higher than during FG insulation manufacturing, and > 1000-fold higher than FG batt installation. The rat aerosol was 30-fold more concentrated than the highest human exposure (blowing installation of unbound FG). Rat FG lung burden also vastly exceeded that of FG workers, which was not significantly elevated above nonworker levels. The amount of fibers/mg dry lung for the rat after lifetime exposure was > 4000-fold greater than for the FG worker, average exposure 11 years. Aerosol and lung fiber dimensions in the rat study were comparable to those of human exposures. From these comparisons, it can be concluded that the exposure level in the rat inhalation study was sufficiently, if not excessively, high in comparison to human exposures. Increasing the experimental exposure in the rat studies would not serve to mirror human environmental or occupational exposures.

  4. Right atrium cholinergic deficit in septic rats.

    PubMed

    Contreras, Paola; Migliaro, Eduardo R; Suhr, Bruno

    2014-02-01

    Heart rate variability (HRV) is mainly determined by the influence of both branches of the Autonomic Nervous System over the sinus node. Low HRV has been associated with a worse prognosis in patients with sepsis. The objective of this study was to explain the reduction in HRV during experimental sepsis in adult rats. We recorded the heart's electrical activity by telemetry in conscious unrestrained male rats before and 1day after the induction of peritonitis (N=39) or sham peritonitis (N=15). Then, we analyzed the chronotropic responsiveness of the isolated heart to the autonomic neurotransmitters and determined catecholamine concentrations in blood plasma and acetylcholine and choline concentrations in the right atrium. The surviving septic rats (N=33) had increased heart rate (HR) and diminished HRV. Despite the higher HR in situ, the spontaneous basal HR in septic and sham isolated hearts was the same. The isolated septic hearts showed acetylcholine hypersensitivity (log (IC50,M)=-7.2±0.2 vs. -6.0±0.4, P=0.025) and lower concentrations of choline in their right atriums (in nMol/mg protein: 0.6±0.1 vs. 1.6±0.6, P=0.013). Norepinephrine concentration in blood plasma from septic rats was higher (in ng/ml: 29.2±8.4 vs. 5.8±4.1, P=0.019). In conclusion, septic rats present a deregulation of the autonomic nervous system, not only sympathetic overexcitation but also parasympathetic dysfunction. © 2013.

  5. Effects of Trypanosoma brucei brucei infection and diminazene aceturate administration on the blood pressure, heart rate, and temperature of Wistar albino rats.

    PubMed

    Adeleye, Olushola Emmanuel; Ale, Jude Makinde; Sogebi, Emmanuella Olubanke Amope; Durotoye, Ladoke A; Adeleye, Adenike Iyabo; Adeyemi, Samuel Olufemi; Olukunle, Johnny Olufemi

    2018-03-23

    This study was carried out to determine the blood pressure changes in experimentally Trypanosoma brucei brucei-infected Wistar albino rats and diminazene aceturate-treated rats. Twenty-four rats were purchased and divided into four groups consisting of six rats each. Control group (CON) received 0.5 mL of distilled water, i.m., infected but not treated group (INF) received 2×106 trypanosome/mL i.m., infected but diminazene aceturate-treated group (INFDIM) received 2×106 trypanosome/mL, 3.5 mg/kg, i.m.) and non-infected but diminazene aceturate-treated group (DIM) received 3.5 mg/kg, i.m. and served as negative control. The blood pressures were measured using a CODA 2® non-invasive blood pressure monitor (Kent Scientific, USA). The results were compiled and statistical analysis was done with significance set at p≥0.05. The values of the blood pressure readings of the Trypanosoma-infected INF (137.0±2.0 mmHg) and diminazene-treated rats INFDIM (125.0±7.5 mmHg) when compared to the control group (168.0±3.0 mmHg) were significantly lower (p≤0.05) at the end of day 7. The heart rate was also significantly reduced in the INF (403.5±1.5 beats/min) and DIM (445.0±24 beats/min) groups of rats when compared with the control group (613.0±2.0 beats/min) at the end of day 8. The findings indicate the significant reduction in blood pressure and heart rates during Trypanosoma brucei brucei infection and with diminazene aceturate administration. Hence, caution should be exercised when treating trypanosome-infected patients with diminazene aceturate.

  6. Validation of Donor-Specific Tolerance of Intestinal Transplant by a Secondary Heart Transplantation Model.

    PubMed

    Pengcheng, Wang; Xiaosong, Li; Xiaofeng, Li; Zhongzhi, Li

    2017-02-01

    It is well accepted that survival after a second organ transplant without immunosuppressive agents indicates tolerance for the first transplant. To validate donor-specific tolerance, we established a rat model with a secondary heart transplant after intestinal transplant, which has so far not been described in the literature. We transplanted intestine from Fischer F344 rats to Lewis rats orthotopically. Lewis rats received tacrolimus pretreatment before transplant and a 14-day course of rapamycin 1 month after transplant. At 120 days after primary intestinal transplant, hearts from 6 F344 rats (group A) or 6 Brown Norway rats (group B) were transplanted to Lewis rats that had survived intestinal transplant and without additional immunosuppressive agents. We analyzed survival data, histologic changes, cells positive for the ED1 macrophage marker in transplanted hearts, and 3 lymphocyte levels in both groups. Thirty days after secondary heart transplant, group A hearts were continuously beating; however, group B hearts stopped beating at around 10 days after transplant (8.5 ± 1.5 d; P < .05). Our histologic study showed that both groups had muscle damage and cellular infiltration in hearts that were distinctly different from normal hearts, with ED1-positive cells counted in both groups (85 ± 16 in group A, 116 ± 28 in group B; P > .05). Fluorescence-activated cell sorting showed that CD4/CD25-positive regulatory T cell, CTLA4/CD4/CD25-positive regulatory T cell, and Natural killer T-cell levels were significantly higher level in group A versus B (P < .05). The donor-specific tolerance that we observed was possibly a state of "clinical tolerance" rather than "immunologic tolerance." Our rat model is a feasible and reliable model to study donor-specific tolerance. The higher levels of lymphocytic T cells shown in intestinal transplant recipients were associated with longer allograft survival, possibly contributing to donor-specific tolerance.

  7. Effect of metoprolol administration on renal sodium handling in experimental congestive heart failure.

    PubMed

    DiBona, G F; Sawin, L L

    1999-07-06

    Long-term metoprolol therapy improves cardiac performance and decreases mortality in patients with chronic congestive heart failure (CHF). This study examined the effect of long-term metoprolol therapy on renal sodium handling in an experimental rat model of CHF. Rats with left coronary ligation and myocardial infarction-induced CHF were treated with metoprolol (1.5 mg. kg-1. h-1) or vehicle for 3 weeks by osmotic minipump. They were then evaluated for their ability to excrete a short-term sodium load (5% body weight isotonic saline infusion over 30 minutes) and a long-term sodium load (change from low- to high-sodium diet over 8 days). All CHF rats had left ventricular end-diastolic pressure >10 mm Hg, and heart weight/body weight ratios averaged 0.68+/-0.02% (versus control of approximately 0.40%). Compared with vehicle CHF rats (n=19), metoprolol CHF rats (n=18) had lower basal values of mean arterial pressure (122+/-3 versus 112+/-3 mm Hg) and heart rate (373+/-14 versus 315+/-9 bpm) and decreased heart rate responses to intravenous doses of isoproterenol. During short-term isotonic saline volume loading, metoprolol CHF rats excreted 54+/-4% more of the sodium load than vehicle CHF rats. During long-term dietary sodium loading, metoprolol CHF rats retained 28+/-3% less sodium than vehicle CHF rats. Metoprolol treatment of rats with CHF results in an improved ability to excrete both short- and long-term sodium loads.

  8. Endogenous sulfur dioxide aggravates myocardial injury in isolated rat heart with ischemia and reperfusion.

    PubMed

    Zhang, Suqing; Du, Junbao; Jin, Hongfang; Li, Wei; Liang, Yinfang; Geng, Bin; Li, Shukui; Zhang, Chunyu; Tang, Chaoshu

    2009-02-27

    Ischemia-reperfusion (I/R) injury is an important clinical problem. This article investigated the role of sulfur dioxide (SO2) in the regulation of cardiac function and in the pathogenesis of cardiac I/R injury in isolated rat heart. Rat hearts isolated on a Langendorff apparatus were divided into control, I/R, I/R+SO2, and I/R+hydroxamate groups. Hydroxamate is an inhibitor of SO2 synthetase. I/R treatment was ischemia for 2 hr in hypothermic solution (4 degrees C), then reperfusion/rewarming (37 degrees C) for 60 min. Cardiac function was monitored by MacLab analog to a digital converter. Determination of sulfite content involved reverse-phase high performance liquid chromatography with fluorescence detection. Myoglobin content of coronary perfusate was determined at 410 nm. Myocardial malondialdehyde (MDA) was determined by thiobarbituric acid method, and conjugated diene (CD) was extracted by chloroform. 5,50-Dithiobis-2-nitrobenzoic acid was used to determine glutathione (GSH). The results showed that I/R treatment obviously increased myocardial sulfite content, and sulfite content of myocardium was negatively correlated with the recovery rate of left-ventricle developed pressure and positively correlated with the leakage of myoglobin. In postreperfusion, myocardial function recovery was decreased by SO2. During reperfusion, myocardium-released enzymes, MDA and CD level were increased but myocardial GSH content was depressed with the treatment of SO2 donor. Incubation of myocardial tissue with SO2 significantly increased MDA and CD generation. Endogenous SO2 might be involved in the pathogenesis of myocardial I/R injury, and its mechanism might be associated with an increase in lipid peroxide level and a decrease in GSH generation.

  9. Effects of quercetin on heart nitric oxide metabolism in l-NAME treated rats.

    PubMed

    Calabró, Valeria; Litterio, María C; Fraga, Cesar G; Galleano, Monica; Piotrkowski, Barbara

    2018-06-01

    This study investigated the effects of a quercetin-supplemented diet on the biochemical changes installed in the heart of NO-deficient rats in terms of oxidants production and NO bioavailability determinants. Sprague-Dawley rats were subjected to N ω -nitro-l-arginine methyl ester (l-NAME) treatment (360 mg/L l-NAME in the drinking water, 4 d) with or without supplementation with quercetin (4 g/kg diet). l-NAME administration led to increased blood pressure (BP) (30%), decreased nitric oxide synthase (NOS) activity (50%), and increases in NADPH oxidase (NOX)-dependent superoxide anion production (60%) and p47 phox protein level (65%). The co-administration of quercetin prevented the increase in BP and the activation of NOX but did not modify the decrease in NOS activity caused by l-NAME. In addition, quercetin affected oxidative stress parameters as glutathione oxidation, and the activities of oxidant detoxifying enzymes superoxide dismutase, glutathione peroxidase, and catalase. Thus, quercetin administration counteracts l-NAME effects on NO bioavailability determinants in vivo, essentially through controlling NOX-mediated superoxide anion production. Copyright © 2018. Published by Elsevier Inc.

  10. Gaussian fitting for carotid and radial artery pressure waveforms: comparison between normal subjects and heart failure patients.

    PubMed

    Liu, Chengyu; Zheng, Dingchang; Zhao, Lina; Liu, Changchun

    2014-01-01

    It has been reported that Gaussian functions could accurately and reliably model both carotid and radial artery pressure waveforms (CAPW and RAPW). However, the physiological relevance of the characteristic features from the modeled Gaussian functions has been little investigated. This study thus aimed to determine characteristic features from the Gaussian functions and to make comparisons of them between normal subjects and heart failure patients. Fifty-six normal subjects and 51 patients with heart failure were studied with the CAPW and RAPW signals recorded simultaneously. The two signals were normalized first and then modeled by three positive Gaussian functions, with their peak amplitude, peak time, and half-width determined. Comparisons of these features were finally made between the two groups. Results indicated that the peak amplitude of the first Gaussian curve was significantly decreased in heart failure patients compared with normal subjects (P<0.001). Significantly increased peak amplitude of the second Gaussian curves (P<0.001) and significantly shortened peak times of the second and third Gaussian curves (both P<0.001) were also presented in heart failure patients. These results were true for both CAPW and RAPW signals, indicating the clinical significance of the Gaussian modeling, which should provide essential tools for further understanding the underlying physiological mechanisms of the artery pressure waveform.

  11. Radiation-induced enzyme efflux from rat heart: sedentary animals. [Gamma radiation, lactate dehydrogenase, creative kinase, glutamate oxaloacetate transaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacWilliam, L.D.; Bhakthan, N.M.G.

    1976-01-01

    Serum levels of lactate dehydrogenase, creatine kinase, and glutamate oxaloacetate transaminase show initial elevations within 12 hr of exposure to 2,000 rads of ..gamma..-radiation to the thoracic region of rats. Significant decreases in heart muscle homogenate levels of these enzymes parallel initial elevations in the serum and may suggest that enhanced leakage of enzymes is a consequence of radiation injury to heart muscle. Insignificant alterations in mitochondrial glutamate oxaloacetate transaminase levels after exposure indicate that in vivo injury to the mitochondria from therapeutic levels of ..gamma..-radiation is questionable. The results support the contention that ionizing radiation instigates alterations in themore » dynamic permeability of membranes, allowing leakage of biologically active material out of the injured cell.« less

  12. Experiment K-6-13. Morphological and biochemical examination of heart tissue. Part 1: Effects of microgravity on the myocardial fine structure of rats flown on Cosmos 1887. Ultrastructure studies. Part 2: Cellular distribution of cyclic ampdependent protein kinase regulatory subunits in heart muscle of rats flown on Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Kato, K.; Stevenson, J.; Miquel, Jaime; Mednieks, M. I.; Sapp, W.; Popova, I. A.; Serova, L. V.

    1990-01-01

    The left ventricle of hearts from rats flown on the Cosmos 1887 biosatellite for 12.5 days was compared to the same tissue of synchronous and vivarium control animals maintained in a ground based laboratory. The volume density of the mitochondria in the myocardium of the space-flown animals was statistically less (p equal less than 0.01) than that of the synchronous or vivarium control rats. Exposure to microgravity resulted in a certain degree of myocardial degeneration manifested in mitochondrial changes and accumulation of myeloid bodies. Generalized myofibrillar edema was also observed.

  13. Lipid emulsion enhances cardiac performance after ischemia-reperfusion in isolated hearts from summer-active arctic ground squirrels.

    PubMed

    Salzman, Michele M; Cheng, Qunli; Deklotz, Richard J; Dulai, Gurpreet K; Douglas, Hunter F; Dikalova, Anna E; Weihrauch, Dorothee; Barnes, Brian M; Riess, Matthias L

    2017-07-01

    Hibernating mammals, like the arctic ground squirrel (AGS), exhibit robust resistance to myocardial ischemia/reperfusion (IR) injury. Regulated preference for lipid over glucose to fuel metabolism may play an important role. We tested whether providing lipid in an emulsion protects hearts from summer-active AGS better than hearts from Brown Norway (BN) rats against normothermic IR injury. Langendorff-prepared AGS and BN rat hearts were perfused with Krebs solution containing 7.5 mM glucose with or without 1% Intralipid™. After stabilization and cardioplegia, hearts underwent 45-min global ischemia and 60-min reperfusion. Coronary flow, isovolumetric left ventricular pressure, and mitochondrial redox state were measured continuously; infarct size was measured at the end of the experiment. Glucose-only AGS hearts functioned significantly better on reperfusion than BN rat hearts. Intralipid™ administration resulted in additional functional improvement in AGS compared to glucose-only and BN rat hearts. Infarct size was not different among groups. Even under non-hibernating conditions, AGS hearts performed better after IR than the best-protected rat strain. This, however, appears to strongly depend on metabolic fuel: Intralipid™ led to a significant improvement in return of function in AGS, but not in BN rat hearts, suggesting that year-round endogenous mechanisms are involved in myocardial lipid utilization that contributes to improved cardiac performance, independent of the metabolic rate decrease during hibernation. Comparative lipid analysis revealed four candidates as possible cardioprotective lipid groups. The improved function in Intralipid™-perfused AGS hearts also challenges the current paradigm that increased glucose and decreased lipid metabolism are favorable during myocardial IR.

  14. The effect of chronic treadmill exercise and acetaminophen on collagen and cross-linking in rat skeletal muscle and heart.

    PubMed

    Carroll, Chad C; Martineau, Karl; Arthur, Kathryn A; Huynh, Richard T; Volper, Brent D; Broderick, Tom L

    2015-02-15

    The purpose of this study was to determine whether exercise and/or acetaminophen (APAP) alter collagen and cross-linking in the rat gastrocnemius muscle, soleus muscle, and heart. Male Wistar rats (n = 50; 8 wk old) were divided into placebo (PLA) or APAP groups and sedentary (SED) or exercised (RUN) groups. APAP (200 mg/kg) was administered daily by oral gavage. Exercised groups ran on a treadmill 5 days/wk for 8 wk with progression to 60 min/day, 20 m/min, and 8° incline. Tissues were assayed for collagen (hydroxyproline) and hydroxylyslpyridinoline (HP) and lysylpyridinoline (LP) cross-links by HPLC. Collagen content (μg/mg dry weight) was greater in both the gastrocnemius (SED-PLA: 114 ± 16 vs. 244 ± 32; P < 0.001) and soleus (SED-PLA: 51 ± 7 vs. 99 ± 27; P = 0.005) of exercised animals. In contrast, collagen content was not significantly greater in exercised animals treated with APAP (SED-APAP: 113 ± 16 vs. 145 ± 21) and soleus (SED-APAP: 55 ± 8 vs. 57 ± 10). HP cross-linking (mmol/mol collagen) in the gastrocnemius (SED-PLA: 126 ± 28, RUN-PLA: 50 ± 7, SED-APAP: 41 ± 7, and 30 ± 4) and soleus muscles (SED-PLA: 547 ± 107, RUN-PLA: 318 ± 92, SED-APAP: 247 ± 64, and 120 ± 17) was lower in exercised rats compared with sedentary rats (P < 0.05). Cross-linking was further reduced in animals treated with APAP (P < 0.05). Neither heart collagen nor cross-linking was influenced by exercise or APAP (P > 0.05). Our findings suggest that exercise and APAP have tissue-specific effects on muscle collagen. Given the widespread use of APAP as an analgesic and antipyretic, further work in humans is warranted. Copyright © 2015 the American Physiological Society.

  15. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lusi; Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015; Jiang, Ying

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAHmore » (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.« less

  16. Effective analgesic doses of tramadol or tapentadol induce brain, lung and heart toxicity in Wistar rats.

    PubMed

    Faria, Juliana; Barbosa, Joana; Leal, Sandra; Afonso, Luís Pedro; Lobo, João; Moreira, Roxana; Queirós, Odília; Carvalho, Félix; Dinis-Oliveira, Ricardo Jorge

    2017-06-15

    Tramadol and tapentadol are extensively prescribed for the treatment of moderate to severe pain. Although these drugs are very effective in pain treatment, the number of intoxications and deaths due to both opioids is increasing, and the underlying toxic mechanisms are not fully understood. The present work aimed to study the potential biochemical and histopathological alterations induced by acute effective (analgesic) doses of tramadol and tapentadol, in Wistar rats. Forty-two male Wistar rats were divided into different groups: a control, administered with normal saline solution, and tramadol- or tapentadol-treated groups (10, 25 or 50mg/kg - typical effective analgesic dose, intermediate and maximum recommended doses, respectively). 24h after intraperitoneal administration, biochemical and oxidative stress analyses were performed in blood, and specimens from brain, lung and heart were taken for histopathological and oxidative stress studies. Both drugs caused an increase in the AST/ALT ratio, in LDH, CK and CK-MB activities in serum samples, and an increase in lactate levels in serum and brain samples. Oxidative damage, namely protein oxidation, was found in heart and lung tissues. In histological analyses, tramadol and tapentadol were found to cause alterations in cell morphology, inflammatory cell infiltrates and cell death in all tissues under study, although tapentadol caused more damage than tramadol. Our results confirmed the risks of tramadol exposure, and demonstrated the higher risk of tapentadol, especially at high doses. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Marginal donors: can older donor hearts tolerate prolonged cold ischemic storage?

    PubMed

    Korkmaz, Sevil; Bährle-Szabó, Susanne; Loganathan, Sivakkanan; Li, Shiliang; Karck, Matthias; Szabó, Gábor

    2013-10-01

    Both advanced donor age and prolonged ischemic time are significant risk factors for the 1-year mortality. However, its functional consequences have not been fully evaluated in the early-phase after transplantation; even early graft dysfunction is the main determinant of long-term outcome following transplantation. We evaluated in vivo left-ventricular (LV) cardiac and coronary vascular function of old-donor grafts after short and prolonged cold ischemic times in rats 1 h after heart transplantation. The hearts were excised from young donor (3-month-old) or old donor (18-month-old) rats, stored in cold preservation solution for either 1 or 8 h, and heterotopically transplanted. After 1 h of ischemic period, in the old-donor group, LV pressure, maximum pressure development (dP/dt max), time constant of LV pressure decay (τ), LV end-diastolic pressure and coronary blood flow did not differ compared with young donors. However, endothelium-dependent vasodilatation to acetylcholine resulted in a significantly lower response of coronary blood flow in the old-donor group (33 ± 4 vs. 51 ± 15 %, p < 0.05). After 8 h preservation, two of the old-donor hearts showed no mechanical activity upon reperfusion. LV pressure (55 ± 6 vs. 72 ± 5 mmHg, p < 0.05), dP/dt max (899 ± 221 vs. 1530 ± 217 mmHg/s, p < 0.05), coronary blood flow and response to acetylcholine were significantly reduced and τ was increased in the old-donor group in comparison to young controls. During the early-phase after transplantation, the ischemic tolerance of older-donor hearts is reduced after prolonged preservation time and the endothelium is more vulnerable to ischemia/reperfusion.

  18. Myosin Heads Are Displaced from Actin Filaments in the In Situ Beating Rat Heart in Early Diabetes

    PubMed Central

    Jenkins, Mathew J.; Pearson, James T.; Schwenke, Daryl O.; Edgley, Amanda J.; Sonobe, Takashi; Fujii, Yutaka; Ishibashi-Ueda, Hatsue; Kelly, Darren J.; Yagi, Naoto; Shirai, Mikiyasu

    2013-01-01

    Diabetes is independently associated with a specific cardiomyopathy, characterized by impaired cardiac muscle relaxation and force development. Using synchrotron radiation small-angle x-ray scattering, this study investigated in the in situ heart and in real-time whether changes in cross-bridge disposition and myosin interfilament spacing underlie the early development of diabetic cardiomyopathy. Experiments were conducted using anesthetized Sprague-Dawley rats 3 weeks after treatment with either vehicle (control) or streptozotocin (diabetic). Diffraction patterns were recorded during baseline and dobutamine infusions simultaneous with ventricular pressure-volumetry. From these diffraction patterns myosin mass transfer to actin filaments was assessed as the change in intensity ratio (I1,0/I1,1). In diabetic hearts cross-bridge disposition was most notably abnormal in the diastolic phase (p < 0.05) and to a lesser extent the systolic phase (p < 0.05). In diabetic rats only, there was a transmural gradient of contractile depression. Elevated diabetic end-diastolic intensity ratios were correlated with the suppression of diastolic function (p < 0.05). Furthermore, the expected increase in myosin head transfer by dobutamine was significantly blunted in diabetic animals (p < 0.05). Interfilament spacing did not differ between groups. We reveal that impaired cross-bridge disposition and radial transfer may thus underlie the early decline in ventricular function observed in diabetic cardiomyopathy. PMID:23473489

  19. Doppler Assessment of Diastolic Function Reflect the Severity of Injury in Rats With Chronic Heart Failure.

    PubMed

    Sanchez, Pablo; Lancaster, Jordan J; Weigand, Kyle; Mohran, Saffie-Alrahman Ezz-Eldin; Goldman, Steven; Juneman, Elizabeth

    2017-10-01

    For chronic heart failure (CHF), more emphasis has been placed on evaluation of systolic as opposed to diastolic function. Within the study of diastology, measurements of left ventricular (LV) longitudinal myocardial relaxation have the most validation. Anterior wall radial myocardial tissue relaxation velocities along with mitral valve inflow (MVI) patterns are applicable diastolic parameters in the differentiation between moderate and severe disease in the ischemic rat model of CHF. Myocardial tissue relaxation velocities correlate with traditional measurements of diastolic function (ie, hemodynamics, Tau, and diastolic pressure-volume relationships). Male Sprague-Dawley rats underwent left coronary artery ligation or sham operation. Echocardiography was performed at 3 and 6 weeks after coronary ligation to evaluate LV ejection fraction (EF) and LV diastolic function through MVI patterns (E, A, and E/A) and Doppler imaging of the anterior wall (e' and a'). The rats were categorized into moderate or severe CHF according to their LV EF at 3 weeks postligation. Invasive hemodynamic measurements with solid-state pressure catheters were obtained at the 6-week endpoint. Moderate (N = 20) and severe CHF (N = 22) rats had significantly (P < .05) different EFs, hemodynamics, and diastolic pressure-volume relationships. Early diastolic anterior wall radial relaxation velocities as well as E/e' ratios separated moderate from severe CHF and both diastolic parameters had strong correlations with invasive hemodynamic measurements of diastolic function. Radial anterior wall e' and E/e' can be used for serial assessment of diastolic function in rats with moderate and severe CHF. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Swimming exercise demonstrates advantages over running exercise in reducing proteinuria and glomerulosclerosis in spontaneously hypertensive rats.

    PubMed

    Totou, N L; Moura, S S; Coelho, D B; Oliveira, E C; Becker, L K; Lima, W G

    2018-03-01

    Experimental studies in animal models have described the benefits of physical exercise (PE) to kidney diseases associated with hypertension. Land- and water-based exercises induce different responses in renal function. Our aim was to evaluate the renal alterations induced by different environments of PE in spontaneously hypertensive rats (SHRs). The SHRs were divided into sedentary (S), swimming exercise (SE), and running exercise (RE) groups, and were trained for 8 weeks under similar intensities (60 min/day). Arterial pressure (AP) and heart rate (HR) were recorded. The renal function was evaluated through urinary volume at each week of training; sodium and potassium excretions, plasma and urinary osmolarities, glomerular filtration rate (GFR), levels of proteinuria, and renal damage were determined. SE and RE rats presented reduced mean AP, systolic blood pressure, and HR in comparison with S group. SE and RE rats showed higher urine osmolarity compared with S. SE rats showed higher free water clearance (P < 0.01), lower urinary density (P < 0.0001), and increased weekly urine volume (P < 0.05) in comparison with RE and S groups. GFR was increased in both SE and RE rats. The proteinuria of SE (7.0 ± 0.8 mg/24 h) rats was decreased at the 8th week of the PE in comparison with RE (9.6 ± 0.8 mg/24 h) and S (9.8 ± 0.5 mg/24 h) groups. The glomerulosclerosis was reduced in SE rats (P < 0.02). SE produced different response in renal function in comparison with RE, in which only swimming-trained rats had better profile for proteinuria and glomerulosclerosis.

  1. A comparison of two methods of heart rate variability assessment at high altitude.

    PubMed

    Boos, Christopher John; Bakker-Dyos, Josh; Watchorn, Jim; Woods, David Richard; O'Hara, John Paul; Macconnachie, Lee; Mellor, Adrian

    2017-11-01

    Heart rate variability (HRV) is a useful index of autonomic function and has been linked to the development of high altitude (HA) related illness. However, its assessment at HA has been undermined by the relative expense and limited portability of traditional HRV devices which have mandated at least a minute heart rate recording. In this study, the portable ithlete ™ HRV system, which uses a 55 s recording, was compared with a reference method of HRV which utilizes a 5 min electrocardiograph recording (CheckMyHeart ™ ). The root mean squares of successive R-R intervals (RMSSD) for each device was converted to a validated HRV score (lnRMSSD × 20) for comparison. Twelve healthy volunteers were assessed for HRV using the two devices across seven time points at HA over 10 days. There was no significant change in the HRV values with either the ithlete (P = 0·3) or the CheckMyHeart ™ (P = 0·19) device over the seven altitudes. There was also a strong overall correlation between the ithlete ™ and CheckMyHeart ™ device (r = 0·86; 95% confidence interval: 0·79-0·91). The HRV was consistently, though non-significantly higher with ithlete ™ than with the CheckMyHeart ™ device [mean difference (bias) 1·8 l; 95% CI -12·3 to 8·5]. In summary, the ithlete ™ and CheckMyHeart ™ system provide relatively similar results with good overall agreement at HA. © 2016 Crown Copyright. Clinical Physiology and Functional Imaging © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  2. Soluble Flt-1 links microvascular disease with heart failure in CKD.

    PubMed

    Di Marco, Giovana S; Kentrup, Dominik; Reuter, Stefan; Mayer, Anna B; Golle, Lina; Tiemann, Klaus; Fobker, Manfred; Engelbertz, Christiane; Breithardt, Günter; Brand, Eva; Reinecke, Holger; Pavenstädt, Hermann; Brand, Marcus

    2015-05-01

    Chronic kidney disease (CKD) is associated with an increased risk of heart failure (HF). Elevated plasma concentrations of soluble Flt-1 (sFlt-1) have been linked to cardiovascular disease in CKD patients, but whether sFlt-1 contributes to HF in CKD is still unknown. To provide evidence that concludes a pathophysiological role of sFlt-1 in CKD-associated HF, we measured plasma sFlt-1 concentrations in 586 patients with angiographically documented coronary artery disease and renal function classified according to estimated glomerular filtration rate (eGFR). sFlt-1 concentrations correlated negatively with eGFR and were associated with signs of heart failure, based on New York Heart Association functional class and reduced left ventricular ejection fraction (LVEF), and early mortality. Additionally, rats treated with recombinant sFlt-1 showed a 15 % reduction in LVEF and a 29 % reduction in cardiac output compared with control rats. High sFlt-1 concentrations were associated with a 15 % reduction in heart capillary density (number of vessels/cardiomyocyte) and a 24 % reduction in myocardial blood volume. Electron microscopy and histological analysis revealed mitochondrial damage and interstitial fibrosis in the hearts of sFlt-1-treated, but not control rats. In 5/6-nephrectomised rats, an animal model of CKD, sFlt-1 antagonism with recombinant VEGF121 preserved heart microvasculature and significantly improved heart function. Overall, these findings suggest that a component of cardiovascular risk in CKD patients could be directly attributed to sFlt-1. Assessment of patients with CKD confirmed that sFlt-1 concentrations were inversely correlated with renal function, while studies in rats suggested that sFlt-1 may link microvascular disease with HF in CKD.

  3. Dietary supplementation with either saturated or unsaturated fatty acids does not affect the mechanoenergetics of the isolated rat heart.

    PubMed

    Goo, Soyeon; Han, June-Chiew; Nisbet, Linley A; Legrice, Ian J; Taberner, Andrew J; Loiselle, Denis S

    2014-01-01

    Abstract It is generally recognized that increased consumption of polyunsaturated fatty acids, fish oil (FO) in particular, is beneficial to cardiac and cardiovascular health, whereas equivalent consumption of saturated fats is deleterious. In this study, we explore this divergence, adopting a limited purview: The effect of dietary fatty acids on the mechanoenergetics of the isolated heart per se. Mechanical indices of interest include left-ventricular (LV) developed pressure, stroke work, cardiac output, coronary perfusion, and LV power. The principal energetic index is whole-heart oxygen consumption, which we subdivide into its active and basal moieties. The primary mechanoenergetic index of interest is cardiac efficiency, the ratio of work performance to metabolic energy expenditure. Wistar rats were divided into three Diet groups and fed, ad libitum, reference (REF), fish oil-supplemented (FO), or saturated fatty acid-supplemented (SFA) food for 6 weeks. At the end of the dietary period, hearts were excised, mounted in a working-heart rig, and their mechanoenergetic performance quantified over a range of preloads and afterloads. Analyses of Variance revealed no difference in any of the individual mechanoenergetic indices among the three Diet groups. In particular, we found no effect of prior dietary supplementation with either saturated or unsaturated fatty acids on the global efficiency of the heart.

  4. Chronic central ghrelin infusion reduces blood pressure and heart rate despite increasing appetite and promoting weight gain in normotensive and hypertensive rats.

    PubMed

    Freeman, John N; do Carmo, Jussara M; Adi, Ahmad H; da Silva, Alexandre A

    2013-04-01

    Acute studies showed that ghrelin acts on the central nervous system (CNS) to reduce blood pressure (BP), heart rate (HR) and sympathetic activity. However, the long-term CNS cardiovascular actions of ghrelin are still unclear. We tested whether chronic intracerebroventricular (ICV) infusion of ghrelin causes sustained reductions in BP, HR and whether it alters baroreceptor sensitivity (BRS) and autonomic input to the heart. A cannula was placed in the lateral ventricle of male Sprague-Dawley (SD) rats for ICV infusions via osmotic minipump (0.5 μl/h). BP and HR were measured 24-h/day by telemetry. After 5 days of control measurements, ghrelin (0.21 nmol/h) or saline vehicle were infused ICV for 10 days followed by a 5-day post-treatment period. Chronic ICV ghrelin infusion increased food intake (22±3 to 26±1 g/day) leading to ~50 g body weight gain. BP fell slightly during ghrelin infusion while HR decreased by ~26 bpm. In control animals BP and HR increased modestly. ICV Ghrelin infusion caused a 50% reduction in sympathetic tone to the heart but did not alter BRS. We also tested if the depressor responses to ICV ghrelin infusion were enhanced in spontaneously hypertensive rats (SHR) due to their high basal sympathetic tone. However, we observed similar BP and HR responses compared to normotensive rats. These results indicate that ghrelin, acting via direct actions on the CNS, has a sustained effect to lower HR and a modest impact to reduce BP in normotensive and hypertensive animals despite increasing appetite and body weight. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Anatomical and Electrophysiological Comparison of CA1 Pyramidal Neurons of the Rat and Mouse

    PubMed Central

    Routh, Brandy N.; Johnston, Daniel; Harris, Kristen

    2009-01-01

    The study of learning and memory at the single-neuron level has relied on the use of many animal models, most notably rodents. Although many physiological and anatomical studies have been carried out in rats, the advent of genetically engineered mice has necessitated the comparison of new results in mice to established results from rats. Here we compare fundamental physiological and morphological properties and create three-dimensional compartmental models of identified hippocampal CA1 pyramidal neurons of one strain of rat, Sprague–Dawley, and two strains of mice, C57BL/6 and 129/SvEv. We report several differences in neuronal physiology and anatomy among the three animal groups, the most notable being that neurons of the 129/SvEv mice, but not the C57BL/6 mice, have higher input resistance, lower dendritic surface area, and smaller spines than those of rats. A surprising species-specific difference in membrane resonance indicates that both mouse strains have lower levels of the hyperpolarization-activated nonspecific cation current Ih. Simulations suggest that differences in Ih kinetics rather than maximal conductance account for the lower resonance. Our findings indicate that comparisons of data obtained across strains or species will need to account for these and potentially other physiological and anatomical differences. PMID:19675296

  6. STRAIN COMPARISON OF ENDOCRINE RESPONSE IN RATS TO BROMODICHLOROMETHANE (BDCM) DURING PREGNANCY

    EPA Science Inventory

    STRAIN COMPARISON OF ENDOCRINE RESPONSE IN RATS TO BROMODICHLOROMETHANE (BDCM) DURING PREGNANCY.

    S. R. Bielmeier1, D. S. Best2 and M. G. Narotsky2

    1 Curriculum in Toxicology, Univ. of North Carolina, Chapel Hill, NC, USA
    2 Reproductive Toxicology Division, NHEERL...

  7. Comparison of PFDA (Perfluoro-n-Decanoic Acid) and TCDD on Heart Membranes.

    DTIC Science & Technology

    1986-06-18

    AD-A171 960 COMPARISON OF PFDA ( PERFLUORO -N-DECANOIC ACID) AND TCDD 1/1 ON HEART NEMBRANES(U) WRIGHT STATE UNIY DAYTON OH SCHOOL OF MEDICINE A E...1986) Toxicol. Appl. Pharmacol. Perfluoro -n-decanoic acid ( PFDA ) is a synthetic chemical resembling a 10 carbon fatty acid. Several studies have...3 INTRODUCTION Perfluoro -n-decanoic acid ( PFDA ; nonadecafluorodecanoic acid, C10 F19 0 2H) is a straight-chain 10 carbon carboxylic acid with fluorine

  8. Chronic aerobic exercise training alleviates myocardial fibrosis in aged rats through restoring bioavailability of hydrogen sulfide.

    PubMed

    Ma, Ning; Liu, Hong-Mei; Xia, Ting; Liu, Jian-Dong; Wang, Xiao-Ze

    2018-06-02

    Age-related fibrosis is attenuated by aerobic exercise; however, little is known concerning the underlying molecular mechanism. To address this question, aged rats were given moderate-intensity exercise for 12 weeks. After exercise in aged rats, hydrogen sulfide (H2S) levels in plasma and heart increased 39.8% and 90.9%, respectively. Exercise upregulated expression of cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) in heart of aged rats. Furthermore, aged rats were given moderate-intensity exercise for 12 weeks or treated with NaHS (intraperitoneal injection of 0.1 ml/kg/day of 0.28 mol/l NaHS). After exercise in aged rats, Masson-trichrome staining area decreased 34.8% and myocardial hydroxyproline levels decreased 29.6%. Exercise downregulated expression of collagen-I and α-SMA in heart of aged rats. Exercise in aged rats reduced malondialdehyde levels in plasma and heart and 3-nitrotyrosine in heart. Exercise in aged rats reduced mRNA and protein expression of CHOP, GRP78, and XBP1. Exercise also reduced mRNA and protein expression of IL-6 and MCP-1 and suppressed activation of JNK in aging heart. Similar effects were demonstrated in aged rats treated with NaHS. Collectively, exercise restored bioavailability of hydrogen sulfide in the heart of aged rats, which partly explained the benefits of exercise against myocardial fibrosis of aged population.

  9. [Salubrinal improves cardiac function in rats with heart failure post myocardial infarction through reducing endoplasmic reticulum stress-associated apoptosis].

    PubMed

    Liu, Y; Qi, S Y; Ru, L S; Ding, C; Wang, H J; Li, A Y; Xu, B Y; Zhang, G H; Wang, D M

    2016-06-24

    Endoplasmic reticulum (ER) stress plays an important role in ischemia-mediated cell death. The aim of the current study is to investigate the effects of salubrinal (Sal), a selective eIF2a dephosphorylation inhibitor, on heart failure rats and related mechanisms. Heart failure was induced by coronary artery ligation (MI) in adult male Sprague-Dawley rats. To ensure comparable MI sizes post coronary artery ligation on various groups, echocardiography examination was performed before and 30 minutes after ligation in MI groups. Then rats were randomly assigned to 4 groups: Sham group (n=12), MI group (n=10), MI plus vehicle injections group (DMSO group, n=12) and MI plus Sal injection group (Sal group, n=12). Sal (1 mg/kg) or DMSO was injected via the tail vein daily for the first 3 days (starting at 30 minutes after ligation of the left coronary artery), followed by subcutaneous injections twice per week for 8 weeks. Cardiac function was assessed by echocardiography and cell apoptosis assessed by flow cytometric analysis after 8 weeks. Protein and mRNA levels of ER stress markers were evaluated by immunohistochemistry and real time RT-PCR respectively. Eight weeks later, LVEF was significantly higher, while LVESD and LVEDD values were significantly lower in Sal group compared to MI and DMSO groups (all P<0.05); LV/BW ratio was significantly higher in MI group than in Sham group ((2.30±0.40) mg/g vs.(1.78±0.31) mg/g, P<0.05), which was significantly reduced in Sal group ((1.88±0.25) mg/g), but not in DMSO group((2.25±0.36) mg/g, P<0.05 vs. MI). In addition, flow cytometric analysis showed that Sal treatment significantly reduced apoptosis but not necrosis in post MI. Immunohistochemistry and real time PCR analysis showed that the myocardial protein and mRNA expression of ER stress markers were significantly lower in Sal group than in MI group, myocardial caspase-12 expression was significantly upregulated in MI group and significantly reduced by Sal treatment. Our

  10. Central command dysfunction in rats with heart failure is mediated by brain oxidative stress and normalized by exercise training.

    PubMed

    Koba, Satoshi; Hisatome, Ichiro; Watanabe, Tatsuo

    2014-09-01

    Sympathoexcitation elicited by central command, a parallel activation of the motor and autonomic neural circuits in the brain, has been shown to become exaggerated in chronic heart failure (CHF). The present study tested the hypotheses that oxidative stress in the medulla in CHF plays a role in exaggerating central command-elicited sympathoexcitation, and that exercise training in CHF suppresses central command-elicited sympathoexcitation through its antioxidant effects in the medulla. In decerebrate rats, central command was activated by electrically stimulating the mesencephalic locomotor region (MLR) after neuromuscular blockade. The MLR stimulation at a current intensity greater than locomotion threshold in rats with CHF after myocardial infarction (MI) evoked larger (P < 0.05) increases in renal sympathetic nerve activity and arterial pressure than in sham-operated healthy rats (Sham) and rats with CHF that had completed longterm (8–12 weeks) exercise training (MI + TR). In the Sham and MI + TR rats, bilateral microinjection of a superoxide dismutase (SOD) mimetic Tempol into the rostral ventrolateral medulla (RVLM) had no effects on MLR stimulation-elicited responses. By contrast, in MI rats, Tempol treatment significantly reduced MLR stimulation-elicited responses. In a subset of MI rats, treatment with Tiron, another SOD mimetic, within the RVLM also reduced responses. Superoxide generation in the RVLM, as evaluated by dihydroethidium staining, was enhanced in MI rats compared with that in Sham and MI + TR rats. Collectively, these results support the study hypotheses. We suggest that oxidative stress in the medulla in CHF mediates central command dysfunction, and that exercise training in CHF is capable of normalizing central command dysfunction through its antioxidant effects in the medulla.

  11. Comparison of TCDD-elicited genome-wide hepatic gene expression in Sprague–Dawley rats and C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nault, Rance; Kim, Suntae; Zacharewski, Timothy R., E-mail: tzachare@msu.edu

    2013-03-01

    Although the structure and function of the AhR are conserved, emerging evidence suggests that downstream effects are species-specific. In this study, rat hepatic gene expression data from the DrugMatrix database (National Toxicology Program) were compared to mouse hepatic whole-genome gene expression data following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For the DrugMatrix study, male Sprague–Dawley rats were gavaged daily with 20 μg/kg TCDD for 1, 3 and 5 days, while female C57BL/6 ovariectomized mice were examined 1, 3 and 7 days after a single oral gavage of 30 μg/kg TCDD. A total of 649 rat and 1386 mouse genes (|fold change| ≥more » 1.5, P1(t) ≥ 0.99) were differentially expressed following treatment. HomoloGene identified 11,708 orthologs represented across the rat Affymetrix 230 2.0 GeneChip (12,310 total orthologs), and the mouse 4 × 44K v.1 Agilent oligonucleotide array (17,578 total orthologs). Comparative analysis found 563 and 922 orthologs differentially expressed in response to TCDD in the rat and mouse, respectively, with 70 responses associated with immune function and lipid metabolism in common to both. Moreover, QRTPCR analysis of Ceacam1, showed divergent expression (induced in rat; repressed in mouse) functionally consistent with TCDD-elicited hepatic steatosis in the mouse but not the rat. Functional analysis identified orthologs involved in nucleotide binding and acetyltransferase activity in rat, while mouse-specific responses were associated with steroid, phospholipid, fatty acid, and carbohydrate metabolism. These results provide further evidence that TCDD elicits species-specific regulation of distinct gene networks, and outlines considerations for future comparisons of publicly available microarray datasets. - Highlights: ► We performed a whole-genome comparison of TCDD-regulated genes in mice and rats. ► Previous species comparisons were extended using data from the DrugMatrix database. ► Less than 15

  12. Transplantation of donor hearts after circulatory or brain death in a rat model.

    PubMed

    Li, Shiliang; Loganathan, Sivakkanan; Korkmaz, Sevil; Radovits, Tamás; Hegedűs, Peter; Zhou, Yan; Karck, Matthias; Szabó, Gábor

    2015-05-01

    Heart transplantation represents the only curative treatment for end-stage heart failure. Presently, the donor pool is restricted to brain-dead donors. Based on the lack of suitable donors and the increasing number of patients, we investigated some molecular pathomechanisms of the potential use of hearts after circulatory determination of death (DCDD) in transplantation. Rats were either maintained brain death for 5 h by inflation of a subdurally placed balloon catheter (n = 6) or subjected to cardiac arrest by exsanguinations (n = 6). Additionally, a control group was used (n = 9). Then the hearts were perfused with a cold preservation solution (Custodiol), explanted, stored at 4°C in Custodiol, and heterotopically transplanted. Brain death was associated with decreased left-ventricular contractility (dP/dtmax: 4895 ± 505 versus 8037 ± 565 mm Hg/s; ejection fraction: 27 ± 5 versus 44 ± 5%; Emax: 2.2 ± 0.3 versus 4.2 ± 0.3 mm Hg/μL; preload recruitable stroke work: 59 ± 5 versus 96 ± 6 mm Hg; 5 h after brain death versus before brain death; P < 0.05) and impaired cardiac relaxation (dP/dtmin: -4734 ± 575 versus -9404 ± 550 mm Hg/s and prolonged Tau, P < 0.05) compared with controls. After transplantation, significantly decreased systolic function and prolonged Tau were observed in brain-dead and DCDD groups compared with those in controls. Tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor-κB, inducible-NOS, and caspase-3 messenger RNA and protein-levels were significantly increased in the brain-dead compared with both control and DCDD groups. Additionally, marked myocardial inflammatory cell infiltration, edema, necrosis, and DNA-strand breaks were observed in the brain-dead group. Our results show that despite the similar functional outcome in DCDD and brain-dead groups, brain-dead hearts showed marked myocardial inflammatory cell infiltration, edema, necrosis, DNA-strand breaks, and increased

  13. Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte

    PubMed Central

    Kumar, Suresh N.; Konorev, Eugene A.; Aggarwal, Deepika; Kalyanaraman, Balaraman

    2011-01-01

    Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48 h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity. PMID:21338723

  14. Loss of Intralipid®- but Not Sevoflurane-Mediated Cardioprotection in Early Type-2 Diabetic Hearts of Fructose-Fed Rats: Importance of ROS Signaling

    PubMed Central

    Zhang, Liyan; Affolter, Andreas; Gandhi, Manoj; Hersberger, Martin; Warren, Blair E.; Lemieux, Hélène; Sobhi, Hany F.; Clanachan, Alexander S.; Zaugg, Michael

    2014-01-01

    Background Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury. Methods Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose were exposed to 15 min of ischemia and 30 min of reperfusion. Intralipid® (1%) was administered at the onset of reperfusion. Peri-ischemic sevoflurane (2 vol.-%) served as alternative protection strategy. Recovery of left ventricular function was recorded and the activation of Akt and ERK 1/2 was monitored. Mitochondrial function was assessed by high-resolution respirometry and mitochondrial ROS production was measured by Amplex Red and aconitase activity assays. Acylcarnitine tissue content was measured and concentration-response curves of complex IV inhibition by palmitoylcarnitine were obtained. Results Intralipid® did not exert protection in early diabetic hearts, while sevoflurane improved functional recovery. Sevoflurane protection was abolished by concomitant administration of the ROS scavenger N-2-mercaptopropionyl glycine. Sevoflurane, but not Intralipid® produced protective ROS during reperfusion, which activated Akt. Intralipid® failed to inhibit respiratory complex IV, while sevoflurane inhibited complex I. Early diabetic hearts exhibited reduced carnitine-palmitoyl-transferase-1 activity, but palmitoylcarnitine could not rescue protection and enhance postischemic functional recovery. Cardiac mitochondria from early diabetic rats exhibited an increased content of subunit IV-2 of respiratory complex IV and of uncoupling protein-3. Conclusions Early type-2 diabetic hearts lose complex IV-mediated protection by Intralipid® potentially due to a switch in complex IV subunit expression and increased mitochondrial uncoupling, but are amenable to complex I-mediated sevoflurane protection. PMID:25127027

  15. Cardiomyocytes from phorbol myristate acetate-activated mesenchymal stem cells restore electromechanical function in infarcted rat hearts

    PubMed Central

    Song, Heesang; Hwang, Hye Jin; Chang, Woochul; Song, Byeong-Wook; Cha, Min-Ji; Lim, Soyeon; Choi, Eun Ju; Ham, Onju; Lee, Chang Youn; Park, Jun-Hee; Lee, Se-Yeon; Choi, Eunmi; Lee, Chungkeun; Lee, Myoungho; Lee, Moon-Hyoung; Kim, Sung-Hou; Jang, Yangsoo; Hwang, Ki-Chul

    2011-01-01

    Despite the safety and feasibility of mesenchymal stem cell (MSC) therapy, an optimal cell type has not yet emerged in terms of electromechanical integration in infarcted myocardium. We found that poor to moderate survival benefits of MSC-implanted rats were caused by incomplete electromechanical integration induced by tissue heterogeneity between myocytes and engrafted MSCs in the infarcted myocardium. Here, we report the development of cardiogenic cells from rat MSCs activated by phorbol myristate acetate, a PKC activator, that exhibited high expressions of cardiac-specific markers and Ca2+ homeostasis-related proteins and showed adrenergic receptor signaling by norepinephrine. Histological analysis showed high connexin 43 coupling, few inflammatory cells, and low fibrotic markers in myocardium implanted with these phorbol myristate acetate-activated MSCs. Infarct hearts implanted with these cells exhibited restoration of conduction velocity through decreased tissue heterogeneity and improved myocardial contractility. These findings have major implications for the development of better cell types for electromechanical integration of cell-based treatment for infarcted myocardium. PMID:21173226

  16. Cardiac myofibrillar contractile properties during the progression from hypertension to decompensated heart failure.

    PubMed

    Hanft, Laurin M; Emter, Craig A; McDonald, Kerry S

    2017-07-01

    Heart failure arises, in part, from a constellation of changes in cardiac myocytes including remodeling, energetics, Ca 2+ handling, and myofibrillar function. However, little is known about the changes in myofibrillar contractile properties during the progression from hypertension to decompensated heart failure. The aim of the present study was to provide a comprehensive assessment of myofibrillar functional properties from health to heart disease. A rodent model of uncontrolled hypertension was used to test the hypothesis that myocytes in compensated hearts exhibit increased force, higher rates of force development, faster loaded shortening, and greater power output; however, with progression to overt heart failure, we predicted marked depression in these contractile properties. We assessed contractile properties in skinned cardiac myocyte preparations from left ventricles of Wistar-Kyoto control rats and spontaneous hypertensive heart failure (SHHF) rats at ~3, ~12, and >20 mo of age to evaluate the time course of myofilament properties associated with normal aging processes compared with myofilaments from rats with a predisposition to heart failure. In control rats, the myofilament contractile properties were virtually unchanged throughout the aging process. Conversely, in SHHF rats, the rate of force development, loaded shortening velocity, and power all increased at ~12 mo and then significantly fell at the >20-mo time point, which coincided with a decrease in left ventricular fractional shortening. Furthermore, these changes occurred independent of changes in β-myosin heavy chain but were associated with depressed phosphorylation of myofibrillar proteins, and the fall in loaded shortening and peak power output corresponded with the onset of clinical signs of heart failure. NEW & NOTEWORTHY This novel study systematically examined the power-generating capacity of cardiac myofilaments during the progression from hypertension to heart disease. Previously

  17. Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts.

    PubMed

    Kuniyasu, Akihiko; Kaneko, Kazuyoshi; Kawahara, Kohichi; Nakayama, Hitoshi

    2003-09-25

    Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning.

  18. Attenuation of ischemia-reperfusion injury by sevoflurane postconditioning involves protein kinase B and glycogen synthase kinase 3 beta activation in isolated rat hearts.

    PubMed

    Fang, Neng-Xin; Yao, Yun-Tai; Shi, Chun-Xia; Li, Li-Huan

    2010-12-01

    Volatile anesthetic ischemic postconditioning reduces infarct size following ischemia/reperfusion. Whether phosphorylation of protein kinase B (PKB/Akt) and glycogen synthase kinase 3 beta (GSK3β) is causal for cardioprotection by postconditioning is controversial. We therefore investigated the impact of PKB/Akt and GSK3β in isolated perfused rat hearts subjected to 40 min of ischemia followed by 1 h of reperfusion. 2.0% sevoflurane (1.0 minimum alveolar concentration) was administered at the onset of reperfusion in 15 min as postconditioning. Western blot analysis was used to determine phosphorylation of PKB/Akt and its downstream target GSK3β after 1 h of reperfusion. Mitochondrial and cytosolic content of cytochrome C checked by western blot served as a marker for mitochondrial permeability transition pore opening. Sevoflurane postconditioning significantly improved functional cardiac recovery and decreased infarct size in isolated rat hearts. Compared with unprotected hearts, sevoflurane postconditioning-induced phosphorylation of PKB/Akt and GSK3β were significantly increased. Increase of cytochrome C in mitochondria and decrease of it in cytosol is significant when compared with unprotected ones which have reversal effects on cytochrome C. The current study presents evidence that sevoflurane-induced cardioprotection at the onset of reperfusion are partly through activation of PKB/Akt and GSK3β.

  19. The cardiac effects of carbon nanotubes in rat.

    PubMed

    Hosseinpour, Mina; Azimirad, Vahid; Alimohammadi, Maryam; Shahabi, Parviz; Sadighi, Mina; Ghamkhari Nejad, Ghazaleh

    2016-01-01

    Carbon nanotubes (CNTs) are novel candidates in nanotechnology with a variety of increasing applications in medicine and biology. Therefore the investigation of nanomaterials' biocompatibility can be an important topic. The aim of present study was to investigate the CNTs impact on cardiac heart rate among rats. Electrocardiogram (ECG) signals were recorded before and after injection of CNTs on a group with six rats. The heart rate variability (HRV) analysis was used for signals analysis. The rhythm-to-rhythm (RR) intervals in HRV method were computed and features of signals in time and frequency domains were extracted before and after injection. RESULTS of the HRV analysis showed that CNTs increased the heart rate but generally these nanomaterials did not cause serious problem in autonomic nervous system (ANS) normal activities. Injection of CNTs in rats resulted in increase of heart rate. The reason of phenomenon is that multiwall CNTs may block potassium channels. The suppressed and inhibited IK and potassium channels lead to increase of heart rate.

  20. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats.

    PubMed

    Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge

    2011-05-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.

  1. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats

    PubMed Central

    MASINI, CHER V.; NYHUIS, TARA J.; SASSE, SARAH K.; DAY, HEIDI E. W.; CAMPEAU, SERGE

    2015-01-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress. PMID:21438772

  2. Circadian and estrous cycle-dependent variations in blood pressure and heart rate in female rats.

    PubMed

    Takezawa, H; Hayashi, H; Sano, H; Saito, H; Ebihara, S

    1994-11-01

    To determine whether cardiovascular functions are controlled by the endogenous circadian system and whether they change with the estrous cycle in female rats, we measured mean arterial pressure (MAP), heart rate (HR), and spontaneous activity (ACT) of female rats using an implantable radiotelemetry device and a computerized data-collecting system. Under a 12:12-h light-dark (LD) cycle, these parameters exhibited daily rhythms that were entrained to the photic cycle. The patterns of the daily rhythms varied with estrous cycles, and variations were particularly marked in the proestrous stage. During the dark period of this stage, ACT levels were significantly higher, but HR was significantly lower than in other stages. Although the peak MAP occurred within 2 h after the onset of the dark phase in three of the estrous stages, it occurred around midnight in the proestrous stage. Such estrous cycle-dependent variations were eliminated by ovariectomy. The implantation of 17 beta-estradiol produced a gradual increase in MAP and an abrupt decrease in HR. During constant darkness, all three parameters were free running, maintaining the same internal phase relationships with each other as during LD cycles. These results indicate that daily variations in these parameters were controlled by the endogenous circadian oscillating system, that they vary with the estrous cycle in female rats, and that estrogen may be responsible for these estrous cycle-dependent variations.

  3. LncRNA NONRATT021972 siRNA rescued decreased heart rate variability in diabetic rats in superior cervical ganglia.

    PubMed

    Xu, Hong; Liu, Changle; Rao, Shenqiang; He, Luling; Zhang, Tengling; Sun, Shanshan; Wu, Bing; Zou, Lifang; Wang, Shouyu; Xue, Yun; Jia, Tianyu; Zhao, Shanhong; Li, Guilin; Liu, Shuangmei; Li, Guodong; Liang, Shangdong

    2016-12-01

    Diabetic cardiac autonomic neuropathy (DCAN) is a serious and common complication in diabetes mellitus (DM). Long noncoding RNAs (lncRNAs), an important class of regulatory molecules in diverse biological processes, have attracted considerable interest in DCAN. Our previous study has indicated a lncRNA, NONRATT021972 (NONCODE ID), was enhanced in sympathetic neuronal-like PC12 cells in the setting of high glucose (HG) and high FFAs (HF); its silence was found to significantly alleviate HGHF-induced tumor necrosis factor-α (TNF-α) release in PC12 cells. Here we further explore the effects of NONRATT021972 small interference RNA (siRNA) on heart rate variability (HRV) mediated by superior cervical ganglia (SCG) in diabetic rats and the possible mechanism underlying. We found an increment of NONRATT021972 in SCG of DM rats. Treatment of NONRATT021972 siRNA in DM rats decreased the elevated expression of TNF-α, blocked serine phosphorylation of insulin receptor substrate (IRS) 1 and increased the down-regulated expression of IRS1 in SCG. Meanwhile, NONRATT021972 siRNA rescued decreased HRV in DM rats. Therefore, inhibition of NONRATT021972 may serve as a novel therapeutic strategy for preventing the development of DCAN. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A novel mechanism of bradycardia and the character of acetylcholine in the heart.

    PubMed

    Młynarska, M S; Garlicki, M; Jakobczak, M M; Skowron-Cendrzak, A

    2006-01-01

    At first the aim of our study was to observe the simultaneous responses of two hearts after intraarterial (into a. femoralis) adrenaline administration, in the rat with its own heart and a transplanted one--hence non-innervated. After these, some next experiments were performed: in some rats the His bundle of the heterotopically transplanted heart was damaged before transplantation. In all experiments the heart rate was observed on ECG and simultaneously, the arterial blood pressure was recorded from femoral artery in Vetbutal-anaesthetized rats. 1) both the heterotopically transplanted, non-innervated heart and the animal's own heart reacted to adrenaline administeration by producing bradycardia, 2) the heterotopically transplanted heart with the damaged His bundle--hence with a ventricular block reacted to adrenaline administration by raising the heart rate, whereas at the same time and in the same animal its own heart reacted by producing bradycardia. 1) the cause of bradycardia after adrenaline administration does not lie in the reflex from the arcus aortae, since we observed bradycardia after adrenaline administration also in the transplanted, non-innervated heart; therefore the baroreceptor reflex is not the cause of bradycardia after adrenaline administration; 2) bradycardia after adrenaline occurs in both the proper heart and the transplanted, non-innervated one, as a result of an interaction between two cholinergic centres which must be situated above and below the point of the His bundle interruption. The role of acetylcholine in the heart results from the interaction between these two centres.

  5. Long-term effect of prazosin and losartan administration on blood pressure, heart, carotid artery, and acetylcholine induced dilation of cardiovascular system of young Wistar rats and SHR.

    PubMed

    Kristek, Frantisek; Malekova, Magdalena; Cacanyiova, Sona

    2013-06-01

    The long-term effects of prazosin and losartan administration on blood pressure, trophicity of the heart and carotid arteries, and responses of the cardiovascular system to acetylcholine, were studied in Wistar rats and spontaneously hypertensive rats (SHRs). Four-week-old rats were treated with prazosin (10 mg/kg b.w./day in tap water) or losartan (20 mg/kg b.w./day in tap water) for 5-6 weeks. BP was measured by plethysmographic method. Ten animals of each group were subjected to in vivo studies and subsequent to morphological investigations. The right jugular vein was cannulated for administration of acetylcholine (0.1, 1, and 10 µg). After perfusion with a glutaraldehyde fixative (120 mmHg), the carotid arteries were embedded in Durcupan ACM, and the inner diameter (ID), wall thickness (WT) (tunica intima and media), cross sectional area (CSA) (tunica intima and media), and WT/ID ratio were calculated. In Wistar rats and SHRs, prazosin and losartan administration produced a decrease in the blood pressure and trophicity of the heart. In Wistar rats, both drugs decreased the WT, CSA, and the WT/ID ratio. In addition, these drugs increased the circumferential stress of the artery without affecting the ID. In contrast, in the SHRs, only losartan administration produced these effects. Importantly, both the drugs improved the responses to acetylcholine in SHRs.

  6. Cardiac basal metabolism: energetic cost of calcium withdrawal in the adult rat heart.

    PubMed

    Bonazzola, P; Takara, D

    2010-07-01

    Cardiac basal metabolism upon extracellular calcium removal and its relationship with intracellular sodium and calcium homeostasis was evaluated. A mechano-calorimetric technique was used that allowed the simultaneous and continuous measurement of both heat rate and resting pressure in arterially perfused quiescent adult rat hearts. Using pharmacological tools, the possible underlying mechanisms related to sodium and calcium movements were investigated. Resting heat rate (expressed in mW g(-1)(dry wt)) increased upon calcium withdrawal (+4.4 +/- 0.2). This response was: (1) unaffected by the presence of tetrodotoxin (+4.3 +/- 0.6), (2) fully blocked by both, the decrease in extracellular sodium concentration and the increase in extracellular magnesium concentration, (3) partially blocked by the presence of either nifedipine (+2.8 +/- 0.4), KB-R7943 (KBR; +2.5 +/- 0.2), clonazepam (CLO; +3.1 +/- 0.3) or EGTA (+1.9 +/- 0.3). The steady heat rate under Ca(2+)-free conditions was partially reduced by the addition of Ru360 (-1.1 +/- 0.2) but not CLO in the presence of EGTA, KBR or Ru360. Energy expenditure for resting state maintenance upon calcium withdrawal depends on the intracellular rise in both sodium and calcium. Our data are consistent with a mitochondrial Ca(2+) cycling, not detectable under normal calcium diastolic levels. The experimental condition here analysed, partially simulates findings reported under certain pathological situations including heart failure in which mildly increased levels of both diastolic sodium and calcium have also been found. Therefore, under such pathological conditions, hearts should distract chemical energy to fuel processes associated with sodium and calcium handling, making more expensive the maintenance of their functions.

  7. Comparative proteomic analysis of 2-MCPD- and 3-MCPD-induced heart toxicity in the rat.

    PubMed

    Schultrich, Katharina; Frenzel, Falko; Oberemm, Axel; Buhrke, Thorsten; Braeuning, Albert; Lampen, Alfonso

    2017-09-01

    The chlorinated propanols 2- and 3-monochloropropanediol (MCPD), and their fatty acid esters have gained public attention due to their frequent occurrence as heat-induced food contaminants. Toxic properties of 3-MCPD in kidney and testis have extensively been characterized. Other 3-MCPD target organs include heart and liver, while 2-MCPD toxicity has been observed in striated muscle, heart, kidney, and liver. Inhibition of glycolysis appears to be important in 3-MCPD toxicity, whereas mechanisms of 2-MCPD toxicity are still unknown. It is thus not clear whether toxicity by the two isomeric compounds is dependent on similar or dissimilar modes of action. A 28-day oral feeding study in rats was conducted using daily non-toxic doses of 2-MCPD or 3-MCPD [10 mg/kg body weight], or an equimolar (53 mg/kg body weight) or a lower (13.3 mg/kg body weight) dose of 2-MCPD dipalmitate. Comprehensive comparative proteomic analyses of substance-induced alterations in the common target organ heart revealed striking similarities between effects induced by 2-MCPD and its dipalmitate ester, whereas the degree of effect overlap between 2-MCPD and 3-MCPD was much less. The present data demonstrate that even if exerting effects in the same organ and targeting similar metabolic networks, profound differences between molecular effects of 2-MCPD and 3-MCPD exist thus warranting the necessity of separate risk assessment for the two substances. This study for the first time provides molecular insight into molecular details of 2-MCPD toxicity. Furthermore, for the first time, molecular data on 3-MCPD toxicity in the heart are presented.

  8. Effect of DanQi Pill on PPARα, lipid disorders and arachidonic acid pathway in rat model of coronary heart disease.

    PubMed

    Chang, Hong; Wang, Qiyan; Shi, Tianjiao; Huo, Kuiyuan; Li, Chun; Zhang, Qian; Wang, Guoli; Wang, Yuanyuan; Tang, Binghua; Wang, Wei; Wang, Yong

    2016-03-22

    Danqi pill (DQP) is one of the most widely prescribed formulas and has been shown to have remarkable protective effect on coronary heart disease (CHD). However, its regulatory effects on lipid metabolism disorders haven't been comprehensively studied so far. We aimed to explore the effects of DQP on Peroxisome Proliferator activated receptors α (PPARα), lipid uptake-transportation-metabolism pathway and arachidonic acid (AA)-mediated inflammation pathway in rats with CHD. 80 Sprague-Dawley (SD) Rats were randomly divided into sham group, model group, positive control group and DQP group. Rat model of CHD was induced by ligation of left ventricle anterior descending artery and fed with high fat diet in all but the sham group. Rats in sham group only underwent thoracotomy. After surgery, rats in the positive control and DQP group received daily treatments of pravastatin and DQP respectively. At 28 days after surgery, rats were sacrificed and plasma lipids were evaluated by plasma biochemical detection. Western blot and PCR were applied to evaluate the expressions of PPARα, proteins involved in lipid metabolism and AA pathways. Twenty eight days after surgery, dyslipidemia developed in CHD model rats, as illustrated by elevated plasma lipid levels. Expressions of apolipoprotein A-I (ApoA-I), cluster of differentiation 36 (CD36) and fatty acid binding protein (FABP) in the heart tissues of model group were down-regulated compared with those in sham group. Expressions of carnitine palmitoyl transferase I (CPT-1A) and lipoproteinlipase (LPL) were also reduced significantly. In addition, levels of phospholipase A2 (PLA2) and cyclooxygenase 2 (COX-2) were up-regulated. Expressions of Nuclear factor-κB (NF- κB) and signal transducer and activator of transcription 3 (STAT3) also increased. Furthermore, Expression of PPARα decreased in the model group. DQP significantly up-regulated expressions of ApoA-I and FABP, as well as the expressions of CPT-1A and CD36. In

  9. Notch1 Mediates Preconditioning Protection Induced by GPER in Normotensive and Hypertensive Female Rat Hearts.

    PubMed

    Rocca, Carmine; Femminò, Saveria; Aquila, Giorgio; Granieri, Maria C; De Francesco, Ernestina M; Pasqua, Teresa; Rigiracciolo, Damiano C; Fortini, Francesca; Cerra, Maria C; Maggiolini, Marcello; Pagliaro, Pasquale; Rizzo, Paola; Angelone, Tommaso; Penna, Claudia

    2018-01-01

    G protein-coupled estrogen receptor (GPER) is an estrogen receptor expressed in the cardiovascular system. G1, a selective GPER ligand, exerts cardiovascular effects through activation of the PI3K-Akt pathway and Notch signaling in normotensive animals. Here, we investigated whether the G1/GPER interaction is involved in the limitation of infarct size, and improvement of post-ischemic contractile function in female spontaneous hypertensive rat (SHR) hearts. In this model, we also studied Notch signaling and key components of survival pathway, namely PI3K-Akt, nitric oxide synthase (NOS) and mitochondrial K + -ATP (MitoKATP) channels. Rat hearts isolated from female SHR underwent 30 min of global, normothermic ischemia and 120 min of reperfusion. G1 (10 nM) alone or specific inhibitors of GPER, PI3K/NOS and MitoKATP channels co-infused with G1, just before I/R, were studied. The involvement of Notch1 was studied by Western blotting. Infarct size and left ventricular pressure were measured. To confirm endothelial-independent G1-induced protection by Notch signaling, H9c2 cells were studied with specific inhibitor, N -[ N -(3,5 difluorophenacetyl)-L-alanyl]- S -phenylglycine t -butyl ester (DAPT, 5 μM), of this signaling. Using DAPT, we confirmed the involvement of G1/Notch signaling in limiting infarct size in heart of normotensive animals. In the hypertensive model, G1-induced reduction in infarct size and improvement of cardiac function were prevented by the inhibition of GPER, PI3K/NOS, and MitoKATP channels. The involvement of Notch was confirmed by western blot in the hypertensive model and by the specific inhibitor in the normotensive model and cardiac cell line. Our results suggest that GPERs play a pivotal role in mediating preconditioning cardioprotection in normotensive and hypertensive conditions. The G1-induced protection involves Notch1 and is able to activate the survival pathway in the presence of comorbidity. Several pathological conditions

  10. Mechanism of sphingosine-1-phosphate induced cardioprotection against I/R injury in diabetic rat heart: Possible involvement of glycogen synthase kinase 3β and mitochondrial permeability transition pore.

    PubMed

    Rana, Ajay; Sharma, Saurabh

    2016-02-01

    There is growing evidence that diabetes mellitus causes attenuation of the bioactive metabolite of membrane sphingolipids, sphingosine-1-phosphate, and this may be a key mechanism in the decreased cardioprotective effect of ischaemic preconditioning (IPC) in the diabetic heart. Thus, this study has been designed to investigate the role and pharmacological potential of sphingosine-1-phosphate in diabetic rat heart. Diabetes was produced in Wistar rats by administration of a low dose of streptozotocin (STZ) (35 mg/kg, i.p., once) and feeding a high fat diet (HFD) for 6 weeks. Isolated rat heart was subjected to 30 min ischaemia followed by 120 min of reperfusion (I/R). The heart was subjected to pre-ischaemic treatment (before ischaemia for 20 min) and pharmacological preconditioning with the S1P agonist FTY720 (0.6 μmol/L) with and without atractyloside (an mPTP opener; in the last episode of reperfusion before I/R). Myocardial infarction was assessed in terms of increase in lactate dehydrogenase (LDH), creatinine kinase-MB (CK-MB), myeloperoxidase (MPO) level and infarct size (triphenyltetrazolium chloride staining). Immunohistochemistry analysis was done for assessment of tumour necrosis factor (TNF)-α and glycogen synthase kinase (GSK)-3β level in cardiac tissue. Pre-ischaemic treatment and pharmacological preconditioning with FTY720 significantly decreased I/R-induced myocardial infarction, TNF-alpha, GSK-3β level and release of LDH and CK-MB as compared to control group. The cardioprotective effect of S1P agonist was significantly attenuated by atractyloside. It may be concluded that S1P agonist FTY720 prevents the diabetic heart from ischaemic reperfusion injury, possibly through inhibition of GSK-3β and regulation of opening of mitochondrial permeability transition pore. © 2016 John Wiley & Sons Australia, Ltd.

  11. Chronic Losartan Treatment Up-Regulates AT1R and Increases the Heart Vulnerability to Acute Onset of Ischemia and Reperfusion Injury in Male Rats.

    PubMed

    Song, Minwoo A; Dasgupta, Chiranjib; Zhang, Lubo

    2015-01-01

    Inhibition of angiotensin II type 1 receptor (AT1R) is an important therapy in the management of hypertension, particularly in the immediate post-myocardial infarction period. Yet, the role of AT1R in the acute onset of myocardial ischemia and reperfusion injury still remains controversial. Thus, the present study determined the effects of chronic losartan treatment on heart ischemia and reperfusion injury in rats. Losartan (10 mg/kg/day) was administered to six-month-old male rats via an osmotic pump for 14 days and hearts were then isolated and were subjected to ischemia and reperfusion injury in a Langendorff preparation. Losartan significantly decreased mean arterial blood pressure. However, heart weight, left ventricle to body weight ratio and baseline cardiac function were not significantly altered by the losartan treatment. Of interest, chronic in vivo losartan treatment significantly increased ischemia-induced myocardial injury and decreased post-ischemic recovery of left ventricular function. This was associated with significant increases in AT1R and PKCδ expression in the left ventricle. In contrast, AT2R and PKCε were not altered. Furthermore, losartan treatment significantly increased microRNA (miR)-1, -15b, -92a, -133a, -133b, -210, and -499 expression but decreased miR-21 in the left ventricle. Of importance, addition of losartan to isolated heart preparations blocked the effect of increased ischemic-injury induced by in vivo chronic losartan treatment. The results demonstrate that chronic losartan treatment up-regulates AT1R/PKCδ and alters miR expression patterns in the heart, leading to increased cardiac vulnerability to ischemia and reperfusion injury.

  12. Chronic Losartan Treatment Up-Regulates AT1R and Increases the Heart Vulnerability to Acute Onset of Ischemia and Reperfusion Injury in Male Rats

    PubMed Central

    Song, Minwoo A.; Dasgupta, Chiranjib; Zhang, Lubo

    2015-01-01

    Inhibition of angiotensin II type 1 receptor (AT1R) is an important therapy in the management of hypertension, particularly in the immediate post-myocardial infarction period. Yet, the role of AT1R in the acute onset of myocardial ischemia and reperfusion injury still remains controversial. Thus, the present study determined the effects of chronic losartan treatment on heart ischemia and reperfusion injury in rats. Losartan (10 mg/kg/day) was administered to six-month-old male rats via an osmotic pump for 14 days and hearts were then isolated and were subjected to ischemia and reperfusion injury in a Langendorff preparation. Losartan significantly decreased mean arterial blood pressure. However, heart weight, left ventricle to body weight ratio and baseline cardiac function were not significantly altered by the losartan treatment. Of interest, chronic in vivo losartan treatment significantly increased ischemia-induced myocardial injury and decreased post-ischemic recovery of left ventricular function. This was associated with significant increases in AT1R and PKCδ expression in the left ventricle. In contrast, AT2R and PKCε were not altered. Furthermore, losartan treatment significantly increased microRNA (miR)-1, -15b, -92a, -133a, -133b, -210, and -499 expression but decreased miR-21 in the left ventricle. Of importance, addition of losartan to isolated heart preparations blocked the effect of increased ischemic-injury induced by in vivo chronic losartan treatment. The results demonstrate that chronic losartan treatment up-regulates AT1R/PKCδ and alters miR expression patterns in the heart, leading to increased cardiac vulnerability to ischemia and reperfusion injury. PMID:26168042

  13. [Comparison of integration processing technology of origin and traditional cutting processing technology of Moslae Herba for lung-Yang deficiency rats].

    PubMed

    Sun, Dong-Yue; Wang, Xin-Ya; Wang, Xiao-Ting; Yan, Li; Liu, Xiao-Feng; Pang, Bo; Gao, Hui

    2018-06-01

    To compare the effect of integration processing technology of origin (IPTO) and traditional cutting processing technology (TCPT) of Moslae Herba for lung-Yang deficiency rats caused by complex factors, analyze the mechanism, and provide the modern pharmacology basis for the implementation of IPTO of Moslae Herba. The rat models of lung-Yang deficiency were established by smoking + swimming in ice water + drinking ice water. The model rats were randomly divided into different groups, and were treated with intragastric administration for 30 d. Then the general signs, anal temperature and autonomic activity of the rats were observed. The pathological morphology of lung tissues was observed, and the positive expression of tumor necrosis factor (TNF-α) was observed by immunohistochemical method, and the hematological indexes were determined. Enzyme linked immunosorbent assay (ELISA) method was used to detect serum nitric oxide (NO), immunoglobulin G (IGG), malondialdehyde (MDA), thromboxane B2 (TXB2) and interleukin-8 (IL-8) level, and the organ coefficients of heart, liver, spleen, lung, kidney and other organs were calculated. According to the results, Moslae Herba volatile oil and decoction could improve the general signs and autonomic activities of lung-Yang deficiency rats, improve the body weight, rectal temperature, and the content of IGG in serum of lung-Yang deficiency rats, reduce organ coefficients of heart, liver, spleen, lung and kidney, serum NO, MDA, TXB2, IL-8 contents, white blood cell and TNF-α mean optical density in the lung tissues of rats. witg statistically significant difference ( P <0.01 or P <0.05). The effects of IPTO volatile oil and water decoction were slightly higher. Therefore, Moslae Herba has therapeutic effect on lung-Yang deficiency rats, and ICPT has better effect, whose mechanism may be related to the intervention of TNF-α expression, improving the level of IGG, and inhibiting NO, MDA, IL-8, and TXB2 levels. Copyright© by the

  14. Protective Effects of Selenium, Vitamin E, and Purple Carrot Anthocyanins on D-Galactose-Induced Oxidative Damage in Blood, Liver, Heart and Kidney Rats.

    PubMed

    Li, Xia; Zhang, Yunlong; Yuan, Yuan; Sun, Yong; Qin, Yan; Deng, Zeyuan; Li, Hongyan

    2016-10-01

    The present study was performed to investigate the protective effects of selenium (Se), vitamin E (Vit E) and anthocyanins from purple carrots and their combination against the oxidative stress induced by D-galactose in rats. A total of 80 male rats were equally divided into 11 groups, one of which acted as control (I) just receiving intraperitoneal injections of physiological saline. The remaining ten groups (II-XI) were intraperitoneally injected with D-galactose at a dose of 400 mg kg(-1) body weight (BW) per day for 42 consecutive days. Rats in groups III-XI were treated with antioxidants via gavage per day as follows: group III: Se-methylselenocysteine (SeMSC), IV: Se as sodium selenite (Na2SeO3), V: Se-enriched yeast (SeY), VI: Vit E as α-tocopherol acetate, VII: anthocyanin from purple carrots (APC), VIII: APC + Vit E, IX: SeMSC + APC+ Vit E, X: Na2SeO3 + APC + Vit E, XI: SeY + Ant + Vit E. The results showed that the rats treated with antioxidants (III-XI) showed significant decreases in the levels of malondialdehyde (MDA) and carbonyl protein (PCO) compared with the D-galactose-treated group (II) in the heart, liver, kidneys, and blood. Moreover, there were significant increases in the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), glutathione (GSH) concentration, and total antioxidant capacity (T-AOC) in the heart, liver, kidneys, and blood of antioxidant-treated animals (III-XI) than those in control group (I). In addition, the combined treatments of two or three antioxidants showed greater antioxidant activities than those of individual treatments, suggesting the synergistic antioxidant effects of Se, Vit E, and APC. In conclusion, all the antioxidants exhibited protective effects against D-galactose-induced oxidative damage in rats, and these antioxidants showed a synergistic effect.

  15. Roselle Polyphenols Exert Potent Negative Inotropic Effects via Modulation of Intracellular Calcium Regulatory Channels in Isolated Rat Heart.

    PubMed

    Lim, Yi-Cheng; Budin, Siti Balkis; Othman, Faizah; Latip, Jalifah; Zainalabidin, Satirah

    2017-07-01

    Roselle (Hibiscus sabdariffa Linn.) calyces have demonstrated propitious cardioprotective effects in animal and clinical studies; however, little is known about its action on cardiac mechanical function. This study was undertaken to investigate direct action of roselle polyphenols (RP) on cardiac function in Langendorff-perfused rat hearts. We utilized RP extract which consists of 12 flavonoids and seven phenolic acids (as shown by HPLC profiling) and has a safe concentration range between 125 and 500 μg/ml in this study. Direct perfusion of RP in concentration-dependent manner lowered systolic function of the heart as shown by lowered LVDP and dP/dt max , suggesting a negative inotropic effect. RP also reduced heart rate (negative chronotropic action) while simultaneously increasing maximal velocity of relaxation (positive lusitropic action). Conversely, RP perfusion increased coronary pressure, an indicator for improvement in coronary blood flow. Inotropic responses elicited by pharmacological agonists for L-type Ca 2+ channel [(±)-Bay K 8644], ryanodine receptor (4-chloro-m-cresol), β-adrenergic receptor (isoproterenol) and SERCA blocker (thapsigargin) were all abolished by RP. In conclusion, RP elicits negative inotropic, negative chronotropic and positive lusitropic responses by possibly modulating calcium entry, release and reuptake in the heart. Our findings have shown the potential use of RP as a therapeutic agent to treat conditions like arrhythmia.

  16. Inhibition of KV7 Channels Protects the Rat Heart against Myocardial Ischemia and Reperfusion Injury.

    PubMed

    Hedegaard, Elise R; Johnsen, Jacob; Povlsen, Jonas A; Jespersen, Nichlas R; Shanmuganathan, Jeffrey A; Laursen, Mia R; Kristiansen, Steen B; Simonsen, Ulf; Bøtker, Hans Erik

    2016-04-01

    The voltage-gated KV7 (KCNQ) potassium channels are activated by ischemia and involved in hypoxic vasodilatation. We investigated the effect of KV7 channel modulation on cardiac ischemia and reperfusion injury and its interaction with cardioprotection by ischemic preconditioning (IPC). Reverse-transcription polymerase chain reaction revealed expression of KV7.1, KV7.4, and KV7.5 in the left anterior descending rat coronary artery and all KV7 subtypes (KV7.1-KV7.5) in the left and right ventricles of the heart. Isolated hearts were subjected to no-flow global ischemia and reperfusion with and without IPC. Infarct size was quantified by 2,3,5-triphenyltetrazolium chloride staining. Two blockers of KV7 channels, XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone] (10 µM) and linopirdine (10 µM), reduced infarct size and exerted additive infarct reduction to IPC. An opener of KV7 channels, flupirtine (10 µM) abolished infarct size reduction by IPC. Hemodynamics were measured using a catheter inserted in the left ventricle and postischemic left ventricular recovery improved in accordance with reduction of infarct size and deteriorated with increased infarct size. XE991 (10 µM) reduced coronary flow in the reperfusion phase and inhibited vasodilatation in isolated small branches of the left anterior descending coronary artery during both simulated ischemia and reoxygenation. KV7 channels are expressed in rat coronary arteries and myocardium. Inhibition of KV7 channels exerts cardioprotection and opening of KV7 channels abrogates cardioprotection by IPC. Although safety issues should be further addressed, our findings suggest a potential role for KV7 blockers in the treatment of ischemia-reperfusion injury. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Sequence of rat alpha- and gamma-casein mRNAs: evolutionary comparison of the calcium-dependent rat casein multigene family.

    PubMed Central

    Hobbs, A A; Rosen, J M

    1982-01-01

    The complete sequences of rat alpha- and gamma-casein mRNAs have been determined. The 1402-nucleotide alpha- and 864-nucleotide gamma-casein mRNAs both encode 15 amino acid signal peptides and mature proteins of 269 and 164 residues, respectively. Considerable homology between the 5' non-coding regions, and the regions encoding the signal peptides and the phosphorylation sites, in these mRNAs as compared to several other rodent casein mRNAs, was observed. Significant homology was also detected between rat alpha- and bovine alpha s1-casein. Comparison of the rodent and bovine sequences suggests that the caseins evolved at about the time of the appearance of the primitive mammals. This may have occurred by intragenic duplication of a nucleotide sequence encoding a primitive phosphorylation site, -(Ser)n-Glu-Glu-, and intergenic duplication resulting in the small casein multigene family. A unique feature of the rat alpha-casein sequence is an insertion in the coding region containing 10 repeated elements of 18 nucleotides each. This insertion appears to have occurred 7-12 million years ago, just prior to the divergence of rat and mouse. Images PMID:6298707

  18. Knockdown of cardiac Kir3.1 gene with siRNA can improve bradycardia in an experimental sinus bradycardia rat model.

    PubMed

    Li, Yang; Fu, Xiaodan; Zhang, Zhi; Yu, Bo

    2017-05-01

    The objective of this study was to explore whether the inhibition of potassium inwardly rectifying channel (Kir3.1) with short interfering RNA (siRNA) can improve bradycardia in an experimental sinus bradycardia rat model. 54 Sprague Dawley (SD) rats were randomly divided into three groups: experimental group, control group, and sham group. Sinus bradycardia model was established in SD rats through chemical ablation of sinoatrial (SA) node with 20% formaldehyde. Variations of Kir3.1 expression at mRNA and protein level were examined with qPCR and Western blotting. Electrocardiograms (ECG) of rats at 3 days and 1, 2, 3, and 4 weeks after chemical ablation and lentivirus injection were recorded and differences were compared among the three groups. The differences among multiple groups were analyzed by one-way analysis of variance (ANOVA). It was found through RT-PCR and Western blot that the mRNA and protein levels of Kir3.1 at sinoatrial node areas were decreased by 42 ± 7% and 31 ± 7% in comparison with control group, respectively (P < 0.05 in both comparisons) after 4 weeks of chemical ablation/injection. Whole-cell patch clamp data showed that the lentiviral construct could significantly inhibit the potassium current of a muscarinic acetylcholine-sensitive K + channel, I KACh . ECG data showed that the heart rate of experimental group increased after 3 days of chemical ablation/injection and lasted for at least 4 weeks after the chemical ablation/injection (heart rate increased 15.4 ± 3.8% in comparison with control group, P < 0.05). Inhibition of Kir3.1 could rescue sinus bradycardia induced by chemical ablation of SA node with 20% formaldehyde at least partly through inhibiting I KACh channel.

  19. Dietary Salt Exacerbates Isoproterenol-induced Cardiomyopathy in Rats

    EPA Science Inventory

    Spontaneously Hypertensive Heart Failure rats (SHHFs) take far longer to develop compensated heart failure and congestive decompensation than common surgical models of heart failure. Isoproterenol (ISO) infusion can accelerate cardiomyopathy in young SHHFs, while dietary salt loa...

  20. Comparison of T-2 Toxin and HT-2 Toxin Distributed in the Skeletal System with That in Other Tissues of Rats by Acute Toxicity Test.

    PubMed

    Yu, Fang Fang; Lin, Xia Lu; Yang, Lei; Liu, Huan; Wang, Xi; Fang, Hua; Lammi, ZMikko J; Guo, Xiong

    2017-11-01

    Twelve healthy rats were divided into the T-2 toxin group receiving gavage of 1 mg/kg T-2 toxin and the control group receiving gavage of normal saline. Total relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system (thighbone, knee joints, and costal cartilage) were significantly higher than those in the heart, liver, and kidneys (P < 0.05). The relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system (thighbone and costal cartilage) were also significantly higher than those in the heart, liver, and kidneys. The rats administered T-2 toxin showed rapid metabolism compared with that in rats administered HT-2 toxin, and the metabolic conversion rates in the different tissues were 68.20%-90.70%. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Effect of antihypertensive agents - captopril and nifedipine - on the functional properties of rat heart mitochondria

    PubMed Central

    Kancirová, Ivana; Jašová, Magdaléna; Waczulíková, Iveta; Ravingerová, Táňa; Ziegelhöffer, Attila; Ferko, Miroslav

    2016-01-01

    Objective(s): Investigation of acute effect on cellular bioenergetics provides the opportunity to characterize the possible adverse effects of drugs more comprehensively. This study aimed to investigate the changes in biochemical and biophysical properties of heart mitochondria induced by captopril and nifedipine antihypertensive treatment. Materials and Methods: Male, 12-week-old Wistar rats in two experimental models (in vivo and in vitro) were used. In four groups, the effects of escalating doses of captopril, nifedipine and combination of captopril + nifedipine added to the incubation medium (in vitro) or administered per os to rat (in vivo) on mitochondrial ATP synthase activity and membrane fluidity were monitored. Results: In the in vitro model we observed a significant inhibitory effect of treatment on the ATP synthase activity (P<0.05) with nonsignificant differences in membrane fluidity. Decrease in the value of maximum reaction rate Vmax (P<0.05) without any change in the value of Michaelis-Menten constant Km, indicative of a noncompetitive inhibition, was presented. At the in vivo level, we did not demonstrate any significant changes in the ATP synthase activity and the membrane fluidity in rats receiving captopril, nifedipine, and combined therapy. Conclusion: In vitro kinetics study revealed that antihypertensive drugs (captopril and nifedipine) directly interact with mitochondrial ATP synthase. In vivo experiment did not prove any acute effect on myocardial bioenergetics and suggest that drugs do not enter cardiomyocyte and have no direct effect on mitochondria. PMID:27482342

  2. Coronary response to diadenosine tetraphosphate after ischemia-reperfusion in the isolated rat heart.

    PubMed

    García-Villalón, Angel Luis; Fernández, Nuria; Monge, Luis; Diéguez, Godofredo

    2011-06-25

    Diadenosine tetraphosphate (AP4A) is a vasoactive mediator that may be released from platelet granules and that may reach higher plasma concentrations during coronary ischemia-reperfusion. The objective of this study was to analyze its coronary effects in such conditions. To this, rat hearts were perfused in a Langendorff preparation and the coronary response to Ap4A (10(-7)-10(-5) M) was recorded. In control hearts, Ap4A produced concentration-dependent vasodilatation both at the basal coronary resting tone and after precontracting coronary vasculature with 11-dideoxy-1a,9a-epoxymethanoprostaglandin F2α (U46619), and this vasodilatation was reduced by reactive blue 2 (2×10(-6) M), glibenclamide (10(-5) M), H89 (10(-6) M), U73122 (5×10(-6) M) and endothelin-1 (10(-9) M), but not by L-NAME (10(-4) M), isatin (10(-4) M), GF109203x (5×10(-7) M), or wortmannin (5×10(-7) M). After ischemia-reperfusion, the vasodilatation to Ap4A diminished, both in hearts with basal or increased vascular tone, and in this case the relaxation to Ap4A was not modified by reactive blue 2, L-NAME, glibenclamide, isatin, H89, GF109203x or wortmannin, although it was reduced by U73122 and endothelin-1. UTP produced coronary relaxation that was also reduced after ischemia-reperfusion. These results suggest that the coronary relaxation to Ap4A is reduced after ischemia-reperfusion, and that this reduction may be due to impaired effects of KATP channels and to reduced response of purinergic P2Y receptors. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart.

    PubMed Central

    Bani, D.; Masini, E.; Bello, M. G.; Bigazzi, M.; Sacchi, T. B.

    1998-01-01

    Myocardial injury caused by ischemia and reperfusion comes from multiple pathogenic events, including endothelial damage, neutrophil extravasation into tissue, platelet and mast cell activation, and peroxidation of cell membrane lipids, which are followed by myocardial cell alterations resulting eventually in cell necrosis. The current study was designed to test the possible cardioprotective effect of the hormone relaxin, which has been found to cause coronary vessel dilation and to inhibit platelet and mast cell activation. Ischemia (for 30 minutes) was induced in rat hearts in vivo by ligature of the left anterior descending coronary artery; reperfusion (for 60 minutes or less if the rats died before this predetermined time) was induced by removal of the ligature. Relaxin (100 ng) was given intravenously 30 minutes before ischemia. The results obtained showed that relaxin strongly reduces 1) the extension of the myocardial areas affected by ischemia-reperfusion-induced damage, 2) ventricular arrhythmias, 3) mortality, 4) myocardial neutrophil number, 5) myeloperoxidase activity, a marker of neutrophil accumulation, 6) production of malonyldialdehyde, an end product of lipid peroxidation, 7) mast cell granule release, 8) calcium overload, and 9) morphological signs of myocardial cell injury. This study shows that relaxin can be regarded as an agent with a marked cardioprotective action against ischemia-reperfusion-induced myocardial injury. Images Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:9588905

  4. Adenosine formation and release from neonatal-rat heart cells in culture.

    PubMed Central

    Meghji, P; Holmquist, C A; Newby, A C

    1985-01-01

    The incorporation of [3H]adenosine (10 microM) into neonatal-rat heart cell nucleotides was inhibited in a concentration-dependent manner, such that 50% inhibition was obtained with 0.75 microM-dipyridamole, 0.26 microM-hexobendine or 0.22 microM-dilazep. Adenosine formation was accelerated 2.5-fold to 2.1 +/- 0.3 nmol/10(7) cells in 10 min when cells were incubated with a combination of 30 mM-2-deoxyglucose and 2 micrograms of oligomycin/ml. Of the newly formed adenosine, 6 +/- 2% was in the cells. Dipyridamole, hexobendine or dilazep (10 microM) increased the amount of adenosine in the cells and decreased that in the medium such that 45-50% of the newly formed adenosine was in the cells. Antibodies which inhibited ecto-5'-nucleotidase by 98.7 +/- 0.3% did not alter the rate of adenosine formation or its distribution between cells and medium. We conclude that adenosine was formed in the cytoplasm during catabolism of cellular ATP and was released via the dipyridamole-sensitive symmetric nucleoside transporter. PMID:2996488

  5. Ginsenoside Rb1 inhibits autophagy through regulation of Rho/ROCK and PI3K/mTOR pathways in a pressure-overload heart failure rat model.

    PubMed

    Yang, Tianrui; Miao, Yunbo; Zhang, Tong; Mu, Ninghui; Ruan, Libo; Duan, Jinlan; Zhu, Ying; Zhang, Rongping

    2018-06-01

    This study was designed to explore the relationship between ginsenoside Rb1 (Grb1) and high-load heart failure (HF) in rats. The parameters of cardiac systolic function (left ventricular posterior wall thickness (LVPWT), left ventricular internal diastolic diameter (LVID), fraction shortening (FS) and mitral valves (MVs)) of rat hearts in each group were inspected by echocardiogram. The expressions of rat myocardial contractile proteins, autophagy-related proteins and the activation of Rho/ROCK and PI3K/mTOR pathways were detected by Western blot. LVPWT, FS, MVs and the expression of myocardial contractile proteins α-MHC, apoptosis-related proteins Bcl-2 and signalling pathway involved proteins pAkt and mTOR were significantly reduced in the HF, HF+5 mg/kg Grb1 (HF+Grb1-5) and HF+Grb1+arachidonic acid (AA) groups with LVID, β-MHC, cell apoptosis, cell autophagy and Rho/ROCK significantly increased compared with the control group, of which the tendency was contrary to the HF+20 mg/kg Grb1 (HF+Grb1-20) group compared with the HF group (P < 0.05). In the HF+Grb1+AA group, there was no significant change in the above indexes compared with the HF group. The results indicated that Grb1 can exert anti-HF function by inhibiting cardiomyocyte autophagy of rats through regulation of Rho/ROCK and PI3K/mTOR pathways. © 2018 Royal Pharmaceutical Society.

  6. Methods for the Determination of Rates of Glucose and Fatty Acid Oxidation in the Isolated Working Rat Heart

    PubMed Central

    Bakrania, Bhavisha; Granger, Joey P.; Harmancey, Romain

    2016-01-01

    The mammalian heart is a major consumer of ATP and requires a constant supply of energy substrates for contraction. Not surprisingly, alterations of myocardial metabolism have been linked to the development of contractile dysfunction and heart failure. Therefore, unraveling the link between metabolism and contraction should shed light on some of the mechanisms governing cardiac adaptation or maladaptation in disease states. The isolated working rat heart preparation can be used to follow, simultaneously and in real time, cardiac contractile function and flux of energy providing substrates into oxidative metabolic pathways. The present protocol aims to provide a detailed description of the methods used in the preparation and utilization of buffers for the quantitative measurement of the rates of oxidation for glucose and fatty acids, the main energy providing substrates of the heart. The methods used for sample analysis and data interpretation are also discussed. In brief, the technique is based on the supply of 14C- radiolabeled glucose and a 3H- radiolabeled long-chain fatty acid to an ex vivo beating heart via normothermic crystalloid perfusion. 14CO2 and 3H2O, end byproducts of the enzymatic reactions involved in the utilization of these energy providing substrates, are then quantitatively recovered from the coronary effluent. With knowledge of the specific activity of the radiolabeled substrates used, it is then possible to individually quantitate the flux of glucose and fatty acid in the oxidation pathways. Contractile function of the isolated heart can be determined in parallel with the appropriate recording equipment and directly correlated to metabolic flux values. The technique is extremely useful to study the metabolism/contraction relationship in response to various stress conditions such as alterations in pre and after load and ischemia, a drug or a circulating factor, or following the alteration in the expression of a gene product. PMID:27768055

  7. Preservation of rat hearts in subfreezing temperature isochoric conditions to - 8 °C and 78 MPa.

    PubMed

    Wan, Lili; Powell-Palm, Matthew J; Lee, Charles; Gupta, Anshal; Weegman, Bradley P; Clemens, Mark G; Rubinsky, Boris

    2018-02-12

    Isochoric (constant volume) preservation at subfreezing temperatures is being investigated as a novel method for preserving cells and organs. This study is a first initial effort to evaluate the efficacy of this method for heart preservation, and to provide a preliminary outline of appropriate preservation parameters. To establish a baseline for further studies, rat hearts were preserved in a University of Wisconsin (UW) intracellular solution for one hour under isochoric conditions at: 0 °C (atmospheric pressure - 0.1 MPa), - 4 °C (41 MPa), - 6 °C (60 MPa) and - 8 °C (78 MPa). The viability of the heart was evaluated using Langendorff perfusion and histological examination. The physiological performance of hearts preserved at - 4 °C (41 MPa) was comparable to that of a heart preserved on ice at atmospheric pressure, with no statistically significant difference in histological injury score. However, hearts preserved at -4 °C displayed substantially reduced interstitial edema compared to hearts preserved by conventional hypothermic preservation in UW on ice at atmospheric pressure, suggesting significant protection from increased vascular permeability following preservation. Hearts preserved at - 6 °C (60 MPa) suffered injury from cellular swelling and extensive edema, and at - 8 °C (78 MPa) hearts experienced significant morphological disruption. To the best of our knowledge, this is the first publication showing that a mammalian organ can survive low subfreezing temperatures without the use of a cryoprotective additive. Lowering the preservation temperature reduces metabolism and improves preservation quality, and these results suggest that improvements in preservation are possible at subzero temperatures with low to moderate pressures observed at -4 °C. Notably, tissue damage was observed at lower temperatures (-6 °C or below) accompanying further elevation of pressure associated with isochoric preservation that may

  8. Effects of short-term exposure to powerline-frequency electromagnetic field on the electrical activity of the heart.

    PubMed

    Elmas, Onur; Comlekci, Selcuk; Koylu, Halis

    2012-01-01

    ABSTRACT The heart is a contractile organ that can generate its own rhythm. The contraction, or the rhythm, of the heart may be influenced by electromagnetic field (EMF) exposure, because of the heart's excitability characteristic. In previous studies, different methods have been used to study the possible effects of an extremely low frequency electromagnetic field (ELF-EMF) on the heart. But the studies' designs were not similar, and the results were also different. Recent studies have shown some evidence that short-term EMF exposure can influence the heart more than long-term exposure. This study investigated how the heart is affected in the first EMF exposure. In a simulation of the daily exposure of humans to a power frequency, Wistar albino rats were used. By utilizing the Helmholtz-coil set, we obtained a 50-Hz, 1-μT EMF and examined rat heart activity during short-term EMF exposure. No effect was observed under this exposure condition. The results obtained do not confirm a possible mechanism in the electrical activity of the rat heart model.

  9. Effect of angiotension II on voltage-gated sodium currents in aortic baroreceptor neurons and arterial baroreflex sensitivity in heart failure rats

    PubMed Central

    Zhang, Dongze; Liu, Jinxu; Zheng, Hong; Tu, Huiyin; Muelleman, Robert L.; Li, Yu-Long

    2016-01-01

    Impairment of arterial baroreflex sensitivity is associated with mortality in patients with chronic heart failure (CHF). Elevation of plasma angiotension II (Ang II) contributes to arterial baroreflex dysfunction in CHF. A reduced number of voltage-gated sodium (Nav) channels in aortic baroreceptor neurons are involved in CHF-blunted arterial baroreflex. In this study, we investigated acute effect of Ang II on Nav currents in the aortic baroreceptor neuron and on arterial baroreflex in sham and coronary artery ligation-induced CHF rats. Using Ang II 125I radioimmunoassay, real-time RT-PCR and western blot, we found that Ang II levels, and mRNA and protein expression of angiotension II type 1 receptor (AT1R) in nodose ganglia (NG) from CHF rats were higher than that from sham rats. Local microinjection of Ang II (0.2 nmol) into the NG decreased the arterial baroreflex sensitivity in sham rats, whereas losartan (1 nmol, an AT1R antagonist) improved the arterial baroreflex sensitivity in CHF rats. Data from patch-clamp recording showed that Ang II (100 nM) acutely inhibited Nav currents in the aortic baroreceptor neurons from sham and CHF rats. In particular, inhibitory effect of Ang II on Nav currents in the aortic baroreceptor neurons was larger in CHF rats than that in sham rats. Losartan (1 μM) totally abolished the inhibitory effect of Ang II on Nav currents in sham and CHF aortic baroreceptor neurons. These results suggest that elevation of endogenous Ang II in the NG contributes to impairment of the arterial baroreflex function in CHF rats through inhibiting Nav channels. PMID:25827427

  10. Alternative Splicing Generates a Novel Truncated Cav1.2 Channel in Neonatal Rat Heart*

    PubMed Central

    Liao, Ping; Yu, Dejie; Hu, Zhenyu; Liang, Mui Cheng; Wang, Jue Jin; Yu, Chye Yun; Ng, Gandi; Yong, Tan Fong; Soon, Jia Lin; Chua, Yeow Leng; Soong, Tuck Wah

    2015-01-01

    L-type Cav1.2 Ca2+ channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca2+ channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavβ subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca2+ ions at a much lower level. PMID:25694430

  11. Effects of chronic lesions of the anteroventral third ventricle region on baroreceptor reflex function in conscious rats

    NASA Technical Reports Server (NTRS)

    Lewis, S. J.; Whalen, E. J.; Beltz, T. G.; Johnson, A. K.

    1999-01-01

    This study determined baroreceptor reflex (BR) function in conscious rats which had received sham or electrolytic lesions of the anteroventral third ventricle (AV3V) 54-56 days previously. Resting mean arterial pressure (MAP) and heart rate (HR) values of the AV3V-lesion rats were similar to those of sham-lesion rats (P>0.05 for both comparisons). The sensitivity of the BR-mediated tachycardia in AV3V-lesion was greater than in sham-lesion rats (-9. 92+/-1.00 vs. -4.54+/-0.45 bpm/mmHg, P<0.05). The sensitivity of the BR-mediated bradycardia in AV3V-lesion rats was also greater than in rats with sham lesions (-3.56+/-0.38 vs. -2.06+/-0.42 bpm/mmHg, P<0. 05). The AV3V lesions did not affect other BR parameters. These findings demonstrate that chronic lesions of the AV3V region increase the sensitivity of the baroreceptor HR reflex in conscious rats. Copyright 1999 Published by Elsevier Science B.V.

  12. Intermittent losartan administration triggers cardiac post-conditioning in isolated rat hearts: role of BK2 receptors.

    PubMed

    Sgarra, Luca; Leo, Valentina; Addabbo, Francesco; Iacobazzi, Dominga; Carratù, Maria Rosaria; Montagnani, Monica; Potenza, Maria Assunta

    2014-01-01

    The angiotensin (Ang) and bradykinin (BK) tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R) blockers (ARBs) in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS) or irbesartan (IRB) post-ischemic administration. Isolated rat hearts underwent 30 min ischemia and 120 min reperfusion. Post-conditioning was obtained by intermittent (10 s/each) or continuous drug infusion during the first 3 min of reperfusion. Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (dLVP), coronary flow (CF), and left ventricular infarct mass (IM) were measured together with the activation status of RISK kinases Akt, p42/44 MAPK and GSK3β. When compared to hearts subjected to ischemia/reperfusion (iI/R) alone, continuous IRB or LOS administration did not significantly reduce total infarct mass (cIRB or cLOS vs. iI/R, p = 0.2). Similarly, intermittent IRB (iIRB) was not able to enhance cardioprotection. Conversely, intermittent LOS administration (iLOS) significantly ameliorated cardiac recovery (iLOS vs iI/R, p<0.01). Differences between iLOS and iIRB persisted under continuous blockade of AT2R (iLOS+cPD vs. iIRB+cPD, p<0.05). Interestingly, iLOS cardioprotection was lost when BK2R was simultaneously blocked (iLOS+cHOE vs. iI/R, p = 0.6), whereas concurrent administration of iBK and iIRB replicated iLOS effects (iIRB+iBK vs. iLOS, p = 0.7). At the molecular level, iIRB treatment did not significantly activate RISK kinases, whereas both iLOS and iBK treatments were associated with activation of the Akt/GSK3β branch of the RISK pathways (p<0.05 vs. iI/R, for both). Our results suggest that intermittent losartan is effective in mediating post-conditioning cardioprotection, whereas irbesartan is not. The infarct mass reduction by intermittent

  13. Intermittent Losartan Administration Triggers Cardiac Post-Conditioning in Isolated Rat Hearts: Role of BK2 Receptors

    PubMed Central

    Sgarra, Luca; Leo, Valentina; Addabbo, Francesco; Iacobazzi, Dominga; Carratù, Maria Rosaria; Montagnani, Monica; Potenza, Maria Assunta

    2014-01-01

    Introduction The angiotensin (Ang) and bradykinin (BK) tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R) blockers (ARBs) in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS) or irbesartan (IRB) post-ischemic administration. Methods Isolated rat hearts underwent 30 min ischemia and 120 min reperfusion. Post-conditioning was obtained by intermittent (10 s/each) or continuous drug infusion during the first 3 min of reperfusion. Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (dLVP), coronary flow (CF), and left ventricular infarct mass (IM) were measured together with the activation status of RISK kinases Akt, p42/44 MAPK and GSK3β. Results When compared to hearts subjected to ischemia/reperfusion (iI/R) alone, continuous IRB or LOS administration did not significantly reduce total infarct mass (cIRB or cLOS vs. iI/R, p = 0.2). Similarly, intermittent IRB (iIRB) was not able to enhance cardioprotection. Conversely, intermittent LOS administration (iLOS) significantly ameliorated cardiac recovery (iLOS vs iI/R, p<0.01). Differences between iLOS and iIRB persisted under continuous blockade of AT2R (iLOS+cPD vs. iIRB+cPD, p<0.05). Interestingly, iLOS cardioprotection was lost when BK2R was simultaneously blocked (iLOS+cHOE vs. iI/R, p = 0.6), whereas concurrent administration of iBK and iIRB replicated iLOS effects (iIRB+iBK vs. iLOS, p = 0.7). At the molecular level, iIRB treatment did not significantly activate RISK kinases, whereas both iLOS and iBK treatments were associated with activation of the Akt/GSK3β branch of the RISK pathways (p<0.05 vs. iI/R, for both). Conclusions Our results suggest that intermittent losartan is effective in mediating post-conditioning cardioprotection, whereas irbesartan

  14. Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission.

    PubMed

    Falcioni, L; Bua, L; Tibaldi, E; Lauriola, M; De Angelis, L; Gnudi, F; Mandrioli, D; Manservigi, M; Manservisi, F; Manzoli, I; Menghetti, I; Montella, R; Panzacchi, S; Sgargi, D; Strollo, V; Vornoli, A; Belpoggi, F

    2018-08-01

    In 2011, IARC classified radiofrequency radiation (RFR) as possible human carcinogen (Group 2B). According to IARC, animals studies, as well as epidemiological ones, showed limited evidence of carcinogenicity. In 2016, the NTP published the first results of its long-term bioassays on near field RFR, reporting increased incidence of malignant glial tumors of the brain and heart Schwannoma in rats exposed to GSM - and CDMA - modulated cell phone RFR. The tumors observed in the NTP study are of the type similar to the ones observed in some epidemiological studies of cell phone users. The Ramazzini Institute (RI) performed a life-span carcinogenic study on Sprague-Dawley rats to evaluate the carcinogenic effects of RFR in the situation of far field, reproducing the environmental exposure to RFR generated by 1.8 GHz GSM antenna of the radio base stations of mobile phone. This is the largest long-term study ever performed in rats on the health effects of RFR, including 2448 animals. In this article, we reported the final results regarding brain and heart tumors. Male and female Sprague-Dawley rats were exposed from prenatal life until natural death to a 1.8 GHz GSM far field of 0, 5, 25, 50 V/m with a whole-body exposure for 19 h/day. A statistically significant increase in the incidence of heart Schwannomas was observed in treated male rats at the highest dose (50 V/m). Furthermore, an increase in the incidence of heart Schwann cells hyperplasia was observed in treated male and female rats at the highest dose (50 V/m), although this was not statistically significant. An increase in the incidence of malignant glial tumors was observed in treated female rats at the highest dose (50 V/m), although not statistically significant. The RI findings on far field exposure to RFR are consistent with and reinforce the results of the NTP study on near field exposure, as both reported an increase in the incidence of tumors of the brain and heart in RFR-exposed Sprague

  15. Crataegus songarica methanolic extract accelerates enzymatic status in kidney and heart tissue damage in albino rats and its in vitro cytotoxic activity.

    PubMed

    Ganie, Showkat Ahmad; Ali Dar, Tanveer; Zargar, Sabuhi; Bhat, Aashiq Hussain; Dar, Khalid Bashir; Masood, Akbar; Zargar, Mohammad Afzal

    2016-07-01

    Crataegus songarica K. Koch (Rosaceae) has been used in folk medicine to treat various diseases. This study evaluates the effect of C. songarica methanol extract on the kidney and heart tissue damage of albino rats, and to determine cytotoxic activity of various extracts of songarica on various human cancer cell lines. Rats were divided into six groups, Group I received water only; Group II received CCl4 (1 mL/kg b wt) intraperitoneal; C. songarica extract (at doses of 100, 200 and 300 mg/kg b wt) orally for 15 days. Cytotoxic activity was determined by SRB method using MCF-7, HeLa, HepG2, SF-295, SW480 and IMR-32 cell lines. Compared with CCl4 group, administration of C. songarica extract at the dose of 300 mg/kg b wt, significantly decreases serum creatinine (59.74%), urea (40.23%) and cholesterol (54 mg/dL), MDA (0.007 nmol/mg protein) in kidney and (0.025 nmol/mg protein) in heart tissue, along with evaluation of GSH (209.79 ± 54.6), GR (111.45 ± 2.84), GPx (94.01 ± 14.80), GST (201.71) in kidney tissue and GSH (51.47 ± 1.47), GR (45.42 ± 6.69), GPx (77.19 ± 10.94), GST (49.89) in heart tissue. In addition, methanol, ethanol and ethyl acetate extracts exhibited potent anticancer activity on six cancer cell lines with IC50 values ranging from 28.57 to 85.106 µg/mL. Crataegus songarica methanol extract has a potential antioxidant effect as it protects the kidney and heart tissue against CCl4-induced toxicity, prevents DNA damage and showed strong anticancer activity.

  16. Amelioration of hypertensive heart failure by amlodipine may occur via antioxidative effects.

    PubMed

    Hasegawa, Hiroshi; Takano, Hiroyuki; Kohro, Takahide; Ueda, Kazutaka; Niitsuma, Yuriko; Aburatani, Hiroyuki; Komuro, Issei

    2006-09-01

    Although recent clinical studies have suggested that long-acting calcium channel blockers (CCBs) have beneficial effects on heart failure, the precise mechanism is unknown. In this study, Dahl salt-sensitive rats fed a high salt diet were treated with the long-acting CCB amlodipine, the low-molecular-weight membrane permeable superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (Tempol), or saline from 11 weeks after birth. The cardiac geometry and function, and gene expression profiles were determined at 17 weeks. Dahl salt-sensitive rats fed a high salt diet followed by saline as a non-treatment control (HS group) showed a marked increase in blood pressure and developed concentric hypertrophy at 11 weeks, followed by left ventricular (LV) dilation and congestive heart failure by 17 weeks. The treatment with amlodipine (AMLO group) or Tempol (TEMP group) significantly inhibited the development of LV hypertrophy and cardiac dysfunction. Analysis using an Affymetrix GeneChip U34 revealed that the expression levels of 195 genes were changed by the treatment with amlodipine. Among these 195 genes, 110 genes were increased in HS rats and decreased in AMLO rats. And of these 110 genes, 54 genes were also decreased in TEMP rats. In contrast, 85 genes were decreased in HS rats and increased in AMLO rats. Of these 85 genes, 38 genes were also increased in TEMP rats. Approximately 48% of the genes were changed in similar fashion in AMLO and TEMP rats, suggesting that amlodipine shows beneficial effects on heart failure mainly via antioxidative mechanisms.

  17. Obesity depresses baroreflex control of renal sympathetic nerve activity and heart rate in Sprague Dawley rats: role of the renal innervation.

    PubMed

    Khan, S A; Sattar, M Z A; Abdullah, N A; Rathore, H A; Abdulla, M H; Ahmad, A; Johns, E J

    2015-07-01

    This study investigated the role of the renal innervation in arterial and cardiopulmonary baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) in rats fed a high-fat diet to induce obesity. Rats received either a normal (12% kcal) or high (45% kcal) fat diet for 60 days. On day 61, rats were anesthetized and prepared for recording left RSNA. In one group, the renal nerves remained intact, while in the other, both kidneys were denervated. Baroreflex gain curves for RSNA and HR were generated by increasing and decreasing blood pressure. Low-pressure baroreceptors were challenged by infusing a saline load. Mean blood pressure was 135 mmHg in the fat-fed and 105 mmHg (P < 0.05) in normal rats. Weight gain, adiposity index and creatinine clearance were 37, 82 and 55% higher (P < 0.05-0.001), but urine flow rate and fractional sodium excretions were 53 and 65% (both P < 0.001) lower, respectively, in the fat-fed compared to normal rats. In fat-fed rats with innervated kidneys, RSNA and HR arterial baroreflex sensitivities were reduced by 73 and 72% (both P < 0.05) but were normal in renally denervated rats. Volume expansion decreased RSNA by 66% (P < 0.001) in normal rats, but not in the intact fat-fed rats and by 51% (P < 0.01) in renally denervated fat-fed rats. Feeding a high-fat diet caused hypertension associated with dysregulation of the arterial and cardiopulmonary baroreflexes which was dependent on an intact renal innervation. This suggests that in obese states neural signals arising from the kidney contribute to a deranged autonomic control. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  18. Effects of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats.

    PubMed

    Ramli, Nurul Shazini; Brown, Lindsay; Ismail, Patimah; Rahmat, Asmah

    2014-06-12

    The fruit of Hylocereus polyrhizus, also known as red pitaya, and buah naga in Malay, is one of the tropical fruits of the cactus family, Cactaceae. Red pitaya has been shown to protect aorta from oxidative damage and improve lipid profiles in hypercholesterolemic rats probably due to phytochemicals content including phenolics and flavonoids. The aim of this study was to investigate the changes in cardiac stiffness, hepatic and renal function in high-carbohydrate, high-fat diet-induced obese rats following supplementation of red pitaya juice. Total 48 male Wistar rats were divided into 4 groups: corn-starch group (CS), corn-starch+red pitaya juice group (CRP), high-carbohydrate, high fat group (HCHF) and high-carbohydrate, high fat+red pitaya juice (HRP). The intervention with 5% red pitaya juice was started for 8 weeks after 8 weeks initiation of the diet. Heart function was determined ex vivo with Langendorff hearts while plasma liver enzymes, uric acid and urea were measured using commercial kits. Total fat mass was determined with Dual-energy X-ray absorptiometry (DXA) scan. Glucose uptake was measured with Oral Glucose Tolerance Test (OGTT). Liver and cardiac structures were defined by histology. Supplementation of red pitaya juice for 8 weeks increased energy intake and abdominal circumference but no change in body fat and lean mass respectively. Also, there were a trend of uric acid and glucose normalization for HRP as compared to H-fed rats. Red pitaya juice treatment reduced ALP and ALT but caused significant increment in AST. Diastolic stiffness of the heart was reduced after supplementation of red pitaya juice in corn starch fed rats. However, the reduction was not significant in HRP rats in comparison with H rats. The present study concluded that red pitaya juice may serve as a complimentary therapy for attenuating some signs of metabolic syndrome.

  19. Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure

    PubMed Central

    Schwarzer, Michael; Osterholt, Moritz; Lunkenbein, Anne; Schrepper, Andrea; Amorim, Paulo; Doenst, Torsten

    2014-01-01

    We investigated the impact of cardiac reactive oxygen species (ROS) during the development of pressure overload-induced heart failure. We used our previously described rat model where transverse aortic constriction (TAC) induces compensated hypertrophy after 2 weeks, heart failure with preserved ejection fraction at 6 and 10 weeks, and heart failure with systolic dysfunction after 20 weeks. We measured mitochondrial ROS production rates, ROS damage and assessed the therapeutic potential of in vivo antioxidant therapies. In compensated hypertrophy (2 weeks of TAC) ROS production rates were normal at both mitochondrial ROS production sites (complexes I and III). Complex I ROS production rates increased with the appearance of diastolic dysfunction (6 weeks of TAC) and remained high thereafter. Surprisingly, maximal ROS production at complex III peaked at 6 weeks of pressure overload. Mitochondrial respiratory capacity (state 3 respiration) was elevated 2 and 6 weeks after TAC, decreased after this point and was significantly impaired at 20 weeks, when contractile function was also impaired and ROS damage was found with increased hydroxynonenal. Treatment with the ROS scavenger α-phenyl-N-tert-butyl nitrone or the uncoupling agent dinitrophenol significantly reduced ROS production rates at 6 weeks. Despite the decline in ROS production capacity, no differences in contractile function between treated and untreated animals were observed. Increased ROS production occurs early in the development of heart failure with a peak at the onset of diastolic dysfunction. However, ROS production may not be related to the onset of contractile dysfunction. PMID:24951621

  20. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    PubMed

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  1. Pharmacokinetics and dromotropic activity of ajmaline in rats with hyperthyroidism.

    PubMed Central

    Hashimoto, Y.; Yasuhara, M.; Kamiya, A.; Okumura, K.; Hori, R.

    1989-01-01

    1. The pharmacokinetics and the dromotropic action (increased PQ interval) of intravenously administered ajmaline (2 mg kg-1) were studied in hyperthyroid rats with sinus tachycardia. The hyperthyroidism was induced by intraperitoneal injection of 3,5,3'-triiodo-L-thyronine (0.5 mg kg-1) for 4 days. 2. The change in the ajmaline concentration in whole blood could be described by a biexponential equation. The steady state distribution volume of ajmaline decreased from 4.81 l kg-1 in control rats to 3.80 l kg-1 in hyperthyroid rats and the total body blood clearance was slightly higher in hyperthyroid rats than in control rats. 3. Ajmaline exhibited a saturable binding to rat plasma proteins, and one kind of binding site was found in the observed range of concentrations. The binding capacity was 2 fold higher in hyperthyroid rats than in control rats. 4. On the basis of the plasma unbound concentration, ajmaline exhibited an increased negative dromotropic activity in hyperthyroid rats compared with control rats. 5. A positive correlation was found between the pacing rate and the dromotropic action of ajmaline on atrioventricular conduction in isolated perfused hearts. There was no significant difference in the rate-dependence of the effect of ajmaline on the heart between control and hyperthyroid rats. 6. Our findings suggest that the increased dromotropic activity of ajmaline is mainly due to the increased heart rate in hyperthyroid rats. PMID:2924068

  2. Modification of caffeine-induced injury in Ca2+-free perfused rat hearts. Relationship to the calcium paradox.

    PubMed Central

    Vander Heide, R. S.; Altschuld, R. A.; Lamka, K. G.; Ganote, C. E.

    1986-01-01

    The pathogenesis of the calcium paradox has not been established. In calcium-free perfused hearts, caffeine, which releases calcium from the sarcoplasmic reticulum, causes severe myocardial injury, with creatine kinase (CK) release and contraction band necrosis similar in many respects to the calcium paradox. It has been postulated that contracture, initiated by a small rise in intracellular calcium, may cause sarcolemmal injury in both the calcium paradox and caffeine-induced myocardial injury. The present study was initiated to determine whether interventions which modulate caffeine-induced contracture will also correspondingly alter cellular injury. The effects of caffeine dose, procaine, extended calcium-free perfusion, elevated potassium, temperature, and increasing intracellular sodium on caffeine-induced contracture were examined in Langendorff-perfused adult rat hearts. Caffeine-induced contracture at 22 C increased over a dose range of 5-40 mM caffeine. Procaine, which inhibits caffeine-induced calcium release at doses between 5 and 20 mM, progressively reduced contracture caused by addition of 20 mM caffeine at 22 C. Hearts perfused with calcium-free solution containing 16 mM K+ showed a reduction in caffeine-induced contracture. Extended calcium-free perfusion (20 minutes) at temperatures from 18 to 37 C resulted in a progressive reduction of caffeine-induced contracture. Each of these interventions was also found to inhibit caffeine-induced injury at 37 C. Low temperature was found to have complex effects. Hypothermia enhanced caffeine contractures but also protected hearts from cell separations and CK release. Increasing intracellular sodium was found to enhance caffeine-induced contracture at 37 C. There was a direct correlation between measured intracellular sodium levels and the magnitude and duration of caffeine-induced contracture. These results demonstrate a direct correlation between the magnitude of contracture and myocardial injury in calcium

  3. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest.

    PubMed

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO 2 -mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.

  4. Optical imaging of irradiated and non-irradiated hearts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bolin, Stephanie; Chen, Guanchu; Medhora, Meetha M.; Camara, Amadou K. S.; Ranji, Mahsa

    2016-03-01

    Objective: In this study, the metabolic state of the heart tissue is studied in a rodent model of ischemia and reperfusion (IR) in rats exposed to irradiation injury using a cryofluorescence imaging technique. Mitochondrial metabolic state is evaluated by autofluorescence of mitochondrial metabolic coenzymes NADH and FAD. The redox ratio (NADH/FAD) is used as a biochemical/metabolic marker of oxidative stress, before, during and after IR. Materials and methods: Hearts were extracted from non-irradiated (control) and irradiated rats (Irr) given 15 Gy whole thorax irradiation rats (WTI). After 35 days, before the onset of radiation pneumonitis, these two groups of hearts were subjected to one of three treatments; Time control (TC; hearts perfused for the duration of the protocol without ischemia or IR), 25 minutes ischemia with no reperfusion and 25 minutes ischemia followed by 60 minutes reperfusion (IR). Hearts were removed from the Langendorff perfusion system and immediately snap frozen in liquid N2 to preserve the metabolic state after injury; 3-dimensional (3D) cryo-fluorescent imager was used to obtain in fixed time NADH and FAD fluorescence images and their distribution across the entire ventricles. In this study, a 30-μm axial resolution was used resulting in 550 cross-section images per heart. The 3D images of the redox ratio and their respective histograms were calculated in the six groups of hearts. Results: We compared the mean values of the redox ratio in each group, which demonstrate a reduced mitochondrial redox state in both irradiated and non-irradiated ischemic hearts and an oxidized mitochondrial redox state for both irradiated and non-irradiated ischemia-reperfusion hearts compared to control hearts. For non-irradiated hearts, ischemia and IR injuries resulted respectively in 61% increase and 54% decrease in redox ratio when compared with TC. For irradiated hearts, ischemia and IR injuries resulted respectively in 90% increase and 50% decrease

  5. Quantitative comparisons of the acute neurotoxicity of toluene in rats and humans.

    PubMed

    Benignus, Vernon A; Boyes, William K; Kenyon, Elaina M; Bushnell, Philip J

    2007-11-01

    The behavioral and neurophysiological effects of acute exposure to toluene are the most thoroughly explored of all the hydrocarbon solvents. Behavioral effects have been experimentally studied in humans and other species, for example, rats. The existence of both rat and human dosimetric data offers the opportunity to quantitatively compare the relative sensitivity to acute toluene exposure. The purpose of this study was to fit dose-effect curves to existing data and to estimate the dose-equivalence equation (DEE) between rats and humans. The DEE gives the doses that produce the same magnitude of effect in the two species. Doses were brain concentrations of toluene estimated from physiologically based pharmacokinetic models. Human experiments measuring toluene effects on choice reaction time (CRT) were meta-analyzed. Rat studies employed various dependent variables: amplitude of visual-evoked potentials (VEPs), signal detection (SIGDET) accuracy (ACCU) and reaction time (RT), and escape-avoidance (ES-AV) behaviors. Comparison of dose-effect functions showed that human and rat sensitivity was practically the same for those two task regimens that exerted the least control over the behaviors being measured (VEP in rats and CRT in humans) and the sensitivity was progressively lower for SIGDET RT, SIGDET ACCU, and ES-AV behaviors in rats. These results suggested that the sensitivity to impairment by toluene depends on the strength of control over the measured behavior rather than on the species being tested. This interpretation suggests that (1) sensitivity to toluene would be equivalent in humans and rats if both species performed behaviors that were controlled to the same extent, (2) the most sensitive tests of neurobehavioral effects would be those in which least control is exerted on the behavior being measured, and (3) effects of toluene in humans may be estimated using the DEEs from rat studies despite differences in the amount of control exerted by the

  6. Effect of alpha-adrenoceptor antagonists (phentolamine, nicergoline and prazosin) on reperfusion arrhythmias and noradrenaline release in perfused rat heart.

    PubMed Central

    Bralet, J.; Didier, J.; Moreau, D.; Opie, L. H.; Rochette, L.

    1985-01-01

    Rat isolated hearts were perfused through the left atrium with a modified Krebs-Henseleit solution or mounted on a Langendorff perfusion system. The hearts were prelabelled with [3H]-noradrenaline [( 3H]-NA) and the left main coronary artery was ligated for 10 min after which reperfusion followed. The liberation of [3H]-NA and the development of ventricular tachycardia and fibrillation were monitored throughout. During the occlusion period, ventricular arrhythmias did not occur and heart rate was not significantly altered in the control series. In contrast, reperfusion was followed by ventricular fibrillation and ventricular tachycardia in all the hearts in the control series (Langendorff or 'working' models). The alpha-adrenoceptor antagonists phentolamine (7.1 X 10(-6) M and 7.1 X 10(-5) M) and nicergoline (3.1 X 10(-6) M) diminished or prevented reperfusion arrhythmias. However, prazosin (5.2 X 10(-6) M) was not effective. The lower concentration of phentolamine did not alter the pattern of [3H]-NA release, whereas, high doses of phentolamine and nicergoline increased the release of [3H]-NA. Prazosin (5.2 X 10(-6) M) caused a very marked increase in release of [3H]-NA but was not antiarrhythmic. A 'membrane-stabilizing' effect seems the most appropriate explanation for these antiarrhythmic effects of alpha-antagonist agents. PMID:2858234

  7. Dimethylthiourea inhibits heart weight and hematocrit changes caused by dietary copper deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saari, J.T.

    1991-03-11

    Feeding antioxidants to rats in a copper (Cu)-deficient diet can partially inhibit the cardiac enlargement and anemia caused by Cu deficiency. This study was done to determine whether an antioxidant which bypassed the gastrointestinal tract was also protective and whether an agent more potent than previously used was more effective in this inhibition. Male, weanling rats were fed diets deficient or sufficient in Cu for 4 wks. Dimethylthiourea (DMTU) or saline was injected (ip) 4 times a week; minimum amount of DMTU retained during the experiment was estimated to be 250 mg/kg. Unlike other antioxidants, DMTU completely prevented the increasemore » in heart wt/body wt ratio; like the other agents, it only partially inhibited the anemia of Cu deficiency. DMTU did not affect plasma or liver Cu content of CuD rats; however, heart copper of CuD rats was significantly increased by DMTU. The effects of DMTU on heart size and hematocrit (Hct) may be attributed to its antioxidant function, but the possibility of altered mineral status must also be considered.« less

  8. Blockade of hyperpolarizing currents produces a dose-dependent effect on heart rate.

    PubMed

    Ziyatdinova, N I; Giniatullin, R A; Svyatova, N V; Zefirov, T L

    2001-03-01

    Intravenous injection of ZD 7288, a new specific hyperpolarizing current blocker, dose-dependently reduces heart rate in adult rats. The autonomic nervous system modulates changes in heart rate caused by hyperpolarizing currents.

  9. Nebivolol prevents remodeling in a rat myocardial infarction model: an echocardiographic study.

    PubMed

    Mercanoğlu, Güldem Olguner; Pamukçu, Burak; Safran, Nurhas; Mercanoğlu, Fehmi; Fici, Francesco; Güngör, Mehmet

    2010-02-01

    Ventricular remodeling (VR) which develops after myocardial infarction (MI) plays an important role in progressive left ventricular dysfunction. We aimed to investigate the role of nebivolol treatment on VR after a MI in a rat ischemia-reperfusion model. Rats were divided into 3 groups of 12 each: sham operated (sham-control), MI-induced (MI-control) and nebivolol treated (MI-nebivolol). Left ventricular (LV) diameters, volumes, and diastolic filling parameters were evaluated by echocardiography. On the 28th day, after recording the systemic and LV pressures and determining the plasma nitric oxide (NO) and peroxynitrite (ONOO-) levels , animals were sacrificed and heart, body and LV weights (HW, BW, LVW) were measured and infarct sizes were determined. Results were evaluated statistically by ANOVA for repeated measurements 3x3 factorial design with post-hoc Bonferroni test. After MI, while VR (an increase in LV diameters and volumes associated with a decrease in EF, FS and posterior wall thickness change (LWPc) was significant in MI-control rats (p<0.05 for; all comparisons) these changes were significantly less in MI-nebivolol group (p=0.08 and p=0.06 for EF and FS respectively). LV end diastolic pressure (LVEDP) was lower (p<0.005) and Delta+/- dp/dt's (p<0.05) were higher in MI-nebivolol group compared to MI-control animals. Although infarct sizes were similar in MI-induced groups (p=0.79); LVW/HW and HW/BW's were significantly greater in the MI-control group compared to sham-control (p<0.01 for all comparisons), these changes were not statistically significant in MI-nebivolol group. The increase in plasma NO and ONOO- levels were also prevented with nebivolol. Nebivolol therapy reduced the effects of VR in rats after MI. These beneficial effects were not related to its heart rate and blood pressure reducing effects. Nitric oxide regulatory action of this compound may contribute these beneficial effects on VR developed after MI.

  10. Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors.

    PubMed

    Dong, Boming; Stewart, Paul W; Egan, Thomas M

    2013-08-01

    We sought to determine whether ventilation of lungs after death in non-heart-beating donors with carbon monoxide during warm ischemia and ex vivo lung perfusion and after transplant would reduce ischemia-reperfusion injury and improve lung function. One hour after death, Sprague-Dawley rats were ventilated for another hour with 60% oxygen (control group) or 500 ppm carbon monoxide in 60% oxygen (CO-vent group; n=6/group). Then, lungs were flushed with 20 mL cold Perfadex, stored cold for 1 hour, then warmed to 37 °C in an ex vivo lung perfusion circuit perfused with Steen solution. At 37 °C, lungs were ventilated for 15 minutes with alveolar gas with or without 500 ppm carbon monoxide, then perfusion-cooled to 20 °C, flushed with cold Perfadex and stored cold for 2 hours. The left lung was transplanted using a modified cuff technique. Recipients were ventilated with 60% oxygen with or without carbon monoxide. One hour after transplant, we measured blood gases from the left pulmonary vein and aorta, and wet-to-dry ratio of both lungs. The RNA and protein extracted from graft lungs underwent real-time polymerase chain reaction and Western blotting, and measurement of cyclic guanosine monophosphate by enzyme-linked immunosorbent assay. Carbon monoxide ventilation begun 1 hour after death reduced wet/dry ratio after ex vivo lung perfusion. After transplantation, the carbon monoxide-ventilation group had better oxygenation; higher levels of tissue cyclic guanosine monophosphate, heme oxidase-1 expression, and p38 phosphorylation; reduced c-Jun N-terminal kinase phosphorylation; and reduced expression of interleukin-6 and interleukin-1β messenger RNA. Administration of carbon monoxide to the deceased donor and non-heart-beating donor lungs reduces ischemia-reperfusion injury in rat lungs transplanted from non-heart-beating donors. Therapy to the deceased donor via the airway may improve post-transplant lung function. Copyright © 2013 The American Association for

  11. Evidence of reversible bradycardia and arrhythmias caused by immunogenic proteins secreted by T. cruzi in isolated rat hearts.

    PubMed

    Rodríguez-Angulo, Héctor O; Toro-Mendoza, Jhoan; Marques, Juan A; Concepción, Juan L; Bonfante-Cabarcas, Rafael; Higuerey, Yoliver; Thomas, Luz E; Balzano-Nogueira, Leandro; López, José R; Mijares, Alfredo

    2015-02-01

    Chagas cardiomyopathy, caused by the protozoan Trypanosoma cruzi, is characterized by alterations in intracellular ion, heart failure and arrhythmias. Arrhythmias have been related to sudden death, even in asymptomatic patients, and their molecular mechanisms have not been fully elucidated. The aim of this study is to demonstrate the effect of proteins secreted by T. cruzi on healthy, isolated beating rat heart model under a non-damage-inducing protocol. We established a non-damage-inducing recirculation-reoxygenation model where ultrafiltrate fractions of conditioned medium control or conditioned infected medium were perfused at a standard flow rate and under partial oxygenation. Western blotting with chagasic patient serum was performed to determine the antigenicity of the conditioned infected medium fractions. We observed bradycardia, ventricular fibrillation and complete atrioventricular block in hearts during perfusion with >50 kDa conditioned infected culture medium. The preincubation of conditioned infected medium with chagasic serum abolished the bradycardia and arrhythmias. The proteins present in the conditioned infected culture medium of >50 kDa fractions were recognized by the chagasic patient sera associated with arrhythmias. These results suggest that proteins secreted by T. cruzi are involved in Chagas disease arrhythmias and may be a potential biomarker in chagasic patients.

  12. Evidence of Reversible Bradycardia and Arrhythmias Caused by Immunogenic Proteins Secreted by T. cruzi in Isolated Rat Hearts

    PubMed Central

    Rodríguez-Angulo, Héctor O.; Toro-Mendoza, Jhoan; Marques, Juan A.; Concepción, Juan L.; Bonfante-Cabarcas, Rafael; Higuerey, Yoliver; Thomas, Luz E.; Balzano-Nogueira, Leandro; López, José R.; Mijares, Alfredo

    2015-01-01

    Rationale Chagas cardiomyopathy, caused by the protozoan Trypanosoma cruzi, is characterized by alterations in intracellular ion, heart failure and arrhythmias. Arrhythmias have been related to sudden death, even in asymptomatic patients, and their molecular mechanisms have not been fully elucidated. Objective The aim of this study is to demonstrate the effect of proteins secreted by T. cruzi on healthy, isolated beating rat heart model under a non-damage-inducing protocol. Methods and Results We established a non-damage-inducing recirculation-reoxygenation model where ultrafiltrate fractions of conditioned medium control or conditioned infected medium were perfused at a standard flow rate and under partial oxygenation. Western blotting with chagasic patient serum was performed to determine the antigenicity of the conditioned infected medium fractions. We observed bradycardia, ventricular fibrillation and complete atrioventricular block in hearts during perfusion with >50 kDa conditioned infected culture medium. The preincubation of conditioned infected medium with chagasic serum abolished the bradycardia and arrhythmias. The proteins present in the conditioned infected culture medium of >50 kDa fractions were recognized by the chagasic patient sera associated with arrhythmias. Conclusions These results suggest that proteins secreted by T. cruzi are involved in Chagas disease arrhythmias and may be a potential biomarker in chagasic patients. PMID:25647069

  13. Effects of local irradiation combined with sunitinib on early remodeling, mitochondria, and oxidative stress in the rat heart

    PubMed Central

    Sridharan, Vijayalakshmi; Thomas, Chanice J.; Cao, Maohua; Melnyk, Stepan B.; Pavliv, Oleksandra; Joseph, Jacob; Singh, Sharda P.; Sharma, Sunil; Moros, Eduardo G.; Boerma, Marjan

    2016-01-01

    Background and Purpose Thoracic (chemo)radiation therapy is increasingly administered with tyrosine kinase inhibitors (TKI). While TKI have adverse effects on the heart, it is unknown whether combination with other cancer therapies causes enhanced toxicity. We used an animal model to investigate whether radiation and sunitinib interact in their effects on the heart. Material and Methods Male Sprague-Dawley rats received local heart irradiation (9 Gy per day, 5 days). Oral sunitinib (8 or 15 mg/kg bodyweight per day) started on day 1 of irradiation and continued for 2 weeks. Cardiac function was examined with echocardiography. Cardiac remodeling, cell death, left ventricular (LV) oxidative stress markers, mitochondrial morphology and membrane permeability transition pore (mPTP) opening were assessed. Results Cardiac diameter, stroke volume, and LV volume, mass and anterior wall thickness increased in time, but only in the vehicle group. Sunitinib reduced LV inner diameter and volume in systole, which were counteracted by radiation. Sunitinib and radiation showed enhanced effects on mitochondrial morphology and mPTP opening, but not on cardiac troponin I, mast cell numbers or markers of oxidative stress. Conclusions This study found no early enhanced effects of radiation and sunitinib on cardiac function or structure. Long-term effects remain to be determined. PMID:27072940

  14. Stress-related arterial hypertension in Gper-deficient rats.

    PubMed

    Luo, Ping; Wu, Mei-Mei; Gao, Po; Gao, Ting; Dong, Li; Ding, Xiao-Wei; Meng, You-Qiang; Qian, Jia-Hong; Zhang, Guo-Hua; Rong, Wei-Fang

    2017-10-25

    Numerous studies have demonstrated that estrogens may exert multifaceted effects on the cardiovascular system via activating the classical nuclear receptors ERα or ERβ and the novel G protein coupled estrogen receptor (Gper). However, some studies have reported inconsistent cardiovascular phenotypes in Gper-deficient mice. The current study was aimed to reveal the effects of genetic deletion of Gper on the arterial blood pressure (ABP) and heart rate in rats. Gper-deficient Sprague-Dawley rats were generated by utilizing the CRISPR-Cas9 gene-editing technique. ABP of 10-week old male (n = 6) and 12-week old female (n = 6) Gper-deficient rats and age-matched wild type (WT) rats (6 females and 6 males) were measured under awake and restrained conditions through the non-invasive tail-cuff method daily for 8 (females) or 9 days (males). In the male WT rats, ABP and heart rate were slightly higher in day 1 to 4 than those in day 5 to 9, indicative of stress-related sympathoexcitation in the first few days and gradual adaptation to the restrained stress in later days. Gper-deficient rats had significantly higher ABP initially (male: day 1 to day 5; female: day 1 to day 3) and similar ABP in later days of measurement compared with the WT rats. The heart rate of male Gper-deficient rats was consistently higher than that of the male WT rats from day 1 to day 8. Both male and female Gper-deficient rats appeared to show slower body weight gain than the WT counterparts during the study period. Under anesthesia, ABP of Gper-deficient rats was not significantly different from their WT counterparts. These results indicate that Gper-deficient rats may be more sensitive to stress-induced sympathoexcitation and highlight the importance of Gper in the regulation of the cardiovascular function in stressful conditions.

  15. Cardioprotective effect of the xanthones from Gentianella acuta against myocardial ischemia/reperfusion injury in isolated rat heart.

    PubMed

    Wang, Zhibin; Wu, Gaosong; Liu, Hua; Xing, Na; Sun, Yanping; Zhai, Yadong; Yang, Bingyou; Kong, Ah-Ng Tony; Kuang, Haixue; Wang, Qiuhong

    2017-09-01

    Gentianella acuta (Michx.) Hulten is widely used for the treatment of arrhythmia and coronary heart disease in Ewenki Folk Medicinal Plants and Mongolian Medicine, popularly known as "Wenxincao" in China. To investigate the potential protective role of the xanthones from G. acuta against myocardial I/R injury in isolated rat heart and its possible related mechanism. The protective role of xanthones on myocardial I/R injury was studied on Langendorff apparatus. The hemodynamic parameters including the left ventricular developed pressure (LVDP), the maximum rate of up/down left intraventricular pressure (±dp/dt max ), coronary flow (CF) and heart rate (HR) were recorded during the perfusion. The results demonstrated that the xanthones from G. acuta treatment significantly improved myocardial function (LVDP, ±dp/dt max and CF), increased the levels of superoxide dismutase (SOD) and catalase (CAT), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), ATP and the ratio of glutathione and glutathione disulfide (GSH/GSSG), whereas suppressed the levels of Lactate dehydrogenase (LDH), creatine kinase (CK) and malondialdehyde (MDA). Furthermore, the xanthones upregulate the level of Bcl-2 protein and downregulate the level of Bax protein. These results indicated that xanthones from G. acuta exhibited cardioprotective effects on myocardial I/R injury through its activities of anti-oxidative effect and anti-apoptosis effect. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Comparison of plutonium systemic distribution in rats and dogs with published data in humans.

    PubMed

    Melo, Dunstana R; Weber, Waylon; Doyle-Eisele, Melanie; Guilmette, Raymond A

    2014-11-01

    This manuscript compares the behavior of monomeric (239)Pu(4+)-citrate injected intravenously in rats and dogs with a comparison of available humans' data. The experimental design for these two studies consisted of eight groups sacrificed at predetermined time-points post exposure. All organs and tissues as well as daily urinary and fecal excretion were analyzed. Liver and skeleton were the organs with the highest (239)Pu uptake in both species; 76% in dogs and 70% in rats at 24 hours (h) post IV administration. By the end of the study (28 days, d), the activity in skeleton and liver was 85% in dogs and 65% in rats. The urinary excretion function seems to be similar for rats, dogs and humans but the daily fecal to urinary excretion ratio differs between species. A rapid clearance from the liver of rats was observed compared to dogs. Skeleton-to-liver ratios are variable between species. Urinary and fecal excretion patterns for dogs are consistent with human data, indicating that dogs seem to represent better the (239)Pu behavior in humans. The data confirm that the better animal model to evaluate the efficacy of (239)Pu chelating compounds is the canine model.

  17. Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide.

    PubMed

    Thomas, A P; Halestrap, A P

    1981-05-15

    1. N-Phenylmaleimide irreversibly inhibits pyruvate transport into rat heart and liver mitochondria to a much greater extent than does N-ethylmaleimide, iodoacetate or bromopyruvate. alpha-Cyanocinnamate protects the pyruvate transporter from attack by this thiol-blocking reagent. 2. In both heart and liver mitochondria alpha-cyanocinnamate diminishes labelling by [3H]N-phenylmaleimide of a membrane protein of subunit mol.wt. 15000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 3. Exposure of mitochondrial to unlabelled N-phenylmaleimide in the presence of alpha-cyanocinnamate, followed by removal of alpha-cyanocinnamate and exposure to [3H]N-phenylmaleimide, produced specific labelling of the same protein. 4. Both labelling and kinetic experiments with inhibitors gave values for the approximate amount of carrier present in liver and heart mitochondria of 100 and 450 pmol/mg of mitochondrial protein respectively. 5. The turnover numbers for net pyruvate transport and pyruvate exchange at 0 degrees C were 6 and 200 min-1 respectively.

  18. Inhibitors of soluble epoxide hydrolase minimize ischemia-reperfusion-induced cardiac damage in normal, hypertensive, and diabetic rats.

    PubMed

    Islam, Oliul; Patil, Prashanth; Goswami, Sumanta K; Razdan, Rema; Inamdar, Mohammed N; Rizwan, Mohammed; Mathew, Jubin; Inceoglu, Bora; Stephen Lee, Kin S; Hwang, Sung H; Hammock, Bruce D

    2017-06-01

    We designed a study to evaluate the cardioprotective effect of two soluble epoxide hydrolase (sEH) inhibitors, 1-(1-propanoylpiperidin-4-yl)-3-(4-trifluoromethoxy)phenyl)urea (TPPU) and trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB), in ischemia-reperfusion (IR) model. Cardioprotective effects of the sEH inhibitors were evaluated against IR-induced myocardial damage in hearts from normal, hypertensive, and diabetic rats using Langendorff's apparatus. In addition, the effect of sEH inhibitors on endothelial function was evaluated in vitro and ex vivo using isolated rat thoracic aorta. Ischemia-reperfusion (IR) increased the myocardial damage in hearts from normal rats. IR-induced myocardial damage was augmented in hearts isolated from hypertensive and diabetic rats. Myocardial damage as evident from increase in the activities of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) in heart perfusate was associated with significant decrease in the heart rate and developed tension, and increase in the resting tension in isolated heart. Both sEH inhibitors protected the heart in normal, hypertensive, and diabetic rats subjected to IR injury. The sEH inhibitor t-TUCB relaxed phenylephrine precontracted aorta from normal rats. Relaxant effect of acetylcholine (ACh) was reduced in aortas from diabetic and hypertensive rats compared to normal rats. Pretreatment of sEH inhibitors to diabetic and hypertensive rats increased relaxant effect of ACh on aortas isolated from these rats. Prophylactic treatment with sEH inhibitors decreased myocardial damage due to IR, hypertension and diabetes, and decreased endothelial dysfunction created by diabetes and hypertension. Therefore, inhibitors of sEH are useful probes to study cardiovascular pathology, and inhibition of the sEH is a potential approach in the management of IR-induced cardiac damage and endothelial dysfunction-related cardiovascular disorders. © 2017 John Wiley & Sons Ltd.

  19. Distribution of fluids in the body of the centrifuged rat

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1983-01-01

    The effects of exposure to an elevated g-level throughout the period of rapid growth is investigated in a comparison of a group of female Sprague-Dawley rats centrifuged as adults with other groups centrifuged for prolonged intervals starting shortly after weaning. The fluid-solid composition of total body, heart, liver, gut, skin, and muscle for both study groups is compared with that of a control group. None of the changes as a result of centrifugation were truly persistent. The only increases in mass associated with centrifugation and the only responses to centrifugation per se were observed in the skin values.

  20. Comparison of Biological Responses in Rats Under Various Cigarette Smoke Exposure Conditions

    PubMed Central

    Tsuji, Hiroyuki; Fujimoto, Hitoshi; Matsuura, Daiki; Nishino, Tomoki; Lee, K Monica; Yoshimura, Hiroyuki

    2013-01-01

    A variety of exposure regimens of cigarette smoke have been used in animal models of lung diseases. In this study, we compared biological responses of smoke exposure in rats, using different smoke concentrations (wet total particulate matter [WTPM]), daily exposure durations, and total days of exposure. As a range-finding acute study, we first compared pulmonary responses between SD and F344 strains after a single nose-only exposure to mainstream cigarette smoke or LPS. Secondly, F344 rats were exposed to cigarette smoke for 2 or 13 weeks under the comparable daily exposure dose (WTPM concentration x daily exposure duration; according to Haber’s rule) but at a different WTPM concentration or daily exposure duration. Blood carboxylhemoglobin was increased linearly to the WTPM concentration, while urinary nicotine plus cotinine value was higher for the longer daily exposure than the corresponding shorter exposure groups. Gamma glutamyl transferase activity in bronchoalveolar lavage fluid (BALF) was increased dose dependently after 2 and 13 weeks of cigarette smoke exposure, while the neutrophil content in BALF was not increased notably. Smoke-exposed groups showed reduced body weight gain and increased relative lung and heart weights. While BALF parameters and the relative lung weights suggest pulmonary responses, histopathological examination showed epithelial lesions mainly in the upper respiratory organs (nose and larynx). Collectively, the results indicate that, under the employed study design, the equivalent daily exposure dose (exposure concentration x duration) induces equivalent pulmonary responses in rats. PMID:23914058

  1. Preventive effects of garlic (Allium sativum) on oxidative stress and histopathology of cardiac tissue in streptozotocin-induced diabetic rats.

    PubMed

    Naderi, R; Mohaddes, G; Mohammadi, M; Alihemmati, A; Badalzadeh, R; Ghaznavi, R; Ghyasi, R; Mohammadi, Sh

    2015-12-01

    Since some complications of diabetes mellitus may be caused or exacerbated by an oxidative stress, the protective effects of garlic (Allium sativum) were investigated in the blood and heart of streptozotocin-induced diabetic rats. Twenty-eight male Wistar rats were randomly divided into four groups: control, garlic, diabetic, and diabetic+garlic. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (50 mg/kg) in male rats. Rats were fed with raw fresh garlic homogenate (250 mg/kg) six days a week by gavage for a period of 6 weeks. At the end of the 6th week blood samples and heart tissues were collected and used for determination of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and histological evaluation. Induction of diabetes increased MDA levels in blood and homogenates of heart. In diabetic rats treated with garlic, MDA levels decreased in blood and heart homogenates. Treatment of diabetic rats with garlic increased SOD, GPX and CAT in blood and heart homogenates. Histopathological finding of the myocardial tissue confirmed a protective role for garlic in diabetic rats. Thus, the present study reveals that garlic may effectively modulate antioxidants status in the blood and heart of streptozotocin induced-diabetic rats.

  2. Protective effect of Crataegus oxyacantha against reperfusion arrhythmias after global no-flow ischemia in the rat heart.

    PubMed

    al Makdessi, S; Sweidan, H; Dietz, K; Jacob, R

    1999-04-01

    The protective effect against reperfusion arrhythmias of a 3-month oral pretreatment with a dried extract of Crataegus oxyacantha (LI 132)(standardized to 2.2% flavonoids) was studied with the Langendorff heart of the rat after global no-flow ischemia. The heart was perfused with a modified Krebs-Henseleit solution in which the K+ content was reduced to 3.4 mmol/l in order to lower the fibrillation threshold. According to pilot experiments which considered various durations of global no-flow ischemia ranging from 10 to 20 minutes, two durations were chosen for the present study: 20 minutes (group 20) in which ventricular fibrillation (VF) was the predominant form of arrhythmias, and 18 minutes (group 18) in which the prevalence of VF was markedly lower despite the small difference in the duration of ischemia. Crataegus pretreatment significantly (p = 0.02) reduced the average prevalence of malignant arrhythmias (VF + Flutter) as observed during the 20-min-period of reperfusion as follows: group 20: from 89% (control, n = 9) to 51% (LI 132, n = 7), group 18: from 48% (control, n = 8) to 8% (LI 132, n = 8). In group 20, ventricular tachycardia (VT) could be observed only in the treated group, because of the predominance of VF in the control group. LI 132 pretreatment reduced the average prevalence of VT in group 18 in spite of the identical percentage of occurrence (6 out of 8 rats, with and without treatment) due to a shorter duration of the VT episodes. Thus, under the conditions of our experiments, effective prevention against reperfusion arrhythmias by Crataegus pretreatment was evident.

  3. Photoaffinity labelling of cyclic GMP-inhibited phosphodiesterase (PDE III) in human and rat platelets and rat tissues: effects of phosphodiesterase inhibitors.

    PubMed

    Tang, K M; Jang, E K; Haslam, R J

    1994-06-15

    Ultraviolet irradiation of human platelet cytosol in the presence of 32P-labelled cyclic GMP (cGMP) can specifically label 110, 80, 55, 49 and 38 kDa proteins; the 110 kDa species is the subunit of cGMP-inhibited phosphodiesterase (PDE III) and the 80 kDa species that of cGMP-dependent protein kinase (Tang et al., 1993, Biochem. J. 294, 329). We have now shown that although photolabelling of platelet PDE III was inhibited by unlabelled cGMP, 8-bromo-cGMP and cyclic AMP (cAMP), it was not affected by phosphorothioate analogues of these cyclic nucleotides. Specific concentration-dependent inhibitions of the photolabelling of PDE III were observed with the following PDE inhibitors: trequinsin (IC50 = 13 +/- 2 nM), lixazinone (IC50 = 22 +/- 4 nM), milrinone (IC50 = 56 +/- 12 nM), cilostamide (IC50 = 70 +/- 9 nM), siguazodan (IC50 = 117 +/- 29 nM) and 3-isobutyl 1-methylxanthine (IBMX) (IC50 = 3950 +/- 22 nM). Thus, measurements of the inhibitory effects of compounds on the photolabelling of platelet PDE III provide a simple quantitative means of investigating their actions at a molecular level that avoids the need to purify the enzyme. Photolabelling of rat platelet lysate or rat heart homogenate by [32P]cGMP showed that the 110 kDa PDE III present in human material was replaced by a 115 kDa protein, labelling of which was also blocked by PDE III inhibitors. Heart and other rat tissues contained much less of this putative 115 kDa PDE III than rat platelets. In contrast, the 80 kDa protein was labelled much less in platelets than in many other rat tissue homogenates (e.g., heart, aorta, uterus and lung). Thus, comparison of the relative amounts of specific photolabelled proteins in different cells may provide an indication of different patterns of cyclic nucleotide action. We compared the abilities of phosphodiesterase inhibitors to block the photolabelling of PDE III in human platelet cytosol and to increase the iloprost-stimulated accumulation of cAMP in intact

  4. Measurement of the efficacy of 2% lipid in reversing bupivacaine- induced asystole in isolated rat hearts

    PubMed Central

    2014-01-01

    Background The reversal efficacy of 2% lipid emulsion in cardiac asystole induced by different concentrations of bupivacaine is poorly defined and needs to be determined. Methods Forty-two male Sprague–Dawley rats were randomly divided into seven groups: B40, B60, B80, B100, B120, B140 and B160, n = 6. The Langendorff isolated heart perfusion model was used, which consisted of a balanced perfusion with Krebs-Henseleit solution for 25 minutes and a continuous infusion of 100 μmol/L bupivacaine until asystole had been induced for 3 minutes. The hearts in the seven groups were perfused with Krebs-Henseleit solution containing a 2% lipid emulsion, and 40, 60, 80, 100, 120, 140 or 160 μmol/L bupivacaine, respectively. Cardiac recovery was defined as a spontaneous and regular rhythm with a rate-pressure product > 10% of the baseline value for more than 1 minute. Our primary outcome was the rate-pressure product 25 minutes after cardiac recovery. Other cardiac function parameters were also recorded. Results All groups demonstrated cardiac recovery. During the recovery phase, heart rate, rate-pressure product, the maximum left ventricular pressure rise and decline in heart rate in the B120-B160 groups was significantly lower than those in the B40-B80 groups (P < 0.05). The concentration of bupivacaine and the reversal effects of a 2% lipid emulsion showed a typical transoid S-shaped curve, R2 = 0.9983, IC50 value was 102.5 μmol/L (95% CI: 92.44 - 113.6). Conclusions There is a concentration-response relationship between the concentrations of bupivacaine and the reversal effects of 2% lipid emulsion. PMID:25089118

  5. 10 GY TOTAL BODY IRRADIATION INCREASES RISK OF CORONARY SCLEROSIS, DEGENERATION OF HEART STRUCTURE AND FUNCTION IN A RAT MODEL

    PubMed Central

    Baker, John E; Fish, Brian L; Su, Jidong; Haworth, Steven T; Strande, Jennifer L; Komorowski, Richard A; Migrino, Raymond Q; Doppalapudi, Anil; Harmann, Leanne; Li, X Allen; Hopewell, John W; Moulder, John E

    2009-01-01

    Purpose To determine the impact of 10 Gy total body irradiation (TBI) or local thorax irradiation, a dose relevant to a radiological terrorist threat, on lipid and liver profile, coronary microvasculature and ventricular function. Materials and methods WAG/RijCmcr rats received 10 Gy TBI followed by bone marrow transplantation, or 10 Gy local thorax irradiation. Age-matched, non-irradiated rats served as controls. The lipid profile and liver enzymes, coronary vessel morphology, nitric oxide synthase (NOS) isoforms, protease activated receptor (PAR)-1 expression and fibrinogen levels were compared. Two dimensional strain echocardiography assessed global radial and circumferential strain on the heart. Results TBI resulted in a sustained increase in total and low density lipoprotein (LDL) cholesterol (190±8 vs. 58±6; 82±8 vs. 13±3 mg/dL, respectively). The density of small coronary arterioles was decreased by 32%. Histology revealed complete blockage of some vessels while cardiomyocytes remained normal. TBI resulted in cellular peri-arterial fibrosis whereas control hearts had symmetrical penetrating vessels with less collagen and fibroblasts. TBI resulted in a 32±4% and 28±3% decrease in endothelial NOS and inducible NOS protein respectively, and a 21±4% and 35±5% increase in fibrinogen and PAR-1 protein respectively, after 120 days. TBI reduced radial strain (19±8 vs. 46±7%) and circumferential strain (-8±3 vs. −15±3%) compared to controls. Thorax-only irradiation produced no changes over the same time frame. Conclusions TBI with 10 Gy, a dose relevant to radiological terrorist threats, worsened lipid profile, injured coronary microvasculature, altered endothelial physiology and myocardial mechanics. These changes were not manifest with local thorax irradiation. Non-thoracic circulating factors may be promoting radiation-induced injury to the heart. PMID:19995235

  6. Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart.

    PubMed

    Aravindhan, Karpagam; Bao, Weike; Harpel, Mark R; Willette, Robert N; Lepore, John J; Jucker, Beat M

    2015-01-01

    Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner.

  7. Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure

    PubMed Central

    Ferguson, Scott K.; Holdsworth, Clark T.; Colburn, Trenton D.; Wright, Jennifer L.; Craig, Jesse C.; Fees, Alex; Jones, Andrew M.; Allen, Jason D.; Musch, Timothy I.

    2016-01-01

    Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3−) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3− supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3−-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min−1·100 g−1 in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min−1·100 g−1·mmHg−1 in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3− supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF. PMID:27445296

  8. Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure.

    PubMed

    Ferguson, Scott K; Holdsworth, Clark T; Colburn, Trenton D; Wright, Jennifer L; Craig, Jesse C; Fees, Alex; Jones, Andrew M; Allen, Jason D; Musch, Timothy I; Poole, David C

    2016-09-01

    Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3 (-)) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3 (-) supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3 (-)-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min(-1)·100 g(-1) in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1) in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3 (-) supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF. Copyright © 2016 the American Physiological Society.

  9. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats

    PubMed Central

    Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2013-01-01

    Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656

  10. Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart.

    PubMed

    Izgut-Uysal, Vecihe Nimet; Acar, Nuray; Birsen, Ilknur; Ozcan, Filiz; Ozbey, Ozlem; Soylu, Hakan; Avci, Sema; Tepekoy, Filiz; Akkoyunlu, Gokhan; Yucel, Gultekin; Ustunel, Ismail

    2018-04-01

    The cardiovascular system is a primary target of stress and stress is the most important etiologic factor in cardiovascular diseases. Stressors increase expressions of atrial natriuretic peptide (ANP) and apelin in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in the right atrium of rat heart. The rats were divided into the control, stress and F13A+stress groups. In the stress and F13A+stress groups, the rats were subjected to water immersion and restraint stress (WIRS) for 6h. In the F13A+stress group, apelin receptor antagonist F13A, was injected intravenously immediately before application of WIRS. The plasma samples were obtained for the measurement of corticosterone and atrial natriuretic peptide. The atrial samples were used for immunohistochemistry and western blot analysis. F13A administration prevented the rise of plasma corticosterone and ANP levels induced by WIRS. While WIRS application increased the expressions of apelin, HIF-1α and ANP in atrial tissue, while F13A prevented the stress-induced increase in the expression of HIF-1α and ANP. Stress-induced apelin induces ANP expression in atrial tissue and may play a role in cardiovascular homeostasis by increasing ANP expression under WIRS conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Swimming exercise reverses aging-related contractile abnormalities of female heart by improving structural alterations.

    PubMed

    Ozturk, Nihal; Olgar, Yusuf; Er, Hakan; Kucuk, Murathan; Ozdemir, Semir

    2017-01-01

    The objective of this study was to examine the effect of swimming exercise on aging-related Ca2+ handling alterations and structural abnormalities of female rat heart. For this purpose, 4-month and 24-month old female rats were used and divided into three following groups: sedentary young (SY), sedentary old (SO), and exercised old (Ex-O). Swimming exercise was performed for 8 weeks (60 min/day, 5 days/week). Myocyte shortening, L-type Ca2+ currents and associated Ca2+ transients were measured from ventricular myocytes at 36 ± 1°C. NOX-4 levels, aconitase activity, glutathione measurements and ultrastructural examination by electron microscopy were conducted in heart tissue. Swimming exercise reversed the reduced shortening and slowed kinetics of aged cardiomyocytes. Although the current density was similar for all groups, Ca2+ transients were higher in SO and Ex-O myocytes with respect to the SY group. Caffeine-induced Ca2+ transients and the integrated NCX current were lower in cardiomyocytes of SY rats compared with other groups, suggesting an increased sarcoplasmic reticulum Ca2+ content in an aged heart. Aging led to upregulated cardiac NOX-4 along with declined aconitase activity. Although it did not reverse these oxidative parameters, swimming exercise achieved a significant increase in glutathione levels and improved structural alterations of old rats' hearts. We conclude that swimming exercise upregulates antioxidant defense capacity and improves structural abnormalities of senescent female rat heart, although it does not change Ca2+ handling alterations further. Thereby, it improves contractile function of aged myocardium by mitigating detrimental effects of oxidative stress.

  12. Adrenergic Blockade Bi-directionally and Asymmetrically Alters Functional Brain-Heart Communication and Prolongs Electrical Activities of the Brain and Heart during Asphyxic Cardiac Arrest

    PubMed Central

    Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo

    2018-01-01

    Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541

  13. Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy

    EPA Science Inventory

    Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were...

  14. Penile histomorphometrical evaluation in hypertensive rats treated with sildenafil or enalapril alone or in combination: a comparison with normotensive and untreated hypertensive rats.

    PubMed

    Felix-Patrício, Bruno; Medeiros, Jorge L; De Souza, Diogo B; Costa, Waldemar S; Sampaio, Francisco J B

    2015-01-01

    Erectile dysfunction (ED) is frequently associated to hypertension and antihypertensive drugs; however, the penile morphological aspects on these situations are poorly known. Evaluate the penile morphology of untreated hypertensive rats and rats treated with enalapril or sildenafil alone or in combination to verify the hypothesis that morphological alterations promoted by hypertension on corpus cavernosum could be ameliorated by the use of angiotensin-converting enzyme inhibitors and/or phosphodiesterase type 5 inhibitors. Fifty male rats were assigned into five groups: normotensive rats, untreated spontaneously hypertensive rats (SHRs), and SHR treated with enalapril or sildenafil alone or in combination. Blood pressure was measured weekly. At the conclusion of the study, the rats were euthanized, and their penises were collected for histomorphometrical analysis. The cross-sectional areas of the penis, tunica albuginea, and corpus cavernosum were measured. The density of the corpus cavernosum structures was quantified. Both groups of SHR rats treated with enalapril became normotensive. Untreated SHR showed no difference in penile and cavernosal cross-sectional area compared with normotensive rats; however, those rats treated with enalapril or sildenafil alone demonstrated an increase in these parameters. Rats receiving combination therapy showed no cross-sectional area differences compared with normotensive rats. Cavernosal connective tissue density was increased, while the sinusoidal spaces were diminished in untreated SHR. All treatments were effective in maintaining connective tissue density in comparison with normotensive animals. Cavernosal smooth muscle density was similar in all groups, with the exception of the combination therapy group, which demonstrated a reduction in smooth muscle. Hypertension promoted structural alterations in the corpus cavernosum that may be related to ED. Enalapril- and sildenafil-treated animals had preservation of normal corpus

  15. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart.

    PubMed

    Gómez, Luis A; Monette, Jeffrey S; Chavez, Juan D; Maier, Claudia S; Hagen, Tory M

    2009-10-01

    Accumulation of mitochondrial electron transport chain (ETC) defects is a recognized hallmark of the age-associated decline in cardiac bioenergetics; however, the molecular events involved are only poorly understood. In the present work, we hypothesized that age-related ETC deterioration stemmed partly from disassociation of large solid-state macromolecular assemblies termed "supercomplexes". Mitochondrial proteins from young and old rat hearts were separated by blue native-PAGE, protein bands analyzed by LC-MALDI-MS/MS, and protein levels quantified by densitometry. Results showed that supercomplexes comprised of various stoichiometries of complexes I, III and IV were observed, and declined significantly (p<0.05, n=4) with age. Supercomplexes displaying the highest molecular masses were the most severely affected. Considering that certain diseases (e.g. Barth Syndrome) display similar supercomplex destabilization as our results for aging, the deterioration in ETC supercomplexes may be an important underlying factor for both impaired mitochondrial function and loss of cardiac bioenergetics with age.

  16. RNASeq-derived transcriptome comparisons reveal neuromodulatory deficiency in the CO2 insensitive brown Norway rat

    PubMed Central

    Puissant, Madeleine M; Echert, Ashley E; Yang, Chun; Mouradian, Gary C; Novotny, Tyler; Liu, Pengyuan; Liang, Mingyu; Hodges, Matthew R

    2015-01-01

    Raphé-derived serotonin (5-HT) and thyrotropin-releasing hormone (TRH) play important roles in fundamental, homeostatic control systems such as breathing and specifically the ventilatory CO2 chemoreflex. Brown Norway (BN) rats exhibit an inherent and severe ventilatory insensitivity to hypercapnia but also exhibit relatively normal ventilation at rest and during other conditions, similar to multiple genetic models of 5-HT system dysfunction in mice. Herein, we tested the hypothesis that the ventilatory insensitivity to hypercapnia in BN rats is due to altered raphé gene expression and the consequent deficiencies in raphé-derived neuromodulators such as TRH. Medullary raphé transcriptome comparisons revealed lower expression of multiple 5-HT neuron-specific genes in BN compared to control Dahl salt-sensitive rats, predictive of reduced central nervous system monoamines by bioinformatics analyses and confirmed by high-performance liquid chromatography measurements. In particular, raphé Trh mRNA and peptide levels were significantly reduced in BN rats, and injections of the stable TRH analogue Taltirelin (TAL) stimulated breathing dose-dependently, with greater effects in BN versus control Sprague–Dawley rats. Importantly, TAL also effectively normalized the ventilatory CO2 chemoreflex in BN rats, but TAL did not affect CO2 sensitivity in control Sprague–Dawley rats. These data establish a molecular basis of the neuromodulatory deficiency in BN rats, and further suggest an important functional role for TRH signalling in the mammalian CO2 chemoreflex. PMID:25630262

  17. Cardioprotective effects of BMS-180448, a prototype mitoK(ATP) channel opener, and the role of salvage kinases, in the rat model of global ischemia and reperfusion heart injury.

    PubMed

    Lee, Ju-Han; Jung, In-Sang; Lee, Sung-Hun; Yang, Min-Kyu; Hwang, Ji-Hye; Lee, Hak-Dong; Cho, Yu-Sun; Song, Min-Jin; Yi, Kyu-Yang; Yoo, Sung-Eun; Kwon, Suk-Hyung; Kim, Bokyung; Lee, Chang-Soo; Shin, Hwa-Sup

    2007-05-01

    To investigate the involvement of reperfusion-induced salvage kinases (RISK) as possible signaling molecules for the cardioprotective effects of BMS-180448, a prototype mitochondrial ATP-sensitive K+ (mitoK(ATP)) channel opener, we measured its cardioprotective effects in a rat model of ischemia/reperfusion (I/R) heart injury, together with western blotting analysis of five different signaling proteins. In isolated rat hearts subjected to 30-min global ischemia followed by 30-min reperfusion, BMS-180448 (1, 3 and 10 microM) significantly increased reperfusion left ventricular developed pressure (LVDP) and 30-min reperfusion double product (heart rate x LVDP) in a concentration-dependent manner, while decreasing left ventricular end-diastolic pressure (LVEDP) throughout reperfusion period in a concentration-dependent manner. SDS-PAGE/western blotting analysis of left ventricle reperfused for 30 min revealed that BMS-180448 significantly decreased phospho-GSK3beta at high concentration, whereas it tended to increase slightly phospho-eNOS and phospho-p70S6K with concentration. However, BMS-180448 had no effect on phospho-Akt and phospho-Bad. These results suggest that the cardioprotective effects of BMS-180448 against I/R heart injury may result from direct activation of mitoK(ATP) channel in cardiomyocytes, with the minimal role of RISK pathway in the activation of this channel and the cardioprotective effects of BMS-180448.

  18. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome.

    PubMed

    Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo

    2017-12-01

    What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise

  19. Expression of beta 3-adrenoceptor mRNA in rat tissues.

    PubMed

    Evans, B A; Papaioannou, M; Bonazzi, V R; Summers, R J

    1996-01-01

    1. This study examines the expression of beta 3-adrenoceptor messenger RNA (beta 3-AR mRNA) in rat tissues to allow comparison with atypical beta-adrenoceptors determined by functional and radioligand binding techniques. 2. A reverse transcription/polymerase chain reaction protocol has been developed for determining the relative amounts of beta 3-AR mRNA in rat tissues. 3. Measurement of adipsin and uncoupling protein (UCP) mRNA was used to examine all tissues for the presence of white and brown adipose tissue which may contribute beta 3-AR mRNA. 4. The beta 3-AR mRNA is expressed at high levels in brown and white adipose tissue, stomach fundus, the longitudinal/circular smooth muscle of both colon and ileum, and colon submucosa. There was substantial expression of adipsin in colon submucosa and moderate expression in fundus, suggesting that in these regions at least some of the beta 3-AR signal may be contributed by fat. Pylorus and colon mucosa showed moderate levels of beta 3-AR mRNA with lower levels of adipsin. Ileum mucosa and submucosa showed low but readily detectable levels of beta 3-AR. 5. Expression of adipsin in rat skeletal muscles coupled to very low levels of beta 3-AR mRNA indicates that the observed beta 3-AR may be due to the presence of intrinsic fat. beta 3-AR mRNA was virtually undetectable in heart, lung and liver. These results raise the possibility that the atypical beta-AR demonstrated by functional and/or binding studies in muscle and in heart is not the beta 3-AR. 6. By use of two different sets of primers for amplification of beta 3-AR cDNA, no evidence was found for differential splicing of the mRNA in any of the tissues examined. 7. The detection of beta 3-AR mRNA in the gut mucosa and submucosa suggests that in addition to its established roles in lipolysis, thermogenesis and regulation of gut motility beta 3-AR may subserve other functions in the gastrointestinal tract. The absence of beta 3-AR mRNA in rat heart or its presence with

  20. L-arginine fails to prevent ventricular remodeling and heart failure in the spontaneously hypertensive rat.

    PubMed

    Brooks, Wesley W; Conrad, Chester H; Robinson, Kathleen G; Colucci, Wilson S; Bing, Oscar H L

    2009-02-01

    The effects of long-term oral administration of L-arginine, a substrate for nitric oxide (NO) production, on left ventricular (LV) remodeling, myocardial function and the prevention of heart failure (HF) was compared to the angiotensin-converting enzyme (ACE) inhibitor captopril in a rat model of hypertensive HF (aged spontaneously hypertensive rat (SHR)). SHRs and age-matched normotensive Wistar-Kyoto (WKY) rats were assigned to either no treatment, treatment with L-arginine (7.5 g/l in drinking water) or captopril (1 g/l in drinking water) beginning at 14 months of age, a time when SHRs exhibit stable compensated hypertrophy with no hemodynamic impairment; animals were studied at 23 months of age or at the time of HF. In untreated SHR, relative to WKY, there was significant LV hypertrophy, myocardial fibrosis, and isolated LV muscle performance and response to isoproterenol (ISO) were depressed; and, 7 of 10 SHRs developed HF. Captopril administration to six SHRs attenuated hypertrophy and prevented impaired inotropic responsiveness to ISO, contractile dysfunction, fibrosis, increased passive stiffness, and HF. In contrast, L-arginine administration to SHR increased LV hypertrophy and myocardial fibrosis while cardiac performance was depressed; and 7 of 9 SHRs developed HF. In WKY, L-arginine treatment but not captopril resulted in increased LV weight and the contractile response to ISO was blunted. Neither L-arginine nor captopril treatment of WKY changed fibrosis and HF did not occur. These data demonstrate that in contrast to captopril, long-term treatment with L-arginine exacerbates age-related cardiac hypertrophy, fibrosis, and did not prevent contractile dysfunction or the development of HF in aging SHR.

  1. Measuring high pressure baroreceptor sensitivity in the rat.

    PubMed

    Shiry, L J; Hamlin, R L

    2011-01-01

    The high pressure baroreceptor reflex rapidly buffers changes in systemic arterial pressure in response to postural changes, altered gravitational conditions, diseases, and pharmacological agents. Drug-induced exaggeration of changes in heart rate and in systemic arterial pressure is a leading cause of adverse events and of patients terminating use of drugs, particularly in the aging population. This paper presents a facile method for monitoring the high pressure baroreceptor reflex in rats, and presents an alternative to quantifying the magnitude of this reflex using 2 dependent variables, heart rate and systemic arterial pressure, rather than merely change in heart rate. Twenty-four rats were allocated to 3 groups: group I anesthetized with 100mg/kg thiopental, group II anesthetized with 2% isoflurane given by inhalation, group III anesthetized with thiopental but pretreated for 2weeks with 2μg/kg aldosterone given SQ bid. After induction to anesthesia, hair was clipped from the ventral aspect of the neck, and petrolatum was applied to the skin to permit an air-tight seal with a glass funnel attached to a source of variable and controllable negative pressure. Systemic arterial pressure, ECG, heart rate, and a force of suction applied to the neck were all recorded continuously. After baseline recordings, a force of -20mmHg was applied for 20s over the carotid artery. In rats receiving thiopental, the average changes in heart rate and systemic arterial pressure following the application of -20mmHg neck suction were 30±11bpm and 45±14mmHg, respectively. The ratios of change in heart and change in systemic arterial pressure to application of negative force over the carotid sinus are 1.5±0.6bpm/mmHg and 0.7±04mmHg/mmHg, respectively. Mean values for heart rate and for mean systemic arterial pressure during baseline and after application of neck suction for 20s showed little to no decrease (i.e., blunting) in rats anesthetized with isoflurane or pretreated with

  2. [Effect of total ischemia and 3',5'-cAMP on the activity of the thermostable cytoplasmic inhibitor of Ca2+ ion transport in rat heart mitochondria].

    PubMed

    Turakulov, Ia Kh; Luchenko, M B; Gaĭnutdinov, M Kh; Abidov, A A

    1985-01-01

    Activity of cytoplasmic inhibitor of Ca2+ transport in rat heart mitochondria was studied after total ischemia and incubation of heart homogenates with cAMP. Distinct inactivation of the inhibitor occurred under these conditions. The decrease of the inhibitor activity in ischemic myocardium appears to serve as a compensatory mechanism: 1. pyruvate dehydrogenase and the enzymes of tricarboxylic acid cycle were activated due to increase in Ca2+ concentration in mitochondria, 2. as a result of Ca2+ accumulation in mitochondria the elevated concentration of Ca2+ was decreased in myoplasm, which developed after impairment of plasmatic membranes and of sarcoplasmic reticulum membranes.

  3. Interleukin 1 alpha-induced expression of manganous superoxide dismutase reduces myocardial reperfusion injury in the rat.

    PubMed

    Nogae, C; Makino, N; Hata, T; Nogae, I; Takahashi, S; Suzuki, K; Taniguchi, N; Yanaga, T

    1995-10-01

    We investigated the effects of pretreatment with interleukin (IL)-1 alpha on the expression of manganous (Mn) superoxide dismutase (SOD) mRNA and reperfusion-induced arrhythmias and the size of myocardial infarct in rats. Male Wistar rats received 10 mg intraperitoneal injections of human recombinant IL-1 alpha. Their hearts were thereafter isolated at 6, 12, 24, 36 h. A Northern analysis showed that Mn-SOD mRNA was mainly expressed in the heart and slightly in kidney, but not in any other organs. The expression of Mn-SOD mRNA peaked at 6 h after the injection of IL-1 alpha. The Mn-SOD protein content was most increased 12 h after injection. In the isolated heart model, the rats were pretreated with IL-1 alpha 24 h earlier and their hearts were perfused by the Langendorff method. After 20 min of ischemia which was induced by a ligation of a coronary artery, reperfusion-induced arrhythmias were observed. There were no significant differences in the incidence of ventricular arrhythmias between the IL-1 alpha pretreated and the untreated hearts. IL-1 alpha pretreatment significantly reduced the mean duration of the ventricular arrhythmias and also delayed the onset of arrhythmias. The effect of IL-1 alpha pretreatment was also investigated in a 30-min model of ischemia followed by a 3-min reperfusion in anesthetized rats. The infarct size expressed as a percentage of the area at risk was significantly reduced in the IL-1 alpha pretreated hearts compared with the untreated hearts. The left ventricular systolic pressure increased significantly in rat hearts pretreated with IL-1 alpha. Our results therefore showed that the pretreatment with IL-1 alpha induced the overexpression of Mn-SOD mRNA in the rat hearts and also suggested that pretreatment with IL-1 alpha 24 h before ischemia reduced the risk of ischemia-reperfusion injury.

  4. Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart †.

    PubMed

    Wrobeln, Anna; Schlüter, Klaus D; Linders, Jürgen; Zähres, Manfred; Mayer, Christian; Kirsch, Michael; Ferenz, Katja B

    2017-06-01

    The aim of this study was to prove whether albumin-derived perfluorocarbon-based nanoparticles (capsules) can operate as a novel artificial oxygen carrier in a rat Langendorff-heart perfusion model. Hearts perfused with capsules showed increased left ventricular pressure and rate pressure product compared to hearts perfused with pure Krebs-Henseleit (KH)-buffer. The capsules prevented the myocardium from functional fail when in their absence a noxious ischemia was observed. Capsules did not change rheological properties of KH-buffer and could repeatedly reload with oxygen. This albumin-derived perfluorocarbon-based artificial oxygen carrier preserved the function of rat hearts due to the transport of oxygen in a satisfactory manner. Because of these positive results, the functionality of the applied capsules should be verified in living animals.

  5. Sericin improves heart and liver mitochondrial architecture in hypercholesterolaemic rats and maintains pancreatic and adrenal cell biosynthesis.

    PubMed

    Ampawong, Sumate; Isarangkul, Duangnate; Aramwit, Pornanong

    2017-09-15

    Hypercholesterolaemia is well known to be associated with mitochondrial dysfunction, subsequently leading to multiple organ failure. Similar to other natural products, sericin is a candidate for adjunctive therapy in hyperlipidaemic conditions. However, the cholesterol-lowering mechanisms of sericin are multifactorial and controversial. Here, a high-cholesterol-fed rat model with or without sericin treatment was established using a dosage of 1000mg/kg/day for 30 days. Blood lipid profiles, oxidative stress markers (superoxide dismutase, SOD; malondialdehyde, MDA; nuclear factor erythroid 2-related factor, Nrf-2), dysmorphic mitochondria in relation to fission (dynamin-related protein-1; Drp-1) and fusion (guanosine triphosphatase mutated in dominant optic atrophy; OPA-1) markers and biosynthetic markers (aquaporin, AQP-1; tubulin-4β, Tb4B) in the pancreas and adrenal gland were evaluated. The results showed that sericin reduced blood cholesterol and increased high-density lipoprotein (HDL) by acting against oxidative stress. Hypocholesterolaemic and antioxidant conditions further preserved heart and liver mitochondrial architecture; however, this protection was not exhibited in the kidney, where a high level of renal mitophagy, indicating by LC-3 up-regulation, was presented. The steps of ultrastructural alteration of mitochondria from degenerative changes to necrosis were also demonstrated. Sericin also conserved AQP-1 and Tb4B levels in the exocrine pancreatic acinar cells and zona glomerulosa cells, which were positively correlated with serum lipase, HDL, antioxidative markers and mitochondrial integrity. The present study revealed that sericin not only has antioxidant capacity but also balances pancreatic and adrenal cell biosynthesis, especially lipase activity, which may have played an important role in improving lipid dysregulation in the hypercholesterolaemic rat model, leading to the reduction of dysmorphic mitochondria, particularly in the heart and

  6. Cardiac Protection of Valsartan on Juvenile Rats with Heart Failure by Inhibiting Activity of CaMKII via Attenuating Phosphorylation.

    PubMed

    Wu, Yao; Si, Feifei; Ji, Xiaojuan; Jiang, Kunfeng; Song, Sijie; Yi, Qijian

    2017-01-01

    Background . This study was undertaken to determine relative contributions of phosphorylation and oxidation to the increased activity of calcium/calmodulin-stimulated protein kinase II (CaMKII) in juveniles with cardiac myocyte dysfunction due to increased pressure overload. Methods . Juvenile rats underwent abdominal aortic constriction to induce heart failure. Four weeks after surgery, rats were then randomly divided into two groups: one group given valsartan (HF + Val) and the other group given placebo (HF + PBO). Simultaneously, the sham-operated rats were randomly given valsartan (Sham + Val) or placebo (Sham + PBO). After 4 weeks of treatment, Western blot analysis was employed to quantify CaMKII and relative calcium handling proteins (RyR2 and PLN) in all groups. Results . The deteriorated cardiac function was reversed by valsartan treatment. In ventricular muscle cells of group HF + PBO, Thr287 phosphorylation of CaMKII and S2808 phosphorylation of RyR2 and PLN were increased and S16 phosphorylation of PLN was decreased compared to the other groups, while Met281 oxidation was not significantly elevated. In addition, these changes in the expression of calcium handling proteins were ameliorated by valsartan administration. Conclusions . The phosphorylation of Thr286 is associated with the early activation of CaMKII rather than the oxidation of Met281.

  7. Cardiac Protection of Valsartan on Juvenile Rats with Heart Failure by Inhibiting Activity of CaMKII via Attenuating Phosphorylation

    PubMed Central

    Wu, Yao; Si, Feifei; Ji, Xiaojuan; Jiang, Kunfeng; Song, Sijie

    2017-01-01

    Background. This study was undertaken to determine relative contributions of phosphorylation and oxidation to the increased activity of calcium/calmodulin-stimulated protein kinase II (CaMKII) in juveniles with cardiac myocyte dysfunction due to increased pressure overload. Methods. Juvenile rats underwent abdominal aortic constriction to induce heart failure. Four weeks after surgery, rats were then randomly divided into two groups: one group given valsartan (HF + Val) and the other group given placebo (HF + PBO). Simultaneously, the sham-operated rats were randomly given valsartan (Sham + Val) or placebo (Sham + PBO). After 4 weeks of treatment, Western blot analysis was employed to quantify CaMKII and relative calcium handling proteins (RyR2 and PLN) in all groups. Results. The deteriorated cardiac function was reversed by valsartan treatment. In ventricular muscle cells of group HF + PBO, Thr287 phosphorylation of CaMKII and S2808 phosphorylation of RyR2 and PLN were increased and S16 phosphorylation of PLN was decreased compared to the other groups, while Met281 oxidation was not significantly elevated. In addition, these changes in the expression of calcium handling proteins were ameliorated by valsartan administration. Conclusions. The phosphorylation of Thr286 is associated with the early activation of CaMKII rather than the oxidation of Met281. PMID:28536695

  8. Effect of selective vagal nerve stimulation on blood pressure, heart rate and respiratory rate in rats under metoprolol medication.

    PubMed

    Gierthmuehlen, Mortimer; Plachta, Dennis T T

    2016-02-01

    Selective vagal nerve stimulation (sVNS) has been shown to reduce blood pressure without major side effects in rats. This technology might be the key to non-medical antihypertensive treatment in patients with therapy-resistant hypertension. β-blockers are the first-line therapy of hypertension and have in general a bradycardic effect. As VNS itself can also promote bradycardia, it was the aim of this study to investigate the influence of the β1-selective blocker Metoprolol on the effect of sVNS especially with respect to the heart rate. In 10 male Wistar rats, a polyimide multichannel-cuff electrode was placed around the vagal nerve bundle to selectively stimulate the aortic depressor nerve fibers. The stimulation parameters were adapted to the thresholds of individual animals and were in the following ranges: frequency 30-50 Hz, amplitude 0.3-1.8 mA and pulse width 0.3-1.3 ms. Blood pressure responses were detected with a microtip transducer in the carotid artery, and electrocardiography was recorded with s.c. chest electrodes. After IV administration of Metoprolol (2 mg kg(-1) body weight), the animals' mean arterial blood pressure (MAP) and heart rate (HR) decreased significantly. Although the selective electrical stimulation of the baroreceptive fibers reduced MAP and HR, both effects were significantly alleviated by Metoprolol. As a side effect, the rate of stimulation-induced apnea significantly increased after Metoprolol administration. sVNS can lower the MAP under Metoprolol without causing severe bradycardia.

  9. Comparison of 3 Symptom Classification Methods to Standardize the History Component of the HEART Score.

    PubMed

    Marchick, Michael R; Setteducato, Michael L; Revenis, Jesse J; Robinson, Matthew A; Weeks, Emily C; Payton, Thomas F; Winchester, David E; Allen, Brandon R

    2017-09-01

    The History, Electrocardiography, Age, Risk factors, Troponin (HEART) score enables rapid risk stratification of emergency department patients presenting with chest pain. However, the subjectivity in scoring introduced by the history component has been criticized by some clinicians. We examined the association of 3 objective scoring models with the results of noninvasive cardiac testing. Medical records for all patients evaluated in the chest pain center of an academic medical center during a 1-year period were reviewed retrospectively. Each patient's history component score was calculated using 3 models developed by the authors. Differences in the distribution of HEART scores for each model, as well as their degree of agreement with one another, as well as the results of cardiac testing were analyzed. Seven hundred forty nine patients were studied, 58 of which had an abnormal stress test or computed tomography coronary angiography. The mean HEART scores for models 1, 2, and 3 were 2.97 (SD 1.17), 2.57 (SD 1.25), and 3.30 (SD 1.35), respectively, and were significantly different (P < 0.001). However, for each model, the likelihood of an abnormal cardiovascular test did not correlate with higher scores on the symptom component of the HEART score (P = 0.09, 0.41, and 0.86, respectively). While the objective scoring models produced different distributions of HEART scores, no model performed well with regards to identifying patients with abnormal advanced cardiac studies in this relatively low-risk cohort. Further studies in a broader cohort of patients, as well as comparison with the performance of subjective history scoring, is warranted before adoption of any of these objective models.

  10. Methanolic seed extract of Vitis vinifera ameliorates oxidative stress, inflammation and ATPase dysfunction in infarcted and non-infarcted heart of streptozotocin-nicotinamide induced male diabetic rats.

    PubMed

    Giribabu, Nelli; Roslan, Josef; Rekha, Somesula Swapna; Salleh, Naguib

    2016-11-01

    We hypothesized that consumption of Vitis vinifera seed by diabetics could help to ameliorate myocardial damage. Therefore, in this study, we investigated effects of V. vinifera seed methanolic extract (VVSME) on parameters related to myocardial damage in diabetes with or without myocardial infarction (MI). Streptozotocin-nicotinamide induced diabetic rats received oral VVSME for 28days. MI was induced by intraperitoneal injection of isoproterenol on last two days. Prior to sacrifice, blood was collected and fasting blood glucose (FBG), glycated hemoglobin (HbA1c), lipid profile and insulin levels were measured. Levels of serum cardiac injury marker (troponin-I and CK-MB) were determined and histopathological changes in the heart were observed following harvesting. Levels of oxidative stress (LPO, SOD, CAT, GPx and RAGE), inflammation (NF-κB, TNF-α, IL-1β and IL-6) and cardiac ATPases (Na(+)/K(+)-ATPase and Ca(2+)-ATPase) were determined in heart homogenates. LC-MS was used to identify constituents in the extracts. Consumption of VVSME by diabetic rats with or without MI improved the metabolic profiles while decreased the cardiac injury marker levels with lesser myocardial damage observed. Additionally, VVSME consumption reduced the levels of LPO, RAGE, TNF-α, Iκκβ, NF-κβ, IL-1β and IL-6 while increased the levels of SOD, CAT, GPx, Na(+)/K(+)-ATPase and Ca(2+)-ATPase in the infarcted and non-infarcted heart of diabetic rats (p<0.05). LC-MS analysis revealed 17 major compounds in VVSME which might be responsible for the observed effects. Consumption of VVSME by diabetics helps to ameliorate damage to the infarcted and non-infarcted myocardium by decreasing oxidative stress, inflammation and cardiac ATPases dysfunctions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Dose and effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats

    EPA Science Inventory

    Dose and effect of inhaled ozone in resting versus exercising human subjects: comparison with resting rats Authors: Gary E. Hatch, John McKee, James Brown, Bill McDonnell, Elston Seal, Joleen Soukup, Ralph Slade, Kay Crissman and Robert Devlin, National Health and Environmental...

  12. Transient ischemia reduces norepinephrine release during sustained ischemia. Neural preconditioning in isolated rat heart.

    PubMed

    Seyfarth, M; Richardt, G; Mizsnyak, A; Kurz, T; Schömig, A

    1996-04-01

    Endogenous catecholamine release may play a role in ischemic preconditioning either as a trigger or as a target within the process of myocardial preconditioning. Therefore, we investigated the effect of transient ischemia (TI) on norepinephrine release during sustained ischemia in isolated rat hearts. TI was induced by multiple cycles of global ischemia followed by reperfusion with a duration of 5 minutes each, comparable to ischemic preconditioning protocols. After TI, norepinephrine release was evoked by either sustained global ischemia, anoxia, cyanide intoxication, tyramine, or electrical stimulation. During TI, no washout of norepinephrine was observed, and tissue concentrations of norepinephrine were not changed. TI, however, reduced norepinephrine overflow after 20 minutes of sustained ischemia from 239 +/- 26 pmol/g (control) to 79+/-8 pmol/g (67% reduction, P <.01 ). A similar reduction of ischemia-induced norepinephrine release from 192 +/- 22 pmol/g (control) to 90 +/- 15 pmol/g was observed when hearts underwent transient anoxia without glucose (P < .05). When reperfusion between TI and sustained ischemia was prolonged from 5 to 90 minutes, the inhibitory effect of TI on norepinephrine release was gradually lost. Susceptibility to TI was a unique feature of norepinephrine release induced by sustained ischemia, since release of norepinephrine evoked by anoxia, cyanide intoxication, tyramine, or electrical stimulation remained unaffected by TI. We propose a protective effect of TI on neural tissue, which may reduce norepinephrine-induced damage during prolonged myocardial ischemia.

  13. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    PubMed

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal

  14. Comparative Normal/Failing Rat Myocardium Cell Membrane Chromatographic Analysis System for Screening Specific Components That Counteract Doxorubicin-Induced Heart Failure from Acontium carmichaeli

    PubMed Central

    2015-01-01

    Cell membrane chromatography (CMC) derived from pathological tissues is ideal for screening specific components acting on specific diseases from complex medicines owing to the maximum simulation of in vivo drug-receptor interactions. However, there are no pathological tissue-derived CMC models that have ever been developed, as well as no visualized affinity comparison of potential active components between normal and pathological CMC columns. In this study, a novel comparative normal/failing rat myocardium CMC analysis system based on online column selection and comprehensive two-dimensional (2D) chromatography/monolithic column/time-of-flight mass spectrometry was developed for parallel comparison of the chromatographic behaviors on both normal and pathological CMC columns, as well as rapid screening of the specific therapeutic agents that counteract doxorubicin (DOX)-induced heart failure from Acontium carmichaeli (Fuzi). In total, 16 potential active alkaloid components with similar structures in Fuzi were retained on both normal and failing myocardium CMC models. Most of them had obvious decreases of affinities on failing myocardium CMC compared with normal CMC model except for four components, talatizamine (TALA), 14-acetyl-TALA, hetisine, and 14-benzoylneoline. One compound TALA with the highest affinity was isolated for further in vitro pharmacodynamic validation and target identification to validate the screen results. Voltage-dependent K+ channel was confirmed as a binding target of TALA and 14-acetyl-TALA with high affinities. The online high throughput comparative CMC analysis method is suitable for screening specific active components from herbal medicines by increasing the specificity of screened results and can also be applied to other biological chromatography models. PMID:24731167

  15. Isoflurane increases cardiorespiratory coordination in rats

    NASA Astrophysics Data System (ADS)

    Kabir, Muammar M.; Beig, Mirza I.; Nalivaiko, Eugene; Abbott, Derek; Baumert, Mathias

    2008-12-01

    Anesthetics such as isoflurane adversely affect heart rate. In this study we analysed the interaction between heart rhythm and respiration at different concentrations of isoflurane and ventilation rates. In two rats, the electrocardiogram (ECG) and respiratory signals were recorded under the influence of isoflurane. For the assessment of cardiorespiratory coordination, we analysed the phase locking between heart rate, computed from the R-R intervals of body surface ECG, and respiratory rate, computed from impedance changes, using Hilbert transform. The changes in heart rate, percentage of synchronization and duration of synchronized epochs at different isoflurane concentrations and ventilation rates were assessed using linear regression model. From this study it appears that the amount of phase locking between cardiac and respiratory rates increases with the increase in concentration of isoflurane. Heart rate and duration of synchronized epochs increased significantly with the increase in the level of isoflurane concentration while respiratory rate was not significantly affected. Cardiorespiratory coordination also showed a considerable increase at the ventilation rates of 50- 55 cpm in both the rats, suggesting that the phase-locking between the cardiac and respiratory oscillators can be increased by breathing at a particular respiratory frequency.

  16. Injections of angiotensin-converting enzyme2 inhibitor MLN4760 into nucleus tractus solitarii reduce baroreceptor reflex sensitivity for heart rate control in rats

    PubMed Central

    Diz, Debra I.; Garcia-Espinosa, Maria A.; Gegick, Stephen; Tommasi, Ellen N.; Ferrario, Carlos M.; Tallant, E. Ann; Chappell, Mark C.; Gallagher, Patricia E.

    2009-01-01

    Injections of the angiotensin(1–7) [Ang(1–7)] antagonist [d-Ala7]-Ang(1–7) into the nucleus of the solitary tract (NTS) of Sprague–Dawley rats reduce baroreceptor reflex sensitivity (BRS) for control of heart rate by ~40%, whereas injections of the angiotensin II (Ang II) type 1 receptor antagonist candesartan increase BRS by 40% when reflex bradycardia is assessed. The enzyme angiotensin-converting enzyme 2 (ACE2) is known to convert Ang II to Ang(1–7). We report that ACE2 activity, as well as ACE and neprilysin activities, are present in plasma membrane fractions of the dorsomedial medulla of Sprague–Dawley rats. Moreover, we show that BRS for reflex bradycardia is attenuated (1.16±0.29 ms mmHg−1 before versus 0.33±0.11 ms mmHg−1 after; P < 0.05; n = 8) 30–60 min following injection of the selective ACE2 inhibitor MLN4760 (12 pmol in 120 nl) into the NTS. These findings support the concept that within the NTS, local synthesis of Ang(1–7) from Ang II is required for normal sensitivity for the baroreflex control of heart rate in response to increases in arterial pressure. PMID:18356558

  17. Effects of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats

    PubMed Central

    2014-01-01

    Background The fruit of Hylocereus polyrhizus, also known as red pitaya, and buah naga in Malay, is one of the tropical fruits of the cactus family, Cactaceae. Red pitaya has been shown to protect aorta from oxidative damage and improve lipid profiles in hypercholesterolemic rats probably due to phytochemicals content including phenolics and flavonoids. The aim of this study was to investigate the changes in cardiac stiffness, hepatic and renal function in high-carbohydrate, high-fat diet-induced obese rats following supplementation of red pitaya juice. Methods Total 48 male Wistar rats were divided into 4 groups: corn-starch group (CS), corn-starch + red pitaya juice group (CRP), high-carbohydrate, high fat group (HCHF) and high-carbohydrate, high fat + red pitaya juice (HRP). The intervention with 5% red pitaya juice was started for 8 weeks after 8 weeks initiation of the diet. Heart function was determined ex vivo with Langendorff hearts while plasma liver enzymes, uric acid and urea were measured using commercial kits. Total fat mass was determined with Dual-energy X-ray absorptiometry (DXA) scan. Glucose uptake was measured with Oral Glucose Tolerance Test (OGTT). Liver and cardiac structures were defined by histology. Results Supplementation of red pitaya juice for 8 weeks increased energy intake and abdominal circumference but no change in body fat and lean mass respectively. Also, there were a trend of uric acid and glucose normalization for HRP as compared to H-fed rats. Red pitaya juice treatment reduced ALP and ALT but caused significant increment in AST. Diastolic stiffness of the heart was reduced after supplementation of red pitaya juice in corn starch fed rats. However, the reduction was not significant in HRP rats in comparison with H rats. Conclusion The present study concluded that red pitaya juice may serve as a complimentary therapy for attenuating some signs of metabolic syndrome. PMID:24919841

  18. β-Sitosterol enhances cellular glutathione redox cycling by reactive oxygen species generated from mitochondrial respiration: protection against oxidant injury in H9c2 cells and rat hearts.

    PubMed

    Wong, Hoi Shan; Chen, Na; Leong, Pou Kuan; Ko, Kam Ming

    2014-07-01

    Herba Cistanches (Cistanche deserticola Y. C. Ma) is a 'Yang-invigorating' tonic herb in Chinese medicine. Preliminary chemical analysis indicated that β-sitosterol (BS) is one of the chemical constituents in an active fraction of Herba Cistanches. To investigate whether BS is an active ingredient of Herba Cistanches, the effects of BS on H9c2 cells and rat hearts were examined. The results indicated that BS stimulated the mitochondrial ATP generation capacity in H9c2 cells, which was associated with the increased production of mitochondrial reactive oxygen species. BS also stimulated mitochondrial state 3 and state 4 respiration, with the resultant decrease in coupling efficiency. BS produced an up-regulation of cellular glutathione redox cycling and protected against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. However, the protective effect of BS against myocardial ischemia/reperfusion injury was seen in female but not male rats ex vivo. The cardioprotection afforded by BS was likely mediated by an up-regulation of mitochondrial glutathione redox cycling in female rat hearts. In conclusion, the ensemble of results suggests that BS is an active ingredient of Herba Cistanches. The gender-dependent effect of BS on myocardial protection will further be investigated. Copyright © 2013 John Wiley & Sons, Ltd.

  19. The role of biological activity of hydrohumate, produced from peat, in formation of adaptive response of rats under influence of chronic stress

    NASA Astrophysics Data System (ADS)

    Lyanna, O. L.; Chorna, V. I.; Stepchenko, L. M.

    2009-04-01

    It is well known that humic compounds are the most distributed in nature among the organic matter. It is believed that humic polyphenol preparations, produced from the peat, represent adaptogenes and immunomodulators. But the total mechanism of their adaptogenic action is still completely unclear. In response to extraordinary irritant action, one of the most sensitive to stress and highly reactive systems of organism, endosomal-lysosomal cellular apparatus takes part. It is believed that humic compounds are able to penetrate through plasmatic membrane and by this way to affect on lysosomal proteases function. Among the wide range of lysosomal proteases, cysteine cathepsin L (EC 3.4.22.15) was in interest due to its powerful endopeptidase activity and widespread localization. Purpose. The aim of the work was to investigate the influence of humic acids on intracellular proteolysis in blood plasma and heart muscle of rats in adaptive-restorative processes developing in rat organisms as a result of chronic stress action. The experiment was held on Wistar's rats (160-200 g weight) which were divided into 4 groups: 1 - the control group; 2 - the animals which were received the hydrohumate with water (10 mg hydrohumate (0,1% solution) per 1 kg of weight) during 3 weeks; 3 - the group of stressed rats (test "forced swimming" for 2 hours); 4 - the stressed rats which received the hydrohumate. The activity of lysosomal cysteine cathepsin L was determined spectrophotometrically by usage 1% azocasein, denaturated by 3 M urea, as substrate. It was obtained that under hydrohumate influence the activity of lysosomal cysteine cathepsin L in rat blood plasma changed on 20% in comparison with control group that is suggested to be caused by leakage of tissue cathepsins from organs and tissues and kidneys' filtration of these cysteine enzymes in urine. In rat heart tissues it was obtained that cathepsin L activity level was on 26,8% higher in rats which were under stress influence in

  20. The consequences of long-term glycogen synthase kinase-3 inhibition on normal and insulin resistant rat hearts.

    PubMed

    Flepisi, T B; Lochner, Amanda; Huisamen, Barbara

    2013-10-01

    Glycogen synthase kinase-3 (GSK-3) is a serine-threonine protein kinase, discovered as a regulator of glycogen synthase. GSK-3 may regulate the expression of SERCA-2a potentially affecting myocardial contractility. It is known to phosphorylate and inhibit IRS-1, thus disrupting insulin signalling. This study aimed to determine whether myocardial GSK-3 protein and its substrate proteins are dysregulated in obesity and insulin resistance, and whether chronic GSK-3 inhibition can prevent or reverse this. Weight matched male Wistar rats were rendered obese by hyperphagia using a special diet (DIO) for 16 weeks and compared to chow fed controls. Half of each group was treated with the GSK-3 inhibitor CHIR118637 (30 mg/kg/day) from week 12 to16 of the diet period. Biometric and biochemical parameters were measured and protein expression determined by Western blotting and specific antibodies. Ca(2+)ATPase activity was determined spectrophotometrically. Cardiomyocytes were prepared by collagenase perfusion and insulin stimulated 2-deoxy-glucose uptake determined. DIO rats were significantly heavier than controls, associated with increased intra-peritoneal fat and insulin resistance. GSK-3 inhibition did not affect weight but improved insulin resistance, also on cellular level. It had no effect on GSK-3 expression but elevated its phospho/total ratio and elevated IRS-2 expression. Obesity lowered SERCA-2a expression and activity while GSK-3 inhibition alleviated this. The phospho/total ratio of phospholamban underscored inhibition of SERCA-2a in obesity. In addition, signs of myocardial hypertrophy were observed in treated control rats. GSK-3 inhibition could not reverse all the detrimental effects of obesity but may be harmful in normal rat hearts. It regulates IRS-2, SERCA-2a and phospholamban expression but not IRS-1.

  1. Diurnal, seasonal, and sex patterns of heart rate in grip-restrained African giant rats (Cricetomys gambianus, Waterhouse).

    PubMed

    Dzenda, Tavershima; Ayo, Joseph O; Sinkalu, Victor O; Yaqub, Lukuman S

    2015-10-01

    This study was carried out to determine heart rate (HR) values, including diurnal, seasonal, and sex patterns, in the African giant rat (Cricetomys gambianus, Waterhouse). HR was measured using stethoscope in grip-restrained African giant rats of either sex (103 bucks and 98 does), live-trapped from a tropical Savannah, and caged individually in the laboratory during the harmattan (cold-dry), hot-dry, and rainy seasons over a 3-year period. The HR fluctuated between 90 and 210 beats per minute (bpm) throughout the study period. Diurnal changes in HR (mean ± SEM) during the hot-dry and rainy seasons were nonsignificant (P > 0.05), but the morning and afternoon values differed (P < 0.01) during the cold-dry season. The HR varied (P < 0.05) among seasons, with peak, nadir, and moderate values recorded during the cold-dry (165.8 ± 0.51 bpm), hot-dry (153.1 ± 0.74 bpm), and rainy (163.4 ± 0.70 bpm) seasons, respectively. Mean HR of bucks was lower than that of does during the cold-dry (P < 0.0001) and hot-dry (P < 0.01) seasons, but sex difference during the rainy season was insignificant (P > 0.05). Overall, mean HR was lower (P < 0.0001) in bucks (158.8 ± 0.53 bpm) than in does (164.8 ± 0.53 bpm). In conclusion, values of HR in African giant rats are shown for the first time. Season, sex, and daytime influenced the HR, and should be considered during clinical evaluations of the rats. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  2. Substrate specific effects of calcium on metabolism of rat heart mitochondria.

    PubMed

    Panov, A V; Scaduto, R C

    1996-04-01

    Oxidative metabolism in the heart is tightly coupled to mechanical work. Because this coupling process is believed to involve Ca2+, the roles of mitochondrial Ca2+ in the regulation of oxidative phosphorylation was studied in isolated rat heart mitochondria. The electrical component of the mitochondrial membrane potential (delta psi) and the redox state of the pyridine nucleotides were determined during the oxidation of various substrates under different metabolic states. In the absence of added adenine nucleotides, the NADP+ redox couple was almost completely reduced, regardless of the specific substrate and the presence of Ca2+, whereas NAD+ couple redox state was highly dependent on the substrate type and the presence of Ca2+. Titration of respiration with ADP, in the presence of excess hexokinase and glucose, showed that both respiration and NAD(P)+ reduction were very sensitive to ADP. The maximal enzyme reaction rate of ADP-stimulated respiration Michaelis constants (Km) for ADP were dependent on the particular substrate employed. delta psi was much less sensitive to ADP. With either alpha-ketoglutarate or glutamate as substrate, Ca2+ significantly increased reduction of NAD(P)+.Ca2+ did not influence NAD(P)+ reduction with either acetylcarnitine or pyruvate as substrate. In the presence of ADP, delta psi was increased by Ca2+ at all metabolic states with glutamate plus malate, 0.5 mM alpha-ketoglutarate plus malate, or pyruvate plus malate as substrates. The data presented support the hypothesis that cardiac respiration is controlled by the availability of both Ca2+ and ADP to mitochondria. The data indicate that an increase in substrate supply to mitochondria can increase mitochondrial respiration at given level of ADP. This effect can be produced by Ca2+ with substrates such as glutamate, which utilize alpha-ketoglutarate dehydrogenase activity for oxidation. Increases in respiration by Ca2+ may mitigate an increase in ADP during periods of increased

  3. Hydrogen sulfide upregulates heme oxygenase-1 expression in rats with volume overload-induced heart failure

    PubMed Central

    ZHANG, CHAO-YING; LI, XIAO-HUI; ZHANG, TING; FU, JIN; CUI, XIAO-DAI

    2013-01-01

    The present study investigated the role of hydrogen sulfide (H2S), a novel gaseous transmitter, in chronic heart failure (CHF) induced by left-to-right shunt, leading to volume overload. Thirty male Sprague-Dawley rats were randomly divided into four groups: the shunt group, the sham group, the shunt + sodium hydrosulfide (NaHS) group and the sham + NaHS group. CHF was induced in the rats by abdominal aorta-inferior vena cava shunt operation. Rats in the shunt + NaHS and sham + NaHS groups were injected intraperitoneally with NaHS (H2S donor). Haemodynamic parameters were measured 8 weeks after surgery. In addition, left ventricular heme oxygenase (HO)-1 mRNA expression was measured by real-time PCR. Protein expression of HO-1 was evaluated by western blot analysis. Eight weeks after surgery, compared to the sham group, the left ventricular systolic pressure (LVSP) and left ventricular peak rate of contraction and relaxation (LV±dp/dtmax) were significantly reduced; the left ventricular end-diastolic pressure (LVEDP) was significantly increased in the shunt group (all P<0.05). However, NaHS increased LVSP and LV±dp/dtmax (all P<0.05) and decreased LVEDP (P<0.05). Protein expression of HO-1 was significantly decreased in the shunt group compared to that in the sham group (P<0.05). NaHS increased protein expression of HO-1 compared to that in the shunt group (P<0.05). HO-1 mRNA expression was significantly increased in the shunt + NaHS group compared to that in the shunt group (P<0.01). The present study demonstrated that H2S may play a protective role in volume overload-induced CHF by upregulating protein and mRNA expression of HO-1. PMID:24648967

  4. Antiarrhythmic effect of tamoxifen on the vulnerability induced by hyperthyroidism to heart ischemia/reperfusion damage.

    PubMed

    Pavón, Natalia; Hernández-Esquivel, Luz; Buelna-Chontal, Mabel; Chávez, Edmundo

    2014-09-01

    Hyperthyroidism, known to have deleterious effects on heart function, and is associated with an enhanced metabolic state, implying an increased production of reactive oxygen species. Tamoxifen is a selective antagonist of estrogen receptors. These receptors make the hyperthyroid heart more susceptible to ischemia/reperfusion. Tamoxifen is also well-known as an antioxidant. The aim of the present study was to explore the possible protective effect of tamoxifen on heart function in hyperthyroid rats. Rats were injected daily with 3,5,3'-triiodothyronine at 2mg/kg body weight during 5 days to induce hyperthyroidism. One group was treated with 10mg/kg tamoxifen and another was not. The protective effect of the drug on heart rhythm was analyzed after 5 min of coronary occlusion followed by 5 min reperfusion. In hyperthyroid rats not treated with tamoxifen, ECG tracings showed post-reperfusion arrhythmias, and heart mitochondria isolated from the ventricular free wall lost the ability to accumulate and retain matrix Ca(2+) and to form a high electric gradient. Both of these adverse effects were avoided with tamoxifen treatment. Hyperthyroidism-induced oxidative stress caused inhibition of cis-aconitase and disruption of mitochondrial DNA, effects which were also avoided by tamoxifen treatment. The current results support the idea that tamoxifen inhibits the hypersensitivity of hyperthyroid rat myocardium to reperfusion damage, probably because its antioxidant activity inhibits the mitochondrial permeability transition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Olfactory bulbectomy induces rapid and stable changes in basal and stress-induced locomotor activity, heart rate and body temperature responses in the home cage.

    PubMed

    Vinkers, C H; Breuer, M E; Westphal, K G C; Korte, S M; Oosting, R S; Olivier, B; Groenink, L

    2009-03-03

    Olfactory bulbectomy (OBX) in rats causes several behavioral and neurochemical changes. However, the extent and onset of physiological and behavioral changes induced after bulbectomy have been little examined. Male Sprague-Dawley rats received telemetric implants. Before and immediately after OBX surgery, basal and stress-induced heart rate, body temperature, and locomotor activity were measured in the home cage in sham (n=9) and OBX animals (n=11). Stress was induced using novel cage stress or witness stress. Bulbectomized animals differed physiologically and behaviorally from shams. Nocturnally, OBX animals were significantly more active compared with shams, had a higher core body temperature and displayed a decreased heart rate variability. During the light period, OBX animals had a significantly lower basal heart rate and a reduced heart rate variability. These effects became apparent 2-3 days after OBX surgery, and were stable over time. After witness stress, OBX animals showed smaller autonomic (body temperature and heart rate) responses compared with shams, but showed no difference in locomotor responses. In contrast, novel cage stress led to increased locomotor responses in OBX rats compared with sham rats, while no differences were found in autonomic responses. Removal of the olfactory bulbs results in rapid, stable and persistent changes in basal locomotor activity, body temperature, heart rate and heart rate variability. Although the sleep-wake cycle of these parameters is not altered, increases in circadian amplitude are apparent within 3 days after surgery. This indicates that physiological changes in the OBX rat are the immediate result of olfactory bulb removal. Further, stress responsivity in OBX rats depends on stressor intensity. Bulbectomized rats display smaller temperature and heart rate responses to less intense witness stress compared with sham rats. Increased locomotor responses to more intense novel cage stress are present in the home cage

  6. Mitochondrial role in ischemia-reperfusion of rat hearts exposed to high-K+ cardioplegia and clonazepam: energetic and contractile consequences.

    PubMed

    Consolini, A E; Ragone, M I; Conforti, P; Volonté, M G

    2007-05-01

    The role of the mitochondrial Na/Ca-exchanger (mNCX) in hearts exposed to ischemia-reperfusion (I/R) and pretreated with cardioplegia (CPG) was studied from a mechano-calorimetric approach. No-flow ischemia (ISCH) and reperfusion (REP) were developed in isolated rat hearts pretreated with 10 micromol/L clonazepam (CLZP), an inhibitor of the mNCX, and (or) a high K+ - low Ca2+ solution (CPG). Left ventricular end diastolic pressure (LVEDP), pressure development during beats (P), and the steady heat release (Ht) were continuously measured and muscle contents of ATP and PCr were analyzed at the end of REP. During REP, Ht increased more than P, reducing muscle economy (P/Ht) and the ATP content. CPG induced an increase in P recovery during REP (to 90% +/- 10% of preISCH) with respect to nonpretreated hearts (control, C, to 64% +/- 10%, p < 0.05). In contrast, CLZP reduced P recovery of CPG-hearts (50% +/- 6.4%, p < 0.05) and increased LVEDP in C hearts. To evaluate effects on sarcoplasmic reticulum (SR) function, ischemic hearts were reperfused with 10 mmol/L caffeine -36 mmol/L Na (C - caff - low Na). It increased LVEDP, which afterwards slowly relaxed, whereas Ht increased (by about 6.5 mW/g). CLZP sped up the relaxation with higher DeltaHt, C - caff - low Na produced higher contracture and lower Ht in perfused than in ischemic hearts. Values of DeltaHt were compared with reported fluxes of Ca2+-transporters, suggesting that mitochondria may be in part responsible for the DeltaHt during C - caff - low Na REP. Results suggest that ISCH-REP reduced the SR store for the recovery of contractility, but induced Ca2+ movement from the mitochondria to the SR stores. Also, mitochondria and SR are able to remove cytosolic Ca2+ during overloads (as under caffeine), through the mNCX and the uniporter. CPG increases Ca2+ cycling from mitochondria to the SR, which contributes to the higher recovery of P. In contrast, CLZP produces a deleterious effect on ISCH-REP associated with

  7. Effect of donor fasting on survival of pancreas and heart grafts after warm ischemia.

    PubMed

    Nishihara, M; Sumimoto, R; Asahara, T; Fukuda, Y; Southard, J H; Dohi, K

    1996-09-01

    Livers from fasted animals are believed to be more vulnerable to ischemic injury than those from fed donors. However, we have recently shown the opposite: livers from fasted rats were more tolerant to ischemic injury. Indeed, the survival rate of 60 min warm ischemic damaged livers increased from 0 to 90% if donor rats were fasted for three days. In this study, we examined how donor fasting affects the outcome of pancreas and heart preservation. BN rats were used as both donors and recipients, and recipients of pancreatic grafts were rendered diabetic prior to transplantation. Pancreatic or heart grafts were subjected to 90 min or 25 min of warm ischemia and were transplanted into the right side of the necks of recipients rats. The viability rate of hearts transplanted from fed donors into fed recipients was only about 11% (1/9) after transplantation. However, the viability rate with fasted donors was 75% (6/8). The rate of successful pancreatic grafting from fed donors into fed recipients was 28.6% (2/7), and that from fasted donors to fed recipients was 41.7% (5/12). These results confirm that the nutritional status of the donor is an important factor in the outcome of not only liver, but also pancreas and heart preservation during transplantation, although the effect of fasting on pancreatic graft is marginal.

  8. Effects of luteolin on regulatory proteins and enzymes for myocyte calcium circulation in hypothermic preserved rat heart

    PubMed Central

    Yan, Qingfeng; Li, Yueping; Yan, Jia; Zhao, Ying; Liu, Yunzhong; Liu, Su

    2018-01-01

    Heart transplantation has been applied in the clinic as an optimal solution for patients with end stage cardiac failure for a number of years. However, hypothermic preservation of the heart remains limited to 4–6 h and calcium accumulation over time is an important factor resulting in cell death. To provide longer and safer storage for donor hearts, it was demonstrated in our previous study that luteolin, a traditional Chinese medicine used to treat cardiovascular diseases, inhibits cell death and L-type calcium currents during hypothermic preservation. In the current study, the protective role of luteolin in modulating cardiomyocyte calcium cycling was further investigated. Intracellular calcium overload has already been implicated in hypothermia-induced dysfunction of cardiomyocytes. University of Wisconsin (UW) solution supplemented with 7.5, 15 or 30 µmol/l luteolin was used to preserve fresh isolated cardiomyocytes at 4°C. The results demonstrated that all three doses of luteolin supplementation attenuated calcium overload over a 6 h preservation period. Luteolin also suppressed the accumulation of important regulatory proteins and enzymes for cardiomyocyte calcium circulation, mitochondria Ca2+ uniporter and calmodulin, which are normally induced by cold storage in UW solution. Protein Kinase A activity was also suppressed in cardiomyocytes preserved in luteolin supplemented UW solution, while Ca2+-Mg2+-ATPase activity was increased. The results demonstrated that luteolin confers a cardioprotective effect through inhibiting the changes of calcium regulators during cold storage and therefore ameliorates Ca2+ overload in rat cardiomyocytes. PMID:29399124

  9. Increased Cardiac Myocyte Progenitors in Failing Human Hearts

    PubMed Central

    Kubo, Hajime; Jaleel, Naser; Kumarapeli, Asangi; Berretta, Remus M.; Bratinov, George; Shan, Xiaoyin; Wang, Hongmei; Houser, Steven R.; Margulies, Kenneth B.

    2009-01-01

    Background Increasing evidence, derived mainly from animal models, supports the existence of endogenous cardiac renewal and repair mechanisms in adult mammalian hearts that could contribute to normal homeostasis and the responses to pathological insults. Methods and Results Translating these results, we isolated small c-kit+ cells from 36 of 37 human hearts using primary cell isolation techniques and magnetic cell sorting techniques. The abundance of these cardiac progenitor cells was increased nearly 4-fold in patients with heart failure requiring transplantation compared with nonfailing controls. Polychromatic flow cytometry of primary cell isolates (<30 μm) without antecedent c-kit enrichment confirmed the increased abundance of c-kit+ cells in failing hearts and demonstrated frequent coexpression of CD45 in these cells. Immunocytochemical characterization of freshly isolated, c-kit–enriched human cardiac progenitor cells confirmed frequent coexpression of c-kit and CD45. Primary cardiac progenitor cells formed new human cardiac myocytes at a relatively high frequency after coculture with neonatal rat ventricular myocytes. These contracting new cardiac myocytes exhibited an immature phenotype and frequent electric coupling with the rat myocytes that induced their myogenic differentiation. Conclusions Despite the increased abundance and cardiac myogenic capacity of cardiac progenitor cells in failing human hearts, the need to replace these organs via transplantation implies that adverse features of the local myocardial environment overwhelm endogenous cardiac repair capacity. Developing strategies to improve the success of endogenous cardiac regenerative processes may permit therapeutic myocardial repair without cell delivery per se. PMID:18645055

  10. Machine perfusion preservation of the non-heart-beating donor rat livers using polysol, a new preservation solution.

    PubMed

    Bessems, M; Doorschodt, B M; van Vliet, A K; van Gulik, T M

    2005-01-01

    The increasing shortage of donor organs has led to a focus on extended criteria donors, including the non-heart-beating donor (NHBD). An optimal preservation method is required to facilitate successful transplantation of these ischemically damaged organs. The recent literature has shown clear advantages of hypothermic machine perfusion (MP) over cold storage (CS). For MP, modified University of Wisconsin perfusion solution (UW-G) is often used, which, however, is known to cause microcirculatory obstruction, is difficult to obtain, and is expensive. Therefore, Polysol was developed as a MP preservation solution that contains specific nutrients for the liver, such as amino acids, energy substrates, and vitamins. The aim of this study was to compare Polysol with UW-G in a NHBD rat liver model. After 24 hours hypothermic MP of NHBD rat livers using UW-G or Polysol, liver damage and function parameters were assessed during 60 minutes of reperfusion with Krebs-Henseleit buffer. Control livers were reperfused after 24 hours CS in UW. Liver enzyme release was significantly higher among the CS-UW group compared to MP using UW-G or Polysol. Flow during reperfusion was significantly higher when using Polysol compared to UW-G. Bile production and ammonia clearance were highest when using Polysol compared to UW-G. There was less cellular edema after preservation with Polysol compared to UW-G. MP of NHBD rat livers for 24 hours using UW-G or Polysol resulted in less hepatocellular damage than CS in UW. MP of NHBD livers for 24 hours using Polysol is superior to MP using UW-G.

  11. Comparative study of the venoms from three species of bees: effects on heart activity and blood.

    PubMed

    Hussein, A A; Nabil, Z I; Zalat, S M; Rakha, M K

    2001-11-01

    Crude venoms from three highly evolved aculeate species: Apis mellifera (highly social bees), Bombus morrisoni (eusocial bees), and Anthophora pauperata (solitary bees), were used for conducting this study to compare the effects of honey bee, bumble bee, and solitary bee venom on toad cardiac muscle activity. In addition, these venoms were tested on rat whole blood in order to determine their ability to induce red blood cell haemolysis. The main toxic effects on isolated toad heart were monitored by ECG after perfusion with different concentrations of each bee venom, and are represented as a decrease in the heart rate (HR) accompanied by an elongation in the P-R interval. A gradual and progressive increase in R-wave amplitude was also noted. Several electrocardiographic changes were noted 5-30 min after envenomation with any of the bee venoms. The mechanism of action of the three bee venoms was determined by direct application of atropine, nicotine, or verapamil to the isolated toad hearts. Comparison of the three venoms revealed that Anthophora pauperata venom is the most effective venom in inducing bradycardia, and it has the strongest negative dromotropic effect. Apis mellifera venom demonstrates the most positive inotropic effect of the three venoms. The effects of bee venom on the blood indices of erythrocyte osmotic fragility (EOF) and plasma albumin levels were studied after incubation of rat blood with each venom. It was noticed that RBCs decreased while Hb content, HCT, MCV, MCH, and MCHC increased, although this change did fluctuate and was not significant. A nonsignificant decrease in EOF was noted after 60 min with any of the venoms used. Incubation of rat whole blood with 1 microg/ml of any of the bee venom solutions revealed a highly significant decrease in plasma albumin levels. It can be concluded that venoms from the three species of bees we tested have negative chronotropic and dromotropic effects on isolated toad heart, with Anthophora pauperata

  12. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats

    PubMed Central

    Kim, Junhwan; Perales Villarroel, José Paul; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W.; Becker, Lance B.

    2016-01-01

    Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest. PMID:26770657

  13. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats.

    PubMed

    Kim, Junhwan; Villarroel, José Paul Perales; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W; Becker, Lance B

    2016-01-01

    Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.

  14. The molecular mechanism of serum microRNA124b induced coronary heart disease by inducing myocardial cell senescence.

    PubMed

    Guo, M-L; Guo, L-L; Qin, Q-J; Weng, Y-Q; Wang, Y-N; Yao, J; Wang, Y-B; Zhang, X-Z; Ge, Z-M

    2018-04-01

    The incidence and mortality of coronary heart disease are rapidly increasing in recent years. Myocardial cell dysfunction and cell senescence may play a role in coronary heart disease. MicroRNA controls a variety of biological processes, but leaving its role in coronary heart disease has yet to be explored. Patients with coronary heart disease were regarded as subjects, and healthy volunteers as the control, on both of which microRNA124b level of serum was studied by Real-time PCR, and the heart function of patients was detected by using ultrasound. The relationship between serum microRNA124b level and cardiac function was analyzed along with the model of rat coronary artery disease; the level of aging proteins P21 and P53 in cardiac muscle cells was also tested. MicroRNA124b in the serum of patients with coronary heart disease was increased, and the heart function of patients was decreased (p < 0.05). Serum level of microRNA124b in a rat model of coronary heart disease was increased, and the cardiac function was decreased (p < 0.05). When myocardial cell appeared ageing, the level of P21 and P53 was increased, and the level of microRNA124b was related with P53. The level of microRNA124b in the serum of coronary heart disease patients and rat model may be related to the occurrence of coronary heart disease; microRNA124b may lead to the occurrence of coronary heart disease by causing cell senescence.

  15. Efficacy and safety of crataegus extract WS 1442 in comparison with placebo in patients with chronic stable New York Heart Association class-III heart failure.

    PubMed

    Tauchert, Michael

    2002-05-01

    The purpose of this study was to investigate whether long-term therapy with crataegus extract WS 1442 is efficacious as add-on therapy to preexisting diuretic treatment in patients with heart failure with a more advanced stage of the disease (New York Heart Association [NYHA] class III), whether effects are dose dependent, and whether the treatment is safe and well tolerated. Exercise capacity was assessed by use of seated bicycle ergometry with incremental workloads. Scores for subjective symptoms and complaints made by the patients were analyzed. Efficacy and tolerability of the treatments were judged by both the patients and investigators. Safety was assessed by the documentation of adverse events and the safety laboratory. A total of 209 patients were randomized to treatment with 1800 mg of WS 1442, 900 mg of WS 1442, or with placebo. After 16 weeks of therapy with 1800 mg of WS 1442 per day, maximal tolerated workload during bicycle exercise showed a statistically significant increase in comparison with both placebo and 900 mg of WS 1442. Typical heart failure symptoms as rated by the patients were reduced to a greater extent by WS 1442 than by placebo. This difference was significant for both doses of WS 1442. Both efficacy and tolerability were rated best for the 1800 mg of WS 1442 group by patients and investigators alike. The incidence of adverse events was lowest in the 1800 mg of WS 1442 group, particularly with respect to dizziness and vertigo. The data from this study confirm that there is a dose-dependent effect of WS 1442 on the exercise capacity of patients with heart failure and on typical heart failure-related clinical signs and symptoms. The drug was shown to be well tolerated and safe.

  16. Exercise training augments the dynamic heart rate response to vagal but not sympathetic stimulation in rats.

    PubMed

    Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru

    2011-04-01

    We examined the transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained (16 wk, treadmill for 1 h, 5 times/wk at 15 m/min and 15-degree grade) rats for comparison to HR variability assessed in the conscious resting state. The transfer function from sympathetic stimulation to HR response was similar between groups (gain, 4.2 ± 1.5 vs. 4.5 ± 1.5 beats·min(-1)·Hz(-1); natural frequency, 0.07 ± 0.01 vs. 0.08 ± 0.01 Hz; damping coefficient, 1.96 ± 0.55 vs. 1.69 ± 0.15; and lag time, 0.7 ± 0.1 vs. 0.6 ± 0.1 s; sedentary vs. exercise trained, respectively, means ± SD). The transfer gain from vagal stimulation to HR response was 6.1 ± 3.0 in the sedentary and 9.7 ± 5.1 beats·min(-1)·Hz(-1) in the exercise-trained group (P = 0.06). The corner frequency (0.11 ± 0.05 vs. 0.17 ± 0.09 Hz) and lag time (0.1 ± 0.1 vs. 0.2 ± 0.1 s) did not differ between groups. When the sympathetic transfer gain was averaged for very-low-frequency and low-frequency bands, no significant group effect was observed. In contrast, when the vagal transfer gain was averaged for very-low-frequency, low-frequency, and high-frequency bands, exercise training produced a significant group effect (P < 0.05 by two-way, repeated-measures ANOVA). These findings suggest that, in the frequency domain, exercise training augments the dynamic HR response to vagal stimulation but not sympathetic stimulation, regardless of the frequency bands.

  17. Comparative effect of lidocaine and bupivacaine on glucose uptake and lactate production in the perfused working rat heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronau, L.H. Jr.; Merin, R.G.; Aboulish, E.

    1986-03-01

    It has been suggested that at equivalent therapeutic concentrations, lidocaine and bupivacaine may have different cardiotoxic potency. In the isolated working rat heart preparation, the effect of a range of lidocaine and bupivacaine concentrations on glucose uptake and lactate production (LP) were observed. Insulin was added, 10 ..mu../L, to Ringer's solution containing /sup 3/H-labeled glucose to measure the glycolytic flux (GF). The effect of the local anesthetics on LP at the indicated concentrations were similar. Lidocaine appears to depress the glycolytic flux from exogenous glucose to a lesser degree. Bupivacaine, 10 mg/L, depresses VO/sub 2/ to a greater degree thanmore » does lidocaine, 40 mg/L.« less

  18. Probiotic-fermented purple sweet potato yogurt activates compensatory IGF‑IR/PI3K/Akt survival pathways and attenuates cardiac apoptosis in the hearts of spontaneously hypertensive rats.

    PubMed

    Lin, Pei-Pei; Hsieh, You-Miin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang; Tsai, Cheng-Chih

    2013-12-01

    Apoptosis is recognized as a predictor of adverse outcomes in subjects with cardiac diseases. The aim of this study was to explore the effects of probiotic-fermented purple sweet potato yogurt (PSPY) with high γ-aminobutyric acid (GABA) content on cardiac apoptosis in spontaneously hypertensive rat (SHR) hearts. The rats were orally adminsitered with 2 different concentrations of PSPY (10 and 100%) or captopril, 15.6 mg/kg, body weight (BW)/day. The control group was administered distilled water. DAPI and TUNEL staining were used to detect the numbers of apoptotic cells. A decrease in the number of TUNEL-positive cardiac myocytes was observed in the SHR-PSPY (10 and 100%) groups. In addition, the levels of key components of the Fas receptor- and mitochondrial-dependent apoptotic pathways were determined by western blot analysis. The results revealed that the levels of the key components of the Fas receptor- and mitochondrial-dependent apoptotic pathway were significantly decreased in the SHR-captopril, and 10 and 100% PSPY groups. Additionally, the levels of phosphorylated insulin-like growth factor‑I receptor (p-IGF‑IR) were increased in SHR hearts from the SHR-control group; however, no recovery in the levels of downstream signaling components was observed. In addition, the levels of components of the compensatory IGF-IR-dependent survival pathway (p-PI3K and p-Akt) were all highly enhanced in the left ventricles in the hearts form the SHR-10 and 100% PSPY groups. Therefore, the oral administration of PSPY may attenuate cardiomyocyte apoptosis in SHR hearts by activating IGF‑IR-dependent survival signaling pathways.

  19. Carboxy terminus of heat shock protein (HSP) 70-interacting protein (CHIP) inhibits HSP70 in the heart.

    PubMed

    Zhao, Bijun; Sun, Guocheng; Feng, Guanli; Duan, Weixun; Zhu, Xiaoling; Chen, Shaoyang; Hou, Lichao; Jin, Zhenxiao; Yi, Dinghua

    2012-12-01

    Heat shock protein (HSP) 70 plays a critical role in protecting the heart from various stressor-induced cell injuries; the mechanism remains to be further understood. The present study aims to elucidate the effect of a probiotics-derived protein, LGG-derived protein p75 (LGP), in alleviating the ischemia/reperfusion (I/R)-induced heart injury. We treated rats with the I/R with or without preadministration with LGP. The levels of HSP70 and carboxy terminus of HSP70-interacting protein (CHIP) in the heart tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of CHIP on suppression of HSP70 and the effect of LGP on suppression of CHIP were investigated with an I/R rat model and a cell culture model. The results showed that I/R-induced infarction in the heart could be alleviated by pretreatment with LGP. HSP70 was detected in naïve rat heart tissue extracts. I/R treatment significantly suppressed the level of HSP70 and increased the levels of CHIP in the heart. A complex of CHIP/HSP70 was detected in heart tissue extracts. The addition of recombinant CHIP to culture inhibited HSP70 in heart cells. LGP was bound CHIP in heart cells and prevented the CHIP from binding HSP70. In summary, I/R can suppress HSP70 and increase CHIP in heart cells. CHIP can suppress HSP70 that can be prevented by pretreatment with LGP. The results imply that CHIP may be a potential target in the prevention of I/R-induced heart cell injury.

  20. Protease Activated Receptor-2 Contributes to Heart Failure

    PubMed Central

    Antoniak, Silvio; Sparkenbaugh, Erica M.; Tencati, Michael; Rojas, Mauricio; Mackman, Nigel; Pawlinski, Rafal

    2013-01-01

    Heart failure is a major clinical problem worldwide. Previous studies have demonstrated an important role for G protein-coupled receptors, including protease-activated receptors (PARs), in the pathology of heart hypertrophy and failure. Activation of PAR-2 on cardiomyocytes has been shown to induce hypertrophic growth in vitro. PAR-2 also contributes to myocardial infarction and heart remodeling after ischemia/reperfusion injury. In this study, we found that PAR-2 induced hypertrophic growth of cultured rat neonatal cardiomyocytes in a MEK1/2 and p38 dependent manner. In addition, PAR-2 activation on mouse cardiomyocytes increased expression of the pro-fibrotic chemokine MCP-1. Furthermore, cardiomyocyte-specific overexpression of PAR-2 in mice induced heart hypertrophy, cardiac fibrosis, inflammation and heart failure. Finally, in a mouse model of myocardial infarction induced by permanent ligation of the left anterior descending coronary artery, PAR-2 deficiency attenuated heart remodeling and improved heart function independently of its contribution to the size of the initial infarct. Taken together, our data indicate that PAR-2 signaling contributes to the pathogenesis of hypertrophy and heart failure. PMID:24312345