Sample records for rat insular cortex

  1. Role of insular cortex in visceral hypersensitivity model in rats subjected to chronic stress.

    PubMed

    Yi, LiSha; Sun, HuiHui; Ge, Chao; Chen, Ying; Peng, HaiXia; Jiang, YuanXi; Wu, Ping; Tang, YinHan; Meng, QingWei; Xu, ShuChang

    2014-12-30

    Abnormal processing of visceral sensation at the level of the central nervous system has been proven to be important in the pathophysiologic mechanisms of stress related functional gastrointestinal disorders. However, the specific mechanism is still not clear. The insular cortex (IC) was considered as one important visceral sensory area. Moreover, the IC has been shown to be involved in various neuropsychiatric diseases such as panic disorders and post-traumatic stress disorder. However, whether the IC is important in psychological stress related visceral hypersensitivity has not been studied yet. In our study, through destruction of the bilateral IC, we explored whether the IC played a critical role in the formation of visceral hypersensitivity induced by chronic stress on rats. Chronic partial restraint stress was used to establish viscerally hypersensitive rat model. Bilateral IC lesions were generated by N-methyl-D-day (door) aspartate. After a recovery period of 7 days, 14-day consecutive restraint stress was performed. The visceromotor response to colorectal distension was monitored by recording electromyogram to measure rats׳ visceral sensitivity. We found that bilateral insular cortex lesion could markedly inhibit the formation of visceral hypersensitivity induced by chronic stress. The insular cortex plays a critical role in the pathophysiology of stress-related visceral hypersensitivity.

  2. [The negative side of emotions: addiction to drugs of abuse].

    PubMed

    Contreras, M; Ceric, F; Torrealba, F

    According to the model of emotions, feelings have their origin in the conscious perception of body changes produced in response to an emotional stimulus. These changes are perceived thanks to the fact that they are represented in the brain by the interoceptive system. During abstinence, addicts experience intense feelings of ill-being that drive them to consume drugs. The purpose of this review is to discuss the role played by the interoceptive system, and more especially the insular cortex, in the perception of the negative feelings that characterise abstinence. The continuous processing of interoceptive signals in the insular cortex is what accounts for the conscious appreciation of the body changes that accompany an emotional state. Temporary inactivation of the insular cortex suppresses the search for drugs in addicted rats. Neuroimaging studies reveal an increase in the neuronal activity in the insular cortex and in other areas of the brain while addicts are experiencing the craving to consume drugs. Likewise, nicotine addicts who suffer a brain injury that affects the insular cortex give up smoking easily because they lose the desire to do it. The temporary suppression of neuronal activity in the insular cortex in human addicts by means of non-invasive techniques could be a new therapy to treat the craving to consume drugs. The insular cortex is essential in the perception of the emotional states and in orienting behaviour to match the needs of the body. New therapies that have the insular cortex as their target could be developed to mitigate craving.

  3. Enhancement of Inhibitory Avoidance and Conditioned Taste Aversion Memory with Insular Cortex Infusions of 8-Br-cAMP: Involvement of the Basolateral Amygdala

    ERIC Educational Resources Information Center

    Miranda, Maria I.; McGaugh, James L.

    2004-01-01

    There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the…

  4. Individual Variations in Maternal Care Early in Life Correlate with Later Life Decision-Making and c-Fos Expression in Prefrontal Subregions of Rats

    PubMed Central

    van Hasselt, Felisa N.; de Visser, Leonie; Tieskens, Jacintha M.; Cornelisse, Sandra; Baars, Annemarie M.; Lavrijsen, Marla; Krugers, Harm J.; van den Bos, Ruud; Joëls, Marian

    2012-01-01

    Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathology–e.g. depression, anxiety and schizophrenia- later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures. PMID:22693577

  5. Insular neural system controls decision-making in healthy and methamphetamine-treated rats

    PubMed Central

    Mizoguchi, Hiroyuki; Katahira, Kentaro; Inutsuka, Ayumu; Fukumoto, Kazuya; Nakamura, Akihiro; Wang, Tian; Nagai, Taku; Sato, Jun; Sawada, Makoto; Ohira, Hideki; Yamanaka, Akihiro; Yamada, Kiyofumi

    2015-01-01

    Patients suffering from neuropsychiatric disorders such as substance-related and addictive disorders exhibit altered decision-making patterns, which may be associated with their behavioral abnormalities. However, the neuronal mechanisms underlying such impairments are largely unknown. Using a gambling test, we demonstrated that methamphetamine (METH)-treated rats chose a high-risk/high-reward option more frequently and assigned higher value to high returns than control rats, suggestive of changes in decision-making choice strategy. Immunohistochemical analysis following the gambling test revealed aberrant activation of the insular cortex (INS) and nucleus accumbens in METH-treated animals. Pharmacological studies, together with in vivo microdialysis, showed that the insular neural system played a crucial role in decision-making. Moreover, manipulation of INS activation using designer receptor exclusively activated by designer drug technology resulted in alterations to decision-making. Our findings suggest that the INS is a critical region involved in decision-making and that insular neural dysfunction results in risk-taking behaviors associated with altered decision-making. PMID:26150496

  6. Insular neural system controls decision-making in healthy and methamphetamine-treated rats.

    PubMed

    Mizoguchi, Hiroyuki; Katahira, Kentaro; Inutsuka, Ayumu; Fukumoto, Kazuya; Nakamura, Akihiro; Wang, Tian; Nagai, Taku; Sato, Jun; Sawada, Makoto; Ohira, Hideki; Yamanaka, Akihiro; Yamada, Kiyofumi

    2015-07-21

    Patients suffering from neuropsychiatric disorders such as substance-related and addictive disorders exhibit altered decision-making patterns, which may be associated with their behavioral abnormalities. However, the neuronal mechanisms underlying such impairments are largely unknown. Using a gambling test, we demonstrated that methamphetamine (METH)-treated rats chose a high-risk/high-reward option more frequently and assigned higher value to high returns than control rats, suggestive of changes in decision-making choice strategy. Immunohistochemical analysis following the gambling test revealed aberrant activation of the insular cortex (INS) and nucleus accumbens in METH-treated animals. Pharmacological studies, together with in vivo microdialysis, showed that the insular neural system played a crucial role in decision-making. Moreover, manipulation of INS activation using designer receptor exclusively activated by designer drug technology resulted in alterations to decision-making. Our findings suggest that the INS is a critical region involved in decision-making and that insular neural dysfunction results in risk-taking behaviors associated with altered decision-making.

  7. Corticotrigeminal Projections from the Insular Cortex to the Trigeminal Caudal Subnucleus Regulate Orofacial Pain after Nerve Injury via Extracellular Signal-Regulated Kinase Activation in Insular Cortex Neurons.

    PubMed

    Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing

    2015-01-01

    Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These findings may help researchers and clinicians to better understand the underlying modulation mechanisms of orofacial neuropathic pain and indicate a novel mechanism of ERK inhibitor-induced analgesia.

  8. The Consolidation of Object and Context Recognition Memory Involve Different Regions of the Temporal Lobe

    ERIC Educational Resources Information Center

    Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico

    2008-01-01

    These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…

  9. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction.

    PubMed

    El Rawas, Rana; Klement, Sabine; Kummer, Kai K; Fritz, Michael; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2012-01-01

    Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex-nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction.

  10. Plasticity in the Interoceptive System.

    PubMed

    Torrealba, Fernando; Madrid, Carlos; Contreras, Marco; Gómez, Karina

    2017-01-01

    The most outstanding manifestations of the plastic capacities of brain circuits and their neuronal and synaptic components in the adult CNS are learning and memory. A reduced number of basic plastic mechanisms underlie learning capacities at many levels and regions of the brain. The interoceptive system is no exception, and some of the most studied behavioral changes that involve learning and memory engage the interoceptive pathways at many levels of their anatomical and functional organization.In this chapter, we will review four examples of learning, mostly in rats, where the interoceptive system has a role. In the case of conditioned taste aversion, the interoceptive system is of outstanding importance. In drug addiction, the role of the insular cortex - the highest level of the interoceptive system- is unusual and complex, as many forebrain regions are engaged by the process of addiction. In the third example, neophobia, the gustatory region of the insular cortex plays a major role. Finally, the role of different areas of the insular cortex in different processes of aversive memory, particularly fear conditioning, will be reviewed.

  11. Neurons in the posterior insular cortex are responsive to gustatory stimulation of the pharyngolarynx, baroreceptor and chemoreceptor stimulation, and tail pinch in rats.

    PubMed

    Hanamori, T; Kunitake, T; Kato, K; Kannan, H

    1998-02-23

    Extracellular unit responses to gustatory stimulation of the pharyngolaryngeal region, baroreceptor and chemoreceptor stimulation, and tail pinch were recorded from the insular cortex of anesthetized and paralyzed rats. Of the 32 neurons identified, 28 responded to at least one of the nine stimuli used in the present study. Of the 32 neurons, 11 showed an excitatory response to tail pinch, 13 showed an inhibitory response, and the remaining eight had no response. Of the 32 neurons, eight responded to baroreceptor stimulation by an intravenous (i.v.) injection of methoxamine hydrochloride (Mex), four were excitatory and four were inhibitory. Thirteen neurons were excited and six neurons were inhibited by an arterial chemoreceptor stimulation by an i.v. injection of sodium cyanide (NaCN). Twenty-two neurons were responsive to at least one of the gustatory stimuli (deionized water, 1.0 M NaCl, 30 mM HCl, 30 mM quinine HCl, and 1.0 M sucrose); five to 11 excitatory neurons and three to seven inhibitory neurons for each stimulus. A large number of the neurons (25/32) received converging inputs from more than one stimulus among the nine stimuli used in the present study. Most neurons (23/32) received converging inputs from different modalities (gustatory, visceral, and tail pinch). The neurons responded were located in the insular cortex between 2.0 mm anterior and 0.2 mm posterior to the anterior edge of the joining of the anterior commissure (AC); the mean location was 1.2 mm (n=28) anterior to the AC. This indicates that most of the neurons identified in the present study seem to be located in the region posterior to the taste area and anterior to the visceral area in the insular cortex. These results indicate that the insular cortex neurons distributing between the taste area and the visceral area receive convergent inputs from gustatory, baroreceptor, chemoreceptor, and nociceptive organs. Copyright 1998 Elsevier Science B.V.

  12. Electrical stimulation of the insular cortex as a novel target for the relief of refractory pain: An experimental approach in rodents.

    PubMed

    Dimov, Luiz Fabio; Toniolo, Elaine Flamia; Alonso-Matielo, Heloísa; de Andrade, Daniel Ciampi; Garcia-Larrea, Luis; Ballester, Gerson; Teixeira, Manoel Jacobsen; Dale, Camila Squarzoni

    2018-07-02

    Cortical electrical stimulation (CES) has shown to be an effective therapeutic alternative for neuropathic pain refractory to pharmacological treatment. The primary motor cortex(M1) was the main cortical target used in the vast majority of both invasive and non-invasive studies. Despite positive results M1-based approaches still fail to relieve pain in a significant proportion of individuals. It has been advocated that the direct stimulation of cortical areas directly implicated in the central integration of pain could increase the efficacy of analgesic brain stimulation. Here, we evaluated the behavioral effects of electrical stimulation of the insular cortex (ESI) on pain sensitivity in an experimental rat model of peripheral neuropathy, and have described the pathways involved. Animals underwent chronic constriction of the sciatic nerve in the right hind limb and had concentric electrodes implanted in the posterior dysranular insular cortex. Mechanical nociception responses were evaluated before and at the end of a 15-min session of ESI (60Hz, 210μs, 1V). ESI reversed mechanical hypersensitivity in the paw contralateral to the brain hemisphere stimulated, without inducing motor impairment in the open-field test. Pharmacological blockade of μ-opioid (MOR) or type 1-cannabinoid receptors (CB1R) abolished ESI-induced antinociceptive effects. Evaluation of CB1R and MOR spatial expression demonstrated differential modulation of CB1R and MOR in the periaqueductal gray matter (PAG) of ESI-treated rats in sub-areas involved in pain processing/modulation. These results indicate that ESI induces antinociception by functionally modulating opioid and cannabinoid systems in the PAG pain circuitry in rats with experimentally induced neuropathic pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effects of perinatal undernutrition on the development of neurons in the rat insular cortex.

    PubMed

    Salas, Manuel; Torrero, Carmen; Rubio, Lorena; Regalado, Mirelta

    2012-09-01

    The insular cortex (IC) of the rat is a major area for the convergence and integration of olfactory, gustatory, and visual information, and at present it is unclear if perinatal undernutrition interferes with the structure and function of the IC neurons. Golgi-Cox-stained cells of the IC were studied in control and undernourished Wistar rats at 12, 20, and 30 days of age. Pregnant dams were undernourished by the reduction of a balanced diet during a part of the gestational period (G6-G18). After parturition (P1-P23) pups remained for 12 hours with a normal and 12 hours with a nipple-ligated dam. Undernutrition significantly reduced the number, and the arborization of the dendritic arbors, and the perimeter, and cross-sectional area of perikarya. The IC neuronal morphology appearances suggest a possible mechanism for the impairment in information processing of complex phenomena such as taste sensation and hedonic response.

  14. Anti-correlated cortical networks of intrinsic connectivity in the rat brain.

    PubMed

    Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.

  15. Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain

    PubMed Central

    Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang

    2013-01-01

    Abstract In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline “DMN-like” network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans. PMID:23919836

  16. The Anterior Insular Cortex→Central Amygdala Glutamatergic Pathway Is Critical to Relapse after Contingency Management.

    PubMed

    Venniro, Marco; Caprioli, Daniele; Zhang, Michelle; Whitaker, Leslie R; Zhang, Shiliang; Warren, Brandon L; Cifani, Carlo; Marchant, Nathan J; Yizhar, Ofer; Bossert, Jennifer M; Chiamulera, Cristiano; Morales, Marisela; Shaham, Yavin

    2017-10-11

    Despite decades of research on neurobiological mechanisms of psychostimulant addiction, the only effective treatment for many addicts is contingency management, a behavioral treatment that uses alternative non-drug reward to maintain abstinence. However, when contingency management is discontinued, most addicts relapse to drug use. The brain mechanisms underlying relapse after cessation of contingency management are largely unknown, and, until recently, an animal model of this human condition did not exist. Here we used a novel rat model, in which the availability of a mutually exclusive palatable food maintains prolonged voluntary abstinence from intravenous methamphetamine self-administration, to demonstrate that the activation of monosynaptic glutamatergic projections from anterior insular cortex to central amygdala is critical to relapse after the cessation of contingency management. We identified the anterior insular cortex-to-central amygdala projection as a new addiction- and motivation-related projection and a potential target for relapse prevention. Published by Elsevier Inc.

  17. A role for the interoceptive insular cortex in the consolidation of learned fear.

    PubMed

    Casanova, José Patricio; Madrid, Carlos; Contreras, Marco; Rodríguez, María; Vasquez, Mónica; Torrealba, Fernando

    2016-01-01

    A growing body of evidence suggests that learned fear may be related to the function of the interoceptive insular cortex. Using an auditory fear conditioning paradigm in rats, we show that the inactivation of the posterior insular cortex (pIC), the target of the interoceptive thalamus, prior to training produced a marked reduction in fear expression tested 24h later. Accordingly, post-training anisomycin infused immediately, but not 6h after, also reduced fear expression tested the following day, supporting a role for the pIC in consolidation of fear memory. The long-term (ca. a week) and reversible inactivation of the pIC with the sodium channel blocker neosaxitoxin, immediately after fear memory reactivation induced a progressive decrease in the behavioral expression of conditioned fear. In turn, we observed that fear memory reactivation is accompanied by an enhanced expression of Fos and Zif268, early genes involved in neural activity and plasticity. Taken together these data indicate that the pIC is involved in the regulation of fear memories. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Olfactory mechanisms in the control of maternal aggression, appetite, and fearfulness: effects of lesions to olfactory receptors, mediodorsal thalamic nucleus, and insular prefrontal cortex.

    PubMed

    Ferreira, A; Dahlöf, L G; Hansen, S

    1987-10-01

    During lactation the female rat is hyperphagic, aggressive toward adult conspecifics, and less fearful than usual. In the first experiment the importance of olfactory receptors was investigated by surgically removing the olfactory epithelium of the nasal cavity. Mother rats subjected to this treatment consumed significantly less food and weighed less than sham-operated females. Moreover, experimental subjects displayed a dramatic decrease in maternal aggression. Fear behavior (sound-elicited freezing), on the other hand, was not affected by the lesions. The mediodorsal thalamic nucleus and the prefrontal insular cortex form part of the central olfactory system. The second experiment assessed the involvement of this olfactory-related thalamocortical system and the behavioral profile of mother rats. It was found that whereas the thalamic and cortical lesions left food intake and fear behavior unaffected, they significantly decreased the frequency with which the mother would attack an intruder male placed into her home cage. The sense of smell appears, according to the present experiments, to play a crucial role in maternal aggression.

  19. Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle

    PubMed Central

    Van Daele, Douglas J.; Cassell, Martin D.

    2009-01-01

    The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguous (NA) by 3 days post-inoculation., PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii (NTS), the Botzinger complex, and the parvocellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvocellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggest PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor contralateral system originating in motor cortex. Hypothalamic innervation involved several functionally specific nuclei. Overall, the data imply complex central nervous system control over the multi-functional thyroarytenoid muscle.[297 words] PMID:19426785

  20. Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction

    PubMed Central

    El Rawas, Rana; Klement, Sabine; Kummer, Kai K.; Fritz, Michael; Dechant, Georg; Saria, Alois; Zernig, Gerald

    2012-01-01

    Positive social interaction could play an essential role in switching the preference of the substance dependent individual away from drug related activities. We have previously shown that conditioned place preference (CPP) for cocaine at the dose of 15 mg/kg and CPP for four 15-min episodes of social interaction were equally strong when rats were concurrently conditioned for place preference by pairing cocaine with one compartment and social interaction with the other. The aim of the present study was to investigate the differential activation of brain regions related to the reward circuitry after acquisition/expression of cocaine CPP or social interaction CPP. Our findings indicate that cocaine CPP and social interaction CPP activated almost the same brain regions. However, the granular insular cortex and the dorsal part of the agranular insular cortex were more activated after cocaine CPP, whereas the prelimbic cortex and the core subregion of the nucleus accumbens were more activated after social interaction CPP. These results suggest that the insular cortex appears to be potently activated after drug conditioning learning while activation of the prelimbic cortex—nucleus accumbens core projection seems to be preferentially involved in the conditioning to non-drug stimuli such as social interaction. PMID:23015784

  1. Homeostatic circuits selectively gate food cue responses in insular cortex

    PubMed Central

    Livneh, Yoav; Ramesh, Rohan n.; Burgess, christian R.; Levandowski, Kirsten M.; Madara, Joseph c.; Fenselau, henning; Goldey, Glenn J.; Diaz, Veronica E.; Jikomes, nick; Resch, Jon M.; Lowell, Bradford B.; Andermann, Mark L.

    2017-01-01

    Physiological needs bias perception and attention to relevant sensory cues. This process is ‘hijacked’ by drug addiction, causing cue-induced cravings and relapse. Similarly, its dysregulation contributes to failed diets, obesity, and eating disorders. Neuroimaging studies in humans have implicated insular cortex in these phenomena. However, it remains unclear how ‘cognitive’ cortical representations of motivationally relevant cues are biased by subcortical circuits that drive specific motivational states. Here we develop a microprism-based cellular imaging approach to monitor visual cue responses in the insular cortex of behaving mice across hunger states. Insular cortex neurons demonstrate food- cue-biased responses that are abolished during satiety. Unexpectedly, while multiple satiety-related visceral signals converge in insular cortex, chemogenetic activation of hypothalamic ‘hunger neurons’ (expressing agouti-related peptide (AgRP)) bypasses these signals to restore hunger-like response patterns in insular cortex. Circuit mapping and pathway-specific manipulations uncover a pathway from AgRP neurons to insular cortex via the paraventricular thalamus and basolateral amygdala. These results reveal a neural basis for state-specific biased processing of motivationally relevant cues. PMID:28614299

  2. GABA-Mediated Inactivation of Medial Prefrontal and Agranular Insular Cortex in the Rat: Contrasting Effects on Hunger- and Palatability-Driven Feeding

    PubMed Central

    Baldo, Brian A; Spencer, Robert C; Sadeghian, Ken; Mena, Jesus D

    2016-01-01

    A microanalysis of hunger-driven and palatability-driven feeding was carried out after muscimol-mediated inactivation of two frontal regions in rats, the agranular/dysgranular insular cortex (AIC) and the ventromedial prefrontal cortex (vmPFC). Food and water intake, feeding microstructure, and general motor activity were measured under two motivational conditions: food-deprived rats given standard chow or ad libitum-fed rats given a palatable chocolate shake. Muscimol infusions into the AIC diminished intake, total feeding duration, and average feeding bout duration for the palatable-food condition only but failed to alter exploratory-like behavior (ambulation or rearing). In contrast, intra-vmPFC muscimol infusions did not alter the overall intake of chow or chocolate shake. However, these infusions markedly increased mean feeding bout duration for both food types and produced a modest but significant reduction of exploratory-like behavior. The lengthening of feeding-bout duration and reduction in rearing were mimicked by intra-vmPFC blockade of AMPA-type but not NMDA-type glutamate receptors. Neither water consumption nor the microstructure of water drinking was affected by inactivation of either site. These results indicate a regional heterogeneity in frontal control of feeding behavior. Neural processing in AIC supports palatability-driven feeding but is not necessary for intake of a standard food under a food-restriction condition, whereas ventromedial prefrontal cortex, and AMPA signaling therein, modulates the duration of individual feeding bouts regardless of motivational context. Results are discussed in the context of regionally heterogeneous frontal modulation of two distinct components of feeding behavior: reward valuation based upon taste perception (AIC) vs switching between ingestive and non-ingestive (eg, exploratory-like) behavioral repertoires (vmPFC). PMID:26202102

  3. GABA-Mediated Inactivation of Medial Prefrontal and Agranular Insular Cortex in the Rat: Contrasting Effects on Hunger- and Palatability-Driven Feeding.

    PubMed

    Baldo, Brian A; Spencer, Robert C; Sadeghian, Ken; Mena, Jesus D

    2016-03-01

    A microanalysis of hunger-driven and palatability-driven feeding was carried out after muscimol-mediated inactivation of two frontal regions in rats, the agranular/dysgranular insular cortex (AIC) and the ventromedial prefrontal cortex (vmPFC). Food and water intake, feeding microstructure, and general motor activity were measured under two motivational conditions: food-deprived rats given standard chow or ad libitum-fed rats given a palatable chocolate shake. Muscimol infusions into the AIC diminished intake, total feeding duration, and average feeding bout duration for the palatable-food condition only but failed to alter exploratory-like behavior (ambulation or rearing). In contrast, intra-vmPFC muscimol infusions did not alter the overall intake of chow or chocolate shake. However, these infusions markedly increased mean feeding bout duration for both food types and produced a modest but significant reduction of exploratory-like behavior. The lengthening of feeding-bout duration and reduction in rearing were mimicked by intra-vmPFC blockade of AMPA-type but not NMDA-type glutamate receptors. Neither water consumption nor the microstructure of water drinking was affected by inactivation of either site. These results indicate a regional heterogeneity in frontal control of feeding behavior. Neural processing in AIC supports palatability-driven feeding but is not necessary for intake of a standard food under a food-restriction condition, whereas ventromedial prefrontal cortex, and AMPA signaling therein, modulates the duration of individual feeding bouts regardless of motivational context. Results are discussed in the context of regionally heterogeneous frontal modulation of two distinct components of feeding behavior: reward valuation based upon taste perception (AIC) vs switching between ingestive and non-ingestive (eg, exploratory-like) behavioral repertoires (vmPFC).

  4. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making

    PubMed Central

    Bechara, A.; Damasio, H.; Aitken, M. R. F.; Sahakian, B. J.; Robbins, T. W.

    2008-01-01

    The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear whether vmPFC is also necessary for decision-making under risk, when outcome probabilities are explicit. It is not known whether the effect of insular damage is analogous to the effect of vmPFC damage, or whether these regions contribute differentially to choice behaviour. Four groups of participants were compared on the Cambridge Gamble Task, a well-characterized measure of risky decision-making where outcome probabilities are presented explicitly, thus minimizing additional learning and working memory demands. Patients with focal, stable lesions to the vmPFC (n = 20) and the insular cortex (n = 13) were compared against healthy subjects (n = 41) and a group of lesion controls (n = 12) with damage predominantly affecting the dorsal and lateral frontal cortex. The vmPFC and insular cortex patients showed selective and distinctive disruptions of betting behaviour. VmPFC damage was associated with increased betting regardless of the odds of winning, consistent with a role of vmPFC in biasing healthy individuals towards conservative options under risk. In contrast, patients with insular cortex lesions failed to adjust their bets by the odds of winning, consistent with a role of the insular cortex in signalling the probability of aversive outcomes. The insular group attained a lower point score on the task and experienced more ‘bankruptcies’. There were no group differences in probability judgement. These data confirm the necessary role of the vmPFC and insular regions in decision-making under risk. Poor decision-making in clinical populations can arise via multiple routes, with functionally dissociable effects of vmPFC and insular cortex damage. PMID:18390562

  5. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making.

    PubMed

    Clark, L; Bechara, A; Damasio, H; Aitken, M R F; Sahakian, B J; Robbins, T W

    2008-05-01

    The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear whether vmPFC is also necessary for decision-making under risk, when outcome probabilities are explicit. It is not known whether the effect of insular damage is analogous to the effect of vmPFC damage, or whether these regions contribute differentially to choice behaviour. Four groups of participants were compared on the Cambridge Gamble Task, a well-characterized measure of risky decision-making where outcome probabilities are presented explicitly, thus minimizing additional learning and working memory demands. Patients with focal, stable lesions to the vmPFC (n = 20) and the insular cortex (n = 13) were compared against healthy subjects (n = 41) and a group of lesion controls (n = 12) with damage predominantly affecting the dorsal and lateral frontal cortex. The vmPFC and insular cortex patients showed selective and distinctive disruptions of betting behaviour. VmPFC damage was associated with increased betting regardless of the odds of winning, consistent with a role of vmPFC in biasing healthy individuals towards conservative options under risk. In contrast, patients with insular cortex lesions failed to adjust their bets by the odds of winning, consistent with a role of the insular cortex in signalling the probability of aversive outcomes. The insular group attained a lower point score on the task and experienced more 'bankruptcies'. There were no group differences in probability judgement. These data confirm the necessary role of the vmPFC and insular regions in decision-making under risk. Poor decision-making in clinical populations can arise via multiple routes, with functionally dissociable effects of vmPFC and insular cortex damage.

  6. NADPH-diaphorase activity and neurovascular coupling in the rat cerebral cortex.

    PubMed

    Vlasenko, O V; Maisky, V A; Maznychenko, A V; Pilyavskii, A I

    2008-01-01

    The distribution of NADPH-diaphorase-reactive (NADPH-dr) neurons and neuronal processes in the cerebral cortex and basal forebrain and their association with parenchymal vessels were studied in normal adult rats using NADPH-d histochemical protocol. The intensely stained cortical interneurons and reactive subcortically originating afferents, and stained microvessels were examined through a light microscope at law (x250) and high (x630) magnifications. NADPH-dr interneurons were concentrated in layers 2-6 of the M1 and M2 areas. However, clear predominance in their concentration (14 +/- 0.8 P < 0.05 per section) was found in layer 6. A mean number of labeled neurons in auditory (AuV), granular and agranular (GI, AIP) areas of the insular cortex was calculated to reach 12.3 +/- 0.7, 18.5 +/- 1.0 and 23.3 +/- 1.7 units per section, respectively (P < 0.05). The distinct apposition of labelled neurons to intracortical vessels was found in the M1, M2. The order of frequency of neurovascular coupling in different zones of the cerebral cortex was as following sequence: AuV (31.2%, n = 1040) > GI (18.0%, n = 640) > S1 (13.3%, n = 720) > M1 (6.3%, n = 1360). A large number of structural associations between labeled cells and vessels in the temporal and insular cortex indicate that NADPH-d-reactive interneurons can contribute to regulation of the cerebral regional blood flow in these areas.

  7. Electrical stimulation of the insular region attenuates nicotine-taking and nicotine-seeking behaviors.

    PubMed

    Pushparaj, Abhiram; Hamani, Clement; Yu, Wilson; Shin, Damian S; Kang, Bin; Nobrega, José N; Le Foll, Bernard

    2013-03-01

    Pharmacological inactivation of the granular insular cortex is able to block nicotine-taking and -seeking behaviors in rats. In this study, we explored the potential of modulating activity in the insular region using electrical stimulation. Animals were trained to self-administer nicotine (0.03 mg/kg per infusion) under a fixed ratio-5 (FR-5) schedule of reinforcement followed by a progressive ratio (PR) schedule. Evaluation of the effect of stimulation in the insular region was performed on nicotine self-administration under FR-5 and PR schedules, as well on reinstatement of nicotine-seeking behavior induced by nicotine-associated cues or nicotine-priming injections. The effect of stimulation was also examined in brain slices containing insular neurons. Stimulation significantly attenuated nicotine-taking, under both schedules of reinforcement, as well as nicotine-seeking behavior induced by cues and priming. These effects appear to be specific to nicotine-associated behaviors, as stimulation did not have any effect on food-taking behavior. They appear to be anatomically specific, as stimulation surrounding the insular region had no effect on behavior. Stimulation of brain slices containing the insular region was found to inactivate insular neurons. Our results suggest that deep brain stimulation to modulate insular activity should be further explored.

  8. Multimodal investigation of epileptic networks: The case of insular cortex epilepsy.

    PubMed

    Zerouali, Y; Ghaziri, J; Nguyen, D K

    2016-01-01

    The insula is a deep cortical structure sharing extensive synaptic connections with a variety of brain regions, including several frontal, temporal, and parietal structures. The identification of the insular connectivity network is obviously valuable for understanding a number of cognitive processes, but also for understanding epilepsy since insular seizures involve a number of remote brain regions. Ultimately, knowledge of the structure and causal relationships within the epileptic networks associated with insular cortex epilepsy can offer deeper insights into this relatively neglected type of epilepsy enabling the refining of the clinical approach in managing patients affected by it. In the present chapter, we first review the multimodal noninvasive tests performed during the presurgical evaluation of epileptic patients with drug refractory focal epilepsy, with particular emphasis on their value for the detection of insular cortex epilepsy. Second, we review the emerging multimodal investigation techniques in the field of epilepsy, that aim to (1) enhance the detection of insular cortex epilepsy and (2) unveil the architecture and causal relationships within epileptic networks. We summarize the results of these approaches with emphasis on the specific case of insular cortex epilepsy. © 2016 Elsevier B.V. All rights reserved.

  9. Different neural circuitry is involved in physiological and psychological stress-induced PTSD-like “nightmares” in rats

    PubMed Central

    Yu, Bin; Cui, Su-Ying; Zhang, Xue-Qiong; Cui, Xiang-Yu; Li, Sheng-Jie; Sheng, Zhao-Fu; Cao, Qing; Huang, Yuan-Li; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Zhang, Yong-He

    2015-01-01

    Posttraumatic nightmares are a core component of posttraumatic stress disorder (PTSD) and mechanistically linked to the development and maintenance of this disorder, but little is known about their mechanism. We utilized a communication box to establish an animal model of physiological stress (foot-shock [FS]) and psychological stress (PS) to mimic the direct suffering and witnessing of traumatic events. Twenty-one days after traumatic stress, some of the experimental animals presented startled awakening (i.e., were startled awake by a supposed “nightmare”) with different electroencephalographic spectra features. Our neuroanatomical results showed that the secondary somatosensory cortex and primary auditory cortex may play an important role in remote traumatic memory retrieval in FS “nightmare” (FSN) rats, whereas the temporal association cortex may play an important role in PS “nightmare” (PSN) rats. The FSN and PSN groups possessed common emotion evocation circuits, including activation of the amygdala and inactivation of the infralimbic prefrontal cortex and ventral anterior cingulate cortex. The decreased activity of the granular and dysgranular insular cortex was only observed in PSN rats. The present results imply that different types of stress may cause PTSD-like “nightmares” in rodents and identified the possible neurocircuitry of memory retrieval and emotion evocation. PMID:26530305

  10. Orosensory and Homeostatic Functions of the Insular Taste Cortex.

    PubMed

    de Araujo, Ivan E; Geha, Paul; Small, Dana M

    2012-03-01

    The gustatory aspect of the insular cortex is part of the brain circuit that controls ingestive behaviors based on chemosensory inputs. However, the sensory properties of foods are not restricted to taste and should also include salient features such as odor, texture, temperature, and appearance. Therefore, it is reasonable to hypothesize that specialized circuits within the central taste pathways must be involved in representing several other oral sensory modalities in addition to taste. In this review, we evaluate current evidence indicating that the insular gustatory cortex functions as an integrative circuit, with taste-responsive regions also showing heightened sensitivity to olfactory, somatosensory, and even visual stimulation. We also review evidence for modulation of taste-responsive insular areas by changes in physiological state, with taste-elicited neuronal responses varying according to the nutritional state of the organism. We then examine experimental support for a functional map within the insular cortex that might reflect the various sensory and homeostatic roles associated with this region. Finally, we evaluate the potential role of the taste insular cortex in weight-gain susceptibility. Taken together, the current experimental evidence favors the view that the insular gustatory cortex functions as an orosensory integrative system that not only enables the formation of complex flavor representations but also mediates their modulation by the internal state of the body, playing therefore a central role in food intake regulation.

  11. Transient inhibition of protein synthesis in the rat insular cortex delays extinction of conditioned taste aversion with cyclosporine A.

    PubMed

    Hadamitzky, Martin; Orlowski, Kathrin; Schwitalla, Jan Claudius; Bösche, Katharina; Unteroberdörster, Meike; Bendix, Ivo; Engler, Harald; Schedlowski, Manfred

    2016-09-01

    Conditioned responses gradually weaken and eventually disappear when subjects are repeatedly exposed to the conditioned stimulus (CS) in the absence of the unconditioned stimulus (US), a process called extinction. Studies have demonstrated that extinction of conditioned taste aversion (CTA) can be prevented by interfering with protein synthesis in the insular cortex (IC). However, it remained unknown whether it is possible to pharmacologically stabilize the taste aversive memory trace over longer periods of time. Thus, the present study aimed at investigating the time frame during which extinction of CTA can be efficiently prevented by blocking protein synthesis in the IC. Employing an established conditioning paradigm in rats with saccharin as CS, and the immunosuppressant cyclosporine A (CsA) as US, we show here that daily bilateral intra-insular injections of the protein synthesis inhibitor anisomycin (120μg/μl) immediately after retrieval significantly diminished CTA extinction over a period of five retrieval days and subsequently reached levels of saline-infused controls. These findings demonstrate that it is possible to efficiently delay but not to fully prevent CTA extinction during repeated retrieval trials by blocking protein translation with daily bilateral infusions of anisomycin in the IC. These data confirm and extent earlier reports indicating that the role of protein synthesis in CTA extinction learning is not limited to gastrointestinal malaise-inducing drugs such as lithium chloride (LiCl). Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Boundary Conditions for the Maintenance of Memory by PKM[zeta] in Neocortex

    ERIC Educational Resources Information Center

    Shema, Reul; Hazvi, Shoshi; Sacktor, Todd C.; Dudai, Yadin

    2009-01-01

    We report here that ZIP, a selective inhibitor of the atypical protein kinase C isoform PKM[zeta], abolishes very long-term conditioned taste aversion (CTA) associations in the insular cortex of the behaving rat, at least 3 mo after encoding. The effect of ZIP is not replicated by a general serine/threonine protein kinase inhibitor that is…

  13. The Dorsal Agranular Insular Cortex Regulates the Cued Reinstatement of Cocaine-Seeking, but not Food-Seeking, Behavior in Rats.

    PubMed

    Cosme, Caitlin V; Gutman, Andrea L; LaLumiere, Ryan T

    2015-09-01

    Prior studies suggest that the insular cortex (IC), and particularly its posterior region (the PIc), is involved in nicotine craving and relapse in humans and rodents. The present experiments were conducted to determine whether the IC and its different subregions regulate relapse to cocaine-seeking behavior in rats. To address this issue, male Sprague-Dawley rats underwent cocaine self-administration followed by extinction training and reinstatement tests. Before each reinstatement, the PIc or the more anterior dorsal agranular IC (AId) was inactivated to determine their roles in the reinstatement to cocaine seeking. In contrast to the nicotine findings, PIc inactivation had no effect on cue-induced reinstatement for cocaine seeking. However, AId inactivation reduced cued reinstatement while having no effect on cocaine-prime reinstatement. AId inactivation had no effect on reinstatement of food-seeking behavior induced by cues, a food-prime, or cues+food-prime. Based on previous work hypothesizing a role for corticotropin-releasing factor (CRF) in the IC during craving and relapse, a subsequent experiment found that CRF receptor-1 (CRF1) blockade in the AId similarly reduced cued reinstatement. Our results suggest that the AId, along with CRF1 receptors in this region, regulates reinstatement to cocaine seeking, but not food seeking, depending on the type of reinstatement, whereas PIc activity does not influence cue-induced reinstatement.

  14. Ifenprodil infusion in agranular insular cortex alters social behavior and vocalizations in rats exposed to moderate levels of ethanol during prenatal development

    PubMed Central

    Bird, Clark W.; Barto, Daniel; Magcalas, Christy M.; Rodriguez, Carlos I.; Donaldson, Tia; Davies, Suzy; Savage, Daniel D.; Hamilton, Derek A.

    2016-01-01

    Moderate exposure to alcohol during development leads to subtle neurobiological and behavioral effects classified under the umbrella term fetal alcohol spectrum disorders (FASDs). Alterations in social behaviors are a frequently observed consequence of maternal drinking, as children with FASDs display inappropriate aggressive behaviors and altered responses to social cues. Rodent models of FASDs mimic the behavioral alterations seen in humans, with rats exposed to ethanol during development displaying increased aggressive behaviors, decreased social investigation, and altered play behavior. Work from our laboratory has observed increased wrestling behavior in adult male rats following prenatal alcohol exposure (PAE), and increased expression of GluN2B-containing NMDA receptors in the agranular insular cortex (AIC). This study was undertaken to determine if ifenprodil, a GluN2B preferring negative allosteric modulator, has a significant effect on social behaviors in PAE rats. Using a voluntary ethanol exposure paradigm, rat dams were allowed to drink a saccharin-sweetened solution of either 0% or 5% ethanol throughout gestation. Offspring at 6–8 months of age were implanted with cannulae into AIC. Animals were isolated for 24 hours before ifenprodil or vehicle was infused into AIC, and after 15 minutes they were recorded in a social interaction chamber. Ifenprodil treatment altered aspects of wrestling, social investigatory behaviors, and ultrasonic vocalizations in rats exposed to ethanol during development that were not observed in control animals. These data indicate that GluN2B-containing NMDA receptors in AIC play a role in social behaviors and may underlie alterations in behavior and vocalizations observed in PAE animals. PMID:27888019

  15. Differential Involvement of the Agranular vs Granular Insular Cortex in the Acquisition and Performance of Choice Behavior in a Rodent Gambling Task

    PubMed Central

    Pushparaj, Abhiram; Kim, Aaron S; Musiol, Martin; Zangen, Abraham; Daskalakis, Zafiris J; Zack, Martin; Winstanley, Catharine A; Le Foll, Bernard

    2015-01-01

    Substance-related and addictive disorders, in particular gambling disorder, are known to be associated with risky decision-making behavior. Several neuroimaging studies have identified the involvement of the insular cortex in decision-making under risk. However, the extent of this involvement remains unclear and the specific contributions of two distinct insular subregions, the rostral agranular (RAIC) and the caudal granular (CGIC), have yet to be examined. Animals were trained to perform a rat gambling task (rGT), in which subjects chose between four options that differed in the magnitude and probability of rewards and penalties. In order to address the roles of the RAIC and CGIC in established choice behavior, pharmacological inactivations of these two subregions via local infusions of GABA receptor agonists were performed following 30 rGT training sessions. The contribution made by the RAIC or CGIC to the acquisition of choice behavior was also determined by lesioning these areas before behavioral training. Inactivation of the RAIC, but not of the CGIC, shifted rats' preference toward options with greater reward frequency and lower punishment. Before rGT acquisition, lesions of the RAIC, but not the CGIC, likewise resulted in a higher preference for options with greater reward frequency and lower punishment, and this persisted throughout the 30 training sessions. Our results provide confirmation of the involvement of the RAIC in rGT choice behavior and suggest that the RAIC may mediate detrimental risky decision-making behavior, such as that associated with addiction and gambling disorder. PMID:25953358

  16. Differential Involvement of the Agranular vs Granular Insular Cortex in the Acquisition and Performance of Choice Behavior in a Rodent Gambling Task.

    PubMed

    Pushparaj, Abhiram; Kim, Aaron S; Musiol, Martin; Zangen, Abraham; Daskalakis, Zafiris J; Zack, Martin; Winstanley, Catharine A; Le Foll, Bernard

    2015-11-01

    Substance-related and addictive disorders, in particular gambling disorder, are known to be associated with risky decision-making behavior. Several neuroimaging studies have identified the involvement of the insular cortex in decision-making under risk. However, the extent of this involvement remains unclear and the specific contributions of two distinct insular subregions, the rostral agranular (RAIC) and the caudal granular (CGIC), have yet to be examined. Animals were trained to perform a rat gambling task (rGT), in which subjects chose between four options that differed in the magnitude and probability of rewards and penalties. In order to address the roles of the RAIC and CGIC in established choice behavior, pharmacological inactivations of these two subregions via local infusions of GABA receptor agonists were performed following 30 rGT training sessions. The contribution made by the RAIC or CGIC to the acquisition of choice behavior was also determined by lesioning these areas before behavioral training. Inactivation of the RAIC, but not of the CGIC, shifted rats' preference toward options with greater reward frequency and lower punishment. Before rGT acquisition, lesions of the RAIC, but not the CGIC, likewise resulted in a higher preference for options with greater reward frequency and lower punishment, and this persisted throughout the 30 training sessions. Our results provide confirmation of the involvement of the RAIC in rGT choice behavior and suggest that the RAIC may mediate detrimental risky decision-making behavior, such as that associated with addiction and gambling disorder.

  17. Differential Effects of Insular and Ventromedial Prefrontal Cortex Lesions on Risky Decision-Making

    ERIC Educational Resources Information Center

    Clark, L.; Bechara, A.; Damasio, H.; Aitken, M. R. F.; Sahakian, B. J.; Robbins, T. W.

    2008-01-01

    The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear…

  18. Insular Cortex Is Involved in Consolidation of Object Recognition Memory

    ERIC Educational Resources Information Center

    Bermudez-Rattoni, Federico; Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2005-01-01

    Extensive evidence indicates that the insular cortex (IC), also termed gustatory cortex, is critically involved in conditioned taste aversion and taste recognition memory. Although most studies of the involvement of the IC in memory have investigated taste, there is some evidence that the IC is involved in memory that is not based on taste. In…

  19. PET Mapping for Brain-Computer Interface Stimulation of the Ventroposterior Medial Nucleus of the Thalamus in Rats with Implanted Electrodes.

    PubMed

    Zhu, Yunqi; Xu, Kedi; Xu, Caiyun; Zhang, Jiacheng; Ji, Jianfeng; Zheng, Xiaoxiang; Zhang, Hong; Tian, Mei

    2016-07-01

    Brain-computer interface (BCI) technology has great potential for improving the quality of life for neurologic patients. This study aimed to use PET mapping for BCI-based stimulation in a rat model with electrodes implanted in the ventroposterior medial (VPM) nucleus of the thalamus. PET imaging studies were conducted before and after stimulation of the right VPM. Stimulation induced significant orienting performance. (18)F-FDG uptake increased significantly in the paraventricular thalamic nucleus, septohippocampal nucleus, olfactory bulb, left crus II of the ansiform lobule of the cerebellum, and bilaterally in the lateral septum, amygdala, piriform cortex, endopiriform nucleus, and insular cortex, but it decreased in the right secondary visual cortex, right simple lobule of the cerebellum, and bilaterally in the somatosensory cortex. This study demonstrated that PET mapping after VPM stimulation can identify specific brain regions associated with orienting performance. PET molecular imaging may be an important approach for BCI-based research and its clinical applications. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. Brain Responses during the Anticipation of Dyspnea

    PubMed Central

    Stoeckel, M. Cornelia; Esser, Roland W.; Büchel, Christian

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea. PMID:27648309

  1. Brain Responses during the Anticipation of Dyspnea.

    PubMed

    Stoeckel, M Cornelia; Esser, Roland W; Gamer, Matthias; Büchel, Christian; von Leupoldt, Andreas

    2016-01-01

    Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea.

  2. CREB regulates memory allocation in the insular cortex

    PubMed Central

    Sano, Yoshitake; Shobe, Justin L.; Zhou, Miou; Huang, Shan; Shuman, Tristan; Cai, Denise J.; Golshani, Peyman; Kamata, Masakazu; Silva, Alcino J.

    2016-01-01

    Summary The molecular and cellular mechanisms of memory storage have attracted a great deal of attention. By comparison, little is known about memory allocation, the process that determines which specific neurons in a neural network will store a given memory [1, 2]. Previous studies demonstrated that memory allocation is not random in the amygdala; these studies showed that amygdala neurons with higher levels of the cAMP response element binding protein (CREB) are more likely to be recruited into encoding and storing fear memory [3–6]. To determine whether specific mechanisms also regulate memory allocation in other brain regions, and whether CREB also has a role in this process, we studied insular cortical memory representations for conditioned taste aversion (CTA). In this task, an animal learns to associate a taste (CS) with the experience of malaise (such as that induced by LiCl; US). The insular cortex is required for CTA memory formation and retrieval [7–12]. CTA learning activates a subpopulation of neurons in this structure [13–15], and the insular cortex and the basolateral amygdala (BLA) interact during CTA formation [16, 17]. Here, we used a combination of approaches, including viral vector transfections of insular cortex, arc Fluorescence In Situ Hybridization (FISH) and Designer Receptors Exclusively Activated by Designer Drugs (DREADD) system, to show that CREB levels determine which insular cortical neurons go on to encode a given conditioned taste memory. PMID:25454591

  3. Contributions of Subsurface Cortical Modulations to Discrimination of Executed and Imagined Grasp Forces through Stereoelectroencephalography

    PubMed Central

    Murphy, Brian A.; Miller, Jonathan P.; Gunalan, Kabilar; Ajiboye, A. Bolu

    2016-01-01

    Stereoelectroencephalographic (SEEG) depth electrodes have the potential to record neural activity from deep brain structures not easily reached with other intracranial recording technologies. SEEG electrodes were placed through deep cortical structures including central sulcus and insular cortex. In order to observe changes in frequency band modulation, participants performed force matching trials at three distinct force levels using two different grasp configurations: a power grasp and a lateral pinch. Signals from these deeper structures were found to contain information useful for distinguishing force from rest trials as well as different force levels in some participants. High frequency components along with alpha and beta bands recorded from electrodes located near the primary motor cortex wall of central sulcus and electrodes passing through sensory cortex were found to be the most useful for classification of force versus rest although one participant did have significant modulation in the insular cortex. This study electrophysiologically corroborates with previous imaging studies that show force-related modulation occurs inside of central sulcus and insular cortex. The results of this work suggest that depth electrodes could be useful tools for investigating the functions of deeper brain structures as well as showing that central sulcus and insular cortex may contain neural signals that could be used for control of a grasp force BMI. PMID:26963246

  4. Attenuation of pCREB and Egr1 expression in the insular and anterior cingulate cortices associated with enhancement of CFA-evoked mechanical hypersensitivity after repeated forced swim stress.

    PubMed

    Imbe, Hiroki; Kimura, Akihisa

    2017-09-01

    The perception and response to pain are severely impacted by exposure to stressors. In some animal models, stress increases pain sensitivity, which is termed stress-induced hyperalgesia (SIH). The insular cortex (IC) and anterior cingulate cortex (ACC), which are typically activated by noxious stimuli, affect pain perception through the descending pain modulatory system. In the present study, we examined the expression of phospho-cAMP response element-binding protein (pCREB) and early growth response 1 (Egr1) in the IC and ACC at 3h (the acute phase of peripheral tissue inflammation) after complete Freund's adjuvant (CFA) injection in naïve rats and rats preconditioned with forced swim stress (FS) to clarify the effect of FS, a stressor, on cortical cell activities in the rats showing SIH induced by FS. The CFA injection into the hindpaw induced mechanical hypersensitivity and increased the expression of the pCREB and Egr1 in the IC and ACC at 3h after the injection. FS (day 1, 10min; days 2-3, 20min) prior to the CFA injection enhanced the CFA-induced mechanical hypersensitivity and attenuated the increase in the expression of pCREB and Egr1 in the IC and ACC. These findings suggested that FS modulates the CFA injection-induced neuroplasticity in the IC and ACC to enhance the mechanical hypersensitivity. These findings are thought to signify stressor-induced dysfunction of the descending pain modulatory system. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Thirst-Dependent Activity of the Insular Cortex Reflects its Emotion-Related Subdivision: A Cerebral Blood Flow Study.

    PubMed

    Meier, Lea; Federspiel, Andrea; Jann, Kay; Wiest, Roland; Strik, Werner; Dierks, Thomas

    2018-04-26

    Recent studies investigating neural correlates of human thirst have identified various subcortical and telencephalic brain areas. The experience of thirst represents a homeostatic emotion and a state that slowly evolves over time. Therefore, the present study aims at systematically examining cerebral perfusion during the parametric progression of thirst. We measured subjective thirst ratings, serum parameters and cerebral blood flow in 20 healthy subjects across four different thirst stages: intense thirst, moderate thirst, subjective satiation and physiological satiation. Imaging data revealed dehydration-related perfusion differences in previously identified brain areas, such as the anterior cingulate cortex, the middle temporal gyrus and the insular cortex. However, significant differences across all four thirst stages (including the moderate thirst level), were exclusively found in the posterior insular cortex. The subjective thirst ratings over the different thirst stages, however, were associated with perfusion differences in the right anterior insula. These findings add to our understanding of the insular cortex as a key player in human thirst - both on the level of physiological dehydration and the level of the subjective thirst experience. Copyright © 2018. Published by Elsevier Ltd.

  6. Insular cortex activity and the evocation of laughter.

    PubMed

    Wattendorf, Elise; Westermann, Birgit; Lotze, Martin; Fiedler, Klaus; Celio, Marco R

    2016-06-01

    The insular cortex is fundamentally involved in the processing of interoceptive information. It has been postulated that the integrative monitoring of the bodily responses to environmental stimuli is crucial for the recognition and experience of emotions. Because emotional arousal is known to be closely coupled to functions of the anterior insula, we suspected laughter to be associated primarily with neuronal activity in this region. An anatomically constrained re-analysis of our imaging data pertaining to ticklish laughter, to inhibited ticklish laughter, and to voluntary laughter revealed regional differences in the levels of neuronal activity in the posterior and mid-/anterior portions of the insula. Ticklish laughter was associated specifically with right ventral anterior insular activity, which was not detected under the other two conditions. Hence, apparently, only laughter that is evoked as an emotional response bears the signature of autonomic arousal in the insular cortex. © 2015 Wiley Periodicals, Inc.

  7. A role for the anterior insular cortex in the global neuronal workspace model of consciousness.

    PubMed

    Michel, Matthias

    2017-03-01

    According to the global neuronal workspace model of consciousness, consciousness results from the global broadcast of information throughout the brain. The global neuronal workspace is mainly constituted by a fronto-parietal network. The anterior insular cortex is part of this global neuronal workspace, but the function of this region has not yet been defined within the global neuronal workspace model of consciousness. In this review, I hypothesize that the anterior insular cortex implements a cross-modal priority map, the function of which is to determine priorities for the processing of information and subsequent entrance in the global neuronal workspace. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Attenuated sensitivity to the emotions of others by insular lesion

    PubMed Central

    Terasawa, Yuri; Kurosaki, Yoshiko; Ibata, Yukio; Moriguchi, Yoshiya; Umeda, Satoshi

    2015-01-01

    The insular cortex has been considered to be the neural base of visceral sensation for many years. Previous studies in psychology and cognitive neuroscience have accumulated evidence indicating that interoception is an essential factor in the subjective feeling of emotion. Recent neuroimaging studies have demonstrated that anterior insular cortex activation is associated with accessing interoceptive information and underpinning the subjective experience of emotional state. Only a small number of studies have focused on the influence of insular damage on emotion processing and interoceptive awareness. Moreover, disparate hypotheses have been proposed for the alteration of emotion processing by insular lesions. Some studies show that insular lesions yield an inability for understanding and representing disgust exclusively, but other studies suggest that such lesions modulate arousal and valence judgments for both positive and negative emotions. In this study, we examined the alteration in emotion recognition in three right insular and adjacent area damaged cases with well-preserved higher cognitive function. Participants performed an experimental task using morphed photos that ranged between neutral and emotional facial expressions (i.e., anger, sadness, disgust, and happiness). Recognition rates of particular emotions were calculated to measure emotional sensitivity. In addition, they performed heartbeat perception task for measuring interoceptive accuracy. The cases identified emotions that have high arousal level (e.g., anger) as less aroused emotions (e.g., sadness) and a case showed remarkably low interoceptive accuracy. The current results show that insular lesions lead to attenuated emotional sensitivity across emotions, rather than category-specific impairments such as to disgust. Despite the small number of cases, our findings suggest that the insular cortex modulates recognition of emotional saliency and mediates interoceptive and emotional awareness. PMID:26388817

  9. Verbal memory impairment after left insular cortex infarction

    PubMed Central

    Manes, F.; Springer, J.; Jorge, R.; Robinson, R.

    1999-01-01

    PET studies have shown an association between changes in blood flow in the insular cortex and verbal memory. This study compared verbal memory profiles between a group of four right handed patients with right insular infarction and a group of six right handed patients with left insular infarction. Patient groups were comparable in age, education, and sex. Patients were administered memory tests about 4-8 weeks poststroke. Patients with left insular lesions showed significantly poorer immediate and delayed verbal memory as measured by story A of the WMS-R logical memory I (t=−2.73, p<0.03) and logical memory II (t=−4.1, p<0.004) subtests as well as the CERAD word list memory (delayed recall) (t=−2.4, p<0.05). These findings indicate that left insular damage is associated with poorer performance on verbal memory tasks. The findings suggest that the insula may be part of a functional network that mediates verbal memory.

 PMID:10486407

  10. Anterior insular cortex mediates bodily sensibility and social anxiety

    PubMed Central

    Shibata, Midori; Moriguchi, Yoshiya; Umeda, Satoshi

    2013-01-01

    Studies in psychiatry and cognitive neuroscience have reported an important relationship between individual interoceptive accuracy and anxiety level. This indicates that greater attention to one’s bodily state may contribute to the development of intense negative emotions and anxiety disorders. We hypothesized that reactivity in the anterior insular cortex underlies the intensity of interoceptive awareness and anxiety. To elucidate this triadic mechanism, we conducted functional magnetic resonance imaging (fMRI) and mediation analyses to examine the relationship between emotional disposition and activation in the anterior insular cortex while participants evaluated their own emotional and bodily states. Our results indicated that right anterior insular activation was positively correlated with individual levels of social anxiety and neuroticism and negatively correlated with agreeableness and extraversion. The results of the mediation analyses revealed that activity in the right anterior insula mediated the activity of neural correlates of interoceptive sensibility and social fear. Our findings suggest that attention to interoceptive sensation affects personality traits through how we feel emotion subjectively in various situations. PMID:22977199

  11. Memory Trace Reactivation and Behavioral Response during Retrieval Are Differentially Modulated by Amygdalar Glutamate Receptors Activity: Interaction between Amygdala and Insular Cortex

    ERIC Educational Resources Information Center

    Osorio-Gómez, Daniel; Guzmán-Ramos, Kioko; Bermúdez-Rattoni, Federico

    2017-01-01

    The insular cortex (IC) is required for conditioned taste aversion (CTA) retrieval. However, it remains unknown which cortical neurotransmitters levels are modified upon CTA retrieval. Using in vivo microdialysis, we observed that there were clear elevations in extracellular glutamate, norepinephrine, and dopamine in and around the center of the…

  12. Enhancement of Inhibitory Avoidance and Conditioned Taste Aversion Memory With Insular Cortex Infusions of 8-Br-cAMP: Involvement of the Basolateral Amygdala

    PubMed Central

    Miranda, María I.; McGaugh, James L.

    2004-01-01

    There is considerable evidence that in rats, the insular cortex (IC) and amygdala are involved in the learning and memory of aversively motivated tasks. The present experiments examined the effects of 8-Br-cAMP, an analog of cAMP, and oxotremorine, a muscarinic agonist, infused into the IC after inhibitory avoidance (IA) training and during the acquisition/consolidation of conditioned taste aversion (CTA). Posttraining infusion into the IC of 0.3 μg oxotremorine and 1.25 μg 8-Br-cAMP enhanced IA retention. Infusions of 8-Br-cAMP, but not oxotremorine, into the IC enhanced taste aversion. The experiments also examined whether noradrenergic activity in the basolateral amygdala (BLA) is critical in enabling the enhancement of CTA and IA memory induced by drug infusions administered into the IC. For both CTA and IA, ipsilateral infusions of β-adrenergic antagonist propranolol administered into the BLA blocked the retention-enhancing effect of 8-Br-cAMP or oxotremorine infused into the IC. These results indicate that the IC is involved in the consolidation of memory for both IA and CTA, and this effect requires intact noradrenergic activity into the BLA. These findings provide additional evidence that the BLA interacts with other brain regions, including sensory cortex, in modulating memory consolidation. PMID:15169861

  13. Difference in receptive field features of taste neurons in rat granular and dysgranular insular cortices.

    PubMed

    Ogawa, H; Murayama, N; Hasegawa, K

    1992-01-01

    Receptive fields (RFs) of 59 cortical taste neurons (35 in the granular insular area, area GI, 21 in the dysgranular insular area, area DI, and 3 in the agranular insular area, area AI) were identified in the oral cavity of the rat. The fraction of the neurons with RFs in the anterior oral cavity only was significantly larger in area GI (74.3%) than in area DI (42.9%). On the other hand, the fraction of neurons with RFs in both the anterior and posterior oral cavity was larger in area DI (42.9%) than in area GI (11.4%). On the whole, it is suggested that area GI is involved in discrimination of several taste stimuli in the oral cavity, whereas in area DI taste information originating from various regions of the oral cavity is integrated. When neurons were classified according to the best stimulus which most excited the neuron among the four basic tastes, different categories of taste neurons had RFs in different parts of the oral cavity. It is suggested that, in either taste area, different categories of taste neurons are involved in different sorts of taste coding. The majority of neurons in both areas had bilateral RFs. In area GI, neurons with RFs on single subpopulations of taste buds were significantly more numerous at the rostral region of the cortex than at the caudal region. There was no such relation between RF types and cortical localization in area DI. Otherwise, topographic representation of the oral cavity by taste neurons on the cortical surface was not obvious. RF features of taste neurons did not differ across layers in either cortical area.

  14. Effects of fluoxetine on the rat brain in the forced swimming test: a [F-18]FDG micro-PET imaging study.

    PubMed

    Jang, Dong-Pyo; Lee, So-Hee; Park, Chan-Woong; Lee, Sang-Yoon; Kim, Young-Bo; Cho, Zang-Hee

    2009-02-13

    We used the [F-18]FDG micro-PET neuroimaging to examine the effects of fluoxetine on brain activity in rats and on their behavioral response in the forced swimming test (FST). In the first experiment, the rats were administered doses of fluoxetine (10 or 20mg/kg) 24, 19 and 1h before the rat brains were scanned. Fluoxetine induced strong activation of the dorsal hippocampus and the deactivation of the inferior colliculus, medulla oblongata, and prelimbic cortex in a dose-dependent manner. These results seemed to be related with the changes in 5-HT (5-hydroxytryptamine, serotonin) levels after selective serotonin reuptake-inhibitor treatments. In the second experiment, the changes in glucose metabolism in the test session were measured after fluoxetine was given between pre-test and test sessions of the FST. Fluoxetine administration significantly decreased immobility behavior compared with saline administration. At the same time, the activity of the insular/piriform cortex decreased significantly. In contrast, the extent of cerebellar activation increased. The glucose metabolism of the dorsal hippocampus also increased, which suggests that post-stress changes in the facilitation of hippocampal serotonergic neurotransmission lead to decreased immobilization in the FST.

  15. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex.

    PubMed

    Jasmin, Luc; Rabkin, Samuel D; Granato, Alberto; Boudah, Abdennacer; Ohara, Peter T

    2003-07-17

    It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.

  16. Reduced Sensitivity to Sooner Reward During Intertemporal Decision-Making Following Insula Damage in Humans

    PubMed Central

    Sellitto, Manuela; Ciaramelli, Elisa; Mattioli, Flavia; di Pellegrino, Giuseppe

    2016-01-01

    During intertemporal choice, humans tend to prefer small-sooner rewards over larger-delayed rewards, reflecting temporal discounting (TD) of delayed outcomes. Functional neuroimaging (fMRI) evidence has implicated the insular cortex in time-sensitive decisions, yet it is not clear whether activity in this brain region is crucial for, or merely associated with, TD behavior. Here, patients with damage to the insula (Insular patients), control patients with lesions outside the insula, and healthy individuals chose between smaller-sooner and larger-later monetary rewards. Insular patients were less sensitive to sooner rewards than were the control groups, exhibiting reduced TD. A Voxel-based Lesion-Symptom Mapping (VLSM) analysis confirmed a statistically significant association between insular damage and reduced TD. These results indicate that the insular cortex is crucial for intertemporal choice. We suggest that he insula may be necessary to anticipate the bodily/emotional effects of receiving rewards at different delays, influencing the computation of their incentive value. Devoid of such input, insular patients’ choices would be governed by a heuristic of quantity, allowing patients to wait for larger options. PMID:26793084

  17. Modulation of the storage of social recognition memory by neurotransmitter systems in the insular cortex.

    PubMed

    Cavalcante, Lorena E S; Zinn, Carolina G; Schmidt, Scheila D; Saenger, Bruna F; Ferreira, Flávia F; Furini, Cristiane R G; Myskiw, Jociane C; Izquierdo, Ivan

    2017-09-15

    The insular cortex (IC) receives projections from prefrontal, entorhinal and cingulate cortex, olfactory bulb and basal nuclei and has reciprocal connections with the amygdala and entorhinal cortex. These connections suggest a possible involvement in memory processes; this has been borne out by data on several behaviors. Social recognition memory (SRM) is essential to form social groups and to establish hierarchies and social and affective ties. Despite its importance, knowledge about the brain structures and the neurotransmitter mechanisms involved in its processing is still scarce. Here we study the participation of NMDA-glutamatergic, D1/D5-dopaminergic, H2-histaminergic, β-adrenergic and 5-HT 1A -serotoninergic receptors of the IC in the consolidation of SRM. Male Wistar rats received intra-IC infusions of substances acting on these receptors immediately after the sample phase of a social discrimination task and 24h later were exposed to a 5-min retention test. The intra-IC infusion of antagonists of D1/D5, β-adrenergic or 5-HT 1A receptors immediately after the sample phase impaired the consolidation of SRM. These effects were blocked by the concomitant intra-IC infusion of agonists of these receptors. Antagonists and agonists of NMDA and H2 receptors had no effect on SRM. The results suggest that the dopaminergic D1/D5, β-adrenergic and serotonergic 5-HT 1A receptors in the IC, but not glutamatergic NMDA and the histaminergic H2 receptors, participate in the consolidation of SRM in the IC. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Learning touch preferences with a tactile robot using dopamine modulated STDP in a model of insular cortex

    PubMed Central

    Chou, Ting-Shuo; Bucci, Liam D.; Krichmar, Jeffrey L.

    2015-01-01

    Neurorobots enable researchers to study how behaviors are produced by neural mechanisms in an uncertain, noisy, real-world environment. To investigate how the somatosensory system processes noisy, real-world touch inputs, we introduce a neurorobot called CARL-SJR, which has a full-body tactile sensory area. The design of CARL-SJR is such that it encourages people to communicate with it through gentle touch. CARL-SJR provides feedback to users by displaying bright colors on its surface. In the present study, we show that CARL-SJR is capable of learning associations between conditioned stimuli (CS; a color pattern on its surface) and unconditioned stimuli (US; a preferred touch pattern) by applying a spiking neural network (SNN) with neurobiologically inspired plasticity. Specifically, we modeled the primary somatosensory cortex, prefrontal cortex, striatum, and the insular cortex, which is important for hedonic touch, to process noisy data generated directly from CARL-SJR's tactile sensory area. To facilitate learning, we applied dopamine-modulated Spike Timing Dependent Plasticity (STDP) to our simulated prefrontal cortex, striatum, and insular cortex. To cope with noisy, varying inputs, the SNN was tuned to produce traveling waves of activity that carried spatiotemporal information. Despite the noisy tactile sensors, spike trains, and variations in subject hand swipes, the learning was quite robust. Further, insular cortex activities in the incremental pathway of dopaminergic reward system allowed us to control CARL-SJR's preference for touch direction without heavily pre-processed inputs. The emerged behaviors we found in this model match animal's behaviors wherein they prefer touch in particular areas and directions. Thus, the results in this paper could serve as an explanation on the underlying neural mechanisms for developing tactile preferences and hedonic touch. PMID:26257639

  19. Mutism and auditory agnosia due to bilateral insular damage--role of the insula in human communication.

    PubMed

    Habib, M; Daquin, G; Milandre, L; Royere, M L; Rey, M; Lanteri, A; Salamon, G; Khalil, R

    1995-03-01

    We report a case of transient mutism and persistent auditory agnosia due to two successive ischemic infarcts mainly involving the insular cortex on both hemispheres. During the 'mutic' period, which lasted about 1 month, the patient did not respond to any auditory stimuli and made no effort to communicate. On follow-up examinations, language competences had re-appeared almost intact, but a massive auditory agnosia for non-verbal sounds was observed. From close inspection of lesion site, as determined with brain resonance imaging, and from a study of auditory evoked potentials, it is concluded that bilateral insular damage was crucial to both expressive and receptive components of the syndrome. The role of the insula in verbal and non-verbal communication is discussed in the light of anatomical descriptions of the pattern of connectivity of the insular cortex.

  20. Posterior insular cortex is necessary for conditioned inhibition of fear

    PubMed Central

    Foilb, Allison R.; Flyer-Adams, Johanna G.; Maier, Steven F.; Christianson, John P.

    2016-01-01

    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS− fear discrimination conditioning over 5 days in rats leads the CS− to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscmiol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors. PMID:27523750

  1. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    PubMed

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Disconnection of basolateral amygdala and insular cortex disrupts conditioned approach in Pavlovian lever autoshaping.

    PubMed

    Nasser, Helen M; Lafferty, Danielle S; Lesser, Ellen N; Bacharach, Sam Z; Calu, Donna J

    2018-01-01

    Previously established individual differences in appetitive approach and devaluation sensitivity observed in goal- and sign-trackers may be attributed to differences in the acquisition, modification, or use of associative information in basolateral amygdala (BLA) pathways. Here, we sought to determine the extent to which communication of associative information between BLA and anterior portions of insular cortex (IC) supports ongoing Pavlovian conditioned approach behaviors in sign- and goal-tracking rats, in the absence of manipulations to outcome value. We hypothesized that the BLA mediates goal-, but not sign- tracking approach through interactions with the IC, a brain region involved in supporting flexible behavior. We first trained rats in Pavlovian lever autoshaping to determine their sign- or goal-tracking tendency. During alternating test sessions, we gave unilateral intracranial injections of vehicle or a cocktail of gamma-aminobutyric acid (GABA) receptor agonists, baclofen and muscimol, unilaterally into the BLA and contralaterally or ipsilaterally into the IC prior to reinforced lever autoshaping sessions. Consistent with our hypothesis we found that contralateral inactivation of BLA and IC increased the latency to approach the food cup and decreased the number of food cup contacts in goal-trackers. While contralateral inactivation of BLA and IC did not affect the total number of lever contacts in sign-trackers, this manipulation increased the latency to approach the lever. Ipsilateral inactivation of BLA and IC did not impact approach behaviors in Pavlovian lever autoshaping. These findings, contrary to our hypothesis, suggest that communication between BLA and IC maintains a representation of initially learned appetitive associations that commonly support the initiation of Pavlovian conditioned approach behavior regardless of whether it is directed at the cue or the location of reward delivery. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Variable temporo-insular cortex neuroanatomy in primates suggests a bottleneck effect in eastern gorillas

    PubMed Central

    Barks, Sarah K.; Bauernfeind, Amy L.; Bonar, Christopher J.; Cranfield, Michael R.; de Sousa, Alexandra A.; Erwin, Joseph M.; Hopkins, William D.; Lewandowski, Albert H.; Mudakikwa, Antoine; Phillips, Kimberley A.; Raghanti, Mary Ann; Stimpson, Cheryl D.; Hof, Patrick R.; Zilles, Karl; Sherwood, Chet C.

    2013-01-01

    In this study, we describe an atypical neuroanatomical feature present in several primate species that involves a fusion between the temporal lobe (often including Heschl’s gyrus in great apes) and the posterior dorsal insula, such that a portion of insular cortex forms an isolated pocket medial to the Sylvian fissure. We assessed the frequency of this fusion in 56 primate species (including apes, Old World monkeys, New World monkeys, and strepsirrhines) using either magnetic resonance images or histological sections. A fusion between temporal cortex and posterior insula was present in 22 species (7 apes, 2 Old World monkeys, 4 New World monkeys, and 9 strepsirrhines). The temporo-insular fusion was observed in most eastern gorilla (Gorilla beringei beringei and G. b. graueri) specimens (62% and 100% of cases, respectively) but less frequently in other great apes and was never found in humans. We further explored the histology of this fusion in eastern gorillas by examining the cyto- and myeloarchitecture within this region, and observed that the degree to which deep cortical layers and white matter are incorporated into the fusion varies among individuals within a species. We suggest that fusion between temporal and insular cortex is an example of a relatively rare neuroanatomical feature that has become more common in eastern gorillas, possibly as the result of a population bottleneck effect. Characterizing the phylogenetic distribution of this morphology highlights a derived feature of these great apes. PMID:23939630

  4. Functional role for suppression of the insular-striatal circuit in modulating interoceptive effects of alcohol.

    PubMed

    Jaramillo, Anel A; Agan, Verda E; Makhijani, Viren H; Pedroza, Stephen; McElligott, Zoe A; Besheer, Joyce

    2017-09-27

    The insular cortex (IC) is a region proposed to modulate, in part, interoceptive states and motivated behavior. Interestingly, IC dysfunction and deficits in interoceptive processing are often found among individuals with substance-use disorders. Furthermore, the IC projects to the nucleus accumbens core (AcbC), a region known to modulate the discriminative stimulus/interoceptive effects of alcohol and other drug-related behaviors. Therefore, the goal of the present work was to investigate the possible role of the IC ➔ AcbC circuit in modulating the interoceptive effects of alcohol. Thus, we utilized a chemogenetic technique (hM4D i designer receptor activation by designer drugs) to silence neuronal activity in the IC of rats trained to discriminate alcohol (1 g/kg, IG) versus water using an operant or Pavlovian alcohol discrimination procedure. Chemogenetic silencing of the IC or IC ➔ AcbC neuronal projections resulted in potentiated sensitivity to the interoceptive effects of alcohol in both the operant and Pavlovian tasks. Together, these data provide critical evidence for the nature of the complex IC circuitry and, specifically, suppression of the insular-striatal circuit in modulating behavior under a drug stimulus control. © 2017 Society for the Study of Addiction.

  5. Contribution of Insula in Parkinson’s Disease: A Quantitative Meta-Analysis Study

    PubMed Central

    Criaud, Marion; Christopher, Leigh; Boulinguez, Philippe; Ballanger, Benedicte; Lang, Anthony E.; Cho, Sang S.; Houle, Sylvain; Strafella, Antonio P.

    2016-01-01

    The insula region is known to be an integrating hub interacting with multiple brain networks involved in cognitive, affective, sensory, and autonomic processes. There is growing evidence suggesting that this region may have an important role in Parkinson’s disease (PD). Thus, to investigate the functional organization of the insular cortex and its potential role in parkinsonian features, we used a coordinate-based quantitative meta-analysis approach, the activation likelihood estimation. A total of 132 insular foci were selected from 96 published experiments comprising the five functional categories: cognition, affective/behavioral symptoms, bodily awareness/autonomic function, sensorimotor function, and nonspecific resting functional changes associated with the disease. We found a significant convergence of activation maxima related to PD in different insular regions including anterior and posterior regions bilaterally. This study provides evidence of an important functional distribution of different domains within the insular cortex in PD, particularly in relation to nonmotor aspects, with an influence of medication effect. PMID:26800238

  6. Contribution of insula in Parkinson's disease: A quantitative meta-analysis study.

    PubMed

    Criaud, Marion; Christopher, Leigh; Boulinguez, Philippe; Ballanger, Benedicte; Lang, Anthony E; Cho, Sang S; Houle, Sylvain; Strafella, Antonio P

    2016-04-01

    The insula region is known to be an integrating hub interacting with multiple brain networks involved in cognitive, affective, sensory, and autonomic processes. There is growing evidence suggesting that this region may have an important role in Parkinson's disease (PD). Thus, to investigate the functional organization of the insular cortex and its potential role in parkinsonian features, we used a coordinate-based quantitative meta-analysis approach, the activation likelihood estimation. A total of 132 insular foci were selected from 96 published experiments comprising the five functional categories: cognition, affective/behavioral symptoms, bodily awareness/autonomic function, sensorimotor function, and nonspecific resting functional changes associated with the disease. We found a significant convergence of activation maxima related to PD in different insular regions including anterior and posterior regions bilaterally. This study provides evidence of an important functional distribution of different domains within the insular cortex in PD, particularly in relation to nonmotor aspects, with an influence of medication effect. © 2016 Wiley Periodicals, Inc.

  7. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress.

    PubMed

    Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian

    2018-02-01

    Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen G, Yang B, Chen J, et al. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress. J Sex Med 2018;15:136-147. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  8. Voxel-based morphometry study of the insular cortex in bipolar depression.

    PubMed

    Tang, Li-Rong; Liu, Chun-Hong; Jing, Bin; Ma, Xin; Li, Hai-Yun; Zhang, Yu; Li, Feng; Wang, Yu-Ping; Yang, Zhi; Wang, Chuan-Yue

    2014-11-30

    Bipolar depression (BD) is a common psychiatric illness characterized by deficits in emotional and cognitive processing. Abnormalities in the subregions of the insula are common findings in neuroanatomical studies of patients with bipolar disorder. However, the specific relationships between morphometric changes in specific insular subregions and the pathogenesis of BD are not clear. In this study, structural magnetic resonance imaging (MRI) was used to investigate gray matter volume abnormalities in the insular subregion in 27 patients with BD and in 27 age and sex-matched controls. Using DARTEL (diffeomorphic anatomical registration through exponentiated lie algebra) for voxel-based morphometry (VBM), we examined changes in regional gray matter volumes of the insula in patients with BD. As compared with healthy controls, the BD patients showed decreased gray matter volumes in the right posterior insula and left ventral anterior insula and increased gray matter volumes in the left dorsal anterior insula. Consistent with the emerging theory of insular interference as a contributor to emotional-cognitive dysregulation, the current findings suggest that the insular cortex may be involved in the neural substrates of BD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Posterior insular cortex is necessary for conditioned inhibition of fear.

    PubMed

    Foilb, Allison R; Flyer-Adams, Johanna G; Maier, Steven F; Christianson, John P

    2016-10-01

    Veridical detection of safety versus danger is critical to survival. Learned signals for safety inhibit fear, and so when presented, reduce fear responses produced by danger signals. This phenomenon is termed conditioned inhibition of fear. Here, we report that CS+/CS- fear discrimination conditioning over 5 days in rats leads the CS- to become a conditioned inhibitor of fear, as measured by the classic tests of conditioned inhibition: summation and retardation of subsequent fear acquisition. We then show that NMDA-receptor antagonist AP5 injected to posterior insular cortex (IC) before training completely prevented the acquisition of a conditioned fear inhibitor, while intra-AP5 to anterior and medial IC had no effect. To determine if the IC contributes to the recall of learned fear inhibition, injections of the GABAA agonist muscimol were made to posterior IC before a summation test. This resulted in fear inhibition per se, which obscured inference to the effect of IC inactivation with recall of the safety cue. Control experiments sought to determine if the role of the IC in conditioned inhibition learning could be reduced to simpler fear discrimination function, but fear discrimination and recall were unaffected by AP5 or muscimol, respectively, in the posterior IC. These data implicate a role of posterior IC in the learning of conditioned fear inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Impaired Limbic Cortico-Striatal Structure and Sustained Visual Attention in a Rodent Model of Schizophrenia

    PubMed Central

    Barnes, Samuel A.; Sawiak, Stephen J.; Caprioli, Daniele; Jupp, Bianca; Buonincontri, Guido; Mar, Adam C.; Harte, Michael K.; Fletcher, Paul C.; Robbins, Trevor W.; Neill, Jo C.

    2015-01-01

    Background: N-methyl-d-aspartate receptor (NMDAR) dysfunction is thought to contribute to the pathophysiology of schizophrenia. Accordingly, NMDAR antagonists such as phencyclidine (PCP) are used widely in experimental animals to model cognitive impairment associated with this disorder. However, it is unclear whether PCP disrupts the structural integrity of brain areas relevant to the profile of cognitive impairment in schizophrenia. Methods: Here we used high-resolution magnetic resonance imaging and voxel-based morphometry to investigate structural alterations associated with sub-chronic PCP treatment in rats. Results: Sub-chronic exposure of rats to PCP (5mg/kg twice daily for 7 days) impaired sustained visual attention on a 5-choice serial reaction time task, notably when the attentional load was increased. In contrast, sub-chronic PCP had no significant effect on the attentional filtering of a pre-pulse auditory stimulus in an acoustic startle paradigm. Voxel-based morphometry revealed significantly reduced grey matter density bilaterally in the hippocampus, anterior cingulate cortex, ventral striatum, and amygdala. PCP-treated rats also exhibited reduced cortical thickness in the insular cortex. Conclusions: These findings demonstrate that sub-chronic NMDA receptor antagonism is sufficient to produce highly-localized morphological abnormalities in brain areas implicated in the pathogenesis of schizophrenia. Furthermore, PCP exposure resulted in dissociable impairments in attentional function. PMID:25552430

  11. Neonatal Stress Has a Long-Lasting Sex-Dependent Effect on Anxiety-Like Behavior and Neuronal Morphology in the Prefrontal Cortex and Hippocampus.

    PubMed

    de Melo, Silvana Regina; de David Antoniazzi, Caren Tatiane; Hossain, Shakhawat; Kolb, Bryan

    2018-01-01

    The long-lasting effects of early stress on brain development have been well studied. Recent evidence indicates that males and females respond differently to the same stressor. We examined the chronic effects of daily maternal separation (MS) on behavior and cerebral morphology in both male and female rats. Cognitive and anxiety-like behaviors were evaluated, and neuroplastic changes in 2 subregions of the prefrontal cortex (dorsal agranular insular cortex [AID] and cingulate cortex [Cg3]) and hippocampus (CA1 and dentate gyrus) were measured in adult male and female rats. The animals were subjected to MS on postnatal day (P) 3-14 for 3 h per day. Cognitive and emotional behaviors were assessed in the object/context mismatch task, elevated plus maze, and locomotor activity test in early adulthood (P87-P95). Anatomical assessments were performed in the prefrontal cortex (i.e., cortical thickness and spine density) and hippocampus (i.e., spine density). Sex-dependent effects were observed. MS increased anxiety-related behavior only in males, whereas locomotor activity was higher in females, with no effects on cognition. MS decreased spine density in the AID and increased spine density in the CA1 area in males. Females exhibited an increase in spine density in the Cg3. Our findings confirm previous work that found that MS causes long-term behavioral and anatomical effects, and these effects were dependent on sex and the duration of MS stress. © 2018 S. Karger AG, Basel.

  12. Increased anxiety 3 months after brief exposure to MDMA ("Ecstasy") in rats: association with altered 5-HT transporter and receptor density.

    PubMed

    McGregor, Iain S; Clemens, Kelly J; Van der Plasse, Geoffrey; Li, Kong M; Hunt, Glenn E; Chen, Feng; Lawrence, Andrew J

    2003-08-01

    Male Wistar rats were treated with 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") using either a high dose (4 x 5 mg/kg over 4 h) or low dose (1 x 5 mg/kg over 4 h) regimen on each of 2 consecutive days. After 10 weeks, rats were tested in the social interaction and emergence tests of anxiety. Rats previously given either of the MDMA dose regimens were significantly more anxious on both tests. After behavioral testing, and 3 months after the MDMA treatment, the rats were killed and their brains examined. Rats given the high-, but not the low-, dose MDMA treatment regimen exhibited significant loss of 5-hydroxytryptamine (5-HT) and 5-HIAA in the amygdala, hippocampus, striatum, and cortex. Quantitative autoradiography showed loss of SERT binding in cortical, hippocampal, thalamic, and hypothalamic sites with the high-dose MDMA regime, while low-dose MDMA only produced significant loss in the medial hypothalamus. Neither high- nor low-dose MDMA affected 5HT(1A) receptor density. High-dose MDMA increased 5HT(1B) receptor density in the nucleus accumbens and lateral septum but decreased binding in the globus pallidus, insular cortex and medial thalamus. Low-dose MDMA decreased 5HT(1B) receptor density in the hippocampus, globus pallidus, and medial thalamus. High-dose MDMA caused dramatic decreases in cortical, striatal, thalamic, and hypothalamic 5HT(2A)/(2C) receptor density, while low-dose MDMA tended to produce similar effects but only significantly in the piriform cortex. These data suggest that even brief, relatively low-dose MDMA exposure can produce significant, long-term changes in 5-HT receptor and transporter function and associated emotional behavior. Interestingly, long-term 5-HT depletion may not be necessary to produce lasting effects on anxiety-like behavior after low-dose MDMA.

  13. Corticosterone and decision-making in male Wistar rats: the effect of corticosterone application in the infralimbic and orbitofrontal cortex.

    PubMed

    Koot, Susanne; Koukou, Magdalini; Baars, Annemarie; Hesseling, Peter; van 't Klooster, José; Joëls, Marian; van den Bos, Ruud

    2014-01-01

    Corticosteroid hormones, released after stress, are known to influence neuronal activity and produce a wide range of effects upon the brain. They affect cognitive tasks including decision-making. Recently it was shown that systemic injections of corticosterone (CORT) disrupt reward-based decision-making in rats when tested in a rat model of the Iowa Gambling Task (rIGT), i.e., rats do not learn across trial blocks to avoid the long-term disadvantageous option. This effect was associated with a change in neuronal activity in prefrontal brain areas, i.e., the infralimbic (IL), lateral orbitofrontal (lOFC) and insular cortex, as assessed by changes in c-Fos expression. Here, we studied whether injections of CORT directly into the IL and lOFC lead to similar changes in decision-making. As in our earlier study, CORT was injected during the final 3 days of the behavioral paradigm, 25 min prior to behavioral testing. Infusions of vehicle into the IL led to a decreased number of visits to the disadvantageous arm across trial blocks, while infusion with CORT did not. Infusions into the lOFC did not lead to differences in the number of visits to the disadvantageous arm between vehicle treated and CORT treated rats. However, compared to vehicle treated rats of the IL group, performance of vehicle treated rats of the lOFC group was impaired, possibly due to cannulation/infusion-related damage of the lOFC affecting decision-making. Overall, these results show that infusions with CORT into the IL are sufficient to disrupt decision-making performance, pointing to a critical role of the IL in corticosteroid effects on reward-based decision-making. The data do not directly support that the same holds true for infusions into the lOFC.

  14. Sensory convergence in the parieto-insular vestibular cortex

    PubMed Central

    Shinder, Michael E.

    2014-01-01

    Vestibular signals are pervasive throughout the central nervous system, including the cortex, where they likely play different roles than they do in the better studied brainstem. Little is known about the parieto-insular vestibular cortex (PIVC), an area of the cortex with prominent vestibular inputs. Neural activity was recorded in the PIVC of rhesus macaques during combinations of head, body, and visual target rotations. Activity of many PIVC neurons was correlated with the motion of the head in space (vestibular), the twist of the neck (proprioceptive), and the motion of a visual target, but was not associated with eye movement. PIVC neurons responded most commonly to more than one stimulus, and responses to combined movements could often be approximated by a combination of the individual sensitivities to head, neck, and target motion. The pattern of visual, vestibular, and somatic sensitivities on PIVC neurons displayed a continuous range, with some cells strongly responding to one or two of the stimulus modalities while other cells responded to any type of motion equivalently. The PIVC contains multisensory convergence of self-motion cues with external visual object motion information, such that neurons do not represent a specific transformation of any one sensory input. Instead, the PIVC neuron population may define the movement of head, body, and external visual objects in space and relative to one another. This comparison of self and external movement is consistent with insular cortex functions related to monitoring and explains many disparate findings of previous studies. PMID:24671533

  15. Autonomic and brain responses associated with empathy deficits in autism spectrum disorder

    PubMed Central

    Eilam‐Stock, Tehila; Zhou, Thomas; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Hof, Patrick R.; Friston, Karl J.

    2015-01-01

    Abstract Accumulating evidence suggests that autonomic signals and their cortical representations are closely linked to emotional processes, and that related abnormalities could lead to social deficits. Although socio‐emotional impairments are a defining feature of autism spectrum disorder (ASD), empirical evidence directly supporting the link between autonomic, cortical, and socio‐emotional abnormalities in ASD is still lacking. In this study, we examined autonomic arousal indexed by skin conductance responses (SCR), concurrent cortical responses measured by functional magnetic resonance imaging, and effective brain connectivity estimated by dynamic causal modeling in seventeen unmedicated high‐functioning adults with ASD and seventeen matched controls while they performed an empathy‐for‐pain task. Compared to controls, adults with ASD showed enhanced SCR related to empathetic pain, along with increased neural activity in the anterior insular cortex, although their behavioral empathetic pain discriminability was reduced and overall SCR was decreased. ASD individuals also showed enhanced correlation between SCR and neural activities in the anterior insular cortex. Importantly, significant group differences in effective brain connectivity were limited to greater reduction in the negative intrinsic connectivity of the anterior insular cortex in the ASD group, indicating a failure in attenuating anterior insular responses to empathetic pain. These results suggest that aberrant interoceptive precision, as indexed by abnormalities in autonomic activity and its central representations, may underlie empathy deficits in ASD. Hum Brain Mapp 36:3323–3338, 2015. © 2015 The Authors Human Brain Mapping Published byWiley Periodicals, Inc. PMID:25995134

  16. MEG Coherence and DTI Connectivity in mTLE

    PubMed Central

    Nazem-Zadeh, Mohammad-Reza; Bowyer, Susan M.; Moran, John E.; Davoodi-Bojd, Esmaeil; Zillgitt, Andrew; Weiland, Barbara J.; Bagher-Ebadian, Hassan; Mahmoudi, Fariborz; Elisevich, Kost; Soltanian-Zadeh, Hamid

    2017-01-01

    Purpose Magnetoencephalography (MEG) is a noninvasive imaging method for localization of focal epileptiform activity in patients with epilepsy. Diffusion tensor imaging (DTI) is a noninvasive imaging method for measuring the diffusion properties of the underlying white matter tracts through which epileptiform activity is propagated. This study investigates the relationship between the cerebral functional abnormalities quantified by MEG coherence and structural abnormalities quantified by DTI in mesial temporal lobe epilepsy (mTLE). Methods Resting state MEG data was analyzed using MEG coherence source imaging (MEG-CSI) method to determine the coherence in 54 anatomical sites in 17 adult mTLE patients with surgical resection and Engel class I outcome, and 17 age- and gender- matched controls. DTI tractography identified the fiber tracts passing through these same anatomical sites of the same subjects. Then, DTI nodal degree and laterality index were calculated and compared with the corresponding MEG coherence and laterality index. Results MEG coherence laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in insular cortex and both lateral orbitofrontal and superior temporal gyri (p<0.017). Likewise, DTI nodal degree laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in gyrus rectus, insular cortex, precuneus and superior temporal gyrus (p<0.017). In insular cortex, MEG coherence laterality correlated with DTI nodal degree laterality (R2 = 0.46; p = 0.003) in the cases of mTLE. None of these anatomical sites showed statistically significant differences in coherence laterality between right and left sides of the controls. Coherence laterality was in agreement with the declared side of epileptogenicity in insular cortex (in 82% of patients) and both lateral orbitofrontal (88%) and superior temporal gyri (88%). Nodal degree laterality was also in agreement with the declared side of epileptogenicity in gyrus rectus (in 88% of patients), insular cortex (71%), precuneus (82%) and superior temporal gyrus (94%). Combining all significant laterality indices improved the lateralization accuracy to 94% and 100% for the coherence and nodal degree laterality indices, respectively. Conclusion The associated variations in diffusion properties of fiber tracts quantified by DTI and coherence measures quantified by MEG with respect to epileptogenicity possibly reflect the chronic microstructural cerebral changes associated with functional interictal activity. The proposed methodology for using MEG and DTI to investigate diffusion abnormalities related to focal epileptogenicity and propagation may provide a further means of noninvasive lateralization. PMID:27060092

  17. Dopaminergic Modulation of Risky Decision-Making

    PubMed Central

    Simon, Nicholas W.; Montgomery, Karienn S.; Beas, Blanca S.; Mitchell, Marci R.; LaSarge, Candi L.; Mendez, Ian A.; Bañuelos, Cristina; Vokes, Colin M.; Taylor, Aaron B.; Haberman, Rebecca P.; Bizon, Jennifer L.; Setlow, Barry

    2012-01-01

    Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a “Risky Decision-making Task” that involves choices between small “safe” rewards and large “risky” rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity. Systemic activation of D2-like receptors robustly attenuated risk-taking, whereas drugs acting on D1-like receptors had no effect. Systemic amphetamine also reduced risk-taking, an effect which was attenuated by D2-like (but not D1-like) receptor blockade. Dopamine receptor mRNA expression was evaluated in a separate cohort of drug-naive rats characterized in the task. D1 mRNA expression in both nucleus accumbens shell and insular cortex was positively associated with risk-taking, while D2 mRNA expression in orbitofrontal and medial prefrontal cortex predicted risk preference in opposing nonlinear patterns. Additionally, lower levels of D2 mRNA in dorsal striatum were associated with greater risk-taking. These data strongly implicate dopamine signaling in prefrontal corticalstriatal circuitry in modulating decision-making processes involving integration of reward information with risks of adverse consequences. PMID:22131407

  18. Insular Cortex Metabolite Changes in Obstructive Sleep Apnea

    PubMed Central

    Yadav, Santosh K.; Kumar, Rajesh; Macey, Paul M.; Woo, Mary A.; Yan-Go, Frisca L.; Harper, Ronald M.

    2014-01-01

    Study Objective: Adults with obstructive sleep apnea (OSA) show significant autonomic and neuropsychologic deficits, which may derive from damage to insular regions that serve those functions. The aim was to assess glial and neuronal status from anterior insular metabolites in OSA versus controls, using proton magnetic resonance spectroscopy (PMRS), and thus to provide insights for neuroprotection against tissue changes, and to reduce injury consequences. Design: Cross-sectional study. Setting: University-based medical center. Participants: Thirty-six patients with OSA, 53 controls. Interventions: None. Measurements and Results: We performed PMRS in bilateral anterior insulae using a 3.0-Tesla magnetic resonance imaging scanner, calculated N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho/Cr), myo-inositol/creatine (MI/Cr), and MI/NAA metabolite ratios, and examined daytime sleepiness (Epworth Sleepiness Scale, ESS), sleep quality (Pittsburgh Sleep Quality Index, PSQI), and neuropsychologic status (Beck Depression Inventory II [BDI-II] and Beck Anxiety Inventory [BAI]). Body mass index, BAI, BDI-II, PSQI, and ESS significantly differed between groups. NAA/ Cr ratios were significantly reduced bilaterally, and left-sided MI/Cr and MI/NAA ratios were increased in OSA over controls. Significant positive correlations emerged between left insular MI/Cr ratios and apnea-hypopnea index values, right insular Cho/Cr ratios and BDI-II and BAI scores, and negative correlations appeared between left insular NAA/Cr ratios and PSQI scores and between right-side MI/Cr ratios and baseline and nadir change in O2 saturation. Conclusions: Adults with obstructive sleep apnea showed bilaterally reduced N-acetylaspartate and left-side increased myo-inositol anterior insular metabolites, indicating neuronal damage and increased glial activation, respectively, which may contribute to abnormal autonomic and neuropsychologic functions in the condition. The activated glial status likely indicates increased inflammatory action that may induce more neuronal injury, and suggests separate approaches for glial and neuronal protection. Citation: Yadav SK, Kumar R, Macey PM, Woo MA, Yan-Go FL, Harper RM. Insular cortex metabolite changes in obstructive sleep apnea. SLEEP 2014;37(5):951-958. PMID:24790274

  19. Microglia in the Cerebral Cortex in Autism

    ERIC Educational Resources Information Center

    Tetreault, Nicole A.; Hakeem, Atiya Y.; Jiang, Sue; Williams, Brian A.; Allman, Elizabeth; Wold, Barbara J.; Allman, John M.

    2012-01-01

    We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had…

  20. The role of the GABAergic and dopaminergic systems in the brain response to an intragastric load of alcohol in conscious rats.

    PubMed

    Tsurugizawa, T; Uematsu, A; Uneyama, H; Torii, K

    2010-12-01

    The brain's response to ethanol intake has been extensively investigated using electrophysiological recordings, brain lesion techniques, and c-Fos immunoreactivity. However, few studies have investigated this phenomenon using functional magnetic resonance imaging (fMRI). In the present study, we used fMRI to investigate the blood oxygenation level-dependent (BOLD) signal response to an intragastric (IG) load of ethanol in conscious, ethanol-naive rats. An intragastrically infused 10% ethanol solution induced a significant decrease in the intensity of the BOLD signal in several regions of the brain, including the bilateral amygdala (AMG), nucleus accumbens (NAc), hippocampus, ventral pallidum, insular cortex, and cingulate cortex, and an increase in the BOLD signal in the ventral tegmental area (VTA) and hypothalamic regions. Treatment with bicuculline, which is an antagonist of the gamma-aminobutyric acid A (GABA(A)) receptor, increased the BOLD signal intensity in the regions that had shown decreases in the BOLD signal after the IG infusion of 10% ethanol solution, but it did not affect the BOLD signal increase in the hypothalamus. Treatment with SCH39166, which is an antagonist of D1-like receptors, eliminated the increase in the BOLD signal intensity in the hypothalamic areas but did not affect the BOLD signal decrease following the 10% ethanol infusion. These results indicate that an IG load of ethanol caused both a GABA(A) receptor-mediated BOLD decrease in the limbic system and the cortex and a D1-like receptor-mediated BOLD increase in the hypothalamic regions in ethanol-naive rats. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Anxiety sensitivity correlates with two indices of right anterior insula structure in specific animal phobia.

    PubMed

    Rosso, Isabelle M; Makris, Nikos; Britton, Jennifer C; Price, Lauren M; Gold, Andrea L; Zai, David; Bruyere, John; Deckersbach, Thilo; Killgore, William D S; Rauch, Scott L

    2010-12-01

    Anxiety sensitivity (AS) is a dispositional trait involving fear of anxiety-related symptoms. Functional imaging research suggests that the activity of the anterior insular cortex, particularly the right insula, may both mediate AS and play a role in the pathophysiology of phobias. However, no imaging studies have examined whether AS relates to insula morphology. We examined whether AS was significantly correlated with right anterior insula volume and thickness among adults with specific animal phobia (SAP) and healthy comparison (HC) subjects. Nineteen adults with SAP and 20 demographically group-matched HC subjects underwent magnetic resonance imaging at 3 Tesla. Subjects also completed the Anxiety Sensitivity Index (ASI). Regression and correlation analyses examined ASI scores in relation to anterior and posterior insular cortex volume and thickness within and across subject groups. SAP subjects had significantly higher ASI scores than HC, but did not differ in terms of insula volumes or thickness. ASI scores predicted right anterior insula thickness in SAP but not HC subjects, and right anterior insula volume in the sample as a whole. Correlations of ASI scores with the anterior and posterior insula volume and thickness were not significant in either group. These findings suggest that the right anterior insular cortex size is a neural substrate of AS within specific phobia, rather than an independent diagnostic marker of the disorder. Future investigations should examine whether heightened AS represents a shared intermediate phenotype across anxiety disorders, manifesting functionally as increased insular reactivity and clinically as a fear of anxiety symptoms. © 2010 Wiley-Liss, Inc.

  2. Anxiety sensitivity correlates with two indices of right anterior insula structure in specific animal phobia

    PubMed Central

    Rosso, Isabelle M.; Makris, Nikos; Britton, Jennifer C.; Price, Lauren M.; Gold, Andrea L.; Zai, David; Bruyere, John; Deckersbach, Thilo; Killgore, William D. S.; Rauch, Scott L.

    2010-01-01

    Background Anxiety sensitivity (AS) is a dispositional trait involving fear of anxiety-related symptoms. Functional imaging research suggests that activity of the anterior insular cortex, particularly the right insula, may both mediate AS and play a role in the pathophysiology of phobias. However, no imaging studies have examined whether AS relates to insula morphology. We examined whether AS was significantly correlated with right anterior insula volume and thickness among adults with specific animal phobia (SAP) and healthy comparison (HC) subjects. Methods Nineteen adults with SAP and 20 demographically group-matched HC subjects underwent magnetic resonance imaging (MRI) at 3 Tesla. Subjects also completed the Anxiety Sensitivity Index (ASI). Regression and correlation analyses examined ASI scores in relation to anterior and posterior insular cortex volume and thickness within and across subject groups. Results SAP subjects had significantly higher ASI scores than HC, but did not differ in terms of insula volumes or thickness. ASI scores predicted right anterior insula thickness in SAP but not HC subjects, and right anterior insula volume in the sample as a whole. Correlations of ASI scores with left anterior and posterior insula volume and thickness were not significant in either group. Conclusions These findings suggest that right anterior insular cortex size is a neural substrate of AS within specific phobia, rather than an independent diagnostic marker of the disorder. Future investigations should examine whether heightened AS represents a shared intermediate phenotype across anxiety disorders, manifesting functionally as increased insular reactivity and clinically as a fear of anxiety symptoms. PMID:21132846

  3. Anterior Insular Cortex and Emotional Awareness

    PubMed Central

    Gu, Xiaosi; Hof, Patrick R.; Friston, Karl J.; Fan, Jin

    2014-01-01

    This paper reviews the foundation for a role of the human anterior insular cortex (AIC) in emotional awareness, defined as the conscious experience of emotions. We first introduce the neuroanatomical features of AIC and existing findings on emotional awareness. Using empathy, the awareness and understanding of other people’s emotional states, as a test case, we then present evidence to demonstrate: 1) AIC and anterior cingulate cortex (ACC) are commonly coactivated as revealed by a meta-analysis, 2) AIC is functionally dissociable from ACC, 3) AIC integrates stimulus-driven and top-down information, and 4) AIC is necessary for emotional awareness. We propose a model in which AIC serves two major functions: integrating bottom-up interoceptive signals with top-down predictions to generate a current awareness state and providing descending predictions to visceral systems that provide a point of reference for autonomic reflexes. We argue that AIC is critical and necessary for emotional awareness. PMID:23749500

  4. Right insular damage decreases heartbeat awareness and alters cardio-visual effects on bodily self-consciousness.

    PubMed

    Ronchi, Roberta; Bello-Ruiz, Javier; Lukowska, Marta; Herbelin, Bruno; Cabrilo, Ivan; Schaller, Karl; Blanke, Olaf

    2015-04-01

    Recent evidence suggests that multisensory integration of bodily signals involving exteroceptive and interoceptive information modulates bodily aspects of self-consciousness such as self-identification and self-location. In the so-called Full Body Illusion subjects watch a virtual body being stroked while they perceive tactile stimulation on their own body inducing illusory self-identification with the virtual body and a change in self-location towards the virtual body. In a related illusion, it has recently been shown that similar changes in self-identification and self-location can be observed when an interoceptive signal is used in association with visual stimulation of the virtual body (i.e., participants observe a virtual body illuminated in synchrony with their heartbeat). Although brain imaging and neuropsychological evidence suggest that the insular cortex is a core region for interoceptive processing (such as cardiac perception and awareness) as well as for self-consciousness, it is currently not known whether the insula mediates cardio-visual modulation of self-consciousness. Here we tested the involvement of insular cortex in heartbeat awareness and cardio-visual manipulation of bodily self-consciousness in a patient before and after resection of a selective right neoplastic insular lesion. Cardio-visual stimulation induced an abnormally enhanced state of bodily self-consciousness; in addition, cardio-visual manipulation was associated with an experienced loss of the spatial unity of the self (illusory bi-location and duplication of his body), not observed in healthy subjects. Heartbeat awareness was found to decrease after insular resection. Based on these data we propose that the insula mediates interoceptive awareness as well as cardio-visual effects on bodily self-consciousness and that insular processing of interoceptive signals is an important mechanism for the experienced unity of the self. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Delay discounting mediates the association between posterior insular cortex volume and social media addiction symptoms.

    PubMed

    Turel, Ofir; He, Qinghua; Brevers, Damien; Bechara, Antoine

    2018-04-25

    Addiction-like symptoms in relation to excessive and compulsive social media use are common in the general population. Because they can lead to various adverse effects, there is a growing need to understand the brain systems and processes that are involved in potential social media addiction. We focus on the morphology of the posterior subdivision of the insular cortex (i.e., the insula), because it has been shown to be instrumental to supporting the maintenance of substance addictions and problematic behaviors. Assuming that social media addiction shares neural similarities with more established ones and consistent with evidence from the neuroeconomics domain, we further examine one possible reason for this association-namely that insular morphology influences one's delay discounting and that this delay discounting contributes to exaggerated preference for immediate social media rewards and consequent addiction-like symptoms. Based on voxel-based morphometry techniques applied to MRI scans of 32 social media users, we show that the gray matter volumes of the bilateral posterior insula are negatively associated with social media addiction symptoms. We further show that this association is mediated by delay discounting. This provides initial evidence that insular morphology can be associated with potential social media addiction, in part, through its contribution to poor foresight and impulsivity as captured by delay discounting.

  6. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: relationship to structural plasticity and immediate early gene expression in frontal cortex.

    PubMed

    Hamilton, Derek A; Akers, Katherine G; Rice, James P; Johnson, Travis E; Candelaria-Cook, Felicha T; Maes, Levi I; Rosenberg, Martina; Valenzuela, C Fernando; Savage, Daniel D

    2010-03-05

    The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Repeated experience with novel cage-mates resulted in comparable increases in wrestling and social investigation among saccharin- and ethanol-exposed females, whereas social behavioral effects among males were more evident in ethanol-exposed animals. Male ethanol-exposed rats also displayed profound increases in wrestling when social interaction was motivated by 24h of isolation. Baseline decreases in dendritic length and spine density in AID were observed in ethanol-exposed rats that were always housed with the same cage-mate. Modest experience-related decreases in dendritic length and spine density in AID were observed in saccharin-exposed rats housed with various cage-mates. In contrast, fetal-ethanol-exposed rats displayed experience-related increases in dendritic length in AID, and no experience-related changes in spine density. The only effect observed in Cg3 was a baseline increase in basilar dendritic length among male ethanol-exposed rats. Robust increases in activity-related IEG expression in AID (c-fos and Arc) and Cg3 (c-fos) were observed following social interaction in saccharin-exposed rats, however, activity-related increases in IEG expression were not observed in fetal-ethanol-exposed rats in either region. The results indicate that deficits in social behavior are among the long-lasting behavioral consequences of moderate ethanol exposure during brain development, and implicate AID, and to a lesser degree Cg3, in fetal-ethanol-related social behavior abnormalities. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Incentive memory: evidence the basolateral amygdala encodes and the insular cortex retrieves outcome values to guide choice between goal-directed actions.

    PubMed

    Parkes, Shauna L; Balleine, Bernard W

    2013-05-15

    Choice between goal-directed actions is determined by the relative value of their consequences. Such values are encoded during incentive learning and later retrieved to guide performance. Although the basolateral amygdala (BLA) and the gustatory region of insular cortex (IC) have been implicated in these processes, their relative contribution is still a matter of debate. Here we assessed whether these structures interact during incentive learning and retrieval to guide choice. In these experiments, rats were trained on two actions for distinct outcomes after which one of the two outcomes was devalued by specific satiety immediately before a choice extinction test. We first confirmed that, relative to appropriate controls, outcome devaluation recruited both the BLA and IC based on activation of the immediate early gene Arc; however, we found that infusion of the NMDAr antagonist ifenprodil into the BLA only abolished outcome devaluation when given before devaluation. In contrast, ifenprodil infusion into the IC was effective whether made before devaluation or test. We hypothesized that the BLA encodes and the IC retrieves incentive value for choice and, to test this, developed a novel sequential disconnection procedure. Blocking NMDAr activation unilaterally in the BLA before devaluation and then contralaterally in the IC before test abolished selective devaluation. In contrast, reversing the order of these infusions left devaluation intact. These results confirm that the BLA and IC form a circuit mediating the encoding and retrieval of outcome values, with the BLA encoding and the IC retrieving such values to guide choice.

  8. How can we explain the frontal presentation of insular lobe epilepsy? The impact of non-linear analysis of insular seizures.

    PubMed

    Hagiwara, Koichi; Jung, Julien; Bouet, Romain; Abdallah, Chifaou; Guénot, Marc; Garcia-Larrea, Luis; Mauguière, François; Rheims, Sylvain; Isnard, Jean

    2017-05-01

    For a decade it has been known that the insular lobe epilepsy can mimic frontal lobe epilepsy. We aimed to clarify the pattern of functional coupling occurring during the frontal presentation. We analyzed five insular lobe epilepsy patients. Frontal semiology was predominant for three of them, whereas insular semiology was predominant for the two others. We applied the non-linear regression analysis to stereoelectroencephalography-recorded seizures. A directed functional coupling index was calculated during clonic discharge periods that were accompanied either with frontal or insular semiology. We found significant functional coupling between the insula and mesial frontal/cingulate regions, with the former being a leader region for seizures propagation. Extra-insular regions showed significantly less or even no coupling with the mesial hemispheric regions. The three patients with frontal semiology showed strong couplings with the mesial frontal as well as cingulate regions, including the medial orbitofrontal cortex, pre-SMA/SMA, and the anterior to posterior cingulate. The two patients with the insular semiology only showed couplings between the insula and cingulate regions. The frontal semiology was expressed by strong functional couplings between the insula and mesial frontal regions. The insular origin of seizure should be considered in cryptogenic mesial frontal epilepsies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  9. Preserved Self-Awareness following Extensive Bilateral Brain Damage to the Insula, Anterior Cingulate, and Medial Prefrontal Cortices

    PubMed Central

    Khalsa, Sahib S.; Damasio, Antonio; Tranel, Daniel; Landini, Gregory; Williford, Kenneth

    2012-01-01

    It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex (mPFC). Such a proposal predicts that damage to these regions should disrupt or even abolish SA. We tested this prediction in a rare neurological patient with extensive bilateral brain damage encompassing the insula, ACC, mPFC, and the medial temporal lobes. In spite of severe amnesia, which partially affected his “autobiographical self”, the patient's SA remained fundamentally intact. His Core SA, including basic self-recognition and sense of self-agency, was preserved. His Extended SA and Introspective SA were also largely intact, as he has a stable self-concept and intact higher-order metacognitive abilities. The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA. Our findings are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices. PMID:22927899

  10. Differential neural responses to food images in women with bulimia versus anorexia nervosa.

    PubMed

    Brooks, Samantha J; O'Daly, Owen G; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C R; Schiöth, Helgi B; Treasure, Janet; Campbell, Iain C

    2011-01-01

    Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.

  11. Probabilistic Tractography Recovers a Rostrocaudal Trajectory of Connectivity Variability in the Human Insular Cortex

    PubMed Central

    Cerliani, Leonardo; Thomas, Rajat M; Jbabdi, Saad; Siero, Jeroen CW; Nanetti, Luca; Crippa, Alessandro; Gazzola, Valeria; D'Arceuil, Helen; Keysers, Christian

    2012-01-01

    The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white-matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans. In each subject and hemisphere, we recovered a rostrocaudal trajectory of connectivity variation ranging from the anterior dorsal and ventral insula to the dorsal caudal part of the long insular gyri. LE suggested that regional transitions among tractography patterns in the insula occur more gradually than in other brain regions. In particular, the change in tractography patterns was more gradual in the insula than in the medial premotor region, where a sharp transition between different tractography patterns was found. The recovered trajectory of connectivity variation in the insula suggests a relation between connectivity and cytoarchitecture in humans resembling that previously found in macaques: tractography seeds from the anterior insula were mainly found in limbic and paralimbic regions and in anterior parts of the inferior frontal gyrus, while seeds from caudal insular territories mostly reached parietal and posterior temporal cortices. Regions in the putative dysgranular insula displayed more heterogeneous connectivity patterns, with regional differences related to the proximity with either putative granular or agranular regions. Hum Brain Mapp 33:2005–2034, 2012. © 2011 Wiley Periodicals, Inc. PMID:21761507

  12. Imaging of odor perception delineates functional disintegration of the limbic circuits in mesial temporal lobe epilepsy.

    PubMed

    Ciumas, Carolina; Lindström, Per; Aoun, Bernard; Savic, Ivanka

    2008-01-15

    Metabolic and neuro-receptor abnormalities within the extrafocal limbic circuits are established in mesial temporal lobe epilepsy (MTLE). However, very little is known about how these circuits process external stimuli. We tested whether odor activation can help delineate limbic functional disintegration in MTLE, and measured cerebral blood flow with PET during birhinal smelling of familiar and unfamiliar odors, using smelling of odorless air as the baseline condition. Patients with MTLE (13 left-sided, 10 right-sided) and 21 controls were investigated. In addition to odor activation, the analysis included functional connectivity, using right and left piriform cortex as seed regions. Healthy controls activated the amygdala, piriform, anterior insular, and cingulate cortices on both sides. Smelling of familiar odors engaged, in addition, the right parahippocampus, and the left Brodmann Area (BA) 44, 45, 47. Patients failed to activate the amygdala, piriform and the anterior insular cortex in the epileptogenic hemisphere. Furthermore, those with left MTLE did not activate the left BA 44, 45 and 47 with familiar odors, which they perceived as less familiar than controls. Congruent with the activation data each seed region was in patients functionally disconnected with the contralateral amygdala+piriform+insular cortex. The functional disintegration in patients exceeded the reduced activation, and included the contralateral temporal neocortex, and in subjects with right MTLE also the right orbitofrontal cortex. Imaging of odor perception may be used to delineate functional disintegration of the limbic networks in MTLE. It shows an altered response in several regions, which may underlie some interictal behavioral problems associated with this condition.

  13. [Changes of brain function and cognitive function after carotid artery stenting].

    PubMed

    Lu, Z X; Deng, G; Wei, H L; Zhao, G F; Wen, L Z; Chen, X

    2017-10-24

    Objective: To investigate the effect of carotid artery stenting(CAS) on cognitive function and brain function based on changes of a battery of neuropsychological tests and magnetic resonance imaging. Methods: Thirty-three patients were included with 17 in the stent-placement group and 16 in the control group (receiving medical treatment), among whom, the unilateral or bilateral severe internal carotid artery stenosis was confirmed by cerebral vascular angiography in the department of Interventional Radiology and Vascular Surgery of Zhongda Hospital Southeast University from June 2015 to September 2016.Neuropsychological tests and rest-state blood oxygenation level dependent fMRI were performed at the baseline and six months follow-up.The baseline characteristics and follow-up changes were compared in each group. Results: The overall cognitive function of the stent-placement group was statistically significantly improved ( P <0.05) compared with control group, mainly in the executive function, memory, attention and other aspects.The value of amplitude of low-frequency fluctuation(ALFF) showed statistically significant increase ( P <0.05, Alphasim correction) in left prefrontal cortex ( t =5.861 3, P <0.05), the somatosensory association cortex in left superior parietal lobe( t =5.601 2, P <0.05) and bilateral motor cortical area in posterior frontal lobe ( t =5.288 5, P <0.05). The ALFF showed statistically significant decrease ( P <0.05, Alphasim correction) in left retrosplenial cingulate cortex( t =-5.590 4, P <0.05), left insular cortex ( t =-6.340 8, P <0.05), right insular cortex ( t =-8.129 9, P <0.05) and left dorsal anterior cingulate cortex ( t =-5.584 8, P <0.05). There was no statistically significant difference ( P >0.05, Alphasim correction)between baseline and follow-up results in control group.Besides, the ALFF changes of the left insular cortex ( r =-0.591, P =0.033) and bilateral motor cortical area ( r =-0.659, P =0.014) were negatively correlated with auditory verb learning test (AVLT) score changes.The ALFF change of bilateral motor cortical area was negatively correlated with the AVLT-delay score change ( r =-0.588, P =0.034). And the ALFF change on right insular cortex and the frontal assessment battery (FAB) score change was positively correlated ( r =0.638, P =0.025). Conclusions: The overall cognitive function of patients with carotid artery stenosis significantly improve after CAS compared with medical treatment.The change of ALFF value in related brain area is also statistically significant.ALFF Change most in area of Default Mode Network may suggest a mechanism of postoperative neurological recovery in patients with carotid artery stenosis.

  14. N-Oleoyl-glycine reduces nicotine reward and withdrawal in mice.

    PubMed

    Donvito, Giulia; Piscitelli, Fabiana; Muldoon, Pretal; Jackson, Asti; Vitale, Rosa Maria; D'Aniello, Enrico; Giordano, Catia; Ignatowska-Jankowska, Bogna M; Mustafa, Mohammed A; Guida, Francesca; Petrie, Gavin N; Parker, Linda; Smoum, Reem; Sim-Selley, Laura; Maione, Sabatino; Lichtman, Aron H; Damaj, M Imad; Di Marzo, Vincenzo; Mechoulam, Raphael

    2018-03-19

    Cigarette smokers with brain damage involving the insular cortex display cessation of tobacco smoking, suggesting that this region may contribute to nicotine addiction. In the present study, we speculated that molecules in the insular cortex that are sensitive to experimental traumatic brain injury (TBI) in mice might provide leads to ameliorate nicotine addiction. Using targeted lipidomics, we found that TBI elicited substantial increases of a largely uncharacterized lipid, N-acyl-glycine, N-oleoyl-glycine (OlGly), in the insular cortex of mice. We then evaluated whether intraperitoneal administration of OlGly would alter withdrawal responses in nicotine-dependent mice as well as the rewarding effects of nicotine, as assessed in the conditioned place preference paradigm (CPP). Systemic administration of OlGly reduced mecamylamine-precipitated withdrawal responses in nicotine-dependent mice and prevented nicotine CPP. However, OlGly did not affect morphine CPP, demonstrating a degree of selectivity. Our respective in vitro and in vivo observations that OlGly activated peroxisome proliferator-activated receptor alpha (PPAR-α) and the PPAR-α antagonist GW6471 prevented the OlGly-induced reduction of nicotine CPP in mice suggests that this lipid acts as a functional PPAR-α agonist to attenuate nicotine reward. These findings raise the possibility that the long chain fatty acid amide OlGly may possess efficacy in treating nicotine addiction. Copyright © 2018. Published by Elsevier Ltd.

  15. Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex.

    PubMed

    Ramírez-Lugo, Leticia; Peñas-Rincón, Ana; Ángeles-Durán, Sandybel; Sotres-Bayon, Francisco

    2016-10-12

    The ability to select an appropriate behavioral response guided by previous emotional experiences is critical for survival. Although much is known about brain mechanisms underlying emotional associations, little is known about how these associations guide behavior when several choices are available. To address this, we performed local pharmacological inactivations of several cortical regions before retrieval of an aversive memory in choice-based versus no-choice-based conditioned taste aversion (CTA) tasks in rats. Interestingly, we found that inactivation of the orbitofrontal cortex (OFC), but not the dorsal or ventral medial prefrontal cortices, blocked retrieval of choice CTA. However, OFC inactivation left retrieval of no-choice CTA intact, suggesting its role in guiding choice, but not in retrieval of CTA memory. Consistently, OFC activity increased in the choice condition compared with no-choice, as measured with c-Fos immunolabeling. Notably, OFC inactivation did not affect choice behavior when it was guided by innate taste aversion. Consistent with an anterior insular cortex (AIC) involvement in storing taste memories, we found that AIC inactivation impaired retrieval of both choice and no-choice CTA. Therefore, this study provides evidence for OFC's role in guiding choice behavior and shows that this is dissociable from AIC-dependent taste aversion memory. Together, our results suggest that OFC is required and recruited to guide choice selection between options of taste associations relayed from AIC. Survival and mental health depend on being able to choose stimuli not associated with danger. This is particularly important when danger is associated with stimuli that we ingest. Although much is known about the brain mechanisms that underlie associations with dangerous taste stimuli, very little is known about how these stored emotional associations guide behavior when it involves choice. By combining pharmacological and immunohistochemistry tools with taste-guided tasks, our study provides evidence for the key role of orbitofrontal cortex activity in choice behavior and shows that this is dissociable from the adjacent insular cortex-dependent taste aversion memory. Understanding the brain mechanisms that underlie the impact that emotional associations have on survival choice behaviors may lead to better treatments for mental disorders characterized by emotional decision-making deficits. Copyright © 2016 the authors 0270-6474/16/3610574-10$15.00/0.

  16. The Psychoactive Designer Drug and Bath Salt Constituent MDPV Causes Widespread Disruption of Brain Functional Connectivity

    PubMed Central

    Colon-Perez, Luis M; Tran, Kelvin; Thompson, Khalil; Pace, Michael C; Blum, Kenneth; Goldberger, Bruce A; Gold, Mark S; Bruijnzeel, Adriaan W; Setlow, Barry; Febo, Marcelo

    2016-01-01

    The abuse of ‘bath salts' has raised concerns because of their adverse effects, which include delirium, violent behavior, and suicide ideation in severe cases. The bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) has been closely linked to these and other adverse effects. The abnormal behavioral pattern produced by acute high-dose MDPV intake suggests possible disruptions of neural communication between brain regions. Therefore, we determined if MDPV exerts disruptive effects on brain functional connectivity, particularly in areas of the prefrontal cortex. Male rats were imaged following administration of a single dose of MDPV (0.3, 1.0, or 3.0 mg/kg) or saline. Resting state brain blood oxygenation level-dependent (BOLD) images were acquired at 4.7 T. To determine the role of dopamine transmission in MDPV-induced changes in functional connectivity, a group of rats received the dopamine D1/D2 receptor antagonist cis-flupenthixol (0.5 mg/kg) 30 min before MDPV. MDPV dose-dependently reduced functional connectivity. Detailed analysis of its effects revealed that connectivity between frontal cortical and striatal areas was reduced. This included connectivity between the prelimbic prefrontal cortex and other areas of the frontal cortex and the insular cortex with hypothalamic, ventral, and dorsal striatal areas. Although the reduced connectivity appeared widespread, connectivity between these regions and somatosensory cortex was not as severely affected. Dopamine receptor blockade did not prevent the MDPV-induced decrease in functional connectivity. The results provide a novel signature of MDPV's in vivo mechanism of action. Reduced brain functional connectivity has been reported in patients suffering from psychosis and has been linked to cognitive dysfunction, audiovisual hallucinations, and negative affective states akin to those reported for MDPV-induced intoxication. The present results suggest that disruption of functional connectivity networks involving frontal cortical and striatal regions could contribute to the adverse effects of MDPV. PMID:26997298

  17. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study.

    PubMed

    Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu

    2018-04-23

    Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Gender differences in functional connectivities between insular subdivisions and selective pain-related brain structures.

    PubMed

    Dai, Yu-Jie; Zhang, Xin; Yang, Yang; Nan, Hai-Yan; Yu, Ying; Sun, Qian; Yan, Lin-Feng; Hu, Bo; Zhang, Jin; Qiu, Zi-Yu; Gao, Yi; Cui, Guang-Bin; Chen, Bi-Liang; Wang, Wen

    2018-03-14

    The incidence of pain disorders in women is higher than in men, making gender differences in pain a research focus. The human insular cortex is an important brain hub structure for pain processing and is divided into several subdivisions, serving different functions in pain perception. Here we aimed to examine the gender differences of the functional connectivities (FCs) between the twelve insular subdivisions and selected pain-related brain structures in healthy adults. Twenty-six healthy males and 11 age-matched healthy females were recruited in this cross-sectional study. FCs between the 12 insular subdivisions (as 12 regions of interest (ROIs)) and the whole brain (ROI-whole brain level) or 64 selected pain-related brain regions (64 ROIs, ROI-ROI level) were measured between the males and females. Significant gender differences in the FCs of the insular subdivisions were revealed: (1) The FCs between the dorsal dysgranular insula (dId) and other brain regions were significantly increased in males using two different techniques (ROI-whole brain and ROI-ROI analyses); (2) Based on the ROI-whole brain analysis, the FC increases in 4 FC-pairs were observed in males, including the left dId - the right median cingulate and paracingulate/ right posterior cingulate gyrus/ right precuneus, the left dId - the right median cingulate and paracingulate, the left dId - the left angular as well as the left dId - the left middle frontal gyrus; (3) According to the ROI-ROI analysis, increased FC between the left dId and the right rostral anterior cingulate cortex was investigated in males. In summary, the gender differences in the FCs of the insular subdivisions with pain-related brain regions were revealed in the current study, offering neuroimaging evidence for gender differences in pain processing. ClinicalTrials.gov, NCT02820974 . Registered 28 June 2016.

  19. Rat brain imaging using full field optical coherence microscopy with short multimode fiber probe

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Saito, Daisuke; Kurotani, Reiko; Abe, Hiroyuki; Kawauchi, Satoko; Sato, Shunichi; Nishidate, Izumi

    2017-02-01

    We demonstrated FF OCM(full field optical coherence microscopy) using an ultrathin forward-imaging SMMF (short multimode fiber) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length, which is a typical graded-index multimode fiber for optical communications. The axial resolution was measured to be 2.20 μm, which is close to the calculated axial resolution of 2.06 μm. The lateral resolution was evaluated to be 4.38 μm using a test pattern. Assuming that the FWHM of the contrast is the DOF (depth of focus), the DOF of the signal is obtained at 36 μm and that of the OCM is 66 μm. The contrast of the OCT images was 6.1 times higher than that of the signal images due to the coherence gate. After an euthanasia the rat brain was resected and cut at 2.6mm tail from Bregma. Contacting SMMF to the primary somatosensory cortex and the agranular insular cortex of ex vivo brain, OCM images of the brain were measured 100 times with 2μm step. 3D OCM images of the brain were measured, and internal structure information was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in full-field OCM has been demonstrated.

  20. Differential Neural Responses to Food Images in Women with Bulimia versus Anorexia Nervosa

    PubMed Central

    Brooks, Samantha J.; O′Daly, Owen G.; Uher, Rudolf; Friederich, Hans-Christoph; Giampietro, Vincent; Brammer, Michael; Williams, Steven C. R.; Schiöth, Helgi B.; Treasure, Janet; Campbell, Iain C.

    2011-01-01

    Background Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known. Methods We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI). Results In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area. Conclusions Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating. PMID:21799807

  1. Effect of Right Insular Involvement on Death and Functional Outcome After Acute Ischemic Stroke in the IST-3 Trial (Third International Stroke Trial).

    PubMed

    Sposato, Luciano A; Cohen, Geoffrey; Wardlaw, Joanna M; Sandercock, Peter; Lindley, Richard I; Hachinski, Vladimir

    2016-12-01

    In patients with acute ischemic stroke, whether involvement of the insular cortex influences outcome is controversial. Much of the apparent adverse outcome may relate to such strokes usually being severe. We examined the influence of right and left insular involvement on stroke outcomes among patients from the IST-3 study (Third International Stroke Trial) who had visible ischemic stroke on neuroimaging. We used multiple logistic regression to compare outcomes of left versus right insular and noninsular strokes across strata of stroke severity, on death, proportion dead or dependent, and level of disability (ordinalized Oxford Handicap Score) at 6 months, with adjustment for the effects of age, lesion size, and presence of atrial fibrillation. Of 3035 patients recruited, 2099 had visible ischemic strokes limited to a single hemisphere on computed tomography/magnetic resonance scans. Of these, 566 and 714 had infarction of right and left insula. Six months after randomization, right insular involvement was associated with increased odds of death when compared with noninsular strokes on the left side (adjusted odds ratio, 1.83; 95% confidence interval, 1.33-2.52), whereas the adjusted odds ratio comparing mortality after insular versus noninsular strokes on the left side was not significant. Among mild/moderate strokes, outcomes for right insular involvement were worse than for left insular, but among more severe strokes, the difference in outcomes was less substantial. We found an association between right insular involvement and higher odds of death and worse functional outcome. The difference between right- and left-sided insular lesions on outcomes seemed to be most evident for mild/moderate strokes. URL: http://www.isrctn.com. Unique identifier: ISRCTN25765518. © 2016 American Heart Association, Inc.

  2. Insular subdivisions functional connectivity dysfunction within major depressive disorder.

    PubMed

    Peng, Xiaolong; Lin, Pan; Wu, Xiaoping; Gong, Ruxue; Yang, Rui; Wang, Jue

    2018-02-01

    Major depressive disorder (MDD) is a mental disorder characterized by cognitive and affective deficits. Previous studies suggested that insula is a crucial node of the salience network for initiating network switching, and dysfunctional connection to this region may be related to the mechanism of MDD. In this study, we systematically investigated and quantified the altered functional connectivity (FC) of the specific insular subdivisions and its relationship to psychopathology of MDD. Resting-state FC of insular subdivisions, including bilateral ventral/dorsal anterior insula and posterior insula, were estimated in 19 MDD patients and 19 healthy controls. Abnormal FC was quantified between groups. Additionally, we investigated the relationships between insular connectivity and depressive symptom severity. MDD patients demonstrated aberrant FC for insular subdivisions to superior temporal sulcus, inferior prefrontal gyrus, amygdala and posterior parietal cortex. Moreover, depression symptoms (Hamilton Depression Rating Scale and Hamilton Anxiety Rating Scale scorers) were associated with the FC values of insular subdivisions. First, the sample size of our current study is relatively small, which may affect the statistic power. Second, using standardized insular subdivision seeds for FC analyses may neglect subtle natural differences in size and location of functional area across individuals and may thus affect connectivity maps. Abnormal FC of insular subdivisions to default network and central executive network may represent impaired intrinsic networks switching which may affect the underlying emotional and sensory disturbances in MDD. And our findings can help to understand the pathophysiology and underlying neural mechanisms of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The role of the dorsal anterior insula in sexual risk: Evidence from an erotic Go/NoGo task and real-world risk-taking.

    PubMed

    Xue, Feng; Droutman, Vita; Barkley-Levenson, Emily E; Smith, Benjamin J; Xue, Gui; Miller, Lynn C; Bechara, Antoine; Lu, Zhong-Lin; Read, Stephen J

    2018-04-01

    The insula plays an important role in response inhibition. Most relevant here, it has been proposed that the dorsal anterior insular cortex (dAIC) plays a central role in a salience network that is responsible for switching between the default mode network and the executive control network. However, the insula's role in sexually motivated response inhibition has not yet been studied. In this study, eighty-five 18- to 30-year-old sexually active men who have sex with men (MSM) performed an erotic Go/NoGo task while in an MRI scanner. Participants' real-world sexual risk-taking (frequency of condomless anal intercourse over the past 90 days) was then correlated with their neural activity during the task. We found greater activity in bilateral anterior insular cortex (both dorsal and ventral) on contrasts with stronger motivational information (attractive naked male pictures versus pictures of clothed, middle-aged females) and on contrasts requiring greater response inhibition (NoGo versus Go). We also found that activity in the right dAIC was negatively correlated with participants' real-world sexual risk-taking. Our results confirmed the involvement of the insular cortex in motivated response inhibition. Especially, the decreased right dAIC activity may reduce the likelihood that the executive control network will come online when individuals are faced with situations requiring inhibitory control and thus lead them to make more risky choices. © 2018 Wiley Periodicals, Inc.

  4. Distortion of time interval reproduction in an epileptic patient with a focal lesion in the right anterior insular/inferior frontal cortices.

    PubMed

    Monfort, Vincent; Pfeuty, Micha; Klein, Madelyne; Collé, Steffie; Brissart, Hélène; Jonas, Jacques; Maillard, Louis

    2014-11-01

    This case report on an epileptic patient suffering from a focal lesion at the junction of the right anterior insular cortex (AIC) and the adjacent inferior frontal cortex (IFC) provides the first evidence that damage to this brain region impairs temporal performance in a visual time reproduction task in which participants had to reproduce the presentation duration (3, 5 and 7s) of emotionally-neutral and -negative pictures. Strikingly, as compared to a group of healthy subjects, the AIC/IFC case considerably overestimated reproduction times despite normal variability. The effect was obtained in all duration and emotion conditions. Such a distortion in time reproduction was not observed in four other epileptic patients without insular or inferior frontal damage. Importantly, the absolute extent of temporal over-reproduction increased in proportion to the magnitude of the target durations, which concurs with the scalar property of interval timing, and points to an impairment of time-specific rather than of non temporal (such as motor) mechanisms. Our data suggest that the disability in temporal reproduction of the AIC/IFC case would result from a distorted memory representation of the encoded duration, occurring during the process of storage and/or of recovery from memory and leading to a deviation of the temporal judgment during the reproduction task. These findings support the recent proposal that the anterior insular/inferior frontal cortices would be involved in time interval representation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training

    PubMed Central

    Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D.

    2013-01-01

    A common source of variance (i.e., “general intelligence”) underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals’ GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training. PMID:24129098

  6. Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training.

    PubMed

    Wass, Christopher; Pizzo, Alessandro; Sauce, Bruno; Kawasumi, Yushi; Sturzoiu, Tudor; Ree, Fred; Otto, Tim; Matzel, Louis D

    2013-10-15

    A common source of variance (i.e., "general intelligence") underlies an individual's performance across diverse tests of cognitive ability, and evidence indicates that the processing efficacy of working memory may serve as one such source of common variance. One component of working memory, selective attention, has been reported to co-vary with general intelligence, and dopamine D1 signaling in prefrontal cortex can modulate attentional abilities. Based on their aggregate performance across five diverse tests of learning, here we characterized the general cognitive ability (GCA) of CD-1 outbred mice. In response to a D1 agonist (SKF82958, 1 mg/kg), we then assessed the relationship between GCA and activation of D1 receptor (D1R)-containing neurons in the prelimbic region of the medial prefrontal cortex, the agranular insular cortex, and the dorsomedial striatum. Increased activation of D1R-containing neurons in the prelimbic cortex (but not the agranular insular cortex or dorsomedial striatum) was observed in animals of high GCA relative to those of low GCA (quantified by c-Fos activation in response to the D1 agonist). However, a Western blot analysis revealed no differences in the density of D1Rs in the prelimbic cortex between animals of high and low GCA. Last, it was observed that working memory training promoted an increase in animals' GCA and enhanced D1R-mediated neuronal activation in the prelimbic cortex. These results suggest that the sensitivity (but not density) of D1Rs in the prelimbic cortex may both regulate GCA and be a target for working memory training.

  7. Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback.

    PubMed

    Berman, Brian D; Horovitz, Silvina G; Hallett, Mark

    2013-01-01

    The capacity for subjects to learn to volitionally control localized brain activity using neurofeedback is actively being investigated. We aimed to investigate the ability of healthy volunteers to quickly learn to use visual feedback during real-time functional MRI (rtfMRI) to modulate brain activity within their anterior right insular cortex (RIC) localized during a blink suppression task, an approach of possible interest in the use of rtfMRI to reduce urges. The RIC region of interest (RIC-ROI) was functionally localized using a blink suppression task, and blood-oxygen level dependent (BOLD) signal changes within RIC-ROI used to create a constantly updating display fed back to the subject in the scanner. Subjects were instructed to use emotional imagery to try and increase activity within RIC-ROI during four feedback training runs (FB1-FB4). A "control" run (CNTRL) before training and a "transfer" run (XSFR) after training were performed without feedback to assess for baseline abilities and learning effects. Fourteen participants completed all neurofeedback training runs. At the group-level, increased BOLD activity was seen in the anterior RIC during all the FB runs, but a significant increase in the functionally defined RIC-ROI was only attained during FB2. In atlas-defined insular cortex ROIs, significant increases were seen bilaterally during the CNTRL, FB1, FB2, and FB4 runs. Increased activity within the insular cortices did not show lateralization. Training did, however, result in a significant increase in functional connectivity between the RIC-ROI and the medial frontal gyrus when comparing FB4 to FB1. Since neurofeedback training did not lead to an increase in BOLD signal across all feedback runs, we suggest that learning to control one's brain activity in this fashion may require longer or repeated rtfMRI training sessions.

  8. The agranular and granular insula differentially contribute to gambling-like behavior on a rat slot machine task: effects of inactivation and local infusion of a dopamine D4 agonist on reward expectancy.

    PubMed

    Cocker, P J; Lin, M Y; Barrus, M M; Le Foll, B; Winstanley, C A

    2016-09-01

    Rats, like humans, are susceptible to the reinforcing effects of reward-related stimuli presented within a compound stimulus array, putatively analogous to the so-called near-miss effect. We have previously demonstrated using a rodent slot machine task (rSMT) that the reward expectancy these stimuli elicit is critically mediated by the dopamine D4 receptor. D4 receptors are principally located in prefrontal regions activated during slot machine play in humans, such as the insular cortex. The insula has recently attracted considerable interest as it appears to play a crucial role in substance and behavioral addictions. However, the insula is a heterogeneous area, and the relative contributions of subregions to addictive behaviors are unclear. Male Long Evans rats were trained to perform the rSMT, and then bilateral cannula targeting either the granular or agranular insula were implanted. The effects of inactivation and local administration of a D4 agonist were investigated. Temporary inactivation of the agranular, but not the granular insula impaired performance on the rSMT. In contrast, local infusion of the D4 agonist PD168077 into the agranular insula had no effect on task performance, but when administered into the granular insula, it improved animals' ability to differentiate winning from non-winning trials. The agranular insula may therefore modulate decision making when conflicting stimuli are present, potentially due to its role in generating a cohesive emotional percept based on both externally and internally generated signals, whereas the granular insular is not critical for this process. Nevertheless, D4 receptors within the granular insula may amplify the incentive salience of aversive environmental stimuli. These data provide insight into the neurobiological mechanism underpinning maladaptive reward expectancy during gambling and provide further evidence that D4 receptors represent a potential target for developing pharmacotherapies for problem gambling.

  9. Extrinsic Origins of the Somatostatin and Neuropeptide Y innervation of the Rat Basolateral Amygdala

    PubMed Central

    McDonald, Alexander J.; Zaric, Violeta

    2015-01-01

    The amygdalar basolateral nuclear complex (BLC) is a cortex-like structure that receives inputs from many cortical areas. It has long been assumed that cortico-amygdalar projections, as well as inter-areal intracortical connections, arise from cortical pyramidal cells. However, recent studies have shown that GABAergic long-range nonpyramidal neurons (LRNP neurons) in the cortex also contribute to inter-areal connections. The present study combined Fluorogold (FG) retrograde tract tracing with immunohistochemistry for cortical nonpyramidal neuronal markers to determine if cortical LRNP neurons project to the BLC in the rat. Injections of FG into the BLC produced widespread retrograde labeling in the cerebral hemispheres and diencephalon. Triple-labeling for FG, somatostatin (SOM), and neuropeptide Y (NPY) revealed a small number of FG+/SOM+/NPY+ neurons and FG+/SOM+/NPY− neurons in the lateral entorhinal area, amygdalopiriform transition area, and piriform cortex, but not in the prefrontal and insular cortices, or in the diencephalon. In addition, FG+/SOM+/NPY+ neurons were observed in the amygdalostriatal transition area and in a zone surrounding the intercalated nuclei. About half of the SOM+ neurons in the lateral entorhinal area labeled by FG were GABA+. FG+ neurons containing parvalbumin were only seen in the basal forebrain, and no FG+ neurons containing vasoactive intestinal peptide were observed in any brain region. Since LRNP neurons involved in corticocortical connections are critical for synchronous oscillations that allow temporal coordination between distant cortical regions, the LRNP neurons identified in this study may play a role in the synchronous oscillations of the BLC and hippocampal region that are involved in the retrieval of fear memories. PMID:25769940

  10. Suckling induced activation pattern in the brain of rat pups.

    PubMed

    Barna, János; Renner, Eva; Arszovszki, Antónia; Cservenák, Melinda; Kovács, Zsolt; Palkovits, Miklós; Dobolyi, Arpád

    2018-06-01

    The aim of the study was to understand the effects of suckling on the brain of the pups by mapping their brain activation pattern in response to suckling. The c-fos method was applied to identify activated neurons. Fasted rat pups were returned to their mothers for suckling and sacrificed 2 hours later for Fos immunohistochemistry. Double labeling was also performed to characterize some of the activated neurons. For comparison, another group of fasted pups were given dry food before Fos mapping. After suckling, we found an increase in the number of Fos-immunoreactive neurons in the insular and somatosensory cortices, central amygdaloid nucleus (CAm), paraventricular (PVN) and supraoptic hypothalamic nuclei, lateral parabrachial nucleus (LPB), nucleus of the solitary tract (NTS), and the area postrema. Double labeling experiments demonstrated the activation of calcitonin gene-related peptide-ir (CGRP-ir) neurons in the LPB, corticotropin-releasing hormone-ir (CRH-ir) but not oxytocin-ir neurons in the PVN, and noradrenergic neurons in the NTS. In the CAm, Fos-ir neurons did not contain CRH but were apposed to CGRP-ir fiber terminals. Refeeding with dry food-induced Fos activation in all brain areas activated by suckling. The degree of activation was higher following dry food consumption than suckling in the insular cortex, and lower in the supraoptic nucleus and the NTS. Furthermore, the accumbens, arcuate, and dorsomedial hypothalamic nuclei, and the lateral hypothalamic area, which were not activated by suckling, showed activation by dry food. Neurons in a number of brain areas are activated during suckling, and may participate in the signaling of satiety, taste perception, reward, food, and salt balance regulation.

  11. Autogenic training alters cerebral activation patterns in fMRI.

    PubMed

    Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R

    2010-10-01

    Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness.

  12. [Dostoyevsky's epilepsy in the light of recent neurobiological data].

    PubMed

    Tényi, Dalma; Rajna, Péter; Janszky, József; Horváth, Zsuzsanna; Tényi, Tamás; Gyimesi, Csilla

    2014-01-30

    Since the 1960s several theories have developed on the epilepsy of Fyodor Mikhailovich Dostoyevsky. Probably the most exciting and still actual question might be the subject of the "ecstatic aura", he described in his novels based on his own experiences. During this extremely rare seizure onset the patients experience a strong sense of happiness, harmony and wholeness. The symptomatogenic zone of ecstatic seizures were considered to be of temporal lobe origin for a long time. Lately though this theory seems to be questioned based on the results of SPECT and deep brain EEG monitoring techniques in addition to the enrichment of our knowledge concerning the function of the insular cortex. Literary and scientific overview on the subject of Dostoyevsky's epilepsy, with special concern to his ecstatic seizures. According to new electrophysiology and imaging techniques ecstatic seizures--including the seizure onset of Dostoyevsky--could rather be connected to the insular cortex.

  13. The insula modulates arousal-induced reluctance to try novel tastes through adrenergic transmission in the rat

    PubMed Central

    Rojas, Sebastián; Diaz-Galarce, Raúl; Jerez-Baraona, Juan Manuel; Quintana-Donoso, Daisy; Moraga-Amaro, Rodrigo; Stehberg, Jimmy

    2015-01-01

    Reluctance to try novel tastes (neophobia) can be exacerbated in arousing situations, such as when children are under social stress or in rodents, when the new taste is presented in a high arousal context (HA) compared to a low arousal context (LA). The present study aimed at determining whether adrenergic transmission at the Insula regulates the reluctance to try novel tastes induced by arousing contexts. To this end, a combination of systemic and intra-insular manipulations of adrenergic activity was performed before the novel taste (saccharin 0.1%) was presented either in LA or HA contexts in rats. Our results show that systemic adrenergic activity modulates reluctance to try novel tastes. Moreover, intra-insular microinjections of propranolol or norepinephrine (NE) were found to modulate the effects of arousing contexts on reluctance to try novel tastes. Finally, intra-insular propranolol blocked epinephrine-induced increased reluctance, while intra-insular NE blocked oral propranolol-induced decreases in reluctance and increased the reluctance to try novel tastes presented in low arousing contexts. In conclusion, our results suggest that the insula is a critical site for regulating the effects of arousal in the reluctance to try novel tastes via the adrenergic system. PMID:26175672

  14. Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: a systematic meta-analysis of fMRI studies.

    PubMed

    Brooks, S J; Savov, V; Allzén, E; Benedict, C; Fredriksson, R; Schiöth, H B

    2012-02-01

    Functional Magnetic Resonance Imaging (fMRI) demonstrates that the subliminal presentation of arousing stimuli can activate subcortical brain regions independently of consciousness-generating top-down cortical modulation loops. Delineating these processes may elucidate mechanisms for arousal, aberration in which may underlie some psychiatric conditions. Here we are the first to review and discuss four Activation Likelihood Estimation (ALE) meta-analyses of fMRI studies using subliminal paradigms. We find a maximum of 9 out of 12 studies using subliminal presentation of faces contributing to activation of the amygdala, and also a significantly high number of studies reporting activation in the bilateral anterior cingulate, bilateral insular cortex, hippocampus and primary visual cortex. Subliminal faces are the strongest modality, whereas lexical stimuli are the weakest. Meta-analyses independent of studies using Regions of Interest (ROI) revealed no biasing effect. Core neuronal arousal in the brain, which may be at first independent of conscious processing, potentially involves a network incorporating primary visual areas, somatosensory, implicit memory and conflict monitoring regions. These data could provide candidate brain regions for the study of psychiatric disorders associated with aberrant automatic emotional processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Neurobiological correlates of cognitions in fear and anxiety: a cognitive-neurobiological information-processing model.

    PubMed

    Hofmann, Stefan G; Ellard, Kristen K; Siegle, Greg J

    2012-01-01

    We review likely neurobiological substrates of cognitions related to fear and anxiety. Cognitive processes are linked to abnormal early activity reflecting hypervigilance in subcortical networks involving the amygdala, hippocampus, and insular cortex, and later recruitment of cortical regulatory resources, including activation of the anterior cingulate cortex and prefrontal cortex to implement avoidant response strategies. Based on this evidence, we present a cognitive-neurobiological information-processing model of fear and anxiety, linking distinct brain structures to specific stages of information processing of perceived threat.

  16. Effort-based cost-benefit valuation and the human brain

    PubMed Central

    Croxson, Paula L; Walton, Mark E; O'Reilly, Jill X; Behrens, Timothy EJ; Rushworth, Matthew FS

    2010-01-01

    In both the wild and the laboratory, animals' preferences for one course of action over another reflect not just reward expectations but also the cost in terms of effort that must be invested in pursuing the course of action. The ventral striatum and dorsal anterior cingulate cortex (ACCd) are implicated in the making of cost-benefit decisions in the rat but there is little information about how effort costs are processed and influence calculations of expected net value in other mammals including the human. We carried out a functional magnetic resonance imaging (fMRI) study to determine whether and where activity in the human brain was available to guide effort-based cost-benefit valuation. Subjects were scanned while they performed a series of effortful actions to obtain secondary reinforcers. At the beginning of each trial, subjects were presented with one of eight different visual cues which they had learned indicated how much effort the course of action would entail and how much reward could be expected at its completion. Cue-locked activity in the ventral striatum and midbrain reflected the net value of the course of action, signaling the expected amount of reward discounted by the amount of effort to be invested. Activity in ACCd also reflected the interaction of both expected reward and effort costs. Posterior orbitofrontal and insular activity, however, only reflected the expected reward magnitude. The ventral striatum and anterior cingulate cortex may be the substrate of effort-based cost-benefit valuation in primates as well as in rats. PMID:19357278

  17. Altered insular activation and increased insular functional connectivity during sad and happy face processing in adolescent major depressive disorder.

    PubMed

    Henje Blom, Eva; Connolly, Colm G; Ho, Tiffany C; LeWinn, Kaja Z; Mobayed, Nisreen; Han, Laura; Paulus, Martin P; Wu, Jing; Simmons, Alan N; Yang, Tony T

    2015-06-01

    Major depressive disorder (MDD) is a leading cause of disability worldwide and occurs commonly first during adolescence. The insular cortex (IC) plays an important role in integrating emotion processing with interoception and has been implicated recently in the pathophysiology of adult and adolescent MDD. However, no studies have yet specifically examined the IC in adolescent MDD during processing of faces in the sad-happy continuum. Thus, the aim of the present study is to investigate the IC during sad and happy face processing in adolescents with MDD compared to healthy controls (HCL). Thirty-one adolescents (22 female) with MDD and 36 (23 female) HCL underwent a well-validated emotional processing fMRI paradigm that included sad and happy face stimuli. The MDD group showed significantly less differential activation of the anterior/middle insular cortex (AMIC) in response to sad versus happy faces compared to the HCL group. AMIC also showed greater functional connectivity with right fusiform gyrus, left middle frontal gyrus, and right amygdala/parahippocampal gyrus in the MDD compared to HCL group. Moreover, differential activation to sad and happy faces in AMIC correlated negatively with depression severity within the MDD group. Small age-range and cross-sectional nature precluded assessment of development of the AMIC in adolescent depression. Given the role of the IC in integrating bodily stimuli with conscious cognitive and emotional processes, our findings of aberrant AMIC function in adolescent MDD provide a neuroscientific rationale for targeting the AMIC in the development of new treatment modalities. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The anterior insula bidirectionally modulates cost-benefit decision-making on a rodent gambling task.

    PubMed

    Daniel, M L; Cocker, P J; Lacoste, J; Mar, A C; Houeto, J L; Belin-Rauscent, A; Belin, D

    2017-11-01

    Deficits in cost-benefit decision-making, as assessed in the Iowa Gambling Task (IGT), are commonly observed in neuropsychiatric disorders such as addiction. There is considerable variation in the maximization of rewards on such tasks, both in the general population and in rodent models, suggesting individual differences in decision-making may represent a key endophenotype for vulnerability to neuropsychiatric disorders. Increasing evidence suggests that the insular cortex, which is involved in interoception and emotional processes in humans, may be a key neural locus in the control of decision-making processes. However, the extent to which the insula contributes to individual differences in cost-benefit decision-making remains unknown. Using male Sprague Dawley rats, we first assessed individual differences in the performance over the course of a single session on a rodent analogue of the IGT (rGT). Rats were matched for their ability to maximize reward and received bilateral excitotoxic or sham lesions of the anterior insula cortex (AIC). Animals were subsequently challenged on a second rGT session with altered contingencies. Finally, animals were also assessed for instrumental conditioning and reversal learning. AIC lesions produced bidirectional alterations on rGT performance; rats that had performed optimally prior to surgery subsequently showed impairments, and animals that had performed poorly showed improvements in comparison with sham-operated controls. These bidirectional effects were not attributable to alterations in behavioural flexibility or in motivation. These data suggest that the recruitment of the AIC during decision-making may be state-dependent and help guide response selection towards subjectively favourable options. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Lateral, not medial, prefrontal cortex contributes to punishment and aversive instrumental learning

    PubMed Central

    Jean-Richard-dit-Bressel, Philip

    2016-01-01

    Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral agranular insular (RAIC), prelimbic (PL), and infralimbic (IL) cortex in instrumental aversive learning and decision-making. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused mild punishment (punished lever) but continued pressing the other lever that did not cause punishment (unpunished lever). Inactivations of OFC, RAIC, IL, or PL via the GABA agonists baclofen and muscimol (BM) had no effect on the acquisition of instrumental learning. OFC inactivations increased responding on the punished lever during expression of well-learned instrumental aversive learning, whereas RAIC inactivations increased responding on the punished lever when both levers were presented simultaneously in an unpunished choice test. There were few effects of medial PFC (PL and IL) inactivation. These results suggest that lateral PFC, notably OFC and RAIC, have complementary functions in aversive instrumental learning and decision-making; OFC is important for using established aversive instrumental memories to guide behavior away from actions that cause punishment, whereas RAIC is important for aversive decision-making under conditions of choice. PMID:27918280

  20. Neural correlates of appetitive-aversive interactions in Pavlovian fear conditioning.

    PubMed

    Nasser, Helen M; McNally, Gavan P

    2013-03-19

    We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of fear responses was retarded in rats that had received Stage I appetitive training. This counterconditioning was associated with increased levels of phosphorylated mitogen activated protein kinase immunoreactivity (pMAPK-IR) in several brain regions, including midline thalamus, rostral agranular insular cortex (RAIC), lateral amygdala, and nucleus accumbens core and shell, but decreased expression in the ventrolateral quadrant of the midbrain periaqueductal gray. These brain regions showing differential pMAPK-IR have previously been identified as part of the fear prediction error circuit. We then examined the causal role of RAIC MAPK in fear learning and showed that Stage II fear learning was prevented by RAIC infusions of the MEK inhibitor PD098059 (0.5 µg/hemisphere). Taken together, these results show that there are opponent interactions between the appetitive and aversive motivational systems during fear learning and that the transformation of a reward CS into a fear CS is linked to heightened activity in the fear prediction error circuit.

  1. Does unilateral insular resection disturb personality? A study with epileptic patients.

    PubMed

    Hébert-Seropian, Benjamin; Boucher, Olivier; Sénéchal, Carole; Rouleau, Isabelle; Bouthillier, Alain; Lepore, Franco; Nguyen, Dang Khoa

    2017-09-01

    The insula is now regarded as a potential site of epileptogenesis in drug-resistant epilepsy, and the advent of microsurgical techniques has allowed insular cortectomy to become a treatment of choice when the insular cortex is involved in the seizure focus. However, considering the evidence of an insular role in socio-emotional processing, it remains unknown whether these cortical resections disturb personality and social behavior as experienced in daily life. We examined such changes in a group of patients (n=19) who underwent epilepsy surgery involving partial or complete resection of the insula, and compared them to a group of patients who underwent standard temporal lobe epilepsy (TLE) surgery (n=19) as a lesion-control group. Participants were assessed on the Iowa Scales of Personality Change, filled by a close relative at least six months after surgery. While postoperative changes did not significantly differ between groups on any of the ISPC items, insular resections were associated with mild but significant increases in irritability, emotional lability, anxiety, and frugality postoperatively, which, apart from anxiety, were not significant among TLE patients. Our results are congruent with the idea that the insula contributes to emotion processing. To our knowledge, this study is the first to systematically assess personality changes in a consecutive sample of patients with insular resections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Impaired anterior insular activation during risky decision making in young adults with internet gaming disorder.

    PubMed

    Lee, Deokjong; Lee, Junghan; Yoon, Kang Joon; Kee, Namkoong; Jung, Young-Chul

    2016-05-25

    Internet gaming disorder is defined as excessive and compulsive use of the internet to engage in games that leads to clinically significant psychosocial impairment. We tested the hypothesis that individuals with internet gaming disorder would be less sensitive to high-risk situations and show aberrant brain activation related to risk prediction processing. Young adults with internet gaming disorder underwent functional MRI while performing a risky decision-making task. The healthy control group showed stronger activations within the dorsal attention network and the anterior insular cortex, which were not found in the internet gaming disorder group. Our findings imply that young adults with internet gaming disorder show impaired anterior insular activation during risky decision making, which might make them vulnerable when they need to adapt new behavioral strategies in high-risk situations.

  3. Cingulo-insular structural alterations associated with psychogenic symptoms, childhood abuse and PTSD in functional neurological disorders.

    PubMed

    Perez, David L; Matin, Nassim; Barsky, Arthur; Costumero-Ramos, Victor; Makaretz, Sara J; Young, Sigrid S; Sepulcre, Jorge; LaFrance, W Curt; Keshavan, Matcheri S; Dickerson, Bradford C

    2017-06-01

    Adverse early-life events are predisposing factors for functional neurological disorder (FND) and post-traumatic stress disorder (PTSD). Cingulo-insular regions are implicated in the biology of both conditions and are sites of stress-mediated neuroplasticity. We hypothesised that functional neurological symptoms and the magnitude of childhood abuse would be associated with overlapping anterior cingulate cortex (ACC) and insular volumetric reductions, and that FND and PTSD symptoms would map onto distinct cingulo-insular areas. This within-group voxel-based morphometry study probes volumetric associations with self-report measures of functional neurological symptoms, adverse life events and PTSD symptoms in 23 mixed-gender FND patients. Separate secondary analyses were also performed in the subset of 18 women with FND to account for gender-specific effects. Across the entire cohort, there were no statistically significant volumetric associations with self-report measures of functional neurological symptom severity or childhood abuse. In women with FND, however, parallel inverse associations were observed between left anterior insular volume and functional neurological symptoms as measured by the Patient Health Questionnaire-15 and the Screening for Somatoform Symptoms Conversion Disorder subscale. Similar inverse relationships were also appreciated between childhood abuse burden and left anterior insular volume. Across all subjects, PTSD symptom severity was inversely associated with dorsal ACC volume, and the magnitude of lifetime adverse events was inversely associated with left hippocampal volume. This study reveals distinct cingulo-insular alterations for FND and PTSD symptoms and may advance our understanding of FND. Potential biological convergence between stress-related neuroplasticity, functional neurological symptoms and reduced insular volume was identified. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex.

    PubMed

    Kirsch, V; Keeser, D; Hergenroeder, T; Erat, O; Ertl-Wagner, B; Brandt, T; Dieterich, M

    2016-04-01

    Structural and functional interconnections of the bilateral central vestibular network have not yet been completely delineated. This includes both ipsilateral and contralateral pathways and crossing sites on the way from the vestibular nuclei via the thalamic relay stations to multiple "vestibular cortex" areas. This study investigated "vestibular" connectivity in the living human brain in between the vestibular nuclei and the parieto-insular vestibular cortex (PIVC) by combined structural and functional connectivity mapping using diffusion tensor imaging and functional connectivity magnetic resonance imaging in 24 healthy right-handed volunteers. We observed a congruent functional and structural link between the vestibular nuclei and the ipsilateral and contralateral PIVC. Five separate and distinct vestibular pathways were identified: three run ipsilaterally, while the two others cross either in the pons or the midbrain. Two of the ipsilateral projections run through the posterolateral or paramedian thalamic subnuclei, while the third bypasses the thalamus to reach the inferior part of the insular cortex directly. Both contralateral pathways travel through the posterolateral thalamus. At the cortical level, the PIVC regions of both hemispheres with a right hemispherical dominance are interconnected transcallosally through the antero-caudal splenium. The above-described bilateral vestibular circuitry in its entirety takes the form of a structure of a rope ladder extending from the brainstem to the cortex with three crossings in the brainstem (vestibular nuclei, pons, midbrain), none at thalamic level and a fourth cortical crossing through the splenium of the corpus callosum.

  5. Distribution of Fos-immunoreactive neurons in the gustatory cortex elicited by intra-oral infusion of taste solutions in conscious rats.

    PubMed

    King, Michael S

    2018-03-15

    The location of neurons in the gustatory cortex (GC) activated by intra-oral infusion of solutions in conscious rats was mapped using Fos immunohistochemistry. Groups of adult male Wistar rats (N's = 5) received an infusion of one of the following: dH 2 O, 0.1 or 1.0 M NaCl, 0.1 or 1.0 M sucrose, 0.32 M MSG (with 100 µM amiloride and 2.5 M inosine 5'-monophosphate), 0.03 M HCl, or 0.003 M QHCl delivered via an intra-oral cannula (0.233 ml/min for 5 min). Unstimulated control rats received no infusion. Taste reactivity (TR) behaviors were videotaped and scored. The number of Fos-immunoreactive (Fos-IR) neurons was counted in eight sections throughout the anterior-posterior extent of the GC in the medial and lateral halves of the granular (GI), dysgranular (DI), and dorsal (AID) and ventral (AIV) agranular insular cortices. Intra-oral infusion of dH 2 O, NaCl, or sucrose altered the number of Fos-IR neurons in only specific subareas of the GC and the effects of these tastants were concentration-dependent. For example, 1.0 M NaCl increased Fos-IR neurons in the posterior lateral AID and DI and elicited more aversive TR responses than 0.1 M NaCl. Compared to dH 2 O, infusions of HCl or QHCl increased the total number of Fos-IR neurons in many subareas of the GC throughout its anterior-posterior extent and increased aversive TR behaviors. Linear regression analyses suggested that neurons in the medial AID of the posterior GC may influence aversive behavioral responses to HCl and QHCl while neurons in the posterior lateral AID and DI may play a role in aversive TR responses to 1.0 M NaCl. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Suppressive responses by visual food cues in postprandial activities of insular cortex as revealed by magnetoencephalography.

    PubMed

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Watanabe, Yasuyoshi

    2014-06-03

    'Hara-Hachibu' in Japanese means a subjective sense by which we stop eating just before the motivation to eat is completely lost, a similar concept to caloric restriction (CR). Insular cortex is a critical platform which integrates sensory information into decision-making processes in eating behavior. We compared the responses of insular cortex, as assessed by magnetoencephalography (MEG), immediately after presentation of food images in the Fasting condition with those in the 'Hara-Hachibu' condition. Eleven healthy, right-handed males [age, 27.2±9.6 years; body mass index, 22.6±2.1kg/m(2) (mean±SD)] were enrolled in a randomized, two-crossover experiment (Fasting and 'Hara-Hachibu' conditions). Before the MEG recordings in the 'Hara-Hachibu' condition, the participants consumed rice balls as much as they judged themselves to have consumed shortly before reaching satiety. During the MEG recordings, they viewed food pictures projected on a screen. The intensities of MEG responses to viewing food pictures were significantly lower in the 'Hara-Hachibu' condition than those in the Fasting condition (P<0.05). The intensities of the MEG responses to the visual food stimuli in the 'Hara-Hachibu' condition was positively associated with the factor-3 (food tasted) (r=0.693, P=0.018) and aggregated scores (r=0.659, P=0.027) of the Power of Food Scale, a self-report measure of hedonic hunger. These findings may help to elucidate the neural basis of variability of appetite phenotypes under the condition of CR among individuals, and to develop possible strategies for the maintenance of adequate CR in daily life. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Witnessing hateful people in pain modulates brain activity in regions associated with physical pain and reward

    PubMed Central

    Fox, Glenn R.; Sobhani, Mona; Aziz-Zadeh, Lisa

    2013-01-01

    How does witnessing a hateful person in pain compare to witnessing a likable person in pain? The current study compared the brain bases for how we perceive likable people in pain with those of viewing hateful people in pain. While social bonds are built through sharing the plight and pain of others in the name of empathy, viewing a hateful person in pain also has many potential ramifications. In this functional Magnetic Resonance Imaging (fMRI) study, Caucasian Jewish male participants viewed videos of (1) disliked, hateful, anti-Semitic individuals, and (2) liked, non-hateful, tolerant individuals in pain. The results showed that, compared with viewing liked people, viewing hateful people in pain elicited increased responses in regions associated with observation of physical pain (the insular cortex, the anterior cingulate cortex (ACC), and the somatosensory cortex), reward processing (the striatum), and frontal regions associated with emotion regulation. Functional connectivity analyses revealed connections between seed regions in the left ACC and right insular cortex with reward regions, the amygdala, and frontal regions associated with emotion regulation. These data indicate that regions of the brain active while viewing someone in pain may be more active in response to the danger or threat posed by witnessing the pain of a hateful individual more so than the desire to empathize with a likable person's pain. PMID:24167496

  8. Correlation Between Activation of the Prelimbic Cortex, Basolateral Amygdala, and Agranular Insular Cortex During Taste Memory Formation.

    PubMed

    Uematsu, Akira; Kitamura, Akihiko; Iwatsuki, Ken; Uneyama, Hisayuki; Tsurugizawa, Tomokazu

    2015-09-01

    Conditioned taste aversion (CTA) is a well-established learning paradigm, whereby animals associate tastes with subsequent visceral illness. The prelimbic cortex (PL) has been shown to be involved in the association of events separated by time. However, the nature of PL activity and its functional network in the whole brain during CTA learning remain unknown. Here, using awake functional magnetic resonance imaging and fiber tracking, we analyzed functional brain connectivity during the association of tastes and visceral illness. The blood oxygen level-dependent (BOLD) signal significantly increased in the PL after tastant and lithium chloride (LiCl) infusions. The BOLD signal in the PL significantly correlated with those in the amygdala and agranular insular cortex (IC), which we found were also structurally connected to the PL by fiber tracking. To precisely examine these data, we then performed double immunofluorescence with a neuronal activity marker (c-Fos) and an inhibitory neuron marker (GAD67) combined with a fluorescent retrograde tracer in the PL. During CTA learning, we found an increase in the activity of excitatory neurons in the basolateral amygdala (BLA) or agranular IC that project to the PL. Taken together, these findings clearly identify a role of synchronized PL, agranular IC, and BLA activity in CTA learning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Distributed task coding throughout the multiple demand network of the human frontal-insular cortex.

    PubMed

    Stiers, Peter; Mennes, Maarten; Sunaert, Stefan

    2010-08-01

    The large variety of tasks that humans can perform is governed by a small number of key frontal-insular regions that are commonly active during task performance. Little is known about how this network distinguishes different tasks. We report on fMRI data in twelve participants while they performed four cognitive tasks. Of 20 commonly active frontal-insular regions in each hemisphere, five showed a BOLD response increase with increased task demands, regardless of the task. Although active in all tasks, each task invoked a unique response pattern across the voxels in each area that proved reliable in split-half multi-voxel correlation analysis. Consequently, voxels differed in their preference for one or more of the tasks. Voxel-based functional connectivity analyses revealed that same preference voxels distributed across all areas of the network constituted functional sub-networks that characterized the task being executed. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography.

    PubMed

    Ishii, Akira; Tanaka, Masaaki; Iwamae, Masayoshi; Kim, Chongsoo; Yamano, Emi; Watanabe, Yasuyoshi

    2013-06-13

    It has been proposed that an inappropriately conditioned fatigue sensation could be one cause of chronic fatigue. Although classical conditioning of the fatigue sensation has been reported in rats, there have been no reports in humans. Our aim was to examine whether classical conditioning of the mental fatigue sensation can take place in humans and to clarify the neural mechanisms of fatigue sensation using magnetoencephalography (MEG). Ten and 9 healthy volunteers participated in a conditioning and a control experiment, respectively. In the conditioning experiment, we used metronome sounds as conditioned stimuli and two-back task trials as unconditioned stimuli to cause fatigue sensation. Participants underwent MEG measurement while listening to the metronome sounds for 6 min. Thereafter, fatigue-inducing mental task trials (two-back task trials), which are demanding working-memory task trials, were performed for 60 min; metronome sounds were started 30 min after the start of the task trials (conditioning session). The next day, neural activities while listening to the metronome for 6 min were measured. Levels of fatigue sensation were also assessed using a visual analogue scale. In the control experiment, participants listened to the metronome on the first and second days, but they did not perform conditioning session. MEG was not recorded in the control experiment. The level of fatigue sensation caused by listening to the metronome on the second day was significantly higher relative to that on the first day only when participants performed the conditioning session on the first day. Equivalent current dipoles (ECDs) in the insular cortex, with mean latencies of approximately 190 ms, were observed in six of eight participants after the conditioning session, although ECDs were not identified in any participant before the conditioning session. We demonstrated that the metronome sounds can cause mental fatigue sensation as a result of repeated pairings of the sounds with mental fatigue and that the insular cortex is involved in the neural substrates of this phenomenon.

  11. Posterior insular cortex - a site of vestibular-somatosensory interaction?

    PubMed

    Baier, Bernhard; Zu Eulenburg, Peter; Best, Christoph; Geber, Christian; Müller-Forell, Wibke; Birklein, Frank; Dieterich, Marianne

    2013-09-01

    Background In previous imaging studies the insular cortex (IC) has been identified as an essential part of the processing of a wide spectrum of perception and sensorimotor integration. Yet, there are no systematic lesion studies in a sufficient number of patients examining whether processing of vestibular and the interaction of somatosensory and vestibular signals take place in the IC. Methods We investigated acute stroke patients with lesions affecting the IC in order to fill this gap. In detail, we explored signs of a vestibular tone imbalance such as the deviation of the subjective visual vertical (SVV). We applied voxel-lesion behaviour mapping analysis in 27 patients with acute unilateral stroke. Results Our data demonstrate that patients with lesions of the posterior IC have an abnormal tilt of SVV. Furthermore, re-analysing data of 20 patients from a previous study, we found a positive correlation between thermal perception contralateral to the stroke and the severity of the SVV tilt. Conclusions We conclude that the IC is a sensory brain region where different modalities might interact.

  12. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions.

    PubMed

    Wiech, K; Jbabdi, S; Lin, C S; Andersson, J; Tracey, I

    2014-10-01

    Functional neuroimaging studies suggest that the anterior, mid, and posterior division of the insula subserve different functions in the perception of pain. The anterior insula (AI) has predominantly been associated with cognitive-affective aspects of pain, while the mid and posterior divisions have been implicated in sensory-discriminative processing. We examined whether this functional segregation is paralleled by differences in (1) structural and (2) resting state connectivity and (3) in correlations with pain-relevant psychological traits. Analyses were restricted to the 3 insular subdivisions and other pain-related brain regions. Both type of analyses revealed largely overlapping results. The AI division was predominantly connected to the ventrolateral prefrontal cortex (structural and resting state connectivity) and orbitofrontal cortex (structural connectivity). In contrast, the posterior insula showed strong connections to the primary somatosensory cortex (SI; structural connectivity) and secondary somatosensory cortex (SII; structural and resting state connectivity). The mid insula displayed a hybrid connectivity pattern with strong connections with the ventrolateral prefrontal cortex, SII (structural and resting state connectivity) and SI (structural connectivity). Moreover, resting state connectivity revealed strong connectivity of all 3 subdivisions with the thalamus. On the behavioural level, AI structural connectivity was related to the individual degree of pain vigilance and awareness that showed a positive correlation with AI-amygdala connectivity and a negative correlation with AI-rostral anterior cingulate cortex connectivity. In sum, our findings show a differential structural and resting state connectivity for the anterior, mid, and posterior insula with other pain-relevant brain regions, which might at least partly explain their different functional profiles in pain processing. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models.

    PubMed

    Parker, Linda A; Limebeer, Cheryl L; Rock, Erin M; Sticht, Martin A; Ward, Jordan; Turvey, Greig; Benchama, Othman; Rajarshi, Girija; Wood, JodiAnne T; Alapafuja, Shakiru O; Makriyannis, Alexandros

    2016-06-01

    Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients. This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models. AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models. Our in vitro studies indicate that AM4302 blocks human and rat FAAH: IC50 60 and 31 nM, respectively, with comparable potencies against human MAGL (IC50 41 nM) and rat MAGL (IC50 200 nM). AM4301 selectively blocks human and rat MAGL (IC50 8.9 and 36 nM, respectively), while AM4303 selectively inhibits human and rat FAAH (IC50 2 and 1.9 nM), respectively. Our in vivo studies show that the MAGL inhibitor, AM4301, suppressed acute nausea in a CB1-mediated manner, when delivered systemically or into the interoceptive insular cortex. Although the dual FAAH/MAGL inhibitor, AM4302, was equally effective as the FAAH inhibitor or MAGL inhibitor in reducing acute nausea, it was more effective than both in suppressing anticipatory nausea. Dual FAAH and MAGL inhibition with AM4302 may be an especially effective treatment for the very difficult to treat symptom of anticipatory nausea.

  14. A comparison of novel, selective fatty acid amide hydrolase (FAAH), monoacyglycerol lipase (MAGL) or dual FAAH/MAGL inhibitors to suppress acute and anticipatory nausea in rat models

    PubMed Central

    Limebeer, Cheryl L.; Rock, Erin M.; Sticht, Martin A.; Ward, Jordan; Turvey, Greig; Benchama, Othman; Rajarshi, Girija; Wood, JodiAnne T.; Alapafuja, Shakiru O.; Makriyannis, Alexandros

    2017-01-01

    Rationale Drugs that block fatty acid amide hydrolase (FAAH, which elevates anandamide [AEA]) and drugs which block monoacylglycerol (MAGL, which elevates 2-arachidonyl glycerol [2-AG]) have promise in treating both acute and anticipatory nausea in human patients. Objective This study aims to evaluate the relative effectiveness of dual MAGL/FAAH inhibition with either alone to reduce acute and anticipatory nausea in rat models. Materials and methods AM4302, a new dual MAGL/FAAH inhibitor, was compared with a new selective MAGL inhibitor, AM4301, and new selective FAAH inhibitor, AM4303, for their potential to reduce acute nausea (gaping in taste reactivity) and anticipatory nausea (contextually elicited conditioned gaping) in two rat models. Results Our in vitro studies indicate that AM4302 blocks human and rat FAAH: IC50 60 and 31 nM, respectively, with comparable potencies against human MAGL (IC50 41 nM) and rat MAGL (IC50 200 nM). AM4301 selectively blocks human and rat MAGL (IC50 8.9 and 36 nM, respectively), while AM4303 selectively inhibits human and rat FAAH (IC50 2 and 1.9 nM), respectively. Our in vivo studies show that the MAGL inhibitor, AM4301, suppressed acute nausea in a CB1-mediated manner, when delivered systemically or into the interoceptive insular cortex. Although the dual FAAH/MAGL inhibitor, AM4302, was equally effective as the FAAH inhibitor or MAGL inhibitor in reducing acute nausea, it was more effective than both in suppressing anticipatory nausea. Conclusions Dual FAAH and MAGL inhibition with AM4302 may be an especially effective treatment for the very difficult to treat symptom of anticipatory nausea. PMID:27048155

  15. Magnetic resonance imaging-guided laser interstitial thermal therapy as treatment for intractable insular epilepsy in children.

    PubMed

    Perry, M Scott; Donahue, David J; Malik, Saleem I; Keator, Cynthia G; Hernandez, Angel; Reddy, Rohit K; Perkins, Freedom F; Lee, Mark R; Clarke, Dave F

    2017-12-01

    OBJECTIVE Seizure onset within the insula is increasingly recognized as a cause of intractable epilepsy. Surgery within the insula is difficult, with considerable risks, given the rich vascular supply and location near critical cortex. MRI-guided laser interstitial thermal therapy (LiTT) provides an attractive treatment option for insular epilepsy, allowing direct ablation of abnormal tissue while sparing nearby normal cortex. Herein, the authors describe their experience using this technique in a large cohort of children undergoing treatment of intractable localization-related epilepsy of insular onset. METHODS The combined epilepsy surgery database of Cook Children's Medical Center and Dell Children's Hospital was queried for all cases of insular onset epilepsy treated with LiTT. Patients without at least 6 months of follow-up data and cases preoperatively designated as palliative were excluded. Patient demographics, presurgical evaluation, surgical plan, and outcome were collected from patient charts and described. RESULTS Twenty patients (mean age 12.8 years, range 6.1-18.6 years) underwent a total of 24 LiTT procedures; 70% of these patients had normal findings on MRI. Patients underwent a mean follow-up of 20.4 months after their last surgery (range 7-39 months), with 10 (50%) in Engel Class I, 1 (5%) in Engel Class II, 5 (25%) in Engel Class III, and 4 (20%) in Engel Class IV at last follow-up. Patients were discharged within 24 hours of the procedure in 15 (63%) cases, in 48 hours in 6 (24%) cases, and in more than 48 hours in the remaining cases. Adverse functional effects were experienced following 7 (29%) of the procedures: mild hemiparesis after 6 procedures (all patients experienced complete resolution or had minimal residual dysfunction by 6 months), and expressive language dysfunction after 1 procedure (resolved by 3 months). CONCLUSIONS To their knowledge, the authors present the largest cohort of pediatric patients undergoing insular surgery for treatment of intractable epilepsy. The patient outcomes suggest that LiTT can successfully treat intractable seizures originating within the insula and offers an attractive alternative to open resection. This is the first description of LiTT applied to insular epilepsy and represents one of only a few series describing the use of LiTT in children. The results indicate that seizure reduction after LiTT compares favorably to that after conventional open surgical techniques.

  16. Pancreatic Effects of a Bruton's Tyrosine Kinase Small-molecule Inhibitor in Rats Are Strain-dependent.

    PubMed

    Bhaskaran, Manoj; Cornwell, Paul D; Sorden, Steven D; Elwell, Michael R; Russell, Natalie R; Pritt, Michael L; Vahle, John L

    2018-01-01

    Inhibitors of Bruton's tyrosine kinase (BTK) are under development as potential therapies for various autoimmune diseases. In repeat-dose toxicity studies, small-molecule BTK inhibitors (BTKi) have been reported to cause a constellation of histologic effects at the pancreatic endocrine-exocrine interface in male rats; however, similar findings were not reported in other species. Since the BTKi-induced pancreatic effect is morphologically similar to well-documented spontaneous changes (predominantly characterized by insular/peri-insular hemorrhage, pigment deposition, chronic inflammation, and fibrosis) that are known to vary by rat strain, we investigated potential strain-dependent differences in the pancreatic effects of a small-molecule BTKi, LY3337641. Following 13 weeks of LY3337641 treatment, Crl:CD(SD) rats were most sensitive, Crl:WI(Han) rats were of intermediate sensitivity, and Hsd:SD rats were least sensitive. These strain differences appear to be related to differences in rate of weight gain across strains and sexes; however, a definitive mechanism was not determined. This study demonstrated that BTKi-induced pancreatic effects were highly dependent on rat strain and correlated with differences in the incidence and severity of the spontaneous background change. When considered with the lack of pancreas effects in nonrat species, these changes in rats are unlikely predictive of similar changes in humans administered a BTK inhibitor.

  17. Music Intervention Leads to Increased Insular Connectivity and Improved Clinical Symptoms in Schizophrenia

    PubMed Central

    He, Hui; Yang, Mi; Duan, Mingjun; Chen, Xi; Lai, Yongxiu; Xia, Yang; Shao, Junming; Biswal, Bharat B.; Luo, Cheng; Yao, Dezhong

    2018-01-01

    Schizophrenia is a syndrome that is typically accompanied by delusions and hallucinations that might be associated with insular pathology. Music intervention, as a complementary therapy, is commonly used to improve psychiatric symptoms in the maintenance stage of schizophrenia. In this study, we employed a longitudinal design to assess the effects of listening to Mozart music on the insular functional connectivity (FC) in patients with schizophrenia. Thirty-six schizophrenia patients were randomly divided into two equal groups as follows: the music intervention (MTSZ) group, which received a 1-month music intervention series combined with antipsychotic drugs, and the no-music intervention (UMTSZ) group, which was treated solely with antipsychotic drugs. Resting-state functional magnetic resonance imaging (fMRI) scans were performed at the following three timepoints: baseline, 1 month after baseline and 6 months after baseline. Nineteen healthy participants were recruited as controls. An FC analysis seeded in the insular subregions and machine learning techniques were used to examine intervention-related changes. After 1 month of listening to Mozart music, the MTSZ showed increased FC in the dorsal anterior insula (dAI) and posterior insular (PI) networks, including the dAI-ACC, PI-pre/postcentral cortices, and PI-ACC connectivity. However, these enhanced FCs had vanished in follow-up visits after 6 months. Additionally, a support vector regression on the FC of the dAI-ACC at baseline yielded a significant prediction of relative symptom remission in response to music intervention. Furthermore, the validation analyses revealed that 1 month of music intervention could facilitate improvement of the insular FC in schizophrenia. Together, these findings revealed that the insular cortex could potentially be an important region in music intervention for patients with schizophrenia, thus improving the patients' psychiatric symptoms through normalizing the salience and sensorimotor networks. PMID:29410607

  18. Insular cortex metabolite changes in obstructive sleep apnea.

    PubMed

    Yadav, Santosh K; Kumar, Rajesh; Macey, Paul M; Woo, Mary A; Yan-Go, Frisca L; Harper, Ronald M

    2014-05-01

    Adults with obstructive sleep apnea (OSA) show significant autonomic and neuropsychologic deficits, which may derive from damage to insular regions that serve those functions. The aim was to assess glial and neuronal status from anterior insular metabolites in OSA versus controls, using proton magnetic resonance spectroscopy (PMRS), and thus to provide insights for neuroprotection against tissue changes, and to reduce injury consequences. Cross-sectional study. University-based medical center. Thirty-six patients with OSA, 53 controls. None. We performed PMRS in bilateral anterior insulae using a 3.0-Tesla magnetic resonance imaging scanner, calculated N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho/Cr), myo-inositol/creatine (MI/Cr), and MI/NAA metabolite ratios, and examined daytime sleepiness (Epworth Sleepiness Scale, ESS), sleep quality (Pittsburgh Sleep Quality Index, PSQI), and neuropsychologic status (Beck Depression Inventory II [BDI-II] and Beck Anxiety Inventory [BAI]). Body mass index, BAI, BDI-II, PSQI, and ESS significantly differed between groups. NAA/ Cr ratios were significantly reduced bilaterally, and left-sided MI/Cr and MI/NAA ratios were increased in OSA over controls. Significant positive correlations emerged between left insular MI/Cr ratios and apnea-hypopnea index values, right insular Cho/Cr ratios and BDI-II and BAI scores, and negative correlations appeared between left insular NAA/Cr ratios and PSQI scores and between right-side MI/Cr ratios and baseline and nadir change in O2 saturation. Adults with obstructive sleep apnea showed bilaterally reduced N-acetylaspartate and left-side increased myo-inositol anterior insular metabolites, indicating neuronal damage and increased glial activation, respectively, which may contribute to abnormal autonomic and neuropsychologic functions in the condition. The activated glial status likely indicates increased inflammatory action that may induce more neuronal injury, and suggests separate approaches for glial and neuronal protection.

  19. Cortex glial cells activation, associated with lowered mechanical thresholds and motor dysfunction, persists into adulthood after neonatal pain.

    PubMed

    Sanada, Luciana Sayuri; Sato, Karina Laurenti; Machado, Nathalia Leilane Berto; Carmo, Elisabete de Cássia do; Sluka, Kathleen A; Fazan, Valeria Paula Sassoli

    2014-06-01

    We investigated if changes in glial activity in cortical areas that process nociceptive stimuli persisted in adult rats after neonatal injury. Neonatal pain was induced by repetitive needle prickling on the right paw, twice per day for 15 days starting at birth. Wistar rats received either neonatal pain or tactile stimulation and were tested behaviorally for mechanical withdrawal thresholds of the paws and gait alterations, after 15 (P15) or 180 (P180) days of life. Brains from rats on P15 and P180 were immunostained for glial markers (GFAP, MCP-1, OX-42) and the following cortical areas were analyzed for immunoreactivity density: prefrontal, anterior insular, anterior cingulated, somatosensory and motor cortices. Withdrawal thresholds of the stimulated paw remained decreased on P180 after neonatal pain when compared to controls. Neonatal pain animals showed increased density for both GFAP and MCP-1 staining, but not for OX-42, in all investigated cortical areas on both experimental times (P15 and P180). Painful stimuli in the neonatal period produced pain behaviors immediately after injury that persisted in adult life, and was accompanied by increase in the glial markers density in cortical areas that process and interpret pain. Thus, long-lasting changes in cortical glial activity could be, at least in part, responsible for the persistent hyperalgesia in adult rats that suffered from neonatal pain. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. Comparing brain activity patterns during spontaneous exploratory and cue-instructed learning using single photon-emission computed tomography (SPECT) imaging of regional cerebral blood flow in freely behaving rats.

    PubMed

    Mannewitz, A; Bock, J; Kreitz, S; Hess, A; Goldschmidt, J; Scheich, H; Braun, Katharina

    2018-05-01

    Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.

  1. Long-lasting dysregulation of gene expression in corticostriatal circuits after repeated cocaine treatment in adult rats: Effects on zif 268 and homer 1a

    PubMed Central

    Unal, Cagri T.; Beverley, Joel A.; Willuhn, Ingo; Steiner, Heinz

    2009-01-01

    Human imaging studies show that psychostimulants such as cocaine produce functional changes in several areas of cortex and striatum. These may reflect neuronal changes related to addiction. We employed gene markers (zif 268, homer 1a) that offer a high anatomical resolution to map cocaine-induced changes in 22 cortical areas and 23 functionally related striatal sectors, in order to determine the corticostriatal circuits altered by repeated cocaine exposure (25 mg/kg, 5 days). Effects were investigated 1 day and 21 days after repeated treatment to assess their longevity. Repeated cocaine treatment increased basal expression of zif 268 predominantly in sensorimotor areas of the cortex. This effect endured for 3 weeks in some areas. These changes were accompanied by attenuated gene induction by a cocaine challenge. In the insular cortex, the cocaine challenge produced a decrease in zif 268 expression after the 21-day, but not 1-day, withdrawal period. In the striatum, cocaine also affected mostly sensorimotor sectors. Repeated cocaine resulted in blunted inducibility of both zif 268 and homer 1a, changes that were still very robust 3 weeks later. Thus, our findings demonstrate that cocaine produces robust and long-lasting changes in gene regulation predominantly in sensorimotor corticostriatal circuits. These neuronal changes were associated with behavioral stereotypies, which are thought to reflect dysfunction in sensorimotor corticostriatal circuits. Future studies will have to elucidate the role of such neuronal changes in psychostimulant addiction. PMID:19419424

  2. Extended cortical activations during evaluating successive pain stimuli.

    PubMed

    Lötsch, Jörn; Walter, Carmen; Felden, Lisa; Preibisch, Christine; Nöth, Ulrike; Martin, Till; Anti, Sandra; Deichmann, Ralf; Oertel, Bruno G

    2012-08-01

    Comparing pain is done in daily life and involves short-term memorizing and attention focusing. This event-related functional magnetic resonance imaging study investigated the short-term brain activations associated with the comparison of pain stimuli using a delayed discrimination paradigm. Fourteen healthy young volunteers compared two successive pain stimuli administered at a 10 s interval to the same location at the nasal mucosa. Fourteen age- and sex-matched subjects received similar pain stimuli without performing the comparison task. With the comparison task, the activations associated with the second pain stimulus were significantly greater than with the first stimulus in the anterior insular cortex and the primary somatosensory area. This was observed on the background of a generally increased stimulus-associated brain activation in the presence of the comparison task that included regions of the pain matrix (insular cortex, primary and secondary somatosensory area, midcingulate cortex, supplemental motor area) and regions associated with attention, decision making, working memory and body recognition (frontal and temporal gyri, inferior parietal lobule, precuneus, lingual cortices). This data provides a cerebral correlate for the role of pain as a biological alerting system that gains the subject's attention and then dominates most other perceptions and activities involving pain-specific and non-pain-specific brain regions.

  3. Structural basis of empathy and the domain general region in the anterior insular cortex

    PubMed Central

    Mutschler, Isabella; Reinbold, Céline; Wankerl, Johanna; Seifritz, Erich; Ball, Tonio

    2013-01-01

    Empathy is key for healthy social functioning and individual differences in empathy have strong implications for manifold domains of social behavior. Empathy comprises of emotional and cognitive components and may also be closely linked to sensorimotor processes, which go along with the motivation and behavior to respond compassionately to another person's feelings. There is growing evidence for local plastic change in the structure of the healthy adult human brain in response to environmental demands or intrinsic factors. Here we have investigated changes in brain structure resulting from or predisposing to empathy. Structural MRI data of 101 healthy adult females was analyzed. Empathy in fictitious as well as real-life situations was assessed using a validated self-evaluation measure. Furthermore, empathy-related structural effects were also put into the context of a functional map of the anterior insular cortex (AIC) determined by activation likelihood estimate (ALE) meta-analysis of previous functional imaging studies. We found that gray matter (GM) density in the left dorsal AIC correlates with empathy and that this area overlaps with the domain general region (DGR) of the anterior insula that is situated in-between functional systems involved in emotion–cognition, pain, and motor tasks as determined by our meta-analysis. Thus, we propose that this insular region where we find structural differences depending on individual empathy may play a crucial role in modulating the efficiency of neural integration underlying emotional, cognitive, and sensorimotor information which is essential for global empathy. PMID:23675334

  4. The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans.

    PubMed

    Allman, John M; Tetreault, Nicole A; Hakeem, Atiya Y; Manaye, Kebreten F; Semendeferi, Katerina; Erwin, Joseph M; Park, Soyoung; Goubert, Virginie; Hof, Patrick R

    2010-06-01

    The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in the line leading to humans, and since it suppresses dendritic branching it may be involved in the distinctive VEN morphology.

  5. Glucocorticoids Enhance Taste Aversion Memory via Actions in the Insular Cortex and Basolateral Amygdala

    ERIC Educational Resources Information Center

    Miranda, Maria Isabel; Quirarte, Gina L.; Rodriguez-Garcia, Gabriela; McGaugh, James L.; Roozendaal, Benno

    2008-01-01

    It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function.…

  6. Self-determined, but not non-self-determined, motivation predicts activations in the anterior insular cortex: an fMRI study of personal agency

    PubMed Central

    Reeve, Johnmarshall

    2013-01-01

    Neuroscientific studies on agency focus rather exclusively on the notion of who initiates and regulates actions, not on the notion of why the person does. The present study focused on the latter to investigate two different reasons underlying personal agency. Using event-related functional magnetic resonance imaging, we scanned 16 healthy human subjects while they imagined the enactment of volitional, agentic behavior on the same task but either for a self-determined and intrinsically motivated reason or for a non-self-determined and extrinsically motivated reason. Results showed that the anterior insular cortex (AIC), known to be related to the sense of agency, was more activated during self-determined behavior while the angular gyrus, known to be related to the sense of loss of agency, was more activated during non-self-determined behavior. Furthermore, AIC activities during self-determined behavior correlated highly with participants’ self-reported intrinsic satisfactions. We conclude that self-determined behavior is more agentic than is non-self-determined behavior and that personal agency arises only during self-determined, intrinsically motivated action. PMID:22451482

  7. Posterior insular cortex – a site of vestibular–somatosensory interaction?

    PubMed Central

    Baier, Bernhard; zu Eulenburg, Peter; Best, Christoph; Geber, Christian; Müller-Forell, Wibke; Birklein, Frank; Dieterich, Marianne

    2013-01-01

    Background In previous imaging studies the insular cortex (IC) has been identified as an essential part of the processing of a wide spectrum of perception and sensorimotor integration. Yet, there are no systematic lesion studies in a sufficient number of patients examining whether processing of vestibular and the interaction of somatosensory and vestibular signals take place in the IC. Methods We investigated acute stroke patients with lesions affecting the IC in order to fill this gap. In detail, we explored signs of a vestibular tone imbalance such as the deviation of the subjective visual vertical (SVV). We applied voxel-lesion behaviour mapping analysis in 27 patients with acute unilateral stroke. Results Our data demonstrate that patients with lesions of the posterior IC have an abnormal tilt of SVV. Furthermore, re-analysing data of 20 patients from a previous study, we found a positive correlation between thermal perception contralateral to the stroke and the severity of the SVV tilt. Conclusions We conclude that the IC is a sensory brain region where different modalities might interact. PMID:24392273

  8. Monetary reward suppresses anterior insula activity during social pain

    PubMed Central

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François

    2015-01-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion. PMID:25964499

  9. Ecstatic Epileptic Seizures: A Glimpse into the Multiple Roles of the Insula.

    PubMed

    Gschwind, Markus; Picard, Fabienne

    2016-01-01

    Ecstatic epileptic seizures are a rare but compelling epileptic entity. During the first seconds of these seizures, ecstatic auras provoke feelings of well-being, intense serenity, bliss, and "enhanced self-awareness." They are associated with the impression of time dilation, and can be described as a mystic experience by some patients. The functional neuroanatomy of ecstatic seizures is still debated. During recent years several patients presenting with ecstatic auras have been reported by others and us (in total n = 52); a few of them in the setting of presurgical evaluation including electrical brain stimulation. According to the recently recognized functions of the insula, and the results of nuclear brain imaging and electrical stimulation, the ecstatic symptoms in these patients seem to localize to a functional network centered around the anterior insular cortex, where we thus propose to locate this rare ictal phenomenon. Here we summarize the role of the multiple sensory, autonomic, affective, and cognitive functions of the insular cortex, which are integrated into the creation of self-awareness, and we suggest how this system may become dysfunctional on several levels during ecstatic aura.

  10. Self-determined, but not non-self-determined, motivation predicts activations in the anterior insular cortex: an fMRI study of personal agency.

    PubMed

    Lee, Woogul; Reeve, Johnmarshall

    2013-06-01

    Neuroscientific studies on agency focus rather exclusively on the notion of who initiates and regulates actions, not on the notion of why the person does. The present study focused on the latter to investigate two different reasons underlying personal agency. Using event-related functional magnetic resonance imaging, we scanned 16 healthy human subjects while they imagined the enactment of volitional, agentic behavior on the same task but either for a self-determined and intrinsically motivated reason or for a non-self-determined and extrinsically motivated reason. Results showed that the anterior insular cortex (AIC), known to be related to the sense of agency, was more activated during self-determined behavior while the angular gyrus, known to be related to the sense of loss of agency, was more activated during non-self-determined behavior. Furthermore, AIC activities during self-determined behavior correlated highly with participants' self-reported intrinsic satisfactions. We conclude that self-determined behavior is more agentic than is non-self-determined behavior and that personal agency arises only during self-determined, intrinsically motivated action.

  11. The von Economo neurons in fronto-insular and anterior cingulate cortex

    PubMed Central

    Allman, John M.; Tetreault, Nicole A.; Hakeem, Atiya Y.; Manaye, Kebreten F.; Semendeferi, Katerina; Erwin, Joseph M.; Park, Soyoung; Goubert, Virginie; Hof, Patrick R.

    2011-01-01

    The von Economo neurons (VENs) are large bipolar neurons located in fronto-insular cortex (FI) and anterior limbic area (LA) in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week post conception, with numbers increasing during the first eight months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of fronto-temporal dementia implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993

  12. Goal-Directed Behavior and Instrumental Devaluation: A Neural System-Level Computational Model

    PubMed Central

    Mannella, Francesco; Mirolli, Marco; Baldassarre, Gianluca

    2016-01-01

    Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviors guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.g., levers) activate the representation of rewards (or “action-outcomes”, e.g., foods) while attributing to them a value which depends on the current internal state of the animal (e.g., satiation for some but not all foods). The model also proposes an initial hypothesis of the integrated system of key brain components supporting this process and allowing the recalled outcomes to bias action selection: (a) the sub-system formed by the basolateral amygdala and insular cortex acquiring the manipulanda-outcomes associations and attributing the current value to the outcomes; (b) three basal ganglia-cortical loops selecting respectively goals, associative sensory representations, and actions; (c) the cortico-cortical and striato-nigro-striatal neural pathways supporting the selection, and selection learning, of actions based on habits and goals. The model reproduces and explains the results of several devaluation experiments carried out with control rats and rats with pre- and post-training lesions of the basolateral amygdala, the nucleus accumbens core, the prelimbic cortex, and the dorso-medial striatum. The results support the soundness of the hypotheses of the model and show its capacity to integrate, at the system-level, the operations of the key brain structures underlying devaluation. Based on its hypotheses and predictions, the model also represents an operational framework to support the design and analysis of new experiments on the motivational aspects of goal-directed behavior. PMID:27803652

  13. Functional neuroimaging of extraversion-introversion.

    PubMed

    Lei, Xu; Yang, Tianliang; Wu, Taoyu

    2015-12-01

    Neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography have provided an unprecedented neurobiological perspective for research on personality traits. Evidence from task-related neuroimaging has shown that extraversion is associated with activations in regions of the anterior cingulate cortex, dorsolateral prefrontal cortex, middle temporal gyrus and the amygdala. Currently, resting-state neuroimaging is being widely used in cognitive neuroscience. Initial exploration of extraversion has revealed correlations with the medial prefrontal cortex, anterior cingulate cortex, insular cortex, and the precuneus. Recent research work has indicated that the long-range temporal dependence of the resting-state spontaneous oscillation has high test-retest reliability. Moreover, the long-range temporal dependence of the resting-state networks is highly correlated with personality traits, and this can be used for the prediction of extraversion. As the long-range temporal dependence reflects real-time information updating in individuals, this method may provide a new approach to research on personality traits.

  14. Sex differences in neural activation following different routes of oxytocin administration in awake adult rats.

    PubMed

    Dumais, Kelly M; Kulkarni, Praveen P; Ferris, Craig F; Veenema, Alexa H

    2017-07-01

    The neuropeptide oxytocin (OT) regulates social behavior in sex-specific ways across species. OT has promising effects on alleviating social deficits in sex-biased neuropsychiatric disorders. However little is known about potential sexually dimorphic effects of OT on brain function. Using the rat as a model organism, we determined whether OT administered centrally or peripherally induces sex differences in brain activation. Functional magnetic resonance imaging was used to examine blood oxygen level-dependent (BOLD) signal intensity changes in the brains of awake rats during the 20min following intracerebroventricular (ICV; 1μg/5μl) or intraperitoneal (IP; 0.1mg/kg) OT administration as compared to baseline. ICV OT induced sex differences in BOLD activation in 26 out of 172 brain regions analyzed, with 20 regions showing a greater volume of activation in males (most notably the nucleus accumbens and insular cortex), and 6 regions showing a greater volume of activation in females (including the lateral and central amygdala). IP OT also elicited sex differences in BOLD activation with a greater volume of activation in males, but this activation was found in different and fewer (10) brain regions compared to ICV OT. In conclusion, exogenous OT modulates neural activation differently in male versus female rats with the pattern and magnitude, but not the direction, of sex differences depending on the route of administration. These findings highlight the need to include both sexes in basic and clinical studies to fully understand the role of OT on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Female Fear: Influence of Estrus Cycle on Behavioral Response and Neuronal Activation

    PubMed Central

    Chen, Wei; Shields, Jessica; Huang, Wei; King, Jean A

    2009-01-01

    Our observation that male rats innate fear response differed with hormonal status, as well as the higher prevalence of fear and anxiety disorders in human females led to the current investigation of the impact of phases of the estrous cycle on innate fear responding. Female rats in different phases of the cycle were exposed to an innate fear-inducing stimulus (2,5-dihydro- 2,4,5-trimethylthiazoline, TMT odor) and monitored for changes in behavior and brain activation. Behavioral data showed freezing responses to TMT were significantly enhanced during estrus as compared to other phases of the cycle. This data was supported by significant increases in pixel intensity in cortical and sub-cortical regions in estrus compared to proestrus and diestrus. Imaging results demonstrated significant increases in brain activation in the somatosensory and insular cortices when comparing estrus to diestrus. There were significant increases in neural activity in the BNST and septum in estrus as compared to proestrus. Additionally, the hippocampus, hypothalamus, olfactory system, and cingulate cortex show significant increases in the estrus phase when compared to both diestrus and proestrus. Taken together, these results suggest that the female's hormonal status may be correlated with alterations in both neuronal and behavioral indices of fear. PMID:19428610

  16. Punishing an error improves learning: the influence of punishment magnitude on error-related neural activity and subsequent learning.

    PubMed

    Hester, Robert; Murphy, Kevin; Brown, Felicity L; Skilleter, Ashley J

    2010-11-17

    Punishing an error to shape subsequent performance is a major tenet of individual and societal level behavioral interventions. Recent work examining error-related neural activity has identified that the magnitude of activity in the posterior medial frontal cortex (pMFC) is predictive of learning from an error, whereby greater activity in this region predicts adaptive changes in future cognitive performance. It remains unclear how punishment influences error-related neural mechanisms to effect behavior change, particularly in key regions such as pMFC, which previous work has demonstrated to be insensitive to punishment. Using an associative learning task that provided monetary reward and punishment for recall performance, we observed that when recall errors were categorized by subsequent performance--whether the failure to accurately recall a number-location association was corrected at the next presentation of the same trial--the magnitude of error-related pMFC activity predicted future correction. However, the pMFC region was insensitive to the magnitude of punishment an error received and it was the left insula cortex that predicted learning from the most aversive outcomes. These findings add further evidence to the hypothesis that error-related pMFC activity may reflect more than a prediction error in representing the value of an outcome. The novel role identified here for the insular cortex in learning from punishment appears particularly compelling for our understanding of psychiatric and neurologic conditions that feature both insular cortex dysfunction and a diminished capacity for learning from negative feedback or punishment.

  17. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    PubMed Central

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA-induced neurotoxicity. PMID:27275601

  18. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA-induced neurotoxicity.

  19. Brain c-fos expression patterns induced by emotional stressors differing in nature and intensity.

    PubMed

    Úbeda-Contreras, Jesús; Marín-Blasco, Ignacio; Nadal, Roser; Armario, Antonio

    2018-06-01

    Regardless of its particular nature, emotional stressors appear to elicit a widespread and roughly similar brain activation pattern as evaluated by c-fos expression. However, their behavioral and physiological consequences may strongly differ. Here we addressed in adult male rats the contribution of the intensity and the particular nature of stressors by comparing, in a set of brain areas, the number of c-fos expressing neurons in response to open-field, cat odor or immobilization on boards (IMO). These are qualitatively different stressors that are known to differ in terms of intensity, as evaluated by biological markers. In the present study, plasma levels of the adrenocorticotropic hormone (ACTH) demonstrated that intensity increases in the following order: open-field, cat odor and IMO. Four different c-fos activation patterns emerged among all areas studied: (i) positive relationship with intensity (posterior-dorsal medial amygdala, dorsomedial hypothalamus, lateral septum ventral and paraventricular nucleus of the hypothalamus), (ii) negative relationship with intensity (cingulate cortex 1, posterior insular cortex, dorsal striatum, nucleus accumbens and some subdivisions of the hippocampal formation); (iii) activation not dependent on the intensity of the stressor (prelimbic and infralimbic cortex and lateral and basolateral amygdala); and (iv) activation specifically associated with cat odor (ventromedial amygdala and ventromedial hypothalamus). Histone 3 phosphorylation at serine 10, another neuronal activation marker, corroborated c-fos results. Summarizing, deepest analysis of the brain activation pattern elicit by emotional stressor indicated that, in spite of activating similar areas, each stressor possess their own brain activation signature, mediated mainly by qualitative aspects but also by intensity.

  20. Pharmacologic attenuation of cross-modal sensory augmentation within the chronic pain insula

    PubMed Central

    Harte, Steven E.; Ichesco, Eric; Hampson, Johnson P.; Peltier, Scott J.; Schmidt-Wilcke, Tobias; Clauw, Daniel J.; Harris, Richard E.

    2016-01-01

    Abstract Pain can be elicited through all mammalian sensory pathways yet cross-modal sensory integration, and its relationship to clinical pain, is largely unexplored. Centralized chronic pain conditions such as fibromyalgia are often associated with symptoms of multisensory hypersensitivity. In this study, female patients with fibromyalgia demonstrated cross-modal hypersensitivity to visual and pressure stimuli compared with age- and sex-matched healthy controls. Functional magnetic resonance imaging revealed that insular activity evoked by an aversive level of visual stimulation was associated with the intensity of fibromyalgia pain. Moreover, attenuation of this insular activity by the analgesic pregabalin was accompanied by concomitant reductions in clinical pain. A multivariate classification method using support vector machines (SVM) applied to visual-evoked brain activity distinguished patients with fibromyalgia from healthy controls with 82% accuracy. A separate SVM classification of treatment effects on visual-evoked activity reliably identified when patients were administered pregabalin as compared with placebo. Both SVM analyses identified significant weights within the insular cortex during aversive visual stimulation. These data suggest that abnormal integration of multisensory and pain pathways within the insula may represent a pathophysiological mechanism in some chronic pain conditions and that insular response to aversive visual stimulation may have utility as a marker for analgesic drug development. PMID:27101425

  1. Simultaneous but Not Independent Anisomycin Infusions in Insular Cortex and Amygdala Hinder Stabilization of Taste Memory when Updated

    ERIC Educational Resources Information Center

    Garcia-DeLaTorre, Paola; Rodriguez-Ortiz, Carlos J.; Arreguin-Martinez, Jose L.; Cruz-Castaneda, Paulina; Bermudez-Rattoni, Federico

    2009-01-01

    Reconsolidation has been described as a process where a consolidated memory returns to a labile state when retrieved. Growing evidence suggests that reconsolidation is, in fact, a destabilization/stabilization process that incorporates updated information to a previously consolidated memory. We used the conditioned taste aversion (CTA) task in…

  2. Cerebral somatic pain modulation during autogenic training in fMRI.

    PubMed

    Naglatzki, R P; Schlamann, M; Gasser, T; Ladd, M E; Sure, U; Forsting, M; Gizewski, E R

    2012-10-01

    Functional magnetic resonance imaging (fMRI) studies are increasingly employed in different conscious states. Autogenic training (AT) is a common clinically used relaxation method. The purpose of this study was to investigate the cerebral modulation of pain activity patterns due to AT and to correlate the effects to the degree of experience with AT and strength of stimuli. Thirteen volunteers familiar with AT were studied with fMRI during painful electrical stimulation in a block design alternating between resting state and electrical stimulation, both without AT and while employing the same paradigm when utilizing their AT abilities. The subjective rating of painful stimulation and success in modulation during AT was assessed. During painful electrical stimulation without AT, fMRI revealed activation of midcingulate, right secondary sensory, right supplementary motor, and insular cortices, the right thalamus and left caudate nucleus. In contrast, utilizing AT only activation of left insular and supplementary motor cortices was revealed. The paired t-test revealed pain-related activation in the midcingulate, posterior cingulate and left anterior insular cortices for the condition without AT, and activation in the left ventrolateral prefrontal cortex under AT. Activation of the posterior cingulate cortex and thalamus correlated with the amplitude of electrical stimulation. This study revealed an effect on cerebral pain processing while performing AT. This might represent the cerebral correlate of different painful stimulus processing by subjects who are trained in performing relaxation techniques. However, due to the absence of a control group, further studies are needed to confirm this theory. © 2012 European Federation of International Association for the Study of Pain Chapters.

  3. Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography

    PubMed Central

    2013-01-01

    Background It has been proposed that an inappropriately conditioned fatigue sensation could be one cause of chronic fatigue. Although classical conditioning of the fatigue sensation has been reported in rats, there have been no reports in humans. Our aim was to examine whether classical conditioning of the mental fatigue sensation can take place in humans and to clarify the neural mechanisms of fatigue sensation using magnetoencephalography (MEG). Methods Ten and 9 healthy volunteers participated in a conditioning and a control experiment, respectively. In the conditioning experiment, we used metronome sounds as conditioned stimuli and two-back task trials as unconditioned stimuli to cause fatigue sensation. Participants underwent MEG measurement while listening to the metronome sounds for 6 min. Thereafter, fatigue-inducing mental task trials (two-back task trials), which are demanding working-memory task trials, were performed for 60 min; metronome sounds were started 30 min after the start of the task trials (conditioning session). The next day, neural activities while listening to the metronome for 6 min were measured. Levels of fatigue sensation were also assessed using a visual analogue scale. In the control experiment, participants listened to the metronome on the first and second days, but they did not perform conditioning session. MEG was not recorded in the control experiment. Results The level of fatigue sensation caused by listening to the metronome on the second day was significantly higher relative to that on the first day only when participants performed the conditioning session on the first day. Equivalent current dipoles (ECDs) in the insular cortex, with mean latencies of approximately 190 ms, were observed in six of eight participants after the conditioning session, although ECDs were not identified in any participant before the conditioning session. Conclusions We demonstrated that the metronome sounds can cause mental fatigue sensation as a result of repeated pairings of the sounds with mental fatigue and that the insular cortex is involved in the neural substrates of this phenomenon. PMID:23764106

  4. [Effect of gluco- and mineralocorticoids on the structure and function of the insular apparatus of the pancreas in representatives of different classes of vertebrates].

    PubMed

    Poliakova, T I

    1984-07-01

    By means of histological, historadioautographical and biochemical methods the effect produced by disturbances in hormonal balance of the adrenal cortex (corticosteroids) on the islet apparatus of the pancreas in the lamprey (Lampetra fluviatilis), the frog (Rana temporaria), the tortoise (Testudo horsfieldi), the pigeon (Columbia livia), the white rat (Rattus rattus) has been studied during autumn-winter period. Chronic injections of hydrocortisone and desoxycorticosterone-acetate are used to change the hormonal balance in the adrenal cortex. In Cyclostomata, Amphibia and Reptilia gluco- and mineralocorticoids produce similar effects by increasing glycemia level. In birds and Mammalia glucocorticoids increase glycemia level, and mineralocorticoids do not change it. An increased glucose level in the organism of the representatives of various Mammalian classes after an excess injection of glucocorticoids is accompanied with a mainfested degranulation, hypertrophy of the Golgi complex, vacuolization of aldehydefuchsin-positive B-cell. Glucocorticoides increase the level of 35S-methyonine incorporation into B-cells of Langerhans islet in the representatives of all the vertebral classes studied. Mineralocorticoids act similarly as glucocorticoids stimulating protein metabolism only in Amphibia and birds. The level of immunoreactive insulin (IRI) in response to glucocorticoids injection increases in Amphibia and Mammalia and remains unchanged in Cyclostomata, Reptilia and birds. IRI remains unchanged after injection of mineralocorticoids in all representatives of Vertebrata, besides Cyclostomata in which IRI decreases.

  5. Disrupted functional connectivity patterns of the insula subregions in drug-free major depressive disorder.

    PubMed

    Wang, Chao; Wu, Huawang; Chen, Fangfang; Xu, Jinping; Li, Hongming; Li, Hong; Wang, Jiaojian

    2018-07-01

    Major depressive disorder (MDD) is characterized by impairments in emotional and cognitive functions. Emerging studies have shown that cognition and emotion interact by reaching identical brain regions, and the insula is one such region with functional and structural heterogeneity. Although previous literatures have shown the role of insula in MDD,it remains unclear whether the insular subregions show differential change patterns in MDD. Using the resting-state fMRI data in a group of 23 drug-free MDD patients and 34 healthy controls (HCs), we investigated whether the abnormal connectivity patterns of insular sub-regions or any behavioural correlates can be detected in MDD. Further hierarchical cluster analysis was used to identify the functional connectivity-clustering patterns of insular sub-regions. Compared with HCs, the MDD exhibited higher connectivities between dorsal agranular insula and inferior parietal lobule and between ventral dysgranular and granular insula and thalamus/habehula, and lower connectivity of hypergranular insula to subgenual anterior cingulate cortex. Moreover, the three subregions with significant group differences were in three separate functional systems along anterior-to-posteior gradient. The anterior and middle insula showed positive correlation with depressive severity, while the posterior insular was to the contrary. The small and unbalanced sample size, only included moderate and severe depression and the possible inter-individual differences may limit the interpretability. These findings provided evidences for the MDD-related effects in functional connectivity patterns of insular subregions, and revealed that the subregions might be involved in different neural circuits associated with the contrary impacts on the depressive symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Neural Systems Involved in Fear and Anxiety Measured with Fear-Potentiated Startle

    ERIC Educational Resources Information Center

    Davis, Michael

    2006-01-01

    A good deal is now known about the neural circuitry involved in how conditioned fear can augment a simple reflex (fear-potentiated startle). This involves visual or auditory as well as shock pathways that project via the thalamus and perirhinal or insular cortex to the basolateral amygdala (BLA). The BLA projects to the central (CeA) and medial…

  7. [Beta]-Adrenergic Receptors in the Insular Cortex are Differentially Involved in Aversive vs. Incidental Context Memory Formation

    ERIC Educational Resources Information Center

    Miranda, Maria Isabel; Sabath, Elizabeth; Nunez-Jaramillo, Luis; Puron-Sierra, Liliana

    2011-01-01

    The goal of this research was to determine the effects of [beta]-adrenergic antagonism in the IC before or after inhibitory avoidance (IA) training or context pre-exposure in a latent inhibition protocol. Pretraining intra-IC infusion of the [beta]-adrenergic antagonist propranolol disrupted subsequent IA retention and impaired latent inhibition…

  8. Monetary reward suppresses anterior insula activity during social pain.

    PubMed

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2015-12-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Ecstatic Epileptic Seizures: A Glimpse into the Multiple Roles of the Insula

    PubMed Central

    Gschwind, Markus; Picard, Fabienne

    2016-01-01

    Ecstatic epileptic seizures are a rare but compelling epileptic entity. During the first seconds of these seizures, ecstatic auras provoke feelings of well-being, intense serenity, bliss, and “enhanced self-awareness.” They are associated with the impression of time dilation, and can be described as a mystic experience by some patients. The functional neuroanatomy of ecstatic seizures is still debated. During recent years several patients presenting with ecstatic auras have been reported by others and us (in total n = 52); a few of them in the setting of presurgical evaluation including electrical brain stimulation. According to the recently recognized functions of the insula, and the results of nuclear brain imaging and electrical stimulation, the ecstatic symptoms in these patients seem to localize to a functional network centered around the anterior insular cortex, where we thus propose to locate this rare ictal phenomenon. Here we summarize the role of the multiple sensory, autonomic, affective, and cognitive functions of the insular cortex, which are integrated into the creation of self-awareness, and we suggest how this system may become dysfunctional on several levels during ecstatic aura. PMID:26924970

  10. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    PubMed

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Intracranial spectral amplitude dynamics of perceptual suppression in fronto-insular, occipito-temporal, and primary visual cortex

    PubMed Central

    Vidal, Juan R.; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe

    2015-01-01

    If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception. PMID:25642199

  12. Development of rat female genital cortex and control of female puberty by sexual touch

    PubMed Central

    Lenschow, Constanze; Sigl-Glöckner, Johanna

    2017-01-01

    Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch. PMID:28934203

  13. Development of rat female genital cortex and control of female puberty by sexual touch.

    PubMed

    Lenschow, Constanze; Sigl-Glöckner, Johanna; Brecht, Michael

    2017-09-01

    Rat somatosensory cortex contains a large sexually monomorphic genital representation. Genital cortex undergoes an unusual 2-fold expansion during puberty. Here, we investigate genital cortex development and female rat sexual maturation. Ovariectomies and estradiol injections suggested sex hormones cause the pubertal genital cortex expansion but not its maintenance at adult size. Genital cortex expanded by thalamic afferents invading surrounding dysgranular cortex. Genital touch was a dominant factor driving female sexual maturation. Raising female rats in contact with adult males promoted genital cortex expansion, whereas contact to adult females or nontactile (audio-visual-olfactory) male cues did not. Genital touch imposed by human experimenters powerfully advanced female genital cortex development and sexual maturation. Long-term blocking of genital cortex by tetrodotoxin in pubescent females housed with males prevented genital cortex expansion and decelerated vaginal opening. Sex hormones, sexual experience, and neural activity shape genital cortex, which contributes to the puberty promoting effects of sexual touch.

  14. Impaired insula functional connectivity associated with persistent pain perception in patients with complex regional pain syndrome

    PubMed Central

    Jang, Joon Hwan; Lee, Do-Hyeong; Lee, Kyung-Jun; Lee, Won Joon; Moon, Jee Youn; Kim, Yong Chul

    2017-01-01

    Given that the insula plays a contributory role in the perception of chronic pain, we examined the resting-state functional connectivity between the insular cortex and other brain regions to investigate neural underpinnings of persisting perception of background pain in patients with complex regional pain syndrome (CRPS). A total of 25 patients with CRPS and 25 matched healthy controls underwent functional magnetic resonance imaging at rest. With the anterior and posterior insular cortices as seed regions, we compared the strength of the resting-state functional connectivity between the two groups. Functional connectivity between the anterior and posterior insular cortices and the postcentral and inferior frontal gyri, cingulate cortices was reduced in patients with CRPS compared with controls. Additionally, greater reductions in functional connectivity between the anterior insula and right postcentral gyrus were associated with more severe sensory pain in patients with CRPS (short-form McGill Pain Questionnaire sensory subscores, r = -.517, P = .023). The present results imply a possible role of the insula in aberrant processing of pain information in patients with CRPS. The findings suggest that a functional derangement of the connection between one of the somatosensory cortical functions of perception and one of the insular functions of awareness can play a significant role in the persistent experience of regional pain that is not confined to a specific nerve territory. PMID:28692702

  15. Topographically Organized Projection to Posterior Insular Cortex from the Posterior Portion of the Ventral Medial Nucleus (VMpo) in the Long-tailed Macaque Monkey

    PubMed Central

    Craig, A.D. (Bud)

    2014-01-01

    Prior anterograde tracing work identified somatotopically organized lamina I trigemino- and spino-thalamic terminations in a cytoarchitectonically distinct portion of posterolateral thalamus of the macaque monkey, named the posterior part of the ventral medial nucleus (VMpo; Craig, 2004b). Microelectrode recordings from clusters of selectively thermoreceptive or nociceptive neurons were used to guide precise micro-injections of various tracers in VMpo. A prior report (Craig and Zhang, 2006) described retrograde tracing results, which confirmed the selective lamina I input to VMpo and the antero-posterior (head to foot) topography. The present report describes the results of micro-injections of anterograde tracers placed at different levels in VMpo, based on the antero-posterior topographic organization of selectively nociceptive units and clusters over nearly the entire extent of VMpo. Each injection produced dense, patchy terminal labeling in a single coherent field within a distinct granular cortical area centered in the fundus of the superior limiting sulcus. The terminations were distributed with a consistent antero-posterior topography over the posterior half of the superior limiting sulcus. These observations demonstrate a specific VMpo projection area in dorsal posterior insular cortex that provides the basis for a somatotopic representation of selectively nociceptive lamina I spinothalamic activity. These results also identify the VMpo terminal area as the posterior half of interoceptive cortex; the anterior half receives input from the vagal-responsive and gustatory neurons in the basal part of the ventral medial nucleus (VMb). PMID:23853108

  16. A neural mediator of human anxiety sensitivity.

    PubMed

    Harrison, Ben J; Fullana, Miquel A; Soriano-Mas, Carles; Via, Esther; Pujol, Jesus; Martínez-Zalacaín, Ignacio; Tinoco-Gonzalez, Daniella; Davey, Christopher G; López-Solà, Marina; Pérez Sola, Victor; Menchón, José M; Cardoner, Narcís

    2015-10-01

    Advances in the neuroscientific understanding of bodily autonomic awareness, or interoception, have led to the hypothesis that human trait anxiety sensitivity (AS)-the fear of bodily autonomic arousal-is primarily mediated by the anterior insular cortex. Despite broad appeal, few experimental studies have comprehensively addressed this hypothesis. We recruited 55 individuals exhibiting a range of AS and assessed them with functional magnetic resonance imaging (fMRI) during aversive fear conditioning. For each participant, three primary measures of interest were derived: a trait Anxiety Sensitivity Index score; an in-scanner rating of elevated bodily anxiety sensations during fear conditioning; and a corresponding estimate of whole-brain functional activation to the conditioned versus nonconditioned stimuli. Using a voxel-wise mediation analysis framework, we formally tested for 'neural mediators' of the predicted association between trait AS score and in-scanner anxiety sensations during fear conditioning. Contrary to the anterior insular hypothesis, no evidence of significant mediation was observed for this brain region, which was instead linked to perceived anxiety sensations independently from AS. Evidence for significant mediation was obtained for the dorsal anterior cingulate cortex-a finding that we argue is more consistent with the hypothesized role of human cingulofrontal cortex in conscious threat appraisal processes, including threat-overestimation. This study offers an important neurobiological validation of the AS construct and identifies a specific neural substrate that may underlie high AS clinical phenotypes, including but not limited to panic disorder. © 2015 Wiley Periodicals, Inc.

  17. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    PubMed

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship emphasizes the importance of the behavioral procedure to engage the motor cortex during motor control studies, gait rehabilitation, and locomotor neuroprosthetic developments in rats. Copyright © 2016 the authors 0270-6474/16/3610440-16$15.00/0.

  18. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents

    PubMed Central

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific positive parenting behavior and brain structure in children. PMID:27101139

  19. Imbalanced spontaneous brain activity in orbitofrontal-insular circuits in individuals with cognitive vulnerability to depression.

    PubMed

    Zhang, Xiaocui; Di, Xin; Lei, Hui; Yang, Juan; Xiao, Jing; Wang, Xiang; Yao, Shuqiao; Rao, Hengyi

    2016-07-01

    The hopelessness theory of depression posits that individuals with negative cognitive styles are at risk of developing depression following negative life events. The purpose of this work was to examine whether individuals with cognitive vulnerability to depression (CVD) exhibit similar spontaneous brain activity patterns as compared to patients with major depressive disorder (MDD). Subjects with CVD (N=32), drug-naïve first-episode patients with major depressive disorder (N=32), and sex-, age- and education-matched healthy controls (HCs; N=35) were subjected to resting state functional magnetic resonance imaging (RS-fMRI) and amplitudes of low-frequency fluctuation (ALFF) was compared between the groups. Pearson correlation analysis was performed between regional ALFFs and psychometric scores, namely the Cognitive Style Questionnaire (CSQ) and the Center for Epidemiologic Studies Depression (CES-D) scale scores. Significant group differences in ALFF values were observed bilaterally in the orbitofrontal cortex (OFC) and insular cortex (IC), and in the left fusiform gyrus (FFG). Compared to HCs, CVD subjects had reduced ALFFs in the bilateral OFC and increased ALFF in the bilateral IC and the left FFG, which were similar to the differences observed between the HCs and MDD patients. Compared to MDD patients, CVD subjects showed significant reduced ALFF values in right IC. Additionally, CSQ scores for the CVD group correlated with ALFF values in the left IC. We did not conduct a longitudinal study. Our findings were limited in cross-sectional analysis. A hypoactive OFC and hyperactive IC in a resting-state may underlie an imbalance in the spontaneous brain activity in orbitofrontal-insular circuits, and these differences may represent a trait-related marker of vulnerability to depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents.

    PubMed

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific positive parenting behavior and brain structure in children.

  1. Functional MRI activation in response to panic-specific, non-panic aversive, and neutral pictures in patients with panic disorder and healthy controls.

    PubMed

    Engel, K R; Obst, K; Bandelow, B; Dechent, P; Gruber, O; Zerr, I; Ulrich, K; Wedekind, D

    2016-09-01

    There is evidence that besides limbic brain structures, prefrontal and insular cortical activations and deactivations are involved in the pathophysiology of panic disorder. This study investigated activation response patterns to stimulation with individually selected panic-specific pictures in patients with panic disorder with agoraphobia (PDA) and healthy control subjects using functional magnetic resonance imaging (fMRI). Structures of interest were the prefrontal, cingulate, and insular cortex, and the amygdalo-hippocampal complex. Nineteen PDA subjects (10 females, 9 males) and 21 healthy matched controls were investigated using a Siemens 3-Tesla scanner. First, PDA subjects gave Self-Assessment Manikin (SAM) ratings on 120 pictures showing characteristic panic/agoraphobia situations, of which 20 pictures with the individually highest SAM ratings were selected. Twenty matched pictures showing aversive but not panic-specific stimuli and 80 neutral pictures from the International Affective Picture System were chosen for each subject as controls. Each picture was shown twice in each of four subsequent blocks. Anxiety and depression ratings were recorded before and after the experiment. Group comparisons revealed a significantly greater activation in PDA patients than control subjects in the insular cortices, left inferior frontal gyrus, dorsomedial prefrontal cortex, the left hippocampal formation, and left caudatum, when PA and N responses were compared. Comparisons for stimulation with unspecific aversive pictures showed activation of similar brain regions in both groups. Results indicate region-specific activations to panic-specific picture stimulation in PDA patients. They also imply dysfunctionality in the processing of interoceptive cues in PDA and the regulation of negative emotionality. Therefore, differences in the functional networks between PDA patients and control subjects should be further investigated.

  2. Exercise-induced decrease in insular cortex rCBF during postexercise hypotension.

    PubMed

    Lamb, Kala; Gallagher, Kevin; McColl, Roderick; Mathews, Dana; Querry, Ross; Williamson, Jon W

    2007-04-01

    The insular cortex (IC), a region of the brain involved in blood pressure (BP) modulation, shows decreases in regional cerebral blood flow (rCBF) during postexercise hypotension (PEH). To determine whether changes in IC neural activity were caused by prior exercise or by changes in BP, this investigation compared patterns of rCBF during periods of hypotension, which was induced by prior exercise (i.e., PEH) and sodium nitroprusside (SNP) infusion and a cold pressor (CP), to restore BP. Ten subjects were studied on three different days with randomly assigned conditions: i) resting baseline; ii) PEH; and iii) SNP-induced hypotension (matched to the PEH BP decrease). Data were collected for heart rate (HR) and mean BP, and rCBF was assessed using single-photon emission computed tomography (SPECT) as an index of brain activation. Using ANOVA across conditions, there were differences (P<0.05; mean +/- SD) from baseline during PEH for HR (+12 +/- 3 bpm) and mean BP (-8 +/- 2 mm Hg) and during SNP-induced hypotension (HR = +15 +/- 4 bpm; MBP = -9 +/- 2 mm Hg), with no differences between PEH and SNP. After exercise, there were decreases (P<0.05) in the leg sensorimotor area, anterior cingulate, and the right and left inferior thalamus, right inferior insula, and left anterior insular regions. During SNP-induced hypotension, there were significant increases in the right and left inferior thalamus and the right and left inferior anterior IC. CP during PEH increased BP and IC activity. Data show that reductions in IC neural activity are not caused by acute BP decreases. Findings suggest that exercise can lead to a temporary decrease in IC neural activity, which may be a significant neural factor contributing to PEH.

  3. Gray matter alteration in isolated congenital anosmia patient: a voxel-based morphometry study.

    PubMed

    Yao, Linyin; Yi, Xiaoli; Wei, Yongxiang

    2013-09-01

    Decreased volume of gray matter (GM) was observed in olfactory loss in patients with neurodegenerative disorder. However, GM volume has not yet been investigated in isolated congenital anosmia (ICA) people. We herewith investigated the volume change of gray matter of an ICA boy by morphometric analysis of magnetic resonance images (voxel-based morphometry), and compared with that of 20 age-matched healthy controls. ICA boy presented a significant decrease in GM volume in the orbitofrontal cortex, anterior cingulate cortex, middle cingulate cortex, thalamus, insular cortex, cerebellum, precuneus, gyrus rectus, subcallosal gyrus, middle temporal gyrus, fusiform gyrus and piriform cortex. No significant GM volume increase was detected in other brain areas. The pattern of GM atrophy was similar as previous literature reported. Our results identified similar GM volume alterations regardless of the causes of olfactory impairment. Decreased GM volume was not only shown in olfactory bulbs, olfactory tracts and olfactory sulcus, also in primary olfactory cortex and the secondary cerebral olfactory areas in ICA people. This is the first study to evaluate GM volume alterations in ICA people.

  4. Delta and gamma oscillations in operculo-insular cortex underlie innocuous cold thermosensation

    PubMed Central

    Vinding, Mikkel C.; Allen, Micah; Jensen, Troels Staehelin; Finnerup, Nanna Brix

    2017-01-01

    Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1–4 Hz) and gamma (55–90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas. NEW & NOTEWORTHY Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage. PMID:28250150

  5. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats.

    PubMed

    Song, Yu; Liu, Junxiu; Ma, Furong; Mao, Lanqun

    2016-12-01

    Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.

  6. Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness.

    PubMed

    Simmons, W Kyle; Avery, Jason A; Barcalow, Joel C; Bodurka, Jerzy; Drevets, Wayne C; Bellgowan, Patrick

    2013-11-01

    Relatively discrete experimental literatures have grown to support the insula's role in the domains of interoception, focal exteroceptive attention and cognitive control, and the experience of anxiety, even as theoretical accounts have asserted that the insula is a critical zone for integrating across these domains. Here we provide the first experimental demonstration that there exists a functional topography across the insula, with distinct regions in the same participants responding in a highly selective fashion for interoceptive, exteroceptive, and affective processing. Although each insular region is associated with areas of differential resting state functional connectivity relative to the other regions, overall their functional connectivity profiles are quite similar, thereby providing a map of how interoceptive, exteroceptive, and emotional awareness are integrated within the insular cortex. Copyright © 2012 Wiley Periodicals, Inc.

  7. Localizing and lateralizing value of ictal flatulence.

    PubMed

    Strzelczyk, Adam; Nowak, Mareike; Bauer, Sebastian; Reif, Philipp S; Oertel, Wolfgang H; Knake, Susanne; Hamer, Hajo M; Rosenow, Felix

    2010-02-01

    Autonomic seizures have been associated with seizure onset in the temporal or insular lobe and consist of variations in blood pressure and heart rate, sweating, flushing, piloerection, hypersalivation, vomiting, spitting, and alterations in bladder and bowel functions. The aim of this study was to evaluate the localizing and lateralizing value of ictal flatulence. Medical records of patients with focal epilepsies who were monitored at the Interdisciplinary Epilepsy Center Marburg between 2006 and 2009 were reviewed for the occurrence of ictal flatulence. Clinical, electrophysiological, and imaging data were reviewed and compared with data for previously reported cases of ictal flatulence. Two patients with ictal flatulence were identified (0.6%). In both patients, ictal flatulence was associated with a seizure pattern in the temporal lobe of the dominant hemisphere. Our cases and previously reported cases point toward activation of insular cortex because of such additional autonomic symptoms as unilateral piloerection, tachycardia, profound sweating, and flushing of the face. Ictal flatulence is a rare manifestation of autonomic seizures and a localizing sign for temporal or/and insular lobe epilepsies. In general, ictal flatulence seems to have no lateralizing value. (c) 2009 Elsevier Inc. All rights reserved.

  8. Familiar Taste Induces Higher Dendritic Levels of Activity-Regulated Cytoskeleton-Associated Protein in the Insular Cortex than a Novel One

    ERIC Educational Resources Information Center

    Morin, Jean-Pascal; Quiroz, Cesar; Mendoza-Viveros, Lucia; Ramirez-Amaya, Victor; Bermudez-Rattoni, Federico

    2011-01-01

    The immediate early gene (IEG) "Arc" is known to play an important role in synaptic plasticity; its protein is locally translated in the dendrites where it has been involved in several types of plasticity mechanisms. Because of its tight coupling with neuronal activity, "Arc" has been widely used as a tool to tag behaviorally activated networks.…

  9. Altered dynamics between neural systems sub-serving decisions for unhealthy food

    PubMed Central

    He, Qinghua; Xiao, Lin; Xue, Gui; Wong, Savio; Ames, Susan L.; Xie, Bin; Bechara, Antoine

    2014-01-01

    Using BOLD functional magnetic resonance imaging (fMRI) techniques, we examined the relationships between activities in the neural systems elicited by the decision stage of the Iowa Gambling Task (IGT), and food choices of either vegetables or snacks high in fat and sugar. Twenty-three healthy normal weight adolescents and young adults, ranging in age from 14 to 21, were studied. Neural systems implicated in decision-making and inhibitory control were engaged by having participants perform the IGT during fMRI scanning. The Youth/Adolescent Questionnaire, a food frequency questionnaire, was used to obtain daily food choices. Higher consumption of vegetables correlated with higher activity in prefrontal cortical regions, namely the left superior frontal gyrus (SFG), and lower activity in sub-cortical regions, namely the right insular cortex. In contrast, higher consumption of fatty and sugary snacks correlated with lower activity in the prefrontal regions, combined with higher activity in the sub-cortical, insular cortex. These results provide preliminary support for our hypotheses that unhealthy food choices in real life are reflected by neuronal changes in key neural systems involved in habits, decision-making and self-control processes. These findings have implications for the creation of decision-making based intervention strategies that promote healthier eating. PMID:25414630

  10. Alterations in regional homogeneity of resting-state cerebral activity in patients with chronic prostatitis/chronic pelvic pain syndrome.

    PubMed

    Lin, Yusong; Bai, Yan; Liu, Peng; Yang, Xuejuan; Qin, Wei; Gu, Jianqin; Ding, Degang; Tian, Jie; Wang, Meiyun

    2017-01-01

    The purpose of this study was to explore the neural mechanism in Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS) using resting-state functional magnetic resonance imaging. The functional magnetic resonance imaging was performed on 31 male CP/CPPS-patients and 31 age and education matched male healthy controls on a 3-T magnetic resonance imaging unit. A two-sample t-test was adopted to reveal the regional homogeneity between the patients and healthy controls. The mean regional homogeneity values in the alerted brain regions of patients were correlated with the clinical measurements by using Pearson's correlation analyses. The CP/CPPS-patients had significantly decreased regional homogeneity in the bilateral anterior cingulate cortices, insular cortices and right medial prefrontal cortex, while significantly increased regional homogeneity in the brainstem and right thalamus compared with the healthy controls. In the CP/CPPS-patients, the mean regional homogeneity value in the left anterior cingulate cortex, bilateral insular cortices and brainstem were respectively correlated with the National Institutes of Health Chronic Prostatitis Symptom Index total score and pain subscale. These brain regions are important in the pain modulation process. Therefore, an impaired pain modulatory system, either by decreased descending pain inhibition or enhanced pain facilitation, may explain the pain symptoms in CP/CPPS.

  11. The activity in the anterior insulae is modulated by perceptual decision-making difficulty.

    PubMed

    Lamichhane, Bidhan; Adhikari, Bhim M; Dhamala, Mukesh

    2016-07-07

    Previous neuroimaging studies provide evidence for the involvement of the anterior insulae (INSs) in perceptual decision-making processes. However, how the insular cortex is involved in integration of degraded sensory information to create a conscious percept of environment and to drive our behaviors still remains a mystery. In this study, using functional magnetic resonance imaging (fMRI) and four different perceptual categorization tasks in visual and audio-visual domains, we measured blood oxygen level dependent (BOLD) signals and examined the roles of INSs in easy and difficult perceptual decision-making. We created a varying degree of degraded stimuli by manipulating the task-specific stimuli in these four experiments to examine the effects of task difficulty on insular cortex response. We hypothesized that significantly higher BOLD response would be associated with the ambiguity of the sensory information and decision-making difficulty. In all of our experimental tasks, we found the INS activity consistently increased with task difficulty and participants' behavioral performance changed with the ambiguity of the presented sensory information. These findings support the hypothesis that the anterior insulae are involved in sensory-guided, goal-directed behaviors and their activities can predict perceptual load and task difficulty. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Cholinergic dependence of taste memory formation: evidence of two distinct processes.

    PubMed

    Gutiérrez, Ranier; Rodriguez-Ortiz, Carlos J; De La Cruz, Vanesa; Núñez-Jaramillo, Luis; Bermudez-Rattoni, Federico

    2003-11-01

    Learning the aversive or positive consequences associated with novel taste solutions has a strong significance for an animal's survival. A lack of recognition of a taste's consequences could prevent ingestion of potential edibles or encounter death. We used conditioned taste aversion (CTA) and attenuation of neophobia (AN) to study aversive and safe taste memory formation. To determine if muscarinic receptors in the insular cortex participate differentially in both tasks, we infused the muscarinic antagonists scopolamine at distinct times before or after the presentation of a strong concentration of saccharin, followed by either an i.p. injection of a malaise-inducing agent or no injection. Our results showed that blockade of muscarinic receptors before taste presentation disrupts both learning tasks. However, the same treatment after the taste prevents AN but not CTA. These results clearly demonstrate that cortical cholinergic activity participates in the acquisition of both safe and aversive memory formation, and that cortical muscarinic receptors seem to be necessary for safe but not for aversive taste memory consolidation. These results suggest that the taste memory trace is processed in the insular cortex simultaneously by at least two independent mechanisms, and that their interaction would determine the degree of aversion or preference learned to a novel taste.

  13. Plasticity-Related PKMζ Signaling in the Insular Cortex Is Involved in the Modulation of Neuropathic Pain after Nerve Injury

    PubMed Central

    Han, Jeongsoo; Kwon, Minjee; Cha, Myeounghoon; Tanioka, Motomasa; Hong, Seong-Karp; Bai, Sun Joon; Lee, Bae Hwan

    2015-01-01

    The insular cortex (IC) is associated with important functions linked with pain and emotions. According to recent reports, neural plasticity in the brain including the IC can be induced by nerve injury and may contribute to chronic pain. Continuous active kinase, protein kinase Mζ (PKMζ), has been known to maintain the long-term potentiation. This study was conducted to determine the role of PKMζ in the IC, which may be involved in the modulation of neuropathic pain. Mechanical allodynia test and immunohistochemistry (IHC) of zif268, an activity-dependent transcription factor required for neuronal plasticity, were performed after nerve injury. After ζ-pseudosubstrate inhibitory peptide (ZIP, a selective inhibitor of PKMζ) injection, mechanical allodynia test and immunoblotting of PKMζ, phospho-PKMζ (p-PKMζ), and GluR1 and GluR2 were observed. IHC demonstrated that zif268 expression significantly increased in the IC after nerve injury. Mechanical allodynia was significantly decreased by ZIP microinjection into the IC. The analgesic effect lasted for 12 hours. Moreover, the levels of GluR1, GluR2, and p-PKMζ were decreased after ZIP microinjection. These results suggest that peripheral nerve injury induces neural plasticity related to PKMζ and that ZIP has potential applications for relieving chronic pain. PMID:26457205

  14. The Impact of Prior Risk Experiences on Subsequent Risky Decision-Making: The Role of the Insula

    PubMed Central

    Xue, Gui; Lu, Zhonglin; Levin, Irwin P.; Bechara, Antoine

    2010-01-01

    Risky decision-making is significantly affected by homeostatic states associated with different prior risk experiences, yet the neural mechanisms have not been well understood. Using functional MRI, we examined how gambling decisions and their underlying neural responses were modulated by prior risk experiences, with a focus on the insular cortex since it has been implicated in interoception, emotion and risky decision-making. Fourteen healthy young participants were scanned while performing a gambling task that was designed to simulate daily-life risk taking. Prior risk experience was manipulated by presenting participants with gambles that they were very likely to accept or gambles that they were unlikely to accept. A probe gamble, which was sensitive to individual's risk preference, was presented to examine the effect of prior risk experiences (Risk vs. Norisk) on subsequent risky decisions. Compared to passing on a gamble (Norisk), taking a gamble, especially winning a gamble (Riskwin), was associated with significantly stronger activation in the insular and dorsal medial prefrontal cortices. Decision making after Norisk was more risky and more likely to recruit activation of the insular and anterior cingulate cortices. This insular activity during decision making predicted the extent of risky decisions both within- and across- subjects, and was also correlated with an individual's personality trait of urgency. These findings suggest that the insula plays an important role in activating representations of homeostatic states associated with the experience of risk, which in turn exerts an influence on subsequent decisions. PMID:20045470

  15. The von Economo neurons in apes and humans.

    PubMed

    Allman, John M; Tetreault, Nicole A; Hakeem, Atiya Y; Park, Soyoung

    2011-01-01

    The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex (ACC) in great apes and humans but not other primates. We stereologically counted the VENs in FI and the limbic anterior (LA) area of ACC and found them to be more numerous in humans than in apes. In humans, VENs first appear in small numbers in the 36th week postconception are rare at birth and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than the left in FI and LA in postnatal brains; this may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, containing FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. In a preliminary diffusion tensor imaging study of the connections of FI, we found that the VEN-containing regions connect with the frontal pole as well as with other parts of frontal and insular cortex, the septum, and the amygdala. The VENs and a related cell population, the fork cells, selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing pepide, which signal satiety. The loss of VENs and fork cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. These cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. © 2010 Wiley-Liss, Inc.

  16. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits

    PubMed Central

    Meyer, Sarah; Kessner, Simon S.; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C.; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert

    2015-01-01

    The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand. PMID:26900565

  17. Beet Root Juice: An Ergogenic Aid for Exercise and the Aging Brain.

    PubMed

    Petrie, Meredith; Rejeski, W Jack; Basu, Swati; Laurienti, Paul J; Marsh, Anthony P; Norris, James L; Kim-Shapiro, Daniel B; Burdette, Jonathan H

    2017-09-01

    Exercise has positive neuroplastic effects on the aging brain. It has also been shown that ingestion of beet root juice (BRJ) increases blood flow to the brain and enhances exercise performance. Here, we examined whether there are synergistic effects of BRJ and exercise on neuroplasticity in the aging brain. Peak metabolic equivalent (MET) capacity and resting-state magnetic resonance imaging functional brain network organization are reported on 26 older (mean age = 65.4 years) participants randomly assigned to 6 weeks of exercise + BRJ or exercise + placebo. Somatomotor community structure consistency was significantly enhanced in the exercise + BRJ group following the intervention (MBRJ = -2.27, SE = 0.145, MPlacebo = -2.89, SE = 0.156, p = .007). Differences in second-order connections between the somatomotor cortex and insular cortex were also significant; the exercise + BRJ group (M = 3.28, SE = 0.167) had a significantly lower number of connections than exercise + placebo (M = 3.91, SE = 0.18, p = .017) following the intervention. Evaluation of peak MET capacity revealed a trend for the exercise + BRJ group to have higher MET capacity following the intervention. Older adults who exercised and consumed BRJ demonstrated greater consistency within the motor community and fewer secondary connections with the insular cortex compared with those who exercised without BRJ. The exercise + BRJ group had brain networks that more closely resembled those of younger adults, showing the potential enhanced neuroplasticity conferred by combining exercise and BRJ consumption. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Ethanol intake and sup 3 H-serotonin uptake I: A study in Fawn-Hooded rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daoust, M.; Compagnon, P.; Legrand, E.

    1991-01-01

    Ethanol intake and synaptosomal {sup 3}H-serotonin uptake were studied in male Fawn-Hooded and Sprague-Dawley rats. Fawn-Hooded rats consumed more alcohol and more water than Sprague-Dawley rats. Plasma alcohol levels of Sprague-Dawley rats were not detectable but were about 5 mg/dl in Fawn-Hooded rats. Ethanol intake increased the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex, but not in thalamus. In Fawn-Hooded rats, serotonin uptake (Vmax) was higher than in Sprague-Dawley rats cortex. Ethanol intake reduced the Vmax of serotonin uptake in Fawn-Hooded rats in hippocampus and cortex. In cortex, the carrier affinity for serotonin was increased inmore » alcoholized Fawn-Hooded rats. These results indicate that synaptosomal {sup 3}H-serotonin uptake is affected by ethanol intake. In Fawn-Hooded rats, high ethanol consumption is associated with high serotonin uptake. In rats presenting high serotonin uptake, alcoholization reduces {sup 3}H-serotonin internalization in synaptosomes, indicating a specific sensitivity to alcohol intake of serotonin uptake system.« less

  19. Sex differences in corticolimbic dopamine and serotonin systems in the rat and the effect of postnatal handling.

    PubMed

    Duchesne, Annie; Dufresne, Marc M; Sullivan, Ron M

    2009-03-17

    Stress-related psychopathology is particularly prevalent in women, although the neurobiological reason(s) for this are unclear. Dopamine (DA) and serotonin (5-HT) systems however, are known to play important adaptive roles in stress and emotion regulation. The aims of the present study included examination of sex differences in stress-related behaviour and neuroendocrine function as well as post mortem neurochemistry, with the main hypothesis that corticolimbic DA and 5-HT systems would show greater functional activity in males than females. Long-Evans rats of both sexes were employed. Additional factors incorporated included differential postnatal experience (handled vs. nonhandled) and adult mild stress experience (acute vs. repeated (5) restraint). Regional neurochemistry measures were conducted separately for left and right hemispheres. Behaviourally, females showed more exploratory behaviour than males in the elevated plus maze and an openfield/holeboard apparatus. Females also exhibited significantly higher levels of adrenocorticotrophic hormone and corticosterone at all time points in response to restraint stress than males across treatment conditions, although both sexes showed similar habituation in stress-induced ACTH activation with repeated mild stress. Neurochemically, females had significantly higher levels of DA (in ventromedial prefrontal cortex (vmPFC), insular cortex and n. accumbens) and 5-HT (in vmPFC, amygdala, dorsal hippocampus and insula) than males. In contrast, males had higher levels of the DA metabolite DOPAC or DOPAC/DA ratios than females in all five regions and higher levels of the 5-HT metabolite 5-HIAA or 5-HIAA/5-HT ratios in vmPFC, amygdala and insula, suggesting greater neurotransmitter utilization in males. Moreover, handling treatment induced a significant male-specific upregulation of 5-HT metabolism in all regions except n. accumbens. Given the adaptive role of 5-HT and DAergic neurotransmission in stress and emotion regulation, the intrinsic sex differences we report in the functional status of these systems across conditions, may be highly relevant to the differential vulnerability to disorders of stress and emotion regulation.

  20. Analysis on bilateral hindlimb mapping in motor cortex of the rat by an intracortical microstimulation method.

    PubMed

    Seong, Han Yu; Cho, Ji Young; Choi, Byeong Sam; Min, Joong Kee; Kim, Yong Hwan; Roh, Sung Woo; Kim, Jeong Hoon; Jeon, Sang Ryong

    2014-04-01

    Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%± 11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.

  1. Brain Mechanisms Supporting Discrimination of Sensory Features of Pain: A New Model

    PubMed Central

    Oshiro, Yoshitetsu; Quevedo, Alexandre S.; McHaffie, John G.; Kraft, Robert A.; Coghill, Robert C.

    2010-01-01

    Pain can be very intense or only mild, and can be well localized or diffuse. To date, little is known as to how such distinct sensory aspects of noxious stimuli are processed by the human brain. Using functional magnetic resonance imaging and a delayed match-to-sample task, we show that discrimination of pain intensity, a non-spatial aspect of pain, activates a ventrally directed pathway extending bilaterally from the insular cortex to the prefrontal cortex. This activation is distinct from the dorsally-directed activation of the posterior parietal cortex and right dorsolateral prefrontal cortex that occurs during spatial discrimination of pain. Both intensity and spatial discrimination tasks activate highly similar aspects of the anterior cingulate cortex, suggesting that this structure contributes to common elements of the discrimination task such as the monitoring of sensory comparisons and response selection. Taken together, these results provide the foundation for a new model of pain in which bidirectional dorsal and ventral streams preferentially amplify and process distinct sensory features of noxious stimuli according to top-down task demands. PMID:19940188

  2. Perirhinal Cortex Lesions in Rats: Novelty Detection and Sensitivity to Interference

    PubMed Central

    2015-01-01

    Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1–4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal. PMID:26030425

  3. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.

  4. Mechanisms in Chronic Multisymptom Illnesses

    DTIC Science & Technology

    2008-10-01

    Craig AD, Chen K, Bandy D, Reiman EM. Thermosensory activation of insular cortex. Nat Neurosci 2000;3:184–90. 8. Singer T , Seymour B, O’Doherty J...to the Human Brain Mapping conference, June 2009. (See Appendix) S.J. Peltier, M.C Hsu, R.C. Welsh, R Bhavsar, R.E. Harris, D.J. Clauw, L. Symonds...College of Rheumatology, 2007. (See Appendix) Williams, DA, Patel, R ., Skalski, L., Chriscinske, SJ, Rubens, M., Lapedis, J., Harris, RE

  5. Ageing introduces a complex pattern of changes in several rat brain transcription factors depending on gender and anatomical localization.

    PubMed

    Sanguino, Elena; Roglans, Núria; Rodríguez-Calvo, Ricardo; Alegret, Marta; Sánchez, Rosa M; Vázquez-Carrera, Manuel; Laguna, Juan C

    2006-04-01

    As ageing changes the activity of several transcription factors in the rat cortex, we were interested in determining whether similar changes also appear in the hippocampus of old rats. We determined by electrophoretic gel shift assays the binding activity of nuclear factor kappa B (NFkappaB), activator protein-1 (AP-1), peroxisome proliferator-activated receptor (PPAR), and liver X receptor (LXR) in cortex and hippocampus samples from young (3-month-old), and old (18-month-old) male and female Sprague-Dawley rats. NFkappaB activity increased in old male and female rats, though only in cortex samples, while AP-1 activity decreased only in the cortex and hippocampus of old female animals. LXR activity decreased in all conditions, except in old male cortexes; whereas PPAR activity only decreased in the hippocampus of old female rats. Decreases in AP-1 and PPAR activities restricted to old female rats did not result from an age-related decline in plasma 17beta-estradiol concentration, as their activities did not change in samples obtained from ovariectomized young female rats. Our results indicate that ageing induces a complex pattern of changes in the brain-binding activity of NFkappaB, AP-1, PPAR and LXR, depending on the anatomical origin of the samples (cortex or hippocampus), and the sex of the animals studied.

  6. Regional gray matter volume is associated with trait modesty: Evidence from voxel-based morphometry.

    PubMed

    Zheng, Chuhua; Wu, Qiong; Jin, Yan; Wu, Yanhong

    2017-11-02

    Modesty when defined as a personality trait, is highly beneficial to interpersonal relationship, group performance, and mental health. However, the potential neural underpinnings of trait modesty remain poorly understood. In the current study, we used voxel-based morphometry (VBM) to investigate the structural neural basis of trait modesty in Chinese college students. VBM results showed that higher trait modesty score was associated with lager regional gray matter volume in the dorsomedial prefrontal cortex, right dorsolateral prefrontal cortex, left superior temporal gyrus/left temporal pole, and right posterior insular cortex. These results suggest that individual differences in trait modesty are linked to brain regions associated with self-evaluation, self-regulation, and social cognition. The results remained robust after controlling the confounding factor of global self-esteem, suggesting unique structural correlates of trait modesty. These findings provide evidence for the structural neural basis of individual differences in trait modesty.

  7. Empathy for social exclusion involves the sensory-discriminative component of pain: a within-subject fMRI study

    PubMed Central

    Novembre, Giovanni; Zanon, Marco

    2015-01-01

    Recent research has shown that experiencing events that represent a significant threat to social bonds activates a network of brain areas associated with the sensory-discriminative aspects of pain. In the present study, we investigated whether the same brain areas are involved when witnessing social exclusion threats experienced by others. Using a within-subject design, we show that an ecologically valid experience of social exclusion recruits areas coding the somatosensory components of physical pain (posterior insular cortex and secondary somatosensory cortex). Furthermore, we show that this pattern of activation not only holds for directly experienced social pain, but also during empathy for social pain. Finally, we report that subgenual cingulate cortex is the only brain area conjointly active during empathy for physical and social pain. This supports recent theories that affective processing and homeostatic regulation are at the core of empathic responses. PMID:24563529

  8. Altered functional connectivity between the insula and the cingulate cortex in patients with temporomandibular disorder: a pilot study.

    PubMed

    Ichesco, Eric; Quintero, Andres; Clauw, Daniel J; Peltier, Scott; Sundgren, Pia M; Gerstner, Geoffrey E; Schmidt-Wilcke, Tobias

    2012-03-01

    Among the most common chronic pain conditions, yet poorly understood, are temporomandibular disorders (TMDs), with a prevalence estimate of 3-15% for Western populations. Although it is increasingly acknowledged that central nervous system mechanisms contribute to pain amplification and chronicity in TMDs, further research is needed to unravel neural correlates that might abet the development of chronic pain. The insular cortex (IC) and cingulate cortex (CC) are both critically involved in the experience of pain. The current study sought specifically to investigate IC-CC functional connectivity in TMD patients and healthy controls (HCs), both during resting state and during the application of a painful stimulus. Eight patients with TMD, and 8 age- and sex-matched HCs were enrolled in the present study. Functional magnetic resonance imaging data during resting state and during the performance of a pressure pain stimulus to the temple were acquired. Predefined seed regions were placed in the IC (anterior and posterior insular cortices) and the extracted signal was correlated with brain activity throughout the whole brain. Specifically, we were interested whether TMD patients and HCs would show differences in IC-CC connectivity, both during resting state and during the application of a painful stimulus to the face. As a main finding, functional connectivity analyses revealed an increased functional connectivity between the left anterior IC and pregenual anterior cingulate cortex (ACC) in TMD patients, during both resting state and applied pressure pain. Within the patient group, there was a negative correlation between the anterior IC-ACC connectivity and clinical pain intensity as measured by a visual analog scale. Since the pregenual region of the ACC is critically involved in antinociception, we hypothesize that an increase in anterior IC-ACC connectivity is indicative of an adaptation of the pain modulatory system early in the chronification process. © 2011 American Headache Society.

  9. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder.

    PubMed

    Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N

    2017-12-01

    Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.

  10. Alterations in hippocampal and cortical densities of functionally different interneurons in rat models of absence epilepsy.

    PubMed

    Papp, Péter; Kovács, Zsolt; Szocsics, Péter; Juhász, Gábor; Maglóczky, Zsófia

    2018-05-31

    Recent data from absence epileptic patients and animal models provide evidence for significant impairments of attention, memory, and psychosocial functioning. Here, we outline aspects of the electrophysiological and structural background of these dysfunctions by investigating changes in hippocampal and cortical GABAergic inhibitory interneurons in two genetically absence epileptic rat strains: the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and the Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. Using simultaneously recorded field potentials from the primary somatosensory cortex (S1 cortex, seizure focus) and the hippocampal hilus, we demonstrated that typical frequencies of spike-wave discharges (SWDs; 7-8 Hz, GAERS; 7-9 Hz, WAG/Rij) and their harmonics appeared and their EEG spectral power markedly increased on recordings not only from the S1 cortex, but also from the hilus in both GAERS and WAG/Rij rats during SWDs. Moreover, we observed an increased synchronization between S1 cortex and hilus at 7-8 Hz (GAERS) and 7-9 Hz (WAG/Rij) and at their harmonics when SWDs occurred in the S1 cortex in both rat strains. In addition, using immunohistochemistry we demonstrated changes in the densities of perisomatic (parvalbumin-immunopositive, PV+) and interneuron-selective (calretinin-immunopositive, CR+) GABAergic inhibitory interneuron somata. Specifically, GAERS and WAG/Rij rats displayed lower densities of PV-immunopositivity in the hippocampal hilus compared to non-epileptic control (NEC) and normal Wistar rats. GAERS and WAG/Rij rats also show a marked reduction in the density of CR + interneurons in the same region in comparison with NEC rats. Data from the S1 cortex reveals bidirectional differences in PV + density, with GAERS displaying a significant increase, whereas WAG/Rij a reduction compared to control rat strains. Our results suggest an enhanced synchronization and functional connections between the hippocampus and S1 cortex as well as thalamocortical activities during SWDs and a functional alteration of inhibitory mechanisms in the hippocampus and S1 cortex of two genetic models of absence epilepsy, presumably in relation with increased neuronal activity and seizure-induced neuronal injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Sex Differences in Insular Cortex Gyri Responses to the Valsalva Maneuver.

    PubMed

    Macey, Paul M; Rieken, Nicholas S; Kumar, Rajesh; Ogren, Jennifer A; Middlekauff, Holly R; Wu, Paula; Woo, Mary A; Harper, Ronald M

    2016-01-01

    Sex differences in autonomic regulation may underlie cardiovascular disease variations between females and males. One key autonomic brain region is the insular cortex, which typically consists of five main gyri in each hemisphere, and shows a topographical organization of autonomic function across those gyri. The present study aims to identify possible sex differences in organization of autonomic function in the insula. We studied brain functional magnetic resonance imaging (fMRI) responses to a series of four 18-s Valsalva maneuvers in 22 healthy females (age ± SD: 50.0 ± 7.9 years) and 36 healthy males (45.3 ± 9.2 years). Comparisons of heart rate (HR) and fMRI signals were performed with repeated measures ANOVA (threshold P < 0.05 for all findings). All subjects achieved the target 30 mmHg expiratory pressure for all challenges. Typical HR responses were elicited by the maneuver, including HR increases from ~4 s into the strain period (Phase II) and rapid declines to below baseline 5-10 s, following strain release (Phase IV). Small, but significant, sex differences in HR percent change occurred during the sympathetic-dominant Phase II (female < male) and parasympathetic-dominant Phase IV (female > male, i.e., greater undershoot in males). The insular cortices showed similar patterns in all gyri, with greater signal decreases in males than females. Both sexes exhibited an anterior-posterior topographical organization of insular responses during Phase II, with anterior gyri showing higher responses than more posterior gyri. The exception was the right anterior-most gyrus in females, which had lower responses than the four other right gyri. Responses were lateralized, with right-sided dominance during Phase II in both sexes, except the right anterior-most gyrus in females, which showed lower responses than the left. The findings confirm the anterior and right-sided sympathetic dominance of the insula. Although sex differences were prominent in response magnitude, organization differences between males and females were limited to the right anterior-most gyrus, which showed a lower fMRI response in females vs. males (and vs. other gyri in females). The sex differences suggest a possible differing baseline state of brain physiology or tonic functional activity between females and males, especially in the right anterior-most gyrus.

  12. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats.

    PubMed

    Bavithra, S; Selvakumar, K; Sundareswaran, L; Arunakaran, J

    2017-02-01

    There is ample evidence stating Polychlorinated biphenyls (PCBs) as neurotoxins. In the current study, we have analyzed the behavioural impact of PCBs exposure in adult rats and assessed the simultaneous effect of antioxidant melatonin against the PCBs action. The rats were grouped into four and treated intraperitoneally with vehicle, PCBs, PCBs + melatonin and melatonin alone for 30 days, respectively. After the treatment period the rats were tested for locomotor activity and anxiety behaviour analysis. We confirmed the neuronal damage in the cerebral cortex by molecular and histological analysis. Our data indicates that there is impairment in locomotor activity and behaviour of PCBs treated rats compared to control. The simultaneous melatonin treated rat shows increased motor coordination and less anxiety like behaviour compared to PCBs treated rats. Molecular and histological analysis supports that, the impaired motor coordination in PCBs treated rats is due to neurodegeneration in motor cortex region. The results proved that melatonin treatment improved the motor co-ordination and reduced anxiety behaviour, prevented neurodegeneration in the cerebral cortex of PCBs-exposed adult male rats.

  13. Negative childhood experiences alter a prefrontal-insular-motor cortical network in healthy adults: A preliminary multimodal rsfMRI-fMRI-MRS-dMRI study

    PubMed Central

    Duncan, Niall W.; Hayes, Dave J.; Wiebking, Christine; Tiret, Brice; Pietruska, Karin; Chen, David Q.; Rainville, Pierre; Marjańska, Malgorzata; Mohammid, Omar; Doyon, Julien; Hodaie, Mojgan; Northoff, Georg

    2016-01-01

    Research in humans and animals has shown that negative childhood experiences (NCE) can have long-term effects on the structure and function of the brain. Alterations have been noted in grey and white matter, in the brain’s resting state, on the glutamatergic system, and on neural and behavioural responses to aversive stimuli. These effects can be linked to psychiatric disorder such as depression and anxiety disorders that are influenced by excessive exposure to early life stressors. The aim of the current study was to investigate the effect of NCEs on these systems. Resting state functional MRI (rsfMRI), aversion task fMRI, glutamate magnetic resonance spectroscopy (MRS), and diffusion magnetic resonance imaging (dMRI) were combined with the Childhood Trauma Questionnaire (CTQ) in healthy subjects to examine the impact of NCEs on the brain. Low CTQ scores, a measure of NCEs, were related to higher resting state glutamate levels and higher resting state entropy in the medial prefrontal cortex (mPFC). CTQ scores, mPFC glutamate and entropy, correlated with neural BOLD responses to the anticipation of aversive stimuli in regions throughout the aversion-related network, with strong correlations between all measures in the motor cortex and left insula. Structural connectivity strength, measured using mean fractional anisotropy, between the mPFC and left insula correlated to aversion-related signal changes in the motor cortex. These findings highlight the impact of NCEs on multiple inter-related brain systems. In particular, they highlight the role of a prefrontal-insular-motor cortical network in the processing and responsivity to aversive stimuli and its potential adaptability by NCEs. PMID:26287448

  14. Digestive physiology of the pig symposium: detection of dietary glutamate via gut-brain axis.

    PubMed

    Bannai, M; Torii, K

    2013-05-01

    Gustatory and visceral stimulation from food regulates digestion and nutrient use. Free L-glutamate (Glu) release from digested protein is responsible for umami taste perception in the gut. Moreover, monosodium Glu (MSG) is widely used as a flavor enhancer to add umami taste in various cuisines. Recent studies indicate that dietary Glu sensors and their signal transduction system exist in both gut mucosa and taste cells. Oral Glu sensing has been well studied. In this review, we focus on the role of Glu on digestion and absorption of food. Infusion of Glu into the stomach and intestine increase afferent nerve activity of the gastric and the celiac branches of the vagus nerve, respectively. Luminal Glu also evokes efferent nerve activation of the abdominal vagus nerve branches simultaneously. Additionally, intragastric infusion of Glu activates the insular cortex, limbic system, hypothalamus, nucleus tractus solitaries, and amygdala, as determined by functional magnetic resonance imaging, and is able to induce flavor-preference learning as a result of postingestive effects in rats. These results indicate that Glu signaling via gustatory and visceral pathways plays an important role in the processes of digestion, absorption, metabolism, and other physiological functions via activation of the brain.

  15. Ventricular enlargement in schizophrenia related to volume reduction of the thalamus, striatum, and superior temporal cortex.

    PubMed

    Gaser, Christian; Nenadic, Igor; Buchsbaum, Bradley R; Hazlett, Erin A; Buchsbaum, Monte S

    2004-01-01

    Enlargement of the lateral ventricles is among the most frequently reported macroscopic brain structural changes in schizophrenia, although variable in extent and localization. The authors investigated whether ventricular enlargement is related to regionally specific volume loss. High-resolution magnetic resonance imaging scans from 39 patients with schizophrenia were analyzed with deformation-based morphometry, a voxel-wise whole brain morphometric technique. Significant negative correlations with the ventricle-brain ratio were found for voxels in the left and right thalamus and posterior putamen and in the left superior temporal gyrus and insula. Thalamic shrinkage, especially of medial nuclei and the adjacent striatum and insular cortex, appear to be important contributors to ventricular enlargement in schizophrenia.

  16. A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression.

    PubMed

    Diener, Carsten; Kuehner, Christine; Brusniak, Wencke; Ubl, Bettina; Wessa, Michèle; Flor, Herta

    2012-07-02

    Major depressive disorder (MDD) is characterized by altered emotional and cognitive functioning. We performed a voxel-based whole-brain meta-analysis of functional neuroimaging data on altered emotion and cognition in MDD. Forty peer-reviewed studies in English-language published between 1998 and 2010 were included, which used functional neuroimaging during cognitive-emotional challenge in adult individuals with MDD and healthy controls. All studies reported between-groups differences for whole-brain analyses in standardized neuroanatomical space and were subjected to Activation Likelihood Estimation (ALE) of brain cluster showing altered responsivity in MDD. ALE resulted in thresholded and false discovery rate corrected hypo- and hyperactive brain regions. Against the background of a complex neural activation pattern, studies converged in predominantly hypoactive cluster in the anterior insular and rostral anterior cingulate cortex linked to affectively biased information processing and poor cognitive control. Frontal areas showed not only similar under- but also over-activation during cognitive-emotional challenge. On the subcortical level, we identified activation alterations in the thalamus and striatum which were involved in biased valence processing of emotional stimuli in MDD. These results for active conditions extend findings from ALE meta-analyses of resting state and antidepressant treatment studies and emphasize the key role of the anterior insular and rostral anterior cingulate cortex for altered emotion and cognition in MDD. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Memory trace reactivation and behavioral response during retrieval are differentially modulated by amygdalar glutamate receptors activity: interaction between amygdala and insular cortex

    PubMed Central

    Osorio-Gómez, Daniel; Guzmán-Ramos, Kioko

    2017-01-01

    The insular cortex (IC) is required for conditioned taste aversion (CTA) retrieval. However, it remains unknown which cortical neurotransmitters levels are modified upon CTA retrieval. Using in vivo microdialysis, we observed that there were clear elevations in extracellular glutamate, norepinephrine, and dopamine in and around the center of the gustatory zone of the IC during CTA retrieval. Additionally, it has been reported that the amygdala–IC interaction is highly involved in CTA memory establishment. Therefore, we evaluated the effects of infusions of an AMPA receptor antagonist (CNQX) and a NMDA receptor antagonist (APV) into the amygdala on CTA retrieval and IC neurotransmitter levels. Infusion of APV into the amygdala impaired glutamate augmentation within the IC, whereas dopamine and norepinephrine levels augmentation persisted and a reliable CTA expression was observed. Conversely, CNQX infusion into the amygdala impaired the aversion response, as well as norepinephrine and dopamine augmentations in the IC. Interestingly, CNQX infusion did not affect glutamate elevation in the IC. To evaluate the functional meaning of neurotransmitters elevations within the IC on CTA response, we infused specific antagonists for the AMPA, NMDA, D1, and β-adrenergic receptor before retrieval. Results showed that activation of AMPA, D1, and β-adrenergic receptors is necessary for CTA expression, whereas NMDA receptors are not involved in the aversion response. PMID:27980072

  18. Gray matter volume of the anterior insular cortex and social networking.

    PubMed

    Spagna, Alfredo; Dufford, Alexander J; Wu, Qiong; Wu, Tingting; Zheng, Weihao; Coons, Edgar E; Hof, Patrick R; Hu, Bin; Wu, Yanhong; Fan, Jin

    2018-05-01

    In human life, social context requires the engagement in complex interactions among individuals as the dynamics of social networks. The evolution of the brain as the neurological basis of the mind must be crucial in supporting social networking. Although the relationship between social networking and the amygdala, a small but core region for emotion processing, has been reported, other structures supporting sophisticated social interactions must be involved and need to be identified. In this study, we examined the relationship between morphology of the anterior insular cortex (AIC), a structure involved in basic and high-level cognition, and social networking. Two independent cohorts of individuals (New York group n = 50, Beijing group n = 100) were recruited. Structural magnetic resonance images were acquired and the social network index (SNI), a composite measure summarizing an individual's network diversity, size, and complexity, was measured. The association between morphological features of the AIC, in addition to amygdala, and the SNI was examined. Positive correlations between the measures of the volume as well as sulcal depth of the AIC and the SNI were found in both groups, while a significant positive correlation between the volume of the amygdala and the SNI was only found in the New York group. The converging results from the two groups suggest that the AIC supports network-level social interactions. © 2018 Wiley Periodicals, Inc.

  19. Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task.

    PubMed

    Wittmann, Marc; Leland, David S; Paulus, Martin P

    2007-06-01

    Delay discounting refers to the fact that an immediate reward is valued more than the same reward if it occurs some time in the future. To examine the neural substrates underlying this process, we studied 13 healthy volunteers who repeatedly had to decide between an immediate and parametrically varied delayed hypothetical reward using a delay discounting task during event-related functional magnetic resonance imaging. Subject's preference judgments resulted in different discounting slopes for shorter (<1 year) and for longer (> or =1 year) delays. Neural activation associated with the shorter delays relative to the longer delays was associated with increased activation in the head of the left caudate nucleus and putamen. When individuals selected the delayed relative to the immediate reward, a strong activation was found in bilateral posterior insular cortex. Several brain areas including the left caudate nucleus showed a correlation between the behaviorally determined discounting and brain activation for the contrast of intervals with delays <1 and > or =1 year. These results suggest that (1) the posterior insula, which is a critical component of the decision-making neural network, is involved in delaying gratification and (2) the degree of neural activation in the striatum, which plays a fundamental role in reward prediction and in time estimation, may code for the time delay.

  20. Fluoride and Arsenic Exposure Impairs Learning and Memory and Decreases mGluR5 Expression in the Hippocampus and Cortex in Rats

    PubMed Central

    Jiang, Shoufang; Su, Jing; Yao, Sanqiao; Zhang, Yanshu; Cao, Fuyuan; Wang, Fei; Wang, Huihui; Li, Jun; Xi, Shuhua

    2014-01-01

    Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and mGluR5 expression in cortex and hippocampus. PMID:24759735

  1. Calretinin immunoreactivity in the claustrum of the rat

    PubMed Central

    Druga, Rastislav; Salaj, Martin; Barinka, Filip; Edelstein, Lawrence; Kubová, Hana

    2015-01-01

    The claustrum is a telencephalic structure which consists of dorsal segment adjoining the insular cortex and a ventral segment termed also endopiriform nucleus (END). The dorsal segment (claustrum) is divided into a dorsal and ventral zone, while the END is parcellated into dorsal, ventral and intermediate END. The claustrum and the END consist of glutamatergic projection neurons and GABAergic local interneurons coexpressing calcium binding proteins. Among neurons expressing calcium binding proteins the calretinin (CR)-immunoreactive interneurons exert specific functions in neuronal circuits, including disinhibition of excitatory neurons. Previous anatomical data indicate extensive and reciprocally organized claustral projections with cerebral cortex. We asked if the distribution of cells immunoreactive for CR delineates anatomical or functional subdivisions in the claustrum and in the END. Both segments of the claustrum and all subdivisions of the END contained CR immunoreactive neurons with varying distribution. The ventral zone of the claustrum exhibited weak labeling with isolated cell bodies and thin fibers and is devoid of immunoreactive puncta. Within the medial margin of the intermediate END we noted a group of strongly positive neurons. Cells immunoreactive for CR in all subdivisions of the claustrum and END were bipolar, multipolar and oval with smooth, beaded aspiny dendrites. Small number of CR-immunoreactive neurons displayed thin dendrites which enter to adjoining structures. Penetration of dendrites was reciprocal. These results show an inhomogenity over the claustrum and the END in distribution and types of CR immunoreactive neurons. The distribution of the CR-immunoreactive neurons respects the anatomical but not functional zones of the claustral complex. PMID:25653596

  2. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    PubMed Central

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964

  3. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.

    PubMed

    Carmel, Jason B; Kimura, Hiroki; Martin, John H

    2014-01-08

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.

  4. Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats.

    PubMed

    Russell, V A; Wiggins, T M

    2000-12-01

    Spontaneously hypertensive rats (SHR) have behavioral characteristics (hyperactivity, impulsiveness, poorly sustained attention) similar to the behavioral disturbances of children with attention-deficit hyperactivity disorder (ADHD). We have previously shown that dopaminergic and noradrenergic systems are disturbed in the prefrontal cortex of SHR compared to their normotensive Wistar-Kyoto (WKY) control rats. It was of interest to determine whether the underlying neural circuits that use glutamate as a neurotransmitter function normally in the prefrontal cortex of SHR. An in vitro superfusion technique was used to demonstrate that glutamate caused a concentration-dependent stimulation of [3H]norepinephrine release from rat prefrontal cortex slices. Glutamate (100 microM and 1 mM) caused significantly greater release of norepinephrine from prefrontal cortex slices of SHR than from control slices. The effect of glutamate was not mediated by NMDA receptors, since NMDA (10 and 100 microM) did not exert any effect on norepinephrine release and MK-801 (10 microM) did not antagonize the effect of 100 microM glutamate. These results demonstrate that glutamate stimulates norepinephrine release from rat prefrontal cortex slices and that this increase is enhanced in SHR. The results are consistent with the suggestion that the noradrenergic system is overactive in prefrontal cortex of SHR, the animal model for ADHD.

  5. ["Entero-insular axis" and regulation of blood sugar and insulin levels following oral glucose loading].

    PubMed

    Kuznetsov, B G

    1978-11-01

    The mineral water Essentuki 17 administered per so with glucose exerted a modifying effect on the regulation of glycaemia and insulinaemia in intact rats. This effect undergoes a few phases of changing and disappears by the 30th day. Under conditions of this adaptation, the glycaemia regulation is somewhat worsening. After i.v. administration of glucose during this period the regulation of glycaemia and insulinaemia remains unaltered. This suggests that the mineral water exerts its biological effect, mainly, on the entero-insular axis system (Unger and Eisentraut, 1969) and that the modifying effect is due not to a concrete complex of the mineral water electrolytes but rather to the unspecific factor of "perturbation" in the enteral medium.

  6. Peripheral Nerve Injury in Developing Rats Reorganizes Representation Pattern in Motor Cortex

    NASA Astrophysics Data System (ADS)

    Donoghue, John P.; Sanes, Jerome N.

    1987-02-01

    We investigated the effect of neonatal nerve lesions on cerebral motor cortex organization by comparing the cortical motor representation of normal adult rats with adult rats that had one forelimb removed on the day of birth. Mapping of cerebral neocortex with electrical stimulation revealed an altered relationship between the motor cortex and the remaining muscles. Whereas distal forelimb movements are normally elicited at the lowest threshold in the motor cortex forelimb area, the same stimuli activated shoulder and trunk muscles in experimental animals. In addition, an expanded cortical representation of intact body parts was present and there was an absence of a distinct portion of motor cortex. These data demonstrate that representation patterns in motor cortex can be altered by peripheral nerve injury during development.

  7. Neural substrates of self-referential processing in Chinese Buddhists

    PubMed Central

    Gu, Xiaosi; Mao, Lihua; Ge, Jianqiao; Wang, Gang; Ma, Yina

    2010-01-01

    Our recent work showed that self-trait judgment is associated with increased activity in the ventral medial prefrontal cortex (VMPFC) in non-religious Chinese, but in the dorsal medial prefrontal cortex (DMPFC) in Chinese Christians. The current work further investigated neural substrates of self-referential processing in Chinese Buddhists. Using functional magnetic resonance imaging, we scanned 14 Chinese Buddhists, while they conducted trait judgments of the self, Zhu Rongji (the former Chinese premier), Sakyamuni (the Buddhist leader) and Jesus (the Christian leader). We found that, relative to Zhu Rongji judgment, self-judgment in Buddhist participants failed to generate increased activation in the VMPFC but induced increased activations in the DMPFC/rostral anterior cingulate cortex, midcingulate and the left frontal/insular cortex. Self-judgment was also associated with decreased functional connectivity between the DMPFC and posterior parietal cortex compared with Zhu Rongji judgment. The results suggest that Buddhist doctrine of No-self results in weakened neural coding of stimulus self-relatedness in the VMPFC, but enhanced evaluative processes of self-referential stimuli in the DMPFC. Moreover, self-referential processing in Buddhists is characterized by monitoring the conflict between the doctrine of No-self and self-focus thinking during self-trait judgment. PMID:19620181

  8. Common medial frontal mechanisms of adaptive control in humans and rodents

    PubMed Central

    Frank, Michael J.; Laubach, Mark

    2013-01-01

    In this report, we describe how common brain networks within the medial frontal cortex facilitate adaptive behavioral control in rodents and humans. We demonstrate that low frequency oscillations below 12 Hz are dramatically modulated after errors in humans over mid-frontal cortex and in rats within prelimbic and anterior cingulate regions of medial frontal cortex. These oscillations were phase-locked between medial frontal cortex and motor areas in both rats and humans. In rats, single neurons that encoded prior behavioral outcomes were phase-coherent with low-frequency field oscillations particularly after errors. Inactivating medial frontal regions in rats led to impaired behavioral adjustments after errors, eliminated the differential expression of low frequency oscillations after errors, and increased low-frequency spike-field coupling within motor cortex. Our results describe a novel mechanism for behavioral adaptation via low-frequency oscillations and elucidate how medial frontal networks synchronize brain activity to guide performance. PMID:24141310

  9. NGFI-B and nor1 mRNAs are upregulated in brain reward pathways by drugs of abuse: different effects in Fischer and Lewis rats.

    PubMed

    Werme, M; Olson, L; Brené, S

    2000-03-10

    The two inbred Fischer and Lewis rat strains display differences in acquisition of drug self-administration, suggesting genetic factors controlling the vulnerability to drugs of abuse. In this study, we analyzed the effects of acute and chronic cocaine and morphine on mRNAs encoding the NGFI-B/Nur77 family of nuclear orphan receptors in reward pathways in Fischer and Lewis rats. After a single injection of cocaine, a similar upregulation of NGFI-B mRNA in striatal subregions and cortex cinguli was seen in both Fischer and Lewis rats. In contrast, Nor1 mRNA was only significantly upregulated by cocaine in the Fischer rats. Morphine increased NGFI-B mRNA in medial caudate putamen and cortex cinguli in Lewis rats and Nor1 mRNA in medial caudate putamen in Fischer rats. Chronic cocaine upregulated NGFI-B mRNA in nucleus accumbens core, lateral caudate putamen and cingulate cortex in Fischer rats, whereas no effect was seen in Lewis rats. In contrast, Nor1 mRNA levels were upregulated in Lewis rats in medial caudate putamen and cingulate cortex after chronic cocaine and in cingulate cortex after chronic morphine. No effect on Nor1 mRNA levels was seen in Fischer rats after chronic treatments. Our results demonstrate different responses in addiction-prone Lewis rats as compared to the less addiction-prone Fischer rats with respect to NGFI-B and Nor1 mRNA regulation after acute and repeated administration of cocaine and morphine. Thus, we suggest that the transcription factors NGFI-B and Nor1 might be involved in the control of behaviors such as sensitized locomotor response, craving and aversion that appears after repeated administration of abused drugs.

  10. Brain-heart coupling at the P300 latency is linked to anterior cingulate cortex and insula--a cardio-electroencephalographic covariance tracing study.

    PubMed

    Panitz, Christian; Wacker, Jan; Stemmler, Gerhard; Mueller, Erik M

    2013-09-01

    Prior work on the coupling of cortical and cardiac responses to feedback demonstrated that feedback-evoked single-trial EEG magnitudes 300 ms post-stimulus predict the degree of subsequent cardiac acceleration. The main goal of the current study was to explore the neural sources of this phenomenon using (a) independent component analysis in conjunction with dipole fitting and (b) low resolution electromagnetic tomography (LORETA) in N=14 participants who performed a gambling task with feedback presented after each trial. It was shown that independent components localized near anterior cingulate cortex produced robust within-subjects correlations with feedback-evoked heart-period, suggesting that anterior cingulate cortex activity 300ms after feedback presentation predicts the strength of subsequent cardiac acceleration. Moreover, interindividual differences in evoked left insular cortex LORETA-estimated activity at around 300ms moderated within-subjects EEG-heart period correlations. These results suggest that key regions of central autonomic control are involved in cortico-cardiac coupling evoked by feedback stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Distributions of oxytocin and vasopressin 1a receptors in the Taiwan vole and their role in social monogamy.

    PubMed

    Chappell, A R; Freeman, S M; Lin, Y K; LaPrairie, J L; Inoue, K; Young, L J; Hayes, L D

    2016-06-01

    Social monogamy is a mating strategy rarely employed by mammalian species. Laboratory studies in socially monogamous prairie voles ( Microtus ochrogaster ) demonstrate that oxytocin and vasopressin act within the mesolimbic dopamine pathway to facilitate pair-bond formation. Species differences in oxytocin receptor (OTR) and vasopressin 1a receptor (V1aR) distribution in this pathway are associated with species differences in mating strategy. Here we characterize the neuroanatomical distribution of OTR and V1aR binding sites in naturally occurring populations of Taiwan voles ( M. kikuchii ), which purportedly display social monogamy. Live trapping was conducted at two sites in 2009-2010 and receptor autoradiography for OTR and V1aR was performed on brains from 24 animals. OTR binding in two brain regions where OTR signaling regulates pair-bonding were directly compared with that of prairie voles. Our results show that like prairie voles, Taiwan voles exhibit OTR in the prefrontal cortex, insular cortex, claustrum, nucleus accumbens, caudate-putamen, dorsal lateral septal nucleus, central amygdala, and ventromedial hypothalamus. Unlike prairie voles, Taiwan voles exhibit OTR binding in the CA3 pathway of the hippocampus, as well as the indusium griseum, which has only previously been documented in tuco-tucos ( Ctenomys haigi, C. sociabilis ), Syrian hamsters ( Mesocricetus auratus ) and naked mole-rats ( Heterocephalus glaber ). V1aR binding was present in the ventral pallidum, lateral septum, nucleus basalis, bed nucleus of the stria terminalis, hippocampus, medial amygdala, and anterior, ventromedial and dorsomedial hypothalamus. Marked individual differences in V1aR binding were noted in the cingulate cortex and several thalamic nuclei, remarkably similar to prairie voles. While pharmacological studies are needed to determine whether oxytocin and vasopressin are involved in pair-bond formation in this species, our results lay a foundation for future investigations into the role of these neuropeptides in Taiwan vole social behavior.

  12. Distributions of oxytocin and vasopressin 1a receptors in the Taiwan vole and their role in social monogamy

    PubMed Central

    Chappell, A. R.; Freeman, S. M.; Lin, Y. K.; LaPrairie, J. L.; Inoue, K.; Young, L. J.; Hayes, L. D.

    2016-01-01

    Social monogamy is a mating strategy rarely employed by mammalian species. Laboratory studies in socially monogamous prairie voles (Microtus ochrogaster) demonstrate that oxytocin and vasopressin act within the mesolimbic dopamine pathway to facilitate pair-bond formation. Species differences in oxytocin receptor (OTR) and vasopressin 1a receptor (V1aR) distribution in this pathway are associated with species differences in mating strategy. Here we characterize the neuroanatomical distribution of OTR and V1aR binding sites in naturally occurring populations of Taiwan voles (M. kikuchii), which purportedly display social monogamy. Live trapping was conducted at two sites in 2009–2010 and receptor autoradiography for OTR and V1aR was performed on brains from 24 animals. OTR binding in two brain regions where OTR signaling regulates pair-bonding were directly compared with that of prairie voles. Our results show that like prairie voles, Taiwan voles exhibit OTR in the prefrontal cortex, insular cortex, claustrum, nucleus accumbens, caudate-putamen, dorsal lateral septal nucleus, central amygdala, and ventromedial hypothalamus. Unlike prairie voles, Taiwan voles exhibit OTR binding in the CA3 pathway of the hippocampus, as well as the indusium griseum, which has only previously been documented in tuco-tucos (Ctenomys haigi, C. sociabilis), Syrian hamsters (Mesocricetus auratus) and naked mole-rats (Heterocephalus glaber). V1aR binding was present in the ventral pallidum, lateral septum, nucleus basalis, bed nucleus of the stria terminalis, hippocampus, medial amygdala, and anterior, ventromedial and dorsomedial hypothalamus. Marked individual differences in V1aR binding were noted in the cingulate cortex and several thalamic nuclei, remarkably similar to prairie voles. While pharmacological studies are needed to determine whether oxytocin and vasopressin are involved in pair-bond formation in this species, our results lay a foundation for future investigations into the role of these neuropeptides in Taiwan vole social behavior. PMID:27453637

  13. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A.

    PubMed

    Mathew, Jobin; Balakrishnan, Savitha; Antony, Sherin; Abraham, Pretty Mary; Paulose, C S

    2012-02-24

    Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.

  14. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    PubMed

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  15. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats

    PubMed Central

    Dunham, Caleb L.; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K.; Guggenmos, David J.; Nudo, Randolph J.

    2015-01-01

    Abstract The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9–T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury. PMID:26406381

  16. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats

    PubMed Central

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N. Jeremy; Carmel, Jason B.

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy. PMID:29706871

  17. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.

    PubMed

    Wen, Tong-Chun; Lall, Sophia; Pagnotta, Corey; Markward, James; Gupta, Disha; Ratnadurai-Giridharan, Shivakeshavan; Bucci, Jacqueline; Greenwald, Lucy; Klugman, Madelyne; Hill, N Jeremy; Carmel, Jason B

    2018-01-01

    After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy.

  18. Increasing CNS norepinephrine levels by the precursor L-DOPS facilitates beam-walking recovery after sensorimotor cortex ablation in rats.

    PubMed

    Kikuchi, K; Nishino, K; Ohyu, H

    2000-03-31

    The present investigation was conducted to document a role of L-threo-3,4-dihydroxyphenylserine (L-DOPS), precursor of L-norepinephrine (NE), in the functional recovery from beam-walking performance deficits in rats after unilateral sensorimotor cortex ablation. L-DOPS was administered simultaneously with benserazide (BSZ; a peripheral aromatic amino acid decarboxylase inhibitor), and the regional contents of NE in the cerebral cortex, hippocampus, and cerebellum were assayed. Behavioral recovery was demonstrated by the rats treated with L-DOPS and BSZ, and the rate of recovery was significantly different from that of either BSZ-treated or vehicle-treated control rats. The NE tissue levels in the three discrete regions of the rat brain were significantly elevated in the experimental rats receiving both L-DOPS and BSZ. The present studies indicate that increasing NE levels by the precursor L-DOPS may be responsible for facilitating behavioral recovery from beam-walking performance deficits in rats, and further suggest that L-DOPS may become one of the candidate compounds for further clinical human trials promoting functional recovery after injuries to the cerebral cortex.

  19. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries.

    PubMed

    Tandon, Shashank; Kambi, Niranjan; Mohammed, Hisham; Jain, Neeraj

    2013-07-01

    Understanding brain reorganization following long-term spinal cord injuries is important for optimizing recoveries based on residual function as well as developing brain-controlled assistive devices. Although it has been shown that the motor cortex undergoes partial reorganization within a few weeks after peripheral and spinal cord injuries, it is not known if the motor cortex of rats is capable of large-scale reorganization after longer recovery periods. Here we determined the organization of the rat (Rattus norvegicus) motor cortex at 5 or more months after chronic lesions of the spinal cord at cervical levels using intracortical microstimulation. The results show that, in the rats with the lesions, stimulation of neurons in the de-efferented forelimb motor cortex no longer evokes movements of the forelimb. Instead, movements of the body parts in the adjacent representations, namely the whiskers and neck were evoked. In addition, at many sites, movements of the ipsilateral forelimb were observed at threshold currents. The extent of representations of the eye, jaw and tongue movements was unaltered by the lesion. Thus, large-scale reorganization of the motor cortex leads to complete filling-in of the de-efferented cortex by neighboring representations following long-term partial spinal cord injuries at cervical levels in adult rats. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Mesenchymal stem cells restore orientation and exploratory behavior of rats after brain injury.

    PubMed

    Sokolova, I B; Fedotova, O R; Tsikunov, S G; Polyntsev, D G

    2011-05-01

    We studied the effects of intravenous and intracerebral transplantation of MSC on restoration of orientation and exploratory behavior of Wistar-Kyoto rats after removal of the left motor cortex. Removal of the motor cortex led to a significant reduction of the number of behavioral acts in the open field test. Two weeks after removal of the motor cortex and intravenous transplantation, the animals were as inhibited as the controls, but during the next 10 weeks, the behavioral status of these rats remained unchanged, while controls exhibited further behavioral degradation. After injection of MSC into the brain, the behavior of rats with trauma did not change in comparison with intact rats over 10 weeks.

  1. Repeated forced swim stress enhances CFA-evoked thermal hyperalgesia and affects the expressions of pCREB and c-Fos in the insular cortex.

    PubMed

    Imbe, H; Kimura, A; Donishi, T; Kaneoke, Y

    2014-02-14

    Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via the descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and c-Fos in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in the rats with stress-induced hyperalgesia. FS (day 1, 10min; days 2-3, 20min) induced an increase in the expression of pCREB and c-Fos in the anterior IC (AIC). CFA injection into the hindpaw after the FS shows significantly enhanced thermal hyperalgesia and induced a decrease in the expression of c-Fos in the AIC and the posterior IC (PIC). Quantitative image analysis showed that the numbers of c-Fos-immunoreactive neurons in the left AIC and PIC were significantly lower in the FS+CFA group (L AIC, 95.9±6.8; L PIC, 181.9±23.1) than those in the naive group (L AIC, 151.1±19.3, p<0.05; L PIC, 274.2±37.3, p<0.05). These findings suggest a neuroplastic change in the IC after FS, which may be involved in the enhancement of CFA-induced thermal hyperalgesia through dysfunction of the descending pain modulatory system. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Dysgranular Retrosplenial Cortex Lesions in Rats Disrupt Cross-Modal Object Recognition

    ERIC Educational Resources Information Center

    Hindley, Emma L.; Nelson, Andrew J. D.; Aggleton, John P.; Vann, Seralynne D.

    2014-01-01

    The retrosplenial cortex supports navigation, with one role thought to be the integration of different spatial cue types. This hypothesis was extended by examining the integration of nonspatial cues. Rats with lesions in either the dysgranular subregion of retrosplenial cortex (area 30) or lesions in both the granular and dysgranular subregions…

  3. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    ERIC Educational Resources Information Center

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  4. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    PubMed

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  5. Development of a method to evaluate glutamate receptor function in rat barrel cortex slices.

    PubMed

    Lehohla, M; Russell, V; Kellaway, L; Govender, A

    2000-12-01

    The rat is a nocturnal animal and uses its vibrissae extensively to navigate its environment. The vibrissae are linked to a highly organized part of the sensory cortex, called the barrel cortex which contains spiny neurons that receive whisker specific thalamic input and distribute their output mainly within the cortical column. The aim of the present study was to develop a method to evaluate glutamate receptor function in the rat barrel cortex. Long Evans rats (90-160 g) were killed by cervical dislocation and decapitated. The brain was rapidly removed, cooled in a continuously oxygenated, ice-cold Hepes buffer (pH 7.4) and sliced using a vibratome to produce 0.35 mm slices. The barrel cortex was dissected from slices corresponding to 8.6 to 4.8 mm anterior to the interaural line and divided into rostral, middle and caudal regions. Depolarization-induced uptake of 45Ca2+ was achieved by incubating test slices in a high K+ (62.5 mM) buffer for 2 minutes at 35 degrees C. Potassium-stimulated uptake of 45Ca2+ into the rostral region was significantly lower than into middle and caudal regions of the barrel cortex. Glutamate had no effect. NMDA significantly increased uptake of 45Ca2+ into all regions of the barrel cortex. The technique is useful in determining NMDA receptor function and will be applied to study differences between spontaneously hypertensive rats (SHR) that are used as a model for attention deficit disorder and their normotensive control rats.

  6. Time course of hyperosmolar opening of the blood-brain and blood-CSF barriers in spontaneously hypertensive rats.

    PubMed

    Al-Sarraf, Hameed; Ghaaedi, Firuz; Redzic, Zoran

    2007-01-01

    The time course of blood-brain barrier (BBB) and blood-CSF barrier (BCSFB) responses to hyperosmolar mannitol infusion (HMI; 1.6 M) during chronic hypertension was investigated using (14)C-sucrose as a marker of barrier integrity. (14)C-sucrose entry into CSF of both spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats 2 min after HMI increased approximately 7-fold compared to their respective control. The volume of distribution (V(d)) of (14)C-sucrose into brain cortex of SHR increased 13-fold 2 min after HMI while that in WKY rats increased only 4-fold. After HMI V(d) of (14)C-sucrose into the cortex of WKY, and CSF of both SHR and WKY remained steadily greater than their corresponding control for up to 30 min (p < 0.01), whereas in the cortex of SHR the V(d) of (14)C-sucrose reached control values 20 min after HMI (p > 0.05), indicating that after HMI the increase in paracellular diffusion of (14)C-sucrose into SHR cortex was not persistent, in contrast to WKY rats and CSF of both SHR and WKY rats. Electron microscopy of the brain cortex after HMI showed capillary endothelial cell shrinkage and perivascular swellings in the brain cortex, and in the choroid plexus opening of tight junctions were observed. Our results indicate disruption of both the BBB and the BCSFB after HMI in both SHR and WKY rats. The disruption remained persistent up to 25 min after HMI at the BBB of WKY rats and BCSFB in both animal groups, while in SHR the protective function of the BBB returned to control values 20 min after HMI. Copyright 2007 S. Karger AG, Basel.

  7. Separate neural mechanisms underlie choices and strategic preferences in risky decision making.

    PubMed

    Venkatraman, Vinod; Payne, John W; Bettman, James R; Luce, Mary Frances; Huettel, Scott A

    2009-05-28

    Adaptive decision making in real-world contexts often relies on strategic simplifications of decision problems. Yet, the neural mechanisms that shape these strategies and their implementation remain largely unknown. Using an economic decision-making task, we dissociate brain regions that predict specific choices from those predicting an individual's preferred strategy. Choices that maximized gains or minimized losses were predicted by functional magnetic resonance imaging activation in ventromedial prefrontal cortex or anterior insula, respectively. However, choices that followed a simplifying strategy (i.e., attending to overall probability of winning) were associated with activation in parietal and lateral prefrontal cortices. Dorsomedial prefrontal cortex, through differential functional connectivity with parietal and insular cortex, predicted individual variability in strategic preferences. Finally, we demonstrate that robust decision strategies follow from neural sensitivity to rewards. We conclude that decision making reflects more than compensatory interaction of choice-related regions; in addition, specific brain systems potentiate choices depending on strategies, traits, and context.

  8. Separate neural mechanisms underlie choices and strategic preferences in risky decision making

    PubMed Central

    Venkatraman, Vinod; Payne, John W.; Bettman, James R.; Luce, Mary Frances; Huettel, Scott A.

    2011-01-01

    Adaptive decision making in real-world contexts often relies on strategic simplifications of decision problems. Yet, the neural mechanisms that shape these strategies and their implementation remain largely unknown. Using a novel economic decision-making task, we dissociate brain regions that predict specific choices from those predicting an individual’s preferred strategy. Choices that maximized gains or minimized losses were predicted by fMRI activation in ventromedial prefrontal cortex or anterior insula, respectively. However, choices that followed a simplifying strategy (i.e., attending to overall probability of winning) were associated with activation in parietal and lateral prefrontal cortices. Dorsomedial prefrontal cortex, through differential functional connectivity with parietal and insular cortex, predicted individual variability in strategic preferences. Finally, we demonstrate that robust decision strategies follow from neural sensitivity to rewards. We conclude that decision making reflects more than compensatory interaction of choice-related regions; in addition, specific brain systems potentiate choices depending upon strategies, traits, and context. PMID:19477159

  9. Functional neuroanatomy of the insular lobe.

    PubMed

    Stephani, C; Fernandez-Baca Vaca, G; Maciunas, R; Koubeissi, M; Lüders, H O

    2011-06-01

    The insula is the fifth lobe of the brain and it is the least known. Hidden under the temporal, frontal and parietal opercula, as well as under dense arterial and venous vessels, its accessibility is particularly restricted. Functional data on this region in humans, therefore, are scarce and the existing evidence makes conclusions on its functional and somatotopic organization difficult. 5 patients with intractable epilepsy underwent an invasive presurgical evaluation with implantation of diagnostic invasive-depth electrodes, including insular electrodes that were inserted using a mesiocaudodorsal to laterorostroventral approach. Altogether 113 contacts were found to be in the insula and were stimulated with alternating currents during preoperative monitoring. Different viscerosensitive and somatosensory phenomena were elicited by stimulation of these electrodes. A relatively high density of electrode contacts enabled us to delineate several functionally distinct areas within the insula. We found somatosensory symptoms to be restricted to the posterior insula and a subgroup of warmth or painful sensations in the dorsal posterior insula. Viscerosensory symptoms were elicited by more anterior electrode contacts with a subgroup of gustatory symptoms occurring after stimulation of electrode contacts in the central part of the insula. The anterior insula did not show reproducible responses to stimulation. In line with previous studies, we found evidence for somato- and viscerosensory cortex in the insula. In addition, our results suggest that there is a predominantly posterior and central distribution of these functions in the insular lobe.

  10. Sylvian Fissure Asymmetries in Nonhuman Primates Revisited: A Comparative MRI Study

    PubMed Central

    Hopkins, William D.; Pilcher, Dawn L.; MacGregor, Leslie

    2007-01-01

    Magnetic resonance images (MRI) were collected in a sample of 28 apes, 16 Old World monkeys and 8 New World monkeys. The length of the sylvian fissure (SF) and the superior temporal sulcus (STS) was traced in each hemisphere from three regions of the cerebral cortex. These three regions were labeled according to their position on the sagittal plane as lateral, medial and insular. It was hypothesized that the length and asymmetry of these fissures would be dependent on the region of measurement and that a leftward asymmetry in the SF and STS would be more robust in the great ape sample than for the monkeys. The results indicated within the ape sample a population-level leftward asymmetry in the medial and insular regions of the SF. Within the Old and New World monkey samples, the SF was leftward in the medial region at the population level, but not at the insular region. Additionally, the Old World monkeys exhibited a population-level rightward lateral SF and a rightward lateral STS. No other families exhibited population-level asymmetries in the lateral region of the SF or in any region of the STS. These results are consistent with findings reported in apes and, to a lesser extent, monkeys. MRI has excellent potential for comparing neuroanatomy across taxonomic families that will help future investigations. PMID:11326134

  11. Bilateral lesions of the medial frontal cortex disrupt recognition of social hierarchy during antiphonal communication in naked mole-rats (Heterocephalus glaber).

    PubMed

    Yosida, Shigeto; Okanoya, Kazuo

    2012-02-01

    Generation of the motor patterns of emotional sounds in mammals occurs in the periaqueductal gray matter of the midbrain and is not directly controlled by the cortex. The medial frontal cortex indirectly controls vocalizations, based on the recognition of social context. We examined whether the medial frontal cortex was responsible for antiphonal vocalization, or turn-taking, in naked mole-rats. In normal turn-taking, naked mole-rats vocalize more frequently to dominant individuals than to subordinate ones. Bilateral lesions of the medial frontal cortex disrupted differentiation of call rates to the stimulus animals, which had varied social relationships to the subject. However, medial frontal cortex lesions did not affect either the acoustic properties of the vocalizations or the timing of the vocal exchanges. This suggests that the medial frontal cortex may be involved in social cognition or decision making during turn-taking, while other regions of the brain regulate when animals vocalize and the vocalizations themselves.

  12. Perinatal asphyxia results in changes in presynaptic bouton number in striatum and cerebral cortex-a stereological and behavioral analysis.

    PubMed

    Van de Berg, W D; Blokland, A; Cuello, A C; Schmitz, C; Vreuls, W; Steinbusch, H W; Blanco, C E

    2000-10-01

    Deficits in cognitive function have been related to quantitative changes in synaptic population, particularly in the cerebral cortex. Here, we used an established model of perinatal asphyxia that induces morphological changes, i.e. neuron loss in the cerebral cortex and striatum, as well as behavioural deficits. We hypothesized that perinatal asphyxia may lead to a neurodegenerative process resulting in cognitive impairment and altered presynaptic bouton numbers in adult rats. We studied cognitive performance at 18 months and presynaptic bouton numbers at 22 months following perinatal asphyxia. Data of the spatial Morris water escape task did not reveal clear memory or learning deficits in aged asphyctic rats compared to aged control rats. However, a memory impairment in aged rats versus young rats was observed, which was more pronounced in asphyctic rats. We found an increase in presynaptic bouton density in the parietal cortex, whereas no changes were found in striatum and frontal cortex in asphyctic rats. An increase of striatal volume was observed in asphyctic rats, leading to an increase in presynaptic bouton numbers in this area. These findings stress the issue that volume measurements have to be taken into account when determining presynaptic bouton density. Furthermore, perinatal asphyxia led to region-specific changes in presynaptic bouton numbers and it worsened the age-related cognitive impairment. These results suggest that perinatal asphyxia induced neuronal loss, which is compensated for by an increase in presynaptic bouton numbers.

  13. Behavioral and neurophysiological correlates of regret in rat decision-making on a neuroeconomic task

    PubMed Central

    Steiner, Adam P.; Redish, A. David

    2014-01-01

    Summary Disappointment entails the recognition that one did not get the value one expected. In contrast, regret entails the recognition that an alternate (counterfactual) action would have produced a more valued outcome. Thus, the key to identifying regret is the representation of that counterfactual option in situations in which a mistake has been made. In humans, the orbitofrontal cortex is active during expressions of regret, and humans with damage to the orbitofrontal cortex do not express regret. In rats and non-human primates, both the orbitofrontal cortex and the ventral striatum have been implicated in decision-making, particularly in representations of expectations of reward. In order to examine representations of regretful situations, we recorded neural ensembles from orbitofrontal cortex and ventral striatum in rats encountering a spatial sequence of wait/skip choices for delayed delivery of different food flavors. We were able to measure preferences using an economic framework. Rats occasionally skipped low-cost choices and then encountered a high-cost choice. This sequence economically defines a potential regret-inducing instance. In these situations, rats looked backwards towards the lost option, the cells within the orbitofrontal cortex and ventral striatum represented that missed action, rats were more likely to wait for the long delay, and rats rushed through eating the food after that delay. That these situations drove rats to modify their behavior suggests that regret-like processes modify decision-making in non-human mammals. PMID:24908102

  14. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A

    PubMed Central

    2012-01-01

    Abstact Background Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. Methods In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Results Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Conclusions Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management. PMID:22364254

  15. A Novel Role for the Rat Retrosplenial Cortex in Cognitive Control

    ERIC Educational Resources Information Center

    Nelson, Andrew J. D.; Hindley, Emma L.; Haddon, Josephine E.; Vann, Seralynne D.; Aggleton, John P.

    2014-01-01

    By virtue of its frontal and hippocampal connections, the retrosplenial cortex is uniquely placed to support cognition. Here, we tested whether the retrosplenial cortex is required for frontal tasks analogous to the Stroop Test, i.e., for the ability to select between conflicting responses and inhibit responding to task-irrelevant cues. Rats first…

  16. Brain MRI findings in acute hepatic encephalopathy in liver transplant recipients.

    PubMed

    Guo, Ruo-Mi; Li, Qing-Ling; Zhong, Li-Ru; Guo, Yu; Jiao, Ju; Chen, Shao-Qiong; Wang, Jin; Zhang, Yong

    2018-06-01

    Acute hepatic encephalopathy has significant morbidity and mortality in liver transplant recipients unless it is promptly treated. We evaluated the brain magnetic resonance (MR) imaging findings associated with acute hepatic encephalopathy in transplant recipients. We retrospectively reviewed the clinical and imaging data and outcomes of twenty-five liver transplant patients (16 male; mean age, 49.3 years) with clinically diagnosed acute hepatic encephalopathy and forty liver transplant patients (20 males; mean age, 45.5 years) without neurological symptoms suggestive of hepatic encephalopathy at our institution. Bilateral symmetric hyperintensities of the insular cortex and cingulate gyrus were observed in twenty-one patients (84.00%), bilateral symmetric extensive increased cortical signal intensity (involving two or more regions) was observed in 72.00% of the patients, leptomeningeal enhancement in 73.68%, and visualization of prominent venules in 52.00%. The most common symptom at diagnosis was rigidity (n = 14), and the plasma ammonia levels ranged from 68.63 to 192.16 μmol/L. After active treatment, 17 patients gradually recovered, four patients suffered from mild or moderate neurologic deficits, and four patients with widespread brain edema died. The specific brain MR imaging features were bilateral symmetric increased cortical signal intensity, especially in the insular cortex and cingulate gyrus, leptomeningeal enhancement, visualization of the prominent venules, and widespread brain edema. These features may indicate poor prognosis and should alert radiologists to the possibility of acute hepatic encephalopathy in liver transplant recipients and encourage clinicians to prepare appropriate treatment in advance.

  17. Neural activity associated with self-reflection.

    PubMed

    Herwig, Uwe; Kaffenberger, Tina; Schell, Caroline; Jäncke, Lutz; Brühl, Annette B

    2012-05-24

    Self-referential cognitions are important for self-monitoring and self-regulation. Previous studies have addressed the neural correlates of self-referential processes in response to or related to external stimuli. We here investigated brain activity associated with a short, exclusively mental process of self-reflection in the absence of external stimuli or behavioural requirements. Healthy subjects reflected either on themselves, a personally known or an unknown person during functional magnetic resonance imaging (fMRI). The reflection period was initialized by a cue and followed by photographs of the respective persons (perception of pictures of oneself or the other person). Self-reflection, compared with reflecting on the other persons and to a major part also compared with perceiving photographs of one-self, was associated with more prominent dorsomedial and lateral prefrontal, insular, anterior and posterior cingulate activations. Whereas some of these areas showed activity in the "other"-conditions as well, self-selective characteristics were revealed in right dorsolateral prefrontal and posterior cingulate cortex for self-reflection; in anterior cingulate cortex for self-perception and in the left inferior parietal lobe for self-reflection and -perception. Altogether, cingulate, medial and lateral prefrontal, insular and inferior parietal regions show relevance for self-related cognitions, with in part self-specificity in terms of comparison with the known-, unknown- and perception-conditions. Notably, the results are obtained here without behavioural response supporting the reliability of this methodological approach of applying a solely mental intervention. We suggest considering the reported structures when investigating psychopathologically affected self-related processing.

  18. The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress.

    PubMed

    Jiang, Wenbo; Li, Bai; Chen, Yingying; Gao, Shuying

    2017-12-01

    Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects. Results indicated that animals weight gain and food consumption were not significantly affected by DBA. However, morris water maze test showed varying degrees of changes between control and high-dose group. Additionally, the level of malondialdehyde (MDA) and generation of reactive oxygen species (ROS) in the hippocampus and pre-frontal cortex of rats increased significantly. The activities of total superoxide dismutase (SOD) and the glutathione (GSH) content in the hippocampus and pre-frontal cortex of rats decreased significantly after treatment with DBA. Treatment with DBA increased the protein and mRNA expression of Iba-1, NF-κB, TNF-α, IL-6, IL-1β and HO-1 in the hippocampus and pre-frontal cortex of rats. These data suggested that DBA had a toxic influence on the hippocampus and pre-frontal cortex of rats, and that the mechanism of toxicity might be associated with the neuroinflammation response and oxidative stress.

  19. Encoding changes in orbitofrontal cortex in reversal-impaired aged rats.

    PubMed

    Schoenbaum, Geoffrey; Setlow, Barry; Saddoris, Michael P; Gallagher, Michela

    2006-03-01

    Previous work in rats and primates has shown that normal aging can be associated with a decline in cognitive flexibility mediated by prefrontal circuits. For example, aged rats are impaired in rapid reversal learning, which in young rats depends critically on the orbitofrontal cortex. To assess whether aging-related reversal impairments reflect orbitofrontal dysfunction, we identified aged rats with reversal learning deficits and then recorded single units as these rats, along with unimpaired aged cohorts and young control rats, learned and reversed a series of odor discrimination problems. We found that the flexibility of neural correlates in orbitofrontal cortex was markedly diminished in aged rats characterized as reversal-impaired in initial training. In particular, although many cue-selective neurons in young and aged-unimpaired rats reversed odor preference when the odor-outcome associations were reversed, cue-selective neurons in reversal-impaired aged rats did not. In addition, outcome-expectant neurons in aged-impaired rats failed to become active during cue sampling after learning. These altered features of neural encoding could provide a basis for cognitive inflexibility associated with normal aging.

  20. Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development.

    PubMed

    Bruno, Alessandra Nejar; Da Silva, Rosane Souza; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Barreto-chaves, Maria Luiza M; Sarkis, João José Freitas

    2003-11-01

    Here we investigate the possible effects of the hyperthyroidism on the hydrolysis of the ATP to adenosine in the synaptosomes of hippocampus, cerebral cortex and blood serum of rats in different developmental phases. Manifestations of hyperthyroidism include anxiety, nervousness, tachycardia, physical hyperactivity and weight loss amongst others. The thyroid hormones modulate a number of physiological functions in central nervous system, including development, function, expression of adenosine A(1) receptors and transport of neuromodulator adenosine. Thus, hyperthyroidism was induced in male Wistar rats (5-, 60-, 150- and 330-day old) by daily injections of L-thyroxine (T4) for 14 days. Nucleotide hydrolysis was decreased by about 14-52% in both hippocampus and cerebral cortex in 5 to 60-day-old rats. These changes were also observed in rat blood serum. In addition, in 11-month-old rats, inhibition of ADP and AMP hydrolysis persisted in the hippocampus, whereas, in cerebral cortex, an increase in AMP hydrolysis was detected. Thus, hyperthyroidism affects the extracellular nucleotides balance and adenosine production, interfering in neurotransmitter release, development and others physiological processes in different systems.

  1. Age differences in the brain mechanisms of good taste.

    PubMed

    Rolls, Edmund T; Kellerhals, Michele B; Nichols, Thomas E

    2015-06-01

    There is strong evidence demonstrating age-related differences in the acceptability of foods and beverages. To examine the neural foundations underlying these age-related differences in the acceptability of different flavors and foods, we performed an fMRI study to investigate brain and hedonic responses to orange juice, orange soda, and vegetable juice in three different age groups: Young (22), Middle (40) and Elderly (60 years). Orange juice and orange soda were found to be liked by all age groups, while vegetable juice was disliked by the Young, but liked by the Elderly. In the insular primary taste cortex, the activations to these stimuli were similar in the 3 age groups, indicating that the differences in liking for these stimuli between the 3 groups were not represented in this first stage of cortical taste processing. In the agranular insula (anterior to the insular primary taste cortex) where flavor is represented, the activations to the stimuli were similar in the Elderly, but in the Young the activations were larger to the vegetable juice than to the orange drinks; and the activations here were correlated with the unpleasantness of the stimuli. In the anterior midcingulate cortex, investigated as a site where the activations were correlated with the unpleasantness of the stimuli, there was again a greater activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. In the amygdala (and orbitofrontal cortex), investigated as sites where the activations were correlated with the pleasantness of the stimuli, there was a smaller activation to the vegetable than to the orange stimuli in the Young but not in the Elderly. The Middle group was intermediate with respect to the separation of their activations to the stimuli in the brain areas that represent the pleasantness or unpleasantness of flavors. Thus age differences in the activations to different flavors can in some brain areas be related to, and probably cause, the differences in pleasantness of foods as they differ for people of different ages. This novel work provides a foundation for understanding the underlying neural bases for differences in food acceptability between age groups. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    PubMed

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  3. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    PubMed

    Ge, Shunnan; Yang, Chen; Li, Min; Li, Jiang; Chang, Xiaozan; Fu, Jian; Chen, Lei; Chang, Chongwang; Wang, Xuelian; Zhu, Junling; Gao, Guodong

    2012-07-17

    Studies on patients with Parkinson's disease and in animal models have observed enhanced synchronization of oscillations in several frequency bands within and between the cortical-basal ganglia (BG) structures. Recent research has also shown that synchronization of high-voltage spindles (HVSs) in the cortex, striatum and substantia nigra pars reticulate is increased by dopamine depletion. However, more evidence is needed to determine whether HVS activity in the whole cortex-BG network represents homologous alteration following dopamine depletion. As the globus pallidus (GP) is in a central position to propagate and synchronize oscillations in the cortical-BG circuits, we employed local-field potentials and electrocorticogram to simultaneously record oscillations in the GP and primary (M1) and secondary (M2) motor cortices on freely moving 6-hydroxydopamine (6-OHDA) lesioned and control rats. Results showed that HVS episodes recorded from GP, and M2 and M1 cortex areas were more numerous and longer in 6-OHDA lesioned rats compared to controls. Relative power associated with HVS activity in the GP, and M2 and M1 cortices of 6-OHDA lesioned rats was significantly greater than that for control rats. Coherence values for HVS activity between the GP, and M2 and M1 cortex areas were significantly increased by dopamine depletion. Time lag between the M1 cortex HVS and GP HVS was significantly shorter for dopamine depleted than normal rats. Findings indicate a crucial rule for dopamine in the regulation of HVS activity in the whole cortical-BG circuit, and suggest a close relationship between abnormally synchronized HVS oscillations in the cortex-BG network and Parkinson's disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants.

    PubMed

    Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L

    2010-05-31

    Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. Hindlimb spasticity after unilateral motor cortex lesion in rats is reduced by contralateral nerve root transfer.

    PubMed

    Zong, Haiyang; Ma, Fenfen; Zhang, Laiyin; Lu, Huiping; Gong, Jingru; Cai, Min; Lin, Haodong; Zhu, Yizhun; Hou, Chunlin

    2016-12-01

    Lower extremity spasticity is a common sequela among patients with acquired brain injury. The optimum treatment remains controversial. The aim of our study was to test the feasibility and effectiveness of contralateral nerve root transfer in reducing post stroke spasticity of the affected hindlimb muscles in rats. In our study, we for the first time created a novel animal hindlimb spastic hemiplegia model in rats with photothrombotic lesion of unilateral motor cortex and we established a novel surgical procedure in reducing motor cortex lesion-induced hindlimb spastic hemiplegia in rats. Thirty six rats were randomized into three groups. In group A, rats received sham operation. In group B, rats underwent unilateral hindlimb motor cortex lesion. In group C, rats underwent unilateral hindlimb cortex lesion followed by contralateral L4 ventral root transfer to L5 ventral root of the affected side. Footprint analysis, Hoffmann reflex (H-reflex), cholera toxin subunit B (CTB) retrograde tracing of gastrocnemius muscle (GM) motoneurons and immunofluorescent staining of vesicle glutamate transporter 1 (VGLUT1) on CTB-labelled motoneurons were used to assess spasticity of the affected hindlimb. Sixteen weeks postoperatively, toe spread and stride length recovered significantly in group C compared with group B (P<0.001). H max (H-wave maximum amplitude)/M max (M-wave maximum amplitude) ratio of gastrocnemius and plantaris muscles (PMs) significantly reduced in group C (P<0.01). Average VGLUT1 positive boutons per CTB-labelled motoneurons significantly reduced in group C (P<0.001). We demonstrated for the first time that contralateral L4 ventral root transfer to L5 ventral root of the affected side was effective in relieving unilateral motor cortex lesion-induced hindlimb spasticity in rats. Our data indicated that this could be an alternative treatment for unilateral lower extremity spasticity after brain injury. Therefore, contralateral neurotization may exert a potential therapeutic candidate to improve the function of lower extremity in patients with spastic hemiplegia. © 2016 The Author(s).

  6. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?

    PubMed

    Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro

    2006-01-01

    To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.

  7. Anosmia leads to a loss of gray matter in cortical brain areas.

    PubMed

    Bitter, Thomas; Gudziol, Hilmar; Burmeister, Hartmut Peter; Mentzel, Hans-Joachim; Guntinas-Lichius, Orlando; Gaser, Christian

    2010-06-01

    Chronic olfactory disorders, including the complete loss of the sense of smell (anosmia), are common. Using voxel-based morphometry (VBM) in magnetic resonance imaging (MRI), structural changes in the cerebral gray matter (GM) of a group of patients with anosmia compared with a normosmic, healthy control group were evaluated. Patients with anosmia presented a significant decrease of GM volume mainly in the nucleus accumbens with adjacent subcallosal gyrus, in the medial prefrontal cortex (MPC) including the middle and anterior cingulate cortices, and in the dorsolateral prefrontal cortex (dlPFC). These areas are part of the limbic loop of the basal ganglia and except the dlPFC secondary olfactory areas. They also play an important role in many neurological diseases. Furthermore, volume decreases in smaller areas like the piriform cortex, insular cortex, orbitofrontal cortex, hippocampus, parahippocampal gyrus, supramarginal gyrus, and cerebellum could be seen. Longer disease duration was associated with a stronger atrophy in the described areas. No local increases in the GM volume could be observed. A comparison with results of an additionally executed functional MRI study on olfaction in healthy subjects was performed to evaluate the significance of the observed atrophy areas in cerebral olfactory processing. To our knowledge, this is the first study on persisting structural changes in cortical GM volume after complete olfactory loss.

  8. Cognitive and affective theory of mind share the same local patterns of activity in posterior temporal but not medial prefrontal cortex

    PubMed Central

    Hofstetter, Christoph; Vuilleumier, Patrik

    2014-01-01

    Understanding emotions in others engages specific brain regions in temporal and medial prefrontal cortices. These activations are often attributed to more general cognitive ‘mentalizing’ functions, associated with theory of mind and also necessary to represent people’s non-emotional mental states, such as beliefs or intentions. Here, we directly investigated whether understanding emotional feelings recruit similar or specific brain systems, relative to other non-emotional mental states. We used functional magnetic resonance imaging with multivoxel pattern analysis in 46 volunteers to compare activation patterns in theory-of-mind tasks for emotions, relative to beliefs or somatic states accompanied with pain. We found a striking dissociation between the temporoparietal cortex, that exhibited a remarkable voxel-by-voxel pattern overlap between emotions and beliefs (but not pain), and the dorsomedial prefrontal cortex, that exhibited distinct (and yet nearby) patterns of activity during the judgment of beliefs and emotions in others. Pain judgment was instead associated with activity in the supramarginal gyrus, middle cingulate cortex and middle insular cortex. Our data reveal for the first time a functional dissociation within brain networks sub-serving theory of mind for different mental contents, with a common recruitment for cognitive and affective states in temporal regions, and distinct recruitment in prefrontal areas. PMID:23770622

  9. Cleveland Clinic Rehabilitation Research Program

    DTIC Science & Technology

    2015-12-01

    Study 1: The penicillin-induced seizure animal model has been generated by acute focal intracortical injection of penicillin in the motor cortex of rats ... motor cortex of rats . The effects of transcranial magnetic stimulation (TMS) on penicillin-induced seizure have been investigated using behavioral...electroencephalographic (EEG) recording. Study 2: The motor cortex (M1) and the corticospinal tracts (CST) will be directly modulated using brain stimulation

  10. Contralateral disconnection of the rat prelimbic cortex and dorsomedial striatum impairs cue-guided behavioral switching

    PubMed Central

    Baker, Phillip M.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for conditional discrimination performance in which a switch in reward-predictive cues occurs every three to six trials. The GABA agonists baclofen and muscimol infused into the prelimbic cortex significantly impaired performance leading rats to adopt an inappropriate turn strategy. The NMDA receptor antagonist D-AP5 infused into the dorsomedial striatum or prelimbic cortex and dorsomedial striatum contralateral disconnection impaired performance due to a rat failing to switch a response choice for an entire trial block in about two out of 13 test blocks. In an additional study, contralateral disconnection did not affect nonswitch discrimination performance. The results suggest that the prelimbic cortex and dorsomedial striatum are necessary to support cue-guided behavioral switching. The prelimbic cortex may be critical for generating alternative response patterns while the dorsomedial striatum supports the selection of an appropriate response when cue information must be used to flexibly switch response patterns. PMID:25028395

  11. Specialization and integration of functional thalamocortical connectivity in the human infant.

    PubMed

    Toulmin, Hilary; Beckmann, Christian F; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Edwards, A David

    2015-05-19

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.

  12. Specialization and integration of functional thalamocortical connectivity in the human infant

    PubMed Central

    Toulmin, Hilary; Beckmann, Christian F.; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J.; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A.; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V.; Edwards, A. David

    2015-01-01

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions. PMID:25941391

  13. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    PubMed

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. 3D Reconstruction and Standardization of the Rat Vibrissal Cortex for Precise Registration of Single Neuron Morphology

    PubMed Central

    Egger, Robert; Narayanan, Rajeevan T.; Helmstaedter, Moritz; de Kock, Christiaan P. J.; Oberlaender, Marcel

    2012-01-01

    The three-dimensional (3D) structure of neural circuits is commonly studied by reconstructing individual or small groups of neurons in separate preparations. Investigation of structural organization principles or quantification of dendritic and axonal innervation thus requires integration of many reconstructed morphologies into a common reference frame. Here we present a standardized 3D model of the rat vibrissal cortex and introduce an automated registration tool that allows for precise placement of single neuron reconstructions. We (1) developed an automated image processing pipeline to reconstruct 3D anatomical landmarks, i.e., the barrels in Layer 4, the pia and white matter surfaces and the blood vessel pattern from high-resolution images, (2) quantified these landmarks in 12 different rats, (3) generated an average 3D model of the vibrissal cortex and (4) used rigid transformations and stepwise linear scaling to register 94 neuron morphologies, reconstructed from in vivo stainings, to the standardized cortex model. We find that anatomical landmarks vary substantially across the vibrissal cortex within an individual rat. In contrast, the 3D layout of the entire vibrissal cortex remains remarkably preserved across animals. This allows for precise registration of individual neuron reconstructions with approximately 30 µm accuracy. Our approach could be used to reconstruct and standardize other anatomically defined brain areas and may ultimately lead to a precise digital reference atlas of the rat brain. PMID:23284282

  15. Minocycline restores cognitive-relative altered proteins in young bile duct-ligated rat prefrontal cortex.

    PubMed

    Li, Shih-Wen; Chen, Yu-Chieh; Sheen, Jiunn-Ming; Hsu, Mei-Hsin; Tain, You-Lin; Chang, Kow-Aung; Huang, Li-Tung

    2017-07-01

    Bile duct ligation (BDL) model is used to study hepatic encephalopathy accompanied by cognitive impairment. We employed the proteomic analysis approach to evaluate cognition-related proteins in the prefrontal cortex of young BDL rats and analyzed the effect of minocycline on these proteins and spatial memory. BDL was induced in young rats at postnatal day 17. Minocycline as a slow-release pellet was implanted into the peritoneum. Morris water maze test and two-dimensional liquid chromatography-tandem mass spectrometry were used to evaluate spatial memory and prefrontal cortex protein expression, respectively. We used 2D/LC-MS/MS to analyze for affected proteins in the prefrontal cortex of young BDL rats. Results were verified with Western blotting, immunohistochemistry, and quantitative real-time PCR. The effect of minocycline in BDL rats was assessed. BDL induced spatial deficits, while minocycline rescued it. Collapsin response mediator protein 2 (CRMP2) and manganese-dependent superoxide dismutase (MnSOD) were upregulated and nucleoside diphosphate kinase B (NME2) was downregulated in young BDL rats. BDL rats exhibited decreased levels of brain-derived neurotrophic factor (BDNF) mRNA as compared with those by the control. However, minocycline treatment restored CRMP2 and NME2 protein expression, BDNF mRNA level, and MnSOD activity to control levels. We demonstrated that BDL altered the expression of CRMP2, NME2, MnSOD, and BDNF in the prefrontal cortex of young BDL rats. However, minocycline treatment restored the expression of the affected mediators that are implicated in cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The locus of origin of augmenting and reducing of visual evoked potentials in rat brain.

    PubMed

    Siegel, J; Gayle, D; Sharma, A; Driscoll, P

    1996-07-01

    Humans who are high sensation seekers and cats who demonstrate comparable behavioral traits show increasing amplitudes of the early components of the cortical visual evoked potential (VEP) to increasing intensities of light flash; low sensation seekers show VEP reducing. Roman high-avoidance (RHA) and Roman low-avoidance (RLA) rats have behavioral traits comparable to human and cat high and low sensation seekers, respectively. Previously, we showed that RHA and RLA rats are cortical VEP augmenters and reducers, respectively. The goal of this study was to determine if augmenting-reducing is in fact a property of the visual cortex or if it originates at the lateral geniculate nucleus and is merely reflected in recordings from the cortex. EPs to five flash intensities were recorded from the visual cortex and dorsal lateral geniculate of RHA and RLA rats. As in the previous study, the slope of the first cortical component as a function of flash intensity was greater in the RHA than in the RLA rats. The amplitude of the geniculate component that has a latency shorter than the first cortical component was no different in the two lines of rats. The finding from the cortex confirms the earlier finding of augmenting and reducing in RHA and RLA rats, respectively. The major new finding is that the augmenting-reducing difference recorded at the cortex does not occur at the thalamus, indicating that it is truly a cortical phenomenon.

  17. Silymarin ameliorates experimentally induced depressive like behavior in rats: Involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response.

    PubMed

    Thakare, Vishnu N; Aswar, Manoj K; Kulkarni, Yogesh P; Patil, Rajesh R; Patel, Bhoomika M

    2017-10-01

    Silymarin is a polyphenolic flavonoid of Silybum marianum, exhibited neuroprotection and antidepressant like activity in acute restraint stressed mice. The main objective of the present study is to investigate possible antidepressant like activity of silymarin in experimentally induced depressive behavior in rats. The depressive behaviors were induced in rats by olfactory bulbectomized (OBX) technique. Wistar rats were administered with silymarin at a dose of 100mg/kg and 200mg/kg, by per oral in OBX and sham operated rats. Behavioral (ambulatory and rearing activity and immobility time), neurochemical [serotonin (5-HT), dopamine (DA), norepinephrine (NE) and brain derived neurotrophic factor (BDNF) level], biochemical (MDA formation, IL-6, TNF-α and antioxidants) changes in hippocampus and cerebral cortex along with serum corticosterone were investigated. Rats subjected to OBX elicited significant increase in immobility time, ambulatory and rearing behaviors, reduced BDNF level, 5-HT, DA, NE and antioxidant parameters along with increased serum corticosterone, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex compared to sham operated rats. Administration of with silymarin significantly attenuated immobility time, ambulatory and rearing behaviors, serum corticosterone and improved BDNF expression, 5-HT, DA, NE and antioxidant paradigms in cerebral cortex as well as hippocampus. In addition, silymarin attenuated IL-6, and TNF-α significantly in hippocampus and cerebral cortex in OBX rats. Thus, silymarin exhibits anti-depressant-like activity in OBX rats due to alterations in several neurotransmitters, endocrine and immunologic systems, including BDNF, 5-HT, DA, NE, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex as well as serum corticosterone. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Combination of intracellular staining of retrogradely labeled neurons and anterograde fluorescent tracing: use of the confocal laser scanning microscope.

    PubMed

    Shi, C; Cassell, M D

    1993-04-01

    This report describes a combined retrograde tracing, intracellular injection and anterograde fluorescence labeling method using the application of confocal laser scanning microscopy. By simultaneously viewing the morphology of identified projection neurons and the distribution of anterogradely labeled fibers and terminals, this approach allows accurate characterization of the anatomical relationships between these two elements. To demonstrate this approach, the retrograde tracer Fast Blue was injected into the bed nucleus of stria terminalis (BNST) and the anterograde tracer tetramethylrhodamine-conjugated dextran was injected into the insular cortex in adult rats. After one week survival time, the brains were fixed and sectioned on a vibratome. Individual BNST projecting neurons identified in the amygdaloid complex on 120 microns thick sections were intracellularly injected with Lucifer Yellow under visual control and analyzed with confocal laser scanning microscopy. The results demonstrate that images from very thin optical sections can clearly show potential synaptic contacts between anterograde labeling and intracellularly labeled projecting neurons. Stacked images from optical sections show, in very great detail, the morphology of projection neurons in three-dimensions. Compared to other methodological combinations, the present method provides a more simple and efficient means to trace three successive components of a putative neuron chain.

  19. The neuroeconomics of nicotine dependence: a preliminary functional magnetic resonance imaging study of delay discounting of monetary and cigarette rewards in smokers.

    PubMed

    MacKillop, James; Amlung, Michael T; Wier, Lauren M; David, Sean P; Ray, Lara A; Bickel, Warren K; Sweet, Lawrence H

    2012-04-30

    Neuroeconomics integrates behavioral economics and cognitive neuroscience to understand the neurobiological basis for normative and maladaptive decision making. Delay discounting is a behavioral economic index of impulsivity that reflects capacity to delay gratification and has been consistently associated with nicotine dependence. This preliminary study used functional magnetic resonance imaging to examine delay discounting for money and cigarette rewards in 13 nicotine dependent adults. Significant differences between preferences for smaller immediate rewards and larger delayed rewards were evident in a number of regions of interest (ROIs), including the medial prefrontal cortex, anterior insular cortex, middle temporal gyrus, middle frontal gyrus, and cingulate gyrus. Significant differences between money and cigarette rewards were generally lateralized, with cigarette choices associated with left hemisphere activation and money choices associated with right hemisphere activation. Specific ROI differences included the posterior parietal cortex, medial and middle frontal gyrus, ventral striatum, temporoparietal cortex, and angular gyrus. Impulsivity as measured by behavioral choices was significantly associated with both individual ROIs and a combined ROI model. These findings provide initial evidence in support of applying a neuroeconomic approach to understanding nicotine dependence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Combination of volume and perfusion parameters reveals different types of grey matter changes in schizophrenia.

    PubMed

    Xu, Lixue; Qin, Wen; Zhuo, Chuanjun; Liu, Huaigui; Zhu, Jiajia; Yu, Chunshui

    2017-03-27

    Diverse brain structural and functional changes have been reported in schizophrenia. Identifying different types of brain changes may help to understand the neural mechanisms and to develop reliable biomarkers in schizophrenia. We aimed to categorize different grey matter changes in schizophrenia based on grey matter volume (GMV) and cerebral blood flow (CBF). Structural and perfusion magnetic resonance imaging data were acquired in 100 schizophrenia patients and 95 healthy comparison subjects. Voxel-based GMV comparison was used to show structural changes, CBF analysis was used to demonstrate functional changes. We identified three types of grey matter changes in schizophrenia: structural and functional impairments in the anterior cingulate cortex and insular cortex, displaying reduction in both GMV and CBF; structural impairment with preserved function in the frontal and temporal cortices, demonstrating decreased GMV with normal CBF; pure functional abnormality in the anterior cingulate cortex and lateral prefrontal cortex and putamen, showing altered CBF with normal GMV. By combination of GMV and CBF, we identified three types of grey matter changes in schizophrenia. These findings may help to understand the complex manifestations and to develop reliable biomarkers in schizophrenia.

  1. Color of scents: chromatic stimuli modulate odor responses in the human brain.

    PubMed

    Osterbauer, Robert A; Matthews, Paul M; Jenkinson, Mark; Beckmann, Christian F; Hansen, Peter C; Calvert, Gemma A

    2005-06-01

    Color has a profound effect on the perception of odors. For example, strawberry-flavored drinks smell more pleasant when colored red than green and descriptions of the "nose" of a wine are dramatically influenced by its color. Using functional magnetic resonance imaging, we demonstrate a neurophysiological correlate of these cross-modal visual influences on olfactory perception. Subjects were scanned while exposed either to odors or colors in isolation or to color-odor combinations that were rated on the basis of how well they were perceived to match. Activity in caudal regions of the orbitofrontal cortex and in the insular cortex increased progressively with the perceived congruency of the odor-color pairs. These findings demonstrate the neuronal correlates of olfactory response modulation by color cues in brain areas previously identified as encoding the hedonic value of smells.

  2. Interhemispheric EEG differences in olfactory bulbectomized rats with different cognitive abilities and brain beta-amyloid levels.

    PubMed

    Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Aleksandrova, Irina; Nesterova, Inna

    2008-09-26

    Alterations in electroencephalogram (EEG) asymmetry and deficits in interhemispheric integration of information have been shown in patients with Alzheimer's disease (AD). However, no direct evidence of an association between EEG asymmetry, morphological markers in the brain, and cognition was found either in AD patients or in AD models. In this study we used rats with bilateral olfactory bulbectomy (OBX) as one of the AD models and measured their learning/memory abilities, brain beta-amyloid levels and EEG spectra in symmetrical frontal and occipital cortices. One year after OBX or sham-surgery, the rats were tested with the Morris water paradigm and assigned to three groups: sham-operated rats, SO, and OBX rats with virtually normal, OBX(+), or abnormal, OBX(-), learning (memory) abilities. In OBX vs. SO, the theta EEG activity was enhanced to a higher extent in the right frontal cortex and in the left occipital cortex. This produced significant interhemispheric differences in the frontal cortex of the OBX(-) rats and in the occipital cortex of both OBX groups. The beta1 EEG asymmetry in SO was attenuated in OBX(+) and completely eliminated in OBX(-). OBX produced highly significant beta2 EEG decline in the right frontal cortex, with OBX(-)>OBX(+) rank order of strength. The beta-amyloid level, examined by post-mortem immunological DOT-analysis in the cortex-hippocampus samples, was about six-fold higher in OBX(-) than in SO, but significantly less (enhanced by 82% vs. SO) in OBX(+) than in OBX(-). The involvement of the brain mediatory systems in the observed EEG asymmetry differences is discussed.

  3. Right vs. left sensorimotor cortex suction-ablation in the rat: no difference in beam-walking recovery.

    PubMed

    Goldstein, L B

    1995-03-13

    The ability of rats to traverse a narrow elevated beam has been used to quantitate recovery of hindlimb motor function after unilateral injury to the sensorimotor cortex. We tested the hypothesis that the rate of spontaneous beam-walking recovery varies with the side of the cortex lesion. Groups of rats that were trained at the beam-walking task underwent suction-ablation of either the right or left hindlimb sensorimotor cortex. There was no difference in hindlimb motor function between the groups on the first post-operative beam-waking trial carried out the day after cortex ablation and no difference between the groups in overall recovery rates over the next two weeks. Subsequent analyses of lesion surface parameters showed no differences in lesion size or extent. Regardless of the side of the lesion, there were also no differences between the right and left hemispheres in norepinephrine content of the lesioned or contralateral cortex. We conclude that the side of sensorimotor cortex ablation injury does not differentially affect the rate of spontaneous motor recovery as measured with the beam-walking task.

  4. Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat.

    PubMed

    Alaverdashvili, Mariam; Hackett, Mark J; Pickering, Ingrid J; Paterson, Phyllis G

    2014-12-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Laminar-specific distribution of zinc: Evidence for presence of layer IV in forelimb motor cortex in the rat

    PubMed Central

    Alaverdashvili, Mariam; Hackett, Mark J.; Pickering, Ingrid J.; Paterson, Phyllis G.

    2015-01-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a “Zn valley” in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways. PMID:25192655

  6. SU-E-I-34: Intermittent Low- and High-Dose Ethanol Exposure Alters Neurochemical Responses in Adult Rat Brain: An Ex Vivo 1H NMR Spectroscopy at 11.7 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Do-Wan; Kim, Sang-Young; Song, Kyu-Ho

    Purpose: The first goal of this study was to determine the influence of the dose-dependent effects of intermittent ethanol intoxication on cerebral neurochemical responses among sham controls and low- and high-dose-ethanol-exposed rats with ex vivo high-resolution spectra. The second goal of this study was to determine the correlations between the metabolite-metabolite levels (pairs-of-metabolite levels) from all of the individual data from the frontal cortex of the intermittent ethanol-intoxicated rats. Methods: Eight-week-old male Wistar rats were divided into 3 groups. Twenty rats in the LDE (n = 10) and the HDE (n = 10) groups received ethanol doses of 1.5 g/kgmore » and 2.5 g/kg, respectively, through oral gavage every 8-h for 4 days. At the end of the 4-day intermittent ethanol exposure, one-dimensional ex vivo 500-MHz proton nuclear magnetic resonance spectra were acquired from 30 samples of the frontal cortex region (from the 3 groups). Results: Normalized total-N-acetylaspartate (tNAA: NAA + NAAG [N-acetylaspartyl-glutamate]), gamma-aminobutyric acid (GABA), and glutathione (GSH) levels were significantly lower in the frontal cortex of the HDE-exposed rats than that of the LDE-exposed rats. Moreover, compared to the CNTL group, the LDE rats exhibited significantly higher normalized GABA levels. The 6 pairs of normalized metabolite levels were positively (+) or negatively (−) correlated in the rat frontal cortex as follows: tNAA and GABA (+), tNAA and Aspartate (Asp) (−), myo-Inositol (mIns) and Asp (−), mIns and Alanine (+), mIns and Taurine (+), and mIns and tNAA (−). Conclusion: Our results suggested that repeated intermittent ethanol intoxication might result in neuronal degeneration and dysfunction, changes in the rate of GABA synthesis, and oxidative stress in the rat frontal cortex. Our ex vivo 1H high-resolution-magic angle spinning nuclear magnetic resonance spectroscopy results suggested some novel metabolic markers for the dose-dependent influence of repeated intermittent ethanol intoxication in the frontal cortex.« less

  7. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    PubMed Central

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  8. Cerebral morphology and functional sparing after prenatal frontal cortex lesions in rats.

    PubMed

    Kolb, B; Cioe, J; Muirhead, D

    1998-03-01

    Rats were given suction lesions of the presumptive frontal cortex on embryonic day 18 (E18) and subsequently tested, as adults, on tests of spatial navigation (Morris water task, radial arm maze), motor tasks (Whishaw reaching task, beam walking), and locomotor activity. Frontal cortical lesions at E18 affected cerebral morphogenesis, producing unusual morphological structures including abnormal patches of neurons in the cortex and white matter as well as neuronal bridges between the hemispheres. A small sample of E18 operates also had hydrocephaly. The animals with E18 lesions without hydrocephalus were behaviorally indistinguishable from littermate controls. The results demonstrate that animals with focal lesions of the presumptive frontal cortex have gross abnormalities in cerebral morphology but the lesions leave the functions normally subserved by the frontal cortex in adult rats unaffected. The results are discussed in the context of a hypothesis regarding the optimal times for functional recovery from cortical injury.

  9. Sound Sequence Discrimination Learning Motivated by Reward Requires Dopaminergic D2 Receptor Activation in the Rat Auditory Cortex

    ERIC Educational Resources Information Center

    Kudoh, Masaharu; Shibuki, Katsuei

    2006-01-01

    We have previously reported that sound sequence discrimination learning requires cholinergic inputs to the auditory cortex (AC) in rats. In that study, reward was used for motivating discrimination behavior in rats. Therefore, dopaminergic inputs mediating reward signals may have an important role in the learning. We tested the possibility in the…

  10. Impairment of learning and memory after photothrombosis of the prefrontal cortex in rat brain: effects of Noopept.

    PubMed

    Romanova, G A; Shakova, F M; Gudasheva, T A; Ostrovskaya, R U

    2002-12-01

    Experiments were performed on rats trained conditioned passive avoidance response. Acquisition and retention of memory traces were impaired after photothrombosis of the prefrontal cortex. The acyl-prolyl-containing dipeptide Noopept facilitated retention and retrieval of a conditioned passive avoidance response, normalized learning capacity in animals with ischemic damage to the cerebral cortex, and promoted finish training in rats with hereditary learning deficit. These results show that Noopept improves all three stages of memory. It should be emphasized that the effect of Noopept was most pronounced in animals with impaired mnesic function.

  11. The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats

    PubMed Central

    Li, Qingzhao; Liu, Huibin; Alattar, Mohamed; Jiang, Shoufang; Han, Jing; Ma, Yujiao; Jiang, Chunyang

    2015-01-01

    This study aimed to explore the pattern of accumulation of some of main heavy metals in blood and various organs of rats after exposed to the atmospheric fine particulate matter (PM2.5). Rats were randomly divided into control and three treatment groups (tracheal perfusion with 10 mg/kg, 20 mg/kg and 40 mg/kg of PM2.5 suspension liquid, respectively). Whole blood and the lung, liver, kidney, and cerebral cortex were harvested after rats were treated and sacrificed. The used heavy metals were detected using inductively coupled plasma-mass spectrometry (ICP-MS) instrument. As results, Lead was increased in the liver, lung and cerebral cortex and the level of manganese was significantly elevated in the liver and cerebral cortex in PM2.5 treated rats. Besides, arsenic was prominently enriched both in cerebral cortex and in blood, and so did the aluminum in the cerebral cortex and the copper in the liver. However, cadmium, chromium and nickel have shown no difference between the control group and the three PM2.5 treated groups. Following the exposure of PM2.5, different heavy metals are preferentially accumulated in different body tissues. PMID:26582271

  12. [Relationship between the Expression of α-syn and Neuronal Apoptosis in Brain Cortex of Acute Alcoholism Rats].

    PubMed

    Li, F; Zhang, Y; Ma, S L

    2016-12-01

    To observe the changes of expression of α-synuclein (α-syn) and neuronal apoptosis in brain cortex of acute alcoholism rats and to explore the mechanism of the damage caused by ethanol to the neurons. The model of acute alcoholism rat was established by 50% alcohol gavage. The α-syn and caspase-3 were detected by immunohistochemical staining and imaging analysis at 1 h, 3 h, 6 h and 12 h after acute alcoholism. The number of positive cell and mean of optical density were detected and the trend change was analyzed. The variance analysis and t -test were also performed. The number of α-syn positive cell and average optical density in brain cortex of acute alcoholism rat increased significantly and peaked at 6 hour with a following slight decrease at 12 h, but still higher than the groups at 1 h and 3 h. Within 12 hours after poisoning, the number of caspase-3 positive cell and average optical density in brain cortex of rats gradually increased. The abnormal aggregation of α-syn caused by brain edema and hypoxia may participate the early stage of neuronal apoptosis in brain cortex after acute alcoholism. Copyright© by the Editorial Department of Journal of Forensic Medicine

  13. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    NASA Astrophysics Data System (ADS)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  14. Effects of chronic stress in adolescence on learned fear, anxiety, and synaptic transmission in the rat prelimbic cortex.

    PubMed

    Negrón-Oyarzo, Ignacio; Pérez, Miguel Ángel; Terreros, Gonzalo; Muñoz, Pablo; Dagnino-Subiabre, Alexies

    2014-02-01

    The prelimbic cortex and amygdala regulate the extinction of conditioned fear and anxiety, respectively. In adult rats, chronic stress affects the dendritic morphology of these brain areas, slowing extinction of learned fear and enhancing anxiety. The aim of this study was to determine whether rats subjected to chronic stress in adolescence show changes in learned fear, anxiety, and synaptic transmission in the prelimbic cortex during adulthood. Male Sprague Dawley rats were subjected to seven days of restraint stress on postnatal day forty-two (PND 42, adolescence). Afterward, the fear-conditioning paradigm was used to study conditioned fear extinction. Anxiety-like behavior was measured one day (PND 50) and twenty-one days (PND 70, adulthood) after stress using the elevated-plus maze and dark-light box tests, respectively. With another set of rats, excitatory synaptic transmission was analyzed with slices of the prelimbic cortex. Rats that had been stressed during adolescence and adulthood had higher anxiety-like behavior levels than did controls, while stress-induced slowing of learned fear extinction in adolescence was reversed during adulthood. As well, the field excitatory postsynaptic potentials of stressed adolescent rats had significantly lower amplitudes than those of controls, although the amplitudes were higher in adulthood. Our results demonstrate that short-term stress in adolescence induces strong effects on excitatory synaptic transmission in the prelimbic cortex and extinction of learned fear, where the effect of stress on anxiety is more persistent than on the extinction of learned fear. These data contribute to the understanding of stress neurobiology. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Taurine restores the exploratory behavior following alcohol withdrawal and decreases BDNF mRNA expression in the frontal cortex of chronic alcohol-treated rats.

    PubMed

    Hansen, Alana Witt; Almeida, Felipe Borges; Bandiera, Solange; Pulcinelli, Rianne Remus; Fragoso, Ana Luiza Rodrigues; Schneider, Ricardo; Barros, Helena Maria Tannhauser; Gomez, Rosane

    2017-10-01

    Alcohol use disorder is an alarming health problem, and the withdrawal symptoms increase the risk of relapse. We have hypothesized that taurine, a multitarget substance acting as a gamma-aminobutyric acid A receptor (GABA A R) positive modulator and a partial inhibitor of N-methyl-d-aspartate (NMDA) glutamate receptors, may reduce the withdrawal symptoms or modify behaviors when combined with alcohol. Therefore, we investigated the effects of taurine on behavior in the open field test (OFT), the GABA A R α 2 subunit and BDNF mRNA expression in the frontal cortex of rats after chronic alcohol treatment or upon withdrawal. Rats received alcohol 2g/kg (alcohol and withdrawal groups) or water (control group) twice daily by oral gavage for 28days. On day 29, the withdrawal rats received water instead of alcohol, and all groups were reallocated to receive 100mg/kg taurine or vehicle intraperitoneally, once a day for 5days. On day 33, the rats were exposed to OFT; 18h later, they were euthanized, and the frontal cortex was dissected for GABA A R α 2 subunit detection and BDNF mRNA expression determination by real-time quantitative PCR. Taurine administration restored rearing behavior to the control levels in the withdrawal rats. Taurine also showed anxiolytic-like effects in control rats and did not change the behaviors in the chronic alcohol group. Chronic alcohol treatment or withdrawal did not change the GABA A R α 2 subunit or BDNF mRNA expression in the frontal cortex, but taurine decreased the α 2 subunit level in control rats and to the BDNF levels in the alcohol rat group. We conclude that taurine restored exploratory behavior after alcohol withdrawal but that this effect was not related to the GABA A R α 2 subunit or BDNF mRNA expression in the frontal cortex of the rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. 78 FR 57280 - Chlorantraniliprole; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... toxicity studies in rats, minimally increased microvesiculation of adrenal cortex was observed in males... cortex effects observed in rat studies were not considered adverse. Chlorantraniliprole does not exhibit.... 601 et seq.), do not apply. This final rule directly regulates growers, food processors, food handlers...

  17. Lithium ameliorates lipopolysaccharide-induced neurotoxicity in the cortex and hippocampus of the adult rat brain.

    PubMed

    Khan, Muhammad Sohail; Ali, Tahir; Abid, Muhammad Noman; Jo, Myeung Hoon; Khan, Amjad; Kim, Min Woo; Yoon, Gwang Ho; Cheon, Eun Woo; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-09-01

    Lithium an effective mood stabilizer, primary used in the treatment of bipolar disorders, has been reported as a protective agent in various neurological disorders. In this study, we examined the neuroprotective role of lithium chloride (LiCl) against lipopolysaccharide (LPS) in the cortex and hippocampus of the adult rat brain. We determined that LiCl -attenuated LPS-induced activated toll-like receptor 4 (TLR4) signalling and significantly reduced the nuclear factor- k B (NF- K B) translation factor and various other inflammatory mediators such as interleukin-1 beta (IL-1β) and tumour necrosis factor alpha (TNF-α). We also analyzed that LiCl significantly abrogated activated gliosis via attenuation of specific markers for activated microglia, ionized calcium-binding adaptor molecule (Iba-1) and astrocytes, glial fibrillary acidic protein (GFAP) in both the cortex and hippocampus of the adult rat brain. Furthermore, we also observed that LiCl treatment significantly ameliorated the increase expression level of apoptotic neurodegeneration protein markers Bax/Bcl2, activated caspase-3 and poly (ADP-ribose) polymerase-1 (PARP-1) in the cortex and hippocampus regions of the LPS-treated adult rat brain. In addition, the morphological results of the fluoro-jade B (FJB) and Nissl staining showed that LiCl attenuated the neuronal degeneration in the cortex and hippocampus regions of the LPS-treated adult rat brain. Taken together, our Western blot and morphological results indicated that LiCl significantly prevents the LPS-induced neurotoxicity via attenuation of neuroinflammation and apoptotic neurodegeneration in the cortex and hippocampus of the adult rat brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity.

    PubMed

    Ammari, Mohamed; Lecomte, Anthony; Sakly, Mohsen; Abdelmelek, Hafedh; de-Seze, René

    2008-08-19

    The world-wide and rapidly growing use of mobile phones has raised serious concerns about the biological and health-related effects of radio frequency (RF) radiation, particularly concerns about the effects of RFs upon the nervous system. The goal of this study was conducted to measure cytochrome oxidase (CO) levels using histochemical methods in order to evaluate regional brain metabolic activity in rat brain after exposure to a GSM 900 MHz signal for 45 min/day at a brain-averaged specific absorption rate (SAR) of 1.5 W/Kg or for 15 min/day at a SAR of 6 W/Kg over seven days. Compared to the sham and control cage groups, rats exposed to a GSM signal at 6 W/Kg showed decreased CO activity in some areas of the prefrontal and frontal cortex (infralimbic cortex, prelimbic cortex, primary motor cortex, secondary motor cortex, anterior cingulate cortex areas 1 and 2 (Cg1 and Cg2)), the septum (dorsal and ventral parts of the lateral septal nucleus), the hippocampus (dorsal field CA1, CA2 and CA3 of the hippocampus and dental gyrus) and the posterior cortex (retrosplenial agranular cortex, primary and secondary visual cortex, perirhinal cortex and lateral entorhinal cortex). However, the exposure to GSM at 1.5 W/Kg did not affect brain activity. Our results indicate that 6 W/Kg GSM 900 MHz microwaves may affect brain metabolism and neuronal activity in rats.

  19. Macaque Parieto-Insular Vestibular Cortex: Responses to self-motion and optic flow

    PubMed Central

    Chen, Aihua; DeAngelis, Gregory C.; Angelaki, Dora E.

    2011-01-01

    The parieto-insular vestibular cortex (PIVC) is thought to contain an important representation of vestibular information. Here we describe responses of macaque PIVC neurons to three-dimensional (3D) vestibular and optic flow stimulation. We found robust vestibular responses to both translational and rotational stimuli in the retroinsular (Ri) and adjacent secondary somatosensory (S2) cortices. PIVC neurons did not respond to optic flow stimulation, and vestibular responses were similar in darkness and during visual fixation. Cells in the upper bank and tip of the lateral sulcus (Ri and S2) responded to sinusoidal vestibular stimuli with modulation at the first harmonic frequency, and were directionally tuned. Cells in the lower bank of the lateral sulcus (mostly Ri) often modulated at the second harmonic frequency, and showed either bimodal spatial tuning or no tuning at all. All directions of 3D motion were represented in PIVC, with direction preferences distributed roughly uniformly for translation, but showing a preference for roll rotation. Spatio-temporal profiles of responses to translation revealed that half of PIVC cells followed the linear velocity profile of the stimulus, one-quarter carried signals related to linear acceleration (in the form of two peaks of direction selectivity separated in time), and a few neurons followed the derivative of linear acceleration (jerk). In contrast, mainly velocity-coding cells were found in response to rotation. Thus, PIVC comprises a large functional region in macaque areas Ri and S2, with robust responses to 3D rotation and translation, but is unlikely to play a significant role in visual/vestibular integration for self-motion perception. PMID:20181599

  20. Neural activity associated with self-reflection

    PubMed Central

    2012-01-01

    Background Self-referential cognitions are important for self-monitoring and self-regulation. Previous studies have addressed the neural correlates of self-referential processes in response to or related to external stimuli. We here investigated brain activity associated with a short, exclusively mental process of self-reflection in the absence of external stimuli or behavioural requirements. Healthy subjects reflected either on themselves, a personally known or an unknown person during functional magnetic resonance imaging (fMRI). The reflection period was initialized by a cue and followed by photographs of the respective persons (perception of pictures of oneself or the other person). Results Self-reflection, compared with reflecting on the other persons and to a major part also compared with perceiving photographs of one-self, was associated with more prominent dorsomedial and lateral prefrontal, insular, anterior and posterior cingulate activations. Whereas some of these areas showed activity in the “other”-conditions as well, self-selective characteristics were revealed in right dorsolateral prefrontal and posterior cingulate cortex for self-reflection; in anterior cingulate cortex for self-perception and in the left inferior parietal lobe for self-reflection and -perception. Conclusions Altogether, cingulate, medial and lateral prefrontal, insular and inferior parietal regions show relevance for self-related cognitions, with in part self-specificity in terms of comparison with the known-, unknown- and perception-conditions. Notably, the results are obtained here without behavioural response supporting the reliability of this methodological approach of applying a solely mental intervention. We suggest considering the reported structures when investigating psychopathologically affected self-related processing. PMID:22624857

  1. Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task.

    PubMed

    Zeeb, Fiona D; Baarendse, P J J; Vanderschuren, L J M J; Winstanley, Catharine A

    2015-12-01

    Studies employing the Iowa Gambling Task (IGT) demonstrated that areas of the frontal cortex, including the ventromedial prefrontal cortex, orbitofrontal cortex (OFC), dorsolateral prefrontal cortex, and anterior cingulate cortex (ACC), are involved in the decision-making process. However, the precise role of these regions in maintaining optimal choice is not clear. We used the rat gambling task (rGT), a rodent analogue of the IGT, to determine whether inactivation of or altered dopamine signalling within discrete cortical sub-regions disrupts decision-making. Following training on the rGT, animals were implanted with guide cannulae aimed at the prelimbic (PrL) or infralimbic (IL) cortices, the OFC, or the ACC. Prior to testing, rats received an infusion of saline or a combination of baclofen and muscimol (0.125 μg of each/side) to inactivate the region and an infusion of a dopamine D2 receptor antagonist (0, 0.1, 0.3, and 1.0 μg/side). Rats tended to increase their choice of a disadvantageous option and decrease their choice of the optimal option following inactivation of either the IL or PrL cortex. In contrast, OFC or ACC inactivation did not affect decision-making. Infusion of a dopamine D2 receptor antagonist into any sub-region did not alter choice preference. Online activity of the IL or PrL cortex is important for maintaining an optimal decision-making strategy, but optimal performance on the rGT does not require frontal cortex dopamine D2 receptor activation. Additionally, these results demonstrate that the roles of different cortical regions in cost-benefit decision-making may be dissociated using the rGT.

  2. Effects of bilateral and unilateral locus coeruleus lesions on beam-walking recovery after subsequent unilateral sensorimotor cortex suction-ablation in the rat.

    PubMed

    Goldstein, L B

    1997-01-01

    The recovery of beam-walking ability following a unilateral sensorimotor cortex lesion in the rat is hypothesized to be noradrenergically-mediated. We carried out two experiments to further test this hypothesis. In the first experiment, bilateral 6-hydroxydopamine locus coeruleus (LC) lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex suction-ablation lesion or sham cortex lesion. In the second experiment, unilateral left or right LC lesions or sham LC lesions were made 2 weeks prior to a right sensorimotor cortex lesion or sham cortex lesion. Beam-walking recovery was measured over the 12 days following cortex lesioning in each experiment. Bilateral, unilateral left, and unilateral right LC lesions resulted in impaired recovery. These data provide additional support for the hypothesis that beam-walking recovery after sensorimotor cortex injury is, at least in part, noradrenergically mediated.

  3. Neural discriminability in rat lateral extrastriate cortex and deep but not superficial primary visual cortex correlates with shape discriminability.

    PubMed

    Vermaercke, Ben; Van den Bergh, Gert; Gerich, Florian; Op de Beeck, Hans

    2015-01-01

    Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences.

  4. Hippocampus, perirhinal cortex, and complex visual discriminations in rats and humans

    PubMed Central

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory. PMID:25593294

  5. Local and downstream effects of excitotoxic lesions in the rat medial prefrontal cortex on In vivo 1H-MRS signals.

    PubMed

    Roffman, J L; Lipska, B K; Bertolino, A; Van Gelderen, P; Olson, A W; Khaing, Z Z; Weinberger, D R

    2000-04-01

    The rat medial prefrontal cortex (mPFC) regulates subcortical dopamine transmission via projections to the striatum and ventral tegmental area. We used in vivo proton magnetic resonance spectroscopy (1H-MRS) at 4.7 T to determine whether excitotoxic lesions of the mPFC result in alterations of N-acetylaspartate (NAA), a marker of neuronal integrity, both locally and downstream in the striatum. Lesioned rats exhibited persistent reductions of NAA and other metabolites within the prefrontal cortex; selective reductions of NAA were seen in the striatum, but not in the parietal cortex. Consistent with earlier reports, lesioned rats exhibited a transient enhancement in amphetamine-induced hyperlocomotion. Prefrontal NAA losses correlated with lesion extent. In the striatum, while there was no change in tissue volume, expression of striatal glutamic acid decarboxylase-67 mRNA was significantly reduced. In vivo NAA levels thus appear sensitive to both local and downstream alterations in neuronal integrity, and may signal meaningful effects at cellular and behavioral levels.

  6. Cortico-subcortical organization of language networks in the right hemisphere: an electrostimulation study in left-handers.

    PubMed

    Duffau, Hugues; Leroy, Marianne; Gatignol, Peggy

    2008-12-01

    We have studied the configuration of the cortico-subcortical language networks within the right hemisphere (RH) in nine left-handers, being operated on while awake for a cerebral glioma. Intraoperatively, language was mapped using cortico-subcortical electrostimulation, to avoid permanent deficit. In frontal regions, cortical stimulation elicited articulatory disorders (ventral premotor cortex), anomia (dorsal premotor cortex), speech arrest (pars opercularis), and semantic paraphasia (dorsolateral prefrontal cortex). Insular stimulation generated dysarthria, parietal stimulation phonemic paraphasias, and temporal stimulation semantic paraphasias. Subcortically, the superior longitudinal fasciculus (inducing phonological disturbances when stimulated), inferior occipito-frontal fasciculus (eliciting semantic disturbances during stimulation), subcallosal fasciculus (generating control disturbances when stimulated), and common final pathway (inducing articulatory disorders during stimulation) were identified. These cortical and subcortical structures were preserved, avoiding permanent aphasia, despite a transient immediate postoperative language worsening. Both intraoperative results and postsurgical transitory dysphasia support the major role of the RH in language in left-handers, and provide new insights into the anatomo-functional cortico-subcortical organization of the language networks in the RH-suggesting a "mirror" configuration in comparison to the left hemisphere.

  7. Trigeminal activation using chemical, electrical, and mechanical stimuli.

    PubMed

    Iannilli, E; Del Gratta, C; Gerber, J C; Romani, G L; Hummel, T

    2008-10-15

    Tactile, proprioceptive, and nociceptive information, including also chemosensory functions are expressed in the trigeminal nerve sensory response. To study differences in the processing of different stimulus qualities, we performed a study based on functional magnetic resonance imaging. The first trigeminal branch (ophthalmic nerve) was activated by (a) intranasal chemical stimulation with gaseous CO2 which produces stinging and burning sensations, but is virtually odorless, (b) painful, but not nociceptive specific cutaneous electrical stimulation, and (c) cutaneous mechanical stimulation using air puffs. Eighteen healthy subjects participated (eight men, 10 women, mean age 31 years). Painful stimuli produced patterns of activation similar to what has been reported for other noxious stimuli, namely activation in the primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and thalamus. In addition, analyses indicated intensity-related activation in the prefrontal cortex which was specifically involved in the evaluation of stimulus intensity. Importantly, the results also indicated similarities between activation patterns after intranasal chemosensory trigeminal stimulation and patterns usually found following intranasal odorous stimulation, indicating the intimate connection between these two systems in the processing of sensory information.

  8. Bilateral ECT induces bilateral increases in regional cortical thickness.

    PubMed

    van Eijndhoven, P; Mulders, P; Kwekkeboom, L; van Oostrom, I; van Beek, M; Janzing, J; Schene, A; Tendolkar, I

    2016-08-23

    Electroconvulsive therapy (ECT) is the most effective treatment for patients suffering from severe or treatment-resistant major depressive disorder (MDD). Unfortunately its underlying neurobiological mechanisms are still unclear. One line of evidence indicates that the seizures produced by ECT induce or stimulate neuroplasticity effects. Although these seizures also affect the cortex, the effect of ECT on cortical thickness is not investigated until now. We acquired structural magnetic resonance imaging data in 19 treatment-resistant MDD patients before and after a bilateral ECT course, and 16 healthy controls at 2 time points, and compared changes in cortical thickness between the groups. Our results reveal that ECT induces significant, bilateral increases in cortical thickness, including the temporal pole, inferior and middle temporal cortex and the insula. The pattern of increased cortical thickness was predominant in regions that are associated with seizure onset in ECT. Post hoc analyses showed that the increase in thickness of the insular cortex was larger in responders than in non-responders, which may point to a specific relationship of this region with treatment effects of ECT.

  9. Caloric Vestibular Stimulation as a Treatment for Conversion Disorder: A Case Report and Medical Hypothesis

    PubMed Central

    Noll-Hussong, Michael; Holzapfel, Sabrina; Pokorny, Dan; Herberger, Simone

    2014-01-01

    Conversion disorder is a medical condition in which a person has paralysis, blindness, or other neurological symptoms that cannot be clearly explained physiologically. To date, there is neither specific nor conclusive treatment. In this paper, we draw together a number of disparate pieces of knowledge to propose a novel intervention to provide transient alleviation for this condition. As caloric vestibular stimulation has been demonstrated to modulate a variety of cognitive functions associated with brain activations, especially in the temporal–parietal cortex, anterior cingulate cortex, and insular cortex, there is evidence to assume an effect in specific mental disorders. Therefore, we go on to hypothesize that lateralized cold vestibular caloric stimulation will be effective in treating conversion disorder and we present provisional evidence from one patient that supports this conclusion. If our hypothesis is correct, this will be the first time in psychiatry and neurology that a clinically well-known mental disorder, long considered difficult to understand and to treat, is relieved by a simple or common, non-invasive medical procedure. PMID:24917828

  10. How does morality work in the brain? A functional and structural perspective of moral behavior

    PubMed Central

    Pascual, Leo; Rodrigues, Paulo; Gallardo-Pujol, David

    2013-01-01

    Neural underpinnings of morality are not yet well understood. Researchers in moral neuroscience have tried to find specific structures and processes that shed light on how morality works. Here, we review the main brain areas that have been associated with morality at both structural and functional levels and speculate about how it can be studied. Orbital and ventromedial prefrontal cortices are implicated in emotionally-driven moral decisions, while dorsolateral prefrontal cortex appears to moderate its response. These competing processes may be mediated by the anterior cingulate cortex. Parietal and temporal structures play important roles in the attribution of others' beliefs and intentions. The insular cortex is engaged during empathic processes. Other regions seem to play a more complementary role in morality. Morality is supported not by a single brain circuitry or structure, but by several circuits overlapping with other complex processes. The identification of the core features of morality and moral-related processes is needed. Neuroscience can provide meaningful insights in order to delineate the boundaries of morality in conjunction with moral psychology. PMID:24062650

  11. Synaesthetic perception of colour and visual space in a blind subject: an fMRI case study.

    PubMed

    Niccolai, Valentina; van Leeuwen, Tessa M; Blakemore, Colin; Stoerig, Petra

    2012-06-01

    In spatial sequence synaesthesia (SSS) ordinal stimuli are perceived as arranged in peripersonal space. Using fMRI, we examined the neural bases of SSS and colour synaesthesia for spoken words in a late-blind synaesthete, JF. He reported days of the week and months of the year as both coloured and spatially ordered in peripersonal space; parts of the days and festivities of the year were spatially ordered but uncoloured. Words that denote time-units and triggered no concurrents were used in a control condition. Both conditions inducing SSS activated the occipito-parietal, infero-frontal and insular cortex. The colour area hOC4v was engaged when the synaesthetic experience included colour. These results confirm the continued recruitment of visual colour cortex in this late-blind synaesthetes. Synaesthesia also involved activation in inferior frontal cortex, which may be related to spatial memory and detection, and in the insula, which might contribute to audiovisual integration related to the processing of inducers and concurrents. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The effect of electroacupuncture on proteomic changes in the motor cortex of 6-OHDA Parkinsonian rats.

    PubMed

    Li, Min; Li, Lijuan; Wang, Ke; Su, Wenting; Jia, Jun; Wang, Xiaomin

    2017-10-15

    Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Comparison of functional and morphological deficits in the rat after gestational exposure to ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, S.; Kimler, B.F.

    1988-07-01

    Ionizing radiation is a precise tool for altering formation of the developing cerebral cortex of the fetal rat. Whole body exposure of the pregnant rat on gestational day 13, 15 or 17 to 1.0 Gy of gamma radiation resulted in maximum thinning of the cortex on days 15 and 17. In the preweaning period, functional tests (negative geotaxis, reflex suspension, continuous corridor and gait) were most affected by irradiation gestational day 15, as was body weight. When a lower dose of radiation (0.75 Gy) was used on gestational day 15, the damage to the cortex was much less but behavioralmore » changes were still present. Frontal, parietal and occipital areas of the cortex were approximately equally affected. Using stepwise multiple regression analysis, the linkage of functional tests and cortical thickness was examined. Functional variables which were most commonly included as predictors of frontal and parietal cortex were negative geotaxis and continuous corridor. Occipital cortical layers were not predicted by behavioral variables. In predicting function using cortical variables, frontal cortex was better than parietal and occipital cortex was the poorest predictor.« less

  14. Speech sound discrimination training improves auditory cortex responses in a rat model of autism

    PubMed Central

    Engineer, Crystal T.; Centanni, Tracy M.; Im, Kwok W.; Kilgard, Michael P.

    2014-01-01

    Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA) increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field (AAF) responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes. PMID:25140133

  15. Ion transport and oxygen consumption in kidney cortex slices from young and old rats.

    PubMed

    Proverbio, F; Proverbio, T; Marín, R

    1985-01-01

    The effects of aging on active Na+ extrusion and oxygen consumption associated with it were studied in rat kidney cortex cells. It was found that (a) the active extrusion of Na+ undergoing Na/K exchange and the active extrusion of Na+ with Cl- and water were diminished in old rats (24 months) as compared with young rats (3 months); (b) the oxygen consumption associated with each of the two active mechanisms of Na+ extrusion was also diminished in the old rats; (c) the calculated turnover rate of the Na/K pump was significantly lower for the old rats.

  16. Effect of oral administration of Pheretima aspergillum (earthworm) in rats with cerebral infarction induced by middle-cerebral artery occlusion.

    PubMed

    Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Huang, Chih-Yang; Hsieh, Ching-Liang

    2012-01-01

    We investigated the curative effect of Pheretima aspergillum (earthworm, PA) on rats with middle cerebral artery occlusion (MCAo). The MCAo-induced cerebral infarction was established and its underlying mechanisms by counting the infarction areas and evaluating the rats' neurological status. Immunostaining was used to test the expression of NeuN, and glial fibrillary acidic (GFAP), S100B, and brain-derived neurotrophic factor (BDNF) proteins. Our results showed that oral administration of PA for two weeks to rats with MCAo successfully reduced cerebral infarction areas in the cortex and striatum, and also reduced scores of neurological deficit. The PA-treated MCAo rats showed greatly decreased neuronal death, glial proliferation, and S100B proteins in the penumbra area of the cortex and in the ischemic core area of the cortex, but BDNF did not changed. These results demonstrated novel and detailed cellular mechanisms underlying the neuroprotective effects of PA in MCAo rats.

  17. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.

  18. [Effects of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation in rats].

    PubMed

    Li, Ting; Wang, Wei; Kong, De-lei; Su, Jiao; Kang, Jian

    2012-04-01

    To explore the influence of intermittent hypoxia on the responses of genioglossus motor cortex to transcranial magnetic stimulation. Male Sprague-Dawley rats were randomly divided into a control group and a chronic intermittent hypoxia group. Transcranial magnetic stimulation was applied in genioglossus motor cortex of the 2 groups. The responses of transcranial magnetic stimulation were recorded and analyzed by single factor analysis of variance. The anterolateral area provided an optimal motor evoked potential response to transcranial magnetic stimulation in the genioglossus motor cortex of the rats. Genioglossus motor evoked potential latency and amplitude were significantly modified by intermittent hypoxic exposure, with a significant decrease in latency (F = 3.294, P < 0.01) at the 1st day [(4.90 ± 0.54) ms] and the 14th day [(4.64 ± 1.71) ms], and an increase in amplitude (F = 1.905, P < 0.05) at the 1st day [(2.28 ± 0.57) mV] and the 7th day [(1.89 ± 0.20) mV]. Intermittent hypoxia could increase the transcranial magnetic stimulation response of genioglossus motor cortex in rats.

  19. The anterior temporal artery: an underutilized but robust donor for revascularization of the distal middle cerebral artery.

    PubMed

    Tayebi Meybodi, Ali; Lawton, Michael T; Griswold, Dylan; Mokhtari, Pooneh; Payman, Andre; Benet, Arnau

    2017-10-01

    OBJECTIVE The anterior temporal artery (ATA) supplies an area of the brain that, if sacrificed, does not cause a noticeable loss of function. Therefore, the ATA may be used as a donor in intracranial-intracranial (IC-IC) bypass procedures. The capacities of the ATA as a donor have not been studied previously. In this study, the authors assessed the feasibility of using the ATA as a donor for revascularization of different segments of the distal middle cerebral artery (MCA). METHODS The ATA was studied in 15 cadaveric specimens (8 heads, excluding 1 side). First, the cisternal segment of the artery was untethered from arachnoid adhesions and small branches feeding the anterior temporal lobe and insular cortex, to evaluate its capacity for a side-to-side bypass to insular, opercular, and cortical segments of the MCA. Any branch entering the anterior perforated substance was preserved. Then, the ATA was cut at the opercular-cortical junction and the capacity for an end-to-side bypass was assessed. RESULTS From a total of 17 ATAs, 4 (23.5%) arose as an early MCA branch. The anterior insular zone and the frontal parasylvian cortical arteries were the best targets (in terms of mobility and caliber match) for a side-to-side bypass. Most of the insula was accessible for end-to-side bypass, but anterior zones of the insula were more accessible than posterior zones. End-to-side bypass was feasible for most recipient cortical arteries along the opercula, except for posterior temporal and parietal regions. Early ATAs reached significantly farther on the insular MCA recipients than non-early ATAs for both side-to-side and end-to-side bypasses. CONCLUSIONS The ATA is a robust arterial donor for IC-IC bypass procedures, including side-to-side and end-to-side techniques. The evidence provided in this work supports the use of the ATA as a donor for distal MCA revascularization in well-selected patients.

  20. Neural differences between intrinsic reasons for doing versus extrinsic reasons for doing: an fMRI study.

    PubMed

    Lee, Woogul; Reeve, Johnmarshall; Xue, Yiqun; Xiong, Jinhu

    2012-05-01

    The contemporary neural understanding of motivation is based almost exclusively on the neural mechanisms of incentive motivation. Recognizing this as a limitation, we used event-related functional magnetic resonance imaging (fMRI) to pursue the viability of expanding the neural understanding of motivation by initiating a pioneering study of intrinsic motivation by scanning participants' neural activity when they decided to act for intrinsic reasons versus when they decided to act for extrinsic reasons. As expected, intrinsic reasons for acting more recruited insular cortex activity while extrinsic reasons for acting more recruited posterior cingulate cortex (PCC) activity. The results demonstrate that engagement decisions based on intrinsic motivation are more determined by weighing the presence of spontaneous self-satisfactions such as interest and enjoyment while engagement decisions based on extrinsic motivation are more determined by weighing socially-acquired stored values as to whether the environmental incentive is attractive enough to warrant action.

  1. Anterior insular cortex regulation in autism spectrum disorders

    PubMed Central

    Caria, Andrea; de Falco, Simona

    2015-01-01

    Autism spectrum disorders (ASDs) comprise a heterogeneous set of neurodevelopmental disorders characterized by dramatic impairments of interpersonal behavior, communication, and empathy. Recent neuroimaging studies suggested that ASD are disorders characterized by widespread abnormalities involving distributed brain network, though clear evidence of differences in large-scale brain network interactions underlying the cognitive and behavioral symptoms of ASD are still lacking. Consistent findings of anterior insula cortex hypoactivation and dysconnectivity during tasks related to emotional and social processing indicates its dysfunctional role in ASD. In parallel, increasing evidence showed that successful control of anterior insula activity can be attained using real-time fMRI paradigms. More importantly, successful regulation of this region was associated with changes in behavior and brain connectivity in both healthy individuals and psychiatric patients. Building on these results we here propose and discuss the use of real-time fMRI neurofeedback in ASD aiming at improving emotional and social behavior. PMID:25798096

  2. Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI.

    PubMed

    Arichi, Tomoki; Whitehead, Kimberley; Barone, Giovanni; Pressler, Ronit; Padormo, Francesco; Edwards, A David; Fabrizi, Lorenzo

    2017-09-12

    Electroencephalographic recordings from the developing human brain are characterized by spontaneous neuronal bursts, the most common of which is the delta brush. Although similar events in animal models are known to occur in areas of immature cortex and drive their development, their origin in humans has not yet been identified. Here, we use simultaneous EEG-fMRI to localise the source of delta brush events in 10 preterm infants aged 32-36 postmenstrual weeks. The most frequent patterns were left and right posterior-temporal delta brushes which were associated in the left hemisphere with ipsilateral BOLD activation in the insula only; and in the right hemisphere in both the insular and temporal cortices. This direct measure of neural and hemodynamic activity shows that the insula, one of the most densely connected hubs in the developing cortex, is a major source of the transient bursting events that are critical for brain maturation.

  3. Autoradiographic analysis of tritiated imipramine binding in the human brain post mortem: effects of suicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross-Isseroff, R.; Israeli, M.; Biegon, A.

    In vitro quantitative autoradiography of high-affinity tritiated imipramine binding sites was performed on brains of 12 suicide victims and 12 matched controls. Region-specific differences in imipramine binding were found between the two groups. Thus, the pyramidal and molecular layers of the cornu ammoni hippocampal fields and the hilus of the dentate gyrus exhibited 80%, 60%, and 90% increases in binding in the suicide group, respectively. The postcentral cortical gyrus, insular cortex, and claustrum had 45%, 28%, and 75% decreases in binding in the suicide group, respectively. No difference in imipramine binding was observed in prefrontal cortical regions, in the basalmore » ganglia, and in mesencephalic nuclei. No sex and postmortem delay effects on imipramine binding were found. Imipramine binding was positively correlated with age, the effect of age being most pronounced in portions of the basal ganglia and temporal cortex.« less

  4. Neural Representations of Natural and Scrambled Movies Progressively Change from Rat Striate to Temporal Cortex

    PubMed Central

    Vinken, Kasper; Van den Bergh, Gert; Vermaercke, Ben; Op de Beeck, Hans P.

    2016-01-01

    In recent years, the rodent has come forward as a candidate model for investigating higher level visual abilities such as object vision. This view has been backed up substantially by evidence from behavioral studies that show rats can be trained to express visual object recognition and categorization capabilities. However, almost no studies have investigated the functional properties of rodent extrastriate visual cortex using stimuli that target object vision, leaving a gap compared with the primate literature. Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat visual cortex to investigate hallmarks of primate neural object representations such as preference for intact versus scrambled stimuli and category-selectivity. We presented natural movies containing a rat or no rat as well as their phase-scrambled versions. Population analyses showed increased dissociation in representations of natural versus scrambled stimuli along the targeted stream, but without a clear preference for natural stimuli. Along the measured cortical hierarchy the neural response seemed to be driven increasingly by features that are not V1-like and destroyed by phase-scrambling. However, there was no evidence for category selectivity for the rat versus nonrat distinction. Together, these findings provide insights about differences and commonalities between rodent and primate visual cortex. PMID:27146315

  5. The efficacy of an antioxidant cocktail on lipid peroxide level and superoxide dismutase activity in aged rat brain and DNA damage in iron-induced epileptogenic foci.

    PubMed

    Komatsu, M; Hiramatsu, M

    2000-08-07

    Mixed natural antioxidants can be combined in a prophylactic food against age related disease involving reactive oxygen species. beta-Catechin is an antioxidant drink, having free radical scavenging activities. It contains green tea extract as a main component as well as ascorbic acid, sunflower seed extract, dunaliella carotene and natural vitamin E. In the present study, we examined the effect of beta-catechin on lipid peroxide formation and superoxide dismutase (SOD) activity in aged rat brain and the effect on 8-hydroxy-2'-deoxyguanosine (8-OHdG) in ipsilateral cortex, 30 min after ferric chloride solution was injected into the left cortex of rats. beta-Catechin solution was orally administered to aged rats and normal rats for 1 month. One-month administration of beta-catechin solution increased SOD activity in the mitochondria fraction of striatum and midbrain and decreased thiobarbiturate reactive substance formation in the cortex and cerebellum of aged rats. It also inhibited 8-OHdG formation in the ipsilateral cortex 30 min after injection of ferric chloride solution. These results suggest that beta-catechin is a suitable prophylactic beverage against age-related neurological diseases associated with reactive oxygen species.

  6. Gray Matter Volume Reduction of Olfactory Cortices in Patients With Idiopathic Olfactory Loss

    PubMed Central

    Yao, Linyin; Pinto, Jayant Marian; Yi, Xiaoli; Li, Li; Peng, Peng

    2014-01-01

    Idiopathic olfactory loss (IOL) is a common olfactory disorder. Little is known about the pathophysiology of this disease. Previous studies demonstrated decreased olfactory bulb (OB) volume in IOL patients when compared with controls. The aim of our study was to investigate structural brain alterations in areas beyond the OB. We acquired T1-weighted magnetic resonance images from 16 patients with IOL and from 16 age- and sex-matched controls on a 3T scanner. Voxel-based morphometry (VBM) was performed using VBM8 toolbox and SPM8 in a Matlab environment. Psychophysical testing confirmed that patients had higher scores for Toyota and Takagi olfactometer and lower scores for Sniffin’ Sticks olfactory test than controls (t = 46.9, P < 0.001 and t = 21.4, P < 0.001, respectively), consistent with olfactory dysfunction. There was a significant negative correlation between the 2 olfactory tests (r = −0.6, P = 0.01). In a volume of interest analysis including primary and secondary olfactory areas, we found patients with IOL to exhibit gray matter volume loss in the orbitofrontal cortex, anterior cingulate cortex, insular cortex, parahippocampal cortex, and the piriform cortex. The present study indicates that changes in the central brain structures proximal to the OB occur in IOL. Further investigations of this phenomenon may be helpful to elucidate the etiology of IOL. PMID:25240014

  7. Neural bases of motivated reasoning: an FMRI study of emotional constraints on partisan political judgment in the 2004 U.S. Presidential election.

    PubMed

    Westen, Drew; Blagov, Pavel S; Harenski, Keith; Kilts, Clint; Hamann, Stephan

    2006-11-01

    Research on political judgment and decision-making has converged with decades of research in clinical and social psychology suggesting the ubiquity of emotion-biased motivated reasoning. Motivated reasoning is a form of implicit emotion regulation in which the brain converges on judgments that minimize negative and maximize positive affect states associated with threat to or attainment of motives. To what extent motivated reasoning engages neural circuits involved in "cold" reasoning and conscious emotion regulation (e.g., suppression) is, however, unknown. We used functional neuroimaging to study the neural responses of 30 committed partisans during the U.S. Presidential election of 2004. We presented subjects with reasoning tasks involving judgments about information threatening to their own candidate, the opposing candidate, or neutral control targets. Motivated reasoning was associated with activations of the ventromedial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, insular cortex, and lateral orbital cortex. As predicted, motivated reasoning was not associated with neural activity in regions previously linked to cold reasoning tasks and conscious (explicit) emotion regulation. The findings provide the first neuroimaging evidence for phenomena variously described as motivated reasoning, implicit emotion regulation, and psychological defense. They suggest that motivated reasoning is qualitatively distinct from reasoning when people do not have a strong emotional stake in the conclusions reached.

  8. A comparison of neurodegeneration linked with neuroinflammation in different brain areas of rats after intracerebroventricular colchicine injection.

    PubMed

    Sil, Susmita; Ghosh, Rupsa; Sanyal, Moumita; Guha, Debjani; Ghosh, Tusharkanti

    2016-01-01

    Colchicine induces neurodegeneration, but the extent of neurodegeneration in different areas of the brain in relation to neuroinflammation remains unclear. Such information may be useful to allow for the development of a model to compare colchicine-induced neurodegeneration with other neurodegenerative diseases such as Alzheimer's Disease (AD). The present study was designed to investigate the extent of neurodegeneration along with neuroinflammation in different areas of the brain, e.g. frontal cortex, parietal cortex, occipital cortex, corpus striatum, amygdala and hippocampus, in rats along with memory impairment 21 days after a single intracerebroventricular (icv) injection of colchicine. Memory parameters were measured before and after icv colchicine injection in all test groups of rats (control, sham-operated, colchicine-injected [ICIR] rats). On Day 21 post-injection, rats from all groups were anesthesized and tissues from the various brain areas were collected for assessment of biomarkers of neuroinflammation (i.e. levels of ROS, nitrite and proinflammatory cytokines TNFα and IL-1β) and neurodegeneration (assessed histologically). The single injection of colchicine resulted in impaired memory and neurodegeneration (significant presence of plaques, Nissl granule chromatolysis) in various brain areas (frontal cortex, amygdala, parietal cortex, corpus striatum), with maximum severity in the hippocampus. While IL-1β, TNFα, ROS and nitrite levels were altered in different brain areas in the ICIR rats, these parameters had their greatest change in the hippocampus. This study showed that icv injection of colchicine caused strong neurodegeneration and neuroinflammation in the hippocampus of rats and the increases in neurodegeneration were corroborated with those of neuroinflammation at the site. The present study also showed that the extent of neurodegeneration and neuroinflammation in different brain areas of the colchicine-injected rats were AD-like and supported the fact that such rats might have the ability to serve as a sporadic model of AD.

  9. Tuberin haploinsufficiency is associated with the loss of OGG1 in rat kidney tumors

    PubMed Central

    Habib, Samy L; Simone, Simona; Barnes, Jeff J; Abboud, Hanna E

    2008-01-01

    Background Tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors. Loss of heterozygosity (LOH) at the TSC2 locus has been detected in TSC-associated renal cell carcinoma (RCC) and in RCC in the Eker rat. Tuberin downregulates the DNA repair enzyme 8-oxoguanine DNA-glycosylase (OGG1) with important functional consequences, compromising the ability of cells to repair damaged DNA resulting in the accumulation of the mutagenic oxidized DNA, 8-oxo-dG. Loss of function mutations of OGG1 also occurs in human kidney clear cell carcinoma and may contribute to tumorgenesis. We investigated the distribution of protein expression and the activity of OGG1 and 8-oxo-dG and correlated it with the expression of tuberin in kidneys of wild type and Eker rats and tumor from Eker rat. Results Tuberin expression, OGG1 protein expression and activity were higher in kidney cortex than in medulla or papilla in both wild type and Eker rats. On the other hand, 8-oxo-dG levels were highest in the medulla, which expressed the lowest levels of OGG1. The basal levels of 8-oxo-dG were also higher in both cortex and medulla of Eker rats compared to wild type rats. In kidney tumors from Eker rats, the loss of the second TSC2 allele is associated with loss of OGG1 expression. Immunostaining of kidney tissue shows localization of tuberin and OGG1 mainly in the cortex. Conclusion These results demonstrate that OGG1 localizes with tuberin preferentially in kidney cortex. Loss of tuberin is accompanied by the loss of OGG1 contributing to tumorgenesis. In addition, the predominant expression of OGG1 in the cortex and its decreased expression and activity in the Eker rat may account for the predominant cortical localization of renal cell carcinoma. PMID:18218111

  10. Voxel-wise resting-state MEG source magnitude imaging study reveals neurocircuitry abnormality in active-duty service members and veterans with PTSD

    PubMed Central

    Huang, Ming-Xiong; Yurgil, Kate A.; Robb, Ashley; Angeles, Annemarie; Diwakar, Mithun; Risbrough, Victoria B.; Nichols, Sharon L.; McLay, Robert; Theilmann, Rebecca J.; Song, Tao; Huang, Charles W.; Lee, Roland R.; Baker, Dewleen G.

    2014-01-01

    Post-traumatic stress disorder (PTSD) is a leading cause of sustained impairment, distress, and poor quality of life in military personnel, veterans, and civilians. Indirect functional neuroimaging studies using PET or fMRI with fear-related stimuli support a PTSD neurocircuitry model that includes amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC). However, it is not clear if this model can fully account for PTSD abnormalities detected directly by electromagnetic-based source imaging techniques in resting-state. The present study examined resting-state magnetoencephalography (MEG) signals in 25 active-duty service members and veterans with PTSD and 30 healthy volunteers. In contrast to the healthy volunteers, individuals with PTSD showed: 1) hyperactivity from amygdala, hippocampus, posterolateral orbitofrontal cortex (OFC), dorsomedial prefrontal cortex (dmPFC), and insular cortex in high-frequency (i.e., beta, gamma, and high-gamma) bands; 2) hypoactivity from vmPFC, Frontal Pole (FP), and dorsolateral prefrontal cortex (dlPFC) in high-frequency bands; 3) extensive hypoactivity from dlPFC, FP, anterior temporal lobes, precuneous cortex, and sensorimotor cortex in alpha and low-frequency bands; and 4) in individuals with PTSD, MEG activity in the left amygdala and posterolateral OFC correlated positively with PTSD symptom scores, whereas MEG activity in vmPFC and precuneous correlated negatively with symptom score. The present study showed that MEG source imaging technique revealed new abnormalities in the resting-state electromagnetic signals from the PTSD neurocircuitry. Particularly, posterolateral OFC and precuneous may play important roles in the PTSD neurocircuitry model. PMID:25180160

  11. Extensive cytotoxic lesions of the rat retrosplenial cortex reveal consistent deficits on tasks that tax allocentric spatial memory.

    PubMed

    Vann, Seralynne D; Aggleton, John P

    2002-02-01

    Despite the connections of the retrosplenial cortex strongly suggesting a role in spatial memory, the lesion data to date have been equivocal. Whether subjects are impaired after retrosplenial lesions seems to depend on whether the lesions were aspirative or excitotoxic, with the latter failing to produce an impairment. A shortcoming of previous excitotoxic lesion studies is that they spared the most caudal part of the retrosplenial cortex. The present study thus used rats with extensive neurotoxic lesions of the retrosplenial cortex that encompassed the entire rostrocaudal extent of this region. These rats were consistently impaired on several tests that tax allocentric memory. In contrast, they were unimpaired on an egocentric discrimination task. Although the lesions did not appear to affect object recognition, clear deficits were found for an object-in-place discrimination. The present study not only demonstrates a role for the retrosplenial cortex in allocentric spatial memory, but also explains why previous excitotoxic lesions have failed to detect any deficits.

  12. [Wavelet packet extraction and entropy analysis of telemetry EEG from the prelimbic cortex of medial prefrontal cortex in morphine-induced CPP rats].

    PubMed

    Bai, Yu; Bai, Jia-Ming; Li, Jing; Li, Min; Yu, Ran; Pan, Qun-Wan

    2014-12-25

    The purpose of the present study is to analyze the relationship between the telemetry electroencephalogram (EEG) changes of the prelimbic (PL) cortex and the drug-seeking behavior of morphine-induced conditioned place preference (CPP) rats by using the wavelet packet extraction and entropy measurement. The recording electrode was stereotactically implanted into the PL cortex of rats. The animals were then divided randomly into operation-only control and morphine-induced CPP groups, respectively. A CPP video system in combination with an EEG wireless telemetry device was used for recording EEG of PL cortex when the rats shuttled between black-white or white-black chambers. The telemetry recorded EEGs were analyzed by wavelet packet extraction, Welch power spectrum estimate, normalized amplitude and Shannon entropy algorithm. The results showed that, compared with operation-only control group, the left PL cortex's EEG of morphine-induced CPP group during black-white chamber shuttling exhibited the following changes: (1) the amplitude of average EEG for each frequency bands extracted by wavelet packet was reduced; (2) the Welch power intensity was increased significantly in 10-50 Hz EEG band (P < 0.01 or P < 0.05); (3) Shannon entropy was increased in β, γ₁, and γ₂waves of the EEG (P < 0.01 or P < 0.05); and (4) the average information entropy was reduced (P < 0.01). The results suggest that above mentioned EEG changes in morphine-induced CPP group rat may be related to animals' drug-seeking motivation and behavior launching.

  13. Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus

    PubMed Central

    Kinnavane, L; Amin, E; Horne, M; Aggleton, J P

    2014-01-01

    The present study examined immediate-early gene expression in the perirhinal cortex of rats with hippocampal lesions. The goal was to test those models of recognition memory which assume that the perirhinal cortex can function independently of the hippocampus. The c-fos gene was targeted, as its expression in the perirhinal cortex is strongly associated with recognition memory. Four groups of rats were examined. Rats with hippocampal lesions and their surgical controls were given either a recognition memory task (novel vs. familiar objects) or a relative recency task (objects with differing degrees of familiarity). Perirhinal Fos expression in the hippocampal-lesioned groups correlated with both recognition and recency performance. The hippocampal lesions, however, had no apparent effect on overall levels of perirhinal or entorhinal cortex c-fos expression in response to novel objects, with only restricted effects being seen in the recency condition. Network analyses showed that whereas the patterns of parahippocampal interactions were differentially affected by novel or familiar objects, these correlated networks were not altered by hippocampal lesions. Additional analyses in control rats revealed two modes of correlated medial temporal activation. Novel stimuli recruited the pathway from the lateral entorhinal cortex (cortical layer II or III) to hippocampal field CA3, and thence to CA1. Familiar stimuli recruited the direct pathway from the lateral entorhinal cortex (principally layer III) to CA1. The present findings not only reveal the independence from the hippocampus of some perirhinal systems associated with recognition memory, but also show how novel stimuli engage hippocampal subfields in qualitatively different ways from familiar stimuli. PMID:25264133

  14. Evidence that primary visual cortex is required for image, orientation, and motion discrimination by rats.

    PubMed

    Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela

    2013-01-01

    The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.

  15. Cannabis exacerbates depressive symptoms in rat model induced by reserpine.

    PubMed

    Khadrawy, Yasser A; Sawie, Hussein G; Abdel-Salam, Omar M E; Hosny, Eman N

    2017-05-01

    Cannabis sativa is one of the most widely recreational drugs and its use is more prevalent among depressed patients. Some studies reported that Cannabis has antidepressant effects while others showed increased depressive symptoms in Cannabis users. Therefore, the present study aims to investigate the effect of Cannabis extract on the depressive-like rats. Twenty four rats were divided into: control, rat model of depression induced by reserpine and depressive-like rats treated with Cannabis sativa extract (10mg/kg expressed as Δ9-tetrahydrocannabinol). The depressive-like rats showed a severe decrease in motor activity as assessed by open field test (OFT). This was accompanied by a decrease in monoamine levels and a significant increase in acetylcholinesterase activity in the cortex and hippocampus. Na + ,K + -ATPase activity increased in the cortex and decreased in the hippocampus of rat model. In addition, a state of oxidative stress was evident in the two brain regions. This was indicated from the significant increase in the levels of lipid peroxidation and nitric oxide. No signs of improvement were observed in the behavioral and neurochemical analyses in the depressive-like rats treated with Cannabis extract. Furthermore, Cannabis extract exacerbated the lipid peroxidation in the cortex and hippocampus. According to the present findings, it could be concluded that Cannabis sativa aggravates the motor deficits and neurochemical changes induced in the cortex and hippocampus of rat model of depression. Therefore, the obtained results could explain the reported increase in the depressive symptoms and memory impairment among Cannabis users. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque

    PubMed Central

    Soares, David; Goldrick, Isabelle; Lemon, Roger N.; Kraskov, Alexander; Greensmith, Linda

    2017-01-01

    Abstract There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration “thin” spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin‐positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32‐postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. PMID:28213922

  17. [Effects of Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats].

    PubMed

    Tong, Hai-Ying; Wu, Jisiguleng; Bai, Liang-Feng; Bao, Wu-Ye; Hu, Rilebagen; Li, Jing; Zhang, Yue

    2014-05-01

    To observe the effects of Mongolian pharmaceutical Betel shisanwei ingredients pill on AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depressive rats. Sixty male Wistar rats were randomly divided into six groups according to the sugar consumption test (10 rats in each group), normal control group,model group,fluoxetine group (3.3 mg x kg(-1)) and low dose, medium dose and high dose group (0.25, 0.5, 1 g x kg(-1)) of Betel shisanwei ingredients pill. Except the normal control,the other groups were treated with the chronic unpredictable mild stress stimulation combined with lonely raising for 28 days. 10 mL x kg(-1) of drugs were given to each rat once daily,continuously for 28 days. The AC activity of the hippocampus and prefrontal cortex were determined by radiation immunity analysis (RIA), while cAMP and PKA quantity were determinated by Enzyme-linked immunosorbent (ELISA). The AC activity, cAMP and PKA quantity of hippocampus and prefrontal of mouse model of Chronic stress depression decreased significantly than those of control group (P < 0.05 or P < 0.01). However, the AC activity, cAMP and PKA quantity of rat hippocampus and prefrontal cortex in the fluoxetine group and the Mongolian pharmaceutical Betel shisanwei ingredients pill group indecreased significantly than those of model group (P < 0.01 or P < 0.05). Especially for the high dose group of Mongolian pharmaceutical Betel shisanwei ingredients pill. The AC-cAMP-PKA signal transduction pathways in hippocampus and prefrontal cortex of depression model of rats is down-regulated, whereas Mongolian pharmaceutical Betel shisanwei ingredients pill could up-regulated it to resist depression.

  18. Decoding bipedal locomotion from the rat sensorimotor cortex.

    PubMed

    Rigosa, J; Panarese, A; Dominici, N; Friedli, L; van den Brand, R; Carpaneto, J; DiGiovanna, J; Courtine, G; Micera, S

    2015-10-01

    Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds, are likely to provide more robust control strategies for the design of such neuroprostheses.

  19. Role of medio-dorsal frontal and posterior parietal neurons during auditory detection performance in rats.

    PubMed

    Bohon, Kaitlin S; Wiest, Michael C

    2014-01-01

    To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units--15% in frontal cortex, 23% in parietal cortex--significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat's frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.

  20. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs.

    PubMed

    Lipska, B K; Khaing, Z Z; Weickert, C S; Weinberger, D R

    2001-07-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.

  1. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    PubMed

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Olfactocentric paralimbic cortex morphology in adolescents with bipolar disorder

    PubMed Central

    Wang, Fei; Kalmar, Jessica H.; Womer, Fay Y.; Edmiston, Erin E.; Chepenik, Lara G.; Chen, Rachel; Spencer, Linda

    2011-01-01

    The olfactocentric paralimbic cortex plays a critical role in the regulation of emotional and neurovegetative functions that are disrupted in core features of bipolar disorder. Adolescence is thought to be a critical period in both the maturation of the olfactocentric paralimbic cortex and in the emergence of bipolar disorder pathology. Together, these factors implicate a central role for the olfactocentric paralimbic cortex in the development of bipolar disorder and suggest that abnormalities in this cortex may be expressed by adolescence in the disorder. We tested the hypothesis that differences in olfactocentric paralimbic cortex structure are a morphological feature in adolescents with bipolar disorder. Subjects included 118 adolescents (41 with bipolar disorder and 77 healthy controls). Cortical grey matter volume differences between adolescents with and without bipolar disorder were assessed with voxel-based morphometry analyses of high-resolution structural magnetic resonance imaging scans. Compared with healthy comparison adolescents, adolescents with bipolar disorder demonstrated significant volume decreases in olfactocentric paralimbic regions, including orbitofrontal, insular and temporopolar cortices. Findings in these regions survived small volume correction (P < 0.05, corrected). Volume decreases in adolescents with bipolar disorder were also noted in inferior prefrontal and superior temporal gyri and cerebellum. The findings suggest that abnormalities in the morphology of the olfactocentric paralimbic cortex may contribute to the bipolar disorder phenotype that emerges in adolescence. The morphological development of the olfactocentric paralimbic cortex has received little study. The importance of these cortices in emotional and social development, and support for a central role for these cortices in the development of bipolar disorder, suggest that study of the development of these cortices in health and in bipolar disorder is critically needed. PMID:21666263

  3. Olfactocentric paralimbic cortex morphology in adolescents with bipolar disorder.

    PubMed

    Wang, Fei; Kalmar, Jessica H; Womer, Fay Y; Edmiston, Erin E; Chepenik, Lara G; Chen, Rachel; Spencer, Linda; Blumberg, Hilary P

    2011-07-01

    The olfactocentric paralimbic cortex plays a critical role in the regulation of emotional and neurovegetative functions that are disrupted in core features of bipolar disorder. Adolescence is thought to be a critical period in both the maturation of the olfactocentric paralimbic cortex and in the emergence of bipolar disorder pathology. Together, these factors implicate a central role for the olfactocentric paralimbic cortex in the development of bipolar disorder and suggest that abnormalities in this cortex may be expressed by adolescence in the disorder. We tested the hypothesis that differences in olfactocentric paralimbic cortex structure are a morphological feature in adolescents with bipolar disorder. Subjects included 118 adolescents (41 with bipolar disorder and 77 healthy controls). Cortical grey matter volume differences between adolescents with and without bipolar disorder were assessed with voxel-based morphometry analyses of high-resolution structural magnetic resonance imaging scans. Compared with healthy comparison adolescents, adolescents with bipolar disorder demonstrated significant volume decreases in olfactocentric paralimbic regions, including orbitofrontal, insular and temporopolar cortices. Findings in these regions survived small volume correction (P < 0.05, corrected). Volume decreases in adolescents with bipolar disorder were also noted in inferior prefrontal and superior temporal gyri and cerebellum. The findings suggest that abnormalities in the morphology of the olfactocentric paralimbic cortex may contribute to the bipolar disorder phenotype that emerges in adolescence. The morphological development of the olfactocentric paralimbic cortex has received little study. The importance of these cortices in emotional and social development, and support for a central role for these cortices in the development of bipolar disorder, suggest that study of the development of these cortices in health and in bipolar disorder is critically needed.

  4. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    PubMed Central

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely to form the anatomical basis for the impaired functioning of this brain area. Indeed, impaired functioning of the prefrontal cortex, such as cognitive deficits are common in stressed individuals as well as in depressed patients. PMID:29440995

  5. Expression pattern of cadherins in the naked mole rat (Heterocephalus glaber) suggests innate cortical diversification of the cerebrum.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Iriki, Atsushi; Okanoya, Kazuo

    2011-06-15

    The cerebral cortex is an indispensable region for higher cognitive function that is remarkably diverse among mammalian species. Although previous research has shown that the cortical area map in the mammalian cerebral cortex is formed by innate and activity-dependent mechanisms, it remains unknown how these mechanisms contribute to the evolution and diversification of the functional cortical areas in various species. The naked mole rat (Heterocephalus glaber) is a subterranean, eusocial rodent. Physiological and anatomical studies have revealed that the visual system is regressed and the somatosensory system is enlarged. To examine whether species differences in cortical area development are caused by intrinsic factors or environmental factors, we performed comparative gene expression analysis of neonatal naked mole rat and mouse brains. The expression domain of cadherin-6, a somatosensory marker, was expanded caudally and shifted dorsally in the cortex, whereas the expression domain of cadherin-8, a visual marker, was reduced caudally in the neonatal naked mole rat cortex. The expression domain of cadherin-8 was also reduced in other visual areas, such as the lateral geniculate nucleus and superior colliculus. Immunohistochemical analysis of thalamocortical fibers further suggested that somatosensory input did not affect cortical gene expression in the neonatal naked mole rat brain. These results suggest that the development of the somatosensory system and the regression of the visual system in the naked mole rat cortex are due to intrinsic genetic mechanisms as well as sensory input-dependent mechanisms. Intrinsic genetic mechanisms thus appear to contribute to species diversity in cortical area formation. Copyright © 2011 Wiley-Liss, Inc.

  6. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference

    PubMed Central

    Szekely, Akos; Silton, Rebecca L.; Heller, Wendy; Miller, Gregory A.

    2017-01-01

    Abstract The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. PMID:27998997

  7. Voxel-based comparison of brain glucose metabolism between patients with Cushing's disease and healthy subjects.

    PubMed

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Li, Fang; Wang, Renzhi; Cheng, Xin

    2018-01-01

    Cognitive impairment and psychiatric symptoms are common in patients with Cushing's disease (CD) owing to elevated levels of glucocorticoids. Molecular neuroimaging methods may help to detect changes in the brain of patients with CD. The aim of this study was to investigate the characteristics of brain metabolism and its association with serum cortisol level in CD. We compared brain metabolism, as measured using [ 18 F]-fluorodeoxyglucose positron emission tomography (FDG PET), between 92 patients with CD and 118 normal subjects on a voxel-wise basis. Pearson correlation was performed to evaluate the association between cerebral FDG uptake and serum cortisol level in patients with CD. We demonstrated that certain brain regions in patients with CD showed significantly increased FDG uptake, including the basal ganglia, anteromedial temporal lobe, thalamus, precentral cortex, and cerebellum. The clusters that demonstrated significantly decreased uptake were mainly located in the medial and lateral frontal cortex, superior and inferior parietal lobule, medial occipital cortex, and insular cortex. The metabolic rate of the majority of these regions was found to be significantly correlated with the serum cortisol level. Our findings may help to explain the underlying mechanisms of cognitive impairment and psychiatric symptoms in patients exposed to excessive glucocorticoids and evaluate the efficacy of treatments during follow-up.

  8. Resting-state functional connectivity in combat veterans suffering from impulsive aggression

    PubMed Central

    Heesink, Lieke; van Honk, Jack; Geuze, Elbert

    2017-01-01

    Abstract Impulsive aggression is common among military personnel after deployment and may arise because of impaired top-down regulation of the amygdala by prefrontal regions. This study sought to further explore this hypothesis via resting-state functional connectivity analyses in impulsively aggressive combat veterans. Male combat veterans with (n = 28) and without (n = 30) impulsive aggression problems underwent resting-state functional magnetic resonance imaging. Functional connectivity analyses were conducted with the following seed-regions: basolateral amygdala (BLA), centromedial amygdala, anterior cingulate cortex (ACC), and anterior insular cortex (AIC). Regions-of-interest analyses focused on the orbitofrontal cortex and periaqueductal gray, and yielded no significant results. In exploratory cluster analyses, we observed reduced functional connectivity between the (bilateral) BLA and left dorsolateral prefrontal cortex in the impulsive aggression group, relative to combat controls. This finding indicates that combat-related impulsive aggression may be marked by weakened functional connectivity between the amygdala and prefrontal regions, already in the absence of explicit emotional stimuli. Group differences in functional connectivity were also observed between the (bilateral) ACC and left cuneus, which may be related to heightened vigilance to potentially threatening visual cues, as well as between the left AIC and right temporal pole, possibly related to negative memory association in impulsive aggression. PMID:29040723

  9. Familiarity to a Feed Additive Modulates Its Effects on Brain Responses in Reward and Memory Regions in the Pig Model

    PubMed Central

    Val-Laillet, David; Meurice, Paul; Clouard, Caroline

    2016-01-01

    Brain responses to feed flavors with or without a feed additive (FA) were investigated in piglets familiarized or not with this FA. Sixteen piglets were allocated to 2 dietary treatments from weaning until d 37: the naive group (NAI) received a standard control feed and the familiarized group (FAM) received the same feed added with a FA mainly made of orange extracts. Animals were subjected to a feed transition at d 16 post-weaning, and to 2-choice feeding tests at d 16 and d 23. Production traits of the piglets were assessed up to d 28 post-weaning. From d 26 onwards, animals underwent 2 brain imaging sessions (positron emission tomography of 18FDG) under anesthesia to investigate the brain activity triggered by the exposure to the flavors of the feed with (FA) or without (C) the FA. Images were analyzed with SPM8 and a region of interest (ROI)-based small volume correction (p < 0.05, k ≥ 25 voxels per cluster). The brain ROI were selected upon their role in sensory evaluation, cognition and reward, and included the prefrontal cortex, insular cortex, fusiform gyrus, limbic system and corpus striatum. The FAM animals showed a moderate preference for the novel post-transition FA feed compared to the C feed on d 16, i.e., day of the feed transition (67% of total feed intake). The presence or absence of the FA in the diet from weaning had no impact on body weight, average daily gain, and feed efficiency of the animals over the whole experimental period (p ≥ 0.10). Familiar feed flavors activated the prefrontal cortex. The amygdala, insular cortex, and prepyriform area were only activated in familiarized animals exposed to the FA feed flavor. The perception of FA feed flavor in the familiarized animals activated the dorsal striatum differently than the perception of the C feed flavor in naive animals. Our data demonstrated that the perception of FA in familiarized individuals induced different brain responses in regions involved in reward anticipation and/or perception processes than the familiar control feed flavor in naive animals. Chronic exposure to the FA might be necessary for positive hedonic effects, but familiarity only cannot explain them. PMID:27610625

  10. A Putative Multiple-Demand System in the Macaque Brain.

    PubMed

    Mitchell, Daniel J; Bell, Andrew H; Buckley, Mark J; Mitchell, Anna S; Sallet, Jerome; Duncan, John

    2016-08-17

    In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this "multiple-demand" (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. In humans, a frontoparietal "multiple-demand" (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar network to exist in nonhuman primates, but this remains controversial. Here, we sought to identify a macaque counterpart to the human MD system using fMRI connectivity. Putative macaque MD regions were functionally connected under anesthesia and were further refined by iterative optimization. The result is a network including lateral frontal, dorsomedial frontal, and insular and inferior parietal regions closely similar to the human counterpart. The proposed macaque MD regions can be useful in guiding electrophysiological recordings or in task-based fMRI to test predictions of similar functional properties to human MD cortex. Copyright © 2016 Mitchell et al.

  11. A plastic stabilizer dibutyltin dilaurate induces subchronic neurotoxicity in rats☆

    PubMed Central

    Jin, Minghua; Song, Peilin; Li, Na; Li, Xuejun; Chen, Jiajun

    2012-01-01

    Dibutyltin dilaurate functions as a stabilizer for polyvinyl chloride. In this study, experimental rats were intragastrically administered 5, 10, or 20 mg/kg dibutyltin dilaurate to model sub-chronic poisoning. After exposure, our results showed the activities of superoxide dismutase and glutathione peroxidase decreased in rat brain tissue, while the malondialdehyde and nitric oxide content, as well as nitric oxide synthase activity in rat brain tissue increased. The cell cycle in the right parietal cortex was disordered and the rate of apoptosis increased. DNA damage was aggravated in the cerebral cortex, and the ultrastructure of the right parietal cortex tissues was altered. The above changes became more apparent with exposure to increasing doses of dibutyltin dilaurate. Our experimental findings confirmed the neurotoxicity of dibutyltin dilaurate in rat brain tissues, and demonstrated that the poisoning was dose-dependent. PMID:25538742

  12. Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients.

    PubMed

    Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R

    2010-01-05

    Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.

  13. Effects of electroacupuncture on metabolic changes in motor cortex and striatum of 6-hydroxydopamine-induced Parkinsonian rats.

    PubMed

    Li, Min; Wang, Ke; Su, Wen-Ting; Jia, Jun; Wang, Xiao-Min

    2017-10-06

    To explore the possible underlying mechanism by investigating the effect of electroacupuncture (EA) treatment on the primary motor cortex and striatum in a unilateral 6-hydroxydopamine (6-OHDA) induced rat Parkinson's disease (PD) model. Male Sprague-Dawley rats were randomly divided into sham group (n=16), model group (n=14), and EA group (n=14). EA stimulation at Dazhui (GV 14) and Baihui (GV20) was applied to PD rats in the EA group for 4 weeks. Behavioral tests were conducted to evaluate the effectiveness of EA treatment. Metabolites were detected by 7.0 T proton nuclear magnetic resonance. Following 4 weeks of EA treatment in PD model rats, the abnormal behavioral impairment induced by 6-OHDA was alleviated. In monitoring changes in metabolic activity, ratios of myoinositol/creatine (Cr) and N-acetyl aspartate (NAA)/Cr in the primary motor cortex were significantly lower at the injected side than the non-injected side in PD rats (P=0.024 and 0.020). The ratios of glutamate + glutamine (Glx)/Cr and NAA/Cr in the striatum were higher and lower, respectively, at the injected side than the non-injected side (P=0.046 and 0.008). EA treatment restored the balance of metabolic activity in the primary motor cortex and striatum. In addition, the taurine/Cr ratio and Glx/Cr ratio were elevated in the striatum of PD model rats compared to sham-lesioned rats (P=0.026 and 0.000). EA treatment alleviated the excessive glutamatergic transmission by down-regulating the striatal Glx/Cr ratio (P=0.001). The Glx/Cr ratio was negatively correlated with floor plane spontaneous locomotion in PD rats (P=0.027 and P=0.0007). EA treatment is able to normalize the metabolic balance in the primary motor cortex and striatum of PD rats, which may contribute to its therapeutic effect on motor deficits. The striatal Glx/Cr ratio may serve as a potential indicator of PD and a therapeutic target of EA treatment.

  14. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  15. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats.

    PubMed

    Sinclair, Elaine B; Culbert, Kristen M; Gradl, Dana R; Richardson, Kimberlei A; Klump, Kelly L; Sisk, Cheryl L

    2015-12-01

    Binge eating is a key symptom of many eating disorders (e.g. binge eating disorder, bulimia nervosa, anorexia nervosa binge/purge type), yet the neurobiological underpinnings of binge eating are poorly understood. The mesocorticolimbic reward circuit, including the nucleus accumbens and the medial prefrontal cortex, is likely involved because this circuit mediates the hedonic value and incentive salience of palatable foods (PF). Here we tested the hypothesis that higher propensity for binge eating is associated with a heightened response (i.e., Fos induction) of the nucleus accumbens and medial prefrontal cortex to PF, using an animal model that identifies binge eating prone (BEP) and binge eating resistant (BER) rats. Forty adult female Sprague-Dawley rats were given intermittent access to PF (high fat pellets) 3×/week for 3 weeks. Based on a pattern of either consistently high or consistently low PF consumption across these feeding tests, 8 rats met criteria for categorization as BEP, and 11 rats met criteria for categorization as BER. One week after the final feeding test, BEP and BER rats were either exposed to PF in their home cages or were given no PF in their home cages for 1h prior to perfusion, leading to three experimental groups for the Fos analysis: BEPs given PF, BERs given PF, and a No PF control group. The total number of Fos-immunoreactive (Fos-ir) cells in the nucleus accumbens core and shell, and the cingulate, prelimbic, and infralimbic regions of the medial prefrontal cortex was estimated by stereological analysis. PF induced higher Fos expression in the nucleus accumbens shell and core and in the prelimbic and infralimbic cortex of BEP rats compared to No PF controls. Throughout the nucleus accumbens and medial prefrontal cortex, PF induced higher Fos expression in BEP than in BER rats, even after adjusting for differences in PF intake. Differences in the neural activation pattern between BEP and BER rats were more robust in prefrontal cortex than in nucleus accumbens. These data confirm that PF activates brain regions responsible for encoding the incentive salience and hedonic properties of PF, and suggest that binge eating proneness is associated with enhanced responses to PF in brain regions that exert executive control over food reward. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats

    PubMed Central

    Sinclair, Elaine B.; Culbert, Kristen M.; Gradl, Dana R.; Richardson, Kimberlei A.; Klump, Kelly L.; Sisk, Cheryl L.

    2017-01-01

    Binge eating is a key symptom of many eating disorders (e.g. binge eating disorder, bulimia nervosa, anorexia nervosa binge/purge type), yet the neurobiological underpinnings of binge eating are poorly understood. The mesocorticolimbic reward circuit, including the nucleus accumbens and the medial prefrontal cortex, is likely involved because this circuit mediates the hedonic value and incentive salience of palatable foods (PF). Here we tested the hypothesis that higher propensity for binge eating is associated with a heightened response (i.e., Fos induction) of the nucleus accumbens and medial prefrontal cortex to PF, using an animal model that identifies binge eating prone (BEP) and binge eating resistant (BER) rats. Forty adult female Sprague–Dawley rats were given intermittent access to PF (high fat pellets) 3×/week for 3 weeks. Based on a pattern of either consistently high or consistently low PF consumption across these feeding tests, 8 rats met criteria for categorization as BEP, and 11 rats met criteria for categorization as BER. One week after the final feeding test, BEP and BER rats were either exposed to PF in their home cages or were given no PF in their home cages for 1 h prior to perfusion, leading to three experimental groups for the Fos analysis: BEPs given PF, BERs given PF, and a No PF control group. The total number of Fos-immunoreactive (Fos-ir) cells in the nucleus accumbens core and shell, and the cingulate, prelimbic, and infralimbic regions of the medial prefrontal cortex was estimated by stereological analysis. PF induced higher Fos expression in the nucleus accumbens shell and core and in the prelimbic and infralimbic cortex of BEP rats compared to No PF controls. Throughout the nucleus accumbens and medial pre-frontal cortex, PF induced higher Fos expression in BEP than in BER rats, even after adjusting for differences in PF intake. Differences in the neural activation pattern between BEP and BER rats were more robust in prefrontal cortex than in nucleus accumbens. These data confirm that PF activates brain regions responsible for encoding the incentive salience and hedonic properties of PF, and suggest that binge eating proneness is associated with enhanced responses to PF in brain regions that exert executive control over food reward. PMID:26459117

  17. Non-shivering thermogenesis during prostaglandin E1 fever in rats: role of the cerebral cortex.

    PubMed

    Monda, M; Amaro, S; De Luca, B

    1994-07-18

    We have tested the hypothesis that there is a role for the cerebral cortex in the control of non-shivering thermogenesis during fever induced by prostaglandin E1 (PGE1). While under urethan anesthesia, the firing rate of nerves innervating interscapular brown adipose tissue (IBAT), IBAT and colonic temperatures (TIBAT and Tc) and oxygen (O2) consumption were monitored during the fever from PGE1 injection (400 and 800 ng) in a lateral cerebral ventricle in controls and in functionally decorticated Sprague-Dawley rats. Rats were functionally decorticated by applying 3.3 M KCl solution on the frontal cortex which causes cortical spreading depression (CSD). Pyrogen injections caused dose-related increases in firing rate, TIBAT, Tc and O2 consumption and CSD reduced these enhancements. Our findings indicate that the cerebral cortex could be involved in the control of non-shivering thermogenesis during PGE1-induced febrile response.

  18. Effects of maternal separation, early handling, and gonadal sex on regional metabolic capacity of the preweanling rat brain

    PubMed Central

    Spivey, Jaclyn M.; Padilla, Eimeira; Shumake, Jason D.; Gonzalez-Lima, F.

    2010-01-01

    This is the first study to assess the effects of mother-infant separation on regional metabolic capacity in the preweanling rat brain. Mother-infant separation is generally known to be stressful for rat pups. Holtzman adolescent rats show a depressive-like behavioral phenotype after maternal separation during the preweanling period. However, information is lacking on the effects of maternal separation on the brains of rat pups. We addressed this issue by mapping the brains of preweanling Holtzman rat pups using cytochrome oxidase histochemistry, which reflects long-term changes in brain metabolic capacity, following two weeks of repeated, prolonged maternal separation, and compared this to both early handled and non-handled pups. Quantitative image analysis revealed that maternal separation reduced cytochrome oxidase activity in the medial prefrontal cortex and nucleus accumbens shell. Maternal separation reduced prefrontal cytochrome oxidase to a greater degree in female pups than in males. Early handling reduced cytochrome oxidase activity in the posterior parietal cortex, ventral tegmental area, and subiculum, but increased cytochrome oxidase activity in the lateral frontal cortex. The sex-dependent effects of early handling on cytochrome oxidase activity were limited to the medial prefrontal cortex. Regardless of separation group, females had greater cytochrome oxidase activity in the habenula and ventral tegmental area compared to males. These findings suggest that early life mother-infant separation results in dysfunction of prefrontal and mesolimbic regions in the preweanling rat brain that may contribute to behavioral changes later in life. PMID:20969837

  19. Antiamnesic effect of acyl-prolyl-containing dipeptide (GVS-111) in compression-induced damage to frontal cortex.

    PubMed

    Romanova, G A; Mirzoev, T K; Barskov, I V; Victorov, I V; Gudasheva, T A; Ostrovskaya, R U

    2000-09-01

    Antiamnestic effect of acyl-prolyl-containing dipeptide GVS-111 was demonstrated in rats with bilateral compression-induced damage to the frontal cortex. Both intraperitoneal and oral administration of the dipeptide improved retrieval of passive avoidance responses in rats with compression-induced cerebral ischemia compared to untreated controls.

  20. Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain.

    PubMed

    Maliszewski-Hall, Anne M; Alexander, Michelle; Tkáč, Ivan; Öz, Gülin; Rao, Raghavendra

    2017-01-01

    Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1 H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague-Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P < 0.01) and [glutamate]/[glutamine] ratio (P < 0.05). Lower taurine concentrations were observed in the hippocampus (P < 0.01) and striatum (P < 0.05). IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.

  1. Degraded Auditory Processing in a Rat Model of Autism Limits the Speech Representation in Non-primary Auditory Cortex

    PubMed Central

    Engineer, C.T.; Centanni, T.M.; Im, K.W.; Borland, M.S.; Moreno, N.A.; Carraway, R.S.; Wilson, L.G.; Kilgard, M.P.

    2014-01-01

    Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. PMID:24639033

  2. Progesterone receptor isoforms expression pattern in the rat brain during the estrous cycle.

    PubMed

    Guerra-Araiza, C; Cerbón, M A; Morimoto, S; Camacho-Arroyo, I

    2000-03-24

    Progesterone receptor (PR) isoforms expression was determined in the hypothalamus, the preoptic area, the hippocampus and the frontal cerebral cortex of the rat at 12:00 h on each day of the estrous cycle by using reverse transcription coupled to polymerase chain reaction. Rats under a 14:10 h light-dark cycle, with lights on at 06:00 h were used. We found that PR-B isoform was predominant in the hypothalamus, the preoptic area and the frontal cerebral cortex. Both PR isoforms were similarly expressed in the hippocampus. The highest PR-B expression was found on proestrus day in the hypothalamus; on metestrus in the preoptic area; and on diestrus in the frontal cortex. We observed no changes in PR isoforms expression in the hippocampus during the estrous cycle. These results indicate that PR isoforms expression is differentially regulated during the estrous cycle in distinct brain regions and that PR-B may be involved in progesterone actions upon the hypothalamus, the preoptic area and the frontal cortex of the rat.

  3. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    PubMed Central

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923

  4. Lesions of the entorhinal cortex or fornix disrupt the context-dependence of fear extinction in rats.

    PubMed

    Ji, Jinzhao; Maren, Stephen

    2008-12-12

    Recent studies have shown that the hippocampus is critical for the context-dependent expression of extinguished fear memories. Here we used Pavlovian fear conditioning in rats to explore whether the entorhinal cortex and fornix, which are the major cortical and subcortical interfaces of the hippocampus, are also involved in the context-dependence of extinction. After pairing an auditory conditional stimulus (CS) with an aversive footshock (unconditional stimulus or US) in one context, rats received an extinction session in which the CS was presented without the US in another context. Conditional fear to the CS was then tested in either the extinction context or a third familiar context; freezing behavior served as the index of fear. Sham-operated rats exhibited little conditional freezing to the CS in the extinction context, but showed a robust renewal of fear when tested outside of the extinction context. In contrast, rats with neurotoxic lesions in the entorhinal cortex or electrolytic lesions in the fornix did not exhibit a renewal of fear when tested outside the extinction context. Impairments in freezing behavior to the auditory CS were not able to account for the observed results, insofar as rats with either entorhinal cortex or fornix lesions exhibited normal freezing behavior during the conditioning session. Thus, contextual memory retrieval requires not only the hippocampus proper, but also its cortical and subcortical interfaces.

  5. Single electrode micro-stimulation of rat auditory cortex: an evaluation of behavioral performance.

    PubMed

    Rousche, Patrick J; Otto, Kevin J; Reilly, Mark P; Kipke, Daryl R

    2003-05-01

    A combination of electrophysiological mapping, behavioral analysis and cortical micro-stimulation was used to explore the interrelation between the auditory cortex and behavior in the adult rat. Auditory discriminations were evaluated in eight rats trained to discriminate the presence or absence of a 75 dB pure tone stimulus. A probe trial technique was used to obtain intensity generalization gradients that described response probabilities to mid-level tones between 0 and 75 dB. The same rats were then chronically implanted in the auditory cortex with a 16 or 32 channel tungsten microwire electrode array. Implanted animals were then trained to discriminate the presence of single electrode micro-stimulation of magnitude 90 microA (22.5 nC/phase). Intensity generalization gradients were created to obtain the response probabilities to mid-level current magnitudes ranging from 0 to 90 microA on 36 different electrodes in six of the eight rats. The 50% point (the current level resulting in 50% detections) varied from 16.7 to 69.2 microA, with an overall mean of 42.4 (+/-8.1) microA across all single electrodes. Cortical micro-stimulation induced sensory-evoked behavior with similar characteristics as normal auditory stimuli. The results highlight the importance of the auditory cortex in a discrimination task and suggest that micro-stimulation of the auditory cortex might be an effective means for a graded information transfer of auditory information directly to the brain as part of a cortical auditory prosthesis.

  6. Monosialotetrahexosylganglioside Inhibits the Expression of p-CREB and NR2B in the Auditory Cortex in Rats with Salicylate-Induced Tinnitus.

    PubMed

    Song, Rui-Biao; Lou, Wei-Hua

    2015-01-01

    This study investigated the effects of monosialotetrahexosylganglioside (GM1) on the expression of N-methyl-D-aspartate receptor subunit 2B (NR2B) and phosphorylated (p)-cyclic AMP response element-binding protein (CREB) in the auditory cortex of rats with tinnitus. Tinnitus-like behavior in rats was tested with the gap prepulse inhibition of acoustic startle paradigm. We then investigated the NR2B mRNA and protein and p-CREB protein levels in the auditory cortex of tinnitus rats compared with normal rats. Rats treated for 4 days with salicylate exhibited tinnitus. NR2B mRNA and protein and p-CREB protein levels were upregulated in these animals, with expression returning to normal levels 14 days after cessation of treatment; baseline levels of NR2B and p-CREB were also restored by GM1 administration. These data suggest that chronic salicylate administration induces tinnitus via upregulation of p-CREB and NR2B expression, and that GM1 can potentially be used to treat tinnitus.

  7. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    PubMed

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  8. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    PubMed Central

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals. PMID:18604298

  9. Comparative Analysis of the Subventricular Zone in Rat, Ferret and Macaque: Evidence for an Outer Subventricular Zone in Rodents

    PubMed Central

    Camacho, Jasmin; Antczak, Jared L.; Prakash, Anish N.; Cziep, Matthew E.; Walker, Anita I.; Noctor, Stephen C.

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates. PMID:22272298

  10. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents.

    PubMed

    Martínez-Cerdeño, Verónica; Cunningham, Christopher L; Camacho, Jasmin; Antczak, Jared L; Prakash, Anish N; Cziep, Matthew E; Walker, Anita I; Noctor, Stephen C

    2012-01-01

    The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.

  11. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2014-06-01

    Spinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex. Here, we used intracortical microstimulation to examine the motor cortex representations of the trunk in relation to other representations in three groups of chronic adult complete low thoracic SCI rats: chronic untrained, treadmill trained (but 'non-stepping') and robot assisted treadmill trained (but 'non-stepping') and compared with a group of normal rats. Our results demonstrate extensive and significant reorganization of the trunk motor cortex after chronic adult SCI which includes (1) expansion and rostral displacement of trunk motor representations in the cortex, with the greatest significant increase observed for rostral (to injury) trunk, and slight but significant increase of motor representation for caudal (to injury) trunk at low thoracic levels in all spinalized rats; (2) significant changes in coactivation and the synergy representation (or map overlap) between different trunk muscles and between trunk and forelimb. No significant differences were observed between the groups of transected rats for the majority of the comparisons. However, (3) the treadmill and robot-treadmill trained groups of rats showed a further small but significant rostral migration of the trunk representations, beyond the shift caused by transection alone. We conclude that SCI induces a significant reorganization of the trunk motor cortex, which is not qualitatively altered by non-stepping treadmill training or non-stepping robot assisted treadmill training, but is shifted further from normal topography by the training. This shift may potentially make subsequent rehabilitation with stepping longer or less successful. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. High-order motor cortex in rats receives somatosensory inputs from the primary motor cortex via cortico-cortical pathways.

    PubMed

    Kunori, Nobuo; Takashima, Ichiro

    2016-12-01

    The motor cortex of rats contains two forelimb motor areas; the caudal forelimb area (CFA) and the rostral forelimb area (RFA). Although the RFA is thought to correspond to the premotor and/or supplementary motor cortices of primates, which are higher-order motor areas that receive somatosensory inputs, it is unknown whether the RFA of rats receives somatosensory inputs in the same manner. To investigate this issue, voltage-sensitive dye (VSD) imaging was used to assess the motor cortex in rats following a brief electrical stimulation of the forelimb. This procedure was followed by intracortical microstimulation (ICMS) mapping to identify the motor representations in the imaged cortex. The combined use of VSD imaging and ICMS revealed that both the CFA and RFA received excitatory synaptic inputs after forelimb stimulation. Further evaluation of the sensory input pathway to the RFA revealed that the forelimb-evoked RFA response was abolished either by the pharmacological inactivation of the CFA or a cortical transection between the CFA and RFA. These results suggest that forelimb-related sensory inputs would be transmitted to the RFA from the CFA via the cortico-cortical pathway. Thus, the present findings imply that sensory information processed in the RFA may be used for the generation of coordinated forelimb movements, which would be similar to the function of the higher-order motor cortex in primates. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer's disease.

    PubMed

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Rahbar Rooshandel, Nahid; Omidzahir, Shila

    2011-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and Beta amyloid (ABeta) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 muL of ABeta (1-40) into the hippocampal fissure. In the present study, ABeta (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. ABeta injection CA1 caused ABeta deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group.

  14. Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence.

    PubMed

    Clark, Vincent P; Beatty, Gregory K; Anderson, Robert E; Kodituwakku, Piyadassa; Phillips, John P; Lane, Terran D R; Kiehl, Kent A; Calhoun, Vince D

    2014-02-01

    Relapse presents a significant problem for patients recovering from stimulant dependence. Here we examined the hypothesis that patterns of brain function obtained at an early stage of abstinence differentiates patients who later relapse versus those who remain abstinent. Forty-five recently abstinent stimulant-dependent patients were tested using a randomized event-related functional MRI (ER-fMRI) design that was developed in order to replicate a previous ERP study of relapse using a selective attention task, and were then monitored until 6 months of verified abstinence or stimulant use occurred. SPM revealed smaller absolute blood oxygen level-dependent (BOLD) response amplitude in bilateral ventral posterior cingulate and right insular cortex in 23 patients positive for relapse to stimulant use compared with 22 who remained abstinent. ER-fMRI, psychiatric, neuropsychological, demographic, personal and family history of drug use were compared in order to form predictive models. ER-fMRI was found to predict abstinence with higher accuracy than any other single measure obtained in this study. Logistic regression using fMRI amplitude in right posterior cingulate and insular cortex predicted abstinence with 77.8% accuracy, which increased to 89.9% accuracy when history of mania was included. Using 10-fold cross-validation, Bayesian logistic regression and multilayer perceptron algorithms provided the highest accuracy of 84.4%. These results, combined with previous studies, suggest that the functional organization of paralimbic brain regions including ventral anterior and posterior cingulate and right insula are related to patients' ability to maintain abstinence. Novel therapies designed to target these paralimbic regions identified using ER-fMRI may improve treatment outcome. Copyright © 2012 Wiley Periodicals, Inc.

  15. Reduced spontaneous neuronal activity in the insular cortex and thalamus in healthy adults with insomnia symptoms.

    PubMed

    Liu, Chun-Hong; Liu, Cun-Zhi; Zhang, Jihui; Yuan, Zhen; Tang, Li-Rong; Tie, Chang-Le; Fan, Jin; Liu, Qing-Quan

    2016-10-01

    Poor sleep and insomnia have been recognized to be strongly correlated with the development of depression. The exploration of the basic mechanism of sleep disturbance could provide the basis for improved understanding and treatment of insomnia and prevention of depression. In this study, 31 subjects with insomnia symptoms as measured by the Hamilton Rating Scale for Depression (HAMD-17) and 71 age- and gender-matched subjects without insomnia symptoms were recruited to participate in a clinical trial. Using resting-state functional magnetic resonance imaging (rs-fMRI), we examined the alterations in spontaneous brain activity between the two groups. Correlations between the fractional amplitude of low frequency fluctuations (fALFF) and clinical measurements (e.g., insomnia severity and Hamilton Depression Rating Scale [HAMD] scores) were also tested in all subjects. Compared to healthy participants without insomnia symptoms, participants with insomnia symptoms showed a decreased fALFF in the left ventral anterior insula, bilateral posterior insula, left thalamus, and pons but an increased fALFF in the bilateral middle occipital gyrus and right precentral gyrus. More specifically, a significant, negative correlation of fALFF in the left thalamus with early morning awakening scores and HAMD scores in the overall sample was identified. These results suggest that insomnia symptoms are associated with altered spontaneous activity in the brain regions of several important functional networks, including the insular cortex of the salience and the thalamus of the hyperarousal network. The altered fALFF in the left thalamus supports the "hyperarousal theory" of insomnia symptoms, which could serve as a biomarker for insomnia. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Multimodal neuroimaging measures and intelligence influence pedophile child sexual offense behavior.

    PubMed

    Lett, Tristram A; Mohnke, Sebastian; Amelung, Till; Brandl, Eva J; Schiltz, Kolja; Pohl, Alexander; Gerwinn, Hannah; Kärgel, Christian; Massau, Claudia; Tenbergen, Gilian; Wittfoth, Matthias; Kneer, Jonas; Beier, Klaus M; Walter, Martin; Ponseti, Jorge; Krüger, Tillmann H C; Schiffer, Boris; Walter, Henrik

    2018-06-04

    Pedophilia is a heterogeneous disorder for which the neurobiological correlates are not well established. In particular, there are no biological markers identifying individuals with high risk to commit child sexual offense (CSO). Pedophiles with CSO (P+CSO; N = 73), pedophiles without CSO (P-CSO; N = 77), and non-pedophilic controls (NPC; N = 133) were assessed using multimodal structural neuroimaging measures including: cortical thickness (CT), surface area (SA), and white matter fractional anisotropy (FA), as well as full scale IQ (FSIQ) performance. Cortex-wise mediation analyses were used to assess the relationships among brain structure, FSIQ and CSO behavior. Lower FSIQ performance was strongly predict with P+CSO (Wald Chi 2 = 13.0, p = 3.1 × 10 -5 ). P+CSO had lower CT in the right motor cortex and pronounced reductions in SA spanning the bilateral frontal, temporal, cingulate, and insular regions (P FWE-corrected < 0.05). P+CSO also had lower FA particularly in the corpus callosum (P FWE-corrected < 0.05). The relationship between SA and P+CSO was significantly mediated by FSIQ, particularly in the prefrontal and anterior insular cortices (P FWE-corrected < 0.05). Within P+CSO, left prefrontal and right anterior cingulate SA negatively correlated with number of CSOs (P FWE-corrected < 0.05). This study demonstrates converging neurobiological findings in which P+CSO had lower FSIQ performance, reduced CT, reduced SA, and reduced FA, compared to P-CSO as well as NPC. Further, FSIQ potentially mediates abuse by pedophiles via aberrant SA, whereas the CT and FA associations were independent of FSIQ differences. These findings suggest aberrant neuroanatomy and lower intelligence as a potential core feature underlying child sexual abuse behavior by pedophiles. Copyright © 2018. Published by Elsevier B.V.

  17. Structural brain correlates of executive engagement in working memory: children's inter-individual differences are reflected in the anterior insular cortex.

    PubMed

    Rossi, Sandrine; Lubin, Amélie; Simon, Grégory; Lanoë, Céline; Poirel, Nicolas; Cachia, Arnaud; Pineau, Arlette; Houdé, Olivier

    2013-06-01

    Although the development of executive functions has been extensively investigated at a neurofunctional level, studies of the structural relationships between executive functions and brain anatomy are still scarce. Based on our previous meta-analysis of functional neuroimaging studies examining executive functions in children (Houdé, Rossi, Lubin, and Joliot, (2010). Developmental Science, 13, 876-885), we investigated six a priori regions of interest: the left anterior insular cortex (AIC), the left and the right supplementary motor areas, the right middle and superior frontal gyri, and the left precentral gyrus. Structural magnetic resonance imaging scans were acquired from 22 to 10-year-old children. Local gray matter volumes, assessed automatically using a standard voxel-based morphometry approach, were correlated with executive and storage working memory capacities evaluated using backward and forward digit span tasks, respectively. We found an association between smaller gray matter volume--i.e., an index of neural maturation--in the left AIC and high backward memory span while gray matter volumes in the a priori selected regions of interest were not linked with forward memory span. These results were corroborated by a whole-brain a priori free analysis that revealed a significant negative correlation in the frontal and prefrontal regions, including the left AIC, with the backward memory span, and in the right inferior parietal lobe, with the forward memory span. Taken together, these results suggest a distinct and specific association between regional gray matter volume and the executive component vs. the storage component of working memory. Moreover, they support a key role for the AIC in the executive network of children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Possible involvements of glutamate and adrenergic receptors on acute toxicity of methylphenidate in isolated hippocampus and cerebral cortex of adult rats.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2017-04-01

    Neurodegeneration induced by methylphenidate (MPH), as a central stimulant with unknown long-term consequences, in adult rats' brain and the possible mechanisms involved were studied. Rats were acutely treated with MPH in the presence and absence of some receptor antagonists such as ketamine, topiramate, yohimbine, and haloperidol. Motor activity and anxiety level in rats were monitored. Antioxidant and inflammatory parameters were also measured in isolated hippocampus and cerebral cortex. MPH-treated groups (10 and 20 mg/kg) demonstrated anxiety-like behavior and increased motor activity. MPH significantly increased lipid peroxidation, GSSG content, IL-1β and TNF-α levels in isolated tissues, and also significantly reduced GSH content, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in hippocampus and cerebral cortex. Pretreatment of animals by receptor antagonists caused inhibition of MPH-induced motor activity disturbances and anxiety-like behavior. Pretreatment of animals by ketamine, topiramate, and yohimbine inhibited the MPH-induced oxidative stress and inflammation; it significantly decreased lipid peroxidation, GSSG level, IL-1β and TNF-α levels and increased GSH content, SOD, GPx, and GR activities in hippocampus and cerebral cortex of acutely MPH-treated rats. Pretreatment with haloperidol did not cause any change in MPH-induced oxidative stress and inflammation. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats and these changes might probably be mediated by glutamate (NMDA or AMPA) and/or α 2 -adrenergic receptors. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  19. [Effects of electromagnetic pulse on blood-brain barrier permeability and tight junction proteins in rats].

    PubMed

    Qiu, Lian-bo; Ding, Gui-rong; Zhang, Ya-mei; Zhou, Yan; Wang, Xiao-wu; Li, Kang-chu; Xu, Sheng-long; Tan, Juan; Zhou, Jia-xing; Guo, Guo-zhen

    2009-09-01

    To study the effect of electromagnetic pulse (EMP) on the permeability of blood-brain barrier, tight junction (TJ)-associated protein expression and localization in rats. 66 male SD rats, weighing (200 approximately 250) g, were sham or whole-body exposed to EMP at 200 kV/m for 200 pulses. The repetition rate was 1 Hz. The permeability of the blood-brain barrier in rats was assessed by albumin immunohistochemistry. The expression of typical tight junction protein ZO-1 and occludin in both cerebral cortex homogenate and cerebral cortex microvessel homogenate was analyzed by the Western blotting and the distribution of ZO-1 and occludin was examined by immunofluorescence microscopy. In the sham exposure rats, no brain capillaries showed albumin leakage, at 0.5 h after 200 kV/m EMP exposure for 200 pulses; a few brain capillaries with extravasated serum albumin was found, with the time extended, the number of brain capillaries with extravasated serum albumin increased, and reached the peak at 3 h, then began to recover at 6 h. In addition, no change in the distribution of the occludin was found after EMP exposure. Total occludin expression had no significant change compared with the control. However, the expression level of ZO-1 significantly decreased at 1 h and 3 h after EMP exposure in both cerebral cortex homogenate and cerebral cortex microvessel homogenate. Furthermore, immunofluorescence studies also showed alterations in ZO-1 protein localization in cerebral cortex microvessel. The EMP exposure (200 kV/m, 200 pulses) could increase blood-brain barrier permeability in rat, and this change is associated with specific alterations in tight junction protein ZO-1.

  20. The Cytoarchitecture of the Inferior Colliculus Revisited

    PubMed Central

    Loftus, William C.; Malmierca, Manuel S.; Bishop, Deborah C.; Oliver, Douglas L.

    2008-01-01

    The inferior colliculus (IC) is the major component of the auditory midbrain and contains three major subdivisions: a central nucleus, a dorsal cortex, and a lateral cortex (LC). Discrepancies in the nomenclature and parcellation of the LC in the rat and cat seem to imply different, species-specific functions for this region. To establish a comparable parcellation of the LC for both rat and cat, we investigated the histochemistry and inputs of the LC. In both species, the deep lateral cortex is marked by a transition between the NADPH-d rich superficial cortex and a cytochrome oxidase rich central nucleus. In both species, focal injections of anterograde tracers in the cochlear nucleus at sites of known best frequency produced bands of labeled inputs in two different subdivisions of the IC. A medial band of axons terminated in the central nucleus, while shorter bands were located laterally and oriented nearly perpendicularly to the medial bands. In the rat, these lateral bands were located in the third, deepest layer of the lateral (external) cortex. In the cat, the bands were located in a region that was previously ascribed to the central nucleus, but now considered to belong to the third, deepest layer of the LC, the ventrolateral nucleus. In both species, the LC inputs had a tonotopic organization. In view of this parallel organization, we propose a common parcellation of the IC for rat and cat with a new nomenclature. The deep layer of the LC, previously referred to as layer 3 in the rat, is designated as the ‘ventrolateral nucleus’ of the LC, making it clear that this region is thought to be homologous with the ventrolateral nucleus in the cat. The similar organization of the LC implies that this subdivision of the IC has similar functions in cats and rats. PMID:18313229

  1. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  2. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, J.E.; Matthews, P.S.

    1984-09-01

    Local 5'-deiodination of serum thyroxine (T4) is the main source of triiodothyronine (T3) for the brain. Since we noted in previous studies that the cerebral cortex of neonatal rats tolerated marked reductions in serum T4 without biochemical hypothyroidism, we examined the in vivo T4 and T3 metabolism in that tissue and in the cerebellum of euthyroid and hypothyroid 2-wk-old rats. We also assessed the contribution of enhanced tissue T4 to T3 conversion and decreased T3 removal from the tissues to the T3 homeostasis in hypothyroid brain. Congenital and neonatal hypothyroidism was induced by adding methimazole to the drinking water. Serum,more » cerebral cortex (Cx), cerebellum (Cm), liver (L) and kidney (R) concentrations of 125I-T4, 125I-T3(T4), and 131I-T3 were measured at various times after injecting 125I-T4 and 131I-T3. The rate of T3 removal from the tissues was measured after injecting an excess of anti-T3-antibody to rats previously injected with tracer T3. In hypothyroidism, the fractional removal rates and clearances were reduced in all tissues, in cortex and cerebellum by 70%, and in liver and kidney ranging from 30 to 50%. While greater than 80% of the 125I-T3(T4) in the brain tissues of euthyroid rats was locally produced, in hypothyroid cerebral cortex and cerebellum the integrated concentrations of 125I-T3(T4) were 2.7- and 1.5-fold greater than in euthyroid rats.« less

  3. After-effects of anodal transcranial direct current stimulation on the excitability of the motor cortex in rats.

    PubMed

    Koo, Ho; Kim, Min Sun; Han, Sang Who; Paulus, Walter; Nitche, Michael A; Kim, Yun-Hee; Kim, Hyoung-Ihl; Ko, Sung-Hwa; Shin, Yong-Il

    2016-09-21

    Transcranial direct current stimulation (tDCS) is increasingly seen as a useful tool for noninvasive cortical neuromodulation. A number of studies in humans have shown that when tDCS is applied to the motor cortex it can modulate cortical excitability. It is especially interesting to note that when applied with sufficient duration and intensity, tDCS can enable long-lasting neuroplastic effects. However, the mechanism by which tDCS exerts its effects on the cortex is not fully understood. We investigated the effects of anodal tDCS under urethane anesthesia on field potentials in in vivo rats. These were measured on the skull over the right motor cortex of rats immediately after stimulating the left corpus callosum. Evoked field potentials in the motor cortex were gradually increased for more than one hour after anodal tDCS. To induce these long-lasting effects, a sufficient duration of stimulation (20 minutes or more) was found to may be required rather than high stimulation intensity. We propose that anodal tDCS with a sufficient duration of stimulation may modulate transcallosal plasticity.

  4. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    PubMed

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  5. Regional homogeneity of resting-state brain abnormalities in bipolar and unipolar depression.

    PubMed

    Liu, Chun-Hong; Ma, Xin; Wu, Xia; Zhang, Yu; Zhou, Fu-Chun; Li, Feng; Tie, Chang-Le; Dong, Jie; Wang, Yong-Jun; Yang, Zhi; Wang, Chuan-Yue

    2013-03-05

    Bipolar disorder patients experiencing a depressive episode (BD-dep) without an observed history of mania are often misdiagnosed and are consequently treated as having unipolar depression (UD), leading to inadequate treatment and poor outcomes. An essential solution to this problem is to identify objective biological markers that distinguish BD-dep and UD patients at an early stage. However, studies directly comparing the brain dysfunctions associated with BD-dep and UD are rare. More importantly, the specificity of the differences in brain activity between these mental disorders has not been examined. With whole-brain regional homogeneity analysis and region-of-interest (ROI) based receiver operating characteristic (ROC) analysis, we aimed to compare the resting-state brain activity of BD-dep and UD patients. Furthermore, we examined the specific differences and whether these differences were attributed to the brain abnormality caused by BD-dep, UD, or both. Twenty-one bipolar and 21 unipolar depressed patients, as well as 26 healthy subjects matched for gender, age, and educational levels, participated in the study. We compared the differences in the regional homogeneity (ReHo) of the BD-dep and UD groups and further identified their pathophysiological abnormality. In the brain regions showing a difference between the BD-dep and UD groups, we further conducted receptive operation characteristic (ROC) analyses to confirm the effectiveness of the identified difference in classifying the patients. We observed ReHo differences between the BD-dep and UD groups in the right ventrolateral middle frontal gyrus, right dorsal anterior insular, right ventral anterior insular, right cerebellum posterior gyrus, right posterior cingulate cortex, right parahippocampal gyrus, and left cerebellum anterior gyrus. Further ROI comparisons and ROC analysis on these ROIs showed that the right parahippocampal gyrus reflected abnormality specific to the BD-dep group, while the right middle frontal gyrus, the right dorsal anterior insular, the right cerebellum posterior gyrus, and the right posterior cingulate cortex showed abnormality specific to the UD group. We found brain regions showing resting state ReHo differences and examined their sensitivity and specificity, suggesting a potential neuroimaging biomarker to distinguish between BD-dep and UD patients. We further clarified the pathophysiological abnormality of these regions for each of the two patient populations. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The role of the right prefrontal cortex in self-evaluation of the face: a functional magnetic resonance imaging study.

    PubMed

    Morita, Tomoyo; Itakura, Shoji; Saito, Daisuke N; Nakashita, Satoshi; Harada, Tokiko; Kochiyama, Takanori; Sadato, Norihiro

    2008-02-01

    Individuals can experience negative emotions (e.g., embarrassment) accompanying self-evaluation immediately after recognizing their own facial image, especially if it deviates strongly from their mental representation of ideals or standards. The aim of this study was to identify the cortical regions involved in self-recognition and self-evaluation along with self-conscious emotions. To increase the range of emotions accompanying self-evaluation, we used facial feedback images chosen from a video recording, some of which deviated significantly from normal images. In total, 19 participants were asked to rate images of their own face (SELF) and those of others (OTHERS) according to how photogenic they appeared to be. After scanning the images, the participants rated how embarrassed they felt upon viewing each face. As the photogenic scores decreased, the embarrassment ratings dramatically increased for the participant's own face compared with those of others. The SELF versus OTHERS contrast significantly increased the activation of the right prefrontal cortex, bilateral insular cortex, anterior cingulate cortex, and bilateral occipital cortex. Within the right prefrontal cortex, activity in the right precentral gyrus reflected the trait of awareness of observable aspects of the self; this provided strong evidence that the right precentral gyrus is specifically involved in self-face recognition. By contrast, activity in the anterior region, which is located in the right middle inferior frontal gyrus, was modulated by the extent of embarrassment. This finding suggests that the right middle inferior frontal gyrus is engaged in self-evaluation preceded by self-face recognition based on the relevance to a standard self.

  7. Prefrontal Cortex Lesions and Sex Differences in Fear Extinction and Perseveration

    ERIC Educational Resources Information Center

    Baran, Sarah E.; Armstrong, Charles E.; Niren, Danielle C.; Conrad, Cheryl D.

    2010-01-01

    Electrolytic lesions of the medial prefrontal cortex (PFCX) were examined using fear conditioning to assess the recall of fear extinction and performance in the Y-maze, open field, and object location/recognition in male and female Sprague-Dawley rats. Rats were conditioned to seven tone/footshocks, followed by extinction after 1-h and 24-h…

  8. Contralateral Disconnection of the Rat Prelimbic Cortex and Dorsomedial Striatum Impairs Cue-Guided Behavioral Switching

    ERIC Educational Resources Information Center

    Baker, Phillip M.; Ragozzino, Michael E.

    2014-01-01

    Switches in reward outcomes or reward-predictive cues are two fundamental ways in which information is used to flexibly shift response patterns. The rat prelimbic cortex and dorsomedial striatum support behavioral flexibility based on a change in outcomes. The present experiments investigated whether these two brain regions are necessary for…

  9. Molecular Correlates of Cortical Network Modulation by Long-Term Sensory Experience in the Adult Rat Barrel Cortex

    ERIC Educational Resources Information Center

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.

    2014-01-01

    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…

  10. Brain Functional Connectivity Is Modified by a Hypocaloric Mediterranean Diet and Physical Activity in Obese Women.

    PubMed

    García-Casares, Natalia; Bernal-López, María R; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; Fernández-García, Jose C; García-Arnés, Juan A; Ramos-Rodriguez, José R; Alfaro, Francisco; Santamaria-Fernández, Sonia; Steward, Trevor; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J; Gómez-Huelgas, Ricardo

    2017-07-01

    Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m²) was 38.15 ± 4.7 vs. 34.18 ± 4.5 ( p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 ( p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex ( p < 0.001), left posterior cingulate ( p < 0.001), and right posterior cingulate ( p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex ( p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex ( p < 0.025); and decreased connectivity between the left and right posterior cingulate ( p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise.

  11. Environmental Enrichment Alters Neurotrophin Levels After Fetal Alcohol Exposure in Rats

    PubMed Central

    Parks, Elizabeth A.; McMechan, Andrew P.; Hannigan, John H.; Berman, Robert F.

    2014-01-01

    Background Prenatal alcohol exposure causes abnormal brain development, leading to behavioral deficits, some of which can be ameliorated by environmental enrichment. As both environmental enrichment and prenatal alcohol exposure can individually alter neurotrophin expression, we studied the interaction of prenatal alcohol and postweaning environmental enrichment on brain neurotrophin levels in rats. Methods Pregnant rats received alcohol by gavage, 0, 4, or 6 g / kg / d (Zero, Low, or High groups), or no treatment (Naïve group), on gestational days 8 to 20. After weaning on postnatal day 21, offspring were housed for 6 weeks in Isolated, Social, or Enriched conditions. Levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were then measured in frontal cortex, occipital cortex, hippocampus, and cerebellar vermis. Results Prenatal alcohol exposure increased NGF levels in frontal cortex (High-dose group) and cerebellar vermis (High- and Low-dose groups); increased BDNF in frontal cortex, occipital cortex and hippocampus (Low-dose groups), and increased NT-3 in hippocampus and cerebellar vermis (High-dose). Environmental enrichment resulted in lower NGF, BDNF, and NT-3 levels in occipital cortex and lower NGF in frontal cortex. The only significant interaction between prenatal alcohol treatment and environment was in cerebellar vermis where NT-3 levels were higher for enriched animals after prenatal alcohol exposure, but not for animals housed under Isolated or Social conditions. Conclusions Both prenatal alcohol exposure and postweaning housing conditions alter brain neurotrophin levels, but the effects appear to be largely independent. Although environmental enrichment can improve functional outcomes, these results do not provide strong support for the hypothesis that rearing in a complex environment ameliorates prenatal alcohol effects on brain neurotrophin levels in rats. PMID:18652597

  12. Resting-state Functional Magnetic Resonance Imaging Analysis of Brain Functional Activity in Rats with Ischemic Stroke Treated by Electro-acupuncture.

    PubMed

    Liang, Shengxiang; Lin, Yunjiao; Lin, Bingbing; Li, Jianhong; Liu, Weilin; Chen, Lidian; Zhao, Shujun; Tao, Jing

    2017-09-01

    To evaluate whether electro-acupuncture (EA) treatment at acupoints of Zusanli (ST 36) and Quchi (LI 11) could reduce motor impairments and enhance brain functional recovery in rats with ischemic stroke. A rat model of middle cerebral artery occlusion (MCAO) was established. EA at ST 36 and LI 11was started at 24 hours (MCAO + EA group) after ischemic stroke. The nontreatment (MCAO) and sham-operated control (SC) groups were included as controls. The neurologic deficits of all groups were assessed by Zea Longa scores and the modified neurologic severity scores on 24 hours and 8 days after MCAO. To further investigate the effect of EA on infract volume and brain function, magnetic resonance imaging was used to estimate the brain lesion and brain neural activities of each group at 8 days after ischemic stroke. Within 1 week after EA treatment, the neurologic deficits were significantly alleviated, and the cerebral infarctions were improved, including visual cortex, motor cortex, striatum, dorsal thalamus, and hippocampus. Furthermore, whole brain neural activities of auditory cortex, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, orbital cortex, sensory cortex, and striatum were decreased in MCAO group, whereas that of brain neural activities were increased after EA treatment, suggesting these brain regions are in accordance with the brain structure analysis. EA at ST 36 and LI 11 could enhance the neural activity of motor function-related brain regions, including motor cortex, dorsal thalamus, and striatum in rats, which is a potential treatment for ischemia stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  13. Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity.

    PubMed

    Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Crookall, Rebecca; Giesbrecht, Timo; Thomas, Anna; Halford, Jason C G; Harrold, Joanne; Stancak, Andrej

    2016-05-01

    The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Recurrent Moderate Hypoglycemia Suppresses Brain-Derived Neurotrophic Factor Expression in the Prefrontal Cortex and Impairs Sensorimotor Gating in the Post-Hypoglycemia Period in Young Rats

    PubMed Central

    Rao, Raghavendra; Ennis, Kathleen; Mitchell, Eugena P.; Tran, Phu V.; Gewirtz, Jonathan C.

    2016-01-01

    Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, three-week-old male rats were subjected to five episodes of moderate hypoglycemia (blood glucose concentration, approximately 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing prepulse inhibition of the acoustic startle reflex on postnatal day 29 and two weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF and TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, prepulse inhibition had recovered at two weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the post-hypoglycemia period. PMID:26820887

  15. Dysfunction in Fatty Acid Amide Hydrolase Is Associated with Depressive-Like Behavior in Wistar Kyoto Rats

    PubMed Central

    Vinod, K. Yaragudri; Xie, Shan; Psychoyos, Delphine; Hungund, Basalingappa L.; Cooper, Thomas B.; Tejani-Butt, Shanaz M.

    2012-01-01

    Background While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. Methodology/Principal Findings The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. Conclusions/Significance These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder. PMID:22606285

  16. Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.

    PubMed

    Vinod, K Yaragudri; Xie, Shan; Psychoyos, Delphine; Hungund, Basalingappa L; Cooper, Thomas B; Tejani-Butt, Shanaz M

    2012-01-01

    While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors. The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats. These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

  17. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    PubMed Central

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  18. A radial map of multi-whisker correlation selectivity in the rat barrel cortex

    PubMed Central

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E.; Bourdieu, Laurent; Léger, Jean- François

    2016-01-01

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel–septal borders, forming rings of multi-whisker synchrony-preferring cells. PMID:27869114

  19. A radial map of multi-whisker correlation selectivity in the rat barrel cortex.

    PubMed

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E; Bourdieu, Laurent; Léger, Jean-François

    2016-11-21

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel-septal borders, forming rings of multi-whisker synchrony-preferring cells.

  20. Effect of three different intensities of infrared laser energy on the levels of amino acid neurotransmitters in the cortex and hippocampus of rat brain.

    PubMed

    Ahmed, Nawal Abd El Hay; Radwan, Nasr Mahmoud; Ibrahim, Khayria Mansour; Khedr, Mona Emam; El Aziz, Mona A; Khadrawy, Yasser Ashry

    2008-10-01

    The aim of this study is to investigate the effects of three different intensities of infrared diode laser radiation on amino acid neurotransmitters in the cortex and hippocampus of rat brain. Lasers are known to induce different neurological effects such as pain relief, anesthesia, and neurosuppressive effects; however, the precise mechanisms of these effects are not clearly elucidated. Amino acid neurotransmitters (glutamate, aspartate, glutamine, gamma-aminobutyric acid [GABA], glycine, and taurine) play vital roles in the central nervous system (CNS). The shaved scalp of each rat was exposed to different intensities of infrared laser energy (500, 190, and 90 mW) and then the rats were sacrificed after 1 h, 7 d, and 14 d of daily laser irradiation. The control groups were exposed to the same conditions but without exposure to laser. The concentrations of amino acid neurotransmitters were measured by high-performance liquid chromatography (HPLC). The rats subjected to 500 mW of laser irradiation had a significant decrease in glutamate, aspartate, and taurine in the cortex, and a significant decrease in hippocampal GABA. In the cortices of rats exposed to 190 mW of laser irradiation, an increase in aspartate accompanied by a decrease in glutamine were observed. In the hippocampus, other changes were seen. The rats irradiated with 90 mW showed a decrease in cortical glutamate, aspartate, and glutamine, and an increase in glycine, while in the hippocampus an increase in glutamate, aspartate, and GABA were recorded. We conclude that daily laser irradiation at 90 mW produced the most pronounced inhibitory effect in the cortex after 7 d. This finding may explain the reported neurosuppressive effect of infrared laser energy on axonal conduction of hippocampal and cortical tissues of rat brain.

  1. Disentangling interoception: insights from focal strokes affecting the perception of external and internal milieus

    PubMed Central

    Couto, Blas; Adolfi, Federico; Sedeño, Lucas; Salles, Alejo; Canales-Johnson, Andrés; Alvarez-Abut, Pablo; Garcia-Cordero, Indira; Pietto, Marcos; Bekinschtein, Tristan; Sigman, Mariano; Manes, Facundo; Ibanez, Agustin

    2015-01-01

    Interoception is the moment-to-moment sensing of the physiological condition of the body. The multimodal sources of interoception can be classified into two different streams of afferents: an internal pathway of signals arising from core structures (i.e., heart, blood vessels, and bronchi) and an external pathway of body-mapped sensations (i.e., chemosensation and pain) arising from peripersonal space. This study examines differential processing along these streams within the insular cortex (IC) and their subcortical tracts connecting frontotemporal networks. Two rare patients presenting focal lesions of the IC (insular lesion, IL) or its subcortical tracts (subcortical lesion, SL) were tested. Internally generated interoceptive streams were assessed through a heartbeat detection (HBD) task, while those externally triggered were tapped via taste, smell, and pain recognition tasks. A differential pattern was observed. The IC patient showed impaired internal signal processing while the SL patient exhibited external perception deficits. Such selective deficits remained even when comparing each patient with a group of healthy controls and a group of brain-damaged patients. These outcomes suggest the existence of distinguishable interoceptive streams. Results are discussed in relation with neuroanatomical substrates, involving a fronto-insulo-temporal network for interoceptive and cognitive contextual integration. PMID:25983697

  2. Is the desire for amputation related to disturbed emotion processing? A multiple case study analysis in BIID.

    PubMed

    Bottini, Gabriella; Brugger, Peter; Sedda, Anna

    2015-01-01

    Body integrity identity disorder (BIID) is characterized by the overwhelming desire to amputate one or more healthy limbs or to be paraplegic. Recently, a neurological explanation of this condition has been proposed, in part on the basis of findings that the insular cortex might present structural anomalies in these individuals. While these studies focused on body representation, much less is known about emotional processing. Importantly, emotional impairments have been found in psychiatric disorders, and a psychiatric etiology is still a valid alternative to purely neurological accounts of BIID. In this study, we explored, by means of a computerized experiment, facial emotion recognition and emotional responses to disgusting images in seven individuals with BIID, taking into account their clinical features and investigating in detail disgust processing, strongly linked to insular functioning. We demonstrate that BIID is not characterized by a general emotional impairment; rather, there is a selectively reduced disgust response to violations of the body envelope. Taken together, our results support the need to explore this condition under an interdisciplinary perspective, taking into account also emotional connotations and the social modulation of body representation.

  3. Emotional anticipation after delivery - a longitudinal neuroimaging study of the postpartum period.

    PubMed

    Gingnell, Malin; Toffoletto, Simone; Wikström, Johan; Engman, Jonas; Bannbers, Elin; Comasco, Erika; Sundström-Poromaa, Inger

    2017-03-08

    Neuroimaging research has begun to unveil the mechanisms behind emotion processing during the postpartum period, which, in turn, may be of relevance for the development of postpartum depression. The present study sought to longitudinally investigate the neural correlates of emotion anticipation during the postpartum period in healthy women. Functional magnetic resonance imaging was employed to measure the blood oxygen level-dependent signal in the brain in response to anticipation of negative emotional stimuli and during processing of images with positive or negative valence. The participating women were scanned twice: the first scan occurred during the first 48 hours after delivery, and the second was performed 4-6 weeks after delivery. The early postpartum period was characterized by higher anterior cingulate cortex reactivity during anticipation of negative emotional stimuli than the late postpartum period. This was accompanied by a negative relationship with insular reactivity during the early postpartum period and a trend towards an increase in insular reactivity in the late postpartum period. Thus, during the first four weeks of the postpartum period, a diminished top-down regulatory feedback on emotion-related areas of the brain was noted. This finding suggests a physiologically important adaptation during the healthy postpartum period.

  4. Filtering the reality: functional dissociation of lateral and medial pain systems during sleep in humans.

    PubMed

    Bastuji, Hélène; Mazza, Stéphanie; Perchet, Caroline; Frot, Maud; Mauguière, François; Magnin, Michel; Garcia-Larrea, Luis

    2012-11-01

    Behavioral reactions to sensory stimuli during sleep are scarce despite preservation of sizeable cortical responses. To further understand such dissociation, we recorded intracortical field potentials to painful laser pulses in humans during waking and all-night sleep. Recordings were obtained from the three cortical structures receiving 95% of the spinothalamic cortical input in primates, namely the parietal operculum, posterior insula, and mid-anterior cingulate cortex. The dynamics of responses during sleep differed among cortical sites. In sleep Stage 2, evoked potential amplitudes were similarly attenuated relative to waking in all three cortical regions. During paradoxical, or rapid eye movements (REM), sleep, opercular and insular potentials remained stable in comparison with Stage 2, whereas the responses from mid-anterior cingulate abated drastically, and decreasing below background noise in half of the subjects. Thus, while the lateral operculo-insular system subserving sensory analysis of somatic stimuli remained active during paradoxical-REM sleep, mid-anterior cingulate processes related to orienting and avoidance behavior were suppressed. Dissociation between sensory and orienting-motor networks might explain why nociceptive stimuli can be either neglected or incorporated into dreams without awakening the subject. Copyright © 2011 Wiley Periodicals, Inc.

  5. Activation of adenosine A(1) receptors alters behavioral and biochemical parameters in hyperthyroid rats.

    PubMed

    Bruno, Alessandra Nejar; Fontella, Fernanda Urruth; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Dalmaz, Carla; Sarkis, João José Freitas

    2006-02-28

    Adenosine acting on A(1) receptors has been related with neuroprotective and neuromodulatory actions, protection against oxidative stress and decrease of anxiety and nociceptive signaling. Previous studies demonstrated an inhibition of the enzymes that hydrolyze ATP to adenosine in the rat central nervous system after hyperthyroidism induction. Manifestations of hyperthyroidism include increased anxiety, nervousness, high O(2) consumption and physical hyperactivity. Here, we investigated the effects of administration of a specific agonist of adenosine A(1) receptor (N(6)-cyclopentyladenosine; CPA) on nociception, anxiety, exploratory response, locomotion and brain oxidative stress of hyperthyroid rats. Hyperthyroidism was induced by daily intraperitoneal injections of l-thyroxine (T4) for 14 days. Nociception was assessed with a tail-flick apparatus and exploratory behavior, locomotion and anxiety were analyzed by open-field and plus-maze tests. We verified the total antioxidant reactivity (TAR), lipid peroxide levels by the thiobarbituric acid reactive species (TBARS) reaction and the free radicals content by the DCF test. Our results demonstrated that CPA reverted the hyperalgesia induced by hyperthyroidism and decreased the exploratory behavior, locomotion and anxiety in hyperthyroid rats. Furthermore, CPA decreased lipid peroxidation in hippocampus and cerebral cortex of control rats and in cerebral cortex of hyperthyroid rats. CPA also increased the total antioxidant reactivity in hippocampus and cerebral cortex of control and hyperthyroid rats, but the production of free radicals verified by the DCF test was changed only in cerebral cortex. These results suggest that some of the hyperthyroidism effects are subjected to regulation by adenosine A(1) receptor, demonstrating the involvement of the adenosinergic system in this pathology.

  6. Decoding bipedal locomotion from the rat sensorimotor cortex

    NASA Astrophysics Data System (ADS)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds, are likely to provide more robust control strategies for the design of such neuroprostheses.

  7. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque.

    PubMed

    Soares, David; Goldrick, Isabelle; Lemon, Roger N; Kraskov, Alexander; Greensmith, Linda; Kalmar, Bernadett

    2017-06-15

    There are substantial differences across species in the organization and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration "thin" spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the Kv3.1b expression in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labeled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, and lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium, and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  8. Bilateral limbic system destruction in man

    PubMed Central

    Feinstein, Justin S.; Rudrauf, David; Khalsa, Sahib S.; Cassell, Martin D.; Bruss, Joel; Grabowski, Thomas J.; Tranel, Daniel

    2010-01-01

    We report here a case study of a rare neurological patient with bilateral brain damage encompassing a substantial portion of the so-called “limbic system.” The patient, Roger, has been studied in our laboratory for over 14 years and the current article presents his complete neuroanatomical and neuropsychological profiles. The brain damage occurred in 1980 following an episode of herpes simplex encephalitis. The amount of destroyed neural tissue is extensive and includes bilateral damage to core limbic and paralimbic regions, including the hippocampus, amygdala, parahippocampal gyrus, temporal poles, orbitofrontal cortex, basal forebrain, anterior cingulate cortex, and insular cortex. The right hemisphere is more extensively affected than the left, although the lesions are largely bilateral. Despite the magnitude of his brain damage, Roger has a normal IQ, average to above average attention, working memory, and executive functioning skills, and very good speech and language abilities. In fact, his only obvious presenting deficits are a dense global amnesia and a severe anosmia and ageusia. Roger's case presents a rare opportunity to advance our understanding of the critical functions underlying the human limbic system, and the neuropsychological and neuroanatomical data presented here provide a critical foundation for such investigations. PMID:19763994

  9. Midbrain response to milkshake correlates with ad libitum milkshake intake in the absence of hunger.

    PubMed

    Nolan-Poupart, Sarah; Veldhuizen, Maria G; Geha, Paul; Small, Dana M

    2013-01-01

    There is now widespread agreement that individual variation in the neural circuits representing the reinforcing properties of foods may be associated with risk for overeating and obesity. What is currently unknown is how and whether brain response to a food is related to immediate subsequent intake of that food. Here we used functional magnetic resonance imaging (fMRI) to test whether response to a palatable milkshake is associated with subsequent ad libitum milkshake consumption. We predicted that enhanced responses in key reward regions (insula, striatum, midbrain, medial orbitofrontal cortex) and decreased responses in regions implicated in self-control (lateral prefrontal and lateral orbitofrontal cortex) would be associated with greater intake. We found a significant positive association between response to milkshake in the periaqueductal gray region of the midbrain and ad libitum milkshake intake. Although strong bilateral insular responses were observed during consumption of the milkshake this response did not correlate with subsequent intake. The associations observed in the midbrain and orbitofrontal cortex were uninfluenced by ratings of hunger, which were near neutral. We conclude that midbrain response to a palatable food is related to eating in the absence of hunger. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Stereoscopically Observing Manipulative Actions

    PubMed Central

    Ferri, S.; Pauwels, K.; Rizzolatti, G.; Orban, G. A.

    2016-01-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors “stimulus type” (action, static control, and dynamic control), “stereopsis” (present, absent) and “viewpoint” (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. PMID:27252350

  11. Stereoscopically Observing Manipulative Actions.

    PubMed

    Ferri, S; Pauwels, K; Rizzolatti, G; Orban, G A

    2016-08-01

    The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors "stimulus type" (action, static control, and dynamic control), "stereopsis" (present, absent) and "viewpoint" (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior. © The Author 2016. Published by Oxford University Press.

  12. Aberrant temporal and spatial brain activity during rest in patients with chronic pain

    PubMed Central

    Malinen, Sanna; Vartiainen, Nuutti; Hlushchuk, Yevhen; Koskinen, Miika; Ramkumar, Pavan; Forss, Nina; Kalso, Eija; Hari, Riitta

    2010-01-01

    In the absence of external stimuli, human hemodynamic brain activity displays slow intrinsic variations. To find out whether such fluctuations would be altered by persistent pain, we asked 10 patients with unrelenting chronic pain of different etiologies and 10 sex- and age-matched control subjects to rest with eyes open during 3-T functional MRI. Independent component analysis was used to identify functionally coupled brain networks. Time courses of an independent component comprising the insular cortices of both hemispheres showed stronger spectral power at 0.12 to 0.25 Hz in patients than in control subjects, with the largest difference at 0.16 Hz. A similar but weaker effect was seen in the anterior cingulate cortex, whereas activity of the precuneus and early visual cortex, used as a control site, did not differ between the groups. In the patient group, seed point-based correlation analysis revealed altered spatial connectivity between insulae and anterior cingulate cortex. The results imply both temporally and spatially aberrant activity of the affective pain-processing areas in patients suffering from chronic pain. The accentuated 0.12- to 0.25-Hz fluctuations in the patient group might be related to altered activity of the autonomic nervous system. PMID:20308545

  13. Separating brain processing of pain from that of stimulus intensity.

    PubMed

    Oertel, Bruno G; Preibisch, Christine; Martin, Till; Walter, Carmen; Gamer, Matthias; Deichmann, Ralf; Lötsch, Jörn

    2012-04-01

    Regions of the brain network activated by painful stimuli are also activated by nonpainful and even nonsomatosensory stimuli. We therefore analyzed where the qualitative change from nonpainful to painful perception at the pain thresholds is coded. Noxious stimuli of gaseous carbon dioxide (n = 50) were applied to the nasal mucosa of 24 healthy volunteers at various concentrations from 10% below to 10% above the individual pain threshold. Functional magnetic resonance images showed that these trigeminal stimuli activated brain regions regarded as the "pain matrix." However, most of these activations, including the posterior insula, the primary and secondary somatosensory cortex, the amygdala, and the middle cingulate cortex, were associated with quantitative changes in stimulus intensity and did not exclusively reflect the qualitative change from nonpainful to pain. After subtracting brain activations associated with quantitative changes in the stimuli, the qualitative change, reflecting pain-exclusive activations, could be localized mainly in the posterior insular cortex. This shows that cerebral processing of noxious stimuli focuses predominately on the quantitative properties of stimulus intensity in both their sensory and affective dimensions, whereas the integration of this information into the perception of pain is restricted to a small part of the pain matrix. Copyright © 2011 Wiley Periodicals, Inc.

  14. Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.

    PubMed

    Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo

    2012-08-15

    A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.

  15. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Cai, Zheng-Wei; Regunathan, Soundar; Ordway, Gregory

    2009-01-01

    Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with β-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress. PMID:18364017

  16. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    PubMed

    Teixeira, Francisco Bruno; Santana, Luana Nazaré da Silva; Bezerra, Fernando Romualdo; De Carvalho, Sabrina; Fontes-Júnior, Enéas Andrade; Prediger, Rui Daniel; Crespo-López, Maria Elena; Maia, Cristiane Socorro Ferraz; Lima, Rafael Rodrigues

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  17. Inactivation of the infralimbic prefrontal cortex in rats reduces the influence of inappropriate habitual responding in a response-conflict task.

    PubMed

    Haddon, J E; Killcross, S

    2011-12-29

    Previous research suggests the infralimbic cortex is important in situations when there is competition between goal-directed and habitual responding. Here we used a response conflict procedure to further explore the involvement of the infralimbic cortex in this relationship. Rats received training on two instrumental biconditional discriminations, one auditory and one visual, in two distinct contexts. One discrimination was "over-trained" relative to the other, "under-trained," discrimination in the ratio 3:1. At test, animals were presented with incongruent audiovisual stimulus compounds of the training stimuli in the under-trained context. The stimulus elements of these test compounds have previously dictated different lever press responses during training. Rats receiving control infusions into the infralimbic cortex showed a significant interference effect, producing more responses to the over-trained (habitual), but context-inappropriate, stimulus element of the incongruent compound. This interference effect was abolished by inactivation of the infralimbic cortex; animals showed a reduced tendency to produce the habitual but inappropriate response compared with animals receiving control infusions. This finding provides evidence that the infralimbic cortex is involved in attenuating the influence of goal-directed behavior, for example context-appropriate responding. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Neural Coding of Reward Magnitude in the Orbitofrontal Cortex of the Rat during a Five-Odor Olfactory Discrimination Task

    ERIC Educational Resources Information Center

    van Duuren, Esther; Nieto Escamez, Francisco A.; Joosten, Ruud N. J. M. A.; Visser, Rein; Mulder, Antonius B.; Pennartz, Cyriel M. A.

    2007-01-01

    The orbitofrontal cortex (OBFc) has been suggested to code the motivational value of environmental stimuli and to use this information for the flexible guidance of goal-directed behavior. To examine whether information regarding reward prediction is quantitatively represented in the rat OBFc, neural activity was recorded during an olfactory…

  19. Reduced Spiking in Entorhinal Cortex during the Delay Period of a Cued Spatial Response Task

    ERIC Educational Resources Information Center

    Gupta, Kishan; Keller, Lauren A.; Hasselmo, Michael E.

    2012-01-01

    Intrinsic persistent spiking mechanisms in medial entorhinal cortex (mEC) neurons may play a role in active maintenance of working memory. However, electrophysiological studies of rat mEC units have primarily focused on spatial modulation. We sought evidence of differential spike rates in the mEC in rats trained on a T-maze, cued spatial delayed…

  20. Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats.

    PubMed

    Penagos-Corzo, Julio C; Bonilla, Andrea; Rodríguez-Moreno, Antonio; Flores, Gonzalo; Negrete-Díaz, José V

    2015-11-01

    We studied conditional self-discrimination (CSD) in rats and compared the neuronal cytoarchitecture of untrained animals and rats that were trained in self-discrimination. For this purpose, we used thirty 10-week-old male rats were randomized into three groups: one control group and two conditioning groups: a comparison group (associative learning) and an experimental group (self-discrimination). At the end of the conditioning process, the experimental group managed to discriminate their own state of thirst. After the conditioning process, dendritic morphological changes in the pyramidal neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus were evaluated using Golgi-Cox stain method and then analyzed by the Sholl method. Differences were found in total dendritic length and spine density. Animals trained in self-discrimination showed an increase in the dendritic length and the number of dendritic spines of neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus. Our data suggest that conditional self-discrimination improves the connectivity of the prefrontal cortex and dorsal CA1, which has implications for memory and learning processes. © 2015 Wiley Periodicals, Inc.

  1. The effect of electromagnetic radiation on the rat brain: an experimental study.

    PubMed

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  2. The effect of aniracetam on cerebral glucose metabolism in rats after lesioning of the basal forebrain measured by PET.

    PubMed

    Ouchi, Y; Kakiuchi, T; Okada, H; Nishiyama, S; Tsukada, H

    1999-03-15

    To evaluate the effect of aniracetam, a potent modulator of the glutamatergic and cholinergic systems, on the altered cerebral glucose metabolism after lesioning of the basal forebrain, we measured the cerebral metabolic rate of glucose (CMRGlc) with positron emission tomography and the choline acetyltransferase (ChAT) activity in the frontal cortex of the lesioned rats after treating them with aniracetam. Continuous administration of aniracetam for 7 days after the surgery prevented CMRGlc reduction in the frontal cortex ipsilateral to the lesion while the lesioned rats without aniracetam showed significant CMRGlc reduction in the frontal cortex. The level of CMRGlc in the lesion-side basal forebrain was lower in all rats regardless of the aniracetam treatment. Biochemical studies showed that aniracetam did not alter the reduction in the frontal ChAT activity. These results showed that aniracetam prevents glucose metabolic reduction in the cholinergically denervated frontal cortex with little effect on the cortical cholinergic system. The present study suggested that a neurotransmitter system other than the cholinergic system, e.g. the glutamatergic system, plays a central role in the cortical metabolic recovery after lesioning of the basal forebrain.

  3. MRI findings in acute hyperammonemic encephalopathy resulting from decompensated chronic liver disease.

    PubMed

    Sureka, Jyoti; Jakkani, Ravi Kanth; Panwar, Sanuj

    2012-06-01

    Hyperammonemic encephalopathy is a type of metabolic encephalopathy with diversified etiology. Hyperammonemia is the end result of several metabolic disorders such as congenital deficiencies of urea cycle enzymes, hepatic encephalopathy, Reye's syndrome and other toxic encephalopathies. Non-specific clinical presentation poses a great challenge in early diagnosis of this entity. Irrespective of the underlying etiology, hyperammonemia causes a distinctive pattern of brain parenchymal injury. The cingulate gyrus and insular cortex are more vulnerable to this type of toxic insult. Characteristic magnetic resonance imaging findings in combination with laboratory parameters can help to differentiate this entity from other metabolic encephalopathy and thus aiding in early diagnosis and treatment.

  4. Development of tolerance to the effects of vigabatrin (gamma-vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina.

    PubMed Central

    Neal, M. J.; Shah, M. A.

    1990-01-01

    1. The effects of acute and chronic vigabatrin (gamma-vinyl-GABA) (GVG) administration on gamma-aminobutyric acid (GABA) levels and release in rat cortical slices, spinal cord slices and retinas were studied. 2. GVG (250 mgkg-1 i.p.) administered to rats 18 h before death (acute administration) produced an almost 3 fold increase in GABA levels of the cortex and spinal cord and a 6 fold increase in retinal GABA. The levels of glutamate, aspartate, glycine and taurine were unaffected. 3. When GVG (250 mgkg-1 i.p.) was administered daily for 17 days (chronic administration) a similar (almost 3 fold) increase in cortical GABA occurred but the increases in spinal and retinal GABA were reduced by approximately 40%. 4. Acute administration of GVG strikingly increased the potassium-evoked release (KCl 50 mM) of GABA from all three tissues. This enhanced evoked release was reduced by about 50% in tissues taken from rats that had been chronically treated with GVG. 5. Acute administration of GVG reduced GABA-transaminase (GABA-T) activity by approximately 80% in cortex and cord and by 98% in the retina. Following the chronic administration of GVG, there was a trend for GABA-T activities to recover (significant only in cortex). Acute administration of GVG had no effect on glutamic acid decarboxylase (GAD) activity in cortex or spinal cord. However, chronic treatment resulted in significant decreases in GAD activity in both the cortex and cord (35% and 50% reduction respectively).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2379037

  5. Neuropathological Changes in Brain Cortex and Hippocampus in a Rat Model of Alzheimer’s Disease

    PubMed Central

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Roosh, Nahid Rahbar; Omidzahir, Shila

    2011-01-01

    Background: Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Methods: Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and β-amyloid (Aβ) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 µL of Aβ (1-40) into the hippocampal fissure. Results: In the present study, Aβ (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. Aβ injection CA1 caused Aβ deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. Conclusion: We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group. PMID:21725500

  6. Dissociating movement from movement timing in the rat primary motor cortex.

    PubMed

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  7. The use of antioxidants to prevent glutamate-induced derangement of calcium ion metabolism in rat cerebral cortex synaptosomes.

    PubMed

    Avrova, N F; Shestak, K I; Zakharova, I O; Sokolova, T V; Tyurina, Y Y; Tyurin, V A

    2000-01-01

    Glutamate is shown to induce increases in intracellular Ca2+ concentrations ([Ca2+]i), increases in 45Ca2+ influx, decreases in the activity of Na+,K+-ATPase activity, and activation of the Na+/Ca2+ exchanger in rat cerebral cortex synaptosomes. NMDA receptor antagonists virtually prevented these effects. Preincubation of synaptosomes with alpha-tocopherol, superoxide dismutase, and ganglioside GM1 normalized [Ca2+]i, 45Ca2+ influx, and Na+,K+-ATPase activity in rat cerebral cortex synaptosomes exposed to glutamate. Glutamate and GM1 activated the Na+/K+ exchanger, and their effects were additive. Calcium ions entering cerebral cortex nerve cells via NMDA receptors during exposure to high glutamate concentrations appeared to be only the trigger for the processes activating free-radical reactions. Activation of these reactions led to increases in Ca2+ influx into cells, decreases in Na+,K+-ATPase activity, and significant increases in [Ca2+]i, though this could be prevented by antioxidants and gangliosides.

  8. Apigenin attenuates diabetes-associated cognitive decline in rats via suppressing oxidative stress and nitric oxide synthase pathway

    PubMed Central

    Mao, Xiao-Yuan; Yu, Jing; Liu, Zhao-Qian; Zhou, Hong-Hao

    2015-01-01

    Our present investigation aimed to determine the neuroprotection of apigenin (API) against diabetes-associated cognitive decline (DACD) a diabetic rat model and exploring its potential mechanism. Diabetic rat model was induced by intraperitoneal injection of streptozotocin. All experiment animals treated with vehicle or API by doses of 10, 20 and 40 mg/kg for seven weeks. Firstly, the body weight and blood glucose levels were detected. We used Morris water maze test to evaluate learning and memory function. The oxidative indicators (malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH)), cNOS, iNOS, caspase-3 and caspase-9 were measured in cerebral cortex and hippocampus using corresponding commercial kits. API can increase body weight, reduce the blood glucose levels, and improve the cognitive function in rats induced by diabetes. API decrease the MDA content, and increase SOD activity and GSH level of diabetic animals in the cerebral cortex and hippocampus of diabetic rats. Meanwhile, constitutive nitric oxide synthase (cNOS), inducible nitric oxide synthase (iNOS), caspase-3/9 were markedly exhibited in the cerebral cortex and hippocampus of diabetic rats. In summary, our current work discloses that API attenuates DACD in rats via suppressing oxidative stress, nitric oxide and apoptotic cascades synthase pathway. PMID:26629041

  9. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    PubMed

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance to the discriminative stimulus effects of LSD.

  10. Altered Effective Connectivity among Core Neurocognitive Networks in Idiopathic Generalized Epilepsy: An fMRI Evidence

    PubMed Central

    Wei, Huilin; An, Jie; Shen, Hui; Zeng, Ling-Li; Qiu, Shijun; Hu, Dewen

    2016-01-01

    Idiopathic generalized epilepsy (IGE) patients with generalized tonic-clonic seizures (GTCS) suffer long-term cognitive impairments, and present a higher incidence of psychosocial and psychiatric disturbances than healthy people. It is possible that the cognitive dysfunctions and higher psychopathological risk in IGE-GTCS derive from disturbed causal relationship among core neurocognitive brain networks. To test this hypothesis, we examined the effective connectivity across the salience network (SN), default mode network (DMN), and central executive network (CEN) using resting-state functional magnetic resonance imaging (fMRI) data collected from 27 IGE-GTCS patients and 29 healthy controls. In the study, a combination framework of time domain and frequency domain multivariate Granger causality analysis was firstly proposed, and proved to be valid and accurate by simulation experiments. Using this method, we then observed significant differences in the effective connectivity graphs between the patient and control groups. Specifically, between-group statistical analysis revealed that relative to the healthy controls, the patients established significantly enhanced Granger causal influence from the dorsolateral prefrontal cortex to the dorsal anterior cingulate cortex, which is coherent both in the time and frequency domains analyses. Meanwhile, time domain analysis also revealed decreased Granger causal influence from the right fronto-insular cortex to the posterior cingulate cortex in the patients. These findings may provide new evidence for functional brain organization disruption underlying cognitive dysfunctions and psychopathological risk in IGE-GTCS. PMID:27656137

  11. Differential functional connectivity of rostral anterior cingulate cortex during emotional interference.

    PubMed

    Szekely, Akos; Silton, Rebecca L; Heller, Wendy; Miller, Gregory A; Mohanty, Aprajita

    2017-03-01

    The rostral-ventral subdivision of the anterior cingulate cortex (rACC) plays a key role in the regulation of emotional processing. Although rACC has strong anatomical connections with anterior insular cortex (AIC), amygdala, prefrontal cortex and striatal brain regions, it is unclear whether the functional connectivity of rACC with these regions changes when regulating emotional processing. Furthermore, it is not known whether this connectivity changes with deficits in emotion regulation seen in different kinds of anxiety and depression. To address these questions regarding rACC functional connectivity, non-patients high in self-reported anxious apprehension (AP), anxious arousal (AR), anhedonic depression (AD) or none (CON) indicated the ink color of pleasant, neutral and unpleasant words during functional magnetic resonance imaging. While ignoring task-irrelevant unpleasant words, AD and CON showed an increase in the functional connectivity of rACC with AIC, putamen, caudate and ventral pallidum. There was a decrease in this connectivity in AP and AR, with AP showing greater reduction than AR. These findings provide support for the role of rACC in integrating interoceptive, emotional and cognitive functions via interactions with insula and striatal regions during effective emotion regulation in healthy individuals and a failure of this integration that may be specific to anxiety, particularly AP. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Juvenile social experience and differential age-related changes in the dendritic morphologies of subareas of the prefrontal cortex in rats.

    PubMed

    Himmler, Brett T; Mychasiuk, Richelle; Nakahashi, Ayuno; Himmler, Stephanie M; Pellis, Sergio M; Kolb, Bryan

    2018-04-01

    Juvenile social interactions have been shown to influence the dendritic complexity of neurons in the prefrontal cortex (PFC). In particular, social play induces pruning of the cells in the medial prefrontal cortex (mPFC), whereas interacting with multiple partners, whether those interactions involve play or not, increases the complexity of cells in the orbital frontal cortex (OFC). Previous studies suggest that these changes differ in their stability during adulthood. In the present study, rats were reared in groups of either four (quads) or two (pairs) and the brains of the rats from each rearing condition were then harvested at 60 days (i.e., shortly after sexual maturity) and 100 days (i.e., fully adult). The rats housed with multiple partners had more complex neurons of the OFC at 60 days and this complexity declined to a comparable level to that of pair housed rats by 100 days. In contrast, the play-induced changes of the mPFC remained similar at both ages. These findings suggest that the changes in the PFC induced by different social experiences in the juvenile period differ in how long they are maintained in adulthood. Differences in the functions regulated by the OFC and the mPFC are considered with regard to these differences in the stability of juvenile-induced neural changes. © 2017 Wiley Periodicals, Inc.

  13. Minocycline prevents Abeta(25-35)-induced reduction of somatostatin and neprilysin content in rat temporal cortex.

    PubMed

    Burgos-Ramos, E; Puebla-Jiménez, L; Arilla-Ferreiro, E

    2009-02-13

    Tetracyclines have been demonstrated to inhibit formation of beta-amyloid (Abeta) aggregates and to disassemble preformed fibrils. Minocycline, a semi-synthetic second-generation tetracycline, can reverse Abeta-induced impairment of cognitive functions. Since somatostatin is involved in cognition and we recently showed that Abeta(25-35) lowers somatostatin expression in the rat temporal cortex, our aim here was to analyze the effects of minocycline on somatostatin immunoreactivity and mRNA levels in the temporal cortex of Abeta(25-35)-infused and healthy rats. Moreover, since brain levels of neprilysin, an Abeta-degrading enzyme, decrease with age, favoring the appearance of senile neuritic plaques, we tested whether minocyline could affect neprilysin expression. Wistar rats were thus injected with minocycline twice on the first day of treatment. On the following day, and during 14 days, Abeta(25-35) or vehicle were administered. Minocycline was injected once again on days 13 and 14. All animals were sacrificed 24 h after the last drug injection. Minocycline abrogated the Abeta(25-35)-induced decrease of somatostatin-like immunoreactive content, somatostatin mRNA levels, phosphorylated-CREB content and neprilysin levels. Minocycline alone enhanced these targets. Our findings indicate that minocycline prevents the deleterious effects of Abeta(25-35) on SRIF and neprilysin expression in the rat temporal cortex and that it has protective effects per se on these parameters.

  14. Neurocircuitry for modeling drug effects.

    PubMed

    Noori, Hamid R; Spanagel, Rainer; Hansson, Anita C

    2012-09-01

    The identification and functional understanding of the neurocircuitry that mediates alcohol and drug effects that are relevant for the development of addictive behavior is a fundamental challenge in addiction research. Here we introduce an assumption-free construction of a neurocircuitry that mediates acute and chronic drug effects on neurotransmitter dynamics that is solely based on rodent neuroanatomy. Two types of data were considered for constructing the neurocircuitry: (1) information on the cytoarchitecture and neurochemical connectivity of each brain region of interest obtained from different neuroanatomical techniques; (2) information on the functional relevance of each region of interest with respect to alcohol and drug effects. We used mathematical data mining and hierarchical clustering methods to achieve the highest standards in the preprocessing of these data. Using this approach, a dynamical network of high molecular and spatial resolution containing 19 brain regions and seven neurotransmitter systems was obtained. Further graph theoretical analysis suggests that the neurocircuitry is connected and cannot be separated into further components. Our analysis also reveals the existence of a principal core subcircuit comprised of nine brain regions: the prefrontal cortex, insular cortex, nucleus accumbens, hypothalamus, amygdala, thalamus, substantia nigra, ventral tegmental area and raphe nuclei. Finally, by means of algebraic criteria for synchronizability of the neurocircuitry, the suitability for in silico modeling of acute and chronic drug effects is indicated. Indeed, we introduced as an example a dynamical system for modeling the effects of acute ethanol administration in rats and obtained an increase in dopamine release in the nucleus accumbens-a hallmark of drug reinforcement-to an extent similar to that seen in numerous microdialysis studies. We conclude that the present neurocircuitry provides a structural and dynamical framework for large-scale mathematical models and will help to predict chronic drug effects on brain function. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  15. The Cerebellum and Emotional Experience

    PubMed Central

    Turner, Beth M.; Paradiso, Sergio; Marvel, Cherie L.; Pierson, Ronald; Boles Ponto, Laura L.; Hichwa, Richard D.; Robinson, Robert G.

    2007-01-01

    Summary While the role of the cerebellum in motor coordination is widely accepted, the notion that it is involved in emotion has only recently gained popularity. To date, functional neuroimaging has not been used in combination with lesion studies to elucidate the role of the cerebellum in the processing of emotional material. We examined six participants with cerebellar stroke and nine age and education matched healthy volunteers. In addition to a complete neuropsychological, neurologic, and psychiatric examination, participants underwent [15O]water positron emission tomography (PET) while responding to emotion-evoking visual stimuli. Cerebellar lesions were associated with reduced pleasant experience in response to happiness-evoking stimuli. Stroke patients reported an unpleasant experience to frightening stimuli similar to healthy controls, yet showed significantly lower activity in the right ventral lateral and left dorsolateral prefrontal cortex, amygdala, thalamus, and retrosplenial cingulate gyrus. Frightening stimuli led to increased activity in the ventral medial prefrontal, anterior cingulate, pulvinar, and insular cortex. This suggests that alternate neural circuitry became responsible for maintaining the evolutionarily critical fear response after cerebellar damage. PMID:17123557

  16. Beef assessments using functional magnetic resonance imaging and sensory evaluation.

    PubMed

    Tapp, W N; Davis, T H; Paniukov, D; Brooks, J C; Brashears, M M; Miller, M F

    2017-04-01

    Functional magnetic resonance imaging (fMRI) has been used to unveil how some foods and basic rewards are processed in the human brain. This study evaluated how resting state functional connectivity in regions of the human brain changed after differing qualities of beef steaks were consumed. Functional images of participants (n=8) were collected after eating high or low quality beef steaks on separate days, after consumption a sensory ballot was administered to evaluate consumers' perceptions of tenderness, juiciness, flavor, and overall liking. Imaging data showed that high quality steak samples resulted in greater functional connectivity to the striatum, medial orbitofrontal cortex, and insular cortex at various stages after consumption (P≤0.05). Furthermore, high quality steaks elicited higher sensory ballot scores for each palatability trait (P≤0.01). Together, these results suggest that resting state fMRI may be a useful tool for evaluating the neural process that follows positive sensory experiences such as the enjoyment of high quality beef steaks. Published by Elsevier Ltd.

  17. Neural differences between intrinsic reasons for doing versus extrinsic reasons for doing: an fMRI study

    PubMed Central

    Lee, Woogul; Reeve, Johnmarshall; Xue, Yiqun; Xiong, Jinhu

    2012-01-01

    The contemporary neural understanding of motivation is based almost exclusively on the neural mechanisms of incentive motivation. Recognizing this as a limitation, we used event-related functional magnetic resonance imaging (fMRI) to pursue the viability of expanding the neural understanding of motivation by initiating a pioneering study of intrinsic motivation by scanning participants’ neural activity when they decided to act for intrinsic reasons versus when they decided to act for extrinsic reasons. As expected, intrinsic reasons for acting more recruited insular cortex activity while extrinsic reasons for acting more recruited posterior cingulate cortex (PCC) activity. The results demonstrate that engagement decisions based on intrinsic motivation are more determined by weighing the presence of spontaneous self-satisfactions such as interest and enjoyment while engagement decisions based on extrinsic motivation are more determined by weighing socially-acquired stored values as to whether the environmental incentive is attractive enough to warrant action. PMID:23565014

  18. Purchase decision-making is modulated by vestibular stimulation.

    PubMed

    Preuss, Nora; Mast, Fred W; Hasler, Gregor

    2014-01-01

    Purchases are driven by consumers' product preferences and price considerations. Using caloric vestibular stimulation (CVS), we investigated the role of vestibular-affective circuits in purchase decision-making. CVS is an effective noninvasive brain stimulation method, which activates vestibular and overlapping emotional circuits (e.g., the insular cortex and the anterior cingulate cortex (ACC)). Subjects were exposed to CVS and sham stimulation while they performed two purchase decision-making tasks. In Experiment 1 subjects had to decide whether to purchase or not. CVS significantly reduced probability of buying a product. In Experiment 2 subjects had to rate desirability of the products and willingness to pay (WTP) while they were exposed to CVS and sham stimulation. CVS modulated desirability of the products but not WTP. The results suggest that CVS interfered with emotional circuits and thus attenuated the pleasant and rewarding effect of acquisition, which in turn reduced purchase probability. The present findings contribute to the rapidly growing literature on the neural basis of purchase decision-making.

  19. Purchase decision-making is modulated by vestibular stimulation

    PubMed Central

    Preuss, Nora; Mast, Fred W.; Hasler, Gregor

    2014-01-01

    Purchases are driven by consumers’ product preferences and price considerations. Using caloric vestibular stimulation (CVS), we investigated the role of vestibular-affective circuits in purchase decision-making. CVS is an effective noninvasive brain stimulation method, which activates vestibular and overlapping emotional circuits (e.g., the insular cortex and the anterior cingulate cortex (ACC)). Subjects were exposed to CVS and sham stimulation while they performed two purchase decision-making tasks. In Experiment 1 subjects had to decide whether to purchase or not. CVS significantly reduced probability of buying a product. In Experiment 2 subjects had to rate desirability of the products and willingness to pay (WTP) while they were exposed to CVS and sham stimulation. CVS modulated desirability of the products but not WTP. The results suggest that CVS interfered with emotional circuits and thus attenuated the pleasant and rewarding effect of acquisition, which in turn reduced purchase probability. The present findings contribute to the rapidly growing literature on the neural basis of purchase decision-making. PMID:24600365

  20. Unrealistic representations of "the self": A cognitive neuroscience assessment of anosognosia for memory deficit.

    PubMed

    Berlingeri, Manuela; Ravasio, Alessandra; Cranna, Silvia; Basilico, Stefania; Sberna, Maurizio; Bottini, Gabriella; Paulesu, Eraldo

    2015-12-01

    Three cognitive components may play a crucial role in both memory awareness and in anosognosia for memory deficit (AMD): (1) a personal data base (PDB), i.e., a memory store that contains "semantic" representations about the self, (2) monitoring processes (MPs) and (3) an explicit evaluation system (EES), or comparator, that assesses and binds the representations stored in the PDB with information obtained from the environment. We compared both the behavior and the functional connectivity (as assessed by resting-state fMRI) of AMD patients with aware patients and healthy controls. We found that AMD is associated with an impoverished PDB, while MPs are necessary to successfully update the PDB. AMD was associated with reduced functional connectivity within both the default-mode network and in a network that includes the left lateral temporal cortex, the hippocampus and the insula. The reduced connectivity between the hippocampus and the insular cortex was correlated with AMD severity. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Interoception, homeostatic emotions and sympathovagal balance.

    PubMed

    Strigo, Irina A; Craig, Arthur D Bud

    2016-11-19

    We briefly review the evidence for distinct neuroanatomical substrates that underlie interoception in humans, and we explain how they substantialize feelings from the body (in the insular cortex) that are conjoined with homeostatic motivations that guide adaptive behaviours (in the cingulate cortex). This hierarchical sensorimotor architecture coincides with the limbic cortical architecture that underlies emotions, and thus we regard interoceptive feelings and their conjoint motivations as homeostatic emotions We describe how bivalent feelings, emotions and sympathovagal balance can be organized and regulated efficiently in the bicameral forebrain as asymmetric positive/negative, approach/avoidance and parasympathetic/sympathetic components. We provide original evidence supporting this organization from studies of cardiorespiratory vagal activity in monkeys and functional imaging studies in healthy humans showing activation modulated by paced breathing and passively viewed emotional images. The neuroanatomical architecture of interoception provides deep insight into the functional organization of all emotional feelings and behaviours in humans.This article is part of the themed issue 'Interoception beyond homeostasis: affect, cognition and mental health'. © 2016 The Author(s).

  2. Oxidative stress and cell death in the cerebral cortex as a long-term consequence of neonatal hypoglycemia.

    PubMed

    Anju, T R; Akhilraj, P R; Paulose, C S

    2016-09-01

    Neonatal hypoglycemia limits glucose supply to cells leading to long-term consequences in brain function. The present study evaluated antioxidant and cell death factors' alterations in cerebral cortex of 1-month-old rats exposed to neonatal hypoglycemia. Gene expression studies by real-time PCR were carried out using gene-specific TaqMan probes. Fluorescent dyes were used for immunohistochemistry and nuclear staining and imaged by confocal microscope. Total antioxidant level and expression of antioxidant enzymes - superoxide dismutase (SOD) and gluthathione peroxide (GPx) - mRNA was significantly reduced along with high peroxide level in the cerebral cortex of 1-month-old rats exposed to neonatal hypoglycemia. Real-time PCR analysis showed an upregulation of Bax, caspase 3, and caspase 8 gene expression. Confocal imaging with TOPRO-3 staining and immunohistochemistry with caspase 3 antibody indicated cell death activation. The reduced free radical scavenging capability coupled with the expression of key factors involved in cell death pathway points to the possibility of oxidative stress in the cortex of 1-month-old rats exposed to neonatal hypoglycemia. The observed results indicate the effects of neonatal hypoglycemia in determining the antioxidant capability of cerebral cortex in a later stage of life.

  3. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    PubMed

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  4. Brain networks associated with cognitive and hedonic responses to a meal.

    PubMed

    Pribic, T; Kilpatrick, L; Ciccantelli, B; Malagelada, C; Accarino, A; Rovira, A; Pareto, D; Mayer, E; Azpiroz, F

    2017-06-01

    We recently reported interrelated digestive, cognitive, and hedonic responses to a meal. The aim of this study was to identify brain networks related to the hedonic response to eating. Thirty-eight healthy subjects (20-38 age range) were evaluated after a 5-hour fast and after ingestion of a test meal (juice and warm ham and cheese sandwich, 300 mL, 425 kcal). Perceptual and affective responses (satiety, abdominal fullness, digestive well-being, and positive mood), and resting scans of the brain using functional MRI (3T Trio, Siemens, Germany) were evaluated immediately before and after the test meal. A high-order group independent component analysis was performed to investigate ingestion-related changes in the intrinsic connectivity of brain networks, with a focus on thalamic and insular networks. Ingestion induced satiation (3.3±0.4 score increase; P<.001) and abdominal fullness (2.4±0.3 score increase; P<.001). These sensations included an affective dimension involving digestive well-being (2.8±0.3 score increase; P<.001) and positive mood (1.8±0.2 score increase; P<.001). In general, thalamo-cortical connectivity increased with meal ingestion while insular-cortical connectivity mainly decreased. Furthermore, larger meal-induced changes (increase/decrease) in specific thalamic connections were associated with smaller changes in satiety/fullness. In contrast, a larger meal-induced decrease in insular-anterior cingulate cortex connectivity was associated with increased satiety, fullness, and digestive well-being. Perceptual and emotional responses to food intake are related to brain connectivity in defined functional networks. Brain imaging may provide objective biomarkers of subjective effects of meal ingestion. © 2017 John Wiley & Sons Ltd.

  5. Application of Awake Craniotomy and Intraoperative Brain Mapping for Surgical Resection of Insular Gliomas of the Dominant Hemisphere.

    PubMed

    Alimohamadi, Maysam; Shirani, Mohammad; Shariat Moharari, Reza; Pour-Rashidi, Ahmad; Ketabchi, Mehdi; Khajavi, Mohammadreza; Arami, Mohamadali; Amirjamshidi, Abbas

    2016-08-01

    Radical resection of dominant insular gliomas is difficult because of their close vicinity with internal capsule, basal ganglia, and speech centers. Brain mapping techniques can be used to maximize the extent of tumor removal and to minimize postoperative morbidities by precise localization of eloquent cortical and subcortical areas. Patients with newly diagnosed gliomas of dominant insula were enrolled. The exclusion criteria were severe cognitive disturbances, communication difficulty, age greater than 75 years, severe obesity, difficult airways for intubation and severe cardiopulmonary diseases. All were evaluated preoperatively with contrast-enhanced brain magnetic resonance imaging (MRI), functional brain MRI, and diffusion tensor tractography of language and motor systems. All underwent awake craniotomy with the same anesthesiology protocol. Intraoperative monitoring included continuous motor-evoked potential, electromyography, electrocorticography, direct electrical stimulation of cortex, and subcortical tracts. The patients were followed with serial neurologic examination and imaging. Ten patients were enrolled (4 men, 6 women) with a mean age of 43.6 years. Seven patients suffered from low-grade glioma, and 3 patients had high-grade glioma. The most common clinical presentation was seizure followed by speech disturbance, hemiparesis, and memory loss. Extent of tumor resection ranged from 73% to 100%. No mortality or new major postoperative neurologic deficit was encountered. Seizure control improved in three fourths of patients with medical refractory epilepsy. In one patient with speech disorder at presentation, the speech problem became worse after surgery. Brain mapping during awake craniotomy helps to maximize extent of tumor resection while preserving neurologic function in patients with dominant insular lobe glioma. Copyright © 2016. Published by Elsevier Inc.

  6. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats.

    PubMed

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2017-01-27

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.

  7. Pixe analysis of trace elements in tissues of rats treated with anticonvulsants

    NASA Astrophysics Data System (ADS)

    Hurd, R. W.; Van Rinsvelt, H. A.; Kinyua, A. M.; O'Neill, M. P.; Wilder, B. J.; Houdayer, A.; Hinrichsen, P. F.

    1987-04-01

    Several lines of evidence implicate metals in epilepsy. Anticonvulsant drugs are noted to alter levels of metals in humans and animals. PIXE analysis was used to investigate effects of three anticonvulsant drugs on tissue and brain cortex trace elements. The content of zinc and copper was increased in liver and spleen of rats treated with anticonvulsants while selenium was decreased in cortex.

  8. The effects of abnormalities of glucose homeostasis on the expression and binding of muscarinic receptors in cerebral cortex of rats.

    PubMed

    Sherin, Antony; Peeyush, Kumar T; Naijil, George; Nandhu, Mohan Sobhana; Jayanarayanan, Sadanandan; Jes, Paul; Paulose, Cheramadathikudiyil Skaria

    2011-01-25

    Glucose homeostasis in humans is an important factor for the functioning of nervous system. Both hypo and hyperglycemia contributes to neuronal functional deficit. In the present study, effect of insulin induced hypoglycemia and streptozotocin induced diabetes on muscarinic receptor binding, cholinergic enzymes; AChE, ChAT expression and GLUT3 in the cerebral cortex of experimental rats were analysed. Total muscarinic, muscarinic M(1) receptor showed a significant decrease and muscarinic M(3) receptor subtype showed a significant increased binding in the cerebral cortex of hypoglycemic rats compared to diabetic and control. Real-Time PCR analysis of muscarinic M(1), M(3) receptor subtypes confirmed the receptor binding studies. Immunohistochemistry of muscarinic M(1), M(3) receptors using specific antibodies were also carried out. AChE and GLUT3 expression up regulated and ChAT expression down regulated in hypoglycemic rats compared to diabetic and control rats. Our results showed that hypo/hyperglycemia caused impaired glucose transport in neuronal cells as shown by altered expression of GLUT3. Increased AChE and decreased ChAT expression is suggested to alter cortical acetylcholine metabolism in experimental rats along with altered muscarinic receptor binding in hypo/hyperglycemic rats, impair cholinergic transmission, which subsequently lead to cholinergic dysfunction thereby causing learning and memory deficits. We observed a prominent cholinergic functional disturbance in hypoglycemic condition than in hyperglycemia. Hypoglycemia exacerbated the neurochemical changes in cerebral cortex induced by hyperglycemia. These findings have implications for both therapy and identification of causes contributing to neuronal dysfunction in diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats.

    PubMed

    Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Sankhwar, Madhu L; Ansari, Reyaz W; Shukla, Pradeep K; Pant, Aditya B; Khanna, Vinay K

    2011-12-01

    Our recent studies have shown that curcumin protects arsenic induced neurotoxicity by modulating oxidative stress, neurotransmitter levels and dopaminergic system in rats. As chronic exposure to arsenic has been associated with cognitive deficits in humans, the present study has been carried out to implore the neuroprotective potential of curcumin in arsenic induced cholinergic dysfunctions in rats. Rats treated with arsenic (sodium arsenite, 20mg/kg body weight, p.o., 28 days) exhibited a significant decrease in the learning activity, assessed by passive avoidance response associated with decreased binding of (3)H-QNB, known to label muscarinic-cholinergic receptors in hippocampus (54%) and frontal cortex (27%) as compared to controls. Decrease in the activity of acetylcholinesterase in hippocampus (46%) and frontal cortex (33%), staining of Nissl body, immunoreactivity of choline acetyltransferase (ChAT) and expression of ChAT protein in hippocampal region was also observed in arsenic treated rats as compared to controls. Simultaneous treatment with arsenic and curcumin (100mg/kg body weight, p.o., 28 days) increased learning and memory performance associated with increased binding of (3)H-QNB in hippocampus (54%), frontal cortex (25%) and activity of acetylcholinesterase in hippocampus (41%) and frontal cortex (29%) as compared to arsenic treated rats. Increase in the expression of ChAT protein, immunoreactivity of ChAT and staining of Nissl body in hippocampal region was also observed in rats simultaneously treated with arsenic and curcumin as compared to those treated with arsenic alone. The results of the present study suggest that curcumin significantly modulates arsenic induced cholinergic dysfunctions in brain and also exhibits neuroprotective efficacy of curcumin. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Comparative pharmacokinetic study of the main components of cortex fraxini after oral administration in normal and hyperuricemic rats.

    PubMed

    Wang, Yinan; Zhao, Min; Ye, Hao; Shao, Yizhen; Yu, Yongbo; Wang, Miao; Zhao, Chunjie

    2017-08-01

    Cortex Fraxini is an important traditional Chinese herbal medicine used for the treatment of gout and hyperuricemia. An efficient and rapid ultra-performance liquid chromatography mass spectrometry method was developed and validated for simultaneous quantitation of six coumarins (aesculin, fraxin, aesculetin, fraxetin, sopoletin and 7-hydroxycoumarin) in normal and hyperuricemic rats plasma after oral administration of Cortex Fraxini. The method could successfully be applied for pharmacokinetics studies. The pharmacokinetic behavior of six coumarins in normal and hyperuricemia rats plasma was determined. Results showed that, for some of analytes, the pharmacokinetic parameters (AUC 0-t , AUC 0-∞ , C max , T max and CL) were significantly different between normal and hyperuricemic rats. The different pharmacokinetic parameters might result from renal impairment or a change of metabolic enzymes in the pathological state. The pharmacokinetic study in pathological state could provide more useful information to guide the clinical use of traditional Chinese herbal medicine. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Bacopa monnieri (Brahmi) Enhanced Cognitive Function and Prevented Cognitive Impairment by Increasing VGLUT2 Immunodensity in Prefrontal Cortex of Sub-Chronic Phencyclidine Rat Model of Schizophrenia.

    PubMed

    Piyabhan, Pritsana; Wetchateng, Thanitsara

    2015-04-01

    Glutamatergic hypofunction is affected in schizophrenia. The decrement ofpresynaptic glutamatergic marker remarkably vesicular glutamate transporter type 1 (VGLUT1) indicates the deficit ofglutamatergic and cognitive function in schizophrenic brain. However there have been afew studies in VGLUT2. Brahmi, a traditional herbal medicine, might be a new frontier of cognitive deficit treatment and prevention in schizophrenia by changing cerebral VGLUT2 density. To study cognitive enhancement- and neuroprotective-effects of Brahmi on novel object recognition task and cerebral VGLUT2 immunodensity in sub-chronic phencyclidine (PCP) rat model of schizophrenia. Cognitive enhancement effect study; rats were assigned to three groups; Group-1: Control, Group-2: PCP administration and Group-3: PCP + Brahmi. Neuroprotective effect study; rats were assigned to three groups; Group-1: Control, Group-2: PCP administration and Group-3: Brahmi + PCP Discrimination ratio (DR) representing cognitive ability was obtained from novel object recognition task. VGLUT2 immunodensity was measured in prefrontal cortex, striatum, cornu ammonis fields 1 (CA1) and 2/3 (CA2/3) of hippocampus using immunohistochemistry. DR was significantly reduced in PCP group compared with control. This occurred alongside VGLUT2 reduction in prefrontal cortex, but not in striatum, CA1 or CA2/3. Both PCP + Brahmi and Brahmi + PCP groups showed an increased DR score up to normal, which occurred alongside a significantly increased VGLUT2 immunodensity in the prefrontal cortex, compared with PCP group. The decrement of VGLUT2 density in prefrontal cortex resulted in cognitive deficit in rats receiving PCP. Interestingly, receiving Brahmi after PCP administration can restore this cognitive deficit by increasing VGLUT2 density in prefrontal cortex. This investigation is defined as Brahmi's cognitive enhancement effect. Additionally, receiving Brahmi before PCP administration can also prevent cognitive impairment by elevating VGLUT2 density in prefrontal cortex. This observation indicates neuroprotective effect of Brahmi. Therefore, Brahmi could be a new frontier of restoration and prevention of cognitive deficit in schizophrenia.

  12. [Effects of nano-lead exposure on learning and memory as well as iron homeostasis in brain of offspring rats].

    PubMed

    Gao, Jing; Su, Hong; Yin, Jingwen; Cao, Fuyuan; Feng, Peipei; Liu, Nan; Xue, Ling; Zheng, Guoying; Li, Qingzhao; Zhang, Yanshu

    2015-06-01

    To investigate the effects of nano-lead exposure on learning and memory and iron homeostasis in the brain of the offspring rats on postnatal day 21 (PND21) and postnatal day 42 (PND42). Twenty adult pregnant female Sprague-Dawley rats were randomly divided into control group and nano-lead group. Rats in the nano-lead group were orally administrated 10 mg/kg nano-lead, while rats in the control group were administrated an equal volume of normal saline until PND21. On PND21, the offspring rats were weaned and given the same treatment as the pregnant rats until 42 days after birth. The learning and memory ability of offspring rats on PND21 and PND42 was evaluated by Morris water maze test. The hippocampus and cortex s amples of offspring rats on PND21 and PND42 were collected to determine iron and lead levels in the hippocampus and cortex by inductively coupled plasma-mass spectrometry. The distributions of iron in the hippocampus and cortex were observed by Perl's iron staining. The expression levels of ferritin, ferroportin 1 (FPN1), hephaestin (HP), and ceruloplasmin (CP) were measured by enzyme-linked immunosorbent assay. After nano-lead exposure, the iron content in the cortex of offspring rats on PND21 and PND42 in the nano-lead group was significantly higher than those in the control group (32.63 ± 6.03 µg/g vs 27.04 ± 5.82 µg/g, P<0.05; 46.20 ±10.60 µg/g vs 36.61 ± 10.2µg/g, P<0.05). The iron content in the hippocampus of offspring rats on PND42 in the nano-lead group was significantly higher than that in the control group (56.9 ± 4.37µg/g vs 37.71 ± 6.92µg/g, P<0.05). The Perl's staining showed massive iron deposition in the cortex and hippocampus in the nano-lead group. FPNl level in the cotfex of offspring rats on PND21 in the nano-lead group was significantly lower than that in the control group (3.64 ± 0.23 ng/g vs 4.99 ± 0.95 ng/g, P<0.05). FPN1 level in the hippocampus of offspring rats on PND42 in the nano-lead group was significantly lower than that in the control group (2.28 ± 0.51 ng/g vs 3.69 ± 0.69 ng/g, P<0.05). The escape latencies of offspring rats on PND21 and PND42 in the nano-lead group were longer than those in the control group (15.54 ± 2.89 s vs 9.01 ± 4.66 s; 6.16 ± 1.42 s vs 4.26 ± 1.51 s). The numbers of platform crossings of offspring rats on PND21 and PND42 in the nano- lead group were significantly lower than those in the control group (7.77 ± 2.16 times vs 11.2 ± 1.61 times, P<0.05; 8.12 ± 1.51 times vs 13.0 ± 2.21 times, P<0.05). n Nano-lead exposure can result in iron homeostasis disorders in the hippocampus and cortex of offspring rats and affect their learning and memory ability.

  13. Motor cortex is required for learning but not for executing a motor skill.

    PubMed

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Oxidative stress in a model of toxic demyelination in rat brain: the effect of piracetam and vinpocetine.

    PubMed

    Abdel-Salam, Omar M E; Khadrawy, Yasser A; Salem, Neveen A; Sleem, Amany A

    2011-06-01

    We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.

  15. Morphological and electrophysiological changes in intratelencephalic-type pyramidal neurons in the motor cortex of a rat model of levodopa-induced dyskinesia.

    PubMed

    Ueno, Tatsuya; Yamada, Junko; Nishijima, Haruo; Arai, Akira; Migita, Keisuke; Baba, Masayuki; Ueno, Shinya; Tomiyama, Masahiko

    2014-04-01

    Levodopa-induced dyskinesia (LID) is a major complication of long-term dopamine replacement therapy for Parkinson's disease, and becomes increasingly problematic in the advanced stage of the disease. Although the cause of LID still remains unclear, there is accumulating evidence from animal experiments that it results from maladaptive plasticity, resulting in supersensitive excitatory transmission at corticostriatal synapses. Recent work using transcranial magnetic stimulation suggests that the motor cortex displays the same supersensitivity in Parkinson's disease patients with LID. To date, the cellular mechanisms underlying the abnormal cortical plasticity have not been examined. The morphology of the dendritic spines has a strong relationship to synaptic plasticity. Therefore, we explored the spine morphology of pyramidal neurons in the motor cortex in a rat model of LID. We used control rats, 6-hydroxydopamine-lesioned rats (a model of Parkinson's disease), 6-hydroxydopamine-lesioned rats chronically treated with levodopa (a model of LID), and control rats chronically treated with levodopa. Because the direct pathway of the basal ganglia plays a central role in the development of LID, we quantified the density and size of dendritic spines in intratelencephalic (IT)-type pyramidal neurons in M1 cortex that project to the striatal medium spiny neurons in the direct pathway. The spine density was not different among the four groups. In contrast, spine size became enlarged in the Parkinson's disease and LID rat models. The enlargement was significantly greater in the LID model than in the Parkinson's disease model. This enlargement of the spines suggests that IT-type pyramidal neurons acquire supersensitivity to excitatory stimuli. To confirm this possibility, we monitored miniature excitatory postsynaptic currents (mEPSCs) in the IT-type pyramidal neurons in M1 cortex using whole-cell patch clamp. The amplitude of the mEPSCs was significantly increased in the LID model compared with the control. This indicates that the IT-type pyramidal neurons become hyperexcited in the LID model, paralleling the enlargement of spines. Thus, spine enlargement and the resultant hyperexcitability of IT-type pyramidal neurons in M1 cortex might contribute to the abnormal cortical neuronal plasticity in LID. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Fluoride and arsenic exposure affects spatial memory and activates the ERK/CREB signaling pathway in offspring rats.

    PubMed

    Zhu, Yu-Peng; Xi, Shu-Hua; Li, Ming-Yan; Ding, Ting-Ting; Liu, Nan; Cao, Fu-Yuan; Zeng, Yang; Liu, Xiao-Jing; Tong, Jun-Wang; Jiang, Shou-Fang

    2017-03-01

    Fluoride and arsenic are inorganic contaminants that occur in the natural environment. Chronic fluoride and/or arsenic exposure can induce developmental neurotoxicity and negatively influence intelligence in children, although the underlying molecular mechanisms are poorly understood. This study explored the effects of fluoride and arsenic exposure in drinking water on spatial learning, memory and key protein expression in the ERK/CREB signaling pathway in hippocampal and cerebral cortex tissue in rat offspring. Pregnant rats were divided into four groups. Control rats drank tap water, while rats in the three exposure groups drank water with sodium fluoride (100mg/L), sodium arsenite (75mg/L), and a sodium fluoride (100mg/L) and sodium arsenite (75mg/L) combination during gestation and lactation. After weaning, rat pups drank the same solution as their mothers. Spatial learning and memory ability of pups at postnatal day 21 (PND21) and postnatal day 42 (PND42) were measured using a Morris water maze. ERK, phospho-ERK (p-ERK), CREB and phospho-CREB (p-CREB) protein expression in the hippocampus and cerebral cortex was detected using Western blot. Compared with the control pups, escape latencies increased in PND42 pups exposed to arsenic and co-exposed to fluoride and arsenic, and the short-term and long-term spatial memory ability declined in pups exposed to fluoride and arsenic, both alone and in combination. Compared with controls, ERK and p-ERK levels decreased in the hippocampus and cerebral cortex in pups exposed to combined fluoride and arsenic. CREB protein expression in the cerebral cortex decreased in pups exposed to fluoride, arsenic, and the fluoride and arsenic combination. p-CREB protein expression in both the hippocampus and cerebral cortex was decreased in pups exposed to fluoride and arsenic in combination compared to the control group. There were negative correlation between the proteins expression and escape latency periods in pups. These data indicate that exposure to fluoride and arsenic in early life stage changes ERK, p-ERK, CREB and p-CREB protein expression in the hippocampus and cerebral cortex of rat offspring at PND21 and PND 42, which may contribute to impaired neurodevelopment following exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain.

    PubMed

    Liu, Aijun; Zhang, Zhiwen; Li, Anmin; Xue, Jinghui

    2010-08-06

    CIRP (cold-inducible RNA-binding protein) mRNA is highly expressed in hypothermic conditions in mammalian cells, and the relationship between CIRP and neuroprotection for cerebral ischemia under hypothermia has been focused upon. At present, however, the expression characteristics of CIRP under hypothermia and cerebral ischemia in vivo are not clearly elucidated. In this study, CIRP mRNA expression in various regions of rat brain was examined by reverse transcriptase polymerase chain reaction (RT-PCR). CIRP expression levels were found to be similar in the hippocampus and cortex. Real-time quantitative PCR analysis revealed increasing CIRP mRNA expression in the cortex during the 24-h observation period following treatment with hypothermia or cerebral ischemia, with a greater increase in the hypothermia group. When cerebral ischemia was induced following hypothermia, CIRP mRNA expression in the cortex again showed a significant increasing tendency, but ischemia delayed the appearance of this increase. To reveal the relationship between CIRP and energy metabolism in the rat brain, lactate and pyruvate concentrations in the cortex of the rats treated with hypothermia, ischemia and ischemia after hypothermia were determined by spectrophotometric assay, and levels of phosphofructokinas-1 (PFK-1), the major regulatory enzyme of the glycolytic pathway, in the rat cortex in the three groups was also analyzed by Western blot. Using linear correlation, lactate and pyruvate concentrations, and PFK-1 levels, were each analyzed in the three groups in association with CIRP mRNA expression levels. The analysis did not reveal any correlation between the three metabolic parameters and CIRP mRNA expression induced by hypothermia, suggesting that while playing a role in neuroprotection under hypothermia, CIRP does not affect cerebral energy metabolism. Copyright 2010. Published by Elsevier B.V.

  18. Citalopram Ameliorates Synaptic Plasticity Deficits in Different Cognition-Associated Brain Regions Induced by Social Isolation in Middle-Aged Rats.

    PubMed

    Gong, Wei-Gang; Wang, Yan-Juan; Zhou, Hong; Li, Xiao-Li; Bai, Feng; Ren, Qing-Guo; Zhang, Zhi-Jun

    2017-04-01

    Our previous experiments demonstrated that social isolation (SI) caused AD-like tau hyperphosphorylation and spatial memory deficits in middle-aged rats. However, the underlying mechanisms of SI-induced spatial memory deficits remain elusive. Middle-aged rats (10 months) were group or isolation reared for 8 weeks. Following the initial 4-week period of rearing, citalopram (10 mg/kg i.p.) was administered for 28 days. Then, pathophysiological changes were assessed by performing behavioral, biochemical, and pathological analyses. We found that SI could cause cognitive dysfunction and decrease synaptic protein (synaptophysin or PSD93) expression in different brain regions associated with cognition, such as the prefrontal cortex, dorsal hippocampus, ventral hippocampus, amygdala, and caudal putamen, but not in the entorhinal cortex or posterior cingulate. Citalopram could significantly improve learning and memory and partially restore synaptophysin or PSD93 expression in the prefrontal cortex, hippocampus, and amygdala in SI rats. Moreover, SI decreased the number of dendritic spines in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus, which could be reversed by citalopram. Furthermore, SI reduced the levels of BDNF, serine-473-phosphorylated Akt (active form), and serine-9-phosphorylated GSK-3β (inactive form) with no significant changes in the levels of total GSK-3β and Akt in the dorsal hippocampus, but not in the posterior cingulate. Our results suggest that decreased synaptic plasticity in cognition-associated regions might contribute to SI-induced cognitive deficits, and citalopram could ameliorate these deficits by promoting synaptic plasticity mainly in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus. The BDNF/Akt/GSK-3β pathway plays an important role in regulating synaptic plasticity in SI rats.

  19. Motor cortex is required for learning but not executing a motor skill

    PubMed Central

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  20. Progestin Concentrations Are Increased following Paced Mating in Midbrain, Hippocampus, Diencephalon, and Cortex of Rats in Behavioral Estrus, but Only in Midbrain of Diestrous Rats

    PubMed Central

    Frye, Cheryl A.; Rhodes, Madeline E.

    2013-01-01

    Background The progesterone (P4 ) metabolite, 5α-pregnan-3α-ol-20-one (3α,5α-THP), acts in the midbrain ventral tegmental area (VTA) to modulate the intensity and duration of lordosis. 3α,5α-THP can also have anti-anxiety and anti-stress effects in part through actions in the hippocampus. Separate reports indicate that manipulating 3α,5α-THP levels in the VTA or hippocampus respectively can influence lordosis and affective behavior. 3α,5α-THP levels can also be altered by behavioral experiences, such as mating or swim stress. Whether endogenous levels of 3α,5α-THP modulate and/or are increased in response to affective and/or reproductively-relevant behaviors was investigated. Methods In Experiment 1, rats in behavioral estrus or diestrus were individually tested sequentially in the open field, elevated plus maze, partner preference, social interaction, and paced mating tasks and levels of 17 β-estradiol (E2), P4, dihydroprogesterone (DHP), and 3α,5α-THP in serum, midbrain, hippocampus, diencephalon, and cortex were examined. In Experiments 2 and 3, rats in behavioral estrus or diestrus, were individually tested in the battery indicated above, with, or without, paced mating and tissues were collected immediately after testing for later assessment of endocrine measures. Results In Experiment 1, behavioral estrous, compared to diestrous, rats demonstrated more exploratory, anti-anxiety, social, and reproductive behaviors, and had higher levels of E2 and progestins in serum, midbrain, hippocampus, diencephalon, and cortex. In Experiment 2, in midbrain and hippocampus, levels of 3α,5α-THP and its precursor DHP were increased among rats in behavioral estrus that were mated. In diencephalon, and cortex, DHP levels were increased by mating. In Experiment 3, in midbrain, levels of 3α,5α-THP and its precursor DHP were increased among diestrous rats that were tested in the behavioral battery with mating as compared to those tested in the behavioral battery without mating. Conclusions Increased levels of 3α,5α-THP in behavioral estrus versus diestrous rats are associated with enhanced exploratory, anti-anxiety, social, and reproductive behaviors. Rats in behavioral estrus that are mated have further increases in 3α,5α-THP and/or DHP levels in midbrain, hippocampus, diencephalon, and cortex than do non-mated rats in behavioral estrus, whereas diestrous rats only show 3α,5α-THP increases in midbrain in response to behavioral testing that included mating. PMID:17028418

  1. Impaired decision-making and selective cortical frontal thinning in Cushing's syndrome.

    PubMed

    Crespo, Iris; Esther, Granell-Moreno; Santos, Alicia; Valassi, Elena; Yolanda, Vives-Gilabert; De Juan-Delago, Manel; Webb, Susan M; Gómez-Ansón, Beatriz; Resmini, Eugenia

    2014-12-01

    Cushing's syndrome (CS) is caused by a glucocorticoid excess. This hypercortisolism can damage the prefrontal cortex, known to be important in decision-making. Our aim was to evaluate decision-making in CS and to explore cortical thickness. Thirty-five patients with CS (27 cured, eight medically treated) and thirty-five matched controls were evaluated using Iowa gambling task (IGT) and 3 Tesla magnetic resonance imaging (MRI) to assess cortical thickness. The IGT evaluates decision-making, including strategy and learning during the test. Cortical thickness was determined on MRI using freesurfer software tools, including a whole-brain analysis. There were no differences between medically treated and cured CS patients. They presented an altered decision-making strategy compared to controls, choosing a lower number of the safer cards (P < 0·05). They showed more difficulties than controls to learn the correct profiles of wins and losses for each card group (P < 0·05). In whole-brain analysis, patients with CS showed decreased cortical thickness in the left superior frontal cortex, left precentral cortex, left insular cortex, left and right rostral anterior cingulate cortex, and right caudal middle frontal cortex compared to controls (P < 0·001). Patients with CS failed to learn advantageous strategies and their behaviour was driven by short-term reward and long-term punishment, indicating learning problems because they did not use previous experience as a feedback factor to regulate their choices. These alterations in decision-making and the decreased cortical thickness in frontal areas suggest that chronic hypercortisolism promotes brain changes which are not completely reversible after endocrine remission. © 2014 John Wiley & Sons Ltd.

  2. Sex Differences in Regional Brain Glucose Metabolism Following Opioid Withdrawal and Replacement.

    PubMed

    Santoro, Giovanni C; Carrion, Joseph; Patel, Krishna; Vilchez, Crystal; Veith, Jennifer; Brodie, Jonathan D; Dewey, Stephen L

    2017-08-01

    Methadone and buprenorphine are currently the most common pharmacological treatments for opioid dependence. Interestingly, the clinical response to these drugs appears to be sex specific. That is, females exhibit superior therapeutic efficacy, defined as extended periods of abstinence and longer time to relapse, compared with males. However, the underlying metabolic effects of opioid withdrawal and replacement have not been examined. Therefore, using 18 FDG and microPET, we measured differences in regional brain glucose metabolism in males and females following morphine withdrawal and subsequent methadone or buprenorphine replacement. In both males and females, spontaneous opioid withdrawal altered glucose metabolism in regions associated with reward and drug dependence. Specifically, metabolic increases in the thalamus, as well as metabolic decreases in insular cortex and the periaqueductal gray, were noted. However, compared with males, females exhibited increased metabolism in the preoptic area, primary motor cortex, and the amygdala, and decreased metabolism in the caudate/putamen and medial geniculate nucleus. Methadone and buprenorphine initially abolished these changes uniformly, but subsequently produced their own regional metabolic alterations that varied by treatment and sex. Compared with sex-matched control animals undergoing spontaneous opioid withdrawal, male animals treated with methadone exhibited increased caudate/putamen metabolism, whereas buprenorphine produced increased ventral striatum and motor cortex metabolism in females, and increased ventral striatum and somatosensory cortex metabolism in males. Notably, when treatment effects were compared between sexes, methadone-treated females showed increased cingulate cortex metabolism, whereas buprenorphine-treated females showed decreased metabolism in cingulate cortex and increased metabolism in the globus pallidus. Perhaps the initial similarities in males and females underlie early therapeutic efficacy, whereas these posttreatment sex differences contribute to clinical treatment failure more commonly experienced by the former.

  3. Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents).

    PubMed

    Sun, Yueji; Ying, Huang; Seetohul, Ravi M; Xuemei, Wang; Ya, Zheng; Qian, Li; Guoqing, Xu; Ye, Sun

    2012-08-01

    To study crave-related cerebral regions induced by game figure cues in online game addicts. fMRI brain imaging was done when the subjects were shown picture cues of the WoW (World of Warcraft, Version: 4.1.014250) game. 10 male addicts of WoW were selected as addicts' group, and 10 other healthy male non-addicts who were matched by age, were used as non-game addicts' group. All volunteers participated in fMRI paradigms. WoW associated cue pictures and neutral pictures were shown. We examined functional cerebral regions activated by the pictures with 3.0 T Philips MRI. The imaging signals' database was analyzed by SPM5. The correlation between game craving scores and different image results were assessed. When the game addicts watch the pictures, some brain areas show increased signal activity namely: dorsolateral prefrontal cortex, bilateral temporal cortex, cerebellum, right inferior parietal lobule, right cuneus, right hippocampus, parahippocampal gyrus, left caudate nucleus. But in these same brain regions we did not observe remarkable activities in the control group. Differential image signal densities of the addict group were subtracted from the health control group, results of which were expressed in the bilateral dorsolateral prefrontal cortex, anterior cingulate cortex, inferior parietal lobe and inferior temporal gyrus, cerebellum, right insular and the right angular gyrus. The increased imaging signal densities were significant and positively correlated with the craving scale scores in the bilateral prefrontal cortex, anterior cingulate cortex and right inferior parietal lobe. Craving of online game addicts was successfully induced by game cue pictures. Crave related brain areas are: dorsolateral prefrontal cortex, anterior cingulate cortex, and right inferior parietal lobe. The brain regions are overlapped with cognitive and emotion related processing brain areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    PubMed

    Yang, Chen; Ge, Shun-Nan; Zhang, Jia-Rui; Chen, Lei; Yan, Zhi-Qiang; Heng, Li-Jun; Zhao, Tian-Zhi; Li, Wei-Xin; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2013-01-01

    High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  5. Antinociception induced by epidural motor cortex stimulation in naive conscious rats is mediated by the opioid system.

    PubMed

    Fonoff, Erich Talamoni; Dale, Camila Squarzoni; Pagano, Rosana Lima; Paccola, Carina Cicconi; Ballester, Gerson; Teixeira, Manoel Jacobsen; Giorgi, Renata

    2009-01-03

    Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids.

  6. Disorganization of Oligodendrocyte Development in the Layer II/III of the Sensorimotor Cortex Causes Motor Coordination Dysfunction in a Model of White Matter Injury in Neonatal Rats.

    PubMed

    Ueda, Yoshitomo; Misumi, Sachiyo; Suzuki, Mina; Ogawa, Shino; Nishigaki, Ruriko; Ishida, Akimasa; Jung, Cha-Gyun; Hida, Hideki

    2018-01-01

    We previously established neonatal white matter injury (WMI) model rat that is made by right common carotid artery dissection at postnatal day 3, followed by 6% hypoxia for 60 min. This model has fewer oligodendrocyte progenitor cells and reduced myelin basic protein (MBP) positive areas in the sensorimotor cortex, but shows no apparent neuronal loss. However, how motor deficits are induced in this model is unclear. To elucidate the relationship between myelination disturbance and concomitant motor deficits, we first performed motor function tests (gait analysis, grip test, horizontal ladder test) and then analyzed myelination patterns in the sensorimotor cortex using transmission electron microscopy (TEM) and Contactin associated protein 1 (Caspr) staining in the neonatal WMI rats in adulthood. Behavioral tests revealed imbalanced motor coordination in this model. Motor deficit scores were higher in the neonatal WMI model, while hindlimb ladder stepping scores and forelimb grasping force were comparable to controls. Prolonged forelimb swing times and decreased hindlimb paw angles on the injured side were revealed by gait analysis. TEM revealed no change in myelinated axon number and the area g-ratio in the layer II/III of the cortex. Electromyographical durations and latencies in the gluteus maximus in response to electrical stimulation of the brain area were unchanged in the model. Caspr staining revealed fewer positive dots in layers II/III of the WMI cortex, indicating fewer and/or longer myelin sheath. These data suggest that disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex relates to imbalanced motor coordination in the neonatal WMI model rat.

  7. Intact intracortical microstimulation (ICMS) representations of rostral and caudal forelimb areas in rats with quinolinic acid lesions of the medial or lateral caudate-putamen in an animal model of Huntington's disease.

    PubMed

    Karl, Jenni M; Sacrey, Lori-Ann R; McDonald, Robert J; Whishaw, Ian Q

    2008-09-05

    Neurotoxic, cell-specific lesions of the rat caudate-putamen (CPu) have been proposed as a model of human Huntington's disease and as such impair performance on many motor tasks, including skilled forelimbs tasks such as reaching for food. Because the CPu and motor cortex share reciprocal connections, it has been proposed that the motor deficits are due in part to a secondary disruption of motor cortex. The purpose of the present study was to examine the functionality of the motor cortex using intracortical microstimulation (ICMS) following neurotoxic lesions of the CPu. ICMS maps have been shown to be sensitive indicators of motor skill, cortical injury, learning, and experience. Long-evans hooded rats received a sham, a medial, or a lateral CPu lesion using the neurotoxin, quinolinic acid (2,3-pyridinedicarboxylic acid). Two weeks later the motor cortex was stimulated under light ketamine anesthesia. Neither lateral nor medial lesions of the CPu altered the stimulation threshold for eliciting forelimb movements, the type of movements elicited, or the size of the rostral forelimb (RFA) and caudal forelimb areas (CFA) from which movements were elicited. The preservation of ICMS forelimb movement representations (the forelimb map) in rats with cell-specific CPu lesions suggests motor impairments following lesions of the lateral striatum are not due to the disruption of the motor map. Therefore, the impairments that follow striatal cell loss are due either to alterations in circuitry that is independent of motor cortex or to alterations in circuitry afferent to the motor cortex projections.

  8. Lycopene ameliorates atrazine-induced oxidative damage in adrenal cortex of male rats by activation of the Nrf2/HO-1 pathway.

    PubMed

    Abass, Marwa Ahmed; Elkhateeb, Shereen Ahmed; Abd El-Baset, Samia Adel; Kattaia, Asmaa Alhosiny; Mohamed, Eman Mosallam; Atteia, Hebatallah Husseini

    2016-08-01

    Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.

  9. Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride.

    PubMed Central

    Lidow, M S; Goldman-Rakic, P S; Rakic, P; Innis, R B

    1989-01-01

    An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D1 receptors in the cortex have been well documented. Comparable information on cortical D2 sites is lacking. We report here the results of binding studies in the cortex and neostriatum of rat and monkey using the D2 selective antagonist [3H]raclopride. In both structures [3H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D2 receptors. D2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study establishes the presence and widespread distribution of dopamine D2 receptors in the cortex. PMID:2548214

  10. Relationship between changes in rat behavior and integral biochemical indexes determined by laser correlation spectroscopy after photothrombosis of the prefrontal cortex.

    PubMed

    Romanova, G A; Shakova, F M; Kovaleva, O I; Pivovarov, V V; Khlebnikova, N N; Karganov, M Yu

    2004-02-01

    Experiments on rats showed that Noopept improved retention and retrieval of conditioned passive avoidance response after phototrombosis of the prefrontal cortex (a procedure impairing retention of memory traces). The impairment of mnesic functions was accompanied by changes in integral biochemical indexes of the plasma determined by laser correlation spectroscopy. Treatment of behavioral disorders with Noopepet normalized biochemical indexes.

  11. Motor cortex stimulation does not lead to functional recovery after experimental cortical injury in rats.

    PubMed

    Schönfeld, Lisa-Maria; Jahanshahi, Ali; Lemmens, Evi; Bauwens, Matthias; Hescham, Sarah-Anna; Schipper, Sandra; Lagiere, Melanie; Hendrix, Sven; Temel, Yasin

    2017-01-01

    Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.

  12. Paired-housing selectively facilitates within-session extinction of avoidance behavior, and increases c-Fos expression in the medial prefrontal cortex, in anxiety vulnerable Wistar-Kyoto rats.

    PubMed

    Smith, Ian M; Pang, Kevin C H; Servatius, Richard J; Jiao, Xilu; Beck, Kevin D

    2016-10-01

    The perseveration of avoidance behavior, even in the absence of once threatening stimuli, is a key feature of anxiety and related psychiatric conditions. This phenomenon can be observed in the Wistar-Kyoto (WKY) rat which, in comparison to outbred controls, demonstrates impaired extinction of avoidance behavior. Also characteristic of the WKY rat is abnormalities of the neurocircuitry and neuroplasticity of the medial prefrontal cortex (mPFC). One means of reducing physiological responses to anxiety, and conditioned fear, in social species is the presence of a conspecific animal. The current study investigates whether or not pair-housed WKY rats would show facilitated extinction of avoidance in comparison to individual-housed WKY rats, and whether or not pair-housing influences mPFC activation during lever-press avoidance. Male WKY rats were assigned to individual-housed and pair-housed conditions. Rats were trained in lever-press avoidance. Each session of lever-press avoidance consisted of 20 trials, where pressing a lever in response to a warning tone prevented foot-shocks. Rats received 12 acquisition sessions over 4weeks; followed by 6 extinction sessions over 2weeks, where foot-shocks ceased to be delivered. Brains were harvested 90min after trials 1 and 10 of extinction sessions 1 and 6, and mPFC sections underwent c-Fos staining as a measure of activation. Pair-housed rats showed facilitated lever-press avoidance extinction rates, but the main cause for this overall difference was a selective facilitation of within-session extinction. Similar to individual-housed rats, pair-housed rats continued to avoid during trial 1 of extinction even when the avoidance responding had been significantly reduced by the end of the previous session. Pair-housed rats sacrificed on trial 1 showed greater c-Fos expression in the anterior cingulate cortex and prelimbic cortex subregions of the mPFC compared individual-housed rats sacrificed on trial 1. This data shows pair-housing to facilitate the extinction of avoidance, and to influence activity of the mPFC, in WKY rats. Despite this environmental manipulation, the pair-housed WKY rats continued to show avoidance responding on trial 1 of extinction sessions. This demonstrates that within-session extinction can be dissociated from between-session extinction-resistance in WKY rats. Furthermore, it suggests the individual-housing of WKY rats selectively slows within-session extinction, possibly by reducing neuronal activity of the mPFC during the testing situation. Published by Elsevier Inc.

  13. 2D Raman study of the healthy and epileptic rat cerebellar cortex tissue

    NASA Astrophysics Data System (ADS)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Lewandowski, Marian H.; Palus-Chramiec, Katarzyna; Chrobok, Łukasz; Moskal, Paulina; Birczyńska, Malwina; Sozańska, Agnieszka

    2018-07-01

    The aim of this study was to determine what changes in the Cerebellar cortex (Cc) of the rat's brain tissue can be observed by Raman spectroscopy comparing epileptic (WAG/Rij) and control (Wistar) rats. Experiments were performed on the brain slices obtained from male rats (2-3 weeks old). WAG/Rij rats, used in this study, represent the well-established model of epilepsy. The Raman spectra of the fresh, not additionally preserved brain scraps, kept in artificial cerebrospinal fluid, were collected using a 442 nm, 514.5 nm, 785 nm and 1064 nm laser lines as an excitation source. 2D correlation analysis was used to create two-dimensional (2D) spectra and wavelength of the excitation laser was regarded as an external stimulus. Differences in the 2D spectra of two investigated groups of rats were observed. Analysis of the intensity ratios of the respective marker Raman bands indicated close packing between the lipid chains in a healthy Cerebellar cortex tissue. In asynchronous maps of healthy tissue the cross-peaks of Trp and Tyr vibration, that are neurotransmitters' precursors, are recognized. In the epileptic tissue, the amino acids glutamate (Glu) and aspartate (Asp), excitatory neurotransmitters, initiate changes observed in the asynchronous map.

  14. Neuroprotective effects of kolaviron against psycho-emotional stress induced oxidative brain injury in rats: The whisker removal model.

    PubMed

    Ibironke, G F; Fasanmade, A A

    2016-09-01

    The study investigated the neuroprotective potentials of kolaviron (a biflavonoid complex of Garcinia kola) against psycho-emotional stress induced oxidative brain injury in Wistar rats. Twenty-four adult Wistar rats (180-220g) randomly divided into four groups (1-1V,n=6) were used for the study . Group 1 served as control (non stressed), group 11 consisted of stressed rats induced by complete removal' of the whiskers around the mouth and the nose without anaesthesia. The rats in group 111 were pre- treated with 200mg/kg kolaviron per oral (p.o), daily for seven days before being subjected to the stress procedure' while group 1V rats also had 200mg/kg oral kolaviron alone without being stressed. The animals were later euthanized by cervical dislocation, cerebellum and frontal cortex removed and then subjected to biochemical and histopathological analysis. Whisker removal significantly(p<0.05) increased lipid peroxidation (U/mg protein) in the cerebellum (3.82±0.22 vs 6.50±0.41) and the cerebral cortex (14.57±2.50 vs 30.11± 4.70) compared with their controls, it also produced significant reductions 'in catalase activities (U/min/mg protein) in cerebellum (169.65±11.02 vs 87.72, p <0.001) and the cerebral cortex (264.5 ± 40.57 vs 122.71 ± 15.70,p< 0.001). Glutathione levels (U/mg protein) were similarly significantly (P<0.001) reduced in both cerebellum (132.40 ± 4.81 vs 37.60 ± 1.50) and the cerebral cortex (370.42 ±20.51 vs 120.51± 25.35) compared with their corresponding controls. There were also histological abnormalities like cellular degeneration and necrosis in both the frontal cortex and the cerebellum of the stressed rats. Pre- treatment with kolaviron not only reversed these biochemical alterations but also significantly attenuated these observed histopathological changes. The present study demonstrated the neuroprotective potential of kolaviron against psycho-emotional stress-induced oxidative brain injury through the inhibition of oxidative stress.

  15. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    PubMed

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  16. Focal expression of mutated tau in entorhinal cortex neurons of rats impairs spatial working memory.

    PubMed

    Ramirez, Julio J; Poulton, Winona E; Knelson, Erik; Barton, Cole; King, Michael A; Klein, Ronald L

    2011-01-01

    Entorhinal cortex neuropathology begins very early in Alzheimer's disease (AD), a disorder characterized by severe memory disruption. Indeed, loss of entorhinal volume is predictive of AD and two of the hallmark neuroanatomical markers of AD, amyloid plaques and neurofibrillary tangles (NFTs), are particularly prevalent in the entorhinal area of AD-afflicted brains. Gene transfer techniques were used to create a model neurofibrillary tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the entorhinal cortex of adult rats. The objective of the present investigation was to determine whether adult onset, spatially restricted tauopathy could be sufficient to reproduce progressive deficits in mnemonic function. Spatial memory on a Y-maze was tested for approximately 3 months post-surgery. Upon completion of behavioral testing the brains were assessed for expression of human tau and evidence of tauopathy. Rats injected with the tau vector became persistently impaired on the task after about 6 weeks of postoperative testing, whereas the control rats injected with a green fluorescent protein vector performed at criterion levels during that period. Histological analysis confirmed the presence of hyperphosphorylated tau and NFTs in the entorhinal cortex and neighboring retrohippocampal areas as well as limited synaptic degeneration of the perforant path. Thus, highly restricted vector-induced tauopathy in retrohippocampal areas is sufficient for producing progressive impairment in mnemonic ability in rats, successfully mimicking a key aspect of tauopathies such as AD. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: an in vivo localized (1)H MRS study.

    PubMed

    Iltis, Isabelle; Koski, Dee M; Eberly, Lynn E; Nelson, Christopher D; Deelchand, Dinesh K; Valette, Julien; Ugurbil, Kamil; Lim, Kelvin O; Henry, Pierre-Gilles

    2009-08-01

    Acute phencyclidine (PCP) administration mimics some aspects of schizophrenia in rats, such as behavioral alterations, increased dopaminergic activity and prefrontal cortex dysfunction. In this study, we used single-voxel (1)H-MRS to investigate neurochemical changes in rat prefrontal cortex in vivo before and after an acute injection of PCP. A short-echo time sequence (STEAM) was used to acquire spectra in a 32-microL voxel positioned in the prefrontal cortex area of 12 rats anesthetized with isoflurane. Data were acquired for 30 min before and for 140 min after a bolus of PCP (10 mg/kg, n = 6) or saline (n = 6). Metabolites were quantified with the LCModel. Time courses for 14 metabolites were obtained with a temporal resolution of 10 min. The glutamine/glutamate ratio was significantly increased after PCP injection (p < 0.0001, pre- vs. post-injection), while the total concentration of these two metabolites remained constant. Glucose was transiently increased (+70%) while lactate decreased after the injection (both p < 0.0001). Lactate, but not glucose and glutamine, returned to baseline levels after 140 min. These results show that an acute injection of PCP leads to changes in glutamate and glutamine concentrations, similar to what has been observed in schizophrenic patients, and after ketamine administration in humans. MRS studies of this pharmacological rat model may be useful for assessing the effects of potential anti-psychotic drugs in vivo. 2009 John Wiley & Sons, Ltd.

  18. The acute effect of ethanol on adrenal cortex in female rats--possible role of nitric oxide.

    PubMed

    Dikić, Dragoslava; Budeč, Mirela; Vranješ-Durić, Sanja; Koko, Vesna; Vignjević, Sanja; Mitrović, Olivera

    2011-01-01

    The present study was designed to investigate a possible role of endogenous nitric oxide (NO) in the adrenal response to an acute alcohol administration in female rats. To this end, N(ω)-nitro-L-arginine-methyl ester (L-NAME), a competitive inhibitor of all isoforms of NO synthase, was used. Adult female Wistar rats showing diestrus Day 1 were treated with: (a) ethanol (2 or 4 g/kg, intraperitoneally); (b) L-NAME (30 or 50 mg/kg, subcutaneously) followed by either ethanol or saline 3 h later. Untreated and saline-injected rats were used as controls. The animals were killed 30 min after last injection. Adrenal cortex was analyzed morphometrically, and plasma levels of adrenocorticotropic hormone (ACTH) and serum concentrations of corticosterone were determined. Acute ethanol treatment enhanced the levels of ACTH and corticosterone in a dose-dependent manner. Stereological analysis revealed that acute alcohol administration induced a significant increase in absolute volume of the cortex and the zona fasciculata (ZF). In addition, ethanol at a dose of 4 g/kg increased volume density and length of the capillaries in the ZF. However, other stereological parameters were unaffected by alcohol exposure. Pretreatment with both doses of L-NAME had no effect on ethanol-induced changes. Obtained findings indicate that acute ethanol treatment stimulates the activity of the adrenal cortex and that this effect is not mediated by endogenous NO in female rats under these experimental conditions.

  19. Long-term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats.

    PubMed

    Avivi-Arber, Limor; Lee, Jye-Chang; Sood, Mandeep; Lakschevitz, Flavia; Fung, Michelle; Barashi-Gozal, Maayan; Glogauer, Michael; Sessle, Barry J

    2015-11-01

    Tooth loss is common, and exploring the neuroplastic capacity of the face primary motor cortex (face-M1) and adjacent primary somatosensory cortex (face-S1) is crucial for understanding how subjects adapt to tooth loss and their prosthetic replacement. The aim was to test if functional reorganization of jaw and tongue motor representations in the rat face-M1 and face-S1 occurs following tooth extraction, and if subsequent dental implant placement can reverse this neuroplasticity. Rats (n = 22) had the right maxillary molar teeth extracted under local and general anesthesia. One month later, seven rats had dental implant placement into healed extraction sites. Naive rats (n = 8) received no surgical treatment. Intracortical microstimulation (ICMS) and recording of evoked jaw and tongue electromyographic responses were used to define jaw and tongue motor representations at 1 month (n = 8) or 2 months (n = 7) postextraction, 1 month postimplant placement, and at 1-2 months in naive rats. There were no significant differences across study groups in the onset latencies of the ICMS-evoked responses (P > 0.05), but in comparison with naive rats, tooth extraction caused a significant (P < 0.05) and sustained (1-2 months) decreased number of ICMS-defined jaw and tongue sites within face-M1 and -S1, and increased thresholds of ICMS-evoked responses in these sites. Furthermore, dental implant placement reversed the extraction-induced changes in face-S1, and in face-M1 the number of jaw sites even increased as compared to naive rats. These novel findings suggest that face-M1 and adjacent face-S1 may play a role in adaptive mechanisms related to tooth loss and their replacement with dental implants. © 2015 Wiley Periodicals, Inc.

  20. Despite similar reduction of blood pressure and renal ANG II and ET-1 levels aliskiren but not losartan normalizes albuminuria in hypertensive Ren-2 rats.

    PubMed

    Vanourková, Z; Kramer, H J; Husková, Z; Cervenka, L; Vanecková, I

    2010-01-01

    The relationship between angiotensin II (ANG II) and endothelin-1 (ET-1) is known to be complex; both peptides can initiate and potentiate the gene expression of each other. This pilot study investigated the effects of the AT(1) receptor blocker losartan or the direct renin inhibitor aliskiren on mean arterial pressure (MAP) and albuminuria and the renal ANG II and ET-1 levels. 3-month-old male Ren-2 transgenic rats (TGR) were treated either with losartan (5 mg kg(-1) day(-1)) or aliskiren (10 mg kg(-1) day(-1)) for 10 weeks. At the end of the experiment, rats were decapitated and cortical and papillary parts of kidneys were separated. Plasma and tissue ANG II levels were measured by RIA and tissue ET-1 concentrations by ELISA. In all four groups of animals ET-1 levels were lowest in renal cortex and more than 100-fold higher in the papilla. Cortical and papillary ET-1 concentrations in untreated TGR significantly exceeded those of control HanSD rats and were significantly depressed by both drugs. In both strains, papillary ANG II concentrations were moderately but significantly higher than cortical ANG II, TGR exhibited higher ANG II levels both in cortex and papilla as compared to control HanSD rats. Aliskiren and losartan at the doses used depressed similarly the levels of ANG II in cortex and papilla and reduced ET-1 significantly in the renal cortex and papilla below control levels in HanSD rats. Albuminuria, which was more than twice as high in TGR as in HanSD rats, was normalized with aliskiren and reduced by 28% with losartan, although MAP was reduced to a similar degree by both drugs. Despite similar reductions of MAP and renal ET-1 and ANG II levels aliskiren appears to be more effective than losartan, at the doses used, in reducing albuminuria in heterozygous hypertensive Ren-2 rats.

  1. A Study on Neuroprotective Effects of Curcumin on the Diabetic Rat Brain.

    PubMed

    Zhang, L; Kong, X-J; Wang, Z-Q; Xu, F-S; Zhu, Y-T

    2016-01-01

    The present study was aimed to study the neuroprotective therapeutic effect of curcumin on the male albino rat brain. Subarachnoid hemorrhage leads to severe mortality rate and morbidity, and oxidative stress is a crucial factor in subarachnoid hemorrhage. Therefore, we investigated the effect of curcumin on oxidative stress and glutamate and glutamate transporter-1 on a subarachnoid hemorrhage-induced male albino rats. The curcumin commonly used for the treatment and saline used for the control. Curcumin (10 mg/kg bwt) dissolved in saline and administered orally to the rats for one week. Glutamate, glutamate transporter-1, malondialdehyde (MDA), superoxide dismutase (SOD), catalase, glutathione reductase and lactate dehydrogenase (LDH) activities were determined. Glutamate level was lower in the curcumin-treated rats compared to their respective controls. Glutamate transporter-1 did not alter in the curcumin-treated rats compared to their controls. Glutamate transporter-1 protein expression is significantly reduced in the curcumin-treated rats. MDA levels decreased 18 and 29 % in the hippocampus and the cortex region respectively. SOD (17% and 32%), and catalase (19% and 24%) activities were increased in the curcumin-treated hippocampus and the cortex region respectively. Glutathione reductase (13% and 19%) and LDH (21% and 30%) activities were increased in the treated hippocampus and the cortex region respectively. The mRNA expression of NK-kB and TLR4 was significantly reduced following curcumin treatment. Taking all these data together, the curcumin found to be effective against oxidative stress and glutamate neurotoxicity in the male albino rats.

  2. Parkinson's disease: in vivo metabolic changes in the frontal and parietal cortices in 6-OHDA treated rats during different periods.

    PubMed

    Hou, Zhongyu; Zhang, Zhonghe; Meng, Haiwei; Lin, Xiangtao; Sun, Bo; Lei, Hao; Fang, Ke; Fang, Fang; Liu, Maili; Liu, Shuwei

    2014-02-01

    This study aims to investigate metabolic changes in frontal and parietal cortices in the 6-OHDA induced Parkinson's rats. Ratios of N-acetyl-aspartic acid/creatine (NAA/Cr), choline/creatine (Cho/Cr), and glumatic acid and glutamine glutaminic acid/creatine (Glx/Cr) of regions of interests (ROIs) in the frontal and parietal cortices, and the substantia nigra were analyzed. NAA/Cr, Cho/Cr and Glx/Cr in the frontal and parietal cortices in the lesion side did not show any significant differences two weeks after operation compared with the contralateral side (p > 0.05). NAA/Cr in the frontal cortex in the lesion side was significantly lower in the five weeks after operation; Cho/Cr remained normal; Glx/Cr increased (p < 0.05), and all ratios of parietal cortex were normal. In the eight weeks after operation, NAA/Cr in the frontal cortex in the lesion side was lower than that of the five weeks (p < 0.01), Cho/Cr still remained normal while Glx/Cr was higher than before (p < 0.01). Regarding the parietal cortex, NAA/Cr increased significantly, while Cho/Cr and Glx/Cr remained normal. In the 12 weeks after operation, NAA/Cr, Cho/Cr and Glx/Cr in frontal cortex were consistent with that of the eight weeks, while they remained at the normal level in parietal cortex. The NAA/Cr in the substantia nigra decreased and Cho/Cr increased significantly during 2-8 weeks, and remained at the same level during 8-12 weeks. There are metabolic disturbances in PD rats. The transient hyperfunction in the parietal cortex can be considered as a compensation for the dysfunction of the frontal cortex and substantia nigra.

  3. [CHANGES IN THE NUMBER OF NEURONS IN THE MOTOR CORTEX OF RATS AND THEIR LOCOMOTOR ACTIVITY IN THE AGE ASPECT].

    PubMed

    Piavchenko, G A; Shmarkova, L I; Nozdrin, V I

    2015-01-01

    Using Laboras hardware-software complex, which is a system of automatic registration of behavioral reactions, the locomotor activity 1-, 8- and 16-month-old male rats (12 animals in each group) was recorded followed by counting the number of neuron cell bodies of in the layer V of the motor cortex in Nissl stained slides. It was found that the number of neurons in the motor cortex varied in different age groups. Maximal number of neurons was observed in 8-month-old animals. Motor activity was found to correlate with the number of neurons.

  4. Prior cocaine exposure disrupts extinction of fear conditioning

    PubMed Central

    Burke, Kathryn A.; Franz, Theresa M.; Gugsa, Nishan; Schoenbaum, Geoffrey

    2008-01-01

    Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure. PMID:16847305

  5. Prior cocaine exposure disrupts extinction of fear conditioning.

    PubMed

    Burke, Kathryn A; Franz, Theresa M; Gugsa, Nishan; Schoenbaum, Geoffrey

    2006-01-01

    Psychostimulant exposure has been shown to cause molecular and cellular changes in prefrontal cortex. It has been hypothesized that these drug-induced changes might affect the operation of prefrontal-limbic circuits, disrupting their normal role in controlling behavior and thereby leading to compulsive drug-seeking. To test this hypothesis, we tested cocaine-treated rats in a fear conditioning, inflation, and extinction task, known to depend on medial prefrontal cortex and amygdala. Cocaine-treated rats conditioned and inflated similar to saline controls but displayed slower extinction learning. These results support the hypothesis that control processes in the medial prefrontal cortex are impaired by cocaine exposure.

  6. Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder--the spontaneously hypertensive rat.

    PubMed

    Russell, V; Allie, S; Wiggins, T

    2000-12-20

    Spontaneously hypertensive rats (SHR) are used as a model for attention-deficit/hyperactivity disorder (ADHD) since SHR are hyperactive and they show defective sustained attention in behavioral tasks. Using an in vitro superfusion technique we showed that norepinephrine (NE) release from prefrontal cortex slices of SHR was not different from that of their Wistar-Kyoto (WKY) control rats when stimulated either electrically or by exposure to buffer containing 25 mM K(+). The monoamine vesicle transporter is, therefore, unlikely to be responsible for the deficiency in DA observed in SHR, since, in contrast to DA, vesicle stores of NE do not appear to be depleted in SHR. In addition, alpha(2)-adrenoceptor mediated inhibition of NE release was reduced in SHR, suggesting that autoreceptor function was deficient in prefrontal cortex of SHR. So, while DA neurotransmission appears to be down-regulated in SHR, the NE system appears to be under less inhibitory control than in WKY suggesting hypodopaminergic and hypernoradrenergic activity in prefrontal cortex of SHR. These findings are consistent with the hypothesis that the behavioral disturbances of ADHD are the result of an imbalance between NE and DA systems in the prefrontal cortex, with inhibitory DA activity being decreased and NE activity increased relative to controls.

  7. INTRINSIC NEURONAL PLASTICITY IN THE JUXTACAPSULAR NUCLEUS OF THE BED NUCLEI OF THE STRIA TERMINALIS (jcBNST)

    PubMed Central

    Francesconi, Walter; Berton, Fulvia; Koob, George F.; Sanna, Pietro Paolo

    2010-01-01

    The juxtacapsular nucleus of the anterior division of the BNST (jcBNST) receives robust glutamatergic projections from the basolateral nucleus of the amygdala (BLA), the postpiriform transition area, and the insular cortex as well as dopamine (DA) inputs from the midbrain. In turn the jcBNST sends GABAergic projections to the medial division of the central nucleus of the amygdala (CEAm) as well as other brain regions. We recently described a form of long-term potentiation of the intrinsic excitability (LTP-IE) of neurons of the juxtacapsular nucleus of BNST (jcBNST) in response to high-frequency stimulation (HFS) of the stria terminalis that was impaired during protracted withdrawal from alcohol, cocaine, and heroin and in rats chronically treated with corticotropin releasing factor (CRF) intracerebroventricularly. Here we show that DAergic neurotransmission is required for the induction of LTP-IE of jcBNTS neurons through dopamine (DA) D1 receptors. Thus, activation of the central CRF stress system and altered DAergic neurotransmission during protracted withdrawal from alcohol and drugs of abuse may contribute to the disruption of LTP-IE in the jcBNST. Impairment of this form of intrinsic neuronal plasticity in the jcBNST could result in inadequate neuronal integration and reduced inhibition of the CEA, contributing to the negative affective state that characterizes protracted abstinence in post-dependent individuals. These results provide a novel neurobiological target for vulnerability to alcohol and drug dependence. PMID:19683025

  8. Acute seizure activity promotes lipid peroxidation, increased nitrite levels and adaptive pathways against oxidative stress in the frontal cortex and striatum

    PubMed Central

    Júnior, Hélio Vitoriano Nobre; de França Fonteles, Marta Maria

    2009-01-01

    Previous experiments have shown that the generation of free radicals in rat brain homogenates is increased following pilocarpine-induced seizures and status epilepticus (SE). This study was aimed at investigating the changes in neurochemical mechanisms such as lipid peroxidation levels, nitrite content, glutathione reduced (GSH) concentration, superoxide dismutase and catalase activities in the frontal cortex and the striatum of Wistar adult rats after seizures and SE induced by pilocarpine. The control group was treated with 0.9% saline and another group of rats received pilocarpine (400 mg/kg, i.p.). Both groups were sacrificed 24 h after the treatments. Lipid peroxidation level, nitrite content, GSH concentration and enzymatic activities were measured by using spectrophotometric methods. Our findings showed that pilocarpine administration and its resulting seizures and SE produced a significant increase of lipid peroxidation level in the striatum (47%) and frontal cortex (59%). Nitrite contents increased 49% and 73% in striatum and frontal cortex in pilocarpine group, respectively. In GSH concentrations were decreases of 54% and 58% in the striatum and frontal cortex in pilocarpine group, respectively. The catalase activity increased 39% and 49% in the striatum and frontal cortex, respectively. The superoxide dismutase activity was not altered in the striatum, but it was present at a 24% increase in frontal cortex. These results suggest that there is a direct relationship between the lipid peroxidation and nitrite contents during epileptic activity that can be responsible for the superoxide dismutase and catalase enzymatic activity changes observed during the establishment of seizures and SE induced by pilocarpine. PMID:20592767

  9. Gene expression in the rat cerebral cortex: comparison of recovery sleep and hypnotic-induced sleep.

    PubMed

    Wisor, J P; Morairty, S R; Huynh, N T; Steininger, T L; Kilduff, T S

    2006-08-11

    Most hypnotic medications currently on the market target some aspect of GABAergic neurotransmission. Although all such compounds increase sleep, these drugs differentially affect the activity of the cerebral cortex as measured by the electroencephalogram. Whereas benzodiazepine medications such as triazolam tend to suppress slow wave activity in the cortex, the GABA(B) ligand gamma-hydroxybutyrate greatly enhances slow wave activity and the non-benzodiazepine, zolpidem, which binds to the omega1 site on the GABA(A) receptor/Cl(-) ionophore complex, is intermediate in this regard. Our previous studies have demonstrated that a small number of genes exhibit increased expression in the cerebral cortex of the mouse and rat during recovery sleep after sleep deprivation: egr-3, fra-2, grp78, grp94, ngfi-b, and nr4a3. Using these genes as a panel of biomarkers associated with sleep, we asked whether hypnotic medications induce similar molecular changes in the rat cerebral cortex to those observed when both sleep continuity and slow wave activity are enhanced during recovery sleep. We find that, although each drug increases the expression of a subset of genes in the panel of biomarkers, no drug fully replicates the molecular changes in the cortex associated with recovery sleep. Furthermore, high levels of slow wave activity in the cortex are correlated with increased expression of fra-2 whereas the expression of grp94 is correlated with body temperature. These results demonstrate that sleep-related changes in gene expression may be affected by physiological covariates of sleep and wakefulness rather than by vigilance state per se.

  10. Brain regions sensitive to the face inversion effect: a functional magnetic resonance imaging study in humans.

    PubMed

    Leube, Dirk T; Yoon, Hyo Woon; Rapp, Alexander; Erb, Michael; Grodd, Wolfgang; Bartels, Mathias; Kircher, Tilo T J

    2003-05-22

    Perception of upright faces relies on configural processing. Therefore recognition of inverted, compared to upright faces is impaired. In a functional magnetic resonance imaging experiment we investigated the neural correlate of a face inversion task. Thirteen healthy subjects were presented with a equal number of upright and inverted faces alternating with a low level baseline with an upright and inverted picture of an abstract symbol. Brain activation was calculated for upright minus inverted faces. For this differential contrast, we found a signal change in the right superior temporal sulcus and right insula. Configural properties are processed in a network comprising right superior temporal and insular cortex.

  11. Pain perception and hypnosis: findings from recent functional neuroimaging studies.

    PubMed

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; Serata, Daniele; Caltagirone, Saverio Simone; Savoja, Valeria; Piacentino, Daria; Callovini, Gemma; Manfredi, Giovanni; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-01-01

    Hypnosis modulates pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. By reviewing functional neuroimaging studies focusing on pain perception under hypnosis, the authors aimed to identify brain activation-deactivation patterns occurring in hypnosis-modulated pain conditions. Different changes in brain functionality occurred throughout all components of the pain network and other brain areas. The anterior cingulate cortex appears to be central in modulating pain circuitry activity under hypnosis. Most studies also showed that the neural functions of the prefrontal, insular, and somatosensory cortices are consistently modified during hypnosis-modulated pain conditions. Functional neuroimaging studies support the clinical use of hypnosis in the management of pain conditions.

  12. Executive function in rats is impaired by low (20 cGy) doses of 1 GeV/u (56)Fe particles.

    PubMed

    Lonart, György; Parris, Brian; Johnson, Angela M; Miles, Scott; Sanford, Larry D; Singletary, Sylvia J; Britten, Richard A

    2012-10-01

    Exposure to galactic cosmic radiation is a potential health risk in long-term space travel and represents a significant risk to the central nervous system. The most harmful component of galactic cosmic radiation is the HZE [high mass, highly charged (Z), high energy] particles, e.g., (56)Fe particle. In previous ground-based experiments, exposure to doses of HZE-particle radiation that an astronaut will receive on a deep space mission (i.e., ∼20 cGy) resulted in pronounced deficits in hippocampus-dependent learning and memory in rodents. Neurocognitive tasks that are dependent upon other regions of the brain, such as the striatum, are also impaired after exposure to low HZE-particle doses. These data raise the possibility that neurocognitive tasks regulated by the prefrontal cortex could also be impaired after exposure to mission relevant HZE-particle doses, which may prevent astronauts from performing complex executive functions. To assess the effects of mission relevant (20 cGy) doses of 1 GeV/u (56)Fe particles on executive function, male Wistar rats received either sham treatment or were irradiated and tested 3 months later for their ability to perform attentional set shifting. Compared to the controls, rats that received 20 cGy of 1 GeV/u (56)Fe particles showed significant impairments in their ability to complete the attentional set-shifting test, with only 17% of irradiated rats completing all stages as opposed to 78% of the control rats. The majority of failures (60%) occurred at the first reversal stage, and half of the remaining animals failed at the extra-dimensional shift phase of the studies. The irradiated rats that managed to complete the tasks did so with approximately the same ease as did the control rats. These observations suggest that exposure to mission relevant doses of 1 GeV/u (56)Fe particles results in the loss of functionality in several regions of the cortex: medical prefrontal cortex, anterior cingulated cortex, posterior cingulated cortex and the basal forebrain. Our observation that 20 cGy of 1 GeV/u (56)Fe particles is sufficient to impair the ability of rats to conduct attentional set-shifting raises the possibility that astronauts on prolonged deep space exploratory missions could subsequently develop deficits in executive function.

  13. Money talks: neural substrate of modulation of fairness by monetary incentives

    PubMed Central

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Yang, Liu-Qing; Li, Shu

    2014-01-01

    A unique feature of the human species is compliance with social norms, e.g., fairness, even though this normative decision means curbing self-interest. However, sometimes people prefer to pursue wealth at the expense of moral goodness. Specifically, deviations from a fairness-related normative choice have been observed in the presence of a high monetary incentive. The neural mechanism underlying this deviation from the fairness-related normative choice has yet to be determined. In order to address this issue, using functional magnetic resonance imaging we employed an ultimatum game (UG) paradigm in which fairness and a proposed monetary amount were orthogonally varied. We found evidence for a significant modulation by the proposed amount on fairness in the right lateral prefrontal cortex (PFC) and the bilateral insular cortices. Additionally, the insular subregions showed dissociable modulation patterns. Inter-individual differences in the modulation effects in the left inferior frontal gyrus (IFG) accounted for inter-individual differences in the behavioral modulation effect as measured by the rejection rate, supporting the concept that the PFC plays a critical role in making fairness-related normative decisions in a social interaction condition. Our findings provide neural evidence for the modulation of fairness by monetary incentives as well as accounting for inter-individual differences. PMID:24834034

  14. Altered right anterior insular connectivity and loss of associated functions in adolescent chronic fatigue syndrome

    PubMed Central

    Glenne Øie, Merete; Endestad, Tor; Bruun Wyller, Vegard

    2017-01-01

    Impairments in cognition, pain intolerance, and physical inactivity characterize adolescent chronic fatigue syndrome (CFS), yet little is known about its neurobiology. The right dorsal anterior insular (dAI) connectivity of the salience network provides a motivational context to stimuli. In this study, we examined regional functional connectivity (FC) patterns of the right dAI in adolescent CFS patients and healthy participants. Eighteen adolescent patients with CFS and 18 aged-matched healthy adolescent control participants underwent resting-state functional magnetic resonance imaging. The right dAI region of interest was examined in a seed-to-voxel resting-state FC analysis using SPM and CONN toolbox. Relative to healthy adolescents, CFS patients demonstrated reduced FC of the right dAI to the right posterior parietal cortex (PPC) node of the central executive network. The decreased FC of the right dAI–PPC might indicate impaired cognitive control development in adolescent CFS. Immature FC of the right dAI–PPC in patients also lacked associations with three known functional domains: cognition, pain and physical activity, which were observed in the healthy group. These results suggest a distinct biological signature of adolescent CFS and might represent a fundamental role of the dAI in motivated behavior. PMID:28880891

  15. Altered right anterior insular connectivity and loss of associated functions in adolescent chronic fatigue syndrome.

    PubMed

    Wortinger, Laura Anne; Glenne Øie, Merete; Endestad, Tor; Bruun Wyller, Vegard

    2017-01-01

    Impairments in cognition, pain intolerance, and physical inactivity characterize adolescent chronic fatigue syndrome (CFS), yet little is known about its neurobiology. The right dorsal anterior insular (dAI) connectivity of the salience network provides a motivational context to stimuli. In this study, we examined regional functional connectivity (FC) patterns of the right dAI in adolescent CFS patients and healthy participants. Eighteen adolescent patients with CFS and 18 aged-matched healthy adolescent control participants underwent resting-state functional magnetic resonance imaging. The right dAI region of interest was examined in a seed-to-voxel resting-state FC analysis using SPM and CONN toolbox. Relative to healthy adolescents, CFS patients demonstrated reduced FC of the right dAI to the right posterior parietal cortex (PPC) node of the central executive network. The decreased FC of the right dAI-PPC might indicate impaired cognitive control development in adolescent CFS. Immature FC of the right dAI-PPC in patients also lacked associations with three known functional domains: cognition, pain and physical activity, which were observed in the healthy group. These results suggest a distinct biological signature of adolescent CFS and might represent a fundamental role of the dAI in motivated behavior.

  16. Machine Learning Classification of Cirrhotic Patients with and without Minimal Hepatic Encephalopathy Based on Regional Homogeneity of Intrinsic Brain Activity.

    PubMed

    Chen, Qiu-Feng; Chen, Hua-Jun; Liu, Jun; Sun, Tao; Shen, Qun-Tai

    2016-01-01

    Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cirrhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The regional homogeneity (ReHo) method was used to investigate the local synchrony of intrinsic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri. The optimized discriminative model showed total accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the SVM approach and brain intrinsic activity measurement could be helpful for detection of MHE in cirrhotic patients.

  17. The neural correlates of risk propensity in males and females using resting-state fMRI

    PubMed Central

    Zhou, Yuan; Li, Shu; Dunn, John; Li, Huandong; Qin, Wen; Zhu, Maohu; Rao, Li-Lin; Song, Ming; Yu, Chunshui; Jiang, Tianzi

    2014-01-01

    Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI) data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP) than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity. PMID:24478649

  18. Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats.

    PubMed

    Wang, Yan-Yan; Wang, Yong; Jiang, Hai-Fei; Liu, Jun-Hua; Jia, Jun; Wang, Ke; Zhao, Fei; Luo, Min-Hua; Luo, Min-Min; Wang, Xiao-Min

    2018-02-01

    The glutamatergic projection from the motor cortex to the subthalamic nucleus (STN) constitutes the cortico-basal ganglia circuit and plays a critical role in the control of movement. Emerging evidence shows that the cortico-STN pathway is susceptible to dopamine depletion. Specifically in Parkinson's disease (PD), abnormal electrophysiological activities were observed in the motor cortex and STN, while the STN serves as a key target of deep brain stimulation for PD therapy. However, direct morphological changes in the cortico-STN connectivity in response to PD progress are poorly understood at present. In the present study, we used a trans-synaptic anterograde tracing method with herpes simplex virus-green fluorescent protein (HSV-GFP) to monitor the cortico-STN connectivity in a rat model of PD. We found that the connectivity from the primary motor cortex (M1) to the STN was impaired in parkinsonian rats as manifested by a marked decrease in trans-synaptic infection of HSV-GFP from M1 neurons to STN neurons in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. Ultrastructural analysis with electron microscopy revealed that excitatory synapses in the STN were also impaired in parkinsonian rats. Glutamatergic terminals identified by a specific marker (vesicular glutamate transporter 1) were reduced in the STN, while glutamatergic neurons showed an insignificant change in their total number in both the M1 and STN regions. These results indicate that the M1-STN glutamatergic connectivity is downregulated in parkinsonian rats. This downregulation is mediated probably via a mechanism involving the impairments of excitatory terminals and synapses in the STN. Copyright © 2017. Published by Elsevier Inc.

  19. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas.

    PubMed

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João

    2016-03-01

    Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.

  20. The role of the dorsomedial part of the prefrontal cortex serotonergic innervation in rat responses to the aversively conditioned context: behavioral, biochemical and immunocytochemical studies.

    PubMed

    Lehner, Małgorzata; Taracha, Ewa; Turzyńska, Danuta; Sobolewska, Alicja; Hamed, Adam; Kołomańska, Paulina; Skórzewska, Anna; Maciejak, Piotr; Szyndler, Janusz; Bidziński, Andrzej; Płaźnik, Adam

    2008-10-10

    In this study we have explored differences in animal reactivity to conditioned aversive stimuli using the conditioned fear test (a contextual fear-freezing response), in rats subjected to the selective lesion of the prefrontal cortex serotonergic innervation, and differing in their response to the acute painful stimulation, a footshock (HS--high sensitivity rats, and LS--low sensitivity rats, selected arbitrarily according to their behavior in the 'flinch-jump' pre-test). Local administration of serotonergic neurotoxin (5,7-dihydroxytryptamine) to the dorsomedial part of the prefrontal cortex caused a very strong, structure and neurotransmitter selective depletion of serotonin concentration. In HS rats, the serotonergic lesion significantly disinhibited rat behavior controlled by fear, enhanced c-Fos expression in the dorsomedial prefrontal area, and increased the concentration of GABA in the basolateral amygdala, measured in vivo after the testing session of the conditioned fear test. The LS animals revealed an opposite pattern of behavioral and biochemical changes after serotonergic lesion: an increase in the duration of a freezing response, and expression of c-Fos in the basolateral and central nuclei of amygdala, and a lower GABA concentration in the basolateral amygdala. In control conditions, c-Fos expression did not differ in LS and HS, naïve, not conditioned and not exposed to the test cage animals. The present study adds more arguments for the controlling role of serotonergic innervation of the dorsomedial part of the prefrontal cortex in processing emotional input by other brain centers. Moreover, it provides experimental data, which may help to better explain the anatomical and biochemical basis of differences in individual reactivity to stressful stimulation, and, possibly, to anxiolytic drugs with serotonergic or GABAergic profiles of action.

Top