Boudreau, Mary D.
2013-01-01
Aloe barbadensis Miller (Aloe vera) is an herbal remedy promoted to treat a variety of illnesses; however, only limited data are available on the safety of this dietary supplement. Drinking water exposure of F344/N rats and B6C3F1 mice to an Aloe vera whole-leaf extract (1, 2, and 3%) for 13 weeks resulted in goblet cell hyperplasia of the large intestine in both species. Based upon this observation, 2-year drinking water studies were conducted to assess the carcinogenic potential of an Aloe vera whole-leaf extract when administered to F344/N rats (48 per sex per group) at 0.5, 1, and 1.5%, and B6C3F1 mice (48 per sex per group) at 1, 2, and 3%. Compared with controls, survival was decreased in the 1.5% dose group of female rats. Treatment-related neoplasms and nonneoplastic lesions in both species were confined primarily to the large intestine. Incidences of adenomas and/or carcinomas of the ileo-cecal and cecal-colic junction, cecum, and ascending and transverse colon were significantly higher than controls in male and female rats in the 1 and 1.5% dose groups. There were no neoplasms of the large intestine in mice or in the 0 or 0.5% dose groups of rats. Increased incidences of mucosa hyperplasia of the large intestine were observed in F344/N rats, and increased incidences of goblet cell hyperplasia of the large intestine occurred in B6C3F1 mice. These results indicate that Aloe vera whole-leaf extract is an intestinal irritant in F344/N rats and B6C3F1 mice and a carcinogen of the large intestine in F344/N rats. PMID:22968693
Polov'ian, E S; Chemich, N D; Moskalenko, R A; Romaniuk, A N
2012-06-01
At the present stage of infectionist practice in the treatment of acute intestinal infections caused by opportunistic microorganisms, colloidal silver is used with a particle size of 25 nm as an alternative to conventional causal therapy. In 32 rats, distributed in 4 groups of 8 animals each (intact; healthy, got colloidal silver; with a modeled acute intestinal infection in the basic treatment and with the addition of colloidal silver), histological examination was performed of small and large intestine of rats. Oral administration of colloidal silver at a dose of 0.02 mg/day to intact rats did not lead to changes in morphometric parameters compared to the norm, and during early convalescence in rats with acute intestinal infections were observed destructive and compensatory changes in the intestine, which depended on the treatment regimen. With the introduction of colloidal silver decreased activity of the inflammatory process and the severity of morphological changes in tissues of small and large intestine, indicating that the positive effect of study drug compared with baseline therapy.
Boudreau, M D; Beland, F A; Nichols, J A; Pogribna, M
2013-08-01
Extracts from the leaves of the Aloe vera plant (Aloe barbadensis Miller) have long been used as herbal remedies and are also now promoted as a dietary supplement, in liquid tonics, powders or tablets, as a laxative and to prevent a variety of illnesses. We studied the effects of Aloe vera extract on rats and mice to identify potential toxic or cancer-related hazards. We gave solutions of nondecolorized extracts of Aloe vera leaves in the drinking water to groups of rats and mice for 2 years. Groups of 48 rats received solutions containing 0.5%, 1% or 1.5% of Aloe vera extract in the drinking water, and groups of mice received solutions containing 1%, 2%, or 3% of Aloe vera extract. Similar groups of animals were given plain drinking water and served as the control groups. At the end of the study tissues from more than 40 sites were examined for every animal. In all groups of rats and mice receiving the Aloe vera extract, the rates of hyperplasia in the large intestine were markedly increased compared to the control animals. There were also increases in hyperplasia in the small intestine in rats receiving the Aloe vera extract, increases in hyperplasia of the stomach in male and female rats and female mice receiving the Aloe vera extract, and increases in hyperplasia of the mesenteric lymph nodes in male and female rats and male mice receiving the Aloe vera extract. In addition, cancers of the large intestine occurred in male and female rats given the Aloe vera extract, though none had been seen in the control groups of rats for this and other studies at this laboratory. We conclude that nondecolorized Aloe vera caused cancers of the large intestine in male and female rats and also caused hyperplasia of the large intestine, small intestine, stomach, and lymph nodes in male and female rats. Aloe vera extract also caused hyperplasia of the large intestine in male and female mice and hyperplasia of the mesenteric lymph node in male mice and hyperplasia of the stomach in female mice.
Tutton, P J; Barkla, D H
1982-01-01
Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.
Absorption of Orally Administered Hyaluronan.
Kimura, Mamoru; Maeshima, Takuya; Kubota, Takumi; Kurihara, Hitoshi; Masuda, Yasunobu; Nomura, Yoshihiro
2016-12-01
Hyaluronan (HA) has been utilized as a supplement. However, the absorption of orally administrated HA remains controversial. The degradation and absorption of HA in the intestine were investigated in this study. HA excretion into the feces, degradation in the intestinal tract, absorption through the large intestine, and translocation to the blood and skin were examined. HA administered orally was not detected in rat feces. HA was degraded by cecal content, but not by artificial gastric juice and intestinal juice. Oligosaccharide HA passed through excised large intestine sacs. Furthermore, disaccharides, tetrasaccharides, and polysaccharides HA were distributed to the skin of rats following oral administration of high molecular weight HA (300 kDa). The results of the study suggest that orally administered HA is degraded to oligosaccharides by intestinal bacteria, and oligosaccharide HA is absorbed in the large intestine and is subsequently distributed throughout the tissues, including the skin.
Li, Ling-Ling; Wang, Jing; Cui, Ying; Wen, Pu; Guan, Jun; Yang, Shu; Ma, Kai
2016-05-01
To study the antirheumatic substance of Loranthus parasiticus and observe the relationship between its in vivo distribution and meridian tropism in rats by establishing adjuvant arthritis models corresponding to effectiveness. All rats except the negative control group were injected with 0.1 mL Freund's complete adjuvant on the left foot. After 8 days, the rats in negative control group and model group were given with normal saline while the rats in positive control group were given with tripterygium glycosides suspension 10 mg•kg-1, and the rats in L. parasiticus treatment groups were given with high(10 g•kg ⁻¹), medium(5 g•kg ⁻¹) and low(2.5 g•kg ⁻¹) dose decoction for 21 days. The left rear ankle joint diameter of rats were measured every 7 days from the 9th day of modeling. On the 22nd day, eyeball blood of part rats in L. parasiticus high-dose group was taken at different time points, and then they were sacrificed to take heart, liver, spleen, lung, kidney, stomach, large intestine, small intestine and brain tissues. For the remaining rats, eyeball blood was taken 30 min after drug treatment, and their left rear ankle joints were taken to detect interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels in serum by ELISA method; rutin, avicularin and quercitrin levels in the tissues of high-dose group were detected by HPLC; pharmacokinetic parameters were analyzed by using DAS 2.0. Our results showed that L. parasiticus decoction could significantly improve the paw edema situation of adjuvant arthritis model rats, and reduce IL-1β and TNF-α levels in rat serum. The in vivo efficacy substance analysis in rats showed that rutin was only present in the stomach with a small amount. AUC0-t of avicularin was stomach > small intestine > kidney, and the duration time in vivo was kidney=stomach > small intestine > lung > heart. AUC0-t of quercitrin was stomach > kidney > liver > heart > lung > spleen > small intestine > brain > large intestine > serum, and the duration time in vivo was kidney=liver=small intestine=brain=lung=spleen=heart=stomach > large intestine > serum. The research indicated that L. parasiticus decoction was effective in treating rats with adjuvant arthritis. Avicularin and quercitrin are important ingredients of L. parasiticus in antirheumatism therapy. The distribution of avicularin and quercitrin in rats were consistent with traditional understanding that L. parasiticus could attribute to the kidney and liver meridians. Copyright© by the Chinese Pharmaceutical Association.
Ishizuka, Satoshi; Iwama, Ami; Dinoto, Achmad; Suksomcheep, Akarat; Maeta, Kohshi; Kasai, Takanori; Hara, Hiroshi; Yokota, Atsushi
2009-05-01
We evaluated the effects of Bifidobacterium breve JCM1192(T )and/or raffinose on epithelial proliferation in the rat small and large intestines. WKAH/Hkm Slc rats (4 wk old) were fed a control diet, a diet supplemented with either encapsulated B. breve (30 g/kg diet, 1.5 x 10(7) colony-forming unit/g capsule) or raffinose (30 g/kg diet), or a diet supplemented with both encapsulated B. breve and raffinose, for 3 wk. Epithelial proliferation in the small intestine, as assessed by bromodeoxyuridine immunohistochemistry, was increased only in the B. breve plus raffinose-fed group. We determined the number of bifidobacteria in cecal contents using fluorescence in situ hybridization and confirmed the presence of ingested B. breve only in the B. breve plus raffinose-fed group. This suggests that the ingested B. breve cells used raffinose and were activated in the small intestine, where they subsequently influenced epithelial proliferation. In conclusion, we found a prominent synbiotic effect of encapsulated B. breve in combination with raffinose on epithelial proliferation in rat small intestine but not in large intestine. To our knowledge, this is the first report of a synbiotic that affects epithelial proliferation.
[Histochemical study of the digestive organs of rats after a flight on "Kosmos-605"].
Shubich, M G; Goriacheva, L L; Dudetskiĭ, V I; Lutsenko, N M; Mogil'naia, G M
1977-01-01
The histochemical study of the stomach, small and large intestines and pancreas of rats flown aboard the biosatellite Cosmos-605 as well as of synchronous and vivarium controls demonstrated a significant decline in the mucine producing capacity of epithelial cells of the stomach of the flight rats on the R + 1 day. The study showed an increased content of sialo- and sulphosaccharides in goblet cells of cryptae of large intestine and a reduced content of free cation protein in the acinar cells of the pancreas of flight rats. The changes were transient and disappeared by the R + 26 day.
Takasuna, K; Hagiwara, T; Hirohashi, M; Kato, M; Nomura, M; Nagai, E; Yokoi, T; Kamataki, T
1998-01-01
SN-38, a metabolite of irinotecan hydrochloride (CPT-11), is considered to play a key role in the development of diarrhea as well as in the antitumor activity of CPT-11. We have previously found that the inhibition of beta-glucuronidase, which hydrolyzes detoxified SN-38 (SN-38 glucuronide) to reform SN-38, in the lumen by eliminating the intestinal microflora with antibiotics, markedly ameliorates the intestinal toxicity of CPT-11 in rats. In this study we compared the disposition of CPT-11 and its metabolites in rats treated with and without antibiotics. Rats were given drinking water containing 1 mg/ml penicillin and 2 mg/ml streptomycin from 5 days before the administration of CPT-11 (60 mg/kg i.v.) and throughout the experiment. CPT-11, SN-38 glucuronide and SN-38 concentrations in the blood, intestinal tissues and intestinal luminal contents were determined by HPLC. Antibiotics had little or no effect on the pharmacokinetics of CPT-11, SN-38 glucuronide or SN-38 in the blood, or in the tissues or contents of the small intestine, which has less beta-glucuronidase activity in its luminal contents. In contrast, antibiotics markedly reduced the AUC1-24 h of SN-38 (by about 85%) in the large intestine tissue without changing that of CPT-11, and this was accompanied by a complete inhibition of the deconjugation of SN-38 glucuronide in the luminal contents. These results suggest that SN-38, which results from the hydrolysis of SN-38 glucuronide by beta-glucuronidase in the intestinal microflora, contributes considerably to the distribution of SN-38 in the large intestine tissue, and that inhibition of the beta-glucuronidase activity by antibiotics results in decreased accumulation of SN-38 in the large intestine.
George, S E; Nelson, G M; Kohan, M J; Warren, S H; Eischen, B T; Brooks, L R
2001-06-22
When oil is spilled into aquatic systems, chemical dispersants frequently are applied to enhance emulsification and biological availability. In this study, a mammalian model system was used to determine the effect of Bonnie Light Nigerian crude oil, weathered for 2 d with continuous spraying and recirculation, and a widely used dispersant, Corexit (Cx) 9527, on intestinal microbial metabolism and associated populations. To determine the subchronic dose, concentrated or diluted (1:2, 1:5, 1:10, 1:20) Cx9527 or oil was administered by gavage to Fischer 344 rats and the effect on body weight was determined. Next, rats were treated for 5 wk with oil, dispersant, or dispersant + oil. Body and tissue weights, urine mutagenicity, and the impact on the intestinal microflora and three microbial intestinal enzymes linked to bioactivation were determined in the small and large intestines and cecum. Two tested dispersants, Cx9527 and Cx9500, were toxic in vitro (1:1,000 dilution), and oil was not mutagenic in strains TA98 and TA100(+/-S9). None of the treated rats produced urine mutagens detected by TA98 or TA100. Undiluted dispersant was lethal to rats, and weight changes were observed depending on the dilution, whereas oil generally was not toxic. In the 5-wk study, body and tissue weights were unaffected at the doses administered. Small-intestinal levels of azoreductase (AR), beta-glucuronidase (BG), and nitroreductase (NR) were considerably lower than cecal and large-intestinal activities at the same time point. A temporal increase in AR activity was observed in control animals in the 3 tissues examined, and large-intestinal BG activity was elevated in 3-wk controls. No significant changes in cecal BG activity were observed. Oil- or dispersant-treated rats had mixed results with reduced activity at 3 wk and elevated activity at 5 wk compared to controls. However, when the dispersant was combined with oil at 3 wk, a reduction in activity was observed that was similar to that of dispersant alone. One-week nitroreductase activity in the small intestine and cecum was unaffected in the three treatment groups, but elevated activity was observed in the large intestines of animals treated with oil or dispersant. The effect of the combination dose was not significantly different from the control value. Due to experimental error, no 3- or 5-wk NR data were available. By 5 wk of treatment, enterobacteria and enterococci were eliminated from ceca of oil-treated rats. When oil was administered in combination with dispersant, an apparent protective effect was observed on the enterococci and lactose-fermenting and nonfermenting enterobacteria. A more detailed analysis at the species level revealed qualitative differences dependent on the treatment. This study suggests that prolonged exposure of mammals to oil, dispersant, or in combination impacts intestinal metabolism, which ultimately could lead to altered detoxification of oil constituents and coexposed toxicants.
Wan, Mei-Hua; Li, Juan; Tang, Wen-Fu; Gong, Han-Lin; Chen, Guang-Yuan; Xue, Ping; Zhao, Xian-Lin; Xia, Qing
2011-09-01
To test the hypothesis "lung and large intestine are interior exteriorly related" through investgating into the effect of Dacheng qi tang (DCQT) on intra abdominal hypertension (IAH) and acute lung injury (ALI) in rats with acute pancreatitis. Male SD rats were randomly divided into three groups with ten rats for each group: rats with sham-operations (SO); rats with acute necrosis pancreatitis (ANP); rats with ANP plus DCQT treatment. ANP was induced by retrograde infusion of 5% taurocholic acid into pancreatic duct. Two hours after operations, 10 mL/kg of normal saline was orally adminstered to the rats in both SO and ANP groups, whereas 10 mL/kg DCQT was adminstered to the rats in the treatment group. Aterial blood, pancreas and lung tissues were collected for biomarkers and histopathology 24 hours after operations. Intra-abdominal pressure and intestinal propulsion rate were also measured. RESULTS; DCQT treatment reduced intra-abdominal pressure and improved intestinal propulsion rate compared with those treated with saline (P < 0.05). The ANP rats treated with DCQT had lower wet to dry weight ratio, and milder myeloperoxidase activity and histopathology changes in pancreas and lung than those treated with saline (P < 0.05). Higher pressure of oxygen (PO2) was found in the rats treated with DCQT, while no difference in PCO2 was found between the DCQT and ANP groups (P > 0.05). Only two rats in the ANP group died. DCQT can effectively relieve IAH and cure ALI at the same time in rats with acute pancreatitis. The result provides evidence to support the hypothesis "lung and large intestine are interior exteriorly related".
Dietary sodium gluconate protects rats from large bowel cancer by stimulating butyrate production.
Kameue, Chiyoko; Tsukahara, Takamitsu; Yamada, Kouji; Koyama, Hironari; Iwasaki, Yoshie; Nakayama, Keizo; Ushida, Kazunari
2004-04-01
Butyrate has an antitumorigenic effect on colorectal cancer cell lines. Dietary sodium gluconate (GNA) promotes butyrate production in the large intestine. Accordingly, we examined the effect of dietary GNA on tumorigenesis in the large intestine in rats. Male Fisher-344 rats (n = 32) were divided into 4 groups: 2 diets (with or without 50 g GNA/kg basal diet) x 2 treatments (with or without carcinogen administration). Colonic tumors were induced by 3 intraperitoneal injections of azoxymethane (15 mg/kg body wt, 1 time/wk) and dietary deoxycholic acid (2 g/kg basal diet). The experiment was conducted for 33 wk except for a few rats. Ingestion of GNA increased cecal butyrate concentration at the end of experiment (P < 0.01). No tumor development occurred in the untreated groups. Ingestion of GNA decreased the incidence of tumors in rats administered the carcinogen (37.5 vs. 100%, P < 0.05). Ingestion of GNA also decreased the mean number of tumors per rat (0.5 +/- 0.8 vs. 2.8 +/- 1.5, P < 0.01). beta-Catenin accumulation and TdT-mediated dUTP nick end labeling (TUNEL) positive cells in tumors were histochemically examined. The results of this study suggested that the antitumorigenic effect of GNA may involve the stimulation of apoptosis through enhanced butyrate production in the large intestine.
Miyake, Masateru; Koga, Toshihisa; Kondo, Satoshi; Yoda, Noriaki; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime
2017-01-01
An adequate evaluation system for drug intestinal absorption is essential in the pharmaceutical industry. Previously, we established a novel prediction system of drug intestinal absorption in humans, using the mini-Ussing chamber equipped with human intestinal tissues. In this system, the TI value was defined as the sum of drug amounts transported to the basal-side component (X corr ) and drug amounts accumulated in the tissue (T corr ), which are normalized by AUC of a drug in the apical compartment, as an index for drug absorption. In order to apply this system to the screening assay, it is important to understand the differences between animal and human tissues in the intestinal absorption of drugs. In this study, the transport index (TI) values of three drugs, with different levels of membrane permeability, were determined to evaluate the rank order of drug absorbability in intestinal tissues from rats, dogs, and monkeys. The TI values in small intestinal tissues in rats and dogs showed a good correlation with those in humans. On the other hand, the correlation of TI values in monkeys was lower compared to rats and dogs. The rank order of the correlation coefficient between human and investigated animal tissues was as follows: dog (r 2 =0.978), rat (r 2 =0.955), and monkey (r 2 =0.620). TI values in large intestinal tissues from rats (r 2 =0.929) and dogs (r 2 =0.808) also showed a good correlation. The obtained TI values in small intestinal tissues in rats and dogs were well correlated with the fraction of drug absorbed (F a ) in humans. From these results, the mini-Ussing chamber, equipped with intestinal tissues in rats and dogs, would be useful as a screening tool in the drug discovery stage. In addition, the obtained TI values can be used for the prediction of the F a in humans. Copyright © 2016 Elsevier B.V. All rights reserved.
van Berlo, C L; de Jonge, H R; van den Bogaard, A E; van Eijk, H M; Janssen, M A; Soeters, P B
1987-09-01
In recent hypotheses concerning the pathogenesis of hepatic encephalopathy, gamma-aminobutyric acid (GABA) is claimed to be produced by the colonic flora, although enzymes necessary to generate GABA have been reported to be present in intestinal mucosa. In this study, using normal and germ-free Wistar rats, we determined GABA levels and amino-grams of arterial blood and of venous effluent from small and large bowel. The data indicate that large and small intestinal mucosa significantly contribute to GABA production. In the fasted state GABA concentrations are greater in the venous effluent of the small bowel than in the venous effluent of the large bowel. Feeding increases the arterioportal differences, and uptake in the small bowel is still significantly higher than in the large bowel. This process is not, or can only be to a minor degree, bacterially mediated, because GABA production in the gut both in the fed and fasted state is of similar magnitude in germ-free and normal animals. gamma-Aminobutyric acid release correlates significantly with glutamine uptake in the small bowel of fasted rats. Only a small fraction of the glutamine taken up is needed to account for GABA release, so that conclusions concerning which amino acids may serve as precursors of GABA cannot be drawn. Further studies are needed to delineate the metabolic pathways leading to GABA synthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriesendorp, H.M.; Vigneulle, R.M.; Kitto, G.
1993-12-31
Rats receiving lethal irradiation to their exteriorized small intestine with pulsed 18 MVp bremsstrahlung radiation live about 4 days longer than rats receiving a dose of total-body irradiation (TBI) causing intestinal death. The LD50 for intestinal irradiation is approximately 6 Gy higher than the LD50 for intestinal death after TBI. Survival time after exteriorized intestinal irradiation can be decreased, by adding abdominal irradiation. Adding thoracic or pelvic irradiation does not alter survival time. Shielding of large intestine improves survival after irradiation of the rest of the abdomen while the small intestine is also shielded. The kinetics of histological changes inmore » small intestinal tissues implicate the release of humoral factors after irradiation of the abdomen. Radiation injury develops faster in the first (proximal) 40 cm of the small intestine and is expressed predominantly as shortening in villus height. In the last (distal) 40 cm of the small intestine, the most pronounced radiation effect is a decrease in the number of crypts per millimeter. Irradiation (20 Gy) of the proximal small intestine causes 92 % mortality (median survival 10 days). Irradiation (20 Gy) of the distal small intestine causes 27% mortality (median survival > 30 days). In addition to depletion of crypt stem cells in the small intestine, other issues (humoral factors, irradiated subsection of the small intestine and shielding of the large intestine) appear to influence radiation-induced intestinal mortality.« less
Differential Secretion of Satiety Hormones With Progression of Obesity in JCR: LA-corpulent Rats
Parnell, Jill A.; Reimer, Raylene A.
2013-01-01
Objective To characterize the gastrointestinal tract at the onset and in well-established obesity. Methods and Procedures Lean (+/?) and obese (cp/cp) male JCR:LA-cp rats lacking a functional leptin receptor were killed at 3.5 weeks and 9 months of age and plasma concentrations of satiety hormones determined. The small intestine, colon, and stomach were measured, weighed, and mRNA levels of satiety genes quantified. Results At the onset of obesity, obese rats had greater intestine, colon, and liver mass when adjusted for body weight compared to lean rats. Conversely, adult rats with established obesity had lower intestine and colon mass and length after adjustment for body weight. Early changes in gene expression included decreased ghrelin mRNA levels in stomach and increased peptide YY (PYY) mRNA levels in duodenum of young obese rats. After massive accumulation of adipose tissue had occurred, adult obese rats had increased proglucagon and ghrelin mRNA expression in the proximal intestine. In the distal small intestine, obese rats had lower proglucagon, ghrelin, and PYY mRNA levels. Finally, at the onset and in well-established obesity, obese rats had higher plasma insulin, amylin, glucagon like peptide-1 (GLP-1), and PYY, a finding, with the exception of insulin, unique to this model. Plasma total ghrelin levels were significantly lower at the onset of obesity and established obesity compared to the lean rats. Discussion Several defects are manifested in the obese gut early on in the disease before the accumulation of large excesses of body fat and represent potential targets for early intervention in obesity. PMID:18239578
Zhang, Hailong; Huang, Xiaoyan; Zhang, Yongjing; Gao, Yang
2017-03-01
Oral bioavailability of some hydrophilic therapeutic macromolecules was very poor, thus leading to their limited application in clinic. To investigate the efficacy, safety and mechanism of HP-β-CD-PEI polymers on the intestinal absorption of some poorly absorbable drugs in rats. Effects of HP-β-CD-PEI polymers on the intestinal absorptions of drugs were investigated by an in situ closed loop method in rats. The safety of HP-β-CD-PEI polymer was evaluated by measurement of lactate dehydrogenase (LDH) activity and amount of protein released from rat intestinal perfusate. The absorption enhancing mechanisms were explored by the measurement of zeta potential, transepithelial electrical resistance (TEER) and in vitro transport of FD4 (a paracellular marker) across rat intestinal membranes, respectively. HP-β-CD-PEI polymers, especially HP-β-CD-PEI 1800 , demonstrated excellent absorption enhancing effects on drug absorption in a concentration-dependent manner and the enhancing effect was more efficient in the small intestine than that in the large intestine. Five percent (w/v) HP-β-CD-PEI 1800 obviously decreased the TEER, accompanied with increase in the intestinal transport of FD4, indicating that absorption enhancing actions of HP-β-CD-PEI polymers were possibly performed by loosening tight junctions of intestinal epithelium cells, thereby increasing drug permeation via a paracellular pathway. A good liner relationship between absorption enhancing effects of HP-β-CD-PEI polymers and their zeta potentials suggested the contribution of positive charge on the surface of these polymers to their absorption enhancing effects. HP-β-CD-PEI polymers might be potential and safe absorption enhancers for improving oral delivery of poorly absorbable macromolecules including peptides and proteins.
Miazza, B M; Al-Mukhtar, M Y; Salmeron, M; Ghatei, M A; Felce-Dachez, M; Filali, A; Villet, R; Wright, N A; Bloom, S R; Crambaud, J C
1985-01-01
Beside intraluminal factors, humoral agents play an important role in intestinal adaptation. Enteroglucagon, the mucosal concentration of which is maximal in the terminal ileum and colon, is the strongest candidate for the role of small intestinal mucosal growth factor. The present experiment was designed to study the role of colonic enteroglucagon in stimulating mucosal growth in rats with a normal small intestine. After eight days of glucose large bowel perfusion, enteroglucagon plasma concentrations were 120.7 +/- SEM 9.2 pmol/l, versus 60.1 +/- 6.8 in mannitol perfused control rats (p less than 0.001). Gastrin, cholecystokinin, neurotensin, pancreatic glucagon, and insulin plasma concentrations were unchanged. Crypt cell proliferation, measured by the vincristine metaphase arrest technique, increased significantly in the small intestine of glucose perfused animals (p less than 0.005-0.001) in comparison with the controls. This resulted in a greater mucosal mass in both proximal and distal small bowel: mucosal wet weight, DNA, protein and alpha D-glucosidase per unit length intestine were all significantly higher (p less than 0.05-0.001) than in mannitol perfused rats. Our data, therefore, support the hypothesis that enteroglucagon is an enterotrophic factor and stress the possible role of the colon in the regulation of small bowel trophicity. PMID:3996942
Surgical Anatomy of the Gastrointestinal Tract and Its Vasculature in the Laboratory Rat
Vdoviaková, Katarína; Petrovová, Eva; Maloveská, Marcela; Krešáková, Lenka; Teleky, Jana; Elias, Mario Zefanias Joao; Petrášová, Darina
2016-01-01
The aim of this study was to describe and illustrate the morphology of the stomach, liver, intestine, and their vasculature to support the planning of surgical therapeutic methods in abdominal cavity. On adult Wistar rats corrosion casts were prepared from the arterial system and Duracryl Dental and PUR SP were used as a casting medium and was performed macroscopic anatomical dissection of the stomach, liver, and intestine was performed. The rat stomach was a large, semilunar shaped sac with composite lining. On the stomach was very marked fundus, which formed a blind sac (saccus cecus). The rat liver was divided into six lobes, but without gall bladder. Intestine of the rat was simple, but cecum had a shape as a stomach. The following variations were observed in the origin of the cranial mesenteric artery. On the corrosion cast specimens we noticed the presence of the anastomosis between middle colic artery (a. colica media) and left colic artery (a. colica sinistra). We investigated the second anastomosis between middle colic artery and left colic artery. The results of this study reveal that the functional anatomical relationship between the rat stomach, liver and intestine is important for the development of surgical research in human and veterinary medicine. PMID:26819602
Dreon, Marcos S; Fernández, Patricia E; Gimeno, Eduardo J; Heras, Horacio
2014-06-01
The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF) ingestion on the rat small intestine morphology and physiology. Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days. Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to the toxic effect of plant antipredator strategies. This defense mechanism may explain the near absence of predators of apple snail eggs.
Rat immunoreactive cholecystokinin (CCK): characterization using two chromatographic techniques.
Bacarese-Hamilton, A J; Adrian, T E; Chohan, P; Bloom, S R
1985-06-01
Acid and neutral extracts of rat cerebral cortex and upper small intestine were prepared and the endogenous concentrations of cholecystokinin-like immunoreactivity (CCK-LI) measured by three new CCK-specific radioimmunoassays. The characterization of the immunoreactive CCK molecular forms was undertaken using gel permeation chromatography in the presence of 6 M urea to minimise problems relating to peptide adsorption or aggregation. Reverse-phase high-performance liquid chromatography (HPLC) was also performed on the rat tissue extracts. Rat cortex contained 268 +/- 12 pmol/g CCK-LI, and over 90% resembled the sulphated CCK-8, which was preferentially extracted at neutral pH. In contrast, the rat upper small intestine (97 +/- 8 pmol/g of CCK-LI) contained less than 20% CCK-8, the majority of immunoreactive CCK being of larger molecular size and being preferentially extracted at acid pH. In the small intestine the predominant molecular form(s) was intermediate in size between CCK-33 and CCK-8. Large amounts of CCK-33 and of a molecular form larger than CCK-33 were also detected. It is concluded that post-translational cleavage of CCK differs in rat brain and gut.
Analysis of the "endocannabinoidome" in peripheral tissues of obese Zucker rats.
Iannotti, F A; Piscitelli, F; Martella, A; Mazzarella, E; Allarà, M; Palmieri, V; Parrella, C; Capasso, R; Di Marzo, V
2013-08-01
The endocannabinoid system (ECS) represents one of the major determinants of metabolic disorders. We investigated potential changes in the endogenous levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) in some peripheral organs and tissues of obese Zucker(fa/fa) and lean Zucker(fa/+) rats by qPCR, liquid chromatography mass spectrometry, western blot and enzymatic activity assays. At 10-12 weeks of age AEA levels were significantly lower in BAT, small intestine and heart and higher in soleus of Zucker(fa/fa) rats. In this tissue, also the expression of CB1 receptors was higher. By contrast in Zucker(fa/fa) rats, 2-AG levels were changed (and lower) solely in the small and large intestine. Finally, in Zucker(fa/fa), PEA levels were unchanged, whereas OEA was slightly lower in BAT, and higher in the large intestine. Interestingly, these differences were accompanied by differential alterations of the genes regulating ECS tone. In conclusion, the levels of endocannabinoids are altered during obesity in a way partly correlating with changes of the genes related to their metabolism and activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Khayyal, Mohamed T; Abdel-Naby, Doaa H; Abdel-Aziz, Heba; El-Ghazaly, Mona A
2014-09-25
Intestinal mucositis is a common adverse effect in patients undergoing radiotherapy and constitutes a treatment-limiting condition. Since no agents are yet known that can adequately guard against its development, the search continues to find safe and effective measures. The present study was intended to investigate whether the herbal preparation, STW 5, could offer a potentially effective agent in this respect. Intestinal mucositis was induced in rats by exposing them to whole body gamma-irradiation (6 Gy). Rats were treated orally with STW 5 (5 or 10 ml/kg) for five days before and two days after irradiation. One day later, rats were sacrificed and segments of small intestine were examined histologically. Intestinal homogenates and serum samples were used to assess relevant parameters for apoptosis and different markers for inflammation and oxidative stress. Exposure to radiation produced dose-dependent extents of intestinal injury associated with apoptotic changes with high radiation levels. Apoptosis was associated with an increase in cytosolic calcium, depletion of mitochondrial cytochrome c, B-cell lymphoma-2 and complex I. Oxidative stress parameters (reduced glutathione, thiobarbituric acid reactive substance and total nitrate/nitrite) were deranged. Inflammation markers (tumor necrosis factor and myeloperoxidase) and indices of intestinal damage (serum diamine oxidase) were increased. STW 5 protected to a large extent against histological changes and counteracted the deranged parameters. The findings provide experimental evidence for the potential beneficial use of STW5 in protecting against the development of radiation-induced intestinal mucositis and associated changes in tissue biomarkers. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.
Some pharmacological properties of uridine nucleotides
Smith, M. W.
1964-01-01
Uridine di-, tri- and monophosphates (UDP, UTP and UMP) contracted the goldfish intestine preparation in that order of decreasing potency. Adenosine triphosphate (ATP) sensitized the gut to UTP and UDP but not to UMP. The fluoro-derivatives of UMP and UTP behaved like the unsubstituted nucleotides on the goldfish intestine but the main effect of 6-azaUDP and large amounts of uracil and uridine was to cause a relaxation. Structure-action relationships are discussed on the basis of these findings. UDPglucose and UDPacetylglucosamine each contracted the goldfish intestine but they were 500-times less active than UDP. Other smooth muscle preparations (tortoise jejunum, rat uterus, guinea-pig ileum and the fowl rectal caecum) contracted to UTP and UDP, but large amounts were needed. The cardiovascular effects in rats of UMP, UDP and UTP were complex and mediated mainly through an action on the peripheral blood vessels. In rats treated with phenoxybenzamine, UMP raised the blood pressure while UDP and UTP first lowered then raised the blood pressure. The fall in blood pressure was not abolished by pronethalol or atropine. The uridine phosphates affected the rat isolated heart only under hypoxic conditions. UTP and UDP dilated the blood vessels of the rabbit ear and UTP was six-times more effective than ATP. UTP and UDP were equiactive in increasing the force of beat of the frog isolated heart. UMP also had an effect if large amounts were given. PMID:14190461
Chen, Bixiao; Morioka, Sahya; Nakagawa, Tomoyuki; Hayakawa, Takashi
2016-10-01
The effect of resistant starch (RS) and konjac mannan (KM) to maintain and improve the large intestinal environment was compared. Wistar SPF rats were fed the following diets for 4 weeks: negative control diet (C diet), tyrosine-supplemented positive control diet (T diet), and luminacoid supplemented diets containing either high-molecular konjac mannan A (KMAT diet), low-molecular konjac mannan B (KMBT diet), high-amylose cornstarch (HAST diet), or heat-moisture-treated starch (HMTST diet). The luminacoid-fed group had an increased content of short-chain fatty acids in the cecum. HAS caused a significant decrease in p-cresol content in the cecum, whereas KM did not. Urinary p-cresol was reduced in the HAST group compared with the T group, but not the KM fed groups. Deterioration in the large intestinal environment was only improved completely in the HAST and HMTST groups, suggesting that RS is considerably more effective than KM in maintaining the large intestinal environment.
Nam, Joon; Kim, Wooseong; Lee, Sunyoung; Jeong, Seongkeun; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin
2016-01-01
Local anesthetics have beneficial effects on colitis. Dextran-5-(4-ethoxycarbonylphenylazo)salicylic acid ester (Dex-5-ESA), designed as a polymeric colon-specific prodrug liberating 5-ASA and benzocaine in the large intestine, was prepared and its therapeutic activity against colitis was evaluated using a TNBS-induced rat colitis model. Dex-5-ESA liberated 5-ASA and benzocaine in the cecal contents while (bio)chemically stable in the small intestinal contents and mucosa. Oral administration of Dex-5-ESA (equivalent to 10 mg 5-ASA/kg, twice a day) alleviated colonic injury and reduced MPO activity in the inflamed colon. In parallel, pro-inflammatory mediators, COX-2, iNOS and CINC-3, elevated by TNBS-induced colitis, were substantially diminished in the inflamed colon. Dex-5-ESA was much more effective for the treatment of colitis than 5-(4-ethoxycarbonylphenylazo)salicylic acid (5-ESA) that may not deliver benzocaine to the large intestine. Our data suggest that Dex-5-ESA is a polymeric colon-specific prodrug, liberating 5-ASA and benzocaine in the target site (large intestine), probably exerting anti-colitic effects by combined action of 5-ASA and benzocaine.
Glisić, Radmila; Koko, Vesna; Todorović, Vera; Drndarević, Neda; Cvijić, Gordana
2006-09-11
The aim of our study was to investigate the morphological, immunohistochemical and ultrastructural changes of rat serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2 mg/kg dexamethasone, rats developed diabetes similar to human diabetes type 2. Stomach, small and large intestines were examined. Large serotonin positive EC cells appeared in the corpus mucosa epithelium of D group of rats, although these cells were not present in control (C) rats. Both volume fraction and the number of EC cells per mm(2) of mucosa were significantly increased only in the duodenum. However, the number of EC cells per circular sections of both antrum and small intestine was increased, but reduced both in the ascending and descending colon in D group. The dexamethasone treatment caused a strong reduction in number of granules in the antral EC cells, while it was gradually increased beginning from the jejunum to descending colon. The mean granular content was reduced in the antral EC cells but increased in the jejunal EC cells in D group. In conclusion, the present study showed that morphological changes in gut serotonin-producing EC cells occurred in diabetic rats.
Yao, Wanling; Yang, Chaoxue; Wen, Yanqiao; Zhang, Wangdong; Zhang, Xiaosong; Ma, Qi; Ji, Peng; Hua, Yongli; Wei, Yanming
2017-04-18
Yujin Powder (YJP), an old prescription, is one of the most classical prescription for treating the large intestine dampness-heat syndrome (LIDHS). However, its potential modern pharmacological mechanisms remain unclear. The present study was designed to explore the essence of LIDHS and treatment mechanisms of the YJP on the LIDHS. The rat model of LIDHS was established by such complex factors as high-sugar and high-fat diet, improper diet, high temperature and humidity environment (HTHE), drinking and intraperitoneal injection of Escherichia coli., which imitated the inducing conditions of LIDHS. Then the clinical symptoms and signs, blood routine, blood biochemistry, whole blood viscosity (WBV), serum inflammatory cytokines levels and the histopathological changes of main organs were detected and observed, respectively. The results showed that the clinical symptoms and signs of the model rats were consistent with the diagnostic criteria of LIDHS, moreover, there were obvious systemic inflammatory response and extensive congestion. And after treatment with YJP in different dosages, the clinical symptoms and signs of the rats with LIDHS were improved; the indexes of blood routine and blood biochemistry and inflammatory cytokines levels tended to be normal; the WBV decreased and histopathological changes of major organs were alleviated or returned to normal. There was an obvious dose-effect relationship, and the high dose of YJP (HD-YJP) had the best treatment effects. These results suggested that in LIDHS, diarrhea was the major clinical manifestation; the large intestine was the main lesion area; mucosa injury, inflammation and congestion of the large intestine with systemic inflammatory response and congestion were the most typical pathological characteristics. Meanwhile, YJP exhibited the comprehensive effects of anti-diarrhea, anti-inflammation, lowering blood lipid, relieving blood stasis, repairing intestinal mucosa and regulation and protection of multiple organs on LIDHS. These findings provided not only important information for understanding the essence of LIDHS but also the theoretical basis for developing new-drugs for treating dampness-heat type of diarrheal diseases. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Corticosterone mediates stress-related increased intestinal permeability in a region-specific manner
Zheng, Gen; Wu, Shu-Pei; Hu, Yongjun; Smith, David E; Wiley, John W.; Hong, Shuangsong
2012-01-01
Background Chronic psychological stress (CPS) is associated with increased intestinal epithelial permeability and visceral hyperalgesia. It is unknown whether corticosterone (CORT) plays a role in mediating alterations of epithelial permeability in response to CPS. Methods Male rats were subjected to 1-hour water avoidance (WA) stress or subcutaneous CORT injection daily for 10 consecutive days in the presence or absence of corticoid-receptor antagonist RU-486. The visceromotor response (VMR) to colorectal distension (CRD) was measured. The in situ single-pass intestinal perfusion was used to measure intestinal permeability in jejunum and colon simultaneously. Key Results We observed significant decreases in the levels of glucocorticoid receptor (GR) and tight junction proteins in the colon but not the jejunum in stressed rats. These changes were largely reproduced by serial CORT injections in control rats and were significantly reversed by RU-486. Stressed and CORT-injected rats demonstrated a 3-fold increase in permeability for PEG-400 (MW) in colon but not jejunum and significant increase in VMR to CRD, which was significantly reversed by RU-486. In addition, no differences in permeability to PEG-4,000 and PEG-35,000 were detected between control and WA groups. Conclusions & Inferences Our findings indicate that CPS was associated with region-specific decrease in epithelial tight junction protein levels in the colon, increased colon epithelial permeability to low-molecular weight macromolecules which were largely reproduced by CORT treatment in control rats and prevented by RU-486. These observations implicate a novel, region-specific role for CORT as a mediator of CPS-induced increased permeability to macromolecules across the colon epithelium. PMID:23336591
WANG, Chao; ZHANG, Ruiming; ZHOU, Le; HE, Jintian; HUANG, Qiang; SIYAL, Farman A; ZHANG, Lili; ZHONG, Xiang; WANG, Tian
2017-01-01
Intrauterine growth retardation (IUGR) impairs fetal intestinal development, and is associated with high perinatal morbidity and mortality. However, the mechanism underlying this intestinal injury is largely unknown. We aimed to investigate this mechanism through analysis of intestinal autophagy and related signaling pathways in a rat model of IUGR. Normal weight (NW) and IUGR fetuses were obtained from primiparous rats via ad libitum food intake and 50% food restriction, respectively. Maternal serum parameters, fetal body weight, organ weights, and fetal blood glucose were determined. Intestinal apoptosis, autophagy, and the mechanistic target of rapamycin (mTOR) signaling pathway were analyzed. The results indicated that maternal 50% food restriction reduced maternal serum glucose, bilirubin, and total cholesterol and produced IUGR fetuses, which had decreased body weight; blood glucose; and weights of the small intestine, stomach, spleen, pancreas, and kidney. Decreased Bcl-2 and increased Casp9 mRNA expression was observed in IUGR fetal intestines. Analysis of intestinal autophagy showed that the mRNA expression of WIPI1, MAP1LC3B, Atg5, and Atg14 was also increased, while the protein levels of p62 were decreased in IUGR fetuses. Compared to NW fetuses, IUGR fetuses showed decreased mTOR protein levels and enhanced mRNA expression of ULK1 and Beclin1 in the small intestine. In summary, the results indicated that maternal 50% food restriction on gestational days 10–21 reduced maternal serum glucose, bilirubin, and total cholesterol contents, and produced IUGR fetuses that had low blood glucose and reduced small intestine weight. Intestinal injury of IUGR fetuses caused by maternal food restriction might be due to enhanced apoptosis and autophagy via the mTOR signaling pathway. PMID:28855439
Kaji, Izumi; Karaki, Shin-ichiro; Fukami, Yasuyuki; Terasaki, Masaki; Kuwahara, Atsukazu
2009-05-01
Taste transduction molecules, such as Galpha(gust), and taste receptor families for bitter [taste receptor type 2 (T2R)], sweet, and umami, have previously been identified in taste buds and the gastrointestinal (GI) tract; however, their physiological functions in GI tissues are still unclear. Here, we investigated the physiological function and expression of T2R in human and rat large intestine using various physiological and molecular biological techniques. To study the physiological function of T2R, the effect of a bitter compound, 6-n-propyl-2-thiouracil (6-PTU), on transepithelial ion transport was investigated using the Ussing chamber technique. In mucosal-submucosal preparations, mucosal 6-PTU evoked Cl(-) and HCO(3)(-) secretions in a concentration-dependent manner. In rat middle colon, levels of 6-PTU-evoked anion secretion were higher than in distal colon, but there was no such difference in human large intestine. The response to 6-PTU was greatly reduced by piroxicam, but not by tetrodotoxin. Additionally, prostaglandin E(2) concentration-dependently potentiated the response to 6-PTU. Transcripts of multiple T2Rs (putative 6-PTU receptors) were detected in both human and rat colonic mucosa by RT-PCR. In conclusion, these results suggest that the T2R ligand, 6-PTU, evokes anion secretion, and such response is regulated by prostaglandins. This luminal bitter sensing mechanism may be important for host defense in the GI tract.
Hirotani, Yoshihiko; Ikeda, Takuya; Ikeda, Kenji; Yamamoto, Kaoru; Onda, Mitsuko; Arakawa, Yukio; Li, Jun; Kitamura, Kazuyuki; Kurokawa, Nobuo
2007-09-01
We examined the effects of Hachimi-jio-gan (HJ) on the small intestinal function in streptozotocin (STZ)-induced diabetic rats. The rats had free access to pellets containing 1% HJ extract powder for 4 weeks after STZ administration. The intestinal disaccharidase (sucrase and maltase) activity was elevated in STZ-treated rats compared with control rats, whereas it was significantly reduced by HJ administration. This suggested that HJ suppresses or delays monosaccharide production in the small intestinal epithelium. In addition, the intestinal mucosal weights and DNA contents that were significantly increased in the STZ-treated rats were restrained to the control level by HJ treatment. Simultaneously, we examined the changes in the plasma levels of glucagon-like peptide 2 (GLP-2), which is a trophic factor specific for the intestine. The plasma GLP-2 levels significantly increased in the STZ-treated rats, whereas HJ decreased the plasma GLP-2 levels. Thus intestinal mucosal weights and DNA contents correlated with plasma GLP-2 levels in diabetes-associated bowel growth. These results suggest that HJ may normalize or suppress the small intestinal disaccharidase activity and the epithelial cell proliferation mediated by GLP-2 in the animal model rats.
Lee, Yeonmi; Yoshitsugu, Reika; Kikuchi, Keidai; Joe, Ga-Hyun; Tsuji, Misaki; Nose, Takuma; Shimizu, Hidehisa; Hara, Hiroshi; Minamida, Kimiko; Miwa, Kazunori; Ishizuka, Satoshi
2016-08-01
Intestinal bacteria are involved in bile acid (BA) deconjugation and/or dehydroxylation and are responsible for the production of secondary BA. However, an increase in the production of secondary BA modulates the intestinal microbiota due to the bactericidal effects and promotes cancer risk in the liver and colon. The ingestion of Bacillus coagulans improves constipation via the activation of bowel movement to promote defaecation in humans, which may alter BA metabolism in the intestinal contents. BA secretion is promoted with high-fat diet consumption, and the ratio of cholic acid (CA):chenodeoxycholic acid in primary BA increases with ageing. The dietary supplementation of CA mimics the BA environment in diet-induced obesity and ageing. We investigated whether B. coagulans lilac-01 and soya pulp influence both BA metabolism and the maintenance of host health in CA-supplemented diet-fed rats. In CA-fed rats, soya pulp significantly increased the production of secondary BA such as deoxycholic acid and ω-muricholic acids, and soya pulp ingestion alleviated problems related to plasma adiponectin and gut permeability in rats fed the CA diet. The combination of B. coagulans and soya pulp successfully suppressed the increased production of secondary BA in CA-fed rats compared with soya pulp itself, without impairing the beneficial effects of soya pulp ingestion. In conclusion, it is possible that a combination of prebiotics and probiotics can be used to avoid an unnecessary increase in the production of secondary BA in the large intestine without impairing the beneficial functions of prebiotics.
Cui, L; Takagi, Y; Wasa, M; Iiboshi, Y; Khan, J; Nezu, R; Okada, A
1997-09-01
Synthesis of inducible nitric oxide synthase (iNOS) in the intestine may result in local tissue damage. We investigated whether a challenge with interleukin-1alpha could give rise to intestinal iNOS expression and diarrhea in rats of differing zinc status. Weaning male rats were fed a zinc-deficient (ZD) diet (2 mg zinc/kg) for 4 wk to induce zinc deficiency or a zinc-supplemented diet [50.8 mg zinc/kg; controls, including pair-fed (PF ) and ad libitum (AL) consumption groups], and then subcutaneously injected with interleukin-1alpha (2 x 10(7) units/kg body wt). Without the interleukin-1alpha challenge, ZD rats had significantly lower plasma zinc concentration than the other groups. Intestinal metallothionein-1 mRNA abundance was lower in ZD rats than in AL rats. iNOS was expressed in the intestine of ZD rats but not in the others. None of the rats experienced diarrhea during the feeding period. Interleukin-1alpha led to a reduction in plasma zinc concentration, enhancement in intestinal metallothionein-1 mRNA levels, and expression of the intestinal iNOS gene in all groups. However, the abundance of iNOS mRNA was significantly higher in ZD rats than in the other groups. The presence of iNOS protein was demonstrated by immunohistochemical staining in the intestine of ZD rats that had been treated with interleukin-1alpha 12 h earlier. In addition, diarrhea occurred in most of the ZD rats and some of the PF rats but not in AL rats after interleukin-1alpha treatment. We conclude that ZD rats respond to interleukin-1alpha challenge more severely than controls, reflected by a more marked and prolonged iNOS expression and a greater incidence of diarrhea.
Dietary L-arginine supplementation reduces Methotrexate-induced intestinal mucosal injury in rat.
Koppelmann, Tal; Pollak, Yulia; Mogilner, Jorge; Bejar, Jacob; Coran, Arnold G; Sukhotnik, Igor
2012-04-30
Arginine (ARG) and nitric oxide maintain the mucosal integrity of the intestine in various intestinal disorders. In the present study, we evaluated the effects of oral ARG supplementation on intestinal structural changes, enterocyte proliferation and apoptosis following methotrexate (MTX)-induced intestinal damage in a rat. Male rats were divided into four experimental groups: Control rats, CONTR-ARG rats, were treated with oral ARG given in drinking water 72 hours before and 72 hours following vehicle injection, MTX rats were treated with a single dose of methotrexate, and MTX-ARG rats were treated with oral ARG following injection of MTX. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. RT-PCR was used to determine bax and bcl-2 mRNA expression. MTX-ARG rats demonstrated greater jejunal and ileal bowel weight, greater ileal mucosal weight, greater ileal mucosal DNA and protein levels, greater villus height in jejunum and ileum and crypt depth in ileum, compared to MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-ARG rats (vs MTX) was accompanied by decreased bax mRNA and protein expression and increased bcl-2 protein levels. Treatment with oral ARG prevents mucosal injury and improves intestinal recovery following MTX- injury in the rat.
Horie, T; Matsumoto, H; Kasagi, M; Sugiyama, A; Kikuchi, M; Karasawa, C; Awazu, S; Itakura, Y; Fuwa, T
1999-08-01
The methotrexate (MTX) administration to rats causes the damage of small intestine. The small intestinal damage was evaluated by measuring the intestinal permeability of the poorly absorbable compound, fluorescein isothiocyanate (FITC)-labeled dextran (average molecular weight, 4,400) (FD-4) using the in vitro everted intestine technique and by determining the FD-4 that appeared in plasma using the in situ closed loop intestine technique. The MTX administration to rats fed with the standard laboratory diet increased the small intestinal permeability of FD-4 due to the damage of the small intestine. Interestingly, the permeability of FD-4, when MTX was administered to rats fed with the aged garlic extract containing diet, was depressed almost to the level of control rats without the MTX treatment. The present study showed that the aged garlic extract protected the small intestine from the damage induced by the action of MTX on the crypt cells.
Oztürk, Hayrettin; Dokucu, Ali Ihsan; Yağmur, Yusuf; Sari, Ibrahim
2002-09-01
To evaluate whether L-arginine methyl ester (L-Arg) can improve the structure of the small intestine and enhance adaptation in an experimental model of short-bowel syndrome (SBS), 40 Sprague-Dawley rats were divided randomly into four groups of 10 each. In one group only a laparotomy was performed (G1). The remaining 30 rats underwent 90% small-bowel resection (SBR) and formed the three experimental groups: the SBR/untreated group (G2), the SBR/L-NAME-treated group (G3), and the SBR/ L-Arg-treated group (G4). Rats in G2 received no therapeutic treatment. Rats in the SBR/L-NAME and SBR/L-Arg treated groups received N-G-nitro-L-arginine-methyl ester (L-NAME) and L-Arg intraperitoneally for 3 weeks, respectively. The animals were weighed daily. All rats underwent a relaparotomy on day 21 of the experiment. Remnant small bowel was excised and evaluated for villus height and crypt cell mitoses. After the 90% SBR, all animals had from diarrhea and weight loss between the 1st and 6th postoperative days (POD). The body weight of the SBR/L-Arg group showed significant increases at POD 10 and 21 in comparison to the SBR/untreated and SBR/L-NAME groups (P < 0.001). The rats treated with L-Arg had significantly greater villus height and crypt-cell mitoses compared to the other groups (P < 0.0001, P < 0.001). These observations suggest that L-Arg treatment increases villus height and crypt-cell mitoses after massive SBR and may play a considerable role in the mucosal adaptive response in SBS in rats.
[Effect of rat intestinal flora on in vitro metabolic transformation of pumiloside].
Fang, Hui; Li, Meng-Xuan; Li, Hai-Bo; Liu, Wen-Jun; Meng, Zhao-Qing; Huang, Wen-Zhe; Wang, Zhen-Zhong; Xiao, Wei
2016-05-01
To study the metabolic transformation of pumiloside by rat intestinal flora in vitro and identify its metabolites. Pumiloside was incubated in the rat intestinal flora in vitro. HPLC was used to monitor the metabolic process, and HPLC-Q-TOF-MS was used to identify the structures of biotransformation products. In vitro, pumiloside was easily metabolized by rat intestinal flora, and with the prolongation of metabolic time, pumiloside was transformed into several metabolites. Three metabolites were initially identified in this experiment. The study indicated that pumiloside could be extensively metabolized in the rat intestinal flora in vitro. Copyright© by the Chinese Pharmaceutical Association.
PROMOTION OF TRIHALOMETHANE-INDUCED COLON, ABERRANT CRYPT FOCI (ACF) BY A HIGH FAT DIET
Abstract:
Bromodichloromethane (BOCM) and tribromomethane (TBM) enhanced neoplasia in the large intestine of rats when given by corn oil gavage; BOCM in the drinking water to male rats did not induce colon tumors, but did increase liver tumors. However, TBM and a mixture o...
van der Heijden, Karin M.; van der Heijden, Inneke M.; Galvao, Flavio H.; Lopes, Camila G.; Costa, Silvia F.; Abdala, Edson; D’Albuquerque, Luiz A.; Levin, Anna S.
2014-01-01
The objectives of this study were to develop a rat model of gastrointestinal colonization with vancomycin-resistant Enterococcus faecalis (VRE) and extended-spectrum beta-lactamase (ESBL)-producing E. coli and to evaluate intestinal translocation to blood and tissues after total and partial hepatic ischemia. Methods - We developed a model of rat colonization with VRE and ESBL-E coli. Then we studied four groups of colonized rats: Group I (with hepatic pedicle occlusion causing complete liver ischemia and intestinal stasis); Group II (with partial liver ischemia without intestinal stasis); Group III (surgical manipulation without hepatic ischemia or intestinal stasis); Group IV (anesthetized without surgical manipulation). After sacrifice, portal and systemic blood, large intestine, small intestine, spleen, liver, lungs, and cervical and mesenteric lymph nodes were cultured. Endotoxin concentrations in portal and systemic blood were determined. Results – The best inocula were: VRE: 2.4×1010 cfu and ESBL-E. coli: 1.12×1010 cfu. The best results occurred 24 hours after inoculation and antibiotic doses of 750 µg/mL of water for vancomycin and 2.1 mg/mL for ceftriaxone. There was a significantly higher proportion of positive cultures for ESBL-E. coli in the lungs in Groups I, II and III when compared with Group IV (67%; 60%; 75% and 13%, respectively; p:0.04). VRE growth was more frequent in mesenteric lymph nodes for Groups I (67%) and III (38%) than for Groups II (13%) and IV (none) (p:0.002). LPS was significantly higher in systemic blood of Group I (9.761±13.804 EU/mL−p:0.01). No differences for endotoxin occurred in portal blood. Conclusion –We developed a model of rats colonized with resistant bacteria useful to study intestinal translocation. Translocation occurred in surgical procedures with and without hepatic ischemia-reperfusion and probably occurred via the bloodstream. Translocation was probably lymphatic in the ischemia-reperfusion groups. Systemic blood endotoxin levels were higher in the group with complete hepatic ischemia. PMID:25255079
Kerem, Mustafa; Salman, Bulent; Pasaoglu, Hatice; Bedirli, Abdulkadir; Alper, Murat; Katircioglu, Hikmet; Atici, Tahir; Percin, E Ferda; Ofluoglu, Ebru
2008-07-28
To evaluate the effects of chlorella crude extract (CCE) on intestinal adaptation in rats subjected to short bowel syndrome (SBS). Wistar rats weighing 230-260 g were used in the study. After anesthesia a 75% small bowel resection was performed. Rats were randomized and divided into groups. Control group (n = 10): where 5% dextrose was given through a gastrostomy tube, Enteral nutrition (EN) group (n = 10): Isocaloric and isonitrogen EN (Alitraq, Abbott, USA), study group (n = 10): CCE was administrated through a gastrostomy tube. Rats were sacrificed on the fifteenth postoperative day and blood and tissue samples were taken. Histopathologic evaluation, intestinal mucosal protein and DNA levels, intestinal proliferation and apoptosis were determined in intestinal tissues, and total protein, albumin and citrulline levels in blood were studied. In rats receiving CCE, villus lengthening, crypt depth, mucosal DNA and protein levels, intestinal proliferation, and serum citrulline, protein and albumin levels were found to be significantly higher than those in control group. Apoptosis in CCE treated rats was significantly reduced when compared to EN group rats. CCE has beneficial effects on intestinal adaptation in experimental SBS.
Hoque, Tafazzal; Bhogal, Meetu; Boghal, Meetu; Webb, Rodney A
2007-12-01
The non-invasive parasitic cestode Hymenolepis diminuta induces hypertrophy, hyperplasia and other changes in cell activity in the intestine of rats which are indicated in the expression of mRNA. We have investigated various house-keeping genes (GAPDH, beta-actin, 18S and HPRT) and other internal controls (total RNA/unit biomass, total RNA/unit length of intestine) to validate gene expression in the rat intestine after cestode infection and drug-induced neuromodulation. Variation in GAPDH, beta-actin, 18S and HPRT expression was observed in rat jejunal tissue according to treatment. Total RNA/unit length of intestine was found to be the most suitable internal control for normalizing target gene mRNA expression in both infected and/or drug-induced rat intestine. This normalization method may be applied to studies of gene expression levels in intestinal tissue where hypertrophy, hyperplasia, rapid growth and cell differentiation generally occur.
Dietary L-arginine supplementation reduces Methotrexate-induced intestinal mucosal injury in rat
2012-01-01
Background Arginine (ARG) and nitric oxide maintain the mucosal integrity of the intestine in various intestinal disorders. In the present study, we evaluated the effects of oral ARG supplementation on intestinal structural changes, enterocyte proliferation and apoptosis following methotrexate (MTX)-induced intestinal damage in a rat. Methods Male rats were divided into four experimental groups: Control rats, CONTR-ARG rats, were treated with oral ARG given in drinking water 72 hours before and 72 hours following vehicle injection, MTX rats were treated with a single dose of methotrexate, and MTX-ARG rats were treated with oral ARG following injection of MTX. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. RT-PCR was used to determine bax and bcl-2 mRNA expression. Results MTX-ARG rats demonstrated greater jejunal and ileal bowel weight, greater ileal mucosal weight, greater ileal mucosal DNA and protein levels, greater villus height in jejunum and ileum and crypt depth in ileum, compared to MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-ARG rats (vs MTX) was accompanied by decreased bax mRNA and protein expression and increased bcl-2 protein levels. Conclusions Treatment with oral ARG prevents mucosal injury and improves intestinal recovery following MTX- injury in the rat. PMID:22545735
Hirotani, Yoshihiko; Mikajiri, Kyoko; Ikeda, Kenji; Myotoku, Michiaki; Kurokawa, Nobuo
2008-09-01
Peptide YY (PYY) is produced by endocrine cells in the lower gastrointestinal tract. The main functions of PYY are antisecretory effects in the colon and inhibition of gastrointestinal motility. We chose PYY as an index of the intrinsic factor in diarrhea and examined the influence of changes induced in a diarrhea rat model by administration of 4 types of laxative and loperamide hydrochloride (loperamide) as an agent for the treatment of diarrhea. A specific radioimmunoassay was performed to determine plasma and intestinal mucosal PYY concentrations. PYY in the rat intestinal tissue extract was distributed at a high density in the lower intestinal mucosa. In the diarrhea rat model, multiple changes in PYY concentrations in the intestinal mucosa and plasma were observed. In rats administered castor oil and sodium picosulfate, the intestinal mucosal PYY levels significantly decreased in a dose-dependent manner. Plasma PYY levels significantly decreased only in rats administered magnesium citrate. Next, we examined the influence of loperamide administration on the intestinal mucosa and plasma PYY concentrations in these rats. Loperamide administration resulted in multiple changes in plasma and intestinal mucosa PYY concentrations, along with an improvement in the diarrhea. Our research showed that the endocrine hormone PYY is involved in the onset of diarrhea, the course of the condition, and the manifestation of medicinal effects in the lower intestine.
Ashida, Kayoko; Katsura, Toshiya; Saito, Hideyuki; Inui, Ken-ichi
2004-06-01
To examine the effect of thyroid hormone status on PEPT1 in vivo, the activity and expression of PEPT1 in the small intestine were examined in euthyroid and hyperthyroid rats. Hyperthyroidism was induced by treating rats with L-thyroxine (12 mg/L) in the drinking water for 21 days. Transport activity was measured by everted small intestinal preparations and in situ intestinal loop technique. Expressions of PEPT1 mRNA and protein were evaluated by competitive polymerase chain reaction and Western blotting, respectively. The uptake of [14C]glycylsarcosine by everted small intestinal preparations was significantly decreased in hyperthyroid rats, whereas that of methyl-alpha-D-[14C(U)]-glucopyranoside was not altered. Kinetic analysis showed that the Vmax value for [14C]glycylsarcosine uptake was significantly decreased in hyperthyroid rats, whereas the Km value was not affected. The mean portal vein concentrations after intrajejunal administration of [14C]glycylsarcosine were also decreased in hyperthyroid rats. Moreover, hyperthyroidism caused a significant decrease in the expression of PEPT1 mRNA in the small intestine, whereas the expression of Na+/glucose cotransporter (SGLT1) mRNA was not changed. The level of PEPT1 protein was also decreased in the small intestine of hyperthyroid rats. These results indicate that in hyperthyroid rats, the activity and expression of PEPT1 were decreased in the small intestine.
Lin, Yulian; Fujimori, Takeo; Kawaguchi, Naoko; Tsujimoto, Yuiko; Nishimi, Mariko; Dong, Zhengqi; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira
2011-01-05
Effects of polyamidoamine (PAMAM) dendrimers on the intestinal absorption of poorly absorbable drugs were examined by an in situ closed loop method in rats. 5(6)-Carboxyfluorescein (CF), fluorescein isothiocyanate-dextrans (FDs) with various molecular weights, calcitonin and insulin were used as model drugs of poorly absorbable drugs. The absorption of CF, FD4 and calcitonin from the rat small intestine was significantly enhanced in the presence of PAMAM dendrimers. The absorption-enhancing effects of PAMAM dendrimers for improving the small intestinal absorption of CF were concentration and generation dependent and a maximal absorption-enhancing effect was observed in the presence of 0.5% (w/v) G2 PAMAM dendrimer. However, G2 PAMAM dendrimer had almost no absorption-enhancing effect on the small intestinal absorption of macromolecular drugs including FD10 and insulin. Overall, the absorption-enhancing effects of G2 PAMAM dendrimer in the small intestine decreased as the molecular weights of drug increased. However, G2 PAMAM dendrimer did not enhance the intestinal absorption of these drugs with different molecular weights in the large intestine. Furthermore, we evaluated the intestinal membrane damage with or without G2 PAMAM dendrimer. G2 PAMAM dendrimer (0.5% (w/v)) significantly increased the activities of lactate dehydrogenase (LDH) and the amounts of protein released from the intestinal membranes, but the activities and amounts of these toxic markers were less than those in the presence of 3% Triton X-100 used as a positive control. Moreover, G2 PAMAM dendrimer at concentrations of 0.05% (w/v) and 0.1% (w/v) did not increase the activities and amounts of these toxic markers. These findings suggested that PAMAM dendrimers at lower concentrations might be potential and safe absorption enhancers for improving absorption of poorly absorbable drugs from the small intestine. Copyright © 2010 Elsevier B.V. All rights reserved.
Maruyama, Hajime; Ogura, Jiro; Fujikawa, Asuka; Terada, Yusuke; Tsujimoto, Takashi; Koizumi, Takahiro; Kuwayama, Kaori; Kobayashi, Masaki; Yamaguchi, Hiroaki; Iseki, Ken
2013-01-01
Intestinal ischemia-reperfusion (I/R) causes gut dysfunction and promotes multi-organ failure. The liver and kidney can be affected by multi-organ failure after intestinal I/R. Organic anion transporting polypeptides (OATPs) and organic anion transporters (OATs) are recognized in a broad spectrum from endogenous compounds to xenobiotics, including clinically important drugs. Therefore, it is important for understanding the pharmacokinetics to obtain evidence of alterations in OATPs and OATs expression and transport activities. In the present study, we investigated the expression of rat Oatps and Oats after intestinal I/R. We used intestinal ischemia-reperfusion (I/R) model rats. Real-time PCR and Western blotting were used to assess mRNA and protein expression levels. Plasma concentration and biliary excretion of sulfobromophthalein (BSP), which is used as a model compound of organic anion drugs, were measured after intravenous administration in intestinal I/R rats. Although Oat1 and Oat3 mRNA levels were not altered in the kidney, Oatp1a1, Oatp1b2 and Oatp2b1 mRNA levels in the liver were significantly decreased at 1-6 h after intestinal I/R. Moreover, Oatp1a1 and Oatp2b1 protein expression levels were decreased at 1 h after intestinal I/R. Plasma concentration of BSP, which is a typical substrate of Oatps, in intestinal I/R rats reperfused 1 h was increased than that in sham-operated rats. Moreover, the area under the concentration-time curve (AUC₀₋₉₀) in intestinal I/R rats reperfused 1 h was significantly increased than that in sham-operated rats. The total clearance (CL(tot)) and the biliary clearance (CL(bile)) in intestinal I/R rats reperfused 1 h were significantly decreased than those in sham-operated rats. Oatp1a1 and Oatp2b1 expression levels are decreased by intestinal I/R. The decreases in these transporters cause alteration of pharmacokinetics of organic anion compound. The newly found influence of intestinal I/R on the expression and function of Oatps may be a key to perform appropriate drug therapy.
Lung and Intestine: A Specific Link in an Ulcerative Colitis Rat Model
Liu, Yuan; Wang, Xin-Yue; Yang, Xue; Jing, Shan; Zhu, Li; Gao, Si-Hua
2013-01-01
Background. To investigate the link and mechanisms between intestine and lung in the ulcerative colitis (UC) rat model. Materials and Methods. We used the UC rat model by immunological sensitization combined with local 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) in 50% ethanol enema, observed dynamically animal general state and body weight, examined the histological and functional changes in the colon, lung, liver, and kidney tissues, and detected microvascular endothelium response towards inflammation characterized with the expression of iNOS, TXB2, P-selectin, ICAM-1, and vascular endothelial growth factor A (VEGF-A) in the colon and lung tissue. Results. Pulmonary function results suggested ventilator disorder, and pathological findings showed interstitial pneumonia. There were no significant changes in the liver and kidney function and histopathology. The colon and lung tissue iNOS, TXB2, P-selectin, ICAM-1, and VEGF-A expression of the model rats was significantly higher than the normal rats at both time points. Conclusions. Our study is the first to demonstrate the close association between the large intestine and lung in the immune-TNBS-ethanol-induced UC rat model. Different organs and tissues with the same embryonic origin may share the same pathological specificities in a disease. The present study provided a new way of thinking for pathological changes in clinical complex diseases manifested with multiorgan damage. PMID:23606829
Oku, Tsuneyuki; Tanabe, Kenichi; Morita, Shigeki; Hamaguchi, Norihisa; Shimura, Fumio; Nakamura, Sadako
2015-11-28
Resistant glucan (RG) and hydrogenated resistant glucan (HRG) are newly developed non-digestible carbohydrate materials that decrease lifestyle-related diseases. The bioavailability of RG and HRG was investigated by in vitro experiments using human and rat small intestinal enzymes and by in vivo experiments using rats in the present study. Oligosaccharides, which are minor components of RG and HRG, were hydrolysed slightly by small intestinal enzymes of humans and rats, and the hydrolysing activity was slightly higher in rats than in humans. The amount of glucose released from HRG was greater than that from RG. However, the high-molecular-weight carbohydrates of the main components were hardly hydrolysed. Furthermore, neither RG nor HRG inhibited disaccharidase activity. When rats were raised on a diet containing 5 % of RG, HRG, resistant maltodextrin or fructo-oligosaccharide (FOS) for 4 weeks, all rats developed loose stools and did not recover during the experiment, except for the FOS group. Body weight gain was normal in all groups and was not significantly different compared with the control group. Caecal tissue and content weights were significantly increased by feeding RG or HRG, although other organ and tissue weights were not significantly different among the groups. In conclusion, RG and HRG consist of small amounts of glucose and digestible and non-digestible oligosaccharides, and large amounts of glucose polymers, which were hardly hydrolysed by α-amylase and small intestinal enzymes. RG and HRG, which were developed newly as dietary fibre materials, had no harmful effects on the growth and development of rats.
The utility of rat jejunal permeability for biopharmaceutics classification system.
Zakeri-Milani, Parvin; Valizadeh, Hadi; Tajerzadeh, Hosnieh; Islambulchilar, Ziba
2009-12-01
The biopharmaceutical classification system has been developed to provide a scientific approach for classifying drug compounds based on their dose/solubility ratio and human intestinal permeability. Therefore in this study a new classification is presented, which is based on a correlation between rat and human intestinal permeability values. In situ technique in rat jejunum was used to determine the effective intestinal permeability of tested drugs. Then three dimensionless parameters--dose number, absorption number, and dissolution number (D(o), A(n), and D(n))--were calculated for each drug. Four classes of drugs were defined, that is, class I, D(0) < 0.5, P(eff(rat)) > 5.09 x 10(-5) cm/s; class II, D(o) > 1, P(eff(rat)) > 5.09 x 10( -5) cm/s; class III, D(0) < 0.5, P(eff(rat)) < 4.2 x 10(-5) cm/s; and class IV, D(o) > 1, P(eff(rat)) < 4.2 x 10(-5) cm/s. A region of borderline drugs (0.5 < D(o) < 1, 4.2 x 10(-5) < P(eff(rat)) < 5.09 x 10(-5) cm/s) was also defined. According to obtained results and proposed classification for drugs, it is concluded that drugs could be categorized correctly based on dose number and their intestinal permeability values in rat model using single-pass intestinal perfusion technique. This classification enables us to remark defined characteristics for intestinal absorption of all four classes using suitable cutoff points for both dose number and rat effective intestinal permeability values.
Sukhotnik, Igor; Bitterman, Sivan; Shahar, Yoav Ben; Pollak, Yulia; Bitterman, Nir; Halabi, Salim; Coran, Arnold G; Bitterman, Arie
2017-02-01
Background Chelerythrine (CHE) is a benzophenanthridine alkaloid that is a potent, selective, and cell-permeable protein kinase C inhibitor. The purpose of the present study was to examine the effect of CHE on intestinal recovery and enterocyte turnover after intestinal ischemia-reperfusion (IR) injury in rats. Methods Male Sprague-Dawley rats were divided into four experimental groups: (1) sham rats underwent laparotomy, (2) sham-CHE rats underwent laparotomy and were treated with intraperitoneal CHE; (3) IR-rats underwent occlusion of both superior mesenteric artery and portal vein for 30 minutes followed by 48 hours of reperfusion, and (4) IR-CHE rats underwent IR and were treated with intraperitoneal CHE immediately before abdominal closure. Intestinal structural changes, Park injury score, enterocyte proliferation, and enterocyte apoptosis were determined 24 hours following IR. The expression of Bax, Bcl-2, p-ERK, and caspase-3 in the intestinal mucosa was determined using real Western blot and immunohistochemistry. Results Treatment with CHE resulted in a significant decrease in Park injury score in jejunum (threefold decrease) and ileum (twofold decrease), and parallel increase in mucosal weight in jejunum and ileum, villus height in jejunum and ileum, and crypt depth in ileum compared with IR animals. IR-CHE rats also experienced a significantly lower apoptotic index in jejunum and ileum, which was accompanied by a lower Bax/Bcl2 ratio compared with IR animals. Conclusions Treatment with CHE inhibits programmed cell death and prevents intestinal mucosal damage following intestinal IR in a rat. Georg Thieme Verlag KG Stuttgart · New York.
Sukhotnik, Igor; Ben Shahar, Yoav; Halabi, Salim; Bitterman, Nir; Dorfman, Tatiana; Pollak, Yulia; Coran, Arnold; Bitterman, Arie
2018-01-05
Accumulating evidence indicates that changes in intestinal toll-like receptors (TLRs) precede histological injury in a rodent model of necrotizing enterocolitis. N-acetylserotonin (NAS) is a naturally occurring chemical intermediate in the biosynthesis of melatonin. A recent study has shown that treatment with NAS prevents gut mucosal damage and inhibits programmed cell death following intestinal ischemia-reperfusion (IR). The objective of this study was to determine the effects of NAS on TLR-4, myeloid differentiation factor 88 (Myd88), and TNF-α receptor-associated factor 6 (TRAF6) expression in intestinal mucosa following intestinal IR in a rat. Male Sprague-Dawley rats were randomly assigned to one of the four experimental groups: 1) Sham rats underwent laparotomy; 2) Sham-NAS rats underwent laparotomy and were treated with intraperitoneal (IP) NAS (20 mg/kg); 3) IR rats underwent occlusion of both superior mesenteric artery and portal vein for 20 minutes followed by 48 hours of reperfusion; and 4) IR-NAS rats underwent IR and were treated with IP NAS immediately before abdominal closure. Intestinal structural changes, mucosal TLR-4, MyD88, and TRAF6 mucosal gene, and protein expression were examined using real-time PCR, Western blot, and immunohistochemistry. Significant mucosal damage in IR rats was accompanied by a significant upregulation of TLR-4, MyD88, and TRAF6 gene and protein expression in intestinal mucosa compared with control animals. The administration of NAS decreased the intestinal injury score, inhibited cell apoptosis, and significantly reduced the expression of TLR-4, MyD88, and TRAF6. Treatment with NAS is associated with downregulation of TLR-4, MyD88, and TRAF6 expression along with a concomitant decrease in intestinal mucosal injury caused by intestinal IR in a rat. Georg Thieme Verlag KG Stuttgart · New York.
[Impact of high-fat diet induced obesity on glucose absorption in small intestinal mucose in rats].
Huang, Wei; Liu, Rui; Guo, Wei; Wei, Na; Qiang, Ou; Li, Xian; Ou, Yan; Tang, Chengwei
2012-11-01
To investigate whether high-fat diet induced obesity was associated with variation of glucose absorption in small intestinal mucosa of rats. 46 male SD rats were randomly divided into high-fat diet group (n = 31) and control group (n = 15), fed with high-fat diet and normal diet for 24 weeks, respectively. After 24 weeks, the rats were divided into obese (n = 16) and obesity-resistant group (n = 10) according to their body weight. Rats' body weight, abdominal fat weight, plasma glucose level, maltase, sucrase activity in small intestinal mucosa were measured. SGLT-1 expression in intestinal mucosa was detected by immunohistochemistry, RT-PCR and Western blot. Mean body weight, abdominal fat weight, fast plasma glucose levels, maltase activities and SGLT-1 protein expression in intestinal mucosa of obese rats were significantly higher than those in the control and obesity-resistant rats (P < 0.05). Sucrase activities in intestinal mucosa showed no statistical difference among the three groups (P > 0.05). The SGLT-1 mRNA expression in obese group was increased by 12.5% and 23% when compare with the control and obesity-resistant group, respectively. But the difference was not statistical significant (P > 0.05). High-fat diet induced obesity was associated with the increased intestinal maltase activity and expression of SGLT-1 in rats, the key molecule in glucose absorption.
Limited interaction between tacrolimus and P-glycoprotein in the rat small intestine.
Saitoh, Hiroshi; Saikachi, Yuko; Kobayashi, Mikako; Yamaguchi, Michiko; Oda, Masako; Yuhki, Yoshimitsu; Achiwa, Kazuhito; Tadano, Koji; Takahashi, Yasushi; Aungst, Bruce J
2006-05-01
The significance of intestinal P-glycoprotein (P-gp) in determining the oral bioavailability of tacrolimus has been still controversial. In this study, we reevaluated the interaction of tacrolimus with P-gp in the rat small intestine, by evaluating its absorption from the rat small intestine and its modulating effect on the absorption of known P-gp substrates (digoxin, methylprednisolone, and vinblastine). Intestinal absorption of tacrolimus itself was as extensive as other P-gp modulators such as cyclosporine and verapamil. While cyclosporine and verapamil significantly increased the absorption of methylprednisolone and vinblastine through potent inhibition of intestinal P-gp, tacrolimus failed to achieve this. When cyclosporine and tacrolimus were intravenously administered to rats, digoxin absorption was significantly increased by cyclosporine but not by tacrolimus. When tacrolimus was coadministered with clotrimazole, a specific CYP3A inhibitor, into the rat small intestine, the area under the curve of tacrolimus blood concentrations increased more than seven-fold compared with that of tacrolimus alone. Our present results strongly suggest that the interaction between tacrolimus and P-gp is limited in the rat small intestine and that extensive metabolism by CYP3A enzymes is more responsible for the low oral bioavailability of tacrolimus. It was considered that the extensive absorption of cyclosporine and verapamil was closely associated with their potent ability to inhibit intestinal P-gp.
Wu, B; Pan, C; Song, G
2001-10-25
To preliminarily verify the tentative idea of replacement of bladder transitional epithelium with small intestine mucous membrane to prevent recurrence of carcinoma of bladder. A certain segment of small intestine was transplanted to the urinary bladder of the same body in 17 rats. Then N-butyl-N-(4-hydroxy-butyl) nitrosamine (BBN) was used to induce carcinoma of bladder. BBN was used to 11 control rats that did not undergo operation. Bladder carcinoma failed to be found in the transplanted small intestine mucous membrane in all experimental rats except one. After stimulation of BBN, carcinoma of urinary bladder occurred in all rats' bladder transitional epithelium. 1) The carcinogenic substances in the urine of rats suffering from BBN-induced bladder carcinoma are carcinogenic only to bladder transitional epithelium and have no effect on small intestine epithelium. 2) Bladder transitional epithelium may be more sensitive to the urine carcinogenic substances and easier to be cancerized than small intestine epithelium. 3) The tentative idea of substitution of small intestine mucous membrane for bladder transitional epithelium to prevent the recurrence of bladder carcinoma is worth further studying.
Alleviation by garlic of antitumor drug-induced damage to the intestine.
Horie, T; Awazu, S; Itakura, Y; Fuwa, T
2001-03-01
Antitumour drugs such as methotrexate (MTX) and 5-fluorouracil (5-FU) induce intestinal damage. This is a serious side effect of cancer chemotherapy. The present studies examined whether or not aged garlic extract (AGE) protects against damage from these antitumor drugs. Both drugs were administered orally for 4 or 5 d to rats fed a standard laboratory diet with and without 2% AGE. The small intestinal absorption of the poorly absorbable compound, fluorescein isothiocyanate--labeled dextran (FD-4; average molecular weight, 4400) was used to evaluate the damage to the intestine using the in vitro everted intestine technique and the in situ intestinal loop technique. FD-4 absorption increased in the antitumour drug-treated rats fed the diet without garlic. Interestingly, FD-4 absorption was depressed in rats fed the diet containing AGE. These results suggest that AGE may protect the small intestine of rats from antitumour drug-induced damage.
Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valuckaite, V.; Zaborina, O.; Long, J.
Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgicallymore » placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.« less
Zhong, Ze-yu; Sun, Bin-bin; Shu, Nan; Xie, Qiu-shi; Tang, Xian-ge; Ling, Zhao-li; Wang, Fan; Zhao, Kai-jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-zhu; Liu, Xiao-dong
2016-01-01
Aim: Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. Methods: The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Results: Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestine
Zhong, Ze-Yu; Sun, Bin-Bin; Shu, Nan; Xie, Qiu-Shi; Tang, Xian-Ge; Ling, Zhao-Li; Wang, Fan; Zhao, Kai-Jing; Xu, Ping; Zhang, Mian; Li, Ying; Chen, Yang; Liu, Li; Xia, Lun-Zhu; Liu, Xiao-Dong
2016-07-01
Diclofenac is a non-steroidal anti-inflammatory drug (NSAID), which may cause serious intestinal adverse reactions (enteropathy). In this study we investigated whether co-administration of ciprofloxacin affected the pharmacokinetics of diclofenac and diclofenac-induced enteropathy in rats. The pharmacokinetics of diclofenac was assessed in rats after receiving diclofenac (10 mg/kg, ig, or 5 mg/kg, iv), with or without ciprofloxacin (20 mg/kg, ig) co-administered. After receiving 6 oral doses or 15 intravenous doses of diclofenac, the rats were sacrificed, and small intestine was removed to examine diclofenac-induced enteropathy. β-Glucuronidase activity in intestinal content, bovine liver and E coli was evaluated. Following oral or intravenous administration, the pharmacokinetic profile of diclofenac displayed typical enterohepatic circulation, and co-administration of ciprofloxacin abolished the enterohepatic circulation, resulted in significant reduction in the plasma content of diclofenac. In control rats, β-glucuronidase activity in small intestinal content was region-dependent: proximal intestine
Sato, Hirokazu; Zhang, Linda S; Martinez, Kristina; Chang, Eugene B; Yang, Qing; Wang, Fei; Howles, Philip N; Hokari, Ryota; Miura, Soichiro; Tso, Patrick
2016-11-01
The gut microbiota affects intestinal permeability and mucosal mast cells (MMCs) responses. Activation of MMCs has been associated with absorption of dietary fat. We investigated whether the gut microbiota contributes to the fat-induced activation of MMCs in rats, and how antibiotics might affect this process. Adult male Sprague-Dawley rats were given streptomycin and penicillin for 4 days (n = 6-8) to reduce the abundance of their gut flora, or normal drinking water (controls, n = 6-8). They underwent lymph fistula surgery and after an overnight recovery were given an intraduodenal bolus of intralipid. We collected intestinal tissues and lymph fluid and assessed activation of MMCs, intestinal permeability, and fat transport parameters. Compared with controls, intestinal lymph from rats given antibiotics had reduced levels of mucosal mast cell protease II (produced by MMCs) and decreased activity of diamine oxidase (produced by enterocytes) (P < .05). Rats given antibiotics had reduced intestinal permeability in response to dietary lipid compared with controls (P < .01). Unexpectedly, antibiotics also reduced lymphatic transport of triacylglycerol and phospholipid (P < .01), concomitant with decreased levels of mucosal apolipoproteins B, A-I, and A-IV (P < .01). No differences were found in intestinal motility or luminal pancreatic lipase activity between rats given antibiotics and controls. These effects were not seen with an acute dose of antibiotics or 4 weeks after the antibiotic regimen ended. The intestinal microbiota appears to activate MMCs after the ingestion of fat in rats; this contributes to fat-induced intestinal permeability. We found that the gut microbiome promotes absorption of lipid, probably by intestinal production of apolipoproteins and secretion of chylomicrons. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Liu, Li; Deng, Yuan-Xiong; Liang, Yan; Pang, Xiao-Yan; Liu, Xiao-Dong; Liu, Yao-Wu; Yang, Jian-Song; Xie, Lin; Wang, Guang-Ji
2010-01-01
The purpose of the study was to investigate the pharmacokinetics of baicalin, a major bioactive component of Scutellariae radix, in diabetic conditions. The 4-week diabetic rats were induced by intraperitoneal administration of streptozotocin. Plasma concentrations of baicalin were measured following oral (200 mg/kg) or intravenous (12 mg/kg) administration. Everted intestinal transport, intestinal mucosal metabolism of baicalin and intestinal beta-glucuronidase activity were also investigated. It was found that the diabetic condition significantly increased the exposure of baicalin following oral doses (AUC 100.77 +/- 4.16 microg x h/mL in diabetic rats vs. 48.48 +/- 7.94 microg x h/mL in normal rats). In contrast, the diabetic condition significantly decreased the exposure of baicalin following intravenous doses (AUC 11.20 +/- 2.28 microg x h/mL in diabetic rats vs. 18.02 +/- 3.45 microg x h/mL in normal rats). We also found lower apparent permeability coefficients of baicalin in the ileum of diabetic rats (8.43 x 10 (-6) +/- 2.40 x 10 (-6) cm/s in diabetic rats vs. 5.21 x 10 (-5) +/- 1.55 x 10 (-5) cm/s in normal rats). Further studies showed that the diabetic condition enhanced the hydrolysis of baicalin to baicalein in intestinal mucosal, accompanied by an increase of beta-glucuronidase activity. All these results suggested that the higher oral exposure of baicalin in diabetic rats did not result from the decreased hepatic metabolism or increased intestinal absorption of baicalin. The enhancement of intestinal beta-glucuronidase activity may partly account for the higher exposure of baicalin in diabetic rats after oral administration. Copyright Georg Thieme Verlag KG Stuttgart . New York.
Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Okuno, Keisuke; Yasumura, Seiki; Okuhara, Yoshitaka; Eguchi, Akiyo; Nishimura, Koichi; Soyama, Yuko; Asakura, Masanori; Ishihara, Masaharu; Tsujino, Takeshi; Masuyama, Tohru
2017-11-01
The interaction among heart failure (HF), chronic kidney disease (CKD), and anemia is called cardio-renal anemia syndrome. The mechanism of anemia in cardio-renal anemia syndrome is complex and remains completely unknown. We have previously reported that impaired intestinal iron transporters may contribute to the mechanism of anemia in HF using in vivo HF model rats. In this study, we assessed intestinal iron transporters in CKD model rats to investigate the association of intestinal iron transporters in the mechanism of cardio-renal anemia syndrome. CKD was induced by 5/6 nephrectomy in Sprague-Dawley rats. Sham-operated rats served as a control. After 24-week surgery, CKD rats exhibited normocytic normochromic anemia and normal serum erythropoietin levels despite of anemia. Serum iron levels were decreased in CKD rats compared with the controls. Of interest, intestinal expression of critical iron importers, such as duodenal cytochrome b (Dcyt-b) and divalent metal transporter 1 (DMT-1), was decreased in CKD rats compared with the controls. On the other hand, intestinal expression of ferroportin, an intestinal iron exporter, was not different in the control and CKD groups. Moreover, hepatic expression of hepcidin, a regulator of iron homeostasis, did not differ between the control and CKD groups. These results suggest that impaired intestinal expression of Dcyt-b and DMT-1 might be associated with the reduction of an iron uptake in CKD. Taken together, impaired these intestinal iron transporters may become a novel therapeutic target for cardio-renal anemia syndrome.
Sukhotnik, Igor; Lerner, Aaron; Sabo, Edmund; Krausz, Michael M; Siplovich, Leonardo; Coran, Arnold G; Mogilner, Jorge; Shiloni, Eitan
2003-07-01
The nitric oxide precursor L-arginine (ARG) has been shown to influence intestinal morphology and intestinal absorptive function. The purpose of the present study was to determine the effect of enteral ARG supplementation on structural intestinal adaptation, cell proliferation, and apoptosis in a rat model of short bowel syndrome (SBS). Thirty male Sprague-Dawley rats were divided into three experimental groups: Sham rats underwent bowel transection, SBS rats underwent 75% small bowel resection, and SBS-ARG rats underwent bowel resection and were treated with ARG given in the drinking water (2%). Parameters of intestinal adaptation, enterocyte proliferation and enterocyte apoptosis were determined on day 14 following operation. We have demonstrated that SBS-ARG animals had a lower jejunal and ileal mucosal weight, jejunal mucosal DNA and protein, ileal mucosal protein, jejunal villus height, jejunal and ileal crypt depth, and enterocyte proliferation index and a greater enterocyte apoptosis compared to SBS untreated animals. We conclude that in a rat model of SBS enteral L-arginine inhibits structural intestinal adaptation. Possible mechanism for this effect may be decreased cell proliferation and increased cell apoptosis.
Hirotani, Yoshihiko; Mikajiri, Kyoko; Ikeda, Kenji; Myotoku, Michiaki; Kurokawa, Nobuo
2008-09-01
Few studies have reported the changes in the peptide YY (PYY) levels in the intestinal tissue of rats with ulcerative colitis (UC) following oral administration of mesalazine and prednisolone. We investigated the effects of these drugs on the intestinal mucosal PYY levels in a rat model of UC. We confirmed that the PYY levels in the rat intestinal mucosal tissue were high in the lower intestinal tract. The leukocyte count and hemoglobin levels approached the normal values after administering mesalazine or prednisolone to rats treated with 3% dextran sulfate sodium (DSS). The PYY levels in the caecum and colon decreased significantly after administering DSS but increased when mesalazine was administered in a tissue-specific manner. Unlike mesalazine, the PYY levels increased in the ileum in addition to the colon and rectum after administering prednisolone. However, neither of the drugs induced any changes in the plasma PYY levels. These findings indicate that changes in the intestinal tissue PYY levels may be partially involved in the improvement of DSS-induced UC in rats following the administration of these drugs.
Xu, Hong; Xiong, Jingfang; Xu, Jianjun; Li, Shuiming; Zhou, Yang; Chen, Dongya; Cai, Xinjun; Ping, Jian; Deng, Min; Chen, Jianyong
2017-10-01
Impaired intestinal motility may lead to the disruption of gut microbiota equilibrium, which in turn facilitates bacterial translocation (BT) and endotoxemia in cirrhosis. We evaluated the influence of mosapride, a prokinetic agent, on BT and DNA fingerprints of gut microbiota in cirrhotic rats. A rat model of cirrhosis was set up via subcutaneous injection of carbon tetrachloride (CCl 4 ). The portal pressure, liver and intestinal damage, plasma endotoxin, BT, and intestinal transit rate (ITR) of cirrhotic rats were determined. Fecal DNA fingerprints were obtained by ERIC-PCR. The expressions of tight junction proteins were evaluated by western blotting. Mosapride treatment to cirrhotic rats significantly reduced the plasma endotoxin level and incidence of BT, accompanied by increased ITR. Cirrhotic rats (including those treated with mosapride) suffered from BT exhibited significantly lower ITR than those who are free of BT. Pearson coefficient indicated a significant and negative correlation between the plasma endotoxin level and ITR. The genomic fingerprints of intestinal microbiota from the three groups fell into three distinctive clusters. In the mosapride-treated group, Shannon's index was remarkably increased compared to the model group. Significantly positive correlation was detected between Shannon's index and ITR. Mosapride did not improve hepatic and intestinal damages and ileal expressions of occludin and ZO-1. Mosapride significantly increases intestinal motility in cirrhotic rats, thus to recover the disordered intestinal microbiota, finally resulting in decreased plasma endotoxin and BT.
Long-term enteral arginine supplementation in rats with intestinal ischemia and reperfusion.
Lee, Chien-Hsing; Hsiao, Chien-Chou; Hung, Ching-Yi; Chang, Yu-Jun; Lo, Hui-Chen
2012-06-01
The effects of short-term enteral arginine supplementation on intestinal ischemia-reperfusion (IR) injury have been widely studied, especially the ischemic preconditioning supplementation. The aim of this study was to investigate the effects of long-term intra-duodenal supplementation of arginine on intestinal morphology, arginine-associated amino acid metabolism, and inflammatory responses in rats with intestinal IR. Male Wistar rats with or without three hours of ileal ischemia underwent duodenal cannulation for continuous infusion of formula with 2% arginine or commercial protein powder for 7 d. The serological examinations, plasma amino acid and cytokine profiles, and intestinal morphology were assessed. Intestinal IR injury had significant impacts on the decreases in circulating red blood cells, hemoglobin, ileum mass, and villus height and crypt depth of the distal jejunum. In addition, arginine supplementation decreased serum cholesterol and increased plasma arginine concentrations. In rats with intestinal IR injury, arginine supplementation significantly decreased serum nitric oxide, plasma citrulline and ornithine, and the mucosal protein content of the ileum. These results suggest that long-term intra-duodenal arginine administration may not have observable benefits on intestinal morphology or inflammatory response in rats with intestinal ischemia and reperfusion injury. Therefore, the necessity of long-term arginine supplementation for patients with intestinal ischemia and reperfusion injury remains questionable and requires further investigation. Copyright © 2012 Elsevier Inc. All rights reserved.
Von Bültzingslöwen, I; Adlerberth, I; Wold, A E; Dahlén, G; Jontell, M
2003-10-01
Serious systemic infections may occur during cancer chemotherapy due to disturbances in the oropharyngeal and gastrointestinal microflora, impaired mucosal barrier functions and immunosuppression. Bacteria may spread from the gastrointestinal tract to the regional lymph nodes. The routes for bacterial spread from the oral cavity are less well known. In the present study we investigated changes in the oral and intestinal microfloras in rats given 50 mg/kg 5-fluorouracil (5-FU) i.v. for 6 days. Bacterial dissemination to the lymph nodes draining the oral cavity and the lymph nodes draining the gastrointestinal tract was examined. Effects of adding the probiotic strain Lactobacillus plantarum 299v in the drinking water to the rats were measured. 5-FU treatment caused an increase in the number of facultative and strictly anaerobic bacteria in biopsies from the oral cavity and an increase in the number of facultative anaerobes in the large intestine. The proportion of facultative gram-negative rods increased in both the oral cavity and intestine. Bacteria translocated to both the cervical and mesenteric lymph nodes in untreated animals and increased in numbers after 5-FU treatment due to an increase in the number of facultative gram-negative rods. Treatment with L. plantarum 299v improved food intake and body weight in 5-FU-treated rats. It also reduced the 5-FU-induced raise in the total numbers of facultative anaerobes in the intestine, but did not reduce translocation and did not prevent diarrhea. This study reinforces the oral cavity, along with the gastrointestinal tract, as a source for bacterial dissemination. The use of probiotic bacteria may reduce some side effects of 5-FU treatment.
Does dietary fibre stimulate intestinal epithelial cell proliferation in germ free rats?
Goodlad, R A; Ratcliffe, B; Fordham, J P; Wright, N A
1989-01-01
The aim of the present experiment was to investigate the role of hind gut fermentation in the proliferative response of the intestinal epithelium to dietary fibre. We have previously shown that refeeding starved rats with an elemental diet supplemented with fermentable dietary fibre (but not inert bulk) is capable of stimulating intestinal epithelial cell proliferation throughout the gastrointestinal tract. Three groups of 10 germ free (GF) rats and three groups of 10 conventional (CV) rats, were used. All groups were starved for three days and then refed for two days with either an elemental diet (Flexical); Flexical plus 30% kaolin; or Flexical plus 30% of a fibre mixture. Cell production was determined by the accumulation of vincristine arrested metaphases in microdissected crypts. There was no significant difference between refeeding the rats with an elemental diet alone or with kaolin supplementation, however, the addition of fibre in CV rats was associated with a significant increase in intestinal crypt cell production rate in both the small intestine (p less than 0.01) and the colon (p less than 0.001). This marked proliferative effects of fibre was abolished in the GF rats. It can be concluded that it is the products of hind gut fermentation, not fibre per se that stimulate intestinal epithelial cell proliferation in the colon and small intestine. PMID:2546871
Contrast-Enhanced Magnetic Resonance Imaging of Gastric Emptying and Motility in Rats.
Lu, Kun-Han; Cao, Jiayue; Oleson, Steven Thomas; Powley, Terry L; Liu, Zhongming
2017-11-01
The assessment of gastric emptying and motility in humans and animals typically requires radioactive imaging or invasive measurements. Here, we developed a robust strategy to image and characterize gastric emptying and motility in rats based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing. The animals were trained to naturally consume a gadolinium-labeled dietgel while bypassing any need for oral gavage. Following this test meal, the animals were scanned under low-dose anesthesia for high-resolution T1-weighted MRI in 7 Tesla, visualizing the time-varying distribution of the meal with greatly enhanced contrast against non-gastrointestinal (GI) tissues. Such contrast-enhanced images not only depicted the gastric anatomy, but also captured and quantified stomach emptying, intestinal filling, antral contraction, and intestinal absorption with fully automated image processing. Over four postingestion hours, the stomach emptied by 27%, largely attributed to the emptying of the forestomach rather than the corpus and the antrum, and most notable during the first 30 min. Stomach emptying was accompanied by intestinal filling for the first 2 h, whereas afterward intestinal absorption was observable as cumulative contrast enhancement in the renal medulla. The antral contraction was captured as a peristaltic wave propagating from the proximal to distal antrum. The frequency, velocity, and amplitude of the antral contraction were on average 6.34 ± 0.07 contractions per minute, 0.67 ± 0.01 mm/s, and 30.58 ± 1.03%, respectively. These results demonstrate an optimized MRI-based strategy to assess gastric emptying and motility in healthy rats, paving the way for using this technique to understand GI diseases, or test new therapeutics in rat models.The assessment of gastric emptying and motility in humans and animals typically requires radioactive imaging or invasive measurements. Here, we developed a robust strategy to image and characterize gastric emptying and motility in rats based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing. The animals were trained to naturally consume a gadolinium-labeled dietgel while bypassing any need for oral gavage. Following this test meal, the animals were scanned under low-dose anesthesia for high-resolution T1-weighted MRI in 7 Tesla, visualizing the time-varying distribution of the meal with greatly enhanced contrast against non-gastrointestinal (GI) tissues. Such contrast-enhanced images not only depicted the gastric anatomy, but also captured and quantified stomach emptying, intestinal filling, antral contraction, and intestinal absorption with fully automated image processing. Over four postingestion hours, the stomach emptied by 27%, largely attributed to the emptying of the forestomach rather than the corpus and the antrum, and most notable during the first 30 min. Stomach emptying was accompanied by intestinal filling for the first 2 h, whereas afterward intestinal absorption was observable as cumulative contrast enhancement in the renal medulla. The antral contraction was captured as a peristaltic wave propagating from the proximal to distal antrum. The frequency, velocity, and amplitude of the antral contraction were on average 6.34 ± 0.07 contractions per minute, 0.67 ± 0.01 mm/s, and 30.58 ± 1.03%, respectively. These results demonstrate an optimized MRI-based strategy to assess gastric emptying and motility in healthy rats, paving the way for using this technique to understand GI diseases, or test new therapeutics in rat models.
Oral arginine improves intestinal recovery following ischemia-reperfusion injury in rat.
Sukhotnik, Igor; Helou, Habib; Mogilner, Jorge; Lurie, Michael; Bernsteyn, Aleksander; Coran, Arnold G; Shiloni, Eitan
2005-03-01
Arginine and nitric oxide are critical to the normal physiology of the gastrointestinal tract and maintain the mucosal integrity of the intestine in various intestinal disorders. In the present study, we evaluate the effects of oral arginine (ARG) supplementation on intestinal structural changes, enterocyte proliferation, and apoptosis following intestinal ischemia-reperfusion (IR) in the rat. Male Sprague-Dawley rats were divided into three experimental groups: sham rats underwent laparotomy and superior mesenteric artery mobilization, IR rats underwent superior mesenteric artery occlusion for 30 min following by 24 h of reperfusion, and IR-ARG rats were treated with enteral arginine given in drinking water (2%) 48 h before and following IR. Intestinal structural changes, enterocyte proliferation, and enterocyte apoptosis were determined 24 h following IR. A nonparametric Kruskal-Wallis ANOVA test was used for statistical analysis with p <0.05 considered statistically significant. IR rats demonstrated a significant decrease in bowel weight in duodenum and jejunum, mucosal weight in jejunum and ileum, and villus height in jejunum and ileum compared with control animals. IR rats also had a significantly lower cell proliferation index in jejunum and ileum and a higher apoptotic index in ileum compared with control rats. IR-ARG animals demonstrated greater duodenal and jejunal bowel weight; duodenal, jejunal, and ileal mucosal weight; and jejunal and ileal cell proliferation index compared with IR animals. In conclusion, oral ARG administration improves mucosal recovery following IR injury in the rat.
Beutheu, Stéphanie; Ouelaa, Wassila; Guérin, Charlène; Belmonte, Liliana; Aziz, Moutaz; Tennoune, Naouel; Bôle-Feysot, Christine; Galas, Ludovic; Déchelotte, Pierre; Coëffier, Moïse
2014-08-01
Increased intestinal permeability occurs during chemotherapy-induced intestinal mucositis. Previous data suggest that glutamine and arginine may have additive or synergic effects to limit intestinal damage. The present study aimed to evaluate the effects of glutamine and arginine, each alone or in combination, on gut barrier function during methotrexate (MTX)-induced mucositis in rats. Eighty Sprague Dawley rats received during 7 days (d) standard chow supplemented with protein powder (PP), glutamine (G, 2%), arginine (A, 1.2%) or glutamine plus arginine (GA). All diets were isonitrogenous. Rats received subcutaneous injections of MTX (2.5 mg/kg) from d0 to d2. The intestinal permeability and tight junction proteins were assessed at d4 and d9 in the jejunum by FITC-dextran and by western blot and immunohistochemistry, respectively. At d4, intestinal permeability was increased in MTX-PP, MTX-A and MTX-GA rats compared with controls but not in MTX-G rats. The expression of claudin-1, occludin and ZO-1 was decreased in MTX-PP group compared with controls but was restored in MTX-G and MTX-A rats. In MTX-GA rats, occludin expression remained decreased. These effects could be explained by an increase of erk phosphorylation and a decrease of IκBα expression in MTX-PP and MTX-GA rats. At d9, Intestinal permeability remained higher only in MTX-GA rats. This was associated with a persistent decrease of occludin expression. Glutamine prevents MTX-induced gut barrier disruption by regulating occludin and claudin-1 probably through erk and NF-κB pathways. In contrast, combined glutamine and arginine has no protective effect in this model. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Xiong, Yuxia; Chen, Li; Fan, Ling; Wang, Lulu; Zhou, Yejiang; Qin, Dalian; Sun, Qin; Wu, Jianming; Cao, Shousong
2018-01-01
Intestinal mucosal immune barrier dysfunction plays a key role in the pathogenesis of severe acute pancreatitis (SAP). Rhubarb is a commonly used traditional Chinese medicine as a laxative in China. It markedly protects pancreatic acinar cells from trypsin-induced injury in rats. Free total rhubarb anthraquinones (FTRAs) isolated and extracted from rhubarb display the beneficial effects of antibacteria, anti-inflammation, antivirus, and anticancer. The principal aim of the present study was to investigate the effects of FTRAs on the protection of intestinal injury and modification of the intestinal barrier function through regulation of intestinal immune function in rats with SAP. We established a rat model of SAP by injecting 3.5% sodium taurocholate (STC, 350 mg/kg) into the biliopancreatic duct via retrograde injection and treated the rats with FTRAs (36 or 72 mg/kg) or normal saline (control) immediately and 12 h after STC injection. Then, we evaluated the protective effect of FTRAs on intestinal injury by pathological analysis and determined the levels of endotoxin (ET), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), nitric oxide (NO), myeloperoxidase (MPO), capillary permeability, nucleotide-binding oligomerization domain-like receptors 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD domain (ASC), casepase-1, secretary immunoglobulin A (SIgA), regulatory T cells (Tregs), and the ratio of Th1/Th2 in the blood and/or small intestinal tissues or mesenteric lymph node (MLN) cells. Moreover, the chemical profile of FTRAs was analyzed by HPLC-UV chromatogram. The results showed that FTRAs significantly protected intestinal damage and decreased the levels of ET, IL-1β, TNF-α, and NO in the blood and TNF-α, IL-1β, and protein extravasation in the intestinal tissues in SAP rats. Furthermore, FTRAs significantly decreased the expressions of NLRP3, ASC, and caspase-1, the number of Tregs and the ratio of Th1/Th2, while significantly increased the expression of SIgA in the intestinal tissues and/or MLN cells in SAP rats. Our results indicate that FTRAs could protect intestinal injury and improve intestinal mucosal barrier function through regulating immune function of SAP rats. Therefore, FTRAs may have the potential to be developed as the novel agent for the treatment of SAP clinically. PMID:29487524
Geraedts, Maartje C. P.; Takahashi, Tatsuyuki; Vigues, Stephan; Markwardt, Michele L.; Nkobena, Andongfac; Cockerham, Renee E.; Hajnal, Andras; Dotson, Cedrick D.; Rizzo, Mark A.
2012-01-01
The glucose-dependent secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) is a critical step in the regulation of glucose homeostasis. Two molecular mechanisms have separately been suggested as the primary mediator of intestinal glucose-stimulated GLP-1 secretion (GSGS): one is a metabotropic mechanism requiring the sweet taste receptor type 2 (T1R2) + type 3 (T1R3) while the second is a metabolic mechanism requiring ATP-sensitive K+ (KATP) channels. By quantifying sugar-stimulated hormone secretion in receptor knockout mice and in rats receiving Roux-en-Y gastric bypass (RYGB), we found that both of these mechanisms contribute to GSGS; however, the mechanisms exhibit different selectivity, regulation, and localization. T1R3−/− mice showed impaired glucose and insulin homeostasis during an oral glucose challenge as well as slowed insulin granule exocytosis from isolated pancreatic islets. Glucose, fructose, and sucralose evoked GLP-1 secretion from T1R3+/+, but not T1R3−/−, ileum explants; this secretion was not mimicked by the KATP channel blocker glibenclamide. T1R2−/− mice showed normal glycemic control and partial small intestine GSGS, suggesting that T1R3 can mediate GSGS without T1R2. Robust GSGS that was KATP channel-dependent and glucose-specific emerged in the large intestine of T1R3−/− mice and RYGB rats in association with elevated fecal carbohydrate throughout the distal gut. Our results demonstrate that the small and large intestines utilize distinct mechanisms for GSGS and suggest novel large intestine targets that could mimic the improved glycemic control seen after RYGB. PMID:22669246
Goodlad, R A; Lenton, W; Ghatei, M A; Adrian, T E; Bloom, S R; Wright, N A
1987-01-01
Refeeding starved rats with an elemental diet resulted in a marked increase in crypt cell production rate (CCPR) in the proximal small intestine but not in the distal regions of the gut. Little effect on CCPR was noted when inert bulk (kaolin) was added to the elemental diet. Addition of a poorly fermentable dietary fibre (purified wood cellulose) had little effect on intestinal epithelial cell proliferation except in the distal colon where it significantly increased CCPR. A more readily fermentable fibre (purified wheat bran) caused a large proliferative response in the proximal, mid, and distal colon and in the distal small intestine. A gel forming fibre only significantly stimulated proliferation in the distal colon; the rats in this group, however, did not eat all the food given. There was no significant correlation between CCPR and plasma gastrin concentrations, but plasma enteroglucagon concentrations were significantly correlated with CCPR in almost all the sites studied. Plasma PYY concentrations also showed some correlation with CCPR, especially in the colon. Thus while inert bulk cannot stimulate colonic epithelial cell proliferation fermentable fibre is capable of stimulating proliferation in the colon, and especially in the distal colon: it can also stimulate proliferation in the distal small intestine and it is likely that plasma enteroglucagon may have a role to play in this process. Images Fig. 1 PMID:3030902
Ekaladze, E; Akhmeteli, K; Medoidze, T; Melikishvili, Z; Tushurashvili, R
2008-04-01
Distribution of vitamin A after overdose feeding along the digestive tract of rat's intestine was studied by LIFS. Purpose of our pilot study was to investigate possible usage of LIFS for real time monitoring of vitamin A digestion and storage in intestine as in liver and to identify regions of intestine where vitamin A droplets are formed. normal male Wistar rats (250-300 g, n=5) were fed on vitamin A enriched diet during the experimental 21 days' period (totally -82.56 mg. vitamin A). The control group (250-300 g, n=5) was maintained by ordinary diet. All rats used in our studies were sacrificed in the morning between 9:30 and 11:30 a.m. Liver and intestinal regions of duodenum, jejunum, ileum and cecum were examined in this experiment. LIF spectra in all parts of intestine as well as in liver demonstrates characteristic fluorescence peaks at approximately 390 nm and at 470 nm. It is clearly demonstrated, that after overdose feeding rats on vitamin A, retinol-rich regions can be found in all, but in cecum part of rat intestine. Obtained results demonstrate that LIFS can be used for study of metabolism and real-time monitoring of intratissue retinol.
Yang, Tie-Cheng; Zhang, Shu-Wen; Sun, Li-Na; Wang, Hong; Ren, Ai-Min
2008-01-01
AIM: To investigate the protective effects of magnolol on sepsis-induced inflammation and intestinal dysmotility. METHODS: Sepsis was induced by a single intraperitoneal injection of lipopolysaccharide (LPS). Male Wistar rats were randomly assigned to one of three treatment groups: magnolol prior to LPS injection (LPS/Mag group); vehicle prior to LPS injection (LPS/Veh group); vehicle prior to injection of saline (Control/Veh). Intestinal transit and circular muscle mechanical activity were assessed 12 h after LPS injection. Tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), monocyte chemoattractant protein-1 (MCP-1) and inducible nitric oxide synthase (iNOS) mRNA in rat ileum were studied by RT-PCR 2 h after LPS injection. Nuclear factor-κB (NF-κB) activity in the intestine was also investigated at this time using electrophoretic mobility shift assay. In addition, antioxidant activity was determined by measuring malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity in the intestine 2 h after LPS injection. RESULTS: Magnolol significantly increased intestinal transit and circular muscle mechanical activity in LPS-treated animals. TNF-α, MCP-1 and iNOS mRNA expression in the small intestine were significantly reduced after magnolol treatment in LPS-induced septic animals, compared with untreated septic animals. Additionally, magnolol significantly increased IL-10 mRNA expression in septic rat ileum. Magnolol also significantly suppressed NF-κB activity in septic rat intestine. In addition, magnolol significantly decreased MDA concentration and increased SOD activity in rat ileum. CONCLUSION: Magnolol prevents sepsis-induced suppression of intestinal motility in rats. The potential mechanism of this benefit of magnolol appears to be modulation of self-amplified inflammatory events and block of oxidative stress in the intestine. PMID:19109869
Xanthine oxido-reductase activity in ischemic human and rat intestine.
Bianciardi, Paola; Scorza, Roberto; Ghilardi, Giorgio; Samaja, Michele
2004-09-01
We measured time course and extent of xanthine dehydrogenase (XD) to xanthine oxidase (XO) conversion in ischemic human and rat intestine. To model normothermic no-flow ischemia, we incubated fresh biopsies for 0, 2, 4, 8 and 16h. At t = 0h, XO was less in humans than in rats (P < 0.0004), while XD was essentially the same (P = NS). After 16h incubation at 37 degrees C, there was no appreciable XD-to-XO conversion and no change in neither XO nor XD activity in human intestine. In contrast, the rat intestine had XO/(XO + XD) ratio doubled in the first 2h and then maintained that value until t = 16 h. In conclusion, no XO-to-XD conversion was appreciable after 16 h no-flow normothermic ischemia in human intestine; in contrast, XO activity in rats increased sharply after the onset of ischemia. An immunohistochemical labelling study shows that, whereas XO + XD expression in liver tissue is localised in both hepatocytes and endothelial cells, in the intestine that expression is mostly localised in epithelial cells. We conclude that XO may be considered as a major source of reactive oxygen species in rats but not in humans.
Ben Shahar, Yoav; Sukhotnik, Igor; Bitterman, Nir; Pollak, Yulia; Bejar, Jacob; Chepurov, Dmitriy; Coran, Arnold; Bitterman, Arie
2016-02-01
N-acetylserotonin (NAS) is a naturally occurring chemical intermediate in the biosynthesis of melatonin. Extensive studies in various experimental models have established that treatment with NAS significantly protects heart and kidney injury from ischemia-reperfusion (IR). The purpose of the present study was to examine the effect of NAS on intestinal recovery and enterocyte turnover after intestinal IR injury in rats. Male Sprague-Dawley rats were divided into four experimental groups: (1) Sham rats underwent laparotomy, (2) sham-NAS rats underwent laparotomy and were treated with intraperitoneal (IP) NAS (20 mg/kg); (3) IR rats underwent occlusion of both superior mesenteric artery and portal vein for 30 minutes, followed by 48 hours of reperfusion, and (4) IR-NAS rats underwent IR and were treated with IP NAS (20 mg/kg) immediately before abdominal closure. Intestinal structural changes, Park injury score, enterocyte proliferation, and enterocyte apoptosis were determined 24 hours following IR. The expression of Bax, Bcl-2, p-ERK, and caspase-3 in the intestinal mucosa was determined using real-time polymerase chain reaction, Western blot, and immunohistochemistry. A nonparametric Kruskal-Wallis analysis of variance test was used for statistical analysis with p less than 0.05 considered statistically significant. Treatment with NAS resulted in a significant increase in mucosal weight in jejunum and ileum, villus height in the ileum, and crypt depth in jejunum and ileum compared with IR animals. IR-NAS rats also had a significantly proliferation rates as well as a lower apoptotic index in jejunum and ileum which was accompanied by higher Bcl-2 levels compared with IR animals. Treatment with NAS prevents gut mucosal damage and inhibits programmed cell death following intestinal IR in a rat. Georg Thieme Verlag KG Stuttgart · New York.
Intestinal absorption of hawthorn flavonoids--in vitro, in situ and in vivo correlations.
Zuo, Zhong; Zhang, Li; Zhou, Limin; Chang, Qi; Chow, Moses
2006-11-25
Our previous studies identified hyperoside (HP), isoquercitrin (IQ) and epicatechin (EC) to be the major active flavonoid components of the hawthorn phenolic extract from hawthorn fruits demonstrating inhibitory effect on in vitro Cu(+2)-mediated low density lipoproteins oxidation. Among these three hawthorn flavonoids, EC was the only one detectable in plasma after the oral administration of hawthorn phenolic extract to rats. The present study aims to investigate the intestinal absorption mechanisms of these three hawthorn flavonoids by in vitro Caco-2 monolayer model, rat in situ intestinal perfusion model and in vivo pharmacokinetics studies in rats. In addition, in order to investigate the effect of the co-occurring components in hawthorn phenolic extract on the intestinal absorption of these three major hawthorn flavonoids, intestinal absorption transport profiles of HP, IQ and EC in forms of individual pure compound, mixture of pure compounds and hawthorn phenolic extract were studied and compared. The observations from in vitro Caco-2 monolayer model and in situ intestinal perfusion model indicated that all three studied hawthorn flavonoids have quite limited permeabilities. EC and IQ demonstrated more extensive metabolism in the rat in situ intestinal perfusion model and in vivo study than in Caco-2 monolayer model. Moreover, results from the Caco-2 monolayer model, rat in situ intestinal perfusion model as well as the in vivo pharmacokinetics studies in rats consistently showed that the co-occurring components in hawthorn phenolic extract might not have significant effect on the intestinal absorption of the three major hawthorn flavonoids studied.
Rubino, Francesco; Forgione, Antonello; Cummings, David E; Vix, Michel; Gnuli, Donatella; Mingrone, Geltrude; Castagneto, Marco; Marescaux, Jacques
2006-11-01
Most patients who undergo Roux-en-Y gastric bypass (RYGB) experience rapid resolution of type 2 diabetes. Prior studies indicate that this results from more than gastric restriction and weight loss, implicating the rearranged intestine as a primary mediator. It is unclear, however, if diabetes improves because of enhanced delivery of nutrients to the distal intestine and increased secretion of hindgut signals that improve glucose homeostasis, or because of altered signals from the excluded segment of proximal intestine. We sought to distinguish between these two mechanisms. Goto-Kakizaki (GK) type 2 diabetic rats underwent duodenal-jejunal bypass (DJB), a stomach-preserving RYGB that excludes the proximal intestine, or a gastrojejunostomy (GJ), which creates a shortcut for ingested nutrients without bypassing any intestine. Controls were pair-fed (PF) sham-operated and untreated GK rats. Rats that had undergone GJ were then reoperated to exclude the proximal intestine; and conversely, duodenal passage was restored in rats that had undergone DJB. Oral glucose tolerance (OGTT), food intake, body weight, and intestinal nutrient absorption were measured. There were no differences in food intake, body weight, or nutrient absorption among surgical groups. DJB-treated rats had markedly better oral glucose tolerance compared with all control groups as shown by lower peak and area-under-the-curve glucose values (P < 0.001 for both). GJ did not affect glucose homeostasis, but exclusion of duodenal nutrient passage in reoperated GJ rats significantly improved glucose tolerance. Conversely, restoration of duodenal passage in DJB rats reestablished impaired glucose tolerance. This study shows that bypassing a short segment of proximal intestine directly ameliorates type 2 diabetes, independently of effects on food intake, body weight, malabsorption, or nutrient delivery to the hindgut. These findings suggest that a proximal intestinal bypass could be considered for diabetes treatment and that potentially undiscovered factors from the proximal bowel might contribute to the pathophysiology of type 2 diabetes.
Su, Hai-tao; Li, Yi-shu; Lu, Shu-liang; Sun, Man; Qing, Chun; Li, Zong-yu; Shao, Tie-bing; Huang, Li-bing; Qu, Bing; Yang, Xin-bo
2005-04-01
To explore the preventive and treatment effects of smectite powder on enteral bacterial translocation in scalded rats. Fifty-four Sprague-Dawley (SD) rats were randomly divided into three groups, i.e. normal control (A, n = 6), burn control (B, n = 24), and burn treatment (T, n = 24) groups. The rats in B and T groups were fed with tracing bacteria JM109, which was transfected with PUC19 plasmid in advance. The rats were subjected to 30% TBSA scald injury after the plasmid was shown to have colonized in the intestine. Smectite powder (0.6 g/day/kg) was fed to rats of T group immediately after the scalding, while those in B group received no smectite powder. Bacterial translocation in blood and mesenteric lymph nodes in all groups was observed and identified by enzyme digestion at 12 post scald hour (PSH) and on 1, 3 and 5 post-scald days (PSD). The contents of malondialdehyde (MDA) and superoxide dismutase (SOD) were determined in rat intestinal tissue. And the degree of injury to the entire small intestine was observed pathologically. The villus height of intestinal mucosa was measured, and the rate of epithelial nuclear splitting of mucosal crypts was calculated. The number of rats with positive blood bacterial culture in B group was obviously higher than that in A and T groups (P < 0.05) on 1 and 5 PSD. The bacterial quantity in mesenteric lymph nodes (MLN) in T group on 1 PSD (38 +/- 16 CFU/g) and 5 PSD (68 +/- 20 CFU/g) were obviously lower than those in B group (228 +/- 67 vs 183 +/- 29 CFU/g, P < 0.05). There was significant difference in the intestinal contents of MDA and SOD between B and T groups at each time point (P < 0.05). The rat jejunum villus height and the epithelial nuclear splitting in the small intestine mucosa in T group were evidently higher than those in B group (P < 0.05 or 0.01). Smectite powder is beneficial to the protection of the intestinal mucosa in scalded rats, and can effectively prevent postburn intestinal bacterial translocation in rats.
Ren, Ping; Silberg, Debra G.; Sirica, Alphonse E.
2000-01-01
CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478–486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats. PMID:10666391
Ren, P; Silberg, D G; Sirica, A E
2000-02-01
CDX1 is a caudal-type homeobox intestine-specific transcription factor that has been shown to be selectively expressed in epithelial cells in intestinal metaplasia of the human stomach and esophagus and variably expressed in human gastric and esophageal adenocarcinomas (Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG: Gastroenterology 1997, 113: 478-486). Through the use of immunohistochemistry and Western blotting, we investigated whether CDX1 is also uniquely associated with the intestinal metaplasia associated with putative precancerous cholangiofibrosis induced in rat liver during furan cholangiocarcinogenesis, as well as expressed in neoplastic glands in a subsequently developed intestinal type of cholangiocarcinoma. In normal, control adult rat small intestine, specific nuclear immunoreactivity for CDX1 was most prominent in enterocytes lining the crypts. In comparison, epithelium from intestinal metaplastic glands within furan-induced hepatic cholangiofibrosis and neoplastic epithelium from later developed primary intestinal-type cholangiocarcinoma each demonstrated strong nuclear immunoreactivity for CDX1. CDX1-positive cells were detected in hepatic cholangiofibrotic tissue as early as 3 weeks after the start of chronic furan treatment. We further determined that the percentages of CDX1-positive neoplastic glands and glandular nuclei are significantly higher in primary tumors than in a derived, transplantable cholangiocarcinoma serially-propagated in vivo. Western blotting confirmed our immunohistochemical results, and no CDX1 immunoreactivity was detected in normal adult rat liver or in hyperplastic biliary epithelial cells. These findings indicate that CDX1 is specifically associated with early intestinal metaplasia and a later developed intestinal-type of cholangiocarcinoma induced in the liver of furan-treated rats.
Dietary palmitic acid modulates intestinal re-growth after massive small bowel resection in a rat.
Sukhotnik, Igor; Hayari, Lili; Bashenko, Yulia; Chemodanov, Elena; Mogilner, Jorge; Shamir, Raanan; Bar Yosef, Fabiana; Shaoul, Ron; Coran, Arnold G
2008-12-01
Among factors promoting intestinal adaptation after bowel resection, dietary fatty acids have a special role. The purpose of the present study was to evaluate the effects of palmitic acid (PA) on early intestinal adaptation in rats with short bowel syndrome (SBS). Male Sprague-Dawley rats underwent either a bowel transection with re-anastomosis (sham rats) or 75% small bowel resection (SBS rats). Animals were randomly assigned to one of four groups: sham rats fed normal chow (sham-NC); SBS rats fed NC (SBS-NC), SBS rats fed high palmitic acid diet (SBS-HPA), and SBS rats fed low palmitic acid diet (SBS-LPA). Rats were sacrificed on day 14. Parameters of intestinal adaptation, overall bowel and mucosal weight, mucosal DNA and protein, villus height and crypt depth, cell proliferation and apoptosis were determined at sacrifice. RT-PCR and Western blotting were used to determine the level of bax and bcl-2 mRNA and protein (parameters of apoptosis), and ERK protein levels (parameter of proliferation). Statistical analysis was performed using Kruskal-Wallis test followed by post hoc test for multiple comparisons with P values of less than 0.05 considered statistically significant. SBS-HFD rats demonstrated higher bowel and mucosal weight, mucosal DNA and protein in ileum, while deprivation of PA (SBS-LPA) inhibited intestinal re-growth both in jejunum and ileum compared to SBS-NC rats. A significant up-regulation of ERK protein coincided with increased cell proliferation in SBS-HFD rats (vs. SBS-NC). Also, the initial decreased levels of apoptosis corresponded with the early decrease in bax and increase in bcl-2 at both mRNA and protein levels. Early exposure to HPA both augments and accelerates structural bowel adaptation in a rat model of SBS. Increased cell proliferation and decreased cell apoptosis may be responsible for this effect. Deprivation of PA in the diet inhibits intestinal re-growth.
Lojo, Nermin; Rasic, Zarko; Zenko Sever, Anita; Kolenc, Danijela; Vukusic, Darko; Drmic, Domagoj; Zoricic, Ivan; Sever, Marko; Seiwerth, Sven; Sikiric, Predrag
2016-01-01
Stable gastric pentadecapeptide BPC 157 was previously used to ameliorate wound healing following major surgery and counteract diclofenac toxicity. To resolve the increasing early risks following major massive small bowel resectioning surgery, diclofenac combined with nitric oxide (NO) system blockade was used, suggesting therapy with BPC 157 and the nitric oxide synthase (NOS substrate) L-arginine, is efficacious. Immediately after anastomosis creation, short-bowel rats were untreated or administered intraperitoneal diclofenac (12 mg/kg), BPC 157 (10 μg/kg or 10 ng/kg), L-NG-nitroarginine methyl ester (L-NAME, 5 mg/kg), L-arginine (100 mg/kg) alone or combined, and assessed 24 h later. Short-bowel rats exhibited poor anastomosis healing, failed intestine adaptation, and gastrointestinal, liver, and brain lesions, which worsened with diclofenac. This was gradually ameliorated by immediate therapy with BPC 157 and L-arginine. Contrastingly, NOS-blocker L-NAME induced further aggravation and lesions gradually worsened. Specifically, rats with surgery alone exhibited mild stomach/duodenum lesions, considerable liver lesions, and severe cerebral/hippocampal lesions while those also administered diclofenac showed widespread severe lesions in the gastrointestinal tract, liver, cerebellar nuclear/Purkinje cells, and cerebrum/hippocampus. Rats subjected to surgery, diclofenac, and L-NAME exhibited the mentioned lesions, worsening anastomosis, and macro/microscopical necrosis. Thus, rats subjected to surgery alone showed evidence of deterioration. Furtheremore, rats subjected to surgery and administered diclofenac showed worse symptoms, than the rats subjected to surgery alone did. Rats subjected to surgery combined with diclofenac and L-NAME showed the worst deterioration. Rats subjected to surgery exhibited habitual adaptation of the remaining small intestine, which was markedly reversed in rats subjected to surgery and diclofenac, and those with surgery, diclofenac, and L-NAME. BPC 157 completely ameliorated symptoms in massive intestinal resection-, massive intestinal resection plus diclofenac-, and massive intestinal resection plus diclofenac plus L-NAME-treated short bowel rats that presented with cyclooxygenase (COX)-NO-system inhibition. L-arginine ameliorated only L-NAME-induced aggravation of symptoms in rats subjected to massive intestinal resection and administered diclofenac plus L-NAME.
Lojo, Nermin; Rasic, Zarko; Zenko Sever, Anita; Kolenc, Danijela; Vukusic, Darko; Drmic, Domagoj; Zoricic, Ivan; Sever, Marko; Seiwerth, Sven; Sikiric, Predrag
2016-01-01
Stable gastric pentadecapeptide BPC 157 was previously used to ameliorate wound healing following major surgery and counteract diclofenac toxicity. To resolve the increasing early risks following major massive small bowel resectioning surgery, diclofenac combined with nitric oxide (NO) system blockade was used, suggesting therapy with BPC 157 and the nitric oxide synthase (NOS substrate) L-arginine, is efficacious. Immediately after anastomosis creation, short-bowel rats were untreated or administered intraperitoneal diclofenac (12 mg/kg), BPC 157 (10 μg/kg or 10 ng/kg), L-NG-nitroarginine methyl ester (L-NAME, 5 mg/kg), L-arginine (100 mg/kg) alone or combined, and assessed 24 h later. Short-bowel rats exhibited poor anastomosis healing, failed intestine adaptation, and gastrointestinal, liver, and brain lesions, which worsened with diclofenac. This was gradually ameliorated by immediate therapy with BPC 157 and L-arginine. Contrastingly, NOS-blocker L-NAME induced further aggravation and lesions gradually worsened. Specifically, rats with surgery alone exhibited mild stomach/duodenum lesions, considerable liver lesions, and severe cerebral/hippocampal lesions while those also administered diclofenac showed widespread severe lesions in the gastrointestinal tract, liver, cerebellar nuclear/Purkinje cells, and cerebrum/hippocampus. Rats subjected to surgery, diclofenac, and L-NAME exhibited the mentioned lesions, worsening anastomosis, and macro/microscopical necrosis. Thus, rats subjected to surgery alone showed evidence of deterioration. Furtheremore, rats subjected to surgery and administered diclofenac showed worse symptoms, than the rats subjected to surgery alone did. Rats subjected to surgery combined with diclofenac and L-NAME showed the worst deterioration. Rats subjected to surgery exhibited habitual adaptation of the remaining small intestine, which was markedly reversed in rats subjected to surgery and diclofenac, and those with surgery, diclofenac, and L-NAME. BPC 157 completely ameliorated symptoms in massive intestinal resection-, massive intestinal resection plus diclofenac-, and massive intestinal resection plus diclofenac plus L-NAME-treated short bowel rats that presented with cyclooxygenase (COX)-NO-system inhibition. L-arginine ameliorated only L-NAME-induced aggravation of symptoms in rats subjected to massive intestinal resection and administered diclofenac plus L-NAME. PMID:27627764
Furuya, Sonoko; Furuya, Kishio; Shigemoto, Ryuichi; Sokabe, Masahiro
2010-11-01
Subepithelial fibroblasts of the intestinal villi, which form a contractile cellular network beneath the epithelium, are in close contact with epithelial cells, nerve varicosities, capillaries, smooth muscles and immune cells, and secrete extracellular matrix molecules, growth factors and cytokines, etc. Cultured subepithelial fibroblasts of the rat duodenal villi display various receptors such as endothelins, ATP, substance-P and bradykinin, and release ATP in response to mechanical stimulation. In this study, the presence of functional NK1 receptors (NK1R) was pharmacologically confirmed in primary culture by Ca(2+) measurement, and the effects of substance-P were measured in an acute preparation of epithelium-free duodenal villi from 2- to 3-week-old rats using a two-photon laser microscope. Substance-P elicited an increase in the intracellular Ca(2+) concentration and contraction of the subepithelial fibroblasts in culture and the isolated villi. The localization of NK1R and substance-P in the villi was examined by light and electron microscopic immunohistochemistry. NK1R-like immunoreactivity was intensely localized on the plasma membrane of villous subepithelial fibroblasts in 10-day- to 4-week-old rats and mice and was decreased or absent in adulthood. The pericryptal fibroblasts of the small and large intestine were NK1R immuno-negative. These villous subepithelial fibroblasts form synapse-like structures with both substance-P-immunopositive and -immunonegative nerve varicosities. Here, we propose that the mutual interaction between villous subepithelial fibroblasts and afferent neurons via substance-P and ATP plays important roles in the maturation of the structure and function of the small intestine.
Samal, Lipismita; Chaturvedi, Vishwa Bandhu; Saikumar, Guttula; Somvanshi, Ramesh; Pattanaik, Ashok Kumar
2015-06-01
Many studies have been conducted using purified prebiotics such as inulin or fructooligosaccharides (FOS) as nutraceuticals, but there is very little information available on the prebiotic potential of raw products rich in inulin and FOS, such as Jerusalem artichoke (JA; Helianthus tuberosus L.). The present experiment aimed to evaluate the prebiotic effects of JA tubers in rats. Seventy-two Wistar weanling rats divided into four groups were fed for 12 weeks on a basal diet fortified with pulverized JA tubers at 0 (control), 20, 40 and 60 g kg(-1) levels. Enhanced cell-mediated immunity in terms of skin indurations (P = 0.082) and CD4+ T-lymphocyte population (P = 0.002) was observed in the JA-supplemented groups compared with the control group. Blood haemoglobin (P = 0.017), glucose (P = 0.001), urea (P = 0.004) and calcium (P = 0.048) varied favourably upon inclusion of JA. An increasing trend (P = 0.059) in the length of large intestine was apparent in the JA-fed groups. The tissue mass of caecum (P = 0.069) and colon (P = 0.003) was increased in the JA-supplemented groups, accompanied by higher (P = 0.007) caecal crypt depth. The pH and ammonia concentrations of intestinal digesta decreased and those of lactate and total volatile fatty acids increased in the JA-fed groups. The results suggest that JA had beneficial effects on immunity, blood metabolites, intestinal morphometry and hindgut fermentation of rats. © 2014 Society of Chemical Industry.
Kraidith, Kamonshanok; Jantarajit, Walailuk; Teerapornpuntakit, Jarinthorn; Nakkrasae, La-iad; Krishnamra, Nateetip; Charoenphandhu, Narattaphol
2009-09-01
Prolactin (PRL) is reported to stimulate calcium absorption in the rat's small intestine. However, little is known regarding its effects on the cecum, a part of the large intestine with the highest rate of intestinal calcium transport. We demonstrated herein by quantitative real-time polymerase chain reaction and Western blot analysis that the cecum could be a target organ of PRL since cecal epithelial cells strongly expressed PRL receptors. In Ussing chamber experiments, PRL enhanced the transcellular cecal calcium absorption in a biphasic dose-response manner. PRL also increased the paracellular calcium permeability and passive calcium transport in the cecum, which could be explained by the PRL-induced decrease in transepithelial resistance and increase in cation selectivity of the cecal epithelium. PRL actions in the cecum were abolished by inhibitors of phosphoinositide 3-kinase (PI3K), protein kinase C (PKC), and RhoA-associated coiled-coil forming kinase (ROCK), but not inhibitors of gene transcription and protein biosynthesis. In conclusion, PRL directly enhanced the transcellular and paracellular calcium transport in the rat cecum through the nongenomic signaling pathways involving PI3K, PKC, and ROCK.
Wang, Wei-Wei; Zhang, Yu; Huang, Xiao-Bing; You, Nan; Zheng, Lu; Li, Jing
2017-10-14
To investigate whether fecal microbiota transplantation (FMT) prevents hepatic encephalopathy (HE) in rats with carbon tetrachloride (CCl 4 )-induced acute hepatic dysfunction. A rat model of HE was established with CCl 4 . Rat behaviors and spatial learning capability were observed, and hepatic necrosis, intestinal mucosal barrier, serum ammonia levels and intestinal permeability were determined in HE rats receiving FMT treatment. Furthermore, the expression of tight junction proteins (Claudin-1, Claudin-6 and Occludin), Toll-like receptor (TLR) 4/TLR9, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α was examined. FMT improved rat behaviors, HE grade and spatial learning capability. Moreover, FMT prevented hepatic necrosis and intestinal mucosal barrier damage, leading to hepatic clearance of serum ammonia levels and reduced intestinal permeability. The expression of TLR4 and TLR9, two potent mediators of inflammatory response, was significantly downregulated in the liver of rats treated with FMT. Consistently, circulating pro-inflammatory factors such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α were remarkably decreased, indicating that FMT is able to limit systemic inflammation by decreasing the expression of TLR4 and TLR9. Importantly, HE-induced loss of tight junction proteins (Claudin-1, Claudin-6 and Occludin) was restored in intestinal tissues of rats receiving FMT treatment. FMT enables protective effects in HE rats, and it improves the cognitive function and reduces the liver function indexes. FMT may cure HE by altering the intestinal permeability and improving the TLR response of the liver.
Miyake, Masateru; Kondo, Satoshi; Koga, Toshihisa; Yoda, Noriaki; Nakazato, Satoru; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime
2018-01-01
The purpose of this study was to evaluate the intestinal metabolism and absorption in a mini-Ussing chamber equipped with animal intestinal tissues, based on the transport index (TI). TI value was defined as the sum of drug amounts transported to the basal-side component (X corr ) and drug amounts accumulated in the tissue (T corr ), which are normalized by AUC of a drug in the apical compartment, as an index for drug absorption. Midazolam was used as a test compound for the evaluation of intestinal metabolism and absorption. The metabolite formulation of midazolam was observed in both rats and dogs. Ketoconazole inhibited the intestinal metabolism of midazolam in rats and improved its intestinal absorption to a statistically significant extent. Therefore, the mini-Ussing chamber, equipped with animal intestinal tissues, showed potential to use the evaluation of the intestinal metabolism and absorption, including the assessment of species differences. Copyright © 2017. Published by Elsevier B.V.
Prasetyo, R H
2016-03-01
The purpose of this study was to investigate the prevalence of house rat zoonotic intestinal parasites from Surabaya District, East Java, Indonesia that have the potential to cause opportunistic infection in humans. House rat fecal samples were collected from an area of Surabaya District with a dense rat population during May 2015. Intestinal parasites were detected microscopically using direct smear of feces stained with Lugol's iodine and modified Ziehl-Neelsen stains. The fecal samples were also cultured for Strongyloides stercoralis. Ninety-eight house rat fecal samples were examined. The potential opportunistic infection parasite densities found in those samples were Strongyloides stercoralis in 53%, Hymenolepis nana in 42%, Cryptosporidium spp in 33%, and Blastocystis spp in 6%. This is the first report of this kind in Surabaya District. Measures need to be taken to control the house rat population in the study area to reduce the risk of the public health problem. Keywords: zoonotic intestinal parasites, opportunistic infection, house rat, densely populated area, Indonesia
Stringer, Andrea M; Gibson, Rachel J; Bowen, Joanne M; Logan, Richard M; Ashton, Kimberly; Yeoh, Ann SJ; Al-Dasooqi, Noor; Keefe, Dorothy MK
2009-01-01
Chemotherapy-induced diarrhoea is a major oncological problem, caused by the cytotoxic effects of cancer chemotherapy. Irinotecan is linked with severe mucositis and diarrhoea, the mechanisms of which remain poorly understood. Bacterial β-glucuronidase is thought to be involved in the metabolism of irinotecan, implicating the intestinal flora. Intestinal mucins may also be implicated in the development of chemotherapy-induced diarrhoea. Rats were treated with 200 mg/kg of irinotecan and killed at 96, 120 and 144 h. The rats were monitored for diarrhoea. Pathology and immunohistochemical staining was performed. The samples were cultured and faecal DNA was analysed using real-time polymerase chain reaction. Severe diarrhoea was observed from 72 to 96 h. A decrease in body mass was also observed after treatment. Significant changes in goblet cell numbers (both complete and cavitated cells) were observed in the small and large intestines. Changes in MUC gene expression were observed in the small intestine only. Modifications were observed to the intestinal flora profile, especially Escherichia coli, and an increase in the expression of β-glucuronidase was detected. In conclusion, irinotecan-induced diarrhoea may be caused by an increase in some β-glucuronidase-producing bacteria, especially E. coli, exacerbating the toxicity of active metabolites. Accelerated mucous secretion and mucin release may also contribute to the delayed onset of diarrhoea. PMID:19765103
Rasmussen, Henrik; Mirtaheri, Peyman; Dirven, Hubert; Johnsen, Helge; Kvarstein, Gunnvald; Tønnessen, Tor Inge; Midtvedt, Tore
2002-01-01
PCO(2) in the lumen and serosa of cecum and colon was measured in rats, guinea pigs, and dogs to examine the relationship between serosal PCO(2) and the incidence of intestinal necrotic lesions after administration of gas-carrier contrast agents in rodents. The effects of the dietary substrate were tested in a group of mice maintained on a diet based on glucose as the only carbohydrate source. The anesthetic used was a fentanyl-fluanison-midazolam mixture (rodents) and pentobarbital (dogs). PCO(2) was measured in vivo and postmortem, and the kinetics of the postmortem serosal PCO(2) [transmural CO(2) flux (J(CO(2)))] was calculated. PCO(2) in the cecal serosa and lumen, respectively, was 64 +/- 4 and 392 +/- 18 Torr in rats, 67 +/- 3 and 276 +/- 17 Torr in guinea pigs, and 73 +/- 6 and 137 +/- 7 Torr in mice on glucose-based diet. In the colon serosa and lumen of dogs, PCO(2) was 30 +/- 6 and 523 +/- 67 Torr, respectively. Serosal PCO(2) increased rapidly after death in rats and slower in guinea pigs and mice, and the slowest change was observed in dogs. Compared with dogs, serosal PCO(2) and J(CO(2)) of rats and guinea pigs were significantly higher. Serosal PCO(2) of guinea pigs was similar to that of rats, whereas the J(CO(2)) of guinea pigs was significantly lower. These data suggest a causal relationship between the ability of the cecal and colonic wall to act as a barrier to CO(2) diffusion and the presence of characteristic gas-carrier contrast agent-induced intestinal lesions in mice and rats and their absence in guinea pigs, dogs, and other species.
2014-01-01
Toll-like receptor 4 (TLR-4) is crucial in maintaining intestinal epithelial homeostasis, participates in a vigorous signaling process and heightens inflammatory cytokine output. The objective of this study was to determine the effects of glutamine (GLN) on TLR-4 signaling in intestinal mucosa during methotrexate (MTX)-induced mucositis in a rat. Male Sprague–Dawley rats were randomly assigned to one of four experimental groups of 8 rats each: 1) control rats; 2) CONTR-GLN animals were treated with oral glutamine given in drinking water (2%) 48 hours before and 72 hours following vehicle injection; 3) MTX-rats were treated with a single IP injection of MTX (20 mg/kg); and 4) MTX-GLN rats were pre-treated with oral glutamine similar to group B, 48 hours before and 72 hours after MTX injection. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. The expression of TLR-4, MyD88 and TRAF6 in the intestinal mucosa was determined using real time PCR, Western blot and immunohistochemistry. MTX-GLN rats demonstrated a greater jejunal and ileal mucosal weight and mucosal DNA, greater villus height in ileum and crypt depth and index of proliferation in jejunum and ileum, compared to MTX animals. The expression of TLR-4 and MyD88 mRNA and protein in the mucosa was significantly lower in MTX rats versus controls animals. The administration of GLN increased significantly the expression of TLR-4 and MyD88 (vs the MTX group). In conclusion, treatment with glutamine was associated with up-regulation of TLR-4 and MyD88 expression and a concomitant decrease in intestinal mucosal injury caused by MTX-induced mucositis in a rat. PMID:24742067
Intestinal tract is an important organ for lowering serum uric acid in rats
Gao, Zhiyi; Li, Yue; Gao, Tao; Duan, Jinlian; Yang, Rong; Dong, Xianxiang; Zhang, Lumei
2017-01-01
The kidney was recognized as a dominant organ for uric acid excretion. The main aim of the study demonstrated intestinal tract was an even more important organ for serum uric acid (SUA) lowering. Sprague-Dawley rats were treated normally or with antibiotics, uric acid, adenine, or inosine of the same molar dose orally or intraperitoneally for 5 days. Rat’s intestinal tract was equally divided into 20 segments except the cecum. Uric acid in serum and intestinal segment juice was assayed. Total RNA in the initial intestinal tract and at the end ileum was extracted and sequenced. Protein expression of xanthine dehydrogenase (XDH) and urate oxidase (UOX) was tested by Western blot analysis. The effect of oral UOX in lowering SUA was investigated in model rats treated with adenine and an inhibitor of uric oxidase for 5 days. SUA in the normal rats was 20.93±6.98 μg/ml, and total uric acid in the intestinal juice was 308.27±16.37 μg, which is two times more than the total SUA. The uric acid was very low in stomach juice, and attained maximum in the juice of the first segment (duodenum) and then declined all the way till the intestinal end. The level of uric acid in the initial intestinal tissue was very high, where XDH and most of the proteins associated with bicarbonate secretion were up-regulated. In addition, SUA was decreased by oral UOX in model rats. The results suggested that intestinal juice was an important pool for uric acid, and intestinal tract was an important organ for SUA lowering. The uric acid distribution was associated with uric acid synthesis and secretion in the upper intestinal tract, and reclamation in the lower. PMID:29267361
Sukhotnik, Igor; Shteinberg, Dan; Ben Lulu, Shani; Bashenko, Yulia; Mogilner, Jorge G; Ure, Benno M; Shaoul, Ron; Shamian, Benhoor; Coran, Arnold G
2008-12-01
Recent evidence suggests that transforming growth factor-alpha (TGF-alpha) enhances enterocyte proliferation and exerts a gut trophic effect. The purpose of the present study was to evaluate the effect of TGF-alpha on enterocyte proliferation and intestinal recovery following methotrexate (MTX)-induced intestinal mucositis in rats and in Caco-2 cells. Nonpretreated Caco-2 cells and those pretreated with MTX were incubated with increasing concentrations of TGF-alpha. Cell proliferation was determined by FACS cytometry. Adult rats were divided into three groups: control rats treated with vehicle, MTX rats treated with one dose (20 microg/kg) of MTX given intraperitoneally, and MTX-TGF-alpha rats treated with one dose of MTX followed by two doses of TGF-alpha (75 microg/kg a day). Three days after MTX injection, rats were sacrificed. Intestinal mucosal damage (Park's score), mucosal structural changes, and enterocyte proliferation were measured at sacrifice. Western blotting was used to determine the level of extracellular signal-related kinase (ERK) protein, a marker of cell proliferation. A nonparametric Kruskal-Wallis ANOVA test was used for statistical analysis with P value less than 0.05 considered statistically significant. The in vitro experiment demonstrated that treatment with TGF-alpha of Caco-2 cells resulted in a significant stimulation of cell proliferation in a dose-dependent manner. The in vivo experiment showed that treatment with TGF-alpha resulted in a significant increase in bowel and mucosal weight, DNA and protein content in jejunum and ileum, villus height in jejunum and ileum, crypt depth in ileum, and increased cell proliferation in jejunum and ileum compared to the MTX group. MTX-TGF-alpha rats also had a significantly lower intestinal injury score in ileum when compared to MTX animals. The increase in levels of cell proliferation in MTX-TGF-alpha rats corresponded with the increase in ERK protein levels in intestinal mucosa. Treatment with TGF-alpha prevents mucosal injury, enhances ERK-induced enterocyte proliferation, and improves intestinal recovery following MTX-induced intestinal mucositis in rats. These findings correlated with the observation that TGF-alpha also caused a significant stimulation of cell proliferation in a Caco-2 cell culture model treated with MTX. These observations may have significant implications for the treatment of patients on chemotherapy who develop severe mucositis.
Forner, Kristin; Roos, Carl; Dahlgren, David; Kesisoglou, Filippos; Konerding, Moritz A; Mazur, Johanna; Lennernäs, Hans; Langguth, Peter
2017-02-01
Prediction of the in vivo absorption of poorly soluble drugs may require simultaneous dissolution/permeation experiments. In vivo predictive media have been modified for permeation experiments with Caco-2 cells, but not for excised rat intestinal segments. The present study aimed at improving the setup of dissolution/permeation experiments with excised rat intestinal segments by assessing suitable donor and receiver media. The regional compatibility of rat intestine in Ussing chambers with modified Fasted and Fed State Simulated Intestinal Fluids (Fa/FeSSIF mod ) as donor media was evaluated via several parameters that reflect the viability of the excised intestinal segments. Receiver media that establish sink conditions were investigated for their foaming potential and toxicity. Dissolution/permeation experiments with the optimized conditions were then tested for two particle sizes of the BCS class II drug aprepitant. Fa/FeSSIF mod were toxic for excised rat ileal sheets but not duodenal sheets, the compatibility with jejunal segments depended on the bile salt concentration. A non-foaming receiver medium containing bovine serum albumin (BSA) and Antifoam B was nontoxic. With these conditions, the permeation of nanosized aprepitant was higher than of the unmilled drug formulations. The compatibility of Fa/FeSSIF mod depends on the excised intestinal region. The chosen conditions enable dissolution/permeation experiments with excised rat duodenal segments. The experiments correctly predicted the superior permeation of nanosized over unmilled aprepitant that is observed in vivo. The optimized setup uses FaSSIF mod as donor medium, excised rat duodenal sheets as permeation membrane and a receiver medium containing BSA and Antifoam B.
L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats.
Vanhaecke, T; Aubert, P; Grohard, P-A; Durand, T; Hulin, P; Paul-Gilloteaux, P; Fournier, A; Docagne, F; Ligneul, A; Fressange-Mazda, C; Naveilhan, P; Boudin, H; Le Ruyet, P; Neunlist, M
2017-08-01
Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L. fermentum) on stress-induced IEB dysfunction, systemic immune response and exploratory behavior. Newborn rats received daily by gavage either L. fermentum or water. Intestinal permeability to fluorescein sulfonic acid (FSA) and horseradish peroxidase (HRP) was measured following maternal separation (MS) and water avoidance stress (WAS). Immunohistochemical, transcriptomic, and Western blot analysis of zonula occludens-1 (ZO-1) distribution and expression were performed. Anxiety-like and exploratory behavior was assessed using the elevated plus maze test. Cytokine secretion of activated splenocytes was also evaluated. L. fermentum prevented MS and WAS-induced IEB dysfunction in vivo. L. fermentum reduced permeability to both FSA and HRP in the small intestine but not in the colon. L. fermentum increased expression of ZO-1 and prevented WAS-induced ZO-1 disorganization in ileal epithelial cells. L. fermentum also significantly reduced stress-induced increase in plasma corticosteronemia. In activated splenocytes, L. fermentum enhanced IFNγ secretion while it prevented IL-4 secretion. Finally, L. fermentum increased exploratory behavior. These results suggest that L. fermentum could provide a novel tool for the prevention and/or treatment of gastrointestinal disorders associated with altered IEB functions in the newborn. © 2017 John Wiley & Sons Ltd.
Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats.
Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun
2015-01-14
To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14(th) day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. In the rat model, jaundice was obvious, and the rats' activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin.
Taha, M O; de Oliveira, J V; Dias Borges, M; de Lucca Melo, F; Gualtieri, F G; E Silva Aidar, A L; Pacheco, R L; de Melo Alexandre E Silva, T; Klajner, R K; Iuamoto, L R; Munhoz Torres, L; Morais Mendes de Paula, B J; de Campos, K; Oliveira-Junior, I S; Fagundes, D J
2016-03-01
The goal of this study was to investigate whether exogenous offer of L-arginine (LARG) modulates the gene expression of intestinal dysfunction caused by ischemia and reperfusion. Eighteen Wistar-EPM1 male rats (250-300 g) were anesthetized and subjected to laparotomy. The superior mesenteric vessels were exposed, and the rats were randomized into 3 groups (n = 6): the control group (CG), with no superior mesenteric artery interruption; the ischemia/reperfusion group (IRG), with 60 minutes of ischemia and 120 minutes of reperfusion and saline injections; and the L-arginine group (IRG + LARG), with L-arginine injected in the femoral vein 5 minutes before ischemia, 5 minutes after reperfusion, and after 55 minutes of reperfusion. The total RNA was extracted and purified from samples of the small intestine. The concentration of each total RNA sample was determined by using spectrophotometry. The first-strand complementary DNA (cDNA) was synthesized in equal amounts of cDNA and the Master Mix SYBR Green qPCR Mastermix (SABiosciences, a Qiagen Company, Frederick, Md). Amounts of cDNA and Master Mix SYBR Green qPCR Mastermix were distributed to each well of the polymerase chain reaction microarray plate containing the predispensed gene-specific primer sets for Bax and Bcl2. Each sample was evaluated in triplicate, and the Student t test was applied to validate the homogeneity of each gene expression reaction (P < .05). The gene expression of Bax in IRG (+1.48) was significantly higher than in IRG-LARG (+9.69); the expression of Bcl2L1 in IRG (+1.01) was significantly higher than IRG-LARG (+22.89). The apoptotic cell pathway of 2 protagonists showed that LARG improves the gene expression of anti-apoptotic Bcl2l1 (Bcl2-like 1) more than the pro-apoptotic Bax (Bcl2-associated X protein). Copyright © 2016. Published by Elsevier Inc.
Lee, C Y
2015-04-01
This study investigated the effect of repeated acute restraint stress and high-fat diet (HFD) on intestinal expression of nutrient transporters, concomitant to intestinal inflammation. The ability of adenosine to reverse any change was examined. Six-week-old male Sprague Dawley rats were divided into eight groups: control or non-stressed (C), rats exposed to restraint stress for 6 h per day for 14 days (S), control rats fed with HFD (CHF) and restraint-stressed rats fed with HFD (SHF); four additional groups received the same treatments and were also given 50 mg/l adenosine dissolved in drinking water. Fasting blood glucose, plasma insulin, adiponectin and corticosterone were measured. Intestinal expression of SLC5A1, SLC2A2, NPC1L1 and TNF-α was analysed. Histological evaluation was conducted to observe for morphological and anatomical changes in the intestinal tissues. Results showed that HFD feeding increased glucose and insulin levels, and repeated acute restraint stress raised the corticosterone level by 22%. Exposure to both stress and HFD caused a further increase in corticosterone to 41%, while decreasing plasma adiponectin level. Restraint stress altered intestinal expression of SLC5A1, SLC2A2 and NPC1L1. These changes were enhanced in SHF rats. Adenosine was found to alleviate HFD-induced increase in glucose and insulin levels, suppress elevation of corticosterone in S rats and improve the altered nutrient transporters expression profiles. It also prevented upregulation of TNF-α in the intestine of SHF rats. In summary, a combination of stress and HFD exaggerated stress- and HFD-induced pathophysiological changes in the intestine, and biochemical parameters related to obesity. Adenosine attenuated the elevation of corticosterone and altered expression of SLC5A1, NPC1L1 and TNF-α. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Intestinal permeability of forskolin by in situ single pass perfusion in rats.
Liu, Zhen-Jun; Jiang, Dong-bo; Tian, Lu-Lu; Yin, Jia-Jun; Huang, Jian-Ming; Weng, Wei-Yu
2012-05-01
The intestinal permeability of forskolin was investigated using a single pass intestinal perfusion (SPIP) technique in rats. SPIP was performed in different intestinal segments (duodenum, jejunum, ileum, and colon) with three concentrations of forskolin (11.90, 29.75, and 59.90 µg/mL). The investigations of adsorption and stability were performed to ensure that the disappearance of forskolin from the perfusate was due to intestinal absorption. The results of the SPIP study indicated that forskolin could be absorbed in all segments of the intestine. The effective permeability (P (eff)) of forskolin was in the range of drugs with high intestinal permeability. The P (eff) was highest in the duodenum as compared to other intestinal segments. The decreases of P (eff) in the duodenum and ileum at the highest forskolin concentration suggested a saturable transport process. The addition of verapamil, a P-glycoprotein inhibitor, significantly enhanced the permeability of forskolin across the rat jejunum. The absorbed fraction of dissolved forskolin after oral administration in humans was estimated to be 100 % calculated from rat P (eff). In conclusion, dissolved forskolin can be absorbed readily in the intestine. The low aqueous solubility of forskolin might be a crucial factor for its poor oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.
Regulation of Dab2 expression in intestinal and renal epithelia by development.
Vázquez-Carretero, María D; García-Miranda, Pablo; Calonge, María L; Peral, María J; Ilundáin, Anunciación A
2011-01-01
Disabled-2 (Dab2) is an intracellular adaptor protein proposed to function in endocytosis. Here, we investigate the intestinal and renal Dab2 expression versus maturation. Dab2 mRNA levels measured by RT-PCR are greater in the small than in the large intestine. Immunological studies localize Dab2 to the terminal web domain of the enterocytes and reveal the presence of a 96-kDa Dab2 isoform in the apical membrane of the jejunum, ileum, and renal cortex of the suckling and adult rat. A 69-kDa Dab2 isoform is only observed in the apical membranes of the suckling ileum. During the suckling period, the Dab2 mRNA levels measured in the enterocytes and crypts and those of the 96-kDa Dab2 isoform are greater in the ileum than in the jejunum. No segmental differences are observed in the adult intestine. In the intestine, the levels of Dab2 mRNA and those of the 96-kDa Dab2 isoform decrease to adult values at weaning, whereas in the kidney they increase with development. Weaning the pups on a commercial milk diet slows the periweaning decline in the levels of Dab2 mRNA in the crypts and of those of the 96-kDa isoform. This is the first report showing that the 96-kDa Dab2 isoform is expressed at the apical domain of rat small intestine, that ontogeny regulates Dab2 gene expression in intestine and kidney and that retarding weaning affects intestinal Dab2 gene expression.
Lozoya-Agullo, Isabel; Zur, Moran; Beig, Avital; Fine, Noa; Cohen, Yael; González-Álvarez, Marta; Merino-Sanjuán, Matilde; González-Álvarez, Isabel; Bermejo, Marival; Dahan, Arik
2016-12-30
Intestinal drug permeability is position dependent and pertains to a specific point along the intestinal membrane, and the resulted segmental-dependent permeability phenomenon has been recognized as a critical factor in the overall absorption of drug following oral administration. The aim of this research was to compare segmental-dependent permeability data obtained from two different rat intestinal perfusion approaches: the single-pass intestinal perfusion (SPIP) model and the closed-loop (Doluisio) rat perfusion method. The rat intestinal permeability of 12 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was assessed in three small intestinal regions: the upper jejunum, mid-small intestine, and the terminal ileum, using both the SPIP and the Doluisio experimental methods. Excellent correlation was evident between the two approaches, especially in the upper jejunum (R 2 =0.95). Significant regional-dependent permeability was found in half of drugs studied, illustrating the importance and relevance of segmental-dependent intestinal permeability. Despite the differences between the two methods, highly comparable results were obtained by both methods, especially in the medium-high P eff range. In conclusion, the SPIP and the Doluisio method are both equally useful in obtaining crucial segmental-dependent intestinal permeability data. Copyright © 2016 Elsevier B.V. All rights reserved.
Camargo, A; Ferreira, S H
1971-06-01
BPF and BAL inhibited kininase activity of homogenates of rat intestine. However, BFP potentiated and BAL inhibited the contractions induced by bradykinin on rat isolated duodenum (low calcium solution) and terminal ileum (normal calcium solution). Neither BPF nor BAL affects the relaxation induced by bradykinin of rat duodenum bathed in normal Tyrode. These results suggest that two different types of pharmacological receptor are involved in the action of bradykinin on rat intestine, and that other factors besides the inhibition of agonist destruction participate in the mechanism of potentiation of kinin action by BPF.
Camargo, A.; Ferreira, S. H.
1971-01-01
BPF and BAL inhibited kininase activity of homogenates of rat intestine. However, BFP potentiated and BAL inhibited the contractions induced by bradykinin on rat isolated duodenum (low calcium solution) and terminal ileum (normal calcium solution). Neither BPF nor BAL affects the relaxation induced by bradykinin of rat duodenum bathed in normal Tyrode. These results suggest that two different types of pharmacological receptor are involved in the action of bradykinin on rat intestine, and that other factors besides the inhibition of agonist destruction participate in the mechanism of potentiation of kinin action by BPF. PMID:5091164
Lozoya-Agullo, Isabel; Zur, Moran; Wolk, Omri; Beig, Avital; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival; Dahan, Arik
2015-03-01
Intestinal drug permeability has been recognized as a critical determinant of the fraction dose absorbed, with direct influence on bioavailability, bioequivalence and biowaiver. The purpose of this research was to compare intestinal permeability values obtained by two different intestinal rat perfusion methods: the single-pass intestinal perfusion (SPIP) model and the Doluisio (closed-loop) rat perfusion method. A list of 15 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was constructed. We assessed the rat intestinal permeability of these 15 model drugs in both SPIP and the Doluisio methods, and evaluated the correlation between them. We then evaluated the ability of each of these methods to predict the fraction dose absorbed (Fabs) in humans, and to assign the correct BCS permeability class membership. Excellent correlation was obtained between the two experimental methods (r(2)=0.93). An excellent correlation was also shown between literature Fabs values and the predictions made by both rat perfusion techniques. Similar BCS permeability class membership was designated by literature data and by both SPIP and Doluisio methods for all compounds. In conclusion, the SPIP model and the Doluisio (closed-loop) rat perfusion method are both equally useful for obtaining intestinal permeability values that can be used for Fabs prediction and BCS classification. Copyright © 2015 Elsevier B.V. All rights reserved.
Pollack, P F; Adamson, C; Koldovsky, O
1989-04-15
Because of the presence of bombesin-like immunoreactivity in milk, we investigated if enteral administration of bombesin affects the intestinal luminal content of trypsin and protein in 12-14-day-old rats. Bombesin (40 micrograms/kg), given either orogastrically or subcutaneously, produced a significant elevation in the intestinal content of trypsin activity. Thus, enterally-administered bombesin can produce acute biologic effects in suckling rats.
EICOSAPENTAENOIC ACID ENHANCES HEATSTROKE-IMPAIRED INTESTINAL EPITHELIAL BARRIER FUNCTION IN RATS.
Xiao, Guizhen; Yuan, Fangfang; Geng, Yan; Qiu, Xiaowen; Liu, Zhifeng; Lu, Jiefu; Tang, Liqun; Zhang, Yali; Su, Lei
2015-10-01
Dysfunction of the intestinal barrier plays an important role in the pathological process of heatstroke. Omega-3 (or n-3) polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), help protect the intestinal mucosal barrier. This study assessed if pretreating rats with EPA or DHA could alleviate heat stress-induced damage to the intestinal barrier caused by experimental heatstroke. Male Wistar rats were pregavaged with either EPA, DHA, corn oil, or normal saline (all 1 g/kg) for 21 days before the heatstroke experiment (control rats were not exposed to heat). Experimental rats were exposed to an ambient temperature of 37°C and 60% humidity to induce heatstroke, and then they were allowed to recover at room temperature after rapid cooling. Survival time of rats was monitored after heatstroke. Horseradish peroxidase flux from the gut lumen and the level of plasma D-lactate were measured to analyze intestinal permeability at 6 h after heatstroke. Plasma endotoxin levels were determined using a limulus amoebocyte lysate assay. Expressions of the tight junction (TJ) proteins occludin and ZO-1 were analyzed by Western blot and localized by immunofluorescence microscopy. Tight junction protein morphology was observed by transmission electron microscopy. Fatty acids of ileal mucosa were analyzed using gas chromatography-mass selective detector. Eicosapentaenoic acid significantly increased survival time after heatstroke. Eicosapentaenoic acid significantly decreased intestinal permeability and plasma endotoxin levels. Eicosapentaenoic acid effectively attenuated the heatstroke-induced disruption of the intestinal structure and improved the histology score, whereas DHA was less effective, and corn oil was ineffective. Pretreatment with EPA also increased expression of occludin and ZO-1 to effectively prevent TJ disruption. Eicosapentaenoic acid pretreatment enriched itself in the membrane of intestinal cells. Our results indicate that EPA pretreatment is more effective than DHA pretreatment in attenuating heat-induced intestinal dysfunction and preventing TJ damage. Enhanced expression of TJ proteins that support the epithelial barrier integrity may be important for maintaining a functional intestinal barrier during heatstroke.
Sukhotnik, Igor; Geyer, Tatiana; Pollak, Yulia; Mogilner, Jorge G.; Coran, Arnold G.; Berkowitz, Drora
2014-01-01
Background/Aims Intestinal mucositis is a common side-effect in patients who receive aggressive chemotherapy. The Wnt signaling pathway is critical for establishing and maintaining the proliferative compartment of the intestine. In the present study, we tested whether Wnt/β-catenin signaling is involved in methotrexate (MTX)-induced intestinal damage in a rat model. Methods Non-pretreated and pretreated with MTX Caco-2 cells were evaluated for cell proliferation and apoptosis using FACS analysis. Adult rats were divided into three experimental groups: Control rats; MTX-2 animals were treated with a single dose of MTX given IP and were sacrificed on day 2, and MTX-4 rats were treated with MTX similar to group B and were sacrificed on day 4. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation, and enterocyte apoptosis were measured at sacrifice. Real Time PCR and Western blot was used to determine the level of Wnt/β-catenin related genes and protein expression. Results In the vitro experiment, treatment with MTX resulted in marked decrease in early cell proliferation rates following by a 17-fold increase in late cell proliferation rates compared to early proliferation. Treatment with MTX resulted in a significant increase in early and late apoptosis compared to Caco-2 untreated cells. In the vivo experiment, MTX-2 and MTX-4 rats demonstrated intestinal mucosal hypoplasia. MTX-2 rats demonstrated a significant decrease in FRZ-2, Wnt 3A Wnt 5A, β-catenin, c-myc mRNA expression and a significant decrease in β-catenin and Akt protein levels compared to control animals. Four days following MTX administration, rats demonstrated a trend toward a restoration of Wnt/β-catenin signaling especially in ileum. Conclusions Wnt/β-catenin signaling is involved in enterocyte turnover during MTX-induced intestinal mucositis in a rat. PMID:25375224
Erickson, R H; Gum, J R; Lindstrom, M M; McKean, D; Kim, Y S
1995-11-02
RT-PCR was used to obtain rat small intestinal cDNAs for two peptide transporters, showing conclusively for the first time that both are present in normal intestinal mucosa. Sequencing of these cDNAs showed them to be highly homologous and similar to two different types of peptide transport proteins from either colorectal carcinoma cells (Caco-2) or human and rabbit intestine. An even distribution profile of steady state levels of mRNA for both peptide transporters was observed along the longitudinal axis of small intestine. Both were upregulated in the distal regions of intestine by a high protein diet. Also, high levels of the rat high affinity glutamate transporter EAAC1 were observed in the distal intestine. These results suggest that the distal regions of small intestine play an important role in the absorption of some amino acids and peptides. Furthermore this area appears to be a primary site where dietary-induced changes in peptide and amino acid transport occurs.
A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats.
Batacan, R B; Fenning, A S; Dalbo, V J; Scanlan, A T; Duncan, M J; Moore, R J; Stanley, D
2017-06-01
Intestinal microbiota modulates the development of clinical conditions, including metabolic syndrome and obesity. Many of these conditions are influenced by nutritional and exercise behaviours. This study aimed to investigate the ability of exercise to re-shape the intestinal microbiota and the influence of the diet on the process. A rat model was used to examine the intestinal microbiota responses to four activity conditions, including: high-intensity interval training (HIIT), light-intensity training (LIT), sedentary and normal control, each containing two nutritional conditions: high-fat high-fructose diet (HF) and standard chow (SC) diet. No significant differences in microbiota were apparent between activity conditions in rats fed a HF diet but changes in the presence/absence of phylotypes were observed in the LIT and HIIT groups. In rats fed SC, significant differences in intestinal microbiota were evident between exercised and nonexercised rats. Both LIT and HIIT induced significant differences in intestinal microbiota in SC-fed rats compared to their respective SC-fed controls. Characterization of the exercise-induced bacterial phylotypes indicated an increase in bacteria likely capable of degrading resistant polysaccharides and an increase in short chain fatty acid producers. While a significant effect of exercise on microbiota composition occurred in SC-fed rats, the HF-fed rats microbiota showed little response. These data suggest that a HF diet prevented microbiota differentiation in response to exercise. The importance of diet-exercise interaction is extended to the level of intestinal bacteria and gut health. © 2017 The Society for Applied Microbiology.
Okayama, Takashige; Yoshisue, Kunihiro; Kuwata, Keizo; Komuro, Masahito; Ohta, Shigeru; Nagayama, Sekio
2012-02-01
ααα-Trifluorothymidine (TFT), an anticancer nucleoside analog, is a potent thymidylate synthase inhibitor. TFT exerts its antitumor activity primarily by inducing DNA fragmentation after incorporation of the triphosphate form of TFT into the DNA. Although an oral combination of TFT and a thymidine phosphorylase inhibitor has been clinically developed, there is little information regarding TFT absorption. Therefore, we investigated TFT absorption in the rat small intestine. After oral administration of TFT in rats, more than 75% of the TFT was absorbed. To identify the uptake transport system, uptake studies were conducted by using everted sacs prepared from rat small intestines. TFT uptake was saturable, significantly reduced under Na(+)-free conditions, and strongly inhibited by the addition of an endogenous pyrimidine nucleoside. From these results, we suggested the involvement of concentrative nucleoside transporters (CNTs) in TFT absorption into rat small intestine. In rat small intestines, the mRNAs coding for rat CNT1 (rCNT1) and rCNT2, but not for rCNT3, were predominantly expressed. To investigate the roles of rCNT1 and rCNT2 in TFT uptake, we conducted uptake assays by using Xenopus laevis oocytes injected with rCNT1 complementary RNA (cRNA) and rCNT2 cRNA. TFT uptake by X. laevis oocytes injected with rCNT1 cRNA, and not rCNT2 cRNA, was significantly greater than that by water-injected oocytes. In addition, in situ single-pass perfusion experiments performed using rat jejunum regions showed that thymidine, a substrate for CNT1, strongly inhibited TFT uptake. In conclusion, TFT is absorbed via rCNT1 in the intestinal lumen in rats.
Taciak, Marcin; Barszcz, Marcin; Tuśnio, Anna; Pastuszewska, Barbara
2015-01-01
The effects of indigestible carbohydrates, protein type, and protein level on large intestine health were examined in rats. For 21 days, 12 groups of six 12-week-old male Wistar rats were fed diets with casein (CAS), or potato protein concentrate (PPC), providing 14% (lower protein level; LP), or 20% (higher protein level; HP) protein, and containing cellulose, resistant potato starch, or pectin. Fermentation end-products, pH, and β-glucuronidase levels in cecal digesta, and ammonia levels in colonic digesta were determined. Cecal digesta, tissue weights, cecal and colon morphology, and colonocyte DNA damage were also analyzed. Digesta pH was lower, whereas relative mass of cecal tissue and digesta were higher in rats fed pectin diets than in those fed cellulose. Cecal parameters were greater in rats fed PPC and HP diets than in those fed CAS and LP diets, respectively. Short-chain fatty acid (SCFA) concentrations were unaffected by protein or carbohydrate type. Total SCFA, acetic acid, and propionic acid concentrations were greater in rats fed LP diets than in those fed HP. Cecal pool of isobutyric and isovaleric acids was greater in rats fed PPC than in those fed CAS diets. PPC diets decreased phenol concentration and increased ammonia concentration in cecal and colonic digesta, respectively. Cecal crypt depth was greater in rats fed PPC and HP diets, and was unaffected by carbohydrates; whereas colonic crypt depth was greater in rats fed cellulose. Myenteron thickness in the cecum was unaffected by nutrition, but was greater in the colon of rats fed cellulose. Colonocyte DNA damage was greater in rats fed LP diets than in those fed HP diets, and was unaffected by carbohydrate or protein type. It was found that nutritional factors decreasing cecal digesta weight contribute to greater phenol production, increased DNA damage, and reduced ammonia concentration in the colon. PMID:26536028
Effects of vasoactive intestinal peptide on vascular conductance are unaffected by anesthesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouder, T.G.; Huffman, L.J.; Hedge, G.A.
1988-12-01
In rats anesthetized with ketamine and pentobarbital (KET/PB), vasoactive intestinal peptide (VIP) increases vascular conductance (VC) in the salivary gland, pancreas, and thyroid gland, whereas no changes in VC are observed in a number of other organs. Because anesthesia may alter the responsiveness of physiological systems, we compared the effects of VIP on organ VC in conscious or anesthetized rats. Chronically catheterized rats were studied in the conscious state or 30 min after induction of anesthesia with KET/PB, isoflurane, or Inactin. Blood flows were measured by the reference sample version of the radioactive microsphere (MS) technique using two MS injectionsmore » ({sup 141}Ce-MS/{sup 85}Sr-MS). Mean arterial blood pressure was monitored and used in the calculation of VC. Organ VCs were similar under basal conditions in conscious and anesthetized rats. VIP infusion caused systemic hypotension and increased VCs in the salivary gland, pancreas, and thyroid gland, and these responses were largely unaffected by anesthesia. These results indicate that the anesthetics used do not alter basal VC or the responsiveness of the vasculature to exogenous VIP.« less
Microbial Biogeography and Core Microbiota of the Rat Digestive Tract
NASA Astrophysics Data System (ADS)
Li, Dongyao; Chen, Haiqin; Mao, Bingyong; Yang, Qin; Zhao, Jianxin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q.; Chen, Wei
2017-04-01
As a long-standing biomedical model, rats have been frequently used in studies exploring the correlations between gastrointestinal (GI) bacterial biota and diseases. In the present study, luminal and mucosal samples taken along the longitudinal axis of the rat digestive tract were subjected to 16S rRNA gene sequencing-based analysis to determine the baseline microbial composition. Results showed that the community diversity increased from the upper to lower GI segments and that the stratification of microbial communities as well as shift of microbial metabolites were driven by biogeographic location. A greater proportion of lactate-producing bacteria (such as Lactobacillus, Turicibacter and Streptococcus) were found in the stomach and small intestine, while anaerobic Lachnospiraceae and Ruminococcaceae, fermenting carbohydrates and plant aromatic compounds, constituted the bulk of the large-intestinal core microbiota where topologically distinct co-occurrence networks were constructed for the adjacent luminal and mucosal compartments. When comparing the GI microbiota from different hosts, we found that the rat microbial biogeography might represent a new reference, distinct from other murine animals. Our study provides the first comprehensive characterization of the rat GI microbiota landscape for the research community, laying the foundation for better understanding and predicting the disease-related alterations in microbial communities.
Cui, Qingling; Pan, Yingni; Xu, Xiaotong; Zhang, Wenjie; Wu, Xiao; Qu, Shouhe; Liu, Xiaoqiu
2016-03-01
Acteoside, the main and representative phenylethanoid glycosides of Herba Cistanches, possesses wide bioactivities but low oral bioavailability. It may serve as the prodrug and be converted into the active forms in gastrointestinal tract, which mainly occurred in intestinal tract composed of intestinal bacteria and intestinal enzyme. Intestinal bacteria, a new drug target, take a significant role on exerting pharmacological effects of drugs by oral administration. In this paper, acteoside was incubated with human or rat intestinal bacteria or rat intestinal enzyme for 36 h to seek metabolites responsible for pharmacodynamics. The samples were analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Besides the parent compound, 14 metabolites were detected and identified based on their retention times and fragmentation patterns in their MS spectra including 8 degradation metabolites, 2 isomers in intestinal bacteria and intestinal enzyme samples and 4 parent metabolites only found in intestinal enzymes. The metabolic pathway of acteoside was thus proposed. Identification of these metabolites of acteoside by the intestinal bacteria or intestinal enzyme gave an insight to clarify pharmacological mechanism of traditional Chinese medicines and identify the real active molecules. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Kai; Ren, Fangfang; Han, Fangting; Liu, Qiwen; Wu, Guogan; Xu, Yan; Zhang, Jian; Wu, Xiao; Wang, Jinbin; Li, Peng; Shi, Wei; Zhu, Hong; Lv, Jianjun; Zhao, Xiao; Tang, Xueming
2016-01-01
In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1) studying horizontal gene transfer (HGT) in Sprague Dawley rats fed transgenic rice for 90 d; (2) examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3) studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt) rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.
Chiva, Maite; Soriano, Germán; Rochat, Isabelle; Peralta, Carmen; Rochat, Florence; Llovet, Teresa; Mirelis, Beatriz; Schiffrin, Eduardo J; Guarner, Carlos; Balanzó, Joaquim
2002-10-01
Probiotics and antioxidants could be alternatives to antibiotics in the prevention of bacterial infections in cirrhosis. The aim of the present study was to determine the effect of Lactobacillus johnsonii La1 and antioxidants on intestinal flora, endotoxemia, and bacterial translocation in cirrhotic rats. Twenty-nine Sprague-Dawley rats with cirrhosis induced by CCl(4) and ascites received Lactobacillus johnsonii La1 10(9)cfu/day in vehicle (antioxidants: vitamin C+glutamate) (n=10), vehicle alone (n=11), or water (n=8) by gavage. Another eight non-cirrhotic rats formed the control group. After 10 days of treatment, a laparotomy was performed to determine microbiological study of ileal and cecal feces, bacterial translocation, endotoxemia, and intestinal malondialdehyde (MDA) levels as index of intestinal oxidative damage. Intestinal enterobacteria and enterococci, bacterial translocation (0/11 and 0/10 vs. 5/8, P<0.01), and ileal MDA levels (P<0.01) were lower in cirrhotic rats treated with antioxidants alone or in combination with Lactobacillus johnsonii La1 compared to cirrhotic rats receiving water. Only rats treated with antioxidants and Lactobacillus johnsonii La1 showed a decrease in endotoxemia with respect to cirrhotic rats receiving water (P<0.05). Antioxidants alone or in combination with Lactobacillus johnsonii La1 can be useful in preventing bacterial translocation in cirrhosis.
XU, RUI; LEI, YI-HUI; SHI, JUN; ZHOU, YI-JUN; CHEN, YING-WEI; HE, ZHEN-JUAN
2016-01-01
The aim of the present study was to investigate the effects of lactadherin on plasma D-lactic acid and small intestinal mucin (MUC) 2 and claudin-1 expression levels in rats with diarrhea induced by rotavirus (RV) infection. A total of 75 seven-day-old healthy Sprague-Dawley rats were randomly divided into the following five groups: Control (C), RV infection (RVI), lactadherin before rotavirus infection (LBRI), lactadherin after rotavirus infection (LARI), and blank (B). On day 4 of artificial feeding, the rats in groups RVI, LBRI and LARI were intragastric administered 1×106 PFU RV; whereas the rats in groups C and B were intragastrically administered an equal volume of maintenance solution from the RV supernatant and normal saline, respectively. In the LBRI and LARI groups, rats received daily intragastric administration of 0.25 mg lactadherin for three days prior to and following infection with RV, respectively. The course of diarrheal symptoms was observed in each group and samples were collected on days 1, 4, and 7 post-infection in order to determine the mucosal morphology, plasma D-lactic acid levels and the expression levels of MUC2 and the intracellular junction protein, claudin-1, in the small intestine. On day 4 post-infection, the rats in group RVI demonstrated severely damaged small intestines and typical diarrheal characteristics, as detected by light microscopy; whereas rats in groups LBRI and LARI demonstrated intact small intestinal villi with partial vacuolation of epithelial cells and changes in the position of their nuclei. Electron microscopy demonstrated that the rats in the RVI group had sparse, shortened, disordered intestinal microvilli and widened intercellular junctions; whereas those in groups LBRI and LARI had long intestinal microvilli sparser compared with groups B and C and slightly widened intercellular junctions. Plasma D-lactic acid levels were increased in groups RVI, LBRI and LARI, as compared with groups B and C, and the greatest levels were detected in the RVI group on days 1, 4 and 7 post-infection. In addition to maintaining intestinal permeability, lactadherin enhanced the expression levels of MUC2 and reduced the expression of claudin-1; therefore, further protecting the intestinal epithelial barrier, which may contribute to the prevention and treatment of diarrhea induced by infection with RV. PMID:26998017
Xu, Rui; Lei, Yi-Hui; Shi, Jun; Zhou, Yi-Jun; Chen, Ying-Wei; He, Zhen-Juan
2016-03-01
The aim of the present study was to investigate the effects of lactadherin on plasma D-lactic acid and small intestinal mucin (MUC) 2 and claudin-1 expression levels in rats with diarrhea induced by rotavirus (RV) infection. A total of 75 seven-day-old healthy Sprague-Dawley rats were randomly divided into the following five groups: Control (C), RV infection (RVI), lactadherin before rotavirus infection (LBRI), lactadherin after rotavirus infection (LARI), and blank (B). On day 4 of artificial feeding, the rats in groups RVI, LBRI and LARI were intragastric administered 1×106 PFU RV; whereas the rats in groups C and B were intragastrically administered an equal volume of maintenance solution from the RV supernatant and normal saline, respectively. In the LBRI and LARI groups, rats received daily intragastric administration of 0.25 mg lactadherin for three days prior to and following infection with RV, respectively. The course of diarrheal symptoms was observed in each group and samples were collected on days 1, 4, and 7 post-infection in order to determine the mucosal morphology, plasma D-lactic acid levels and the expression levels of MUC2 and the intracellular junction protein, claudin-1, in the small intestine. On day 4 post-infection, the rats in group RVI demonstrated severely damaged small intestines and typical diarrheal characteristics, as detected by light microscopy; whereas rats in groups LBRI and LARI demonstrated intact small intestinal villi with partial vacuolation of epithelial cells and changes in the position of their nuclei. Electron microscopy demonstrated that the rats in the RVI group had sparse, shortened, disordered intestinal microvilli and widened intercellular junctions; whereas those in groups LBRI and LARI had long intestinal microvilli sparser compared with groups B and C and slightly widened intercellular junctions. Plasma D-lactic acid levels were increased in groups RVI, LBRI and LARI, as compared with groups B and C, and the greatest levels were detected in the RVI group on days 1, 4 and 7 post-infection. In addition to maintaining intestinal permeability, lactadherin enhanced the expression levels of MUC2 and reduced the expression of claudin-1; therefore, further protecting the intestinal epithelial barrier, which may contribute to the prevention and treatment of diarrhea induced by infection with RV.
[Metabolism of paeoniflorin by rat intestinal flora in vitro].
Ke, Zhong-Cheng; Yang, Nan; Hou, Xue-Feng; Wang, Ai-Dong; Feng, Liang; Jia, Xiao-Bin
2016-10-01
In order to clarify the effect of intestinal flora on the absorption and metabolism of paeoniflorin in vivo, the metabolism of paeoniflorin by rat intestinal flora was studied under the in vitro anaerobic condition. Paeoniflorin was incubated with rat anaerobic intestinal flora for 48 h, and UPLC was used to detect the changes of paeoniflorin at different incubation time points under the following chromatographic conditions:WelchromTM C₁₈ chromatographic column (4.6 mm×100 mm, 5 μm), with 0.1% formic acid(A)-acetonitrile(B) as the mobile phase for gradient elution. The flow rate was 0.4 mL•min⁻¹, and column temperature was 30 ℃. UPLC-Q-TOF-MS with positive ion mode(ESI ion source) was applied to investigate the structural characterization of metabolic products. The structures of the metabolites were identified by accurate molecular weight, TOF-MS/MS fragmentation information, combined with retention time and literature data review, and the intestinal metabolic rules were then analyzed. After incubation for 24 h, the paeoniflorin was metabolized completely, and the resulting metabolites(albiflorin, albiflorinaglycone, deacylate albiflorin, deacylate albiflorin aglycone and paeonilactone-B) were detected in rat intestinal flora. The metabolic pathway analysis showed that the isolated rat intestinal flora first transformed peoniflorin into albiflorin, and then further metabolized by glucose removal, phenyl group removal, or four-membered ring pyrolysis and rearrangement. Paeoniflorin was gradually transformed into more hydrophobic metabolites with smaller molecular mass, which were better absorbed by the intestinal tract. Copyright© by the Chinese Pharmaceutical Association.
Schwaibold, U; Pillay, N
2003-11-01
We studied the gut morphology of the ice rat Otomys sloggetti robertsi, a non-hibernating murid rodent endemic to the sub-alpine and alpine regions of the southern African Drakensberg and Maluti mountains. The gut structure of O. s. robertsi is well adapted for a high fibre, herbivorous diet, as is the case with other members of its subfamily Otomyinae. Despite the broad similarity in gross gut morphology with mesic- and arid-occurring otomyines, O. s. robertsi has a larger small intestine, caecum, stomach volume and parts of the colon, which we suggest are adaptations for increased energy uptake and/or poor diet quality in alpine environments. However, O. s. robertsi has a smaller larger intestine than other otomyines, perhaps because it occupies a mesic habitat. Seasonal sexual differences occurred, with females increasing dimensions of the stomach, small intestine length, caecum, and large intestine in summer. Sexual asymmetry in gut morphology may be related to increased energy requirements of females during pregnancy and lactation, indicating phenotypic plasticity in response to poor quality vegetation and a shorter growing season in alpine habitats.
Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul
2017-02-01
This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.
Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan
2017-07-24
The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.
Dalby, Andrew B.; Frank, Daniel N.; St. Amand, Allison L.; Bendele, Alison M.; Pace, Norman R.
2006-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly prescribed for a variety of inflammatory conditions; however, the benefits of this class of drugs are accompanied by deleterious side effects, most commonly gastric irritation and ulceration. NSAID-induced ulceration is thought to be exacerbated by intestinal microbiota, but previous studies have not identified specific microbes that contribute to these adverse effects. In this study, we conducted a culture-independent analysis of ∼1,400 bacterial small-subunit rRNA genes associated with the small intestines and mesenteric lymph nodes of rats treated with the NSAID indomethacin. This is the first molecular analysis of the microbiota of the rat small intestine. A comparison of clone libraries and species-specific quantitative PCR results from rats treated with indomethacin and untreated rats revealed that organisms closely related to Enterococcus faecalis were heavily enriched in the small intestine and mesenteric lymph nodes of the treated rats. These data suggest that treatment of NSAID-induced ulceration may be facilitated by addressing the microbiological imbalances. PMID:17021222
Xu, Yuanlong; Wang, Yonglu; Li, Xue Ming; Huang, Qinqin; Chen, Wei; Liu, Ran; Chen, BaoAn; Wei, Ping
2014-07-01
As an oral delivery carrier for poorly water soluble drugs, the nanosuspension was prepared by melt emulsification method combined with high-pressure homogenization. The objective of this study was to clarify the absorption mechanism in rats of fenofibrate nanosuspension using the model of in situ gut perfusion. The release rate of drug from nanosuspension was fast which about 70% of the drug would be released within 5 minutes. The absorption of fenofibrate nanosuspension in the gastrointestinal (GI) tract was studied by the in situ closed loop method in rats. It was found that the absorption process in intestine was first-process with passive diffusion mechanism, and the whole intestine was the major segment for the drug absorption. Additionally, GI absorption in situ studies indicated that the fenofibrate nanosuspension had great success in regard to enhancement of intestinal absorption compared to the fenofibrate suspension of coarse powder. The pharmacokinetic characteristics were studied in rats after oral administration of fenofibrate nanosuspension or suspension at the dosage of 27 mg/kg. The plasma concentration-time curve was fitted to the one-compartment model. The correlation between in vitro dissolution (P), in situ intestinal absorption (F) and in vivo absorption (Fa) in rats was investigated with the results as follows: Fa = 6.2061P-456.38(r = 0.9559), F = 3.6911P-2.2169(r = 0.970), F = 0.5095P + 44.189(r = 0.9609). The highest level A could be obtained from the in vitro--in vivo correlation (IVIVC) between dissolution percentage and intestinal absorption of the fenofibrate nanosuspension in rats. Consequently, the in situ intestinal perfusion model could be used to predict the in vivo pharmacokinetic characteristics in rats.
Khavinson, V Kh; Timofeeva, N M; Malinin, V V; Gordova, L A; Nikitina, A A
2002-12-01
Per os administration of Vilon (Lys-Glu) or Epithalon (Ala-Glu-Asp-Gly) to aged Wistar rats for 1 month significantly increased activity of membrane enzymes maltase and alkaline phosphatase in epithelial layer of the small intestine. In addition, Vilon significantly increased activity of cytosolic glycyl-L-leucine dipeptidase in the stromal and seromuscular layers of the small intestine in comparison with the control rats not treated with this agent. These findings suggest improvement of trophic and barrier functions of the small intestine and corroborate the hypothesis on the existence of not only epithelial, but also subepithelial enzymatic barrier supporting the enzyme system in the small intestine, especially in aged animals.
Tang, Juan; Song, Meiyan; Watanabe, Gen; Nagaoka, Kentaro; Rui, Xiaoli; Li, ChunMei
2016-09-01
4-Nitrophenol (PNP) is a persistent organic pollutant that was proven to be an environmental endocrine disruptor. The aim of this study was to evaluate the role of the estrogen receptor-α (ER-α) and aryl hydrocarbon receptor (AhR) signaling pathway in regulating the damage response to PNP in the small intestine of rats. Wistar-Imamichi male rats (21 d) were randomly divided into two groups: the control group and PNP group. Each group had three processes that were gavaged with PNP or vehicle daily: single dose (1 d), repeated dose (3 consecutive days) (3 d), and repeated dose with recovery (3 consecutive days and 3 recovery days) (6 d). The weight of the body, the related viscera, and small intestine were examined. Histological parameters of the small intestine and the quantity of mucus proteins secreted by small goblet cells were determined using HE staining and PAS staining. The mRNA expression of AhR, ER-α, CYP1A1, and GST was measured by real-time qPCR. In addition, we also analyzed the AhR, ER-α, and CYP1A1 expression in the small intestine by immunohistochemical staining. The small intestines histologically changed in the PNP-treated rat and the expression of AhR, CYP1A1, and GST was increased. While ER-α was significantly decreased in the small intestine, simultaneously, when rats were exposed to a longer PNP treatment, the damages disappeared. Our results demonstrate that PNP has an effect on the expression of AhR signaling pathway genes, AhR, CYP1A1, and GST, and ER-α in the rat small intestine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shahid, Faaiza; Farooqui, Zeba; Abidi, Subuhi; Parwez, Iqbal; Khan, Farah
2017-10-01
Cisplatin (CP) is a widely used chemotherapeutic agent that elicits severe gastrointestinal toxicity. Nigella sativa, a member of family Ranunculaceae, is one of the most revered medicinal plant known for its numerous health benefits. Thymoquinone (TQ), a major bioactive component derived from the volatile oil of Nigella sativa seeds, has been shown to improve gastrointestinal functions in animal models of acute gastric/intestinal injury. In view of this, the aim of the present study was to investigate the protective effect of TQ on CP induced toxicity in rat intestine and to elucidate the mechanism underlying these effects. Rats were divided into four groups viz. control, CP, TQ and CP+TQ. Animals in CP+TQ and TQ groups were orally administered TQ (1.5mg/kg bwt) with and without a single intraperitoneal dose of CP (6mg/kg bwt) respectively. The effect of TQ was determined on CP induced alterations in the activities of brush border membrane (BBM), carbohydrate metabolism, and antioxidant defense enzymes in rat intestine. TQ administration significantly mitigated CP induced decline in the specific activities of BBM marker enzymes, both in the mucosal homogenates and in the BBM vesicles (BBMV) prepared from intestinal mucosa. Furthermore, TQ administration restored the redox and metabolic status of intestinal mucosal tissue in CP treated rats. The biochemical results were supported by histopathological findings that showed extensive damage to intestine in CP treated rats and markedly preserved intestinal histoarchitecture in CP and TQ co-treated group. The biochemical and histological data suggest a protective effect of TQ against CP-induced gastrointestinal damage. Thus, TQ may have a potential for clinical application to counteract the accompanying gastrointestinal toxicity in CP chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Sukhotnik, Igor; Mogilner, Jorge G; Lerner, Aaron; Coran, Arnold G; Lurie, Michael; Miselevich, Iness; Shiloni, Eitan
2005-06-01
The nitric oxide precursor L-arginine (ARG) has been shown to influence intestinal structure and absorptive function. It is also well known that the route of administration modulates the effects of ARG. The present study evaluated the effects of parenteral ARG on structural intestinal adaptation, cell proliferation, and apoptosis in a rat model of short bowel syndrome (SBS). Male Sprague-Dawley rats were divided into three experimental groups: Sham rats underwent bowel transection and reanastomosis, SBS rats underwent a 75% small bowel resection, and SBS-ARG rats underwent a 75% small bowel resection and were treated with ARG given subcutaneously at a dose of 300 mug/kg, once daily, from days 3 to 14. Parameters of intestinal adaptation, enterocyte proliferation, and enterocyte apoptosis were determined on day 15 following operation. The SBS rats demonstrated a significant increase in jejunal and ileal bowel and mucosal weight, villus height and crypt depth, and cell proliferation index compared with the sham group. The SBS-ARG animals demonstrated lower ileal bowel and mucosal weights, jejunal mucosal DNA and ileal mucosal protein, and jejunal and ileal villus height and crypt depth compared with SBS animals. The SBS-ARG rats also had a lower cell proliferation index in both jejunum and ileum and a greater enterocyte apoptotic index in ileum compared with the SBS-untreated group. In conclusion, in a rat model of SBS, parenteral arginine inhibits structural intestinal adaptation. Decreased cell proliferation and increased apoptosis are the main mechanisms responsible for decreased cell mass.
Effect of subcutaneous insulin on intestinal adaptation in a rat model of short bowel syndrome.
Sukhotnik, Igor; Mogilner, Jorge; Shamir, Raanan; Shehadeh, Naim; Bejar, Jacob; Hirsh, Mark; Coran, Arnold G
2005-03-01
Insulin has been shown to influence intestinal structure and absorptive function. The purpose of the present study was to evaluate the effects of parenteral insulin on structural intestinal adaptation, cell proliferation, and apoptosis in a rat model of short bowel syndrome (SBS). Male Sprague-Dawley rats were divided into three experimental groups: sham rats underwent bowel transection and reanastomosis, SBS rats underwent a 75% small bowel resection, and SBS-INS rats underwent a 75% small bowel resection and were treated with insulin given subcutaneously at a dose of 1 U/kg, twice daily, from day 3 through day 14. Parameters of intestinal adaptation, enterocyte proliferation, and enterocyte apoptosis were determined on day 15 following operation. SBS rats demonstrated a significant increase in jejunal and ileal bowel and mucosal weight, villus height and crypt depth, and cell proliferation index compared with the sham group. SBS-INS animals demonstrated higher jejunal and ileal bowel and mucosal weights, jejunal and ileal mucosal DNA and protein, and jejunal and ileal crypt depth compared with SBS animals. SBS-INS rats also had a greater cell proliferation index in both jejunum and ileum and a trend toward a decrease in enterocyte apoptotic index in jejunum and ileum compared with the SBS untreated group. In conclusion, parenteral insulin stimulates structural intestinal adaptation in a rat model of SBS. Increased cell proliferation is the main mechanism responsible for increased cell mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan
2015-01-02
Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudinsmore » were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.« less
Pergel, Ahmet; Kanter, Mehmet; Yucel, Ahmet Fikret; Aydin, Ibrahim; Erboga, Mustafa; Guzel, Ahmet
2012-11-01
The aim of this study was to investigate the possible protective effects of infliximab on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group comprised 10 animals. Sham group animals underwent laparotomy without I/R injury. I/R groups after undergoing laparotomy, 1 hour of superior mesenteric artery ligation occurred, which was followed by 1 hour of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered intravenously. All animals were killed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no biochemical and histopathological changes have been reported regarding intestinal I/R injury in rats due to infliximab treatment. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased reduced superoxide dismutase and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions, inflammatory cell infiltration, necrosis, hemorrhage, and villous congestion. Infliximab treatment significantly attenuated the severity of intestinal I/R injury, inhibiting I/R-induced apoptosis, and cell proliferation. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects on the experimental intestinal I/R model of rats.
Tokita, Yohei; Yamamoto, Masahiro; Satoh, Kazuko; Nishiyama, Mitsue; Iizuka, Seiichi; Imamura, Sachiko; Kase, Yoshio
2011-01-01
This study focused on the localization of transient receptor potential vanilloid type 1 (TRPV1) in the intestines in postoperative adhesion model rats and investigated the underlying mechanism for the anti-adhesion action of daikenchuto (DKT), especially in relation to TRPV1. Postoperative intestinal adhesion was induced by sprinkling talc in the small intestine. The expression of TRPV1 mRNA was examined by in situ hybridization and real-time RT-PCR. The effects of DKT and its major ingredient, hydroxy sanshool, with or without ruthenium red, a TRP-channel antagonist, on talc-induced intestinal adhesions were evaluated. The level of TRPV1 mRNA was higher in the adhesion regions of talc-treated rats than in normal small intestine of sham-operated rats. Localization of TRPV1 mRNA expression was identified in the submucosal plexus of both sham-operated and talc-treated rats; and in talc-treated rats, it was observed also in the myenteric plexus and regions of adhesion. Capsaicin, DKT, and hydroxy sanshool significantly prevented formation of intestinal adhesions. The effects of DKT and hydroxy sanshool were abrogated by subcutaneous injection of ruthenium red. These results suggest that pharmacological modulation of TRPV1 might be a possible therapeutic option in postoperative intestinal adhesion, which might be relevant to the prevention of postoperative adhesive obstruction by DKT.
Liu, Xinxin; Blouin, Jean-Marc; Santacruz, Arlette; Lan, Annaïg; Andriamihaja, Mireille; Wilkanowicz, Sabina; Benetti, Pierre-Henri; Tomé, Daniel; Sanz, Yolanda; Blachier, François; Davila, Anne-Marie
2014-08-15
High-protein diets are used for body weight reduction, but consequences on the large intestine ecosystem are poorly known. Here, rats were fed for 15 days with either a normoproteic diet (NP, 14% protein) or a hyperproteic-hypoglucidic isocaloric diet (HP, 53% protein). Cecum and colon were recovered for analysis. Short- and branched-chain fatty acids, as well as lactate, succinate, formate, and ethanol contents, were markedly increased in the colonic luminal contents of HP rats (P < 0.05 or less) but to a lower extent in the cecal luminal content. This was associated with reduced concentrations of the Clostridium coccoides and C. leptum groups and Faecalibacterium prausnitzii in both the cecum and colon (P < 0.05 or less). In addition, the microbiota diversity was found to be higher in the cecum of HP rats but was lower in the colon compared with NP rats. In HP rats, the colonic and cecal luminal content weights were markedly higher than in NP rats (P < 0.001), resulting in similar butyrate, acetate, and propionate concentrations. Accordingly, the expression of monocarboxylate transporter 1 and sodium monocarboxylate transporter 1 (which is increased by higher butyrate concentration) as well as the colonocyte capacity for butyrate oxidation were not modified by the HP diet, whereas the amount of butyrate in feces was increased (P < 0.01). It is concluded that an increased bulk in the large intestine content following HP diet consumption allows maintenance in the luminal butyrate concentration and thus its metabolism in colonocytes despite modified microbiota composition and increased substrate availability. Copyright © 2014 the American Physiological Society.
Khavinson, V Kh; Egorova, V V; Timofeeva, N M; Malinin, V V; Gordova, L A; Gromova, L V
2002-05-01
Vilon (Lys-Glu) and Epithalon (Ala-Glu-Asp-Gly) administered orally for 1 month improved transport characteristics of the small intestine in aged rats. Vilon enhanced passive glucose accumulation in the serous fluid in inverted sac made from the distal region of the small intestine, while Epithalon enhanced this process in the medial region. Vilon stimulated active glucose accumulation in the serous sac of the medial small intestine, Epithalon - in the proximal and distal small intestinal segments. Glycine absorption increased only in the proximal intestinal segment under the effect of Epithalon.
Age-related increases in F344 rat intestine microsomal quercetin glucuronidation
USDA-ARS?s Scientific Manuscript database
The objective of this study was to establish the extent age modifies intestinal quercetin glucuronidation capacity. Pooled microsomal fractions of three equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats (n=8/group) were employed to model the enzyme kinetics of UDP-gl...
Ciarlet, Max; Conner, Margaret E.; Finegold, Milton J.; Estes, Mary K.
2002-01-01
Group A rotaviruses are major pathogens causing acute gastroenteritis in children and animals. To determine if group A rotavirus replicates and induces disease in rats, antibody-negative Lewis neonatal or adult rats were inoculated orally with tissue culture-adapted human (Wa, WI61, and HAL1166), simian (rhesus rotavirus [RRV] and SA11), bovine (WC3), lapine (ALA), or porcine (OSU) rotavirus strains, wild-type murine (ECwt) rotavirus strain, or phosphate-buffered saline (PBS). Rotavirus infection in rats was evaluated by (i) clinical findings, (ii) virus antigen shedding or infectious virus titers in the feces or intestinal contents measured by enzyme-linked immunosorbent assay or fluorescent-focus assay, (iii) histopathological changes in the small intestine, (iv) distribution of rotavirus antigen in small-intestine sections by immunofluorescence, and (v) growth rate. Rotavirus infection of 5-day-old but not ≥21-day-old rats resulted in diarrhea that lasted from 1 to 10 days postinoculation. The severity of disease and spread of infection to naÏve littermates differed depending on the virus strain used for inoculation. The duration of virus antigen shedding following infection was considerably prolonged (up to 10 days) in neonatal rats compared to that in 21-day-old rats (1 or 2 days). Based on lack of virus antigen shedding and disease induction, the murine ECwt rotavirus was the only strain tested that did not infect rats. Histopathological changes in the small-intestine mucosa of 5-day-old RRV-inoculated rats but not of PBS-inoculated rats was limited to extensive enterocyte vacuolation in the ileum. In RRV-inoculated neonatal rats, rotavirus antigen was detected in the epithelial cells on the upper half of the intestinal villi of the jejunum and ileum. In addition, infection of neonatal rats with RRV but not with PBS resulted in reduced weight gain. Rats infected with group A rotaviruses provide a new animal model with unique features amenable to investigate rotavirus pathogenesis and the molecular mechanisms of intestinal development, including physiological factors that may regulate age-dependent rotavirus-induced diarrhea. PMID:11739670
Glucagon-like peptide-2 protects impaired intestinal mucosal barriers in obstructive jaundice rats
Chen, Jun; Dong, Jia-Tian; Li, Xiao-Jing; Gu, Ye; Cheng, Zhi-Jian; Cai, Yuan-Kun
2015-01-01
AIM: To observe the protective effect of glucagon-like peptide-2 (GLP-2) on the intestinal barrier of rats with obstructive jaundice and determine the possible mechanisms of action involved in the protective effect. METHODS: Thirty-six Sprague-Dawley rats were randomly divided into a sham operation group, an obstructive jaundice group, and a GLP-2 group; each group consisted of 12 rats. The GLP-2 group was treated with GLP-2 after the day of surgery, whereas the other two groups were treated with the same concentration of normal saline. Alanine aminotransferase (ALT), total bilirubin, and endotoxin levels were recorded at 1, 3, 7, 10 and 14 d. Furthermore, on the 14th day, body weight, the wet weight of the small intestine, pathological changes of the small intestine and the immunoglobulin A (IgA) expressed by plasma cells located in the small intestinal lamina propria were recorded for each group. RESULTS: In the rat model, jaundice was obvious, and the rats’ activity decreased 4-6 d post bile duct ligation. Compared with the sham operation group, the obstructive jaundice group displayed increased yellow staining of abdominal visceral serosa, decreased small intestine wet weight, thinning of the intestinal muscle layer and villi, villous atrophy, uneven height, fusion, partial villous epithelial cell shedding, substantial inflammatory cell infiltration and significantly reduced IgA expression. However, no significant gross changes were noted between the GLP-2 and sham groups. With time, the levels of ALT, endotoxin and bilirubin in the GLP-2 group were significantly increased compared with the sham group (P < 0.01). The increasing levels of the aforementioned markers were more significant in the obstructive jaundice group than in the GLP-2 group (P < 0.01). CONCLUSION: GLP-2 reduces intestinal mucosal injuries in obstructive jaundice rats, which might be attributed to increased intestinal IgA and reduced bilirubin and endotoxin. PMID:25593463
Ruan, Zheng; Liu, Shiqiang; Zhou, Yan; Mi, Shumei; Liu, Gang; Wu, Xin; Yao, Kang; Assaad, Houssein; Deng, Zeyuan; Hou, Yongqing; Wu, Guoyao; Yin, Yulong
2014-01-01
Chlorogenic acid, a natural phenolic acid present in fruits and plants, provides beneficial effects for human health. The objectives of this study were to investigate whether chlorogenic acid (CHA) could improve the intestinal barrier integrity for weaned rats with lipopolysaccharide (LPS) challenge. Thirty-two weaned male Sprague Dawley rats (21±1 d of age; 62.26±2.73 g) were selected and randomly allotted to four treatments, including weaned rat control, LPS-challenged and chlorogenic acid (CHA) supplemented group (orally 20 mg/kg and 50 mg/kg body). Dietary supplementation with CHA decreased (P<0.05) the concentrations of urea and albumin in the serum, compared to the LPS-challenged group. The levels of IFN-γ and TNF-α were lower (P<0.05) in the jejunal and colon of weaned rats receiving CHA supplementation, in comparison with the control group. CHA supplementation increased (P<0.05) villus height and the ratio of villus height to crypt depth in the jejunal and ileal mucosae under condictions of LPS challenge. CHA supplementation decreased (P<0.05) intestinal permeability, which was indicated by the ratio of lactulose to mannitol and serum DAO activity, when compared to weaned rats with LPS challenge. Immunohistochemical analysis of tight junction proteins revealed that ZO-1 and occludin protein abundances in the jejunum and colon were increased (P<0.05) by CHA supplementation. Additionally, results of immunoblot analysis revealed that the amount of occludin in the colon was also increased (P<0.05) in CHA-supplemented rats. In conclusion, CHA decreases intestinal permeability and increases intestinal expression of tight junction proteins in weaned rats challenged with LPS. PMID:24887396
LeBlanc, Jean Guy; Ledue-Clier, Florence; Bensaada, Martine; de Giori, Graciela Savoy; Guerekobaya, Theodora; Sesma, Fernando; Juillard, Vincent; Rabot, Sylvie; Piard, Jean-Christophe
2008-01-01
Background Soya and its derivatives represent nutritionally high quality food products whose major drawback is their high content of α-galacto-oligosaccharides. These are not digested in the small intestine due to the natural absence of tissular α-galactosidase in mammals. The passage of these carbohydrates to the large intestine makes them available for fermentation by gas-producing bacteria leading to intestinal flatulence. The aim of the work reported here was to assess the ability of α-galactosidase-producing lactobacilli to improve the digestibility of α-galacto-oligosaccharides in situ. Results Gnotobiotic rats were orally fed with soy milk and placed in respiratory chambers designed to monitor fermentative gas excretion. The validity of the animal model was first checked using gnotobiotic rats monoassociated with a Clostridium butyricum hydrogen (H2)-producing strain. Ingestion of native soy milk by these rats caused significant H2 emission while ingestion of α-galacto-oligosaccharide-free soy milk did not, thus validating the experimental system. When native soy milk was fermented using the α-galactosidase-producing Lactobacillus fermentum CRL722 strain, the resulting product failed to induce H2 emission in rats thus validating the bacterial model. When L. fermentum CRL722 was coadministered with native soy milk, a significant reduction (50 %, P = 0.019) in H2 emission was observed, showing that α-galactosidase from L. fermentum CRL722 remained active in situ, in the gastrointestinal tract of rats monoassociated with C. butyricum. In human-microbiota associated rats, L. fermentum CRL722 also induced a significant reduction of H2 emission (70 %, P = 0.004). Conclusion These results strongly suggest that L. fermentum α-galactosidase is able to partially alleviate α-galactosidase deficiency in rats. This offers interesting perspectives in various applications in which lactic acid bacteria could be used as a vector for delivery of digestive enzymes in man and animals. PMID:18230145
Zakeri-Milani, Parvin; Barzegar-Jalali, Mohammad; Azimi, Mandana; Valizadeh, Hadi
2009-09-01
The solubility and dissolution rate of active ingredients are of major importance in preformulation studies of pharmaceutical dosage forms. In the present study, passively absorbed drugs are classified based on their intrinsic dissolution rate (IDR) and their intestinal permeabilities. IDR was determined by measuring the dissolution of a non-disintegrating disk of drug, and effective intestinal permeability of tested drugs in rat jejunum was determined using single perfusion technique. The obtained intrinsic dissolution rate values were in the range of 0.035-56.8 mg/min/cm(2) for tested drugs. The minimum and maximum intestinal permeabilities in rat intestine were determined to be 1.6 x 10(-5) and 2 x 10(-4)cm/s, respectively. Four classes of drugs were defined: Category I: P(eff,rat)>5 x 10(-5) (cm/s) or P(eff,human)>4.7 x 10(-5) (cm/s), IDR>1(mg/min/cm(2)), Category II: P(eff,rat)>5 x 10(-5) (cm/s) or P(eff,human)>4.7 x 10(-5) (cm/s), IDR<1(mg/min/cm(2)), Category III: P(eff,rat)<5 x 10(-5) (cm/s) or P(eff,human)<4.7 x 10(-5) (cm/s), IDR>1 (mg/min/cm(2)) and Category IV: P(eff,rat)<5 x 10(-5) (cm/s) or P(eff,human)<4.7 x 10(-5) (cm/s), IDR<1(mg/min/cm(2)). According to the results obtained and proposed classification of drugs, it is concluded that drugs could be categorized correctly based on their IDR and intestinal permeability values.
Schroeder, Natalia; Marquart, Len F.; Gallaher, Daniel D.
2013-01-01
Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and either highly fermentable or non-fermentable, in a 2 × 3 factorial design. In the fed state (2 h postprandial), rats fed non-fermentable fibers had significantly greater plasma GLP-1 concentration than fermentable fibers. In the fasted state, among non-fermentable fibers, viscosity had no effect on GLP-1 concentration. However, among fermentable fibers, greater viscosity reduced GLP-1 concentration. Plasma peptide tyrosine tyrosine (PYY) concentrations in the fasted state were not influenced by the fermentability of the fiber overall, however animals consuming a fructooligosaccharide greater PYY concentration. In both the fed and fasted states, rats fed non-fermentable fibers had a significantly lower plasma ghrelin concentration than rats fed fermentable fibers. In the fasted state, rats fed non-fermentable fibers had a significantly lower plasma leptin concentration than rats fed fermentable fibers. Thus, fermentability and viscosity of dietary fiber interacted in complex ways to influence satiety- and adiposity-related plasma hormone concentrations. However, the results suggest that highly viscous, non-fermentable fibers may limit weight gain and reduce adiposity and non-fermentable fibers, regardless of viscosity, may promote meal termination. PMID:23749206
Schroeder, Natalia; Marquart, Len F; Gallaher, Daniel D
2013-06-07
Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and either highly fermentable or non-fermentable, in a 2 × 3 factorial design. In the fed state (2 h postprandial), rats fed non-fermentable fibers had significantly greater plasma GLP-1 concentration than fermentable fibers. In the fasted state, among non-fermentable fibers, viscosity had no effect on GLP-1 concentration. However, among fermentable fibers, greater viscosity reduced GLP-1 concentration. Plasma peptide tyrosine tyrosine (PYY) concentrations in the fasted state were not influenced by the fermentability of the fiber overall, however animals consuming a fructooligosaccharide greater PYY concentration. In both the fed and fasted states, rats fed non-fermentable fibers had a significantly lower plasma ghrelin concentration than rats fed fermentable fibers. In the fasted state, rats fed non-fermentable fibers had a significantly lower plasma leptin concentration than rats fed fermentable fibers. Thus, fermentability and viscosity of dietary fiber interacted in complex ways to influence satiety- and adiposity-related plasma hormone concentrations. However, the results suggest that highly viscous, non-fermentable fibers may limit weight gain and reduce adiposity and non-fermentable fibers, regardless of viscosity, may promote meal termination.
Duan, Franklin F.; Liu, Joy H.
2015-01-01
The inactive full-length form of GLP-1(1-37) stimulates conversion of both rat and human intestinal epithelial cells into insulin-secreting cells. We investigated whether oral administration of human commensal bacteria engineered to secrete GLP-1(1-37) could ameliorate hyperglycemia in a rat model of diabetes by reprogramming intestinal cells into glucose-responsive insulin-secreting cells. Diabetic rats were fed daily with human lactobacilli engineered to secrete GLP-1(1-37). Diabetic rats fed GLP-1–secreting bacteria showed significant increases in insulin levels and, additionally, were significantly more glucose tolerant than those fed the parent bacterial strain. These rats developed insulin-producing cells within the upper intestine in numbers sufficient to replace ∼25–33% of the insulin capacity of nondiabetic healthy rats. Intestinal tissues in rats with reprogrammed cells expressed MafA, PDX-1, and FoxA2. HNF-6 expression was observed only in crypt epithelia expressing insulin and not in epithelia located higher on the villous axis. Staining for other cell markers in rats treated with GLP-1(1-37)–secreting bacteria suggested that normal function was not inhibited by the close physical proximity of reprogrammed cells. These results provide evidence of the potential for a safe and effective nonabsorbed oral treatment for diabetes and support the concept of engineered commensal bacterial signaling to mediate enteric cell function in vivo. PMID:25626737
Sugiyama, Akihiko; Kimura, Hideto; Ogawa, Satoshi; Yokota, Kazushige; Takeuchi, Takashi
2011-05-01
The purpose of this study was to evaluate the effects of polyphenols from seed shells of Japanese horse chestnut (JHP) on methotrexate (MTX)-induced intestinal injury in rats. MTX application caused intestinal morphological injury and increase in malondialdehyde (MDA) levels, decrease in levels of glutathione (GSH) and glutathione peroxidase (GSH-Px) activities in small intestine. However, oral administration of JHP ameliorated MTX-induced intestinal injury and inhibited the increase in MDA and the decrease in GSH and GSH-Px activity in small intestine. In conclusion, our results indicated that oral administration of JHP alleviated MTX-induced intestinal injury through its antioxidant properties.
A PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR THE PESTICIDE MONOMETHYLARSONIC ACID (MMA)
The monosodium salt of monomethylarsonic acid [MMA(V)] is a widely used organoarsenical herbicide. In lifetime feeding studies with MMA(V), the large intestine (focal muscosal ulceration) was the primary target organ in both male and female mice and rats and no treatment-related...
Karaki, Shin-Ichiro; Ishikawa, Junji; Tomizawa, Yuka; Kuwahara, Atsukazu
2016-05-01
ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier functions. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Cağlikülekçi, Mehmet; Ozçay, Necdet; Oruğ, Taner; Aydoğ, Gülden; Renda, Nurten; Atalay, Fuat
2002-03-01
Several clinical and experimental studies have shown that obstructive jaundice delays wound healing. Growth hormone may prevent delayed wound healing, since it has effects on the release of mediators in jaundice, as well as increasing the protein synthesis. Forty male Wistar rats were allocated to four groups: Group I (n=10): intestinal anastomosis to normal small bowel, Group II (n=10): intestinal anastomosis to normal small bowel followed by growth hormone therapy (2mg/kg/day, subcutaneously), Group III (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel, Group IV (n=10): intestinal anastomosis to obstructive jaundice rat's small bowel followed by growth hormone therapy at the same dosage The animals were observed for seven days then killed. Intraabdominal adhesions, anastomotic complications and anastomotic bursting pressures were recorded and tissue samples from the anastomotic site were obtained to measure hydroxyproline levels and for histopathologic examination. Growth hormone had a beneficial effect on the healing of intestinal anastomosis in both jaundiced and non-jaundiced rats. This was demonstrated by clinical and mechanical parameters such as a significant increase in anastomotic bursting pressure, hydroxyproline content and histopathological scores. Growth hormone reverses the adverse effects of obstructive jaundice on small bowel anastomotic healing. It can be hypothesized that this effect is due to augmentation of insulin-like growth factors, protection of hepatocytes, enhancement of intestinal epithelization, and reversal of the resultant malnutritional state caused by growth hormone in obstructive jaundice.
The effects of maternal protein-energy malnutrition and exposure to nitrofen on selected aspects of intestinal morphology and function were studied in the fetal rat. Pregnant rats were fed, throughout gestation, diets containing 24% or 6% casein as the sole source of protein. Red...
Effect of oral glutamine on enterocyte turnover during methotrexate-induced mucositis in rats.
Sukhotnik, Igor; Mogilner, Jorge G; Karry, Rahel; Shamian, Benhoor; Lurie, Michael; Kokhanovsky, Natalie; Ure, Benno M; Coran, Arnold G
2009-01-01
The objective of this study was to evaluate the effects of oral glutamine in preventing intestinal mucosal damage caused by methotrexate (MTX) in rats. Male Sprague-Dawley rats were divided into 3 experimental groups: control rats, rats treated intraperitoneally with MTX (MTX rats) and rats treated with oral glutamine in the drinking water (2%) 72 h following intraperitoneal injection of a single dose of MTX (MTX-glutamine rats). Intestinal mucosal damage (Park's injury score), mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 h following MTX injection. RT-PCR was used to determine Bax and Bcl-2 mRNA expression. MTX-glutamine rats demonstrated greater jejunal and ileal mucosal weight and mucosal DNA, greater ileal villus height and crypt depth, and a greater index of proliferation in the jejunum and ileum compared to MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-glutamine rats (vs. MTX) was accompanied by decreased Bax and increased Bcl-2 mRNA expression. Treatment with oral glutamine prevents mucosal injury and improves intestinal recovery following MTX injury in the rat.
Douard, Veronique; Sabbagh, Yves; Lee, Jacklyn; Patel, Chirag; Kemp, Francis W.; Bogden, John D.; Lin, Sheldon
2013-01-01
We recently discovered that chronic high fructose intake by lactating rats prevented adaptive increases in rates of active intestinal Ca2+ transport and in levels of 1,25-(OH)2D3, the active form of vitamin D. Since sufficient Ca2+ absorption is essential for skeletal growth, our discovery may explain findings that excessive consumption of sweeteners compromises bone integrity in children. We tested the hypothesis that 1,25-(OH)2D3 mediates the inhibitory effect of excessive fructose intake on active Ca2+ transport. First, compared with those fed glucose or starch, growing rats fed fructose for 4 wk had a marked reduction in intestinal Ca2+ transport rate as well as in expression of intestinal and renal Ca2+ transporters that was tightly associated with decreases in circulating levels of 1,25-(OH)2D3, bone length, and total bone ash weight but not with serum parathyroid hormone (PTH). Dietary fructose increased the expression of 24-hydroxylase (CYP24A1) and decreased that of 1α-hydroxylase (CYP27B1), suggesting that fructose might enhance the renal catabolism and impair the synthesis, respectively, of 1,25-(OH)2D3. Serum FGF23, which is secreted by osteocytes and inhibits CYP27B1 expression, was upregulated, suggesting a potential role of bone in mediating the fructose effects on 1,25-(OH)2D3 synthesis. Second, 1,25-(OH)2D3 treatment rescued the fructose effect and normalized intestinal and renal Ca2+ transporter expression. The mechanism underlying the deleterious effect of excessive fructose intake on intestinal and renal Ca2+ transporters is a reduction in serum levels of 1,25-(OH)2D3. This finding is significant because of the large amounts of fructose now consumed by Americans increasingly vulnerable to Ca2+ and vitamin D deficiency. PMID:23571713
Chukwuma, Chika Ifeanyi; Islam, Md Shahidul
2017-04-01
Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.
Yanni, Amalia E; Margaritis, Eleutherios; Liarakos, Nikolaos; Pantopoulou, Alkisti; Poulakou, Maria; Kostakis, Maria; Perrea, Despoina; Kostakis, Alkis
2008-01-01
Objective To study the effect of oral administration of a nitric oxide (NO) donor l-arginine (l-Arg), a NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME) and an inhibitor of xanthine oxidase, allopurinol (Allo), on serum NO concentration and catalase activity after intestinal ischemia/reperfusion (I/R) in rats. Methods Male Wistar rats received per os l-Arg (800 mg/kg) or l-NAME (50 mg/kg) or Allo (100 mg/kg) 24 hrs, 12 hrs and 1 hr before underwent 1 hr occlusion of superior mesenteric artery followed by 1 hr of reperfusion (l-Arg(IR1), l-NAME(IR1) and Allo(IR1) respectively) or 1 hr occlusion followed by 8 hrs of reperfusion (l-Arg(IR8), l-NAME(IR8) and Allo(IR8) respectively). There was one group underwent 1 hr occlusion (I), a group underwent 1 hr occlusion followed by 1 hr reperfusion (IR1), a group subjected to 1 hr occlusion followed by 8 hrs of reperfusion (IR8) and a last group that served as control (C). Serum NO concentration and catalase activity were measured. Results After 1 hr of reperfusion serum NO concentration was elevated in IR1 and l-Arg(IR1) groups compared with group C but not in l-NAME(IR1) and Allo(IR1) group. Catalase activity was enhanced in l-NAME(IR1) group. Interestingly, serum NO concentration was increased after 8 hrs of reperfusion in all groups (IR8, l-Arg(IR8), l-NAME(IR8) and Allo(IR8)) compared with control while catalase activity did not show significant difference in any group. Conclusions The results of the present study show that NO concentration is elevated in serum after intestinal I/R and the elevation sustained after administration of l-Arg but not after administration of l-NAME or Allo after 1 hr reperfusion. However, after 8 hrs of reperfusion NO concentration was increased in all groups studied, focusing attention on its possible important role in a complicated situation such as intestinal I/R that involves intestine and other organs. Serum catalase activity does not seem to be affected by per os supplementation of l-Arg or Allo in intestinal I/R. PMID:18561519
Strier, Adam; Kravarusic, Dragan; Coran, Arnold G; Srugo, Isaac; Bitterman, Nir; Dorfman, Tatiana; Pollak, Yulia; Matter, Ibrahim; Sukhotnik, Igor
2017-02-01
Recent evidence suggests that elevated intra-abdominal pressure (IAP) may adversely affect the intestinal barrier function. Toll-like receptor 4 (TLR-4) is responsible for the recognition of bacterial endotoxin or lipopolysaccharide and for initiation of the Gram-negative septic shock syndrome. The objective of the current study was to determine the effects of elevated IAP on intestinal bacterial translocation (BT) and TLR-4 signaling in intestinal mucosa in a rat model. Male Sprague-Dawley rats were randomly assigned to one of two experimental groups: sham animals (Sham) and IAP animals who were subjected to a 15 mmHg pressure pneumoperitoneum for 30 minutes. Rats were sacrificed 24 hours later. BT to mesenteric lymph nodes, liver, portal vein blood, and peripheral blood was determined at sacrifice. TLR4-related gene and protein expression (TLR-4; myeloid differentiation factor 88 [Myd88] and TNF-α receptor-associated factor 6 [TRAF6]) expression were determined using real-time PCR, western blotting, and immunohistochemistry. Thirty percent of sham rats developed BT in the mesenteric lymph nodes (level I) and 20% of control rats developed BT in the liver and portal vein (level II). abdominal compartment syndrome (ACS) rats demonstrated an 80% BT in the lymph nodes (Level I) and 40% BT in the liver and portal vein (Level II). Elevated BT was accompanied by a significant increase in TLR-4 immunostaining in jejunum (51%) and ileum (35.9%), and in a number of TRAF6-positive cells in jejunum (2.1%) and ileum (24.01%) compared to control animals. ACS rats demonstrated a significant increase in TLR4 and MYD88 protein levels compared to control animals. Twenty-four hours after the induction of elevated IAP in a rat model, increased BT rates were associated with increased TLR4 signaling in intestinal mucosa.
Zhou, Jing; Chen, Yan; Wang, Ying; Gao, Xia; Qu, Ding; Liu, Congyan
2013-12-24
The aim of this study was to compare the significance of the intestinal hydrolysis of prenylated flavonoids in Herba Epimedii by an intestinal enzyme and flora. Flavonoids were incubated at 37 °C with rat intestinal enzyme and intestinal flora. HPLC-UV was used to calculate the metabolic rates of the parent drug in the incubation and LC/MS/MS was used to determine the chemical structures of metabolites generated by different flavonoid glycosides. Rates of flavonoid metabolism by rat intestinal enzyme were quicker than those of intestinal flora. The sequence of intestinal flora metabolic rates was icariin>epimedin B>epimedin A>epimedin C>baohuoside I, whereas the order of intestinal enzyme metabolic rates was icariin>epimedin A>epimedin C>epimedin B>baohuoside I. Meanwhile, the LC/MS/MS graphs showed that icariin produced three products, epimedin A/B/C had four and baohuoside I yielded one product in incubations of both intestinal enzyme and flora, which were more than the results of HPLC-UV due to the fact LC/MS/MS has lower detectability and higher sensitivity. Moreover, the outcomes indicated that the rate of metabolization of flavonoids by intestinal enzyme were faster than those of intestinal flora, which was consistent with the HPLC-UV results. In conclusion, the metabolic pathways of the same components by intestinal flora and enzyme were the same. What's more, an intestinal enzyme such as lactase phlorizin hydrolase exhibited a more significant metabolic role in prenylated flavonoids of Herba Epimedi compared with intestinal flora.
Kawauchi, Shoji; Nakamura, Tsutomu; Yasui, Hiroyuki; Nishikawa, Chikako; Miki, Ikuya; Inoue, Jun; Horibe, Sayo; Hamaguchi, Tsuneo; Tanahashi, Toshihito; Mizuno, Shigeto
2014-01-01
Background: Non-steroidal anti-inflammatory drugs induce the serious side effect of small intestinal ulcerations (SIUs), but little information is available regarding the consequences to drug metabolism and absorption. Aim: We examined the existence of secondary hepatic inflammation in rats with indomethacin (INM)-induced SIUs and assessed its relationship to the cytochrome P450 (CYP) and P-glycoprotein (mdr1a), the major drug-metabolizing factors in the small intestine and the liver. Methods: Gene expression of the CYP family of enzymes and mdr1a was measured with quantitative real-time polymerase chain reaction (qPCR). Vancomycin (VCM), a poorly absorbed drug, was administered intraduodenally to rats with SIUs. Results: INM induced SIUs predominantly in the lower region of the small intestine with high expression of inflammatory markers. Liver dysfunction was also observed, which suggested a secondary inflammatory response in rats with SIUs. In the liver of rats with SIUs, the expression of CYP2C11, CYP2E1, and CYP3A1 was significantly decreased, and loss of CYP3A protein was observed. Although previous studies have shown a direct effect of INM on CYP3A activity, we could not confirm any change in hepatic CY3A4 expression (major isoform of human CYP3A) in vitro. The plasma VCM concentration was increased in rats with SIUs due to partial absorption from the mucosal injury, but not in normal mucosa. Conclusions: INM-induced SIUs had a subtle effect on intestinal CYP expression, but had an apparent action on hepatic CYP, which was influenced, at least in part, by the secondary inflammation. Furthermore, drug absorption was increased in rats with SIUs. PMID:25317066
Beaufrère, A M; Neveux, N; Patureau Mirand, P; Buffière, C; Marceau, G; Sapin, V; Cynober, L; Meydinal-Denis, D
2014-11-01
Glutamine is the preferred fuel for the rat small intestine and promotes the growth of intestinal mucosa, especially in the event of gut injury. Quantitatively, glutamine is one important precursor for intestinal citrulline release. The aim of this study was to determine whether the effect of glutamine on the increase in intestinal villus height is correlated with an increase in both gut mass and citrulline plasma level in very old rats. We intermittently supplemented very old (27-mo) female rats with oral glutamine (20% of diet protein). Intestinal histomorphometric analysis of the small bowel was performed. Amino acids, in particular citrulline, were measured in the plasma, liver and jejunum. Markers of renal (creatinine, urea) and liver (alanine aminotransferase [ALT]) and aspartate aminotransferase (AST) functions were measured to evaluate renal and liver functions in relation to aging and to glutamine supplementation. Liver glutathione was also determined to evaluate cellular redox state. Glutamine supplementation maintains the body weight of very old rats, not by limiting sarcopenia but rather by increasing the organ mass of the splanchnic area. Total intestine mass was significantly higher in glutamine-supplemented rats than in controls (15%). Measurement of villus height and crypt depth demonstrated that the difference between villus and crypt was significantly improved in glutamine pre-treated rats compared to controls (~ 11%). Plasma citrulline also increased by 15% in glutamine-supplemented rats compared to controls. Citrulline appears as a biomarker of enterocyte mass in villous atrophy associated with advanced age. Non-invasive measurement of this metabolite may be useful in following the state of the gastrointestinal tract in very old people, whose numbers are increasing worldwide and the care of whom is a major public health issue. The gut may contribute to the malnutrition caused by malabsorption frequently observed in the elderly.
Hanioka, Nobumitsu; Isobe, Takashi; Kinashi, Yu; Tanaka-Kagawa, Toshiko; Jinno, Hideto
2016-07-01
Mono(2-ethylhexyl) phthalate (MEHP) is an active metabolite of di(2-ethylhexyl) phthalate (DEHP) and has endocrine-disrupting effects. MEHP is metabolized into glucuronide by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, the hepatic and intestinal glucuronidation of MEHP in humans, dogs, rats, and mice was examined in an in vitro system using microsomal fractions. The kinetics of MEHP glucuronidation by liver microsomes followed the Michaelis-Menten model for humans and dogs, and the biphasic model for rats and mice. The K m and V max values of human liver microsomes were 110 µM and 5.8 nmol/min/mg protein, respectively. The kinetics of intestinal microsomes followed the biphasic model for humans, dogs, and mice, and the Michaelis-Menten model for rats. The K m and V max values of human intestinal microsomes were 5.6 µM and 0.40 nmol/min/mg protein, respectively, for the high-affinity phase, and 430 µM and 0.70 nmol/min/mg protein, respectively, for the low-affinity phase. The relative levels of V max estimated by Eadie-Hofstee plots were dogs (2.0) > mice (1.4) > rats (1.0) ≈ humans (1.0) for liver microsomes, and mice (8.5) > dogs (4.1) > rats (3.1) > humans (1.0) for intestinal microsomes. The percentages of the V max values of intestinal microsomes to liver microsomes were mice (120 %) > rats (57 %) > dogs (39 %) > humans (19 %). These results suggest that the metabolic abilities of UGT enzymes expressed in the liver and intestine toward MEHP markedly differed among species, and imply that these species differences are strongly associated with the toxicity of DEHP.
Zhao, Tian-Yu; Su, Li-Ping; Ma, Chun-Ye; Zhai, Xiao-Han; Duan, Zhi-Jun; Zhu, Ying; Zhao, Gang; Li, Chun-Yan; Wang, Li-Xia; Yang, Dong
2015-07-08
Intestinal barrier dysfunction is not only the consequence of liver cirrhosis, but also an active participant in the development of liver cirrhosis. Previous studies showed that external administration of insulin-like growth factor 1 (IGF-1) improved intestinal barrier function in liver cirrhosis. However, the mechanism of IGF-1 on intestinal barrier in liver cirrhosis is not fully elucidated. The present study aims to investigate the mechanisms of IGF-1 improving intestinal barrier function via regulating tight junctions in intestines. We used carbon tetrachloride induced liver cirrhotic rats to investigate the effect of IGF-1 on intestinal claudin-1 and occludin expressions, serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, severity of liver fibrosis, portal pressures, enterocytic apoptosis and lipopolysaccharides (LPS) levels in portal vein. The changes of IGF-1 in serum during the development of rat liver cirrhosis were also evaluated. Additionally, we assessed the effect of IGF-1 on claudin-1 and occludin expressions, changes of transepithelial electrical resistance (TEER) and apoptosis in Caco-2 cells to confirm in vivo findings. Serum IGF-1 levels were decreased in the development of rat liver cirrhosis, and external administration of IGF-1 restored serum IGF-1 levels. External administration of IGF-1 reduced serum ALT and AST levels, severity of liver fibrosis, LPS levels in portal vein, enterocytic apoptosis and portal pressure in cirrhotic rats. External administration of IGF-1 increased the expressions of claudin-1 and occludin in enterocytes, and attenuated tight junction dysfunction in intestines of cirrhotic rats. LPS decreased TEER in Caco-2 cell monolayer. LPS also decreased claudin-1 and occludin expressions and increased apoptosis in Caco-2 cells. Furthermore, IGF-1 attenuated the effect of LPS on TEER, claudin-1 expression, occludin expression and apoptosis in Caco-2 cells. Tight junction dysfunction develops during the development of liver cirrhosis, and endotoxemia will develop subsequently. Correspondingly, increased endotoxin in portal system worsens tight junction dysfunction via decreasing intestinal occludin and claudin-1 expressions and increasing enterocytic apoptosis. Endotoxemia and intestinal barrier dysfunction form a vicious circle. External administration of IGF-1 breaks this vicious circle. Improvement of tight junctions might be one possible mechanism of the restoration of intestinal barrier function mediated by IGF-1.
NASA Astrophysics Data System (ADS)
Peana, A. T.; Marzocco, S.; Bianco, G.; Autore, G.; Pinto, A.; Pippia, P.
2008-06-01
The aim of this work is to evaluate the rat intestinal transit as well as the expression of enzymes involved in this process and in gastrointestinal homeostasis as ciclooxygenase (COX-1 and COX-2), the inducibile isoform of nitric oxide synthase (iNOS), ICAM-1 and heat shock proteins HSP70 and HSP90. The modeled microgravity conditions were performed utilizing a three-dimensional clinostat, the Random Positioning Machine (RPM). Our results indicate that modeled microgravity significantly reduce rat intestinal transit. Western blot analysis on small intestine tissues of RPM rats reveals a significant increase in iNOS expression, a significant reduction in COX-2 levels, while COX-1 expression remains unaltered, and a significant increase in ICAM-1 and HSP 70 expression. Also a significant increase in HSP 90 stomach expression indicates a strong effect of simulated low g on gastrointestinal homeostasis.
Nitroreduction and formation of hemoglobin adducts in rats with a human intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheepers, P.T.J.; Straetemans, M.M.E.; Koopman, J.P.
1994-10-01
In the covalent binding of nitroarenes to macromolecules, nitroreduction is an important step. The intestinal microflora represents an enormous potential of bacterial nitroreductase activity. As a consequence, the in vivo nitroreduction of orally administerednitroarenes is primarily located in the intestine. In this study, we have investigated the nitroreduction of 2-nitrofluorene (2-NF) by a human microflora in female Wistar rats. Germ-free (FG) rats were equipped with a bacterial flora derived from human feces. Nontreated GF rats and GF animals equipped with a conventional rat flora were used as controls. The composition of the human and the conventional microflora isolated from themore » rats were consistent with the microflora of the administered feces. In the rats receiving only sunflower seed oil, no adducts were detected. The animals equipped with a human or rat microflora that received 2-aminofluorene (2-AF) formed 2-AF hemoglobin (Hb)-adducts at average levels mean {+-} 0.003 and 0.043 {+-} 0.010 {mu}mole/g Hb, respectively. In the FG rats, an adduct level of 0.57 {+-} 0.09 was determined after 2-AF administration and non adducts were detected after 2-NF administration. The results show that nitroreduction by an acquired human intestinal microflora and subsequent adduct formation can be studied in the rate in vivo. 21 refs., 3 tabs.« less
Mucosal IgA increase in rats by continuous CLA feeding during suckling and early infancy.
Pérez-Cano, Francisco J; Ramírez-Santana, Carolina; Molero-Luís, Marta; Castell, Margarida; Rivero, Montserrat; Castellote, Cristina; Franch, Angels
2009-03-01
The aim of this work was to establish the effect of the cis9,trans11 conjugated linoleic acid (CLA) isomer on mucosal immunity during early life in rats, a period when mucosal immunoglobulin production is poorly developed, as is also the case in humans. CLA supplementation was performed during three life periods: gestation, suckling, and early infancy. The immune status of supplemented animals was evaluated at two time points: at the end of the suckling period (21-day-old rats) and 1 week after weaning (28-day-old rats). Secretory IgA was quantified in intestinal washes from 28-day-old rats by ELISA technique. IgA, TGFbeta, and PPARgamma mRNA expression was measured in small intestine and colon by real time PCR, using Taqman specific probes and primers. IgA mucosal production was enhanced in animals supplemented with CLA during suckling and early infancy: in 28-day-old rats, IgA mRNA expression was increased in small intestine and colon by approximately 6- and 4-fold, respectively, and intestinal IgA protein by approximately 2-fold. TGFbeta gene expression was independent of age and type of tissue considered, and was not modified by dietary CLA. Gene expression of PPARgamma, a possible mediator of CLA's effects was also upregulated in animals receiving CLA during early life. In conclusion, dietary supplementation with CLA during suckling and extended to early infancy enhances development of the intestinal immune response in rats.
Wang, Feng-yun; Su, Min; Zheng, Yong-qiu; Wang, Xiao-ge; Kang, Nan; Chen, Ting; Zhu, En-lin; Bian, Zhao-xiang; Tang, Xu-dong
2015-01-01
Aim: The herbal prescription Chang'an II is derived from a classical TCM formula Tong-Xie-Yao-Fang for the treatment of liver-qi stagnation and spleen deficiency syndrome of irritable bowel syndrome (IBS). In this study we investigated the effects of Chang'an II on the intestinal mucosal immune barrier in a rat post-inflammation IBS (PI-IBS) model. Methods: A rat model of PI-IBS was established using a multi-stimulation paradigm including early postnatal sibling deprivation, bondage and intrarectal administration of TNBS. Four weeks after TNBS administration, the rats were treated with Chang'an II (2.85, 5.71 and 11.42 g·kg−1·d−1, ig) for 14 d. Intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores and fecal water content. Open field test and two-bottle sucrose intake test were used to evaluate the behavioral changes. CD4+ and CD8+ cells were counted and IL-1β and IL-4 levels were measured in intestinal mucosa. Transmission electron microscopy was used to evaluate ultrastructural changes of the intestinal mucosal barrier. Results: PI-IBS model rats showed significantly increased AWR reactivity and fecal water content, and decreased locomotor activity and sucrose intake. Chang'an II treatment not only reduced AWR reactivity and fecal water content, but also suppressed the anxiety and depressive behaviors. Ultrastructural study revealed that the gut mucosal barrier function was severely damaged in PI-IBS model rats, whereas Chang'an II treatment relieved intestinal mucosal inflammation and repaired the gut mucosal barrier. Furthermore, PI-IBS model rats showed a significantly reduced CD4+/CD8+ cell ratio in lamina propria and submucosa, and increased IL-1β and reduced IL-4 expression in intestinal mucosa, whereas Chang'an II treatment reversed PI-IBS-induced changes in CD4+/CD8+ cell ratio and expression of IL-1β and IL-4. Conclusion: Chang'an II treatment protects the intestinal mucosa against PI-IBS through anti-inflammatory, immunomodulatory and anti-anxiety effects. PMID:25960135
Wang, Feng-yun; Su, Min; Zheng, Yong-qiu; Wang, Xiao-ge; Kang, Nan; Chen, Ting; Zhu, En-lin; Bian, Zhao-xiang; Tang, Xu-dong
2015-06-01
The herbal prescription Chang'an II is derived from a classical TCM formula Tong-Xie-Yao-Fang for the treatment of liver-qi stagnation and spleen deficiency syndrome of irritable bowel syndrome (IBS). In this study we investigated the effects of Chang'an II on the intestinal mucosal immune barrier in a rat post-inflammation IBS (PI-IBS) model. A rat model of PI-IBS was established using a multi-stimulation paradigm including early postnatal sibling deprivation, bondage and intrarectal administration of TNBS. Four weeks after TNBS administration, the rats were treated with Chang'an II (2.85, 5.71 and 11.42 g · kg(-1) · d(-1), ig) for 14 d. Intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores and fecal water content. Open field test and two-bottle sucrose intake test were used to evaluate the behavioral changes. CD4(+) and CD8(+) cells were counted and IL-1β and IL-4 levels were measured in intestinal mucosa. Transmission electron microscopy was used to evaluate ultrastructural changes of the intestinal mucosal barrier. PI-IBS model rats showed significantly increased AWR reactivity and fecal water content, and decreased locomotor activity and sucrose intake. Chang'an II treatment not only reduced AWR reactivity and fecal water content, but also suppressed the anxiety and depressive behaviors. Ultrastructural study revealed that the gut mucosal barrier function was severely damaged in PI-IBS model rats, whereas Chang'an II treatment relieved intestinal mucosal inflammation and repaired the gut mucosal barrier. Furthermore, PI-IBS model rats showed a significantly reduced CD4(+)/CD8(+) cell ratio in lamina propria and submucosa, and increased IL-1β and reduced IL-4 expression in intestinal mucosa, whereas Chang'an II treatment reversed PI-IBS-induced changes in CD4(+)/CD8(+) cell ratio and expression of IL-1β and IL-4. Chang'an II treatment protects the intestinal mucosa against PI-IBS through anti-inflammatory, immunomodulatory and anti-anxiety effects.
Bedada, Satish Kumar; Appani, Ramgopal; Boga, Praveen Kumar
2017-06-01
Capsaicin is the main pungent principle present in chili peppers has been found to possess P-glycoprotein (P-gp) inhibition activity in vitro, which may have the potential to modulate bioavailability of P-gp substrates. Therefore, purpose of this study was to evaluate the effect of capsaicin on intestinal absorption and bioavailability of fexofenadine, a P-gp substrate in rats. The mechanistic evaluation was determined by non-everted sac and intestinal perfusion studies to explore the intestinal absorption of fexofenadine. These results were confirmed by an in vivo pharmacokinetic study of oral administered fexofenadine in rats. The intestinal transport and apparent permeability (P app ) of fexofenadine were increased significantly by 2.8 and 2.6 fold, respectively, in ileum of capsaicin treated rats when compared to control group. Similarly, absorption rate constant (K a ), fraction absorbed (F ab ) and effective permeability (P eff ) of fexofenadine were increased significantly by 2.8, 2.9 and 3.4 fold, respectively, in ileum of rats pretreated with capsaicin when compared to control group. In addition, maximum plasma concentration (C max ) and area under the concentration-time curve (AUC) were increased significantly by 2.3 and 2.4 fold, respectively, in rats pretreated with capsaicin as compared to control group. Furthermore, obtained results in rats pretreated with capsaicin were comparable to verapamil (positive control) treated rats. Capsaicin pretreatment significantly enhanced the intestinal absorption and bioavailability of fexofenadine in rats likely by inhibition of P-gp mediated cellular efflux, suggesting that the combined use of capsaicin with P-gp substrates may require close monitoring for potential drug interactions.
[Study on intestinal absorption of formononetin in Millettia nitita var. hirsutissima in rats].
Liu, Ya-Li; Xiong, Xian-Bing; Su, Dan; Song, Yong-Gui; Zhang, Ling; Yang, Shi-Lin
2013-10-01
To use the single-pass intestine perfusion (SPIP) model and HPLC to determine the concentration of formononetin, the effect of quality concentrations of formononetin, different intestinal segments and P-glycoprotein inhibitor on intestinal absorption of formononetin, in order to observe the intestinal absorption mechanism of formononetin from Millettia nitita var. hirsutissima in rats. The experimental results showed that the qulaity concentration of formononetin in the perfusate had no significant effect on the absorption rate constant (K(a)) and the apparent absorption coefficient (P(app)); K(a) and P(app) of formononetin in duodenum, jejunum and ileum showed no significant difference. However, K(a) was significantly higher than that in colon (P < 0.05), with significant difference between that in intestinum tenue and colon. P-glycoprotein inhibitor verapamil showed significant difference in K(a) and P(app) in intestinal segments (P < 0.05). This indicated that the absorption mechanism of formononein in rat intestinal tracts passive diffusion, without any saturated absorption. Formononein is absorbed well in all intestines. Their absorption windows were mainly concentrated in the intestinum tenue, without specific absorption sites. Formononein may be the substrate of P-glycoprotein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donatucci, D.A.; Liener, I.E.; Gross, C.J.
The main objectives of this investigation were to study the binding of a lectin from navy beans with the epithelial cells of the rat intestine and to assess the effect of such binding on the ability of the intestine to absorb glucose. A Scatchard plot, based on the binding of /sup 125/I-labeled lectin to isolated intestinal epithelial cells, was used to calculate an association constant (Ka) of 15 x 10(6)M-1 and the number of binding sites per cell, 12 x 10(6). Metabolic studies were conducted over a period of 5 d on groups of rats fed raw or autoclaved navymore » bean flour and casein with or without the purified lectin. Growth, protein digestibility, biological value and net protein utilization were significantly lower in animals that had been fed raw navy bean flour or casein plus lectin than in control groups fed diets containing autoclaved navy bean flour or casein alone. Vascular perfusion was used to measure the rate of uptake of glucose by the intestines of rats that had received the various dietary treatments. The rate of absorption of (/sup 14/C)glucose by intestines from rats fed raw navy bean flour or casein plus lectin was approximately one-half that of their counterparts fed the autoclaved flour or casein alone. These results provide evidence that the lectin, by virtue of its interference with intestinal absorption, is responsible, at least in part, for the nutritional inferiority of raw navy beans.« less
Kefir milk enhances intestinal immunity in young but not old rats.
Thoreux, K; Schmucker, D L
2001-03-01
The adjuvant effect of kefir fermented milk on the mucosal and systemic immune systems was examined in young (6 mo old) and old (26 mo old) rats. Kefir-fed rats consisted of young or old rats consuming kefir-fermented milk ad libitum on a daily basis in addition to the standard diet, for 28 d. Control rats consumed only the standard diet. The rats were immunized intraduodenally with cholera toxin (CT) on d 7 and 21 and killed on d 28. The nonspecific serum immunoglobulin (Ig)A titers in kefir-fed and control rats did not differ in either age group. The serum anti-CT IgA antibody concentrations were significantly higher in the kefir-fed young rats compared with their age-matched controls (+86%, P: < or = 0.05). This difference was associated with enhanced in vitro antibody secretion by cultured lymphocytes isolated from the Peyer's patches and the intestinal lamina propria (+180%, P: < or = 0.05). These enhanced responses were found only in the young rats. However, the nonspecific serum IgG titer was higher (>120%, P: < or = 0.05) and the anti-CT IgG titer was lower (-80%, P: < or = 0.05), in both young and old kefir-fed rats compared with their respective controls. Nevertheless, these results demonstrate that a kefir-supplemented diet affects the intestinal mucosal and systemic immune responses to intraduodenal CT differently in young and old rats. Most importantly, our data suggest that orally administered kefir enhances the specific intestinal mucosal immune response against CT in young adult, but not in senescent rats.
THE EFFECT OF X-IRRADIATION ON THE PHOSPHOLIPASE AND ANTIOXIDANT ACTIVITIES OF RAT INTESTINAL MUCOSA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottolenghi, A.; Bernheim, F.
1960-04-01
The antioxidant effect of intestinal mucosa is the result of the liberation of free fatty acid from phospholipid by phospholipase. The fatty acid binds the iron and thus inhibits peroxidation of unsaturated lipids in the test system. The phospholipase and antioxidant activity of rat intestinal mucosa decreases markedly 24 hours postirradiation and to approximately the same extent. (auth)
Liu, Xiuxiu; Tang, Minghai; Liu, Taohong; Wang, Chunyan; Tang, Qiaoxin; Xiao, Yaxin; Yang, Ruixin; Chao, Ruobing
2017-12-27
1. Mesaconine, an ingredient from Aconitum carmichaelii Debx., has been proven to have cardiac effect. For further development and better pharmacological elucidation, the in vivo process and intestinal absorptive behavior of mesaconine should be investigated comprehensively. 2. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitation of mesaconine in rat plasma, tissue homogenates, urine and feces to investigate the in vivo pharmacokinetic profiles, tissue distribution and excretion. The intestinal absorptive behavior of mesaconine was investigated using in vitro everted rat gut sac model. 3. Mesaconine was well distributed in tissues and a mass of unchanged form was detected in feces. It was difficultly absorbed into blood circulatory system after oral administration. The insufficient oral bioavailability of mesaconine may be mainly attributed to its low intestinal permeability due to a lack of lipophilicity. The absorption of mesaconine in rat's intestine is a first-order process with the passive diffusion mechanism.
Lactobacillus johnsonii N6.2 Mitigates the Development of Type 1 Diabetes in BB-DP Rats
Li, Nan; Williams, Emily; Lai, Kin-Kwan; Abdelgeliel, Asmaa Sayed; Gonzalez, Claudio F.; Wasserfall, Clive H.; Larkin, Joseph; Schatz, Desmond; Atkinson, Mark A.; Triplett, Eric W.; Neu, Josef; Lorca, Graciela L.
2010-01-01
Background The intestinal epithelium is a barrier that composes one of the most immunologically active surfaces of the body due to constant exposure to microorganisms as well as an infinite diversity of food antigens. Disruption of intestinal barrier function and aberrant mucosal immune activation have been implicated in a variety of diseases within and outside of the gastrointestinal tract. With this model in mind, recent studies have shown a link between diet, composition of intestinal microbiota, and type 1 diabetes pathogenesis. In the BioBreeding rat model of type 1 diabetes, comparison of the intestinal microbial composition of diabetes prone and diabetes resistant animals found Lactobacillus species were negatively correlated with type 1 diabetes development. Two species, Lactobacillus johnsonii and L. reuteri, were isolated from diabetes resistant rats. In this study diabetes prone rats were administered pure cultures of L. johnsonii or L. reuteri isolated from diabetes resistant rats to determine the effect on type 1 diabetes development. Methodology/Principal Findings Results Rats administered L. johnsonii, but not L. reuteri, post-weaning developed type 1 diabetes at a protracted rate. Analysis of the intestinal ileum showed administration of L. johnsonii induced changes in the native microbiota, host mucosal proteins, and host oxidative stress response. A decreased oxidative intestinal environment was evidenced by decreased expression of several oxidative response proteins in the intestinal mucosa (Gpx1, GR, Cat). In L. johnsonii fed animals low levels of the pro-inflammatory cytokine IFNγ were correlated with low levels of iNOS and high levels of Cox2. The administration of L. johnsonii also resulted in higher levels of the tight junction protein claudin. Conclusions It was determined that the administration of L. johnsonii isolated from BioBreeding diabetes resistant rats delays or inhibits the onset of type 1 diabetes in BioBreeding diabetes prone rats. Taken collectively, these data suggest that the gut and the gut microbiota are potential agents of influence in type 1 diabetes development. These data also support therapeutic efforts that seek to modify gut microbiota as a means to modulate development of this disorder. PMID:20463897
Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats.
Valladares, Ricardo; Sankar, Dhyana; Li, Nan; Williams, Emily; Lai, Kin-Kwan; Abdelgeliel, Asmaa Sayed; Gonzalez, Claudio F; Wasserfall, Clive H; Larkin, Joseph; Schatz, Desmond; Atkinson, Mark A; Triplett, Eric W; Neu, Josef; Lorca, Graciela L
2010-05-06
The intestinal epithelium is a barrier that composes one of the most immunologically active surfaces of the body due to constant exposure to microorganisms as well as an infinite diversity of food antigens. Disruption of intestinal barrier function and aberrant mucosal immune activation have been implicated in a variety of diseases within and outside of the gastrointestinal tract. With this model in mind, recent studies have shown a link between diet, composition of intestinal microbiota, and type 1 diabetes pathogenesis. In the BioBreeding rat model of type 1 diabetes, comparison of the intestinal microbial composition of diabetes prone and diabetes resistant animals found Lactobacillus species were negatively correlated with type 1 diabetes development. Two species, Lactobacillus johnsonii and L. reuteri, were isolated from diabetes resistant rats. In this study diabetes prone rats were administered pure cultures of L. johnsonii or L. reuteri isolated from diabetes resistant rats to determine the effect on type 1 diabetes development. Findings Results Rats administered L. johnsonii, but not L. reuteri, post-weaning developed type 1 diabetes at a protracted rate. Analysis of the intestinal ileum showed administration of L. johnsonii induced changes in the native microbiota, host mucosal proteins, and host oxidative stress response. A decreased oxidative intestinal environment was evidenced by decreased expression of several oxidative response proteins in the intestinal mucosa (Gpx1, GR, Cat). In L. johnsonii fed animals low levels of the pro-inflammatory cytokine IFNgamma were correlated with low levels of iNOS and high levels of Cox2. The administration of L. johnsonii also resulted in higher levels of the tight junction protein claudin. It was determined that the administration of L. johnsonii isolated from BioBreeding diabetes resistant rats delays or inhibits the onset of type 1 diabetes in BioBreeding diabetes prone rats. Taken collectively, these data suggest that the gut and the gut microbiota are potential agents of influence in type 1 diabetes development. These data also support therapeutic efforts that seek to modify gut microbiota as a means to modulate development of this disorder.
Vazquez, E; Santos-Fandila, A; Buck, R; Rueda, R; Ramirez, M
2017-01-01
Human milk oligosaccharides (HMO) are involved in many biological functions influencing infant health. Although HMO act locally at the intestine, recent evidence has demonstrated that HMO are partially incorporated into the systemic circulation of breast-fed infants. In the last few years, a large amount of research has been conducted using preclinical models to uncover new biological functions of HMO. The aim of this study was to evaluate the absorption and urine excretion of HMO in rats. We administered a single oral dose of the following HMO: 2'-fucosyllactose (2'-FL), 6'-sialyllactose and lacto-N-neotetraose at different concentrations to adult rats. The time course of absorption of HMO into the bloodstream and their appearance in urine was studied. Our results showed that rats, similar to human infants, are able to effectively absorb a portion of HMO from the intestine into plasma and to excrete them in urine. On the basis of this, we also conducted a specific kinetic absorption study with 2'-FL, the most predominant HMO in human milk, in 9-11-d-old rat pups. Our results confirmed that a significant amount of 2'-FL was absorbed into the systemic circulation and subsequently excreted in urine during lactation in rats in a dose-depended manner. We also found basal levels of these HMO in plasma and urine of adult rats as well as rat pups as a natural result of nursing. Our data suggest that the rat may be a useful preclinical model that provides new insights into the metabolism and functions of HMO.
Impact of water and feed deprivation on physiological parameters in steers
USDA-ARS?s Scientific Manuscript database
A report in rats demonstrated that dehydration as the result of 8 d of water deprivation increased leakage of endotoxin from the intestine (Zurovsky and Barbiro, 2000 Experimental and toxicologic pathology 52:37-42). Given the large number of gram negative bacteria in the rumen of cattle, a much sho...
Chin, Keigi; Onishi, Sachiko; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Yokoyama, Toshifumi; Hoshi, Nobuhiko; Kitagawa, Hiroshi
2006-10-01
To clarify the relationship between M cells and intestinal microflora, histoplanimetrical investigation into the bacterial colonization and the differentiation to M cells was carried out in rat Peyer's patch under physiological conditions. The follicle-associated epithelium (FAE), except for the narrow area of apical region, was closely covered with both neighboring intestinal villi and a thick mucous layer, the latter of which also filled the intervillous spaces as well as the space between the FAE and the neighboring intestinal villi. Indigenous bacteria adhered almost constantly to the narrow areas of apical regions of both intestinal villi and the FAE. Bacterial colonies were occasionally located on the basal to middle region of FAE, where M cells also appeared, forming large pockets. When bacterial colonies were located on the basal to middle region of FAE, bacteria with the same morphological characteristics also proliferated in the intervillous spaces neighboring the Peyer's patch. In cases with no bacterial colonies on the basal to middle region of FAE, however, M cells were rare in the FAE. Histoplanimetrical analysis showed the similar distribution pattern of bacterial colonies on the FAE and M cells in the FAE. M cells ultrastructurally engulfed indigenous bacteria, which were then transported to the pockets. These results suggest that indigenous bacterial colonization on the FAE stimulates the differentiation of M cells in the FAE under physiological conditions. The uptake of bacteria by M cells might contribute the regulation of the development of indigenous bacterial colonies in the small intestine.
Gastric acid reduction leads to an alteration in lower intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanno, Takayuki; Matsuki, Takahiro; Oka, Masashi
2009-04-17
To clarify the alterations in lower intestinal microflora induced by gastric acid reduction, the dynamics of 12 major genera or groups of bacteria comprising the microflora in feces and colonic contents were examined by quantitative real-time PCR in proton pump inhibitor-treated rats and in asymptomatic human subjects with hypochlorhydria. In both rat and human experiments, most genera or groups of intestinal microflora (facultative and obligate anaerobes) proliferated by gastric acid reduction, and marked and significant increases in the Lactobacilli group and Veillonella, oropharyngeal bacteria, were observed. In rats, potent gastric acid inhibition led to a marked and significant increase ofmore » intestinal bacteria, including the Bacteroidesfragilis group, while Bifidobacterium, a beneficial bacterial species, remained at a constant level. These results strongly indicate that the gastric acid barrier not only controls the colonization and growth of oropharyngeal bacteria, but also regulates the population and composition of lower intestinal microflora.« less
Chen, Xiaoxin; Qin, Rong; Liu, Ba; Ma, Yan; Su, Yinghao; Yang, Chung S; Glickman, Jonathan N; Odze, Robert D; Shaheen, Nicholas J
2008-01-01
Background In rats, esophagogastroduodenal anastomosis (EGDA) without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia), columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE) in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753–765). The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Methods Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. Results We detected MLE in 56.3% (18/32) of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4) in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1α, villin and Muc2) in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. Conclusion These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE. PMID:18190713
Chen, Xiaoxin; Qin, Rong; Liu, Ba; Ma, Yan; Su, Yinghao; Yang, Chung S; Glickman, Jonathan N; Odze, Robert D; Shaheen, Nicholas J
2008-01-11
In rats, esophagogastroduodenal anastomosis (EGDA) without concomitant chemical carcinogen treatment leads to gastroesophageal reflux disease, multilayered epithelium (MLE, a presumed precursor in intestinal metaplasia), columnar-lined esophagus, dysplasia, and esophageal adenocarcinoma. Previously we have shown that columnar-lined esophagus in EGDA rats resembled human Barrett's esophagus (BE) in its morphology, mucin features and expression of differentiation markers (Lab. Invest. 2004;84:753-765). The purpose of this study was to compare the phenotype of rat MLE with human MLE, in order to gain insight into the nature of MLE and its potential role in the development of BE. Serial sectioning was performed on tissue samples from 32 EGDA rats and 13 patients with established BE. Tissue sections were immunohistochemically stained for a variety of transcription factors and differentiation markers of esophageal squamous epithelium and intestinal columnar epithelium. We detected MLE in 56.3% (18/32) of EGDA rats, and in all human samples. As expected, both rat and human squamous epithelium, but not intestinal metaplasia, expressed squamous transcription factors and differentiation markers (p63, Sox2, CK14 and CK4) in all cases. Both rat and human intestinal metaplasia, but not squamous epithelium, expressed intestinal transcription factors and differentiation markers (Cdx2, GATA4, HNF1alpha, villin and Muc2) in all cases. Rat MLE shared expression patterns of Sox2, CK4, Cdx2, GATA4, villin and Muc2 with human MLE. However, p63 and CK14 were expressed in a higher proportion of rat MLE compared to humans. These data indicate that rat MLE shares similar properties to human MLE in its expression pattern of these markers, not withstanding small differences, and support the concept that MLE may be a transitional stage in the metaplastic conversion of squamous to columnar epithelium in BE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopec, Anna K.; Thompson, Chad M.; Kim, Suntae
2012-07-15
Continuous exposure to high concentrations of hexavalent chromium [Cr(VI)] in drinking water results in intestinal tumors in mice but not rats. Concentration-dependent gene expression effects were evaluated in female F344 rat duodenal and jejunal epithelia following 7 and 90 days of exposure to 0.3–520 mg/L (as sodium dichromate dihydrate, SDD) in drinking water. Whole-genome microarrays identified 3269 and 1815 duodenal, and 4557 and 1534 jejunal differentially expressed genes at 8 and 91 days, respectively, with significant overlaps between the intestinal segments. Functional annotation identified gene expression changes associated with oxidative stress, cell cycle, cell death, and immune response that weremore » consistent with reported changes in redox status and histopathology. Comparative analysis with B6C3F1 mouse data from a similarly designed study identified 2790 differentially expressed rat orthologs in the duodenum compared to 5013 mouse orthologs at day 8, and only 1504 rat and 3484 mouse orthologs at day 91. Automated dose–response modeling resulted in similar median EC{sub 50}s in the rodent duodenal and jejunal mucosae. Comparative examination of differentially expressed genes also identified divergently regulated orthologs. Comparable numbers of differentially expressed genes were observed at equivalent Cr concentrations (μg Cr/g duodenum). However, mice accumulated higher Cr levels than rats at ≥ 170 mg/L SDD, resulting in a ∼ 2-fold increase in the number of differentially expressed genes. These qualitative and quantitative differences in differential gene expression, which correlate with differences in tissue dose, likely contribute to the disparate intestinal tumor outcomes. -- Highlights: ► Cr(VI) elicits dose-dependent changes in gene expression in rat intestine. ► Cr(VI) elicits less differential gene expression in rats compared to mice. ► Cr(VI) gene expression can be phenotypically anchored to intestinal changes. ► Species-specific and divergent changes are consistent with species-specific tumors.« less
Pengcheng, Wang; Xiaosong, Li; Xiaofeng, Li; Zhongzhi, Li
2017-02-01
It is well accepted that survival after a second organ transplant without immunosuppressive agents indicates tolerance for the first transplant. To validate donor-specific tolerance, we established a rat model with a secondary heart transplant after intestinal transplant, which has so far not been described in the literature. We transplanted intestine from Fischer F344 rats to Lewis rats orthotopically. Lewis rats received tacrolimus pretreatment before transplant and a 14-day course of rapamycin 1 month after transplant. At 120 days after primary intestinal transplant, hearts from 6 F344 rats (group A) or 6 Brown Norway rats (group B) were transplanted to Lewis rats that had survived intestinal transplant and without additional immunosuppressive agents. We analyzed survival data, histologic changes, cells positive for the ED1 macrophage marker in transplanted hearts, and 3 lymphocyte levels in both groups. Thirty days after secondary heart transplant, group A hearts were continuously beating; however, group B hearts stopped beating at around 10 days after transplant (8.5 ± 1.5 d; P < .05). Our histologic study showed that both groups had muscle damage and cellular infiltration in hearts that were distinctly different from normal hearts, with ED1-positive cells counted in both groups (85 ± 16 in group A, 116 ± 28 in group B; P > .05). Fluorescence-activated cell sorting showed that CD4/CD25-positive regulatory T cell, CTLA4/CD4/CD25-positive regulatory T cell, and Natural killer T-cell levels were significantly higher level in group A versus B (P < .05). The donor-specific tolerance that we observed was possibly a state of "clinical tolerance" rather than "immunologic tolerance." Our rat model is a feasible and reliable model to study donor-specific tolerance. The higher levels of lymphocytic T cells shown in intestinal transplant recipients were associated with longer allograft survival, possibly contributing to donor-specific tolerance.
Jiang, Shuwen; Zhao, Weiman; Chen, Yang; Zhong, Zeyu; Zhang, Mian; Li, Feng; Xu, Ping; Zhao, Kaijing; Li, Ying; Liu, Li; Liu, Xiaodong
2015-06-01
Accumulating evidences have shown that diabetes is often accompanied with depression, thus it is possible that oral antidiabetic agent glyburide and antidepressive agent paroxetine are co-administered in diabetic patients. The aim of this study was to assess interactions between glyburide and paroxetine in rats. Effect of paroxetine on pharmacokinetics of orally administered glyburide was investigated. Effect of naringin (NAR), an inhibitor of rat intestinal organic anion transporting polypeptides 1a5 (Oatp1a5), on pharmacokinetics of glyburide was also studied. The results showed that co-administration of paroxetine markedly reduced plasma exposure and prolonged Tmax of glyburide, accompanied by significant increase in fecal excretion of glyburide. Co-administration of naringin also significantly decreased plasma exposure of glyburide. Data from intestinal perfusion experiments showed that both paroxetine and naringin significantly inhibited intestinal absorption of glyburide. Caco-2 cells were used to investigate whether paroxetine and naringin affected intestinal transport of glyburide and fexofenadine (a substrate of Oatp1a5). The results showed that both paroxetine and naringin greatly inhibited absorption of glyburide and fexofenadine. All results gave a conclusion that co-administration of paroxetine decreased plasma exposure of glyburide in rats via inhibiting intestinal absorption of glyburide, which may partly be attributed to the inhibition of intestinal Oatp1a5 activity. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Invasion of intestinal epithelia in vitro by the parasitic nematode Trichinella spiralis.
ManWarren, T; Gagliardo, L; Geyer, J; McVay, C; Pearce-Kelling, S; Appleton, J
1997-01-01
Studies of nematode establishment in intestinal niches has been hindered by the lack of a readily manipulated in vitro assay. In this report, experiments are described wherein the larval stage of the parasitic nematode Trichinella spiralis was shown to invade epithelial cell monolayers in vitro. Larvae penetrated cells and migrated through them, leaving trails of dead cells in their wake. Cells derived from five different species were susceptible to invasion, reflecting the broad host range of T. spiralis in vivo. Epithelial cells derived from large and small intestines and kidneys were susceptible. Fibroblast and muscle cells were resistant. Larvae deposited glycoprotein antigens in the cells they invaded. Although the function of these antigens is unknown, they are targeted by rat antibodies that cause T. spiralis to be expelled from the intestine. The model system described provides the means to further investigate this process as well as the mechanisms by which this parasitic nematode establishes its intestinal niche. PMID:9353069
Effects of fasting on intestinal transfer of sugars and amino acids in vitro
Newey, H.; Sanford, P. A.; Smyth, D. H.
1970-01-01
1. Transfer of sugars, amino acids and fluid and metabolism of glucose were studied with everted sacs of small intestine prepared from fed and 3-day fasted rats. 2. In the absence of glucose there was some evidence for increased intestinal transfer of sugars and amino acids in fasted animals. In the presence of glucose there was in general decrease in transfer of amino acids and fluid. 3. In fasted animals glucose transfer was reduced except in the lower ileum, and there was a general reduction in glucose metabolism. 4. Because of the large reduction in gut weight in fasted animals, expressing transfer on a weight basis is considered not to be a valid procedure in studying the effects of fasting on intestinal transfer. 5. The results have been discussed in relation to effects of fasting on energy availability, efficiency of transfer mechanisms, permeability of the intestine and the value of in vitro methods in the study of physiological absorption. PMID:5499792
Intestinal infection with Trichinella spiralis induces distinct, regional immune responses
Blum, L.K.; Mohanan, S.; Fabre, M.V.; Yafawi, R.E.; Appleton, J.A.
2013-01-01
The aim of this study was to evaluate differences between the small and large intestines (SI and LI) with regard to colonization and immunity during infection with Trichinella spiralis. In orally infected C57BL/6 mice, the gender ratios of worms differed among the SI, cecum, and LI. Mucosal mastocytosis developed in the SI but not in the LI, consistent with reduced IL-9 and IL-13 production by explants from the LI. Despite these differences, worms were cleared at the same rate from both sites. Furthermore, IL-10 production was reduced in the LI, yet it was instrumental in limiting local inflammation. Finally, passive immunization of rat pups with tyvelose-specific antibodies effectively cleared fist-stage larvae from all intestinal regions. We conclude that despite regional differences in immune responsiveness and colonization, immune mechanisms that clear T. spiralis operate effectively throughout the intestinal tract. PMID:23465441
Jiang, Xiao-hua; Li, Ning; Zhu, Wei-ming; Li, Jie-shou
2009-09-01
To evaluate the effect of enteral supplement of arginine on intestinal adaptation in rats with short bowel syndrome (SBS) and to study its mechanism. SD rats were randomly assigned to three groups: sham rats (Con), SBS rats (SB) and SBS rats supplemented with enteral arginine (SB-Arg). All the animals received isonitrogenic and isocaloric enteral nutrition, except that SB-Arg rats received enteral nutrition supplemented with arginine (300 mg kg(-1) d(-1)). Fat absorbability, plasma free fatty acids, parameters of intestinal adaptation, enterocytes proliferation and apoptosis were determined. After massive small bowel resection, rats had significant bowel adaptation. Compared with SB rats, SB-Arg rats demonstrated a significant increase in fat absorbability [(84.9+/-3.2)% vs [(81.3+/-3.9)%], plasma level of free fatty acids [(650.0+/-86.5) vs (289.5+/-76.9) mg/L], ileal mucosal weight [(18.0+/-3.5) vs (13.5+/-3.0) mg cm(-1) 100 g(-1)], ileal DNA content [(29.6+/-3.3) vs (26.0+/-2.6) microg cm(-1) 100 g(-1)], jejunal mucosal protein content [(65.5+/-7.3) vs (59.8+/-6.2) microg cm(-1) 100 g(-1)], ileal mucosal protein content[(39.2+/-2.3) vs(35.4+/-2.3) microg cm(-1) 100 g(-1)], jejunal mucosal proliferation index [31+/-4 vs 22+/-3] and ileal mucosal proliferation index [32+/-2 vs 25+/-3] (all P<0.05). Moreover, jejunal and ileal villus length, crypt depth and mucosal thickness in SBS-Arg rats were higher than those in SB rats (P<0.05). In rat SBS model, enteral supplement of arginine appears to stimulate intestinal structural and functional adaptation. The mechanism may be that arginine can stimulate enterocyte proliferation and inhibit enterocyte apoptosis.
Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats.
Herías, M V; Hessle, C; Telemo, E; Midtvedt, T; Hanson, L A; Wold, A E
1999-05-01
We have studied the effect of the probiotic strain Lactobacillus plantarum 299v on the immune functions of gnotobiotic rats. One group of germ-free rats was colonized with the type 1-fimbriated Escherichia coli O6:K13:H1 and another group with the same E. coli strain together with L. plantarum 299v. One and 5 weeks after colonization, bacterial numbers were determined in the contents of the small intestine, caecum and mesenteric lymph nodes. Small intestinal sections were examined for CD8+, CD4+, CD25+ (IL-2R alpha-chain), IgA+ and MHC class II+ cells and mitogen-induced spleen cell proliferation was determined. Immunoglobulin levels and E. coli-specific antibodies were measured in serum. Rats given L. plantarum in addition to E. coli showed lower counts of E. coli in the small intestine and caecum 1 week after colonization compared with the group colonized with E. coli alone, but similar levels after 5 weeks. Rats colonized with L. plantarum + E. coli had significantly higher total serum IgA levels and marginally higher IgM and IgA antibody levels against E. coli than those colonized with E. coli alone. They also showed a significantly increased density of CD25+ cells in the lamina propria and displayed a decreased proliferative spleen cell response after stimulation with concanavalin A or E. coli 1 week after colonization. The results indicate that L. plantarum colonization competes with E. coli for intestinal colonization and can influence intestinal and systemic immunity.
Miura, S; Tanaka, S; Yoshioka, M; Serizawa, H; Tashiro, H; Shiozaki, H; Imaeda, H; Tsuchiya, M
1992-01-01
The effect of total parenteral nutrition on nutrients absorption and glycoprotein changes of brush border membrane was examined in rat small intestine. In total parenteral nutrition rats, a marked decrease in activity of brush border enzymes was observed mainly in the proximal and middle segments of the intestine. Galactose perfusion of jejunal segment showed that hexose absorption was significantly inhibited, while intestinal absorption of glycine or dipeptide, glycylglycine was not significantly affected by total parenteral nutrition treatment. When brush border membrane glycoprotein profile was examined by [3H]-glucosamine or [3H]-fucose incorporation into jejunal loops, significant changes were observed in the glycoprotein pattern of brush border membrane especially in the high molecular weight range over 120 kDa after total parenteral nutrition treatment, suggesting strong dependency of glycoprotein synthesis on luminal substances. Molecular weight of sucrase isomaltase in brush border membrane detected by specific antibody showed no significant difference, however, in total parenteral nutrition and control rats. Also, molecular weight of specific sodium glucose cotransporter of intestinal brush border membrane detected by selective photoaffinity labelling was not altered in total parenteral nutrition rats. It may be that prolonged absence of oral food intake may produce significant biochemical changes in brush border membrane glycoprotein and absorptive capacity of small intestine, but these changes were not observed in all brush border membrane glycoproteins. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1582592
Ginger Extract and [6]-Gingerol Inhibit Contraction of Rat Entire Small Intestine.
Chatturong, Usana; Kajsongkram, Tanwarat; Tunsophon, Sakara; Chanasong, Rachanee; Chootip, Krongkarn
2018-01-01
This study aims to investigate the effect of oral administration and the direct action of ginger extract or [6]-gingerol on small intestinal contractility. The direct effect of 10 minutes preincubation of ginger ethanolic extract (10, 100 and 300 μg/mL) or [6]-gingerol (1, 30, and 100 μM) on 0.01 to 30 μM ACh-induced contractions of all parts of the small intestine isolated from normal rats was investigated using the organ bath technique. For in vivo study, the rats were orally administered with extract (10, 20, and 100 mg/kg/d) or [6]-gingerol (2 mg/kg/d) for 7 days, followed by determining the contractile responses to ACh of rat isolated duodenum, jejunum, and ileum and their histology were assessed. Direct application of the extract or [6]-gingerol attenuated ACh-induced contractions in each small intestinal segment, E max was reduced by 40% to 80%, while EC 50 increased 3- to 8-fold from control. Similarly, in the in vivo study ACh-induced contractions were reduced in all parts of the small intestine isolated from rats orally treated with ginger extract (20 and 100 mg/kg/d) or [6]-gingerol (2 mg/kg/d). E max decreased 15% to 30%, while EC 50 increased 1- to 3-fold compared to control. No discernable changes in the histology of intestinal segments were detectable. Thus, the results support the clinical application of ginger for disorders of gastrointestinal motility.
Iwai, Tomohisa; Ichikawa, Takafumi; Kida, Mitsuhiro; Goso, Yukinobu; Kurihara, Makoto; Koizumi, Wasaburo; Ishihara, Kazuhiko
2011-02-10
Nonsteroidal anti-inflammatory drugs induce small intestinal ulcers but the preventive measures against it remain unknown. So we evaluated the effect of geranylgeranylacetone (GGA), a mucosal protectant, on both the mucus content and loxoprofen sodium-induced lesions in the rat small intestine. Normal male Wistar rats were given GGA (200 or 400mg/kg p.o.) and euthanized 3h later for measurement of mucin content and immunoreactivity. Other Wistar rats were given loxoprofen sodium (30mg/kg s.c.) and euthanized 24h later. GGA (30-400mg/kg p.o.) was administered twice: 30min before and 6h after loxoprofen sodium. The total mucin content of the small intestinal mucosa increased, especially the ratio of sialomucin, which increased approximately 20% more than the control level after a single dose of GGA. Loxoprofen sodium provoked linear ulcers along the mesenteric margin of the distal jejunum, accompanied by an increase in enterobacterial translocation. Treatment of the animals with GGA dose-dependently prevented the development of intestinal lesions, and bacterial translocation following loxoprofen sodium was also significantly decreased. GGA protects the small intestine against loxoprofen sodium-induced lesions, probably by inhibiting enterobacterial invasion of the mucosa as a result of the increase in the mucosal barrier. 2010 Elsevier B.V. All rights reserved.
Deng, Bo; Wu, Jie; Li, Xiaohui; Men, Xiaoming; Xu, Ziwei
2017-11-01
In the present study, we sought to determine the effects of Bacillus subtilis (BAS) and Bacillus licheniformis (BAL) in rats after lipopolysaccharide (LPS)-induced acute intestinal inflammation. We also determined whether the B. subtilis metabolic product (BASM) is as effective as the live-cell probiotic. 60 male SD rats were randomly assigned to five groups and administered a diet containing 0.05% B. licheniformis (BAL group), 0.05% B. subtilis (BAS group), 0.5% B. subtilis metabolic product (BASM group), or a basic diet (PC group and NC group) for 40 days. On day 40, BAL, BAS, BASM, and NC groups were injected with 4 mg/kg body weight LPS. 4 h later, all rats were anesthetized and sacrificed. The results showed that the administration of B. licheniformis and B. subtilis improved intestinal function as evidenced by histology, increased enzyme activity, and mucosal thickness. They also increased the number of intraepithelial lymphocytes and decreased mucosal myeloperoxidase activity and plasma TNF-α. In addition, the cecal content of B. subtilis-treated rats had significantly increased microbial diversity, decreased numbers of Firmicutes, and increased numbers of Bacteroidetes as compared to rats fed basic diets. Similar to BAS group, the cecal content of B. licheniformis-treated rats decreased the number of Firmicutes. Administration of B. subtilis metabolic product had similar effects on intestinal function, inflammation response, and microbial diversity as B. subtilis but these effects were attenuated. In conclusion, administration of probiotic strains B. licheniformis or B. subtilis improved intestinal function, ameliorated the inflammation response, and modulated microflora after LPS-induced acute inflammation in rats. Non-living cells also exerted probiotic properties but live cells tended to function better.
The Forminalized Rat: A Convenient Microbial Ecosystem.
ERIC Educational Resources Information Center
Lee, Adrian
1984-01-01
Presents a series of experiments built around the bacteria found in the intestinal tract of formalinized rats as a model for discussing microbial ecology. Describes methods of examination of intestinal content, student tasks, and discussion questions; also gives a challenge problem to solve.
Cai, C; Xia, Z G; Xu, Q L; Li, X Z
2017-08-20
Objective: To observe the effects of ω-3 polyunsaturated fatty acids (PUFA) on damage of intestinal mucosa of rats with severe burn in early stage and to explore the mechanism. Methods: One hundred and twenty SD rats were divided into sham injury group, pure burn group, and ω-3 PUFA group according to the random number table, with 40 rats in each group. Rats in sham injury group were sham injured, while rats in pure burn group and ω-3 PUFA group were inflicted with 30% total body surface area full-thickness scald (hereinafter referred to as burn) on the back. Rats in sham injury group and pure burn group were injected with normal saline solution (1 mL/kg) by tail vein, while rats in ω-3 PUFA group were injected with ω-3 PUFA solution (1 mL/kg) by the same way at 5 minutes post injury. At post injury hour (PIH) 3, 6, 12, 24, and 48, abdominal aorta blood and intestinal mucosa were collected from 8 rats in each group, respectively. Serum content of diamine oxidase (DAO) was detected by spectrophotography. Serum content of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) was determined by enzyme-linked immunosorbent assay. Protein expression of NF-κB-p65 in intestinal mucosa was determined by Western blotting. Data were processed with analysis of variance of factorial design, one-way analysis of variance, chi-square test, LSD test, and Bonferroni correction. Results: (1) At all time points post injury, serum content of DAO of rats in pure burn group and ω-3 PUFA group was significantly higher than that in sham injury group (with P values below 0.01), and serum content of DAO of rats in ω-3 PUFA group was significantly lower than that in pure burn group (with P values below 0.01). (2) At all time points post injury, serum content of TNF-α and IL-6 of rats in pure burn group and ω-3 PUFA group was significantly higher than that in sham injury group (with P values below 0.01), and serum content of TNF-α and IL-6 of rats in ω-3 PUFA group was obviously lower than that in pure burn group (with P values below 0.01). (3) At all time points post injury, protein expressions of NF-κB-p65 in intestinal mucosa of rats in pure burn group and ω-3 PUFA group were significantly higher than those in sham injury group (with P values below 0.01). At PIH 3, 6, 12, 24, and 48, protein expressions of NF-κB-p65 in intestinal mucosa of rats in ω-3 PUFA group were 1.398±0.016, 1.999±0.948, 2.803±0.065, 1.739±0.602, and 1.484±0.645, obviously lower than 2.096±0.113, 3.402±0.189, 4.183±0.558, 3.618±0.408, and 2.614±0.775 in pure burn group (with P values below 0.01). Conclusions: The ω-3 PUFA may alleviate intestinal mucosa injury of rats with severe burn in early stage through reducing protein expression of NF-κB-p65 of intestinal mucosa, serum content of DAO, TNF-α, and IL-6, and inhibiting inflammatory response.
Glucose-dependent insulinotropic polypeptide-producing K cells in dexamethasone-treated rats.
Koko, V; Glisic, R; Todorovic, V; Drndarevic, N; Mitrovic, O
2008-12-01
Some studies indicate that diabetes mellitus exerts an influence on the gastrointestinal tract and its diffuse neuroendocrine system (DNES) in regard to cellular density and neuroendocrine content. Since there is no data about relationship between experimentally induced non-insulin-dependent (type 2) diabetes mellitus (NIDDM) on the gut K cells, the aim of our study was to investigate immunohistochemical, stereological and ultrastructural changes of rat K cells after 12 days of dexamethasone treatment. Twenty male Wistar rats aged 30 days were given daily intraperitoneally 2 mg kg(-1) dexamethasone (group DEX, 10 rats) or saline (group C, 10 rats) for 12 days. Tissue specimens were obtained from each antrum with corpus and different parts of the small (SI) and large intestine (LI) of all animals. Immunohistochemistry was carried out using antisera against the GIP and insulin. Transmission electron microscopy was also used. Although, according to the literature data, rat K cells are present in the duodenum and jejunum and, to a lesser extent, in the ileum, in the present study we observed that those cells were abundant also in all parts of the LI. We observed generally that GIP-producing K cells were augmented in all parts of SI and decreased in the LI of DEX rats. Insulin immunoreactivity (ir) coexpressed with GIP-ir in K cells and was stronger in the SI of DEX rats as compared with C rats. We also found by electron microscopy that small intestinal K cells have features not only of GIP-secreted but also of insulin-secreted cells. We concluded that dexamethasone treatment caused proliferation of K cells in the rat SI, and simultaneously transformation of GIP-producing K cells to insulin-synthesizing cells.
Abd El-Mawla, Ahmed M. A.; Osman, Husam Eldien H.
2011-01-01
Background: Non-steroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal damage both in the upper and lower gastrointestinal tract, in addition to their undesirable side effects on the pancreas. Meloxicam like all NSAIDs has damaging effects on the gastrointestinal tract including perforations, ulcers and bleeding. Objective: The present work describes the effects of Gum acacia aqueous extract on the histology of intestine and enzymes of both intestine and Pancreas of albino rats treated with Meloxicam. Materials and Methods: This study was performed on four groups of equally weighed male rats, each group included ten animals; the first group was received a diet containing 0.2 mg/kg bw meloxicam per day; the second was given 1gm Gum acacia per day in its diet; the third was given meloxicam followed by gum in the same doses per day; while the fourth group (control rats) was placed on a normal diet and water. All rats were received their diet for a period of 21 days. Results: A considerable protective effect of Gum acacia aqueous extract on the histology of intestine of albino rats treated with meloxicam was recorded. In addition, the study displayed a significant increase (P < 0.001) in the intestinal enzymes; lipase, amylase, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in the 1st and 3rd groups animals while these enzymes were significantly decreased (P < 0.001) in the 2nd group when compared with the 4th control group. Conclusion: This study concluded that Gum acacia provides a protection and defense against the harmful effects of meloxicam therapy used as one of the novel anti-Cox-1 and Cox-2 NSAIDs. PMID:21772755
Abd El-Mawla, Ahmed M A; Osman, Husam Eldien H
2011-04-01
Non-steroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal damage both in the upper and lower gastrointestinal tract, in addition to their undesirable side effects on the pancreas. Meloxicam like all NSAIDs has damaging effects on the gastrointestinal tract including perforations, ulcers and bleeding. The present work describes the effects of Gum acacia aqueous extract on the histology of intestine and enzymes of both intestine and Pancreas of albino rats treated with Meloxicam. This study was performed on four groups of equally weighed male rats, each group included ten animals; the first group was received a diet containing 0.2 mg/kg bw meloxicam per day; the second was given 1gm Gum acacia per day in its diet; the third was given meloxicam followed by gum in the same doses per day; while the fourth group (control rats) was placed on a normal diet and water. All rats were received their diet for a period of 21 days. A considerable protective effect of Gum acacia aqueous extract on the histology of intestine of albino rats treated with meloxicam was recorded. In addition, the study displayed a significant increase (P < 0.001) in the intestinal enzymes; lipase, amylase, alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in the 1(st) and 3(rd) groups animals while these enzymes were significantly decreased (P < 0.001) in the 2(nd) group when compared with the 4(th) control group. This study concluded that Gum acacia provides a protection and defense against the harmful effects of meloxicam therapy used as one of the novel anti-Cox-1 and Cox-2 NSAIDs.
Ma, Zhengwei; Zhang, Xizhong
2003-07-01
To investigate the long-term effect of dietary fiber complex (DFC) on intestinal structure and function in hypercholesterolemic rats, 60 healthy SD rats were feed with food rich in lipids and hypercholesterolemic animal models were established. The animals were randomly divided into 5 groups. Rats were fed DFC at levels of 4%, 16%, or 64% for three month in the experimental groups. Wheat fiber was used in the hypercholesterolemic control (HC) group and rats feeding on normal food were used as normal control (NC). Morphology of the small intestine, reticum and caecum were observed by light and electron microscope examination. Intestinal function was measured physically. The results showed that (1) compared with NC group, fecal weight was significantly raised in DFC group of higher level (group D and E, P < 0.05); (2) the weights of small intestine wall in D and E group were significantly higher than those of NC and HC group and weights of caecum wall in E group were significantly higher than those of NC and HC group (P < 0.05); (3) widen villi and thickened muscle layer of small intestine were observed in DFC group of higher level. No demonstrable changes in reticulum morphology in any group of animals were found under the observation of light microscope (4) microvilla becoming short and/or absent, mitochondria swelling, impairment of the integrity of the cristae were commonly observed in DFC groups. Conclusions Long-term intake of DFC composed mainly of Hippophae rhamnoides L, Bran, oat bran and guar gum at higher levels might induce some morphological changes of intestine and caecum. Therefore, DFC might be used at low level as an effective cholesterol-lowering agent.
Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats: part 1: dosimetry.
Stepanenko, Valeriy; Rakhypbekov, Tolebay; Otani, Keiko; Endo, Satoru; Satoh, Kenichi; Kawano, Noriyuki; Shichijo, Kazuko; Nakashima, Masahiro; Takatsuji, Toshihiro; Sakaguchi, Aya; Kato, Hiroaki; Onda, Yuichi; Fujimoto, Nariaki; Toyoda, Shin; Sato, Hitoshi; Dyussupov, Altay; Chaizhunusova, Nailya; Sayakenov, Nurlan; Uzbekov, Darkhan; Saimova, Aisulu; Shabdarbaeva, Dariya; Skakov, Mazhin; Vurim, Alexandr; Gnyrya, Vyacheslav; Azimkhanov, Almas; Kolbayenkov, Alexander; Zhumadilov, Kasym; Kairikhanova, Yankar; Kaprin, Andrey; Galkin, Vsevolod; Ivanov, Sergey; Kolyzhenkov, Timofey; Petukhov, Aleksey; Yaskova, Elena; Belukha, Irina; Khailov, Artem; Skvortsov, Valeriy; Ivannikov, Alexander; Akhmedova, Umukusum; Bogacheva, Viktoria; Hoshi, Masaharu
2017-03-01
There were two sources of ionizing irradiation after the atomic bombings of Hiroshima and Nagasaki: (1) initial gamma-neutron irradiation at the moment of detonation and (2) residual radioactivity. Residual radioactivity consisted of two components: radioactive fallout containing fission products, including radioactive fissile materials from nuclear device, and neutron-activated radioisotopes from materials on the ground. The dosimetry systems DS86 and DS02 were mainly devoted to the assessment of initial radiation exposure to neutrons and gamma rays, while only brief considerations were given for the estimation of doses caused by residual radiation exposure. Currently, estimation of internal exposure of atomic bomb survivors due to dispersed radioactivity and neutron-activated radioisotopes from materials on the ground is a matter of some interest, in Japan. The main neutron-activated radionuclides in soil dust were 24 Na, 28 Al, 31 Si, 32 P, 38 Cl, 42 K, 45 Ca, 46 Sc, 56 Mn, 59 Fe, 60 Co, and 134 Cs. The radionuclide 56 Mn (T 1/2 = 2.58 h) is known as one of the dominant beta- and gamma emitters during the first few hours after neutron irradiation of soil and other materials on ground, dispersed in the form of dust after a nuclear explosion in the atmosphere. To investigate the peculiarities of biological effects of internal exposure to 56 Mn in comparison with external gamma irradiation, a dedicated experiment with Wistar rats exposed to neutron-activated 56 Mn dioxide powder was performed recently by Shichijo and coworkers. The dosimetry required for this experiment is described here. Assessment of internal radiation doses was performed on the basis of measured 56 Mn activity in the organs and tissues of the rats and of absorbed fractions of internal exposure to photons and electrons calculated with the MCNP-4C Monte Carlo using a mathematical rat phantom. The first results of this international multicenter study show that the internal irradiation due to incorporated 56 Mn powder is highly inhomogeneous, and that the most irradiated organs of the experimental animals are: large intestine, small intestine, stomach, and lungs. Accumulated absorbed organ doses were 1.65, 1.33, 0.24, 0.10 Gy for large intestine, small intestine, stomach, and lungs, respectively. Other organs were irradiated at lower dose levels. These results will be useful for interpretation of the biological effects of internal exposure of experimental rats to powdered 56 Mn as observed by Shichijo and coworkers.
van de Heijning, Bert J. M.; Kegler, Diane; Schipper, Lidewij; Voogd, Eline; Oosting, Annemarie; van der Beek, Eline M.
2015-01-01
Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response. However, gavages comprising maltodextrin gave rise to significant plasma glucose and insulin responses, indicative of a bias of the adult GI tract to digest glucose polymers. Despite the residual intestinal lactase activity shown, a 30% lactose diet was poorly digested by adult rats: the lactose diet rendered the animals less heavy and virtually devoid of body fat, whereas their cecum tripled in size, suggesting an increased bacterial fermentation. The observed acute and chronic effects of lactose exposure in adult rats cannot be explained by the residual intestinal lactase activity assessed. PMID:26184291
Jang, Yongwoo; Kim, Tae-Kwang; Shim, Won-Sik
2013-01-01
Poncirus fructus (PF), also known as the dried immature fruit of Poncirus trifoliata (L.) Raf., has long been used as a cure for the treatment of various gastrointestinal disorders in eastern Asia. Recently, it was reported that naringin, a flavonoid constituent of the PF extract, causes the activation of ghrelin receptor in vitro. Although the ghrelin receptor is involved in the enhancement of intestinal motility, there are no studies as yet involving in vivo action of naringin. Therefore, the purpose of the present study is to investigate whether naringin exhibits a prokinetic effect in vivo. We measured the intestinal transit rate in rats with gastrointestinal motility dysfunction (GMD) and performed a pharmacokinetic analysis of naringin to investigate the effect of naringin on prokinetic activity in vivo. The results of this study show that the aqueous extract of PF and its constituent naringin have a strong prokinetic activity in GMD rats via activation of the ghrelin receptor. Surprisingly, pharmacokinetic analysis revealed that naringin has low bioavailability (11%), implying that the prokinetic effect of naringin was largely due to the local activation of ghrelin receptor in the intestine rather than a systemic effect after absorption. Indeed, it turned out that intravenous administration of naringin led to a lower prokinetic effect than when administrated orally to rats, indicating that naringin prefers to act on the intestinal wall rather than getting absorbed into the systemic circuit. This local mode of action might be advantageous for preventing possible systemic side effects since naringin is not well absorbed into the system circuit. Naringin exhibits an in vivo prokinetic activity by a preferable local activation of ghrelin receptor. Moreover, we propose that naringin could play a role as a leading compound for the development of ghrelin receptor-based prokinetic agents. © 2013 S. Karger AG, Basel.
Effect of Ozone on Intestinal Epithelial Homeostasis in a Rat Model
Sukhotnik, Igor; Starikov, Alona; Coran, Arnold G.; Pollak, Yulia; Sohotnik, Rima; Shaoul, Ron
2015-01-01
Background: The positive effects of ozone therapy have been described in many gastrointestinal disorders. The mechanisms of this positive effect of ozone therapy are poorly understood. The purpose of the present study was to investigate whether the use of ozone may potentiate the gut intestinal mucosal homeostasis in a rat model. Methods: Adult rats weighing 250–280 g were randomly assigned to one of three experimental groups of 8 rats each: 1) Control rats were given 2 mL of water by gavage and intraperitoneally (IP) for 5 days; 2) O3-PO rats were treated with 2 mL of ozone/oxygen mixture by gavage and 2 mL of water IP for 5 days; 3) O3-IP rats were treated with 2 mL of water by gavage and 2 mL of ozone/oxygen mixture IP for 5 days. Rats were sacrificed on day 6. Bowel and mucosal weight, mucosal DNA and protein, villus height and crypt depth, and cell proliferation and apoptosis were evaluated following sacrifice. Results: The group of O3-IP rats demonstrated a greater jejunal and ileal villus height and crypt depth, a greater enterocyte proliferation index in jejunum, and lower enterocyte apoptosis in ileum compared to control animals. Oral administration of the ozone/oxygen mixture resulted in a less significant effect on cell turnover. Conclusions: Treatment with an ozone/oxygen mixture stimulates intestinal cell turnover in a rat model. Intraperitoneal administration of ozone resulted in a more significant intestinal trophic effect than oral administration. PMID:25717388
Intestinal alkaline phosphatase is protective to the preterm rat pup intestine.
Heinzerling, Nathan P; Liedel, Jennifer L; Welak, Scott R; Fredrich, Katherine; Biesterveld, Ben E; Pritchard, Kirkwood A; Gourlay, David M
2014-06-01
Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with a mortality rate between 10 and 50%. The onset of necrotizing enterocolitis is highly variable and associated with numerous risk factors. Prior research has shown that enteral supplementation with intestinal alkaline phosphatase (IAP) decreases the severity of NEC. The aim of this study is to investigate whether IAP is protective to the preterm intestine in the presence of formula feeding and in the absence of NEC. Preterm rat pups were fed formula with or without supplementation with IAP, and intestine was obtained on day of life 3 for analysis of IAP activity, mRNA expression of TNFα, IL-6 and iNOS and permeability and cytokine expression after LPS exposure. There was no difference in the absolute and intestine specific alkaline phosphatase activity in both groups. Rat pups fed IAP had decreased mRNA expression of the inflammatory cytokines TNFα, IL-6 and iNOS. Pups supplemented with IAP had decreased permeability and inflammatory cytokine expression after exposure to LPS ex vivo when compared to formula fed controls. Our results support that IAP is beneficial to preterm intestine and decreases intestinal injury and inflammation caused by LPS. Copyright © 2014 Elsevier Inc. All rights reserved.
Intestinal Alkaline Phosphatase Is Protective to the Preterm Rat Pup Intestine
Heinzerling, Nathan P.; Liedel, Jennifer L.; Welak, Scott R.; Fredrich, Katherine; Biesterveld, Ben E.; Pritchard, Kirkwood A.; Gourlay, David M.
2014-01-01
Background Necrotizing enterocolitis (NEC) is the most common surgical emergency in neonates, with a mortality rate between 10 and 50%. The onset of necrotizing enterocolitis is highly variable and associated with numerous risk factors. Prior research has shown enteral supplementation with intestinal alkaline phosphatase (IAP) decreases the severity of NEC. The aim of this study is to investigate whether IAP is protective to the preterm intestine in the presence of formula feeding and in the absence of NEC. Methods Preterm rat pups were fed formula with or without supplementation with IAP, and intestine was obtained on day of life 3 for analysis of IAP activity, mRNA expression of TNF-a, IL-6 and iNOS and permeability and cytokine expression after LPS. exposure. Results There was no difference in the absolute and intestine specific alkaline phosphatase activity in both groups. Rat pups fed IAP had decreased mRNA expression of the inflammatory cytokines TNFα, IL-6 and iNOS. Pups supplemented with IAP had decreased permeability and inflammatory cytokine expression after exposure to LPS ex vivo when compared to formula fed controls. Conclusions Our results support that IAP is beneficial to preterm intestine and decreases intestinal injury and inflammation caused by LPS. PMID:24888842
Effects of growth hormone plus a hyperproteic diet on methotrexate-induced injury in rat intestines.
Ortega, M; Gomez-de-Segura, I A; Vázquez, I; López, J M; de Guevara, C L; De-Miguel, E
2001-01-01
The aim of this study was to determine whether growth hormone treatment reduces injury to the intestinal mucosa induced by methotrexate (MTX). Wistar rats with intestinal injury induced by methotrexate were treated with daily growth hormone, beginning 3 days before MTX treatment until 3 or 4 days after MTX administration. The rats were killed at 3 or 7 days post-MTX administration. The rats were fed with either a normoproteic diet or a hyperproteic diet. Body weight, mortality, bacterial translocation, intestinal morphometry, proliferation and apoptosis and blood somatostatin and IGF-1 were determined. Combined administration of growth hormone and a hyperproteic diet reduces MTX-induced mortality. This effect was accompanied by increased cell proliferation and decreased apoptosis within the crypt. Morphometric data showed complete recovery of the mucosa by day 7 post-MTX administration. These results indicate a synergistic protective action of growth hormone combined with a hyperproteic diet to MTX-induced injury.
Liu, Tianhao; Yang, Zhongshan; Zhang, Xiaomei; Han, Niping; Yuan, Jiali; Cheng, Yu
2017-12-01
This study aims to explore the effect of FMT on regulations of dysbacteriosis of pulmonary and intestinal flora in rats with 16S rDNA sequencing technology. A total of 27 SPF rats (3-4 weeks old) were randomly divided into three groups: normal control group (K), model control group (MX), and fecal microbiota transplantation group (FMT); each group contained nine rats. The OTU values of the pulmonary and intestinal flora of the MX group decreased significantly compared with the normal control group. After FMT, the OTU value of pulmonary flora increased, while the value of OTU in intestinal flora declined. At the phylum level, FMT down-regulated Proteobacteria , Firmicutes , and Bacteroidetes in the pulmonary flora. At the genus level, FMT down-regulated Pseudomonas , Sphingobium , Lactobacillus , Rhizobium , and Acinetobacter , thus maintaining the balance of the pulmonary flora. Moreover, FMT could change the structure and diversity of the pulmonary and intestinal flora by positively regulating the pulmonary flora and negatively regulating intestinal flora. This study may provide a scientific basis for FMT treatment of respiratory diseases.
Orsi, Patrícia Rodrigues; Seito, Leonardo Noboru; Di Stasi, Luiz Claudio
2014-01-01
Stem bark and fruit pulp of Hymenaea stigonocarpa Mart ex. Hayne (Fabaceae) has been popularly used to treat inflammation and gastrointestinal diseases including ulcers, diarrhea and gastric pain. The aim of this study was to investigate the intestinal anti-inflammatory activity of a methanol extract derived from the stem bark and diet with fruit pulp of Hymenaea stigonocarpa in the TNBS model of intestinal inflammation in rats. The intestinal anti-inflammatory activity of stem bark extract (100, 200 and 400mg/kg) and fruit pulp (10% and 5% in diet) was measured against the intestinal inflammatory process induced by TNBS (trinitrobenzesulphonic acid) in rats. The protective effects were evaluated as follows: evaluation of intestinal damage (damage score, extension of lesion, colon weight/length ratio), incidence of diarrhea and adherence to adjacent organs, colon glutathione (GSH) and malondialdehyde (MDA) contents, myeloperoxidase (MPO) and alkaline phosphatase (AP) activities. In addition, in vitro studies on lipid peroxidation in rat brain membranes and phytochemical profile were performed with both stem bark and fruit pulp. Treatment with 100, 200 and 400mg/kg of stem bark extract and 10% fruit pulp flour showed protective effects in the TNBS-induced colon damage, which was related to inhibition of MPO and AP activities, reduction in colon MDA content, and counteraction of GSH depletion induced by inflammatory process. A concentration-dependent inhibitory effect on the lipid peroxidation in rat brain membranes for stem bark and fruit pulp was determined, with an IC50 value of 5.25 ± 0.23 μg/mL and 27.33 ± 0.09 μg/mL, respectively. Similar phytochemical composition was observed in fruit and stem bark, including mainly flavonoids, condensed tannins and terpenes. Stem bark extract and fruit pulp flour of Hymenaea stigonocarpa prevented TNBS-induced colonic damage in rats and this protective effect were associated to an improvement of intestinal oxidative stress. The observed anti-inflammatory and antioxidant effects may be associated to the presence of flavonoids and tannins in the stem bark and fruit pulp of Hymenaea stigonocarpa. © 2013 Published by Elsevier Ireland Ltd.
Santarmaki, Valentini; Kourkoutas, Yiannis; Zoumpopoulou, Georgia; Mavrogonatou, Eleni; Kiourtzidis, Mikis; Chorianopoulos, Nikos; Tassou, Chrysoula; Tsakalidou, Effie; Simopoulos, Constantinos; Ypsilantis, Petros
2017-09-01
Survival during transit through the gastrointestinal track, intestinal mucosa adhesion, and a potential immunomodulatory effect of Lactobacillus plantarum strains 2035 and ACA-DC 2640 were investigated in a rat model. According to microbiological and multiplex PCR analysis, both strains were detected in feces 24 h after either single-dose or daily administration for 7 days. Intestinal mucosa adhesion of L. plantarum 2035 was noted in the large intestine at 24 h after single-dose administration, while it was not detected at 48 h. Daily dosing, prolonged detection of the strain up to 48 h post-administration, and expanded adhesion to the small intestine. Adhesion of L. plantarum ACA-DC 2640 to the intestinal mucosa after single-dose administration was prolonged and more extended compared to L. plantarum 2035. Daily dosing increased both the levels and the rate of positive cultures of the strains compared to those of the single-dose scheme. In addition, both strains increased total IgG while decreased IgM and IgA serum levels. In conclusion, L. plantarum 2035 and L. plantarum ACA-DC 2640 survived transit through the gastrointestinal track, exhibited transient distinct adhesion to the intestinal mucosa and modulated the systemic immune response.
Protective Effects of Thymoquinone and Melatonin on Intestinal Ischemia–reperfusion Injury
Tas, Ufuk; Ayan, Murat; Sogut, Erkan; Kuloglu, Tuncay; Uysal, Murat; Tanriverdi, Halil I.; Senel, Ufuk; Ozyurt, Birsen; Sarsilmaz, Mustafa
2015-01-01
Background/Aim: In the present study, we aimed to compare the potential protective effects of thymoquinone and melatonin by using equivalent dose, on oxidative stress-induced ischemia–reperfusion (IR) injury in the intestinal tissue of rats. Materials and Methods: The study was performed using 32 male Wistar–Albino rats (weighing 180–200 g) randomly divided into four groups: Group I, sham group; Group II, IR group; Group III, IR with melatonin group; and Group IV, IR with thymoquinone group. After laparotomy, ischemia and reperfusion were performed for 60 and 120 min, respectively, on all the groups. Intestinal tissue sections were stained using routine histological methods and examined under the light microscope. In addition, the sections were immunohistochemically stained using the TUNEL method for determination of apoptosis. Superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) levels in the intestinal tissue were also measured. Results: The IR group had significantly elevated tissue SOD activity, GSH-Px activity, and MDA levels compared with the sham group. Administration of thymoquinone and melatonin efficiently reduced these increases. Statistically significant number of apoptotic cells was observed in the intestinal tissue of IR group rats compared with the sham group. Treatment with thymoquinone and melatonin markedly reduced the number of apoptotic cells. Conclusion The effects of melatonin and thymoquinone on IR-induced oxidative stress in rat intestines were similar. Our findings suggest that melatonin and thymoquinone protect against IR-induced injury to intestinal tissues. PMID:26458854
Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y.; Owyang, Chung
2014-01-01
Background & Aims Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. Methods We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction and 454 pyrosequencing were used to analyze bacterial 16S rRNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Results Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Conclusions Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. PMID:24161699
Ai, Jing; Du, Jie; Wang, Ning; Du, Zhi-Min; Yang, Bao-Feng
2004-01-01
AIM: To investigate the inhibitory effects of sodium orthovanadate on small-intestinal glucose and maltose absorption in rats and its mechanism. METHODS: Normal Wistar rats were lavaged with sodium orthovanadate (16 mg/kg, 4 mg/kg and 1 mg/kg) for 6 d. Blood glucose values were measured after fasting and 0.5, 1, 1.5 and 2 h after glucose and maltose feeding with oxidation-enzyme method. α-glucosidase was abstracted from the upper small intestine, and its activity was examined. mRNA expression of α-glucosidase and glucose-transporter 2 (GLUT2) in epithelial cells of the small intestine was observed by in situ hybridization. RESULTS: Sodium orthovanadate could delay the increase of plasma glucose concentration after glucose and maltose loading, area under curve (AUC) in these groups was lower than that in control group. Sodium orthovanadate at dosages of 10 μmol/L, 100 μmol/L and 1000 μmol/L could suppress the activity of α-glucosidase in the small intestine of normal rats, with an inhibition rate of 68.18%, 87.22% and 91.91%, respectively. Sodium orthovanadate reduced mRNA expression of α-glucosidase and GLUT2 in epithelial cells of small intestine. CONCLUSION: Sodium orthovanadate can reduce and delay the absorption of glucose and maltose. The mechanism may be that it can inhibit the activity and mRNA expression of α-glucosidase, as well as mRNA expression of GLUT2 in small intestine. PMID:15534916
Yang, Junting; Zhang, Shunwen; Wu, Jiangdong; Zhang, Jie; Dong, Jiangtao; Guo, Peng; Tang, Suyu; Zhang, Wanjiang; Wu, Fang
2018-06-12
Sepsis is a life-threatening organ dysfunction caused the dysregulation of host inflammatory response and immunosuppression to infection Early recognition and intervention are hence of paramount importance. In this respect the "sepsis bundle" was proposed in 2004 to be instituted in cases of suspected sepsis. We hypothesised that a combination treatment of the sepsis bundle with cyclophosphamide would improve the function of the intestinal mucosa and enhance survival in rats with induced sepsis. Sprague-Dawley rats were divided into 5 different groups: sham, cecal ligation and puncture (CLP), cyclophosphamide (CTX), imipenem+normal saline (NS) and imipenem+NS+CTX. Cecal ligation and puncture were used for inducing the polymicrobial sepsis. Western-blot was used to measure the occludin protein, and ELISA for examining the plasma level of cytokines IL-6, IL-10 and TNF-α. TUNEL assay for testing the intestinal mucosal apoptosis, and hematoxylin-eosin staining for observing the intestinal mucosal changes. The permeability of intestinal mucosa was determined by the plasma level of FD-70. The results showed that the combination treatment of the sepsis bundle with cyclophosphamide attenuated cytokine levels, inhibited epithelial cell apoptosis and improved the function of the intestinal barrier. The survival rate of the group treated with the combined therapy was significantly higher than that of the other groups. The combination treatment of sepsis bundle with cyclophosphamide improves the function of the intestinal barrier and enhances survival in septic rats.
Asquith, Mark; Stauffer, Patrick; Davin, Sean; Mitchell, Claire; Lin, Phoebe; Rosenbaum, James T.
2017-01-01
Objective The HLA-B27/β2 microglobulin (β2m) transgenic rat is a leading model of B27-associated spondyloarthopathy and disease is dependent on the presence of intestinal bacteria. We have shown previously that adult HLA-B27/β2m rats have an altered intestinal microbiota. In this study we sought to better define age-dependent changes to both mucosal immune function and dysbiosis in this model. Methods Intestinal contents were collected from wild type and HLA-B27/β2m+ rats post-weaning (3 and 6 weeks), at disease onset (10 wks) and after the establishment of disease (16 wks). Microbial community structure was determined by 16s sequencing and qRT-PCR. Mucosal and systemic Th1, Th17 and Treg responses were analyzed by flow cytometry, as was the frequency of IgA-coated intestinal bacteria. Intestinal expression of inflammatory cytokines and antimicrobial peptides (AMPs) was determined by qRT-PCR. Results An inflammatory cytokine signature and elevated AMP expression during the post-weaning period preceded the development of clinical bowel inflammation and dysbiosis in HLA-B27/β2m+ rats. An early and sustained expansion of the Th17 pool was specifically observed in cecal and colonic mucosa of HLA-B27/β2m rats. Strongly elevated Akkermansia mucinphilia colonization and IgA coating of intestinal bacteria was significantly associated with HLA-B27 expression and arthritis development. Conclusions and Perspectives HLA-B27/β2m expression in this rat model renders the host hyper-responsive to microbial antigens from infancy. Early activation of innate immunity and expansion of a mucosal Th17 signature are soon followed by dysbiosis in HLA-B27/β2m+ve animals. Perturbed mucosal immunity and dysbiosis strongly merit further study in both pre-diseased and diseased SpA patient populations. PMID:26992013
Rodriguez-Nogales, Alba; Algieri, Francesca; De Matteis, Laura; Lozano-Perez, A. Abel; Garrido-Mesa, Jose; Vezza, Teresa; de la Fuente, J M.; Cenis, Jose Luis; Gálvez, Julio; Rodriguez-Cabezas, Maria Elena
2016-01-01
Background Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. Purpose This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs) with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine–glycine–aspartic acid) and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs) in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Materials and methods SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat) and RGD-SFNs (1 mg/rat) were administered intrarectally to TNBS-induced colitic rats for 7 days. Results The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the expression of different pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and IL-12) and inducible nitric oxide synthase in comparison with the TNBS control group. Moreover, the expression of both cytokine-induced neutrophil chemoattractant-1 and monocyte chemotactic protein-1 was significantly diminished by the RGD-SFN treatment. However, both treatments improved the intestinal wall integrity by increasing the gene expression of some of its markers (trefoil factor-3 and mucins). Conclusion SFNs displayed intestinal anti-inflammatory properties in the TNBS model of colitis in rats, which were improved by functionalization with the RGD peptide. PMID:27877040
NASA Technical Reports Server (NTRS)
Kirilyuk, O. G.; Khmelevskiy, Y. V.
1980-01-01
By perfusion of isolated sections of intestine with a solution containing thiamine at a concentration of 3.1 micromole, it was established that thiamine absorption in animals fasted for 72 hours decreased by 28 percent, whereas absorption increased by 12 percent in rats after 24 hour immobilization. After immobilization, absorption of label in the intestinal mucosa increased. Na K ATPase activity in the intestinal mucosa decreased by 10 percent during fasting, and it increased with immobilization of the animals. Activity of Na K ATPase in the intestinal mucosa cells determined the absorption rate of thiamine and nicotinic acid at the level of vitamin transport through the plasma membranes of the enterocytes.
Savage, A P; Matthews, J L; Adrian, T E; Ghatei, M A; Cooke, T; Bloom, S R
1987-04-01
The effect of daily parenteral administration of a long-acting analogue of somatostatin (SMS 201-995) on the development of intestinal tumours and the rate of crypt cell proliferation in azoxymethane-treated rats has been studied. SMS 201-995 had no significant effect on the number of colonic tumours induced. In the duodenum, SMS 201-995 administration was associated with a change in the number of tumours from 1.4/rat in saline-treated animals to 2.4/rat in animals treated for the last third of the study and 2.8/rat in animals treated with SMS for the entire duration of the study (P less than 0.02). SMS had no significant effect on the rate of cell proliferation in the duodenum, ileum or colon. The inhibition of release of gastrointestinal trophic hormones by this analogue of somatostatin thus does not appear to reduce the number of tumours in the intestine of azoxymethane-treated rats.
Dorfman, Tatiana; Pollak, Yulia; Sohotnik, Rima; Coran, Arnold G; Bejar, Jacob; Sukhotnik, Igor
2015-09-01
The Wnt/β-catenin signaling cascade is implicated in the control of stem cell activity, cell proliferation, and cell survival of the gastrointestinal epithelium. Recent evidence indicates that the Wnt/β-catenin pathway is activated under diabetic conditions. The purpose of this study was to evaluate the role of Wnt/β-catenin signaling during diabetes-induced enteropathy in a rat model. Male rats were divided into three groups: control rats received injections of vehicle; diabetic rats received injections of one dose of streptozotocin (STZ); and diabetic-insulin rats received injections of STZ and were treated with insulin given subcutaneously at a dose of 1 U/kg twice daily. Rats were killed on day 7. Wnt/β-catenin-related genes and expression of proteins was determined using real-time PCR, western blotting, and immunohistochemistry. Among 13 genes identified by real-time PCR, seven genes were upregulated in diabetic rats compared with control animals including the target genes c-Myc and Tcf4. Diabetic rats also showed a significant increase in β-catenin protein compared with control animals. Treatment of diabetic rats attenuated the stimulating effect of diabetes on intestinal cell proliferation and Wnt/β-catenin signaling. In conclusion, enhanced intestinal epithelial cell proliferation in diabetic rats correlates with β-catenin accumulation. © 2015 Society for Endocrinology.
Gurbuz, A T; Kunzelman, J; Ratzer, E E
1998-02-01
Arginine is a dibasic amino acid with significant metabolic and immunologic, effects especially in trauma and stress situations. Arginine supplementation has been shown to promote wound healing and improve immune system. We designed a study to evaluate the effects of supplemental dietary arginine on intestinal mucosal recovery and bacterial translocation and bacterial clearance after induction of radiation injury in rats. Twenty-one male Sprague-Dawley rats were subjected to a single dose of 1100 rads of abdominal X radiation. Rats were divided into three groups; the first group received diet enriched with 2% arginine, the second group with 4% arginine, and the third group with isonitrogenous 4% glycine. Rats were sacrificed 7 days after the radiation. Blood was drawn for arginine levels and mesenteric lymph nodes were harvested for quantitative aerobic and anaerobic cultures. Segments of ileum and jejunum were evaluated for villous height, number of villi per centimeter of intestine, and the number of mucous cells per villous. Arginine is absorbed reliably from the gut following oral administration. Dietary 4% arginine supplementation enhanced bacterial clearance from mesenteric lymph nodes compared to 2% arginine and 4% glycine supplemented diet following radiation enteritis in rats. Four percent arginine resulted in clear improvement in intestinal mucosal recovery when compared to 2% arginine and 4% glycine after abdominal irradiation in rats.
Delahaye, E P; Foglietti, M J; Andrieux, C; Chardon-Loriaux, I; Szylit, O; Raibaud, P
1991-01-01
1. A bacterial amylase was isolated from the intestinal content of monoxenic rats inoculated with Eubacterium sp. B86. 2. Affinity chromatography on cross-linked starch allowed its separation from rat endogenous amylases. 3. The bacterial enzyme was characterized by its pI, molecular weight and action pattern. It behaves as a typical endo-amylase (alpha-amylase).
Taurocholate pool size and distribution in the fetal rat.
Little, J M; Richey, J E; Van Thiel, D H; Lester, R
1979-01-01
Taurocholate concentrations in fetal and neonatal rats were determined by radioimmunoassay. Total body taurocholate pool size varied from 0.0049 +/- 0.0008 to 203 +/- 8 nmol/g body weight from day 5 of gestation to 5 d after birth. A 50-fold increase in taurocholate pool size was observed between days 15 and 19 of gestation. The distribution of taurocholate between liver, intestine, and the remainder of the carcass was determined for rats of gestational age 19 d to 5 d after birth. The major fraction of total body taurocholate was in the liver and intestine, with less than 15% in the remainder of the carcass. The ratio of taurocholate in intestine to taurocholate in liver, which was 1:17 at 19 d of gestation, had altered substantially to a ratio of 6:1 by 5 d after birth. Treatment of pregnant rats with 60 microgram/d of dexamethasone from gestational day 9 until sacrifice increased fetal taurocholate pool size by 80% at 15 d, 40% at 19 d, and 16% at 1 d after birth. Administration of dexamethasone to the mother also changed the ratio of taurocholate in intestine to taurocholate in liver. At 19 d of gestation, dexamethasone-treated mothers had fetuses with approximately equal amounts of taurocholate in intestine and liver. This suggested that adrenocorticosteroids stimulate the early maturation of factors controlling taurocholate pool size and tissue distribution in the rat fetus. PMID:447826
Dowlatshahi Pour, Masoumeh; Jennische, Eva; Lange, Stefan; Ewing, Andrew G; Malmberg, Per
2016-06-11
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used for lipid profiling of intestine tissue sections from rats fed specially processed cereals and rats fed ordinary feed as a control. This cereal is known to increase the activity of antisecretory factor in plasma and the exact mechanism for the activation process at the cellular level is unclear. ToF-SIMS has been used to track food induced changes in lipid content in intestinal tissue sections to gain insight into the possible mechanisms involved. Data from 20 intestine sections belonging to four different rats from each group of control and specially processed cereals-fed rats were obtained using the stage scan macroraster with a lateral resolution of 5 μm. Data were subsequently subjected to orthogonal partial least squares discriminant analysis. The data clearly show that changes of certain lipids are induced by the specially processed cereal feed. Scores plots show a well-defined separation between the two groups. The corresponding loading plots reveal that the groups separate mainly due to changes of vitamin E, phosphocholine, and phosphosphingolipid fragments, and that for the c18:2 fatty acid. The observed changes in lipids might give insight into the working mechanisms of antisecretory factor in the body, and this has been successfully used to understand the working mechanism of specially processed cereal-induced antisecretory factor activation in intestine.
Sun, Yan-Wu; Zhang, Yi-Yi; Ke, Xin-Jie; Wu, Xue-Jing; Chen, Zhi-Fen; Chi, Pan
2018-03-05
Radiation-induced intestinal fibrosis (RIF) is a chronic toxicity following radiation, and can be very difficult to treat. Pirfenidone is a promising anti-fibrotic agent that inhibits fibrosis progression in various clinical and experimental studies. This study was aimed to explore whether pirfenidone could protect against RIF, and to evaluate the underlying mechanism. An animal model of RIF was induced by exposure of a single dose of 20 Gy to the pelvis. Rats were orally administered with pirfenidone (200, 400 md/kg/d) for 12 weeks. Primary rat intestinal fibroblasts were cultured to determine the effects of pirfenidone on TGF-β1-induced (5 ng/ml) proliferation and transdifferentiation of fibroblasts. The expression of collagen I, α-SMA, and TGF-β1/Smad/CTGF pathway proteins were analyzed by qRT-PCR and/or western blot analysis. The cell proliferation rate was determined by CCK-8 assay. The results indicated that pirfenidone significantly attenuated fibrotic lesion in irradiated intestines and reduced collagen deposition by inhibiting TGF-β1/Smad/CTGF pathway in rat models. Moreover, in primary rat intestinal fibroblasts, pirfenidone decreased the up-regulation of TGF-β1-induced collagen I and α-SMA by suppressing TGF-β1/Smad/CTGF signaling pathway. Altogether, our findings suggested that pirfenidone attenuated RIF by inhibiting the proliferation and differentiation of intestinal fibroblasts and suppressing the TGF-β1/Smad/CTGF signaling pathway. Copyright © 2018 Elsevier B.V. All rights reserved.
Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats
Herías, M V; Hessle, C; Telemo, E; Midtvedt, T; Hanson, L Å; Wold, A E
1999-01-01
We have studied the effect of the probiotic strain Lactobacillus plantarum 299v on the immune functions of gnotobiotic rats. One group of germ-free rats was colonized with the type 1-fimbriated Escherichia coli O6:K13:H1 and another group with the same E. coli strain together with L. plantarum 299v. One and 5 weeks after colonization, bacterial numbers were determined in the contents of the small intestine, caecum and mesenteric lymph nodes. Small intestinal sections were examined for CD8+, CD4+, CD25+ (IL-2R α-chain), IgA+ and MHC class II+ cells and mitogen-induced spleen cell proliferation was determined. Immunoglobulin levels and E. coli-specific antibodies were measured in serum. Rats given L. plantarum in addition to E. coli showed lower counts of E. coli in the small intestine and caecum 1 week after colonization compared with the group colonized with E. coli alone, but similar levels after 5 weeks. Rats colonized with L. plantarum+ E. coli had significantly higher total serum IgA levels and marginally higher IgM and IgA antibody levels against E. coli than those colonized with E. coli alone. They also showed a significantly increased density of CD25+ cells in the lamina propria and displayed a decreased proliferative spleen cell response after stimulation with concanavalin A or E. coli 1 week after colonization. The results indicate that L. plantarum colonization competes with E. coli for intestinal colonization and can influence intestinal and systemic immunity. PMID:10337020
A comparison of absorption of glycerol tristearate and glycerol trioleate by rat small intestine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergstedt, S.E.; Hayashi, H.; Kritchevsky, D.
1990-09-01
Generally, fats rich in saturated fatty acids raise serum cholesterol, whereas fats rich in polyunsaturated fatty acids lower it. There appear to be exceptions; e.g., stearic acid (18:0)-rich fats have little or no effect on serum cholesterol concentrations. This apparent lack of cholesterolemic effect of stearic acid-rich fat could be because intestinal absorption of fat is poor or subsequent plasma and/or tissue metabolism of fat is different. To investigate mechanisms involved, we compared intestinal digestion, uptake, and lymphatic transport of glycerol tristearate (TS) and glycerol trioleate (TO, 18:1). Two groups of rats bearing intestinal lymph fistulas were used. TO ratsmore » were fed intraduodenally for 8 h at a constant rate a lipid emulsion of 25 mumols/h of TO (labeled with glycerol tri(9,10 (n)-3H)oleate), 7.8 mumols of egg phosphatidylcholine, and 57 mumols of sodium taurocholate in 3 ml of phosphate-buffered saline. TS rats were fed the same lipid emulsion except that TS replaced TO and the emulsion was labeled with glyceryl (1,3-14C)tristearate. The lymph triglyceride and radioactivity were determined. After infusion, the luminal and mucosal radioactive lipid content was analyzed. The results showed that there was significantly less lipid transported in the lymph of TS rats compared with TO rats. The results also showed a significant decrease in the absorption of TS as compared with TO. This was due in part to poor lipolysis. In addition, the lipid absorbed by the intestine of the TS rats was transported into lymph less efficiently than in TO rats.« less
Qu, Bo; Xin, Guo-Rong; Zhao, Li-Xia; Xing, Hui; Lian, Li-Ying; Jiang, Hai-Yan; Tong, Jia-Zhao; Wang, Bei-Bei; Jin, Shi-Zhu
2014-01-01
The gastrointestinal (GI) mucosal cells turnover regularly under physiological conditions, which may be stimulated in various pathological situations including inflammation. Local epithelial stem cells appear to play a major role in such mucosal renewal or pathological regeneration. Less is clear about the involvement of multipotent stem cells from blood in GI repair. We attempted to explore a role of bone marrow mesenchymal stromal cells (BMMSCs) and soluble stem cell factor (SCF) in GI mucosa regeneration in a rat model of inflammatory bowel diseases (IBD). BMMSCs labelled with the fluorescent dye PKH26 from donor rats were transfused into rats suffering indomethacin-induced GI injury. Experimental effects by BMMSCs transplant and SCF were determined by morphometry of intestinal mucosa, double labeling of PKH26 positive BMMSCs with endogenous proliferative and intestinal cell markers, and western blot and PCR analyses of the above molecular markers in the recipient rats relative to controls. PKH26 positive BMMSCs were found in the recipient mucosa, partially colocalizing with the proliferating cell nuclear antigen (PCNA), Lgr5, Musashi-1 and ephrin-B3. mRNA and protein levels of PCNA, Lgr5, Musashi-1 and ephrin-B3 were elevated in the intestine in BMMSCs-treated rats, most prominent in the BMMSCs-SCF co-treatment group. The mucosal layer and the crypt layer of the small intestine were thicker in BMMSCs-treated rats, more evident in the BMMSCs-SCF co-treatment group. BMMSCs and SCF participate in but may play a synergistic role in mucosal cell regeneration following experimentally induced intestinal injury. Bone marrow stem cell therapy and SCF administration may be of therapeutic value in IBD.
Sukhotnik, I; Shahar, Y Ben; Pollak, Y; Dorfman, T; Shefer, H Kreizman; Assi, Z E; Mor-Vaknin, N; Coran, A G
2018-02-01
Intermediate filaments (IFs) are a part of the cytoskeleton that extend throughout the cytoplasm of all cells and function in the maintenance of cell-shape by bearing tension and serving as structural components of the nuclear lamina. In normal intestine, IFs provide a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. The purpose of this study was to evaluate the role of IFs during intestinal adaptation in a rat model of short bowel syndrome (SBS). Male rats were divided into two groups: Sham rats underwent bowel transection and SBS rats underwent a 75% bowel resection. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined 2 weeks after operation. Illumina's Digital Gene Expression (DGE) analysis was used to determine the cytoskeleton-related gene expression profiling. IF-related genes and protein expression were determined using real-time PCR, Western blotting and immunohistochemistry. Massive small bowel resection resulted in a significant increase in enterocyte proliferation and concomitant increase in cell apoptosis. From the total number of 20,000 probes, 16 cytoskeleton-related genes were investigated. Between these genes, only myosin and tubulin levels were upregulated in SBS compared to sham animals. Between IF-related genes, desmin, vimentin and lamin levels were down-regulated and keratin and neurofilament remain unchanged. The levels of TGF-β, vimentin and desmin gene and protein were down-regulated in resected rats (vs sham animals). Two weeks following massive bowel resection in rats, the accelerated cell turnover was accompanied by a stimulated microfilaments and microtubules, and by inhibited intermediate filaments. Resistance to cell compression rather that maintenance of cell-shape by bearing tension are responsible for contraction, motility and postmitotic cell separation in a late stage of intestinal adaptation.
Effect of DS-2969b, a novel GyrB inhibitor, on rat and monkey intestinal microbiota.
Kumar, Manoj; Mathur, Tarun; Joshi, Vattan; Upadhyay, Dilip J; Inoue, Shin-Ichi; Masuda, Nobuhisa
2018-05-02
DS-2969b, a novel GyrB inhibitor, transiently and reversibly altered the counts of limited intestinal microbiota at around 10 μg/g of faecal levels in rats and monkeys. Considering the high activity of DS-2969b against Clostridium difficile, 10 μg/g of faecal levels would be sufficient for clearing C. difficile from the intestine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Steatorrhoea in rats with an intestinal cul-de-sac
Hoet, P. P.; Eyssen, H.
1964-01-01
Steatorrhoea in rats with an intestinal cul-de-sac is mainly due to malabsorption of alimentary fats but faecal lipids of endogenous origin are also increased. Steatorrhoea depends on the site of the blind loop in the small intestine and is mainly caused by bacterial proliferation in the lumen of the gut. The aetiological role of Gram-positive anaerobic microbes, especially Clostridium welchii, is suggested. ImagesFIG. 3FIG. 4FIG. 5FIG. 6 PMID:14209913
Naringin prevents the inhibition of intestinal Ca2+ absorption induced by a fructose rich diet.
Rodríguez, V; Rivoira, M; Guizzardi, S; Tolosa de Talamoni, N
2017-12-15
This study tries to elucidate the mechanisms by which fructose rich diets (FRD) inhibit the rat intestinal Ca 2+ absorption, and determine if any or all underlying alterations are prevented by naringin (NAR). Male rats were divided into: 1) controls, 2) treated with FRD, 3) treated with FRD and NAR. The intestinal Ca 2+ absorption and proteins of the transcellular and paracellular Ca 2+ pathways were measured. Oxidative/nitrosative stress and inflammation parameters were evaluated. FRD rats showed inhibition of the intestinal Ca 2+ absorption and decrease in the protein expression of molecules of both Ca 2+ pathways, which were blocked by NAR. FRD rats showed an increase in the superoxide anion, a decrease in the glutathione and in the enzymatic activities of the antioxidant system, as well as an increase in the NO content and in the nitrotyrosine content of proteins. They also exhibited an increase in both IL-6 and nuclear NF-κB. All these changes were prevented by NAR. In conclusion, FRD inhibit both pathways of the intestinal Ca 2+ absorption due to the oxidative/nitrosative stress and inflammation. Since NAR prevents the oxidative/nitrosative stress and inflammation, it might be a drug to avoid alteration in the intestinal Ca 2+ absorption caused by FRD. Copyright © 2017 Elsevier Inc. All rights reserved.
Microsomal quercetin glucuronidation in rat small intestine depends on age and segment
USDA-ARS?s Scientific Manuscript database
UDP-glucuronosyltransferase (UGT) activity toward the flavonoid quercetin and UGT protein were characterized in 3 equidistant small intestine (SI) segments from 4, 12, 18, and 28 mo male F344 rats, n=8/age using villin to control for enterocyte content. SI microsomal intrinsic clearance of quercetin...
Blockade of nitric oxide synthesis modulates rat immunoglobulin A.
Budec, Mirela; Marković, Dragana; Djikić, Dragoslava; Mitrović, Olivera; Drndarević, Neda; Koko, Vesna; Todorović, Vera
2009-01-01
Nitric oxide (NO) is known as a regulator of inflammation and immunity. The purpose of this study was to investigate the influence of this signal molecule on the rat immunoglobulin A (IgA) system using Nomega-nitro-L-arginine-methyl ester (L-NAME), which inhibits the activity of all isoforms of NO synthase. The experiments were performed on adult female Wistar rats showing diestrus day 1 that were treated with L-NAME (30 or 50 mg/kg, s.c.). Untreated and saline-injected animals were used as controls. The rats were sacrificed 3 h following L-NAME or saline administration. The concentration of IgA in serum and intestinal extracts was determined by a sandwich enzyme-linked immunosorbent assay. The number of IgA-expressing cells per area unit of Peyer's patches and the intestinal lamina propria was evaluated using stereological analysis. The results showed that L-NAME decreased the level of IgA in serum and elevated its concentration in intestinal extracts. Additionally, the increased number of IgA+ cells was found in the intestinal lamina propria in both experimental groups. Obtained findings imply that endogenous NO may modulate the IgA system in the rat. Copyright 2009 S. Karger AG, Basel.
de Oliveira Belém, Mônica; Cirilo, Carla Possani; de Santi-Rampazzo, Ana Paula; Schoffen, João Paulo Ferreira; Comar, Jurandir Fernando; Natali, Maria Raquel Marçal; de Almeida Araújo, Eduardo José
2015-09-01
During the aging process, the body's systems change structurally and loss of function can occur. Ingesting a smaller amount of food has been considered a plausible proposal for increased longevity with the quality of life. However, the effects of dietary restriction (DR) during aging are still poorly understood, especially for organs of the digestive system. This study aimed to describe the body weight, oxidative status and possible morphological changes of the intestinal wall of rats submitted to DR during the aging process (7 to 18months old). Twelve 7-month-old male Wistar rats fed ad libitum since birth were assigned to two groups: control group (CG, n=6) fed ad libitum from 7 to 18months old; and dietary restriction group (DRG, n=6) fed 50% of the amount of chow consumed by the CG from 7 to 18months old. The body weight, feed and water intake were monitored throughout the experiment. Blood, periepididymal adipose tissue (PAT) and retroperitoneal adipose tissue (RAT), and the small intestine were collected at 18months old. The blood was collected to evaluate its components and oxidative status. Sections from the duodenum and ileum were stained with HE, PAS and AB pH2.5 for morphometric analyses of the intestinal wall components, and to count intraepithelial lymphocytes (IELs), goblet cells and cells in mitosis in the epithelium. DR rats showed a reduction in weight, naso-anal length, PAT, RAT and intestinal length; however, they consumed more water. Blood parameters indicate that the DR rats remained well nourished. In addition, they showed lower lipid peroxidation. Hypertrophy of the duodenal mucosa and atrophy of the ileal mucosa were observed. The number of goblet cells and IELs was reduced, but the mitotic index remained unaltered in both duodenum and ileum. In conclusion, 50% dietary restriction for rats from 7 to 18months old contributed to improving their nutritional parameters but, to achieve this, adjustments were required in the structure of the body weight and morphology of the small intestine. Copyright © 2015 Elsevier Inc. All rights reserved.
Intestinal adaptations to a combination of different diets with and without endurance exercise.
Daniels, Janice L; Bloomer, Richard J; van der Merwe, Marie; Davis, Samantha L; Buddington, Karyl K; Buddington, Randal K
2016-01-01
Endurance athletes search for diet regimens that will improve performance and decrease gastrointestinal disturbances during training and events. Although the intestine can adapt to changes in the amount and composition of dietary inputs, the responses to the combination of endurance exercise and diet are poorly understood. We evaluated small intestinal dimensions and mucosal architecture and calculated the capacities of the entire small intestine to digest maltose and maltodextrin and absorb glucose in response to two different diet types; a western human diet and the Daniel Fast, a vegan style diet, and with moderate intensity endurance training or a no-exercise sedentary lifestyle for a 13 week period (n = 7 per group). The influences of diet and exercise, alone and in combination, were analyzed by analysis of variation. Rats fed the western diet gained more weight (P < 0.05) due to more fat mass (P < 0.05), with a similar response for the sedentary compared with the exercised rats in each diet group (P < 0.05). The Daniel Fast rats had longer and heavier intestines with deeper crypts with villi that were wider (P < 0.05), but not taller. Despite increased energetic demands, the exercised rats had shorter and lighter intestines with shorter villi (P < 0.05). Yet, the percentage of mucosa did not differ among groups. Total small intestinal activities for maltase and α-glucoamylase, and capacities for glucose absorption were similar regardless of diet or exercise. These findings indicate the structural responses of the small intestine to a vegan style diet are modified by exercise, but without altering the capacities of the brush border membrane to digest and absorb carbohydrates.
Biopharmaceutics classification of puerarin and comparison of perfusion approaches in rats.
Li, Hewei; Dong, Ling; Liu, Yang; Wang, Guopeng; Wang, Gang; Qiao, Yanjiang
2014-05-15
The present study was conducted to characterize the biopharmaceutics classification system (BCS) category of puerarin in terms of intrinsic dissolution rate (IDR) and rat intestinal permeability and to investigate the poor intestinal absorption probably related to the drug metabolism in the gut wall of rats. Equilibrium solubility of puerarin was determined in various phosphate buffers and water, and IDR was estimated by measuring the dissolution of a non-disintegrating compact. Intestinal permeability (Peff and Pblood) of puerarin was determined using the technology of in situ single-pass intestinal perfusion (SPIP) and intestinal perfusion with venous sampling (IPVS) in fasted rats. Metabolism of puerarin in intestinal tissue was tested by S9 incubation in vitro. The aqueous solubility of puerarin in phosphate buffers and water was good with a maximum solubility of 7.56 mg/mL at pH 7.4. Obtained IDR values of puerarin were in the range of 0.360-1.088 mg/min/cm(2), with maximum and minimum IDR value of pH 7.4 and pH 4.0, respectively. The Peff was 1.252 × 10(-5)cm/s determined by SPIP and the Pblood was 0.068×10(-5)cm/s by IPVS in jejunum at puerarin 80 μg/mL. The metabolism rate of puerarin determined by the intestinal S9 fraction indicated that the gut wall metabolism of puerarin is one cause of poor absorption. According to the proposed classification of drugs and the results obtained from equilibrium solubility, IDR, Peff and Pblood, it is concluded that puerarin could be categorized IV drug of the BCS based on its low solubility and low intestinal permeability values. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Sun-Ho; Jo, Sung-Hoon; Kwon, Young-In; Hwang, Jae-Kwan
2011-01-01
Diets high in calories and sweetened foods with disaccharides frequently lead to exaggerated postprandial spikes in blood glucose. This state induces immediate oxidant stress and free radicals which trigger oxidative stress-linked diabetic complications. One of the therapeutic approaches for decreasing postprandial hyperglycemia is to retard absorption of glucose by the inhibition of carbohydrate hydrolyzing enzymes, α-amylase and α-glucosidases, in the digestive organs. Therefore, the inhibitory activity of Korean onion (Allium cepa L.) extract against rat intestinal α-glucosidases, such as sucrase, maltase, and porcine pancreatic α-amylase were investigated in vitro and in vivo. The content of quercetin in ethyl alcohol extract of onion skin (EOS) was 6.04 g/100 g dried weight of onion skin. The in vitro half-maximal inhibitory concentrations (IC50) of EOS and quercetin, a major phenolic in onion, on rat intestinal sucrase were 0.40 and 0.11 mg/mL, respectively. The postprandial blood glucose lowering effects of EOS and quercetin were compared to a known type 2 diabetes drug (Acarbose), a strong α-glucosidase inhibitor in the Sprague-Dawley (SD) rat model. In rats fed on sucrose, EOS significantly reduced the blood glucose spike after sucrose loading. The area under the blood glucose-time curve (AUClast) in EOS-treated SD rats (0.5 g-EOS/kg) was significantly lower than in untreated SD rats (259.6 ± 5.1 vs. 283.1 ± 19.2 h·mg/dL). The AUClast in quercetin-treated SD rats (0.5 g-quercetin/kg) was similar to in EOS-treated group (256.1 ± 3.2 vs. 259.6 ± 5.1 h·mg/dL). Results from this study indicates that although quercetin does have blood glucose lowering potential via α-glucosidase inhibition, there are other bioactive compounds present in onion skin. Furthermore, the effects of two weeks administration of EOS in a high carbohydrate-dietary mixture (Pico 5053) on sucrase and maltase activities in intestine were evaluated in SD rat model. Compared to the upper and middle parts of intestine, the activities of sucrase in the lower parts of intestine remained significantly higher after two weeks of EOS treatment. These results indicate that EOS may improve exaggerated postprandial spikes in blood glucose and glucose homeostasis since it inhibits intestinal sucrase and thus delays carbohydrate absorption, although clinical trials are needed. PMID:21747704
Hanske, Laura; Engst, Wolfram; Loh, Gunnar; Sczesny, Silke; Blaut, Michael; Braune, Annett
2013-04-28
Cyanidin 3-glucoside (C3G) is one of the major dietary anthocyanins implicated in the prevention of chronic diseases. To evaluate the impact of human intestinal bacteria on the fate of C3G in the host, we studied the metabolism of C3G in human microbiota-associated (HMA) rats in comparison with germ-free (GF) rats. Urine and faeces of the rats were analysed for C3G and its metabolites within 48 h after the application of 92 μmol C3G/kg body weight. In addition, we tested the microbial C3G conversion in vitro by incubating C3G with human faecal slurries and selected human gut bacteria. The HMA rats excreted with faeces a three times higher percentage of unconjugated C3G products and a two times higher percentage of conjugated C3G products than the GF rats. These differences were mainly due to the increased excretion of 3,4-dihydroxybenzoic acid, 2,4,6-trihydroxybenzaldehyde and 2,4,6-trihydroxybenzoic acid. Only the urine of HMA rats contained peonidin and 3-hydroxycinnamic acid and the percentage of conjugated C3G products in the urine was decreased compared with the GF rats. Overall, the presence of intestinal microbiota resulted in a 3·7% recovery of the C3G dose in HMA rats compared with 1·7% in GF rats. Human intestinal bacteria rapidly degraded C3G in vitro. Most of the C3G products were also found in the absence of bacteria, but at considerably lower levels. The higher concentrations of phenolic acids observed in the presence of intestinal bacteria may contribute to the proposed beneficial health effects of C3G.
Mengheri, E; Ciapponi, L; Vignolini, F; Nobili, F
1996-01-01
In the present study we have investigate whether cytokines are constitutively and differently expressed in intestine during the differentiative processes that take place at weaning. We have analyzed the expression of IL-1 beta, IL-2, IL-4 and IFN gamma by polymerase chain reaction in Peyer's patches (PP) and in intestine deprived of PP (I-PP) of rats from 16 to 30 days of age. The results showed a constitutive and marked expression of the cytokines already before weaning, with the exception of IL-2 in PP and IFN gamma in I-PP. IL-beta was the only cytokine to show a different expression at various ages with an initial increase at 19 days and a further elevation at 21 days when intestinal epithelium passes through major differentiative stages, suggesting an involvement of this cytokine in intestinal development. We have also tested whether treatment of rats with the immunosuppressor cyclosporin A (CsA) could affect intestinal differentiation. The results showed that only some markers of differentiation were affected (proliferation of staminal crypt cells and length of crypts). This was probably due to a direct effect rather than an immunomediated effect of CsA, since treatment of three intestinal cell lines (Caco-2, HT-29, FRIC) with CsA indicated that this drug can exert a cytostatic activity on intestinal cells.
Hatch, Marguerite; Freel, Robert W.
2013-01-01
Enteric oxalate secretion that correlated with reductions in urinary oxalate excretion was previously reported in a mouse model of Primary Hyperoxaluria, and in wild type (WT) mice colonized with a wild rat strain (OXWR) of Oxalobacter (Am J Physiol 300: G461-G469, 2011). Since a human strain of the bacterium is more likely to be clinically used as a probiotic therapeutic, we tested the effects of HC-1 in WT. Following artificial colonization of WT mice with HC-1, the bacteria were confirmed to be present in the large intestine and, unexpectedly, detected in the small intestine for varying periods of time. The main objective of the present study was to determine whether the presence of HC-1 promoted intestinal secretion in the more proximal segments of the gastrointestinal tract. In addition, we determined whether HC-1 colonization led to reductions in urinary oxalate excretion in these mice. The results show that the human Oxalobacter strain promotes a robust net secretion of oxalate in the distal ileum as well as in the caecum and distal colon and these changes in transport correlate with the beneficial effect of reducing renal excretion of oxalate. We conclude that OXWR effects on intestinal oxalate transport and oxalate homeostasis are not unique to the wild rat strain and that, mechanistically, HC-1 has significant potential for use as a probiotic treatment for hyperoxaluria especially if it is also targeted to the upper and lower gastrointestinal tract. PMID:23959075
Haque, S M; Chen, K; Usui, N; Iiboshi, Y; Okuyama, H; Masunari, A; Cui, L; Nezu, R; Takagi, Y; Okada, A
1996-01-01
OBJECTIVE: The authors determined the effects of alanyl-glutamine-supplemented total parenteral nutrition (TPN) on mucosal metabolism, integrity, and permeability of the small intestine in rats. METHODS: Male Sprague-Dawley rats were randomized to receive TPN supplemented with a conventional amino acids mixture (STD group) or the same solution supplemented with alanyl-glutamine; both solutions were isocaloric and isonitrogenous. On the seventh day of TPN, D-xylose and fluorescein isothiocyanate (FITC)-dextran were administered orally. One hour later, superior mesenteric vein (SMV) D-xylose and plasma FITC-dextran concentration were measured. Intestinal blood flow and calculated intestinal substrates flux were measured with ultrasonic transit time flowmetery. RESULTS: Plasma FITC-dextran increased significantly in the STD group. Intestinal blood flow and SMV D-xylose concentration did not differ between the groups. Mucosa weight, villus height, mucosal wall thickness, mucosal protein, and DNA and RNA content in jejunal mucosa were significantly increased in the alanyl-glutamine group. Jejunal mucosal glutaminase activity and net intestinal uptake of glutamine (glutamine flux) were significantly higher in the alanyl-glutamine group as compared with the STD group. CONCLUSION: Addition of alanyl-glutamine dipeptide to the TPN solution improves intestinal glutamine metabolism and prevents mucosal atrophy and deterioration of permeability. PMID:8604914
Wang, YongQi; Xie, Jinkun; Zhang, Xuelin; Gu, Honggang
2017-01-01
Objective To explore the effects and mechanism of Jinhong Tablet on intestinal mucosal barrier function and SIRS in rats with acute biliary infection. Methods 36 SD male rats were divided into three groups: sham operation (control), acute biliary infection (ABI) model, and Jinhong Tablet (Jinhong) group. Jinhong group were force-fed with Jinhong Tablet, while the other two groups received oral saline. At days 3 and 5, morphological changes of intestinal mucosa were assessed. Serum diamine oxidase (DAO), D-lactate, and endotoxin levels were measured. And the genes bcl-2 and bax in intestinal tissues were tested by real-time PCR and Western blotting. Results Intestinal damage was significantly less severe in Jinhong group compared with ABI group, as indicated by Chiu's scoring, TUNEL analysis, and serum DAO, D-lactic acid, and endotoxin levels. Additionally, the expression of bax mRNA and protein was decreased and the ratio of bcl-2/bax mRNA and protein was increased compared with ABI group. Conclusion Jinhong Tablet had a positive intervention on acute biliary infection through improving inflammation and intestinal mucosal barrier, inhibiting excessive apoptosis of intestinal epithelial cells via bax and bcl-2 gene, and protein regulation. PMID:29234407
Mechanism for the cholesterol-lowering action of egg white protein in rats.
Matsuoka, Ryosuke; Kimura, Mamoru; Muto, Ayano; Masuda, Yasunobu; Sato, Masao; Imaizumi, Katsumi
2008-06-01
Eggs are a popular source of dietary cholesterol, but their consumption does not necessarily result in an increased serum cholesterol concentration. We investigated the cholesterol-lowering activity of egg white protein (EWP) and its potential mechanism in rats. The consumption of EWP resulted in a decreased concentration of cholesterol in the serum, liver and intestinal mucosa. The excretion of fecal neutral sterols and bile acids was greater by rats fed with EWP than by those fed with casein. The ratio of cholesterol and bile acids in the micellar phase to those in the solid phase was lower in the intestinal contents from rats fed with EWP than from those fed with casein. These results suggest that the cholesterol-lowering activity of EWP can be attributed to lowering the cholesterol absorption by intervening in the micellar formation in the intestines.
Leite, A Z; Sipahi, A M; Damião, A O; Coelho, A M; Garcez, A T; Machado, M C; Buchpiguel, C A; Lopasso, F P; Lordello, M L; Agostinho, C L; Laudanna, A A
2001-02-01
The pathogenesis of non-steroidal anti-inflammatory drug (NSAID) enteropathy is complex. It involves uncoupling of mitochondrial oxidative phosphorylation which alters the intercellular junction and increases intestinal permeability with consequent intestinal damage. Metronidazole diminishes the inflammation induced by indomethacin but the mechanisms remain speculative. A direct effect on luminal bacteria has traditionally been thought to account for the protective effect of metronidazole. However, a protective effect of metronidazole on mitochondrial oxidative phosphorylation has never been tested. To assess the protective effect of metronidazole on mitochondrial uncoupling induced by indomethacin and also on the increased intestinal permeability and macroscopic damage. The protective effect of metronidazole was evaluated in rats given indomethacin; a macroscopic score was devised to quantify intestinal lesions, and intestinal permeability was measured by means of (51)Cr-ethylenediaminetetraacetic acid. The protective effect of metronidazole against mitochondrial uncoupling induced by indomethacin was assessed using isolated coupled rat liver mitochondria obtained from rats pretreated with metronidazole or saline. Metronidazole significantly reduced the macroscopic intestinal damage and increase in intestinal permeability induced by indomethacin; furthermore, at the mitochondrial level, it significantly reduced the increase in oxygen consumption in state 4 induced by indomethacin and caused less reduction of the respiratory control rate. Our study confirmed the beneficial effects of metronidazole on intestinal damage and intestinal permeability, and demonstrated, for the first time, a direct protective effect of metronidazole on uncoupling of mitochondrial oxidative phosphorylation caused by NSAIDs.
Duman, Deniz Güney; Kumral, Zarife Nigâr Özdemir; Ercan, Feriha; Deniz, Mustafa; Can, Güray; Cağlayan Yeğen, Berrak
2013-08-28
Saccharomyces boulardii is a probiotic used for the prevention of antibiotic-associated diarrhoea. We aimed to investigate whether S. boulardii could alter the effects of clarithromycin (CLA) and methotrexate (MTX) on oro-caecal intestinal transit and oxidative damage in rats. Rats were divided into two groups receiving a single dose of MTX (20 mg/kg) or CLA (20 mg/kg per d) for 1 week. Groups were treated with either saline or S. boulardii (500 mg/kg) twice per d throughout the experiment. The control group was administered only saline. Following decapitation, intestinal transit and inflammation markers of glutathione (GSH), malondialdehyde and myeloperoxidase were measured in intestinal and hepatic tissues. CLA and MTX increased intestinal transit, while S. boulardii treatment slowed down CLA-facilitated transit back to control level. Both MTX and CLA increased lipid peroxidation while depleting the antioxidant GSH content in the hepatic and ileal tissues. Conversely, lipid peroxidation was depressed and GSH levels were increased in the ileal and hepatic tissues of S. boulardii-treated rats. Increased ileal neutrophil infiltration due to MTX and CLA treatments was also reduced by S. boulardii treatment. Histological analysis supported that S. boulardii protected intestinal tissues against the inflammatory effects of both agents. These findings suggest that S. boulardii ameliorates intestinal injury and the accompanying hepatic inflammation by supporting the antioxidant state of the tissues and by inhibiting the recruitment of neutrophils. Moreover, a preventive effect on MTXinduced toxicity is a novel finding of S. boulardii, proposing it as an adjunct to chemotherapy regimens.
Xu, Dabo; Gao, Jun; Gillilland, Merritt; Wu, Xiaoyin; Song, Il; Kao, John Y; Owyang, Chung
2014-02-01
Rifaximin is used to treat patients with functional gastrointestinal disorders, but little is known about its therapeutic mechanism. We propose that rifaximin modulates the ileal bacterial community, reduces subclinical inflammation of the intestinal mucosa, and improves gut barrier function to reduce visceral hypersensitivity. We induced visceral hyperalgesia in rats, via chronic water avoidance or repeat restraint stressors, and investigated whether rifaximin altered the gut microbiota, prevented intestinal inflammation, and improved gut barrier function. Quantitative polymerase chain reaction (PCR) and 454 pyrosequencing were used to analyze bacterial 16S ribosomal RNA in ileal contents from the rats. Reverse transcription, immunoblot, and histologic analyses were used to evaluate levels of cytokines, the tight junction protein occludin, and mucosal inflammation, respectively. Intestinal permeability and rectal sensitivity were measured. Water avoidance and repeat restraint stress each led to visceral hyperalgesia, accompanied by mucosal inflammation and impaired mucosal barrier function. Oral rifaximin altered the composition of bacterial communities in the ileum (Lactobacillus species became the most abundant) and prevented mucosal inflammation, impairment to intestinal barrier function, and visceral hyperalgesia in response to chronic stress. Neomycin also changed the composition of the ileal bacterial community (Proteobacteria became the most abundant species). Neomycin did not prevent intestinal inflammation or induction of visceral hyperalgesia induced by water avoidance stress. Rifaximin alters the bacterial population in the ileum of rats, leading to a relative abundance of Lactobacillus. These changes prevent intestinal abnormalities and visceral hyperalgesia in response to chronic psychological stress. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Tamura, Shigeki; Ohike, Atsuo; Ibuki, Rinta; Amidon, Gordon L; Yamashita, Shinji
2002-03-01
The objective of this study is to investigate the role of P-glycoprotein (P-gp), a membrane efflux pump associated with multidrug resistance (MDR) and a known substrate for tacrolimus, in determining the regional intestinal permeability of tacrolimus in rats. Thus, isolated segments of rat jejunum, ileum, or colon were perfused with tacrolimus solutions containing polyethoxylated hydrogenated castor oil 60 surfactant, and with or without verapamil, a P-gp substrate used to reverse the MDR phenotype. The results indicated that the intrinsic permeability of tacrolimus in the jejunum, calculated on the basis of the concentration of non-micellized free tacrolimus, was quite high ( approximately 1.4 x 10(-4) cm/s). The apparent permeability (P(app)) in the jejunum was unaffected by the presence of verapamil; however, the P(app) in the ileum and the colon increased significantly in the presence of verapamil and were similar to the values observed in the jejunum. The results suggest that systemic absorption of tacrolimus from the gastrointestinal tract could be significantly affected by P-gp efflux mechanisms. It is also possible that differences in P-gp function at various intestinal sites in a subject or at a given intestinal site in various subjects could lead to large intra- and interindividual variability in bioavailability of tacrolimus following oral administration. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association .
USDA-ARS?s Scientific Manuscript database
Increased amylose in wheat (Triticum spp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that provide human health benefits. Since wheat foods are an important component of t...
Ghanbari-Niaki, Abbass; Zare-Kookandeh, Navabeh; Zare-Kookandeh, Asghar
2014-01-01
Objective(s): ABC transporters comprise a large family of transmembrane proteins that use the energy provided by ATP hydrolysis to translocate a variety of substrates across biological membranes. All members of the human ABCG subfamily, except for ABCG2, are cholesterol-transporter. The aim of this study was to determine the liver, the small intestine and kidney ABCG5 relative gene expression in response to treadmill-running training in female rats. Materials and Methods: Twenty Wistar rats (6-8 weeks old and 125-135 g weight) were used. Animals were randomly assigned to saline-control (SC), saline-training (ST), and Baneh-control (BC), and Baneh-training (BT) groups. Training groups did the exercise on a motor-driven treadmill at 25 m/min (0% grade) for 60 min/day for eight weeks (5 days/week). Rats were fed orally, with Baneh extraction and saline for six weeks. The two-way ANOVA was employed for statistical analysis. ABCG5 relative gene expression was detected by Real-time PCR method. Results: The current findings indicate that the Baneh-treated tissues had significantly lower levels of ABCG5 gene expression in the liver, small intestine, and kidneys (P< 0.001, P< 0.003, P< 0.001, respectively), when compared with saline-treated tissues. However, a higher level of gene expression was observed in exercise groups. A lower level of HDL-c but not triglyceride (TG) and total cholesterol (TC) levels were found in Baneh-treated animals at rest. Conclusion: Exercise training increases ABCG5 relative gene expression in the liver, small intestine and kidney tissues; therefore exercise training may adjust the reduction of ABCG5 relative gene expression in Baneh-training group. PMID:24847418
Intestinal absorption of triglyceride and vitamin D3 in aged and young rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, P.R.; Dominguez, A.A.
1981-12-01
(3H)Trioleyl glycerol (TO) and (14C)vitamin D3 were perfused intraduodenally for 5 hr in aged (19-21 months) and young adult (4-5 months) Sprague-Dawley rats. The rate of intestinal uptake from the gastrointestinal lumen and transport into the body of these lipids were decreased in the aged animals. Since the distribution of TO lipolytic products in the lumen was unchanged, reduced intestinal uptake rate probably occurred at the mucosal membrane. Furthermore, in the aged rats, the rate of transintestinal transport of both trioleyl glycerol and vitamin D3 was impaired. No evidence for impaired mucosal TO reesterification or for accumulation of vitamin D3more » metabolites was found, suggesting that intestinal lipid accumulation resulted from a defect in lipoprotein assembly or in discharge from the mucosal cell. Impaired absorption of lipids may contribute to malnutrition and osteopenia of advancing age.« less
Impaired local immune response in vitamin A-deficient rats.
Sirisinha, S; Darip, M D; Moongkarndi, P; Ongsakul, M; Lamb, A J
1980-01-01
The functional integrity of the local immune system in vitamin A-deficient (A-) rats was investigated. Secretory IgA levels in the intestinal fluid of A- rats were significantly lower than in controls. This and the decrease in intensity of immunofluorescent staining for secretory component (SC) in the intestinal cells was related to the duration of vitamin A deprivation. IgG levels in the intestinal fluid, and serum IgA and IgG levels were unaffected in deficiency. Moreover, when the response of animals to DNP50-BGG was evaluated, the local anti-DNP response in the intestine was markedly depressed. These defects may result from impaired synthesis of SC by epithelial cells. On the other hand, the serum antibody response in deficient animals was not noticeably different from that of the controls; if any, htere was a slight reduction in the affinity of antibody. PMID:7389210
Tokita, Y; Satoh, K; Sakaguchi, M; Endoh, Y; Mori, I; Yuzurihara, M; Sakakibara, I; Kase, Y; Takeda, S; Sasaki, H
2007-04-01
The present study investigated the effect of Daikenchuto (DKT) on postoperative intestinal adhesion in rats. We evaluated the effects of DKT, constituent medical herbs and active compounds on talc-induced intestinal adhesion in rats and DKT-induced contractions using isolated guinea pig ileum. DKT significantly prevented adhesion formation, and this action was inhibited by pretreatment with atropine or ruthenium red. The constituent medical herbs, Zanthoxylum Fruit and Maltose Syrup Powder significantly prevented adhesion formation. Moreover, hydroxy sanshool (HS) prevented adhesion formation, and this action was inhibited by pretreatment with ruthenium red. In contrast, DKT-induced contractions were inhibited by tetrodotoxin, atropine, and capsazepine. These results suggested that DKT had a preventive action on postoperative adhesive intestinal obstruction, and that this action was mediated by sensory and cholinergic nerves. Furthermore, HS was found to be one of the active compound of DKT, and its action was mediated by sensory nerves.
Influence of breast milk polyamines on suckling rat immune system maturation.
Pérez-Cano, Francisco J; González-Castro, Ana; Castellote, Cristina; Franch, Angels; Castell, Margarida
2010-02-01
The aim of this study was to ascertain whether the supplementation of polyamines present in breast milk, i.e. spermine (SPM) and spermidine (SPD), influenced the post-natal maturation of the systemic and intestinal immune system in rats. From birth, pups daily received SPM or SPD. At 5, 11 and 18 days old, small intestine intraepithelial lymphocytes (IEL), lamina propria lymphocytes (LPL) and splenocytes were phenotypically characterized. SPM and, less evidently, SPD accelerated the maturation of CD8+ IEL, and enhanced the presence of intraepithelial NK cells and IEL related with specific immune responses on the proximal and distal small intestine, respectively. Polyamines increased the percentage of more mature CD4+ LPL and enhanced the early presence of splenic B cells and, later, that of NK cells. However, no effect on Ig-secretory function was detected. These results suggest that breast milk polyamines improve the maturation of the rat intestinal and systemic immune system.
Oxyntomodulin stimulates intestinal glucose uptake in rats.
Collie, N L; Zhu, Z; Jordan, S; Reeve, J R
1997-06-01
Enteroglucagon peptides have long been proposed as mediators of intestinal adaptation, including mucosal growth and nutrient absorptive capacity. The hypothesis that infusions of oxyntomodulin, a bioactive form of enteroglucagon, would stimulate glucose and amino acid uptake was tested and its effects were compared with those of glucagon. Rats were infused intravenously via minipumps with either saline, rat oxyntomodulin (0.47 nmol x kg(-1) x h[-1]), or glucagon (0.88 nmol x kg(-1) x h[-1]) for 7 days, and plasma hormone levels were measured. At death, intestinal dimensions and brush border uptake of D-glucose and L-proline were measured using an in vitro everted sleeve technique. Plasma enteroglucagon and glucagon levels were increased 4- and 12-fold, respectively, but there were no effects on food intake, body weight, or intestinal dimensions. In contrast, oxyntomodulin and glucagon significantly stimulated total intestinal glucose uptake capacity by 44% and 53%, respectively, over controls. Oxyntomodulin most potently enhanced glucose uptake in the ileum (215%), whereas glucagon's greatest effect was in the jejunum (63%-85%). However, neither peptide affected proline uptake. These results support a new, specific action for oxyntomodulin in intestinal adaptation as a glucose uptake stimulator and confirm glucagon's role as a regulator of glucose uptake.
Sukhotnik, Igor; Mogilner, Jorge G; Shaoul, Ron; Karry, Rahel; Lieber, Michael; Suss-Toby, Edith; Ure, Benno M; Coran, Arnold G
2008-01-01
Recent evidence suggests that transforming growth factor alpha (TGF-alpha) enhances enterocyte proliferation and stimulates intestinal adaptation after massive bowel resection. In the present study, we evaluated the effects of TGF-alpha on enterocyte turnover and correlated it with epidermal-growth factor (EGF) receptor expression along the villus-crypt axis in a rat model of short bowel syndrome (SBS). Male rats were divided into three groups, sham rats underwent bowel transection (group A); SBS rats underwent a 75% bowel resection (group B); and SBS/TGF-alpha rats underwent bowel resection and were treated with TGF-alpha (75 microg/kg) (group C) from the seventh postoperative day. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined on day 15. Villus tips, lateral villi and crypts were separated using laser capture microdissection. EGF receptor expression for each compartment was assessed by quantitative real-time PCR (Taqman). Statistical analysis was performed using one-way ANOVA test, with P < 0.05 considered statistically significant. Treatment with TGF-alpha resulted in a significant increase in all parameters of intestinal adaptation. EGF receptor expression in crypts significantly increased in SBS rats (vs sham rats) (0.035 +/- 0.013 vs 0.010 +/- 0.002 Log ng Total RNA/18 s) and was accompanied by a significant increase in enterocyte proliferation (169 +/- 8 vs 138 +/- 5 BrdU positive cells/per 10 crypts, P < 0.05) and decreased apoptosis following TGF-alpha administration (group C). A significant decrease in EGF receptor expression at the tip of the villus (0.005 +/- 0.002 vs 0.029 +/- 0.014 Log ng Total RNA/18 s) and in the lateral villus (0.003 +/- 0.001 vs 0.028 +/- 0.006 Log ng Total RNA/18 s) in SBS (group B) rats (vs sham, group A) was accompanied by increased cell apoptosis in these compartments following treatment with TGF-alpha (group C). In a rat model of SBS, TGF-alpha increased enterocyte proliferation and stimulated intestinal adaptation. The effect of TGF-alpha on enterocyte turnover is correlated with EGF receptor expression along the villus-crypt axis.
Santos, Alessandra Marques Dos; Coelho, Joao Paulo Ferreira; Juanes, Camila de Carvalho; Azevedo, Rafael Barbosa de; Diniz, Clara Araujo; Jamacaru, Francisco Vagnaldo Fechine; Dornelas, Conceição Aparecida
2017-04-01
To evaluated the effects of L-lysine on the intestinal and urothelial epithelia in cystoplasty in rats. Twenty-eight 9-week-old rats were assigned to 4 groups: Group A (n=8) cystoplasty followed by administration of L-lysine (150 mg/kg body weight by gavage) for 30 weeks; Group B (n=8) cystoplasty + water for 30 weeks; Group C (n=6) L-lysine for 30 weeks; Group D (n=6) water for 30 weeks. On histopathology with hematoxylin and eosin, mild to moderate hyperplasia transitional was observed in at the site of anastomosis in all animals submitted to cystoplasty (Groups A and B), but "transitional metaplasia" of the intestinal glandular epithelium was more accentuated in Group A (p=0.045). No inflammatory cells, dysplasia or abnormalities were observed. Staining with Alcian blue revealed a substantial reduction of goblet cells and mucins in the colon segment (Groups A and B). The administration of L-lysine to rats accelerated the development of transitional metaplasia in the epithelium of the colon segment in cystoplasty.
Kampo medicine "Dai-kenchu-to" prevents CPT-11-induced small-intestinal injury in rats.
Chikakiyo, Motoya; Shimada, Mitsuo; Nakao, Toshihiro; Higashijima, Jun; Yoshikawa, Kozo; Nishioka, Masanori; Iwata, Takashi; Kurita, Nobuhiro
2012-01-01
The key anticancer agent, CPT-11 (irinotecan hydrochloride), induces severe diarrhea clinically. We investigated the effect of a Kampo medicine, Dai-kenchu-to (DKT), on CPT-11-induced intestinal injuries in rats. Twenty-four male Wistar rats were divided into three groups: a control group; a CPT-11 group, given CPT-11 150 mg/kg intraperitoneally for 2 days; and a DKT group, given DKT 300 mg/kg orally for 5 days with CPT-11 150 mg/kg intraperitoneally on days 4 and 5. The rats were killed on day 6. Interleukin (IL)-1β, IL-12, interferon (IFN)-γ, and tumor necrosis factor-α expression in the small intestine of the CPT-11 group was significantly higher than that of the control group. Interleukin-1β and IFN-γ expression was improved significantly by DKT (P < 0.05). The number and height of jejuna villi, injury score, and apoptosis index in the CPT-11 group were improved significantly by DKT (P < 0.05). DKT suppressed CPT-11 induced inflammatory cytokines and apoptosis in the intestinal mucosa and maintained the mucosal integrity.
Increased enterocyte production in gnotobiotic rats mono-associated with Lactobacillus rhamnosus GG.
Banasaz, M; Norin, E; Holma, R; Midtvedt, T
2002-06-01
There is increasing scientific and commercial interest in using beneficial microorganisms (i.e., probiotics) to enhance intestinal health. Of the numerous microbial strains examined, Lactobacillus rhamnosus GG has been most extensively studied. Daily intake of L. rhamnosus GG shortens the course of rotavirus infection by mechanisms that have not been fully elucidated. Comparative studies with germfree and conventional rats have shown that the microbial status of an animal influences the intestinal cell kinetics and morphology. The present study was undertaken to study whether establishment of L. rhamnosus GG as a mono-associate in germfree rats influences intestinal cell kinetics and morphology. L. rhamnosus GG was easily established in germfree rats. After 3 days of mono-association, the rate of mitoses in the upper part of the small intestine (jejunum 1) increased as much as 14 and 22% compared to the rates in germfree and conventional counterparts, respectively. The most striking alteration in morphology was an increase in the number of cells in the villi. We hypothesis that the compartmentalized effects of L. rhamnosus GG may represent a reparative event for the mucosa.
Gómez-Hurtado, Isabel; Gimenez, Paula; García, Irma; Zapater, Pedro; Francés, Rubén; González-Navajas, José M; Manichanh, Chaysavanh; Ramos, José M; Bellot, Pablo; Guarner, Francisco; Such, José
2018-02-01
Norfloxacin administration is useful in preventing bacterial infections in cirrhosis but associated to the generation of resistant species. Rifaximin is known to reach high concentrations in the intestinal lumen without generating relevant resistance in the intestinal flora. Our aim was to compare the effect of Norfloxacin and Rifaximin on intestinal flora composition, bacterial translocation and survival in cirrhotic rats. Cirrhosis was induced in rats by oral administration of CCl 4 . Animals were divided into three groups: only CCl 4 (group I, n = 10); CCl 4 + Norfloxacin (group II, n = 17) and CCl 4 + Rifaximin (group III, n = 14). Gut bacterial composition, bacterial translocation and cytokine levels were measured. Forty-one rats were finally included. The incidence of viable and non-viable bacterial translocation was significantly reduced in animals receiving Norfloxacin; Rifaximin also decreased the incidence of viable and non-viable bacterial translocation, but did not reach statistical significance. Serum TNF-α levels were significantly lower in antibiotic groups. Norfloxacin modified intestinal microbiota, depleting significantly more pathobionts than Rifaximin. Norfloxacin is more effective than Rifaximin in preventing bacterial translocation in rats with cirrhosis probably because of its capacity to reduce pathobionts from intestinal microbiota. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zheng, Yunliang; Lin, Meihua; Hu, Xingjiang; Zhai, You; Zhang, Qiao; Lou, Yan; ShenTu, Jianzhong; Wu, Lihua
2018-04-01
Physalins are the major steroidal constituent of Physalis plants and display a range of biological activities. For this study, a rapid and sensitive high-performance liquid chromatography with triple quadrupole mass spectrometry method was developed for the simultaneous quantification of six physalins. Specifically, it was for the quantification of physalin A, physalin B, physalin D, physalin G, 4,7-didehydroneophysalin B, and isophysalin B in rat plasma and rat intestinal bacteria. After a solid-phase extraction, analytes and internal standards (prednisolone) were separated on a Shield reverse-phase C18 column (measuring 3 mm × 150 mm with an internal diameter of 3.5 μm) and determined using multiple reactions in a monitoring mode with a positive-ion electrospray ionization source. The mobile phase was a mixture of 0.1% formic acid in water (A) and acetonitrile (B) and was used at a flow rate of 0.6 mL/min. The intra- and interday precisions were within 15% with accuracies ranging from 86.2 to 114%. The method was validated and successfully applied to pharmacokinetics and stability studies of six physalins in rat plasma and rat intestinal bacteria, respectively. The results showed that physalin B and isophysalin B could not be absorbed by rats, and rat intestinal bacteria could quickly transform physalins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Small Intestine in Experimental Acute Iron Poisoning
Hosking, C. S.
1971-01-01
A histological examination of the small intestine of rats following acute iron poisoning by ingestion of ferrous sulphate solution is presented. The changes that occur depend on the dose and can be broadly divided into 2 classes. When a very large dose is given (greater than 0·3 mg. Fe/g.), there is gross shrinkage of the villi, sub-epithelial oedema and eventual loss of epithelium. With doses less than 0·2 mg. Fe/g., contraction of villi was not so obvious, but as the animals survive longer with the lower dose, the changes often progressed to gross destruction of the villous stalk. Some of the animals given smaller doses survived and in those that were killed after 24 hr, the mucosa of the small intestine was essentially normal. ImagesFigs. 1-4Figs. 5-7Figs. 8-11 PMID:5547659
Adams, P C; Rickert, D E
1996-11-01
We tested the hypothesis that the small intestine is capable of the first-pass, reductive metabolism of xenobiotics. A simplified version of the isolated vascularly perfused rat small intestine was developed to test this hypothesis with 1,3-dinitrobenzene (1,3-DNB) as a model xenobiotic. Both 3-nitroaniline (3-NA) and 3-nitroacetanilide (3-NAA) were formed and absorbed following intralumenal doses of 1,3-DNB (1.8 or 4.2 mumol) to isolated vascularly perfused rat small intestine. Dose, fasting, or antibiotic pretreatment had no effect on the absorption and metabolism of 1,3-DNB in this model system. The failure of antibiotic pretreatment to alter the metabolism of 1,3-DNA indicated that 1,3-DNB metabolism was mammalian rather than microfloral in origin. All data from experiments initiated with lumenal 1,3-DNB were fit to a pharmacokinetic model (model A). ANOVA analysis revealed that dose, fasting, or antibiotic pretreatment had no statistically significant effect on the model-dependent parameters. 3-NA (1.5 mumol) was administered to the lumen of isolated vascularly perfused rat small intestine to evaluate model A predictions for the absorption and metabolism of this metabolite. All data from experiments initiated with 3-NA were fit to a pharmacokinetic model (model B). Comparison of corresponding model-dependent pharmacokinetic parameters (i.e. those parameters which describe the same processes in models A and B) revealed quantitative differences. Evidence for significant quantitative differences in the pharmacokinetics or metabolism of formed versus preformed 3-NA in rat small intestine may require better definition of the rate constants used to describe tissue and lumenal processes or identification and incorporation of the remaining unidentified metabolites into the models.
Gao, Meng-Xue; Tang, Xi-Yang; Zhang, Feng-Xiang; Yao, Zhi-Hong; Yao, Xin-Sheng; Dai, Yi
2018-04-01
Xian-Ling-Gu-Bao capsule (XLGB), a well-known traditional Chinese medicine prescription, has been used for the prevention and treatment of osteoporosis. The safety and efficacy of XLGB have been confirmed based on the principle of evidence-based medicine. XLGB is usually administered orally, after which its multiple components are brought into contact with intestinal microflora in the alimentary tract and biotransformed. However, investigations on the comprehensive metabolic profile of XLGB are absent. In this study, 12 representative compounds bearing different typical structures (including iridoid glycosides, prenylated flavonol glycosides, prenylated flavonoids, triterpenoid saponins, steroidal saponins, coumarins and monoterpene phenols) were selected and then investigated for their biotransformation in rat intestinal microflora. In addition, the metabolic profile of XLGB in rat intestinal microflora was investigated by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. As a result, a total of 87 biotransformation components were identified from incubated solutions of 12 representative compounds and XLGB, which underwent 16 metabolic reactions (including deglycosylation, glycosylation, dehydrogenation, hydrogenation, oxidation, epoxidation, hydroxylation, dehydration, hydration, hydrolysis, methylation, isomerization, cyclization, pyrolysis reaction, amino acid conjugation and nucleophilic addition reaction with NH 3 ). This demonstrated that the deglycosylation reaction by cleavage of the sugar moieties is the main metabolic pathway of a variety of glycosides, including prenylated flavonol glycosides, coumarin glycosides, iridoid glycosides and saponins. In addition, compared with the biotransformation of 12 representative compounds, a different biotransformed fate was observed in the XLGB incubated samples of rat intestinal microflora. It is worth noting that the amino acid conjugation was first discovered in the metabolism of prenylated flavonol glycosides in rat intestinal microflora. Copyright © 2017 John Wiley & Sons, Ltd.
Zhang, Yan; Wang, Changyuan; Liu, Zhihao; Meng, Qiang; Huo, Xiaokui; Liu, Qi; Sun, Pengyuan; Yang, Xiaobo; Sun, Huijun; Ma, Xiaodong; Liu, Kexin
2018-04-01
Afatinib is an irreversible multi-targeted TKI, used in the treatment with EGFR mutated non-small cell lung cancer (NSCLC). The purpose of this study is to explore the molecular pharmacokinetic mechanism underlying the effect of P-gp inhibitors on the intestinal absorption and biliary excretion and to understand how P-gp inhibitors affect afatinib pharmacokinetics. Pharmacokinetics in vivo, in situ intestinal perfusion, perfused rat liver in situ, Caco-2 cells, P-gp ATPase activity, sandwich-cultured rat hepatocytes (SCRH) and transfected-cell transport were used in the evaluation. P-gp inhibitor verapamil (Ver) markedly increased the plasma concentrations and significantly decreased the biliary excretion of afatinib in vivo. Ver increased the intestinal absorption and decreased biliary excretion of afatinib in situ single-pass intestinal perfusion studies and in situ perfused rat liver, respectively. The accumulation of afatinib in Caco-2 cells was enhanced by Ver and Cyclosporin A (CsA). The biliary excretion index (BEI) of afatinib in SCRH was decreased by Ver and CsA, respectively. The net efflux ratio of afatinib was 2.3 across vector-/MDR1-MDCKII cell monolayers and was decreased by P-gp inhibitor. The activity of P-gp ATPase was induced by afatinib and the K m and V max were 1.05μM and 59.88nmol ATP/mg hP-gp/min, respectively. At least partly P-gp is involved in increasing the intestinal absorption and decreasing the biliary excretion of afatinib in rats. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Onal, Ozkan; Yetisir, Fahri; Sarer, A. Ebru Salman; Zeybek, N. Dilara; Onal, C. Oztug; Yurekli, Banu; Celik, H. Tugrul; Sirma, Ayse; Kılıc, Mehmet
2015-01-01
Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF) intraperitoneally (ip) for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR) group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD), catalase (CAT), glutathioneperoxidase (GSH-Px), malondyaldehide (MDA), and protein carbonyl (PCO) were analyzed in tissue samples. Total oxidant status (TOS), and total antioxidant capacity (TAC) were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy prevented intestine from ischemia reperfusion injury. It is thought that the therapeutic effect of ozone is associated with increase in antioxidant enzymes and protection of cells from oxidation and inflammation. PMID:26161005
Schober, Gudrun; Arnold, Myrtha; Birtles, Susan; Buckett, Linda K.; Pacheco-López, Gustavo; Turnbull, Andrew V.; Langhans, Wolfgang; Mansouri, Abdelhak
2013-01-01
Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased β-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect. PMID:23449193
Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2
Hosomi, Atsushi; Nakanishi, Takeo; Fujita, Takuya; Tamai, Ikumi
2012-01-01
Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats. PMID:22348008
Pyner, Alison; Nyambe-Silavwe, Hilda; Williamson, Gary
2017-10-04
We optimized the assays used to measure inhibition of rat and human α-glucosidases (sucrase and maltase activities), intestinal enzymes which catalyze the final steps of carbohydrate digestion. Cell-free extracts from fully differentiated intestinal Caco-2/TC7 monolayers were shown to be a suitable source of sucrase-isomaltase, with the same sequence as human small intestine, and were compared to a rat intestinal extract. The kinetic conditions of the assay were optimized, including comparison of enzymatic and chromatographic methods to detect the monosaccharide products. Human sucrase activity was more susceptible than the rat enzyme to inhibition by acarbose (IC 50 (concentration required for 50% inhibition) = 2.5 ± 0.5 and 12.3 ± 0.6 μM, respectively), by a polyphenol-rich green tea extract, and by pure (-)-epigallocatechin gallate (EGCG) (IC 50 = 657 ± 150 and 950 ± 86 μM respectively). In contrast, the reverse was observed when assessing maltase activity (e.g. IC 50 = 677 ± 241 and 14.0 ± 2.0 μM for human and rat maltase, respectively). 5-Caffeoylquinic acid did not significantly inhibit maltase and was only a very weak inhibitor of sucrase. The data show that for sucrase and maltase activities, inhibition patterns of rat and human enzymes are generally qualitatively similar but can be quantitatively different.
Tso, P; Lee, T; Demichele, S J
1999-08-01
Comparison was made between the intestinal absorption and lymphatic transport of a randomly interesterified fish oil and medium-chain triglyceride (MCT) structured triglycerides (STG) vs. the physical mix in rat small intestine following ischemia and reperfusion (I/R) injury. Under halothane anesthesia, the superior mesenteric artery (SMA) was occluded for 20 min and then reperfused in I/R rats. The SMA was isolated but not occluded in control rats. In both treatment groups, the mesenteric lymph duct was cannulated and a gastric tube was inserted. Each treatment group received 1 ml of the fish oil-MCT STG or physical mix (7 rats/group) through the gastric tube followed by an infusion of PBS at 3 ml/h for 8 h. Lymph was collected hourly for 8 h. Lymph triglyceride, cholesterol, and decanoic and eicosapentaenoic acids increased rapidly and maintained a significantly higher output (P < 0.01) with STG compared with physical mix in control rats over 8 h. After I/R, lymphatic triglyceride output decreased 50% compared with control. Gastric infusion of STG significantly improved lipid transport by having a twofold higher triglyceride, cholesterol, and decanoic and eicosapentaenoic acids output to lymph compared with its physical mix (P < 0.01). We conclude that STG is absorbed into lymph significantly better than physical mix by both the normal intestine and the intestine injured by I/R.
Ongoing ingestive behavior is rapidly suppressed by a preabsorptive, intestinal “bitter taste” cue
Davidson, Terry L.; Powley, Terry L.
2011-01-01
The discovery that cells in the gastrointestinal (GI) tract express the same molecular receptors and intracellular signaling components known to be involved in taste has generated great interest in potential functions of such post-oral “taste” receptors in the control of food intake. To determine whether taste cues in the GI tract are detected and can directly influence behavior, the present study used a microbehavioral analysis of intake, in which rats drank from lickometers that were programmed to simultaneously deliver a brief yoked infusion of a taste stimulus to the intestines. Specifically, in daily 30-min sessions, thirsty rats with indwelling intraduodenal catheters were trained to drink hypotonic (0.12 M) sodium chloride (NaCl) and simultaneously self-infuse a 0.12 M NaCl solution. Once trained, in a subsequent series of intestinal taste probe trials, rats reduced licking during a 6-min infusion period, when a bitter stimulus denatonium benzoate (DB; 10 mM) was added to the NaCl vehicle for infusion, apparently conditioning a mild taste aversion. Presentation of the DB in isomolar lithium chloride (LiCl) for intestinal infusions accelerated the development of the response across trials and strengthened the temporal resolution of the early licking suppression in response to the arrival of the DB in the intestine. In an experiment to evaluate whether CCK is involved as a paracrine signal in transducing the intestinal taste of DB, the CCK-1R antagonist devazepide partially blocked the response to intestinal DB. In contrast to their ability to detect and avoid the bitter taste in the intestine, rats did not modify their licking to saccharin intraduodenal probe infusions. The intestinal taste aversion paradigm developed here provides a sensitive and effective protocol for evaluating which tastants—and concentrations of tastants—in the lumen of the gut can control ingestion. PMID:21865540
Deng, Shao-Dong; Zhang, Peng; Lin, Li; Xiao, Feng-Xia; Lin, Jing-Ran
2015-01-01
To study the in situ intestinal absorption of five oligosaccharides contained in Morinda officinalis How. (sucrose, kestose, nystose, 1F-Fructofuranosyinystose and Bajijiasu). The absorption of the five oligosaccharides in small intestine (duodenum, jejunum and ileum) and colon of rats and their contents were investigated by using in situ single-pass perfusion model and HPLC-ELSD. The effects of drug concentration, pH in perfusate and P-glycoprotein inhibitor on the intestinal absorption were investigated to define the intestinal absorption mechanism of the five oligosaccharides in rats. According to the results, all of the five oligosaccharides were absorbed in the whole intestine, and their absorption rates were affected by the pH of the perfusion solution, drug concentration and intestinal segments. Verapamil Hydrochloride could significantly increase the absorptive amount of sucrose and Bajijiasu, suggesting sucrose and Bajijiasu are P-gp's substrate. The five oligosaccharides are absorbed mainly through passive diffusion in the intestinal segments, without saturated absorption. They are absorbed well in all intestines and mainly in duodenum and jejunum.
Bacterial translocation and intestinal injury in experimental necrotizing enterocolitis model.
Ciftci, I; Ozdemir, M; Aktan, M; Aslan, K
2012-01-01
To study the occurrence of bacterial translocation and to assess the impact of breastfeeding on bacterial translocation in the animal model of necrotizing enterocolitis. A total of 20 neonate Sprague-Dawley rats were enrolled in the study. Rats were randomly allocated into either control or study group just after birth. Ten newborn rats in the control group were left with their mother to be breast-fed. In contrary, necrotizing enterocolitis group consisted of neonates that were separated from their mothers, housed in an incubator and were gavaged with a special rodent formula three times daily. Survival rates, weight changes, and morphologic scoring obtained after microscopic evaluation were determined as microbiologic evaluation criteria. All the rats in the control group survived, while 1 (10 %) rat died in the necrotizing enterocolitis group. Mortality rates of the two groups were similar. All the formula-fed animals in the necrotizing enterocolitis group had significant weight loss compared to the breast milk-fed rats in the control group (p<0.05). A total of 7 (70 %) and 2 (20 %) E. coli growths were identified in the bowel lumen, liver, and spleen of necrotizing enterocolitis and control groups, respectively. This difference was statistically significant. In peritoneal smear cultures, a total of 3 (30 %) growths were detected in the necrotizing enterocolitis group and 1 (10 %) growth in the control group. As the result of a disturbance in the intestinal flora and impairment of the intestinal barrier in necrotizing enterocolitis, microrganisms in the bowel pass through the intestinal barrier and reach the liver and the spleen via the hematogenous route. This condition is closely related to the impairment of physiological and functional features of the intestinal barrier and is independent from the degree of intestinal injury. Bacterial translocation should be remembered in cases suspected of necrotizing enterocolitis, and a rapid and effective treatment algorithm should be applied in such circumstances (Tab. 3, Fig. 3, Ref. 21). Full Text in PDF www.elis.sk.
Samala, Devdas S.; Parelkar, Sandesh V.; Sanghvi, Beejal V.; Vageriya, Natasha L.; Paradkar, Bhupesh A.; Kandalkar, Bhuvaneshwari M.; Sathe, Pragati A.
2014-01-01
Objectives: The aim of this experimental study was to observe the intensity of the inflammatory reaction caused by neonatal urine and meconium on the intestinal wall of rats to better understand etiology of intestinal damage in gastroschisis. Materials and Methods: A total of 24 adult Wistar rats were used as experimental models to simulate the effect of exposed bowel in cases of gastroschisis. The peritoneal cavity of the rats was injected with substances which constitute human amniotic fluid to study the effect on the bowel. Sterile urine and meconium were obtained from newborn humans. The rats were divided into four groups according to the material to be injected. In Group I (Control group) 3 mL of distilled water was injected, in Group II (Urine group) 3 mL of neonatal urine was injected, in Group III (Meconium group) 5% meconium suspension was injected, while in Group IV, a combination of 5% meconium suspension and urine was injected. A total of 3mL solution was injected into the right inferior quadrant twice a day for 5 days. The animals were sacrificed on the 6th day by a high dose of thiopentone sodium. A segment of small bowel specimen was excised, fixed in paraffin, and stained with hematoxylin-eosin for microscopic analysis for determination of the degree of inflammatory reaction in the intestinal wall. All pathology specimens were studied by the same pathologist. Results: The maximum bowel damage was seen in Group II (Urine group) in the form of serositis, severe enteritis, parietal necrosis, and peeling. A lesser degree of damage was observed in Group III (Meconium group) as mild enteritis (mild lymphoid hyperplasia). The least damage was seen in Group IV (Combination of meconium and urine) and Group I (Control group). Conclusion: The intraabdominal injection of neonatal human urine produces significant inflammatory reactions in the intestinal wall of rats. PMID:24604977
Schepens, Marloes A A; Schonewille, Arjan J; Vink, Carolien; van Schothorst, Evert M; Kramer, Evelien; Hendriks, Thijs; Brummer, Robert-Jan; Keijer, Jaap; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J
2009-08-01
We have shown in several controlled rat and human infection studies that dietary calcium improves intestinal resistance and strengthens the mucosal barrier. Reinforcement of gut barrier function may alleviate inflammatory bowel disease (IBD). Therefore, we investigated the effect of supplemental calcium on spontaneous colitis development in an experimental rat model of IBD. HLA-B27 transgenic rats were fed a purified high-fat diet containing either a low or high calcium concentration (30 and 120 mmol CaHPO4/kg diet, respectively) for almost 7 wk. Inert chromium EDTA (CrEDTA) was added to the diets to quantify intestinal permeability by measuring urinary CrEDTA excretion. Relative fecal wet weight was determined to quantify diarrhea. Colonic inflammation was determined histologically and by measuring mucosal interleukin (IL)-1beta. In addition, colonic mucosal gene expression of individual rats was analyzed using whole-genome microarrays. The calcium diet significantly inhibited the increase in intestinal permeability and diarrhea with time in HLA-B27 rats developing colitis compared with the control transgenic rats. Mucosal IL-1beta levels were lower in calcium-fed rats and histological colitis scores tended to be lower (P = 0.08). Supplemental calcium prevented the colitis-induced increase in the expression of extracellular matrix remodeling genes (e.g. matrix metalloproteinases, procollagens, and fibronectin), which was confirmed by quantitative real-time PCR and gelatin zymography. In conclusion, dietary calcium ameliorates several important aspects of colitis severity in HLA-B27 transgenic rats. Reduction of mucosal irritation by luminal components might be part of the mechanism. These results show promise for supplemental calcium as effective adjunct therapy for IBD.
Ramare, F; Nicoli, J; Dabard, J; Corring, T; Ladire, M; Gueugneau, A M; Raibaud, P
1993-09-01
An antibacterial substance appeared within 1 day in feces of gnotobiotic rats harboring a human intestinal Peptostreptococcus strain. It disappeared when the rat bile-pancreatic duct was ligatured or when the rats ingested a trypsin inhibitor. Anaerobic cultures of the Peptostreptococcus strain in a medium supplemented with trypsin also exhibited an antibacterial activity, which was also inhibited by the trypsin inhibitor. In vitro the antibacterial substance from both feces and culture medium was active against several gram-positive bacteria, including other Peptostreptococcus spp., potentially pathogenic Clostridium spp. such as C. perfringens, C. difficile, C. butyricum, C. septicum, and C. sordellii, Eubacterium spp., Bifidobacterium spp., and Bacillus spp. Whatever the order of inoculation of the strains, a sensitive strain of C. perfringens was eliminated within 1 day from the intestine of rats monoassociated with the Peptostreptococcus strain. These findings demonstrate for the first time that very potent antibacterial substances can be produced through a mechanism involving intestinal bacteria and exocrine pancreatic secretions.
Wan, Changrong; Yin, Peng; Xu, Xiaolong; Liu, Mingjiang; He, Shasha; Song, Shixiu; Liu, Fenghua; Xu, Jianqin
2014-04-01
The present study investigated the effects of simulated transport stress on morphology and gene expression in the small intestine of laboratory rats. Sprague Dawley rats were subjected to 35°C and 0.1×g on a constant temperature shaker for physiological, biochemical, morphological and microarray analysis before and after treatment. The treatment induced obvious stress responses with significant decreases in body weight (P<0.01), increases in rectal temperature, serum corticosterone (CORT), serum glucose (GLU), creatine kinase (CK) and lactate dehydrogenase (LDH) levels (P<0.01), as well as expression of Hsp27/70/90 mRNA (P<0.05; P<0.01). The rat jejunum was severely damaged and apoptotic after mimicking transport stress, which may mainly be related to cell death, oxidation reduction and hormone imbalance determined by microarray analysis. The bioinformatics analysis from the present study would provide insight into the potential mechanisms underlying transport stress-induced injury in the rat small intestine. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pham, Bao Tung; van Haaften, Wouter Tobias; Oosterhuis, Dorenda; Nieken, Judith; de Graaf, Inge Anne Maria; Olinga, Peter
2015-04-01
Intestinal fibrosis (IF) is a major complication of inflammatory bowel disease. IF research is limited by the lack of relevant in vitro and in vivo models. We evaluated precision-cut intestinal slices (PCIS) prepared from human, rat, and mouse intestine as ex vivo models mimicking the early-onset of (human) IF. Precision-cut intestinal slices prepared from human (h), rat (r), and mouse (m) jejunum, were incubated up to 72 h, the viability of PCIS was assessed by ATP content and morphology, and the gene expression of several fibrosis markers was determined. The viability of rPCIS decreased after 24 h of incubation, whereas mPCIS and hPCIS were viable up to 72 h of culturing. Furthermore, during this period, gene expression of heat shock protein 47 and plasminogen activator inhibitor 1 increased in all PCIS in addition to augmented expression of synaptophysin in hPCIS, fibronectin (Fn2) and TGF-β1 in rPCIS, and Fn2 and connective tissue growth factor (Ctgf) in mPCIS. Addition of TGF-β1 to rPCIS or mPCIS induced the gene expression of the fibrosis markers Pro-collagen1a1, Fn2, and Ctgf in both species. However, none of the fibrosis markers was further elevated in hPCIS. We successfully developed a novel ex vivo model that can mimic the early-onset of fibrosis in the intestine using human, rat, and mouse PCIS. Furthermore, in rat and mouse PCIS, TGF-β1 was able to even further increase the gene expression of fibrosis markers. This indicates that PCIS can be used as a model for the early-onset of IF. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Wei, Xiao; Lu, Zongshi; Yang, Tao; Gao, Peng; Chen, Sijiao; Liu, Daoyan; Zhu, Zhiming
2018-03-16
High salt consumption is a major risk factor for hypertension, and sodium homeostasis is regulated by both intestinal sodium absorption and urinary sodium excretion. Chronic caffeine intake has been reported to attenuate salt-sensitive hypertension by promoting urinary sodium excretion; however, its exact role in intestinal sodium absorption remains unknown. Here, we investigated whether and how chronic caffeine consumption antagonizes salt-sensitive hypertension by inhibiting intestinal sodium absorption. Dahl salt-sensitive rats were fed 8% NaCl chow and 0.1% caffeine in their drinking water for 15 days. The blood pressure and fecal sodium content were measured. The effect of caffeine on the movement of Cl- in enterocyte cells was determined with the Ussing chamber assay. Rats that were treated with caffeine displayed significantly lower mean blood pressure and higher fecal sodium content than the controls. Consistent with these findings, caffeine intake decreased fluid absorption by the intestine in the fluid perfusion experiment. Further, the results from the Ussing chamber assay indicated that caffeine promoted Cl- secretion through enterocyte apical cystic fibrosis transmembrane conductance regulator (CFTR), and thus inhibited sodium absorption. Moreover, depletion of cAMP or inhibition of CFTR completely abolished the effect of caffeine on Cl- secretion. The results indicate that chronic caffeine consumption reduces sodium absorption by promoting CFTR-mediated Cl- secretion in the intestine, which contributes to the anti-hypertensive effect of caffeine in salt-sensitive rats. © 2018 The Author(s). Published by S. Karger AG, Basel.
Li, Fuxin; Cao, Jisen; Zhao, Zhicheng; Li, Chuan; Qi, Feng; Liu, Tong
2017-04-01
Mesenchymal stem cells are easy to obtain and expand, with characteristics of low immunogenicity and strong tissue repair capacity. In this study, our aim was to investigate the role of mesenchymal stem cells in chronic immune rejection of heterotopic small intestine transplant in rats. After successfully constructing a rat chronic immune rejection model of heterotopic small intestine transplant, we infused mesenchymal stem cells into the animal recipients. We observed mesenchymal stem cell location in the recipients, recipient survival, pathology changes, and the expression of CD68, transforming growth factor β1, and platelet-derived growth factor C in the donor intestine. Mesenchymal stem cells inhibited the lymphocyte proliferation caused by concanavalin A in vitro. After stem cells were infused into recipients, they were mainly located in the donor intestine, as well as in the spleen and thymus. Recovery after transplant and pathology changes of the donor intestine in rats with stem cell infusion were better than in the control group; however, we observed no differences in survival time, accompanied by downregulated expression of CD68, transforming growth factor β1, and platelet-derived growth factor C. Mesenchymal stem cells, to a certain extent, could inhibit the process of chronic rejection. The mechanisms may include the inhibited function of these cells on lymphocyte proliferation, reduced infiltration of macrophages, and reduced expression of transforming growth factor β1 and platelet-derived growth factor C.
Intestinal microbiota determine severity of myocardial infarction in rats
Lam, Vy; Su, Jidong; Koprowski, Stacy; Hsu, Anna; Tweddell, James S.; Rafiee, Parvaneh; Gross, Garrett J.; Salzman, Nita H.; Baker, John E.
2012-01-01
Signals from the intestinal microbiota are important for normal host physiology; alteration of the microbiota (dysbiosis) is associated with multiple disease states. We determined the effect of antibiotic-induced intestinal dysbiosis on circulating cytokine levels and severity of ischemia/reperfusion injury in the heart. Treatment of Dahl S rats with a minimally absorbed antibiotic vancomycin, in the drinking water, decreased circulating leptin levels by 38%, resulted in smaller myocardial infarcts (27% reduction), and improved recovery of postischemic mechanical function (35%) as compared with untreated controls. Vancomycin altered the abundance of intestinal bacteria and fungi, measured by 16S and 18S ribosomal DNA quantity. Pretreatment with leptin (0.12 μg/kg i.v.) 24 h before ischemia/reperfusion abolished cardioprotection produced by vancomycin treatment. Dahl S rats fed the commercially available probiotic product Goodbelly, which contains the leptin-suppressing bacteria Lactobacillus plantarum 299v, also resulted in decreased circulating leptin levels by 41%, smaller myocardial infarcts (29% reduction), and greater recovery of postischemic mechanical function (23%). Pretreatment with leptin (0.12 μg/kg i.v.) abolished cardioprotection produced by Goodbelly. This proof-of-concept study is the first to identify a mechanistic link between changes in intestinal microbiota and myocardial infarction and demonstrates that a probiotic supplement can reduce myocardial infarct size.—Lam, V., Su, J., Koprowski, S., Hsu, A., Tweddell, J. S., Rafiee, P., Gross, G. J., Salzman, N. H., Baker, J. E. Intestinal microbiota determine severity of myocardial infarction in rats. PMID:22247331
Activation of rat intestinal mucosal mast cells by fat absorption.
Ji, Yong; Sakata, Yasuhisa; Yang, Qing; Li, Xiaoming; Xu, Min; Yoder, Stephanie; Langhans, Wolfgang; Tso, Patrick
2012-06-01
Previous studies have linked certain types of gut mucosal immune cells with fat intake. We determined whether fat absorption activates intestinal mucosal mast cells (MMC), a key component of the gut mucosal immune system. Conscious intestinal lymph fistula rats were used. The mesenteric lymph ducts were cannulated, and the intraduodenal (i.d.) tubes were installed for the infusion of Liposyn II 20% (an intralipid emulsion). Lymphatic concentrations of histamine, rat MMC protease II (RMCPII), a specific marker of rat intestinal MMC degranulation, and prostaglandin D(2) (PGD(2)) were measured by ELISA. Intestinal MMC degranulation was visualized by immunofluorescent microscopy of jejunum sections taken at 1 h after Liposyn II gavage. Intraduodenal bolus infusion of Liposyn II 20% (4.4 kcal/3 ml) induced approximately a onefold increase in lymphatic histamine and PGD(2), ∼20-fold increase in lymphatic RMCPII, but only onefold increase in peripheral serum RMCPII concentrations. Release of RMCPII into lymph increased dose dependently with the amount of lipid fed. In addition, i.d. infusion of long-chain triacylglycerol trilinolein (C18:2 n-6, the major composite in Liposyn II) significantly increased the lymphatic RMCPII concentration, whereas medium-chain triacylglycerol tricaprylin (C8:0) did not alter lymph RMCPII secretion. Immunohistochemistry image revealed the degranulation of MMC into lamina propria after lipid feeding. These novel findings indicate that intestinal MMC are activated and degranulate to release MMC mediators to the circulation during fat absorption. This action of fatty acid is dose and chain length dependent.
Activation of rat intestinal mucosal mast cells by fat absorption
Sakata, Yasuhisa; Yang, Qing; Li, Xiaoming; Xu, Min; Yoder, Stephanie; Langhans, Wolfgang; Tso, Patrick
2012-01-01
Previous studies have linked certain types of gut mucosal immune cells with fat intake. We determined whether fat absorption activates intestinal mucosal mast cells (MMC), a key component of the gut mucosal immune system. Conscious intestinal lymph fistula rats were used. The mesenteric lymph ducts were cannulated, and the intraduodenal (i.d.) tubes were installed for the infusion of Liposyn II 20% (an intralipid emulsion). Lymphatic concentrations of histamine, rat MMC protease II (RMCPII), a specific marker of rat intestinal MMC degranulation, and prostaglandin D2 (PGD2) were measured by ELISA. Intestinal MMC degranulation was visualized by immunofluorescent microscopy of jejunum sections taken at 1 h after Liposyn II gavage. Intraduodenal bolus infusion of Liposyn II 20% (4.4 kcal/3 ml) induced approximately a onefold increase in lymphatic histamine and PGD2, ∼20-fold increase in lymphatic RMCPII, but only onefold increase in peripheral serum RMCPII concentrations. Release of RMCPII into lymph increased dose dependently with the amount of lipid fed. In addition, i.d. infusion of long-chain triacylglycerol trilinolein (C18:2 n-6, the major composite in Liposyn II) significantly increased the lymphatic RMCPII concentration, whereas medium-chain triacylglycerol tricaprylin (C8:0) did not alter lymph RMCPII secretion. Immunohistochemistry image revealed the degranulation of MMC into lamina propria after lipid feeding. These novel findings indicate that intestinal MMC are activated and degranulate to release MMC mediators to the circulation during fat absorption. This action of fatty acid is dose and chain length dependent. PMID:22461027
Tsai, Jong-Chang; Tsai, Shuli; Chang, Weng-Cheng
2004-07-01
Huangbai (Phellodendron spec.) and Qianniuzi (Pharbitis spec.) are two traditional Chinese medical herbs used for anti-diarrheal and laxative agents, respectively. Ethanol and water extracts of these two herbs were prepared and effects of the extracts on ion transport of the rat intestinal epithelia were studied. For measuring changes of the short circuit current across the epithelia, the rat intestinal epithelia were mounted in the Ussing chamber and attached with voltage/current clamp. The intestinal epithelia were firstly activated by serosal administration of 5 microM forskolin. As current raised and being stable, extracts of these herbs were added, respectively, and changes in the short circuit current were recorded. Ethanol extract of Huangbai attenuated the current increment; on the contrary, ethanol extract of Qianniuzi augmented the current increment additionally. Water extracts of the two herbs showed minor effects on the current in comparison to ethanol extracts. The results provide evidences to reveal the pharmacological mechanism of the two Chinese medical herbs on the intestinal tissue.
Fan, Jun; Li, Guoping; Wu, Lidong; Tao, Shaoyu; Wang, Wei; Sheng, Zhiyong; Meng, Qingyan
2015-05-01
The gut-associated lymphoid tissue is continuously exposed to antigens in the gut lumen and becomes the first line of defense against enteric bacteria and associated toxin. The aim of this study was to investigate the effects of parenteral glutamine (GLN) supplementation in combination with enteral nutrition (EN) on intestinal mucosal immunity in septic rats by cecal ligation and puncture (CLP). Male Sprague-Dawley rats were randomly assigned into four groups: A sham CLP + EN + saline group (n = 10), a sham CLP + EN + GLN group (n = 10), a CLP + EN + saline group (n = 10), and a CLP + EN + GLN group (n = 10). At 2 h after CLP or sham CLP, all rats in each of the four groups received an identical enteral nutrition solution as their base formula. Then, the rats in the sham CLP + EN + GLN group and CLP + EN + GLN group were given 0.35 g GLN/kg body weight daily for 7 d, all at the same time, via a tail vein injection; whereas those in the sham CLP + EN + saline group and CLP + EN + saline group were daily administered isovolumic sterile 0.9% saline for comparison. All rats in each of the four groups were given 290 kcal/kg body wt/d for 7 d. At the end of the seventh day after the nutritional program was finished, all rats were euthanized and the entire intestine was collected. Total Peyer's patches (PP) cell yield was counted by a hemocytometer. The percentage of PP lymphocyte subsets was analyzed by flow cytometry. The number of intestinal lamina propria IgA plasma cells was determined by the immunohistochemistry technique. The intestinal immunoglobulin A (IgA) levels were assessed by ELISA. PP apoptosis was evaluated by terminal deoxyuridine nick-end labeling. The results revealed total PP cell yield, the numbers of PP lymphocyte subsets, intestinal lamina propria IgA plasma cells, and intestinal IgA levels in the CLP + EN + GLN group were significantly increased when compared with the CLP + EN + saline group (P < 0.05). On the other hand, the number of TUNEL-stained cells within PPs in the CLP + EN + GLN group was markedly decreased as compared with the CLP + EN + saline group (P < 0.05). The results of this study show that parenteral glutamine supplementation in combination with enteral nutrition may attenuate PP apoptosis, increase PP cell yield and intestinal lamina propria IgA plasma cells, and subsequently improve intestinal mucosal immunity. Clinically, these results suggest therapeutic efforts at improving intestinal immunity may contribute to the prevention and treatment of sepsis. Copyright © 2015 Elsevier Inc. All rights reserved.
"Non-Toxic" Proteins of the Botulinum Toxin Complex Exert In-vivo Toxicity.
Miyashita, Shin-Ichiro; Sagane, Yoshimasa; Suzuki, Tomonori; Matsumoto, Takashi; Niwa, Koichi; Watanabe, Toshihiro
2016-08-10
The botulinum neurotoxin (BoNT) causes muscle paralysis and is the most potent toxin in nature. BoNT is associated with a complex of auxiliary "Non-Toxic" proteins, which constitute a large-sized toxin complex (L-TC). However, here we report that the "Non-Toxic" complex of serotype D botulinum L-TC, when administered to rats, exerts in-vivo toxicity on small-intestinal villi. Moreover, Serotype C and D of the "Non-Toxic" complex, but not BoNT, induced vacuole-formation in a rat intestinal epithelial cell line (IEC-6), resulting in cell death. Our results suggest that the vacuole was formed in a manner distinct from the mechanism by which Helicobacter pylori vacuolating toxin (VacA) and Vibrio cholerae haemolysin induce vacuolation. We therefore hypothesise that the serotype C and D botulinum toxin complex is a functional hybrid of the neurotoxin and vacuolating toxin (VT) which arose from horizontal gene transfer from an ancestral BoNT-producing bacterium to a hypothetical VT-producing bacterium.
Structural and functional maturation of rat gastrointestinal barrier with thyroxine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Israel, E.J.; Pang, K.Y.; Harmatz, P.R.
It has been noted that the closure of the intestinal barrier to immunoglobulins is a normal maturational process in the rat. It has also been noted that the microvillus membrane (MVM) of newborn animals differs from adult MVM. The purpose of this study is to document whether thyroid hormone can induce closure in vivo in the rat and to relate this effect of thyroxine to the structural and functional maturation of the intestinal MVM. To assess closure, 2-wk-old rats were fed in rat immunoglobulin G (IgG), and serum antibody binding activity was measured 4 h later. The antibody binding activitymore » of treated animals (T) was 1.5-2 times less than that of controls (C), indicating that thyroxine stimulates closure. The MVM similarly showed signs of maturation. Structural maturation was demonstrated by the lower fluidity of the thyroid-treated animals' membranes. Under the influence of thyroxine, the number of receptors on the MVM for IgG had decreased, while the K/sub a/ remained the same, demonstrating the functional maturation of the MVM. In conclusion, thryoid hormone can induce both structural and functional maturation of the intestinal MVM and can enhance the intestinal mucosal barrier by decreasing the penetration of antibodies.« less
Zhong, Wei; Li, Qiong; Sun, Qian; Zhang, Wenliang; Zhang, Jiayang; Sun, Xinguo; Yin, Xinmin; Zhang, Xiang; Zhou, Zhanxiang
2015-01-01
Background: Zinc deficiency has been well documented in alcoholic liver disease. Objective: This study was undertaken to determine whether dietary zinc supplementation provides beneficial effects in treating alcohol-induced gut leakiness and endotoxemia. Methods: Male Sprague Dawley rats were divided into 3 groups and pair-fed (PF) Lieber-DeCarli liquid diet for 8 wk: 1) control (PF); 2) alcohol-fed (AF; 5.00–5.42% wt:vol ethanol); and 3) AF with zinc supplementation (AF/Zn) at 220 ppm zinc sulfate heptahydrate. The PF and AF/Zn groups were pair-fed with the AF group. Hepatic inflammation and endotoxin signaling were determined by immunofluorescence and quantitative polymerase chain reaction (qPCR). Alterations in intestinal tight junctions and aldehyde dehydrogenases were assessed by qPCR and Western blot analysis. Results: The AF rats had greater macrophage activation and cytokine production (P < 0.05) in the liver compared with the PF rats, whereas the AF/Zn rats showed no significant differences (P > 0.05). Plasma endotoxin concentrations of the AF rats were 136% greater than those of the PF rats, whereas the AF/Zn rats did not differ from the PF rats. Ileal permeability was 255% greater in the AF rats and 19% greater in the AF/Zn rats than in the PF rats. The AF group had reduced intestinal claudin-1, occludin, and zona occludens-1 (ZO-1) expression, and the AF/Zn group had upregulated claudin-1 and ZO-1 expression (P < 0.05) compared with the PF group. The intestinal epithelial expression and activity of aldehyde dehydrogenases were elevated (P < 0.05) in the AF/Zn rats compared with those of the AF rats. Furthermore, the ileal expression and function of hepatocyte nuclear factor 4α, which was impaired in the AF group, was significantly elevated in the AF/Zn group compared with the PF group. Conclusions: The results demonstrate that attenuating hepatic endotoxin signaling by preserving the intestinal barrier contributes to the protective effect of zinc on alcohol-induced steatohepatitis in rats. PMID:26468492
Machida, Takuji; Takano, Yuho; Iizuka, Kenji; Machida, Maiko; Hirafuji, Masahiko
2017-03-01
This study aimed to investigate the acute and chronic effect of methotrexate on the intestinal substance P metabolism after a single administration to rats. Methotrexate caused a significant increase in the number of substance P-containing cells in the ileal mucosa both at 24 and 96 h. Most of enterochromaffin cells expressing l-tryptophan hydroxylase contained substance P. The expression of Tac1 mRNA was increased by methotrexate at 24 h, but not at 96 h. Thus, methotrexate causes acute hyperplasia of enterochromaffin cells in the intestinal mucosa of rats with a transient increase in the production of substance P. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Santidrián, Santiago; de Moya, Carmen Cavallé; Grant, George; Frühbeck, Gema; Urdaneta, Elena; García, María; Marzo, Florencio
2003-03-01
The composition of the raw legume Phaseolus vulgaris L. var. athropurpurea (PhVa) and its effects on the metabolism of young growing rats have been evaluated. The levels of protein, unsaturated fatty acids, carbohydrate, fibre and bioactive factors present in PhVa were comparable with those in other Phaseolus vulgaris varieties. However, the lectins of PhVa were predominantly of the leucoagglutinating type, and concentrated in the albumin protein fraction. Rats fed a diet (110 g total protein, 16.0 MJ/kg) in which PhVa meal provided about half of the protein excreted high levels of N in faeces and urine, and grew more slowly, than rats fed a high-quality control diet (ad libitum or pair-fed). Small intestine, large intestine and pancreas weights were increased (by almost 100 %, P<0.05), whilst skeletal muscle, thymus and spleen weights were reduced. Blood insulin (16.20 v. 0.50 mU/l, P<0.05, thyroxine, glucose, protein (60.5 v. 48.3 g/l, P<0.05) and LDL-cholesterol were lowered, whilst glucagon (155.3 v. 185.4 ng/l, P<0.05), triiodothyronine and urea were elevated, as were urinary urea, creatinine and glucose. These changes in the local (gut) and systemic metabolism of rats were probably mediated primarily by lectins in PhVa, which were concentrated in the albumin protein fraction, whereas in many other Phaseolus vulgaris lines they are distributed across the globulin and albumin fractions.
Cocoa-enriched diets modulate intestinal and systemic humoral immune response in young adult rats.
Pérez-Berezo, Teresa; Franch, Angels; Ramos-Romero, Sara; Castellote, Cristina; Pérez-Cano, Francisco J; Castell, Margarida
2011-05-01
Previous studies have shown that a highly enriched cocoa diet affects both intestinal and systemic immune function in young rats. The aim of this study was to elucidate whether diets containing lower amounts of cocoa could also influence the systemic and intestinal humoral immune response. Fecal and serum samples were collected during the study and, at the end, intestinal washes were obtained and mesenteric lymph nodes and small-intestine walls were excised for gene expression assessment. IgA, IgM, IgG1, IgG2a, IgG2b and IgG2c concentrations were quantified in serum whereas S-IgA and S-IgM were determined in feces and intestinal washes. Animals receiving 5 and 10% cocoa for 3 wk showed no age-related increase in serum IgG1 and IgG2a concentrations, and IgG2a values were significantly lower than those in reference animals. Serum IgM was also decreased by the 10% cocoa diet. The 5 and 10% cocoa diets dramatically reduced intestinal S-IgA concentration and modified the expression of several genes involved in IgA synthesis. A diet containing 2% cocoa had no effect on most of the studied variables. The results demonstrate the downregulatory effect of a 5% or higher cocoa diet on the systemic and intestinal humoral immune response in adult rats. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.
Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R
2017-07-01
Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1 week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.
Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A
2002-01-01
In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl−-dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl−-dependent, apical creatine uptake. PMID:12433955
Sex differences in hepatic and intestinal contributions to nevirapine biotransformation in rats.
Pinheiro, P F; Marinho, A T; Antunes, A M M; Marques, M M; Pereira, S A; Miranda, J P
2015-05-25
The understanding of the intestine contribution to drug biotransformation improved significantly in recent years. However, the sources of inter-individual variability in intestinal drug biotransformation, namely sex-differences, are still elusive. Nevirapine (NVP) is an orally taken anti-HIV drug associated with severe idiosyncratic reactions elicited by toxic metabolites, with women at increased risk. As such, NVP is a good model to assess sex-dimorphic metabolism. The aim of this study was to perform a comparative profiling of NVP biotransformation in rat intestine and liver and evaluate whether or not it is organ- and sex-dependent. Therefore, nevirapine-containing solutions were perfused through the intestine, in a specially designed chamber, or incubated with liver slices, from male and female Wistar rats. The levels of NVP and its Phase I metabolites were quantified by HPLC-UV. Liver incubation experiments yielded the metabolites 2-, 3-, 8-, and 12-OH-NVP, being 12-OH-NVP and 2-OH-NVP the major metabolites in males and females, respectively. Inter-sex differences in the metabolic profile were also detected in the intestine perfusion experiments. Herein, the metabolites 3- and 12-OH-NVP were only found in male rats, whereas 2-OH-NVP levels were higher in females, both in extraluminal (p<0.01) and intraluminal media. The metabolite 8-OH-NVP was not detected in the intraluminal media from either males or females. In this study, important inter-sex differences were detected in both organs, providing further clues to the sex-dimorphic profile of NVP toxicity. Moreover, an extra-hepatic contribution to NVP biotransformation was observed, strengthening the relevance of the intestinal contribution in the biotransformation of orally taken-drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sun, Jianmei; Bao, He; Peng, Yajie; Zhang, Haimin; Sun, Ya; Qi, Jiajun; Zhang, Hailong; Gao, Yang
2018-06-10
This study aims to evaluate the effects of Gelucire44/14 on the in vitro transport, in situ intestinal absorption, as well as in vivo antidiabetic efficacy of berberine (BBR). In the in vitro study, Gelucire44/14 (0.1%, v/v) increased the absorptive transport of BBR across the intestinal membrane of a rat and reduced the relative transport in the secretory direction, thus demonstrating its potential inhibitory effect on intestinal P-glycoprotein (P-gp). In the in situ absorption study, Gelucire44/14 (0.1%, v/v) increased BBR absorption, and this enhancing effect was more significant in the ileum than in the colon of a rat. Oral delivery of BBR with Gelucire44/14 (0.1%, v/v) to diabetic mice, compared with the BBR group, induced a significant hypoglycemic effect on day 7 and day 12 after administration. This result was well correlated with the results of the in vitro study, indicating the important contribution of the P-gp inhibitory effect of Gelucire44/14 to the improvement of the antidiabetic efficacy in vivo. In addition, Gelucire44/14 (0.1%, v/v) neither increased the levels of protein and lactate dehydrogenase in intestinal perfusion nor changed the morphology of the rat intestinal epithelium relative to those of the negative control. This finding suggested that 0.1% (v/v) Gelucire44/14 caused no apparent membrane damage to rat intestine. In conclusion, Gelucire44/14 exhibited potential for enhancing the oral absorption of BBR, thereby improving the antidiabetic efficacy of BBR. Copyright © 2018 Elsevier B.V. All rights reserved.
Yucel, Ahmet Fikret; Kanter, Mehmet; Pergel, Ahmet; Erboga, Mustafa; Guzel, Ahmet
2011-12-01
The aim of this study was to demonstrate the role of curcumin on oxidative stress, cell proliferation and apoptosis in the rat intestinal mucosa after ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ curcumin; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the curcumin group, 3 days before I/R, curcumin (100 mg/kg) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and intestinal tissues samples were obtained for biochemical and histopathological investigation in all groups. Curcumin treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in intestinal tissues samples. I/R caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Curcumin treatment significantly attenuated the severity of intestinal I/R injury, with inhibiting of I/R-induced apoptosis and cell proliferation. These results suggest that curcumin treatment has a protective effect against intestinal damage induced by intestinal I/R. This protective effect is possibly due to its ability to inhibit I/R-induced oxidative stress, apoptosis and cell proliferation.
Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats.
Goldstein, Jorge; Morris, Winston E; Loidl, César Fabián; Tironi-Farinati, Carla; Tironi-Farinatti, Carla; McClane, Bruce A; Uzal, Francisco A; Fernandez Miyakawa, Mariano E
2009-09-18
Epsilon toxin is a potent neurotoxin produced by Clostridium perfringens types B and D, an anaerobic bacterium that causes enterotoxaemia in ruminants. In the affected animal, it causes oedema of the lungs and brain by damaging the endothelial cells, inducing physiological and morphological changes. Although it is believed to compromise the intestinal barrier, thus entering the gut vasculature, little is known about the mechanism underlying this process. This study characterizes the effects of epsilon toxin on fluid transport and bioelectrical parameters in the small intestine of mice and rats. The enteropooling and the intestinal loop tests, together with the single-pass perfusion assay and in vitro and ex vivo analysis in Ussing's chamber, were all used in combination with histological and ultrastructural analysis of mice and rat small intestine, challenged with or without C. perfringens epsilon toxin. Luminal epsilon toxin induced a time and concentration dependent intestinal fluid accumulation and fall of the transepithelial resistance. Although no evident histological changes were observed, opening of the mucosa tight junction in combination with apoptotic changes in the lamina propria were seen with transmission electron microscopy. These results indicate that C. perfringens epsilon toxin alters the intestinal permeability, predominantly by opening the mucosa tight junction, increasing its permeability to macromolecules, and inducing further degenerative changes in the lamina propria of the bowel.
Satoh, Hiroshi; Amagase, Kikuko; Takeuchi, Koji
2014-02-01
Antisecretory drugs such as histamine H₂-receptor antagonists and proton pump inhibitors are commonly used for the treatment of upper gastrointestinal mucosal lesions induced by nonsteroidal anti-inflammatory drugs (NSAIDs). However, it has recently been reported that these drugs exacerbate NSAID-induced small intestinal lesions in rats. Unfortunately, there are few effective agents for the treatment of this complication. We examined the effects of mucosal protective agents (MPAs) (misoprostol, irsogladine, and rebamipide) and mucin of porcine stomach on diclofenac-induced intestinal lesions and the exacerbation of the lesions by ranitidine or omeprazole. The effects of the drugs on intestinal motility and mucus distribution/content were also examined. Male Wistar rats (180-220 g) were used. Each drug was administered orally under fed conditions. Diclofenac (1-10 mg/kg) produced multiple lesions in the small intestine dose-dependently. Both ranitidine (30 mg/kg) and omeprazole (100 mg/kg) significantly increased the intestinal lesions induced by low doses (3 and 6 mg/kg) of diclofenac. Misoprostol (0.03-0.3 mg/kg), irsogladine (3-30 mg/kg), and rebamipide (30-300 mg/kg), as well as mucin (30-300 mg/kg) inhibited the formation of intestinal lesions caused by a high dose (10 mg/kg) of diclofenac alone and prevented the exacerbation of diclofenac-induced lesions by antisecretory drugs. Diclofenac (10 mg/kg) markedly increased the intestinal motility and decreased the mucosal mucus, and the decrease of mucus was significantly inhibited by the MPAs. These results indicate the usefulness of the MPAs for the treatment of intestinal lesions induced by NSAIDs alone or by coadministration with antisecretory drugs, and suggest that mucus plays an important role in the protection of intestinal mucosa by the MPAs.
Chukwuma, Chika Ifeanyi; Islam, Md Shahidul
2015-03-01
The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Zeping; Yang Xiaoxia; Chan Suiyung
Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1{beta}, IL-2, IL-6), interferon (IFN-{gamma}) and tumor necrosis factor-{alpha} (TNF-{alpha}) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oralmore » SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1{beta}, IL-2, IL-6, IFN-{gamma} and TNF-{alpha} and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1{beta}, IFN-{gamma} and TNF-{alpha} was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-{alpha} mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities.« less
Li, Yanli; Xu, Bin; Xu, Ming; Chen, Dapeng; Xiong, Yongjian; Lian, Mengqiao; Sun, Yuchao; Tang, Zeyao; Wang, Li; Jiang, Chunling; Lin, Yuan
2017-05-01
Intestinal ischemia reperfusion (I/R) injury caused by severe trauma, intestinal obstruction, and operation is one of the tough challenges in clinic. 6-Gingerol (6G), a main active ingredient of ginger, is found to have anti-microbial, anti-inflammatory, anti-oxidative, and anti-cancer activities. The present study was designed to characterize the potential protective effects of 6G on rat intestinal I/R injury and reveal the correlated mechanisms. Rat intestinal I/R model was established with clamping the superior mesenteric artery (SMA) and 6G was intragastrically administered for three consecutive days before I/R injury. Caco-2 and IEC-6 cells were incubated under hypoxia/reoxygenation (H/R) conditions to simulate I/R injury in vitro. The results showed that 6G significantly alleviated intestinal injury in I/R injured rats by reducing the generation of oxidative stress and inhibiting p38 MAPK signaling pathway. 6G significantly reduced MDA level and increased the levels of SOD, GSH, and GSH-Px in I/R injured intestinal tissues. 6G significantly decreased the production of proinflammatory cytokines including TNF-α, IL-1β, and IL-6, and inhibited the expression of inflammatory mediators iNOS/NO in I/R injured intestinal tissues. The impaired intestinal barrier function was restored by using 6G in I/R injured rats and in both Caco-2 and IEC-6 cells characterized by inhibiting p38 MAPK phosphorylation, nuclear translocation of NF-κB, and expression of myosin light chain kinase (MLCK) protein. 6G also reduced the generation of reactive oxygen species (ROS) in both Caco-2 and IEC-6 cells. In vitro transfection of p38 MAPK siRNA mitigated the impact of 6G on NF-κB and MLCK expression, and the results further corroborated the protective effects of 6G on intestinal I/R injury by repressing p38 MAPK signaling. In conclusion, the present study suggests that 6G exerts protective effects against I/R-induced intestinal mucosa injury by inhibiting the formation of ROS and p38 MAPK activation, providing novel insights into the mechanisms of this therapeutic candidate for the treatment of intestinal injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Xin; Zheng, Mei; Liu, Jia; Huang, Zhifeng; Bai, Yidan; Ren, Zhuoying; Wang, Ziwen; Tian, Yangli; Qiao, Zhou; Liu, Wenyuan; Feng, Feng
2017-09-14
Uncaria rhynchophylla (Miq.) Miq. ex Havil., is a plant species used in traditional Chinese medicine to treat cardiovascular and central nervous system diseases. Rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of epimers, are major alkaloids isolated from U. rhynchophylla and exhibit diverse pharmacological effects. Our previous study demonstrated that the pharmacokinetics of these epimers existed stereoselectivity after oral administration; however, the specific mechanism remains unknown and merits investigation. In the present study, the aim was to elucidate the mechanism underlying stereoselective pharmacokinetic characteristics of RIN and IRN in rats. The total (F), hepatic (F h ) and intestinal (F a ·F g ) bioavailabilities of each epimer were measured using portal vein cannulated rats following different dosing routes (intravenous, intraportal and intraduodenal) to assess individual contributions of the liver and intestine in stereoselective pharmacokinetics. Then the differences of first-pass metabolism in the liver and intestine between two epimers were evaluated by in vitro incubation with rat liver microsomes, intestinal S9 and gastrointestinal (GI) content solutions, respectively. Meanwhile, the membrane permeability and efflux by P-glycoprotein (P-gp) were examined by in situ single-pass intestinal perfusion with and without P-gp inhibitor verapamil. The configurational interconversion at different pH values and the excretions via feces and urine were also examined. Pharmacokinetic data showed that the total bioavailability of RIN was 5.9 folds higher than that of IRN (23.4% vs. 4.0%). The hepatic availability of RIN was 4.6 folds higher than that of IRN (46.9% vs. 10.3%), whereas the intestinal availability of RIN (48.1%) was comparable to that of IRN (42.7%). In addition, intestinal perfusion showed that IRN possessed higher intestinal permeability than RIN and co-perfusion with verapamil could affect absorption process of RIN but not IRN. Conversely, the metabolism rate of IRN in rat liver microsomes was significantly faster than that of RIN, resulting in a lower systemic exposure of IRN after oral administration. The degradation in GI lumen and epimerization between two epimers also existed but had small contributions. Additionally, the excretions of both epimers via feces and urine were negligible. Taken together, different first-pass metabolism in the liver was the major factor responsible for the stereoselective pharmacokinetics of RIN and IRN. Copyright © 2017. Published by Elsevier B.V.
Zhai, Lixiang; Shi, Jun; Xu, Weitong; Heinrich, Michael; Wang, Jianying; Deng, Wenji
2015-12-01
This study aims to investigate the additive or synergistic effects and mechanism of intestinal absorption of extracts from two commonly used 'dispelling-wind' TCM botanical drugs [roots of Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav. (RAD) and Saposhnikovia divaricata (Turcz.) Schischk. (RSD)] using chlorogenic acid as a marker substance. Ex vivo everted intestinal sac and in situ single pass perfusion methods using rats were employed to investigate the effects of two TCM botanical drugs extracts on the intestinal absorption of chlorogenic acid. Both the extracts of RAD and RSD showed synergistic properties on the intestinal absorption of chlorogenic acid. The verapamil (a P-gp inhibitor) and intestinal dysbacteriosis model induced by norfloxacin increased the P(app) and K(a) of intestinal absorption of chlorogenic acid. These synergistic effects on intestinal absorption in a rat model can be correlated with the inhibition of P-gp and regulation of gut microbiota. This experimental approach has helped to better understand changes in the absorption of chlorogenic acid under different conditions. Copyright © 2015 John Wiley & Sons, Ltd.
Leptin accelerates enterocyte turnover during methotrexate-induced intestinal mucositis in a rat.
Sukhotnik, Igor; Mogilner, Jorge G; Shteinberg, Dan; Karry, Rahel; Lurie, Michael; Ure, Benno M; Shaoul, Ron; Coran, Arnold G
2009-05-01
Gastrointestinal mucositis occurs as a consequence of cytotoxic treatment. In the present study, we tested whether leptin can protect gut epithelial cells from methotrexate (MTX)-induced intestinal damage. Non-pretreated and pretreated with MTX Caco-2 cells were incubated with increasing concentrations of leptin for 24 h. Cell proliferation and apoptosis were assessed using FACS analysis. Adult rats were divided into three experimental groups: Control rats; MTX-rats were treated with a single dose of MTX, and MTX-LEP rats were also treated with leptin for 3 d. Intestinal mucosal damage (Park score), mucosal structural changes (bowel and mucosal weight, mucosal DNA and protein content, villus height and crypt depth), enterocyte proliferation, and enterocyte apoptosis were measured at sacrifice. RT-PCR was used to determine the level of bax and bcl-2 mRNA expression. In the vitro experiment, treatment with leptin of Caco-2 cells pre-treated with MTX resulted in a significant stimulation of cell proliferation and inhibition of cell apoptosis in a dose-dependent manner. In the vivo experiment, MTX-LEP rats demonstrated a greater jejunal and ileal bowel and mucosal weight, mucosal DNA and protein, villus height and crypt depth, as well as a greater enterocyte proliferation index compared to MTX-animals. MTX-LEP rats also showed a trend toward an increase in enterocyte apoptosis that was accompanied by an increase in bax mRNA and decrease in bcl-2 mRNA expression. In conclusion, leptin enhances proliferation and decreases apoptosis in Caco-2 cells pretreated with MTX. In a rat model of MTX-induced mucositis, treatment with leptin improves intestinal recovery and enhances enterocyte turnover.
D'Argenio, Giuseppe; Cariello, Rita; Tuccillo, Concetta; Mazzone, Giovanna; Federico, Alessandro; Funaro, Annalisa; De Magistris, Laura; Grossi, Enzo; Callegari, Maria L; Chirico, Marilena; Caporaso, Nicola; Romano, Marco; Morelli, Lorenzo; Loguercio, Carmela
2013-05-01
Evidence indicates that intestinal microbiota may participate in both the induction and the progression of liver damage. The aim of our research was the detection and evaluation of the effects of chronic treatment with a symbiotic formulation on CCl4 -induced rat liver fibrosis. CCl4 significantly increased gastric permeability in respect to basal values, and the treatment with symbiotic significantly decreased it. CCl4 per se induced a decrease in intestinal permeability. This effect was also seen in fibrotic rats treated with symbiotic and was still evident when normal rats were treated with symbiotic alone (P < 0.001 in all cases). Circulating levels of pro-inflammatory cytokine TNF-α were significantly increased in rats with liver fibrosis as compared with normal rats, while symbiotic treatment normalized the plasma levels of TNF-α and significantly enhanced anti-inflammatory cytokine IL 10. TNF-α, TGF-β, TLR4, TLR2, iNOS and α-SMA mRNA expression in the liver were up-regulated in rats with CCl4 -induced liver fibrosis and down-regulated by symbiotic treatment. Moreover, IL-10 and eNOS mRNA levels were increased in the CCL4 (+) symbiotic group. Symbiotic treatment of fibrotic rats normalized serum ALT, AST and improved histology and liver collagen deposition. DGGE analysis of faecal samples revealed that CCl4 administration and symbiotic treatment either alone or in combination produced modifications in faecal profiles vs controls. Our results provide evidence that in CCl4 -induced liver fibrosis, significant changes in gastro-intestinal permeability and in faecal flora occur. Treatment with a specific symbiotic formulation significantly affects these changes, leading to improvement in both liver inflammation and fibrosis. © 2013 John Wiley & Sons A/S.
Zhang, Guozhe; Gong, Tianxing; Kano, Yoshihiro; Yuan, Dan
2014-02-01
Kakkalide and irisolidone, the main isoflavones of Flos Puerariae, exhibit a wide spectrum of bioactivities. Intestinal bacteria biotransformation plays an important role in the metabolic pathways of flavones, and is directly related to the bioactivities of the prodrugs after oral administration. To the best of our knowledge, the metabolic pathways of kakkalide and irisolidone in vitro have not been comprehensively studied yet. This paper describes the strategy using ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF MS) for the rapid analysis of the metabolic profiles of kakkalide and irisolidone after incubated with human and rat intestinal bacteria. Bacteria incubated samples were prepared and analyzed after incubated under anaerobic conditions for 48 h. A total of 17 metabolites, including parent compounds, were detected in human and rat intestinal bacteria incubated samples. The results obtained indicate that hydrolysis, dehydroxylation, demethoxylation, demethylation, hydroxylation, decarbonylation, and reduction were the detected metabolic pathways of kakkalide and irisolidone in vitro. The conversion rate of irisolidone in human and rat bacteria was 8.57% and 6.51%, respectively. Biochanin A was the relatively main metabolite of irisolidone, and the content of biochanin A in human and rat bacteria was 3.68% and 4.25%, respectively. The conversion rate of kakkalide in human and rat bacteria was 99.92% and 98.58%, respectively. Irisolidone was the main metabolite of kakkalide, and the content of irisolidone in human and rat bacteria was 89.58% and 89.38%, respectively. This work not only provides the evidence of kakkalide and irisolidone metabolites in vivo, but also demonstrates a simple, fast, sensitive, and inexpensive method for identification of metabolites of other compounds transformed by intestinal bacteria. Copyright © 2013 Elsevier B.V. All rights reserved.
Karatug, Ayse; Sacan, Ozlem; Coskun, Zeynep Mine; Bolkent, Sehnaz; Yanardag, Refiye; Turk, Neslihan; Bolkent, Sema
2012-01-01
The aim of this study was to investigate (i) the cholecystokinin, somatostatin and apelin mRNA levels, (ii) the changes in levels and localization of these peptides, (iii) relation between these peptides, (iv) antiapoptotic effects and (v) antioxidant effects of ghrelin. The rats were divided into four groups second day after birth. These groups were respectively treated with physiological saline, ghrelin (100μg/kg/day), streptozotocin (100mg/kg), ghrelin and streptozotocin. After four weeks, small intestine and blood samples were taken from rats. Cholecystokinin mRNA and peptide, somatostatin mRNA, release to duodenal lumen of apelin peptide and apelin mRNA signals decreased in ghrelin-treated diabetic rats compared to the diabetic group. There was no statistically significant difference among the four groups for somatostatin and apelin peptides. Caspase-3 signals were not observed only in diabetic group treated with ghrelin. Caspase-8 signals were increased while PCNA signals were decreased in diabetic group given ghrelin compared to diabetic group. Small intestine CAT, SOD, GP(x) and GST activities and GSH levels were decreased and LPO, PC levels were increased in diabetic rats. Administration of ghrelin to diabetic rats caused an increase in intestinal CAT, SOD, GP(x) and GST activities and GSH levels, while PC levels decreased. As a result, we observed positive changes in diabetic rats treated with ghrelin in both microscopic and biochemical studies. We can suggest that ghrelin may be an important hormone for the treatment of diabetes. Copyright © 2011 Elsevier Inc. All rights reserved.
Sonoyama, K; Tajima, K; Fujiwara, R; Kasai, T
2000-03-01
To clarify the role of neural factors in the regulation of apolipoprotein (apo) A-IV expression in the small intestine, we investigated the effect of neural blockers on mRNA levels of apo A-IV in rat small intestine. Either ganglionic blocker (hexamethonium), cholinergic blocker (atropine) or beta-adrenergic blocker (propranolol) was infused intravenously to unrestrained conscious rats for 8 h, and then total RNA was isolated from the small intestine and analyzed using Northern hybridization. Apo A-IV mRNA levels in the ileum were significantly lower in hexamethonium- or atropine-infused rats than in saline- (control) or propranolol-infused rats. Immunoblot analysis showed no difference in plasma apo A-IV concentrations between hexamethonium- and saline-infused groups. The lower mRNA levels of apo A-IV in the ileum of hexamethonium-infused rats were observed even in bile-drained rats, indicating that the lower expression was not due to any changes in bile availability. The ileal apo A-IV mRNA levels were significantly higher in rats infused with lipid emulsion into the ileum than in rats infused with glucose-saline, and the concomitant infusion of intravenous hexamethonium did not affect the higher levels of apo A-IV mRNA. These results suggest that the basal expression of the ileal A-IV gene is at least partially regulated in a site-specific manner by cholinergic neurons.
Role of cyclooxygenase-2 in intestinal injury in neonatal rats.
Lu, Hui; Zhu, Bing
2014-11-01
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature neonates. The pathogenesis of NEC remains poorly understood. The present study aimed to investigate the dynamic change and role of cyclooxygenase-2 (COX-2) in neonatal rats with intestinal injury. Wistar rats, <24 h in age, received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileal tissues were collected at 1, 3, 6, 12 and 24 h following the LPS challenge for histological evaluation of NEC and for measurements of COX-2 mRNA. The correlation between the degree of intestinal injury and expression of COX-2 mRNA was determined. The LPS-injected pups showed a significant increase in injury scores compared to the control, and the most deteriorating change was at 12 h. COX-2 mRNA expression was upregulated following LPS injection. There was a significantly positive correlation between COX-2 mRNA and the grade of intestinal injury within 12 h, whereas COX-2 mRNA expression had a significantly negative correlation with the severity of intestinal injury at 24 h. COX-2 plays an important role in LPS-induced intestinal injury and the repair processes. Caution should be exerted concerning the potential therapeutic uses of COX-2 inhibitors or promoters in NEC.
A novel model for simultaneous study of neointestinal regeneration and intestinal adaptation.
Jwo, Shyh-Chuan; Tang, Shye-Jye; Chen, Jim-Ray; Chiang, Kun-Chun; Huang, Ting-Shou; Chen, Huang-Yang
2013-01-01
The use of autologous grafts, fabricated from tissue-engineered neointestine, to enhance insufficient compensation of intestinal adaptation for severe short bowel syndrome is a compelling idea. Unfortunately, current approaches and knowledge for neointestinal regeneration, unlike intestinal adaptation, are still unsatisfactory. Thus, we have designed a novel model of intestinal adaptation with simultaneous neointestinal regeneration and evaluated its feasibility for future basic research and clinical application. Fifty male Sprague-Dawley rats weighing 250-350 g underwent this procedure and sacrificed at 4, 8, and 12 weeks postoperatively. Spatiotemporal analyses were carried out by gross, histology, and DNA/protein quantification. Three rats died of operative complications. In early experiments, the use of hard silicone stent as tissue scaffold in 11 rats was unsatisfactory for neointestinal regeneration. In later experiments, when a soft silastic tube was used, the success rate increased up to 90.9%. Further analyses revealed that no neointestine developed without donor intestine; regenerated lengths of mucosa and muscle were positively related to time postsurgery but independent of donor length with 0.5 or 1 cm. Other parameters of neointestinal regeneration or intestinal adaptation showed no relationship to both time postsurgery and donor length. In conclusion, this is a potentially important model for investigators searching for solutions to short bowel syndrome. © 2013 by the Wound Healing Society.
Yang, Bingchang; Gao, Min; Wang, Kangkai; Jiang, Yu; Peng, Yue; Zhang, Huali; Yang, Mingshi; Xiao, Xianzhong
2017-05-01
Intravenous administration of ulinastatin (UTI), a broad spectral protease inhibitor, has been used on an experimental basis with severe sepsis patients in Asia. However, the effects of intraintestinal administration of UTI on intestinal and multiple organ damage in sepsis have not been reported. In this study, we established a sepsis model in rats using cecal ligation and puncture and compared the effects of intraintestinal administration of UTI through an artificial fistula of duodenum and intraperitoneal administration of UTI on the pathophysiological changes of sepsis. It was found that intraintestinal administration of UTI (1) significantly improved the survival of septic rats, (2) significantly reduced the serum levels of tumor necrosis factor-α, interleukin-1β, interleukin-6 as well as intestinal injury biomarkers diamine oxidase, D-lactic acid, and fluorescein isothiocyanate-dextran 4, and (3) significantly reduced intestinal microscopic and ultrastructural damage of septic rats. In addition, the protective effects of intraintestinal administration of UTI were significantly better than those of intraperitoneal administration of UTI. Overall, the present study for the first time revealed that intraintestinal administration of protease inhibitor UTI could reduce systemic inflammatory responses and multiple organ dysfunction in rats with sepsis by inhibiting autodigestion of intestinal wall due to proteases and provided new research ideas and experimental evidences for treatment of sepsis by intraintestinal administration of UTI. Copyright © 2016. Published by Elsevier Inc.
He, Xiaolong; Zeng, Qing; Puthiyakunnon, Santhosh; Zeng, Zhijie; Yang, Weijun; Qiu, Jiawen; Du, Lei; Boddu, Swapna; Wu, Tongwei; Cai, Danxian; Huang, Sheng-He; Cao, Hong
2017-03-06
The objective of this study was to determine whether Lactobacillus rhamnosus GG culture supernatant (LCS) has a preventive effect against gut-derived systemic neonatal Escherichia coli (E. coli) K1 infection. The preventive effects were evaluated in human colonic carcinoma cell line Caco-2 and neonatal rat models. Our in vitro results showed that LCS could block adhesion, invasion and translocation of E. coli K1 to Caco-2 monolayer via up-regulating mucin production and maintaining intestinal integrity. In vivo experiments revealed that pre-treatment with LCS significantly decrease susceptibility of neonatal rats to oral E. coli K1 infection as reflected by reduced bacterial intestinal colonization, translocation, dissemination and systemic infections. Further, we found that LCS treated neonatal rats have higher intestinal expressions of Ki67, MUC2, ZO-1, IgA, mucin and lower barrier permeability than those in untreated rats. These results indicated that LCS could enhance neonatal resistance to systemic E. coli K1 infection via promoting maturation of neonatal intestinal defense. In conclusions, our findings suggested that LCS has a prophylactic effect against systemic E. coli K1 infection in neonates. Future studies aimed at identifying the specific active ingredients in LCS will be helpful in developing effective pharmacological strategies for preventing neonatal E. coli K1 infection.
He, Xiaolong; Zeng, Qing; Puthiyakunnon, Santhosh; Zeng, Zhijie; Yang, Weijun; Qiu, Jiawen; Du, Lei; Boddu, Swapna; Wu, Tongwei; Cai, Danxian; Huang, Sheng-He; Cao, Hong
2017-01-01
The objective of this study was to determine whether Lactobacillus rhamnosus GG culture supernatant (LCS) has a preventive effect against gut-derived systemic neonatal Escherichia coli (E. coli) K1 infection. The preventive effects were evaluated in human colonic carcinoma cell line Caco-2 and neonatal rat models. Our in vitro results showed that LCS could block adhesion, invasion and translocation of E. coli K1 to Caco-2 monolayer via up-regulating mucin production and maintaining intestinal integrity. In vivo experiments revealed that pre-treatment with LCS significantly decrease susceptibility of neonatal rats to oral E. coli K1 infection as reflected by reduced bacterial intestinal colonization, translocation, dissemination and systemic infections. Further, we found that LCS treated neonatal rats have higher intestinal expressions of Ki67, MUC2, ZO-1, IgA, mucin and lower barrier permeability than those in untreated rats. These results indicated that LCS could enhance neonatal resistance to systemic E. coli K1 infection via promoting maturation of neonatal intestinal defense. In conclusions, our findings suggested that LCS has a prophylactic effect against systemic E. coli K1 infection in neonates. Future studies aimed at identifying the specific active ingredients in LCS will be helpful in developing effective pharmacological strategies for preventing neonatal E. coli K1 infection. PMID:28262688
Jin, Yi; Guo, Xingjie; Yuan, Bo; Yu, Wenhong; Suo, Hao; Li, Zhiyuan; Xu, Haiyan
2015-07-08
Astragaloside IV (ASIV) is a typical bioactive constituent of Radix Astragali. The study aimed to investigate the enterohepatic circulation of ASIV and evaluate the impact of activity of intestinal microbiota on the deposition of ASIV. The amounts of ASIV and its metabolites were quantified by an LC-MS/MS method. ASIV was metabolized by intestinal bacteria to form brachyoside B (Bra B), cyclogaleginoside B (Cyc B), cycloastragenol (CA), iso-cycloastragenol (iso-CA), and dehydrogenated metabolite of CA (CA-2H). CA and iso-CA circulated in blood besides ASIV when rats received ASIV intragastrically or intravenously. After rats were intragastrically administered 10 mg/kg ASIV, the AUC0-t values of ASIV, CA, and iso-CA were 109 ± 55, 26.8 ± 17.9, and 77.9 ± 35.1 nM·h, respectively. The plasma distribution of ASIV was significantly affected by bile duct drainage when ASIV was administered through the duodenum. ASIV, Bra B, and Cyc B were secreted from bile after duodenal administration of ASIV. Antibiotics markedly inhibited the metabolism of ASIV in intestinal microbiota. After rats were pretreated with antibiotics, the AUC0-t of iso-CA was 4.8 times less than that in control rats and the concentration of CA became undetectable. Variations in intestinal microbiota may change the disposition of ASIV and subsequently influence its potential health benefits.
Cullen, John M; Ward, Jerrold M; Thompson, Chad M
2016-02-01
Thirteen-week and 2-year drinking water studies conducted by the National Toxicology Program (NTP) reported that hexavalent chromium (Cr(VI)) induced diffuse epithelial hyperplasia in the duodenum of B6C3F1 mice but not F344 rats. In the 2-year study, Cr(VI) exposure was additionally associated with duodenal adenomas and carcinomas in mice only. Subsequent 13-week Cr(VI) studies conducted by another group demonstrated non-neoplastic duodenal lesions in B6C3F1 mice similar to those of the NTP study as well as mild duodenal hyperplasia in F344 rats. Because intestinal lesions in mice are the basis for proposed safety standards for Cr(VI), and the histopathology data are relevant to the mode of action, consistency (an important Hill criterion for causality) was assessed across the aforementioned studies. Two veterinary pathologists applied uniform diagnostic criteria to the duodenal lesions in rats and mice from the 4 repeated-dose studies. Comparable non-neoplastic intestinal lesions were evident in mice and rats from all 4 studies; however, the incidence and severity of intestinal lesions were greater in mice than rats. These findings demonstrate consistency across studies and species and highlight the importance of standardized nomenclature for intestinal pathology. The differences in the severity of non-neoplastic lesions also likely contribute to the differential tumor response. © The Author(s) 2015.
Nakaoka, Kanae; Yamada, Asako; Noda, Seiko; Goseki-Sone, Masae
2018-05-01
Intestinal alkaline phosphatase (IAP) is expressed at a high concentration in the brush border membrane of intestinal epithelial cells. Intestinal alkaline phosphatase controls bacterial endotoxin-induced inflammation by dephosphorylating lipopolysaccharide and is a gut mucosal defense factor. Previously, we reported that IAP activity in the duodenum was significantly decreased in male rats receiving a high-fat diet with vitamin D restriction. Here, we tested the hypothesis that IAP is also regulated by a vitamin D-restricted high-fat diet in an animal model of menopause. Twenty-four female rats were ovariectomized (OVX), and another 6 female rats were sham operated. The OVX rats were divided into 4 groups and fed experimental diets: a basic control diet, a basic control diet with vitamin D restriction, a high-fat diet, and a high-fat diet with vitamin D restriction. After 28days of the experimental diets, the vitamin D-restricted high-fat diet decreased alkaline phosphatase activity in the duodenum of the OVX groups. The vitamin D-restricted high-fat diet down-regulated mRNA expressions of IAP isozymes in the duodenum of the OVX groups. These findings support the hypothesis that the expression of IAP is suppressed by a vitamin D-restricted high-fat diet in OVX rats. An adequate vitamin D intake and prevention of low vitamin D levels may be important for IAP expression in gut homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.
Cullen, John M.; Ward, Jerrold M.
2015-01-01
Thirteen-week and 2-year drinking water studies conducted by the National Toxicology Program (NTP) reported that hexavalent chromium (Cr(VI)) induced diffuse epithelial hyperplasia in the duodenum of B6C3F1 mice but not F344 rats. In the 2-year study, Cr(VI) exposure was additionally associated with duodenal adenomas and carcinomas in mice only. Subsequent 13-week Cr(VI) studies conducted by another group demonstrated non-neoplastic duodenal lesions in B6C3F1 mice similar to those of the NTP study as well as mild duodenal hyperplasia in F344 rats. Because intestinal lesions in mice are the basis for proposed safety standards for Cr(VI), and the histopathology data are relevant to the mode of action, consistency (an important Hill criterion for causality) was assessed across the aforementioned studies. Two veterinary pathologists applied uniform diagnostic criteria to the duodenal lesions in rats and mice from the 4 repeated-dose studies. Comparable non-neoplastic intestinal lesions were evident in mice and rats from all 4 studies; however, the incidence and severity of intestinal lesions were greater in mice than rats. These findings demonstrate consistency across studies and species and highlight the importance of standardized nomenclature for intestinal pathology. The differences in the severity of non-neoplastic lesions also likely contribute to the differential tumor response. PMID:26538584
Peters, Sheila Annie
2008-01-01
Despite recent advances in understanding of the role of the gut as a metabolizing organ, recognition of gut wall metabolism and/or other factors contributing to intestinal loss of a compound has been a challenging task due to the lack of well characterized methods to distinguish it from first-pass hepatic extraction. The implications of identifying intestinal loss of a compound in drug discovery and development can be enormous. Physiologically based pharmacokinetic (PBPK) simulations of pharmacokinetic profiles provide a simple, reliable and cost-effective way to understand the mechanisms underlying pharmacokinetic processes. The purpose of this article is to demonstrate the application of PBPK simulations in bringing to light intestinal loss of orally administered drugs, using two example compounds: verapamil and an in-house compound that is no longer in development (referred to as compound A in this article). A generic PBPK model, built in-house using MATLAB software and incorporating absorption, metabolism, distribution, biliary and renal elimination models, was employed for simulation of concentration-time profiles. Modulation of intrinsic hepatic clearance and tissue distribution parameters in the generic PBPK model was done to achieve a good fit to the observed intravenous pharmacokinetic profiles of the compounds studied. These optimized clearance and distribution parameters are expected to be invariant across different routes of administration, as long as the kinetics are linear, and were therefore employed to simulate the oral profiles of the compounds. For compounds with reasonably good solubility and permeability, an area under the concentration-time curve for the simulated oral profile that far exceeded the observed would indicate some kind of loss in the intestine. PBPK simulations applied to compound A showed substantial loss of the compound in the gastrointestinal tract in humans but not in rats. This accounted for the lower bioavailability of the compound in humans than in rats. PBPK simulations of verapamil identified gut wall metabolism, well established in the literature, and showed large interspecies differences with respect to both gut wall metabolism and drug-induced delays in gastric emptying. Mechanistic insights provided by PBPK simulations can be very valuable in answering vital questions in drug discovery and development. However, such applications of PBPK models are limited by the lack of accurate inputs for clearance and distribution. This article demonstrates a successful application of PBPK simulations to identify and quantify intestinal loss of two model compounds in rats and humans. The limitation of inaccurate inputs for the clearance and distribution parameters was overcome by optimizing these parameters through fitting intravenous profiles. The study also demonstrated that the large interspecies differences associated with gut wall metabolism and gastric emptying, evident for the compounds studied, make animal model extrapolations to humans unreliable. It is therefore important to do PBPK simulations of human pharmacokinetic profiles to understand the relevance of intestinal loss of a compound in humans.
[Analysis of metabolites of quercitrin in rat intestinal flora by using UPLC-ESI-Q-TOF-MS/MS].
Qin, Xiao-Li; Sun, Hui-Yuan; Yang, Wu; Li, Yong-Jun; Zheng, Lin; Liu, Ting; Huang, Yong
2017-01-01
To investigate the metabolism of quercitrin in rat intestinal flora and possible biological pathways, laying the foundation for the metabolic mechanism of traditional Chinese medicine glycosides ingredients. UPLC-Q-TOF-MS/MS method was established to detect the quercitrin and its metabolites with 0.1% formic acid solution(A)-0.1% formic acid acetonitrile(B) as the mobile phase for gradient elution at a flow rate of 0.3 mL•min⁻¹. Electrospray negative ion mode was applied to analyze the metabolites of quercitrin in rat intestinal flora. Metabolite ToolsTM, mass defect filter(MDF) and other technologies were used to screen, analyze the metabolites and infer the chemical formula of the metabolites. The results showed that quercitrin would have degalactoside, deoxygenation and acetylation reactions, and the aglycone quercetin resulted from degalactoside would have further reactions such as hydroxylation, deoxygenation, reduction, and ring opening to achieve deoxygenation metabolite kaempferol, C2-C3 double bonds hydrogenation and reduction product taxifolin, and degalactoside product quercetin. The research results showed that quercitrin can be metabolized by rat intestinal flora, which could increase their hydrophobicity and chemical diversity. Copyright© by the Chinese Pharmaceutical Association.
Gong, Zhen-Yu; Yuan, Zhi-Qiang; Dong, Zhi-Wei; Peng, Yi-Zhi
2017-01-01
Severe burns may lead to intestinal inflammation and oxidative stress resulting in intestinal barrier damage and gut dysfunction. In the management of severe burns, therapies are needed to attenuate whole-body inflammatory responses and control the burden of oxidative stress. In this study, we evaluated the effects of oral glutamine (Gln) with probiotics on burn-induced intestinal inflammation and oxidative stress using a Wistar rat burn injury model. We then explored potential molecular mechanisms for the effects of glutamine and probiotics on intestinal tissue inflammation and oxidative stress. We found that glutamine and probiotics together significantly inhibited nitric oxide (NO) content; reduced levels of the inflammatory factors TNF-α, IL-6, and IL-8; and altered expression of oxidative stress factors including reactive oxygen species and superoxide dismutase. We found that the apoptotic proportion of intestinal epithelial cells in severely burned subjects was notably decreased following treatment with glutamine plus probiotics. We also found that glutamine and probiotics given together markedly reduced NO content by down-regulating the expression of iNOS in blood and intestinal tissue. These findings indicate that regulation of the iNOS gene plays a pivotal role in inflammation and oxidative stress in the response to severe burns in the Wistar rat. We then further investigated the mechanism by which combined therapy with glutamine and probiotics might reduce expression of iNOS and found that this treatment resulted in increased methylation of the iNOS gene. The methylation level of the iNOS gene was found to be regulated via differential expression of DNMT1 and Tet1. Collectively, our results suggest that combined therapy with glutamine and probiotics can markedly reduce the synthesis of NO, suppressing intestinal inflammation and oxidative stress in the Wistar rat burn injury model. PMID:28560003
Experimental Type 2 Diabetes Induces Enzymatic Changes in Isolated Rat Enterocytes
Martínez, Isabel M.; Morales, Inmaculada; García-Pino, Guadalupe; Campillo, José E.
2003-01-01
Diabetes in humans and in experimental animals produces changes in the function and structure of the small intestine. The authors determined the activity of intestinal disaccharidases (maltase and sucrase) and of 6-phosphofructo-1-kinase (PFK-1) in enterocytes isolated from the small intestine of male Wistar rats (2.5 to 3 months old) with experimental nonobese type 2 diabetes, induced by streptozotocin (STZ) injection on the day of birth (n0-STZ) or on the 5th day of life (n5-STZ), with different degrees of hyperglycemia and insulinemia (n0-STZ and n5-STZ models). The glycemia (mmol/L) of the diabetic rats (n0-STZ: 8.77 ± 0.47; n5-STZ: 20.83 ± 0.63) was higher (P < .01) than that of the nondiabetic (ND) rats (5.99 ± 0.63); on the contrary, the insulinemia (ng/mL) was significantly lower in both n0-STZ (1.74 ± 0.53; P < .05) and n5-STZ (1.12 ± 0.44; P < .01) diabetic rats than in normal rats (3.77 ± 0.22). The sucrase and maltase activities (U/g protein) in diabetic rats (n0-STZ: 89 ± 9 and 266 ± 12; n5-STZ: 142 ± 23 and 451 ± 57) were significantly higher than those in the ND group (66 ± 5 and 228 ± 22). The PFK-1 activities (mU/mg protein) in the diabetic models (n0-STZ: 14.89 ± 1.51; n5-STZ: 13.35 ± 3.12) were significantly lower (P < .05) than in ND rats (20.54 ± 2.83). The data demonstrated enzymatic alterations in enterocytes isolated fromthe small intestine of n0-STZ rats that are greater (P < .05) than in the more hyperglycemic and hypoinsulinemic n5-STZ animals. The results also show that nonobese type 2–like diabetes in the rat produces modifications that favor an increase in glucose absorption rates. PMID:14630573
Chen, Wei; Fu, Xiao-Bing; Ge, Shi-Li; Sun, Tong-Zhu; Zhou, Gang; Han, Bing; Du, Yi-Ri; Li, Hai-Hong; Sheng, Zhi-Yong
2005-06-14
To detect the effect of acid fibroblast growth factor (aFGF) on apoptosis and gene expression of bax and bcl-2 gene in rat intestine after ischemia/reperfusion (I/R) injury, and to explore the protective mechanisms of aFGF. One hundred and eight Wistar rats were randomly divided into sham-operated control group (C) (n = 6), intestinal ischemia group (I) (n = 6), aFGF treatment group (A) (n = 48) and intestinal ischemia-reperfusion group (R) (n = 48). In group I, the animals were killed after 45 min of superior mesenteric artery (SMA) occlusion, while in groups R and A, the rats sustained 45 min of SMA occlusion and were then treated with normal saline and aFGF, respectively, sustained 15 min, 30 min, 1, 2, 6, 12, 24, or 48 h of reperfusion, respectively. In group C, SMA was separated, but without occlusion. Apoptosis in intestinal villus was determined with terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeling technique (TUNEL). Intestinal tissue samples were taken not only for detection of bax and bcl-2 gene expression by RT-PCR, but also for detection of bax and bcl-2 protein expression and distribution by immunohistochemical analysis. The rat survival rates in aFGF treated group were higher than group R (P<0.05) and the improvement of intestinal histological structures was observed at 2, 6, and 12 h after the reperfusion in group A compared with group R. The apoptotic rates were (41.17+/-3.49)%, (42.83+/-5.23)% and (53.33+/-6.92)% at 2, 6 and 12 h after reperfusion, respectively in group A, apparently less than those of group R at matched time points (50.67+/-6.95, 54.17+/-7.86, 64.33+/-6.47, respectively) (P<0.05). The bax gene transcription and translation were significantly decreased in group A vs group R, while mRNA and protein contents of Bcl-2 in group A were obviously higher than those in group R during 2-12 h period after reperfusion. The changes in histological structure and the increment of apoptotic rate indicated that the intestinal barrier was damaged after intestinal I/R injury, whilst intravenous aFGF could alleviate apoptosis induced by ischemia and reperfusion in rat intestinal tissues, in which genes of bax and bcl-2 might play important roles.
Yamamoto, Atsuki; Itoh, Tomokazu; Nasu, Reishi; Nishida, Ryuichi
2014-01-01
AIM: To investigate the effects of sodium alginate (AL-Na) on indomethacin-induced small intestinal lesions in rats. METHODS: Gastric injury was assessed by measuring ulcerated legions 4 h after indomethacin (25 mg/kg) administration. Small intestinal injury was assessed by measuring ulcerated legions 24 h after indomethacin (10 mg/kg) administration. AL-Na and rebamipide were orally administered. Myeloperoxidase activity in the stomach and intestine were measured. Microvascular permeability, superoxide dismutase content, glutathione peroxidase activity, catalase activity, red blood cell count, white blood cell count, mucin content and enterobacterial count in the small intestine were measured. RESULTS: AL-Na significantly reduced indomethacin-induced ulcer size and myeloperoxidase activity in the stomach and small intestine. AL-Na prevented increases in microvascular permeability, superoxide dismutase content, glutathione peroxidase activity and catalase activity in small intestinal injury induced by indomethacin. AL-Na also prevented decreases in red blood cells and white blood cells in small intestinal injury induced by indomethacin. Moreover, AL-Na suppressed mucin depletion by indomethacin and inhibited infiltration of enterobacteria into the small intestine. CONCLUSION: These results indicate that AL-Na ameliorates non-steroidal anti-inflammatory drug-induced small intestinal enteritis via bacterial translocation. PMID:24627600
Nagai, Noriaki; Yamamoto, Tetsushi; Tanabe, Wataru; Ito, Yoshimasa; Kurabuchi, Satoshi; Mitamura, Kuniko; Taga, Atsushi
2015-01-01
We investigate whether maple syrup is a suitable sweetener in the management of type 2 diabetes using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The enhancement in plasma glucose (PG) and glucose absorption in the small intestine were lower after the oral administration of maple syrup than after sucrose administration in OLETF rats, and no significant differences were observed in insulin levels. These data suggested that maple syrup might inhibit the absorption of glucose from the small intestine and preventing the enhancement of PG in OLETF rats. Therefore, maple syrup might help in the prevention of type 2 diabetes.
MiR-144 Increases Intestinal Permeability in IBS-D Rats by Targeting OCLN and ZO1.
Hou, Qiuke; Huang, Yongquan; Zhu, Shuilian; Li, Peiwu; Chen, Xinlin; Hou, Zhengkun; Liu, Fengbin
2017-01-01
Irritable bowel syndrome with diarrhoea (IBS-D) is a chronic, functional bowel disorder characterized by abdominal pain or diarrhoea and altered bowel habits, which correlate with intestinal hyperpermeability. MicroRNAs (miRNAs) are involved in regulating intestinal permeability in IBS-D. However, the role of miRNAs in regulating intestinal permeability and protecting the epithelial barrier remains unclear. Our goals were to (i) identify differential expression of miRNAs and their targets in the distal colon of IBS-D rats; (ii) verify in vitro whether occludin (OCLN) and zonula occludens 1 (ZO1/TJP1) were direct targets of miR-144 and were down-regulated in IBS-D rats; and (iii) determine whether down-regulation of miR-144 in vitro could reverse the pathological hallmarks of intestinal hyperpermeability via targeting OCLN and ZO1. The IBS-D rat model was established using 4% acetic acid and evaluated by haematoxylin-eosin (HE) staining. The distal colon was obtained in order to perform miRNA microarray analysis and to isolate and culture colonic epithelial cells. When differential expression of miRNA was found, the results were verified by qRT-PCR, and the target genes were further explored by bioinformatics analysis. Correlation analyses were carried out to compare the expression of miRNA and target genes. Then, mutants, miRNA mimics and inhibitors of the target genes were constructed and transfected to colonic epithelial cells. qRT-PCR, western blotting, enzyme-linked immunosorbent assays (ELISAs) and dual-luciferase assays were used to investigate the expression of miR-144 and OCLN, ZO1 in IBS-D rats. There were 8 up-regulated and 18 down-regulated miRNAs identified in the IBS-D rat model. Of these, miR-144 was markedly up-regulated and resulted in the down-regulation of OCLN and ZO1 expression. Overexpression of miR-144 by transfection of miR-144 precursor markedly inhibited the expression of OCLN and ZO1. Further studies confirmed that OCLN and ZO1 were direct targets of miR-144. Additionally, intestinal hyperpermeability was enhanced by miR-144 up-regulation and attenuated by miR-144 down-regulation in IBS-D rat colonic epithelial cells. Moreover, rescue experiments showed that overexpression of OCLN and ZO1 significantly eliminated the inhibitory effect of miR-144, which showed a stronger effect on the attenuation of intestinal hyperpermeability. Up-regulation of miR-144 could promote intestinal hyperpermeability and impair the protective effect of the epithelial barrier by directly targeting OCLN and ZO1. miR-144 is likely a key regulator of intestinal hyperpermeability and could be a potential therapeutic target for IBS-D. © 2017 The Author(s). Published by S. Karger AG, Basel.
Fang, Shenglin; Zhuo, Zhao; Yu, Xiaonan; Wang, Haichao; Feng, Jie
2018-05-01
The aim of this study was to determine the toxicological effects of excess iron in a liquid iron preparation (especially on intestinal barrier function) and the possible etiology of side effects or diseases caused by the excess iron. In study 1, forty male Sprague-Dawley rats (4-5 wk old) were subjected to oral gavage with 1 ml vehicle (0.01 mol/L HCl) or 1 ml liquid iron preparation containing 8 mg, 16 mg or 24 mg of iron for 30 d. Iron status, oxidative stress, histology (H&E staining), ultrastructure (electron microscopy) and apoptosis (TUNEL assay) in the intestines and liver were assessed. The cecal microbiota was evaluated by 16S rRNA sequencing. In study 2, twenty rats with the same profile as above were subjected to oral gavage with 1 ml vehicle or 24 mg Fe for 30 d. The intestinal barrier function was determined by in vivo studies and an Ussing chamber assay; tight junction proteins and serum pro-inflammatory cytokines were observed by enzyme-linked immunosorbent assay. In study 1, the intestinal mucosa and liver showed apparent oxidative stress. In addition, iron concentration-dependent ultrastructural alterations to duodenal enterocytes and hepatocytes and histological damage to the colonic mucosa were detected. Notably, apoptosis was increased in duodenal enterocytes and hepatocytes. Impaired intestinal barrier function and lower expression of intestinal tight junction proteins were observed, and the phenotype was more severe in the colon than in the duodenum. A trend toward higher expression of serum pro-inflammatory cytokines might indicate systemic inflammation. Furthermore, the caecal microbiota showed a significant change, with increased Defluviitaleaceae, Ruminococcaceae, and Coprococcus and reduced Lachnospiraceae and Allobaculum, which could mediate the detrimental effects of excess iron on gut health. We concluded that excessive iron exposure from liquid iron preparation induces oxidative stress and histopathological alterations in the intestine and liver. Impaired intestinal barrier function could increase iron transportation, and inflammation along with oxidative stress-enhanced liver iron deposition may cause further liver injury in a vicious circle. These effects were accompanied by lower intestinal segment damage and altered gut microbial composition of rats toward a profile with an increased risk of gut disease. Copyright © 2018 Elsevier GmbH. All rights reserved.
Shen, Qi; Li, Wenji; Lin, Yulian; Katsumi, Hidemasa; Okada, Naoki; Sakane, Toshiyasu; Fujita, Takuya; Yamamoto, Akira
2008-12-01
The effects of polyethylene glycol 20000 (PEG 20000) on the intestinal absorption of prednisolone, methylprednisolone and quinidine, three P-glycoprotein (P-gp) substrates, across the isolated rat intestinal membranes were examined by an in-vitro diffusion chamber system. The serosal-to-mucosal (secretory) transport of these P-gp substrates was greater than their mucosal-to-serosal (absorptive) transport, indicating that their net movement across the intestinal membranes was preferentially in the secretory direction. The polarized secretory transport of these drugs was remarkably diminished and their efflux ratios decreased in the presence of PEG 20000. In addition, PEG 20000 did not affect the transport of Lucifer yellow, a non-P-gp substrate. The intestinal membrane toxicity of PEG 20000 was evaluated by measuring the release of alkaline phosphatase (ALP) and protein from the intestinal membranes. The release of ALP and protein was enhanced in the presence of 20 mM sodium deoxycholate (NaDC), a positive control, while these biological parameters did not change in the presence of 0.1-5% (w/v) PEG 20000. These findings indicated that the intestinal membrane damage caused by PEG 20000 was not a main reason for the enhanced absorptive transport of these P-gp substrates in the presence of PEG 20000. Furthermore, the transepithelial electrical resistance (TEER) of rat jejunal membranes in the presence or absence of PEG 20000 was measured by a diffusion chamber method. PEG 20000 (0.1-5.0 % w/v) did not change the TEER values of the rat jejunal membranes, indicating that the increase in the absorptive transport of these P-gp substrates might not be due to the increased transport of these P-gp substrates via a paracellular pathway caused by PEG 20000. Finally, the effect of PEG 20000 on the intestinal absorption of quinidine was examined by an in-situ closed-loop method. The intestinal absorption of quinidine was significantly enhanced in the presence of 0.1-1.0% (w/v) PEG 20000. These findings suggest that PEG 20000 might be a useful excipient to improve the intestinal absorption of quinidine, which is mainly secreted by a P-gp-mediated efflux system in the intestine.
Tsujikawa, T; Bamba, T; Hosoda, S
1990-06-01
This study was undertaken to evaluate the effect of epidermal growth factor (EGF) on the morphological changes and polyamine metabolism in the atrophic small intestinal mucosa of rats caused by feeding elemental diet (ED; Elental, Ajinomoto, Tokyo) for several weeks. Four-week-old Wistar male rats were given ad libitum ED (1 kcal/ml) for 4 weeks. The body weight increased to the same extent as the control group fed a pellet diet. However, the small intestine became atrophic: the mucosal wet weight of the jejunum decreased to 70%, while that of the ileum decreased to 60%. EGF (10 micrograms/kg) was subcutaneously injected into these rats every 8 hours. Ornithine decarboxylase (ODC) activities of the jejunal and ileal mucosa rose within 12 hours of the initial EGF administration. Mucosal DNA specific activities tended to increase. Next, EGF (30 micrograms/kg/day) was intraperitoneally administered with a Mini-osmotic pump for one week. The wet weight, protein and DNA contents of the ileal mucosa increased significantly compared with those of the saline administered controls, while the crypt cell production rate (CCPR) also increased. Histologically, increases in both villus height and crypt depth were confirmed. These findings indicate that EGF causes mucosal proliferation through polyamine metabolism even in the atrophic small intestine of mature rats after ED administration for 4 weeks.
Enhanced transport of P-glycoprotein substrate saquinavir in presence of thiolated chitosan.
Föger, Florian; Kafedjiiski, Krum; Hoyer, Herbert; Loretz, Brigitta; Bernkop-Schnürch, Andreas
2007-02-01
It was the aim of this study to investigate the effect of chitosan-4-thiobutylamidine (Ch-TBA) and reduced glutathione (GSH) on the absorption of P-glycoprotein (P-gp) and multidrug resistance protein (MRP) substrate saquinavir in vitro and in vivo. Bidirectional transport studies were performed with Caco-2 cell monolayers and additionally with freshly excised rat small intestinal mucosa mounted in Ussing type chambers. Furthermore, a delivery system based on Ch-TBA and GSH was evaluated in vivo in rats. The functional activity of the efflux pumps in Caco-2 cells and rat intestinal mucosa during the experiment was proven by the efflux ratio of saquinavir, which was 6.4 for Caco-2 cells and 2.1 for rat intestinal mucosa, respectively. Ch-TBA and particularly the combination of Ch-TBA with GSH enhanced apical (AP) absorption and decreased the secretory transport of saquinavir. In presence of 0.5% Ch-TBA and 0.5% GSH, the uptake of saquinavir was 1.6-fold improved in Caco-2 monolayer and 2.1-fold improved in rat intestinal mucosa. In vivo, the area under the plasma concentration time curve (AUC) of saquinavir was 1.4-fold and Cmax 1.6-fold increased, in comparison with control. Results of this study showed that Ch-TBA in combination with GSH can be an interesting tool for increasing the oral bioavailability of actively secreted compounds.
Kwak, Dong Shin; Lee, Oh Young; Lee, Kang Nyeong; Jun, Dae Won; Lee, Hang Lak; Yoon, Byung Chul; Choi, Ho Soon
2016-05-23
DA-6034 has anti-inflammatory activities and exhibits cytoprotective effects in acute gastric injury models. However, explanations for the protective effects of DA-6034 on intestinal permeability are limited. This study sought to investigate the effect of DA-6034 on intestinal permeability in an indomethacin-induced small intestinal injury model and its protective effect against small intestinal injury. Rats in the treatment group received DA-6034 from days 0 to 2 and indomethacin from days 1 to 2. Rats in the control group received indomethacin from days 1 to 2. On the fourth day, the small intestines were examined to compare the severity of inflammation. Intestinal permeability was evaluated by using fluorescein isothiocyanate-labeled dextran. Western blotting was performed to confirm the association between DA-6034 and the extracellular signal-regulated kinase (ERK) pathway. The inflammation scores in the treatment group were lower than those in the control group, but the difference was statistically insignificant. Hemorrhagic lesions in the treatment group were broader than those in the control group, but the difference was statistically insignificant. Intestinal permeability was lower in the treatment group than in the control group. DA-6034 enhanced extracellular signal-regulated kinase expression, and intestinal permeability was negatively correlated with ERK expression. DA-6034 may decrease intestinal permeability in an indomethacin-induced intestinal injury model via the ERK pathway.
Intestinal fluid absorption in spontaneously hypertensive rats.
Dorey, P G; King, J; Munday, K A; Parsons, B J; Poat, J A
1983-01-01
A comparison has been made of intestinal fluid absorption between male Okamoto spontaneously hypertensive rats (s.h.r.) and normotensive male Wistar controls. S.h.r. show enhanced fluid absorption both in hypertensive adults and in young s.h.r. before hypertension has developed. Several potential causes for increased fluid transport in s.h.r. were tested using pharmacological antagonists. It is unlikely that enhanced fluid absorption is due to high sympathetic nervous activity, the renin-angiotensin system or is secondary to hypertension. Intestine from s.h.r. have a high short-circuit current indicating a change in ion pump activity. These results are discussed in relation to the possible causes of increased fluid (ion) transport by the intestine of s.h.r. PMID:6361232
Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.
Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza
2015-11-02
Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs.
Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats.
Jin, Mingliang; Zhu, Yimin; Shao, Dongyan; Zhao, Ke; Xu, Chunlan; Li, Qi; Yang, Hui; Huang, Qingsheng; Shi, Junling
2017-01-01
The intestinal mucosal barriers play essential roles not only in the digestion and absorption of nutrients, but also the innate defense against most intestinal pathogens. In the present study, polysaccharide from the mycelia of Ganoderma lucidum was given via oral administration to rats (100mg/kg body weight, 21days) to investigate its effects on intestinal barrier functions, including the mechanical barrier, immunological barrier and biological barrier function. It was found that the polysaccharide administration could significantly up-regulate the expression of occludin, nuclear factor-κB p65 (NF-κB p65) and secretory immunoglobulin A (SIgA) in ileum, markedly improve the levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), and IL-4, and decrease the level of diamine oxidase (DAO) in serum. Meanwhile, rats from the polysaccharide group showed significant higher microbiota richness in cecum as reflected by the Chao 1 index compared with the control group. Moreover, the polysaccharide decreased the Firmicutes-to-Bacteroidetes ratio. Our results indicated that the polysaccharide from the mycelia of G. lucidum might be used as functional agent to regulate the intestinal barrier functions. Copyright © 2016 Elsevier B.V. All rights reserved.
Bile Mediates Intestinal Pathology in Endotoxemia in Rats
Jackson, Graham D. F.; Dai, Yung; Sewell, William A.
2000-01-01
Intestinal pathology frequently accompanies experimental endotoxic shock and is mediated by proinflammatory cytokines. Our hypotheses are that hepatobiliary factors operating from the luminal side of the gut make a major contribution to this damage and that tumor necrosis factor alpha (TNF-α) is involved in the pathology. We treated rats with lipopolysaccharide (LPS) intravenously and found that external drainage of bile totally protected the gastrointestinal tract, macroscopically and microscopically, 4 h after LPS administration and dramatically improved survival of the animals for 48 h after LPS administration. The concentration of TNF-α in bile increased markedly after LPS administration and was over 30 times higher in bile than in serum. Tissue damage and the biliary TNF-α response were abrogated when animals were pretreated with gadolinium chloride to eliminate Kupffer cells. TNF-α infusion into the duodenal lumen caused intestinal damage similar to that elicited by intravenous LPS. In rats treated with LPS, survival was significantly increased during the first 36 h in animals given an infusion of anti-TNF-α antibody into the duodenum. These results demonstrate that in endotoxemia, intestinal damage is mediated by factors derived from the bile. The findings indicate that luminally acting TNF-α contributes to the intestinal damage. PMID:10899877
Yan, Qiongxian; Tong, Haiou; Tang, Shaoxun; Tan, Zhiliang; Han, Xuefeng; Zhou, Chuanshe
2017-01-01
L-theanine has various advantageous functions for human health; whether or not it could mediate the nutrients absorption is unknown yet. The effects of L-theanine on intestinal nutrients absorption were investigated using rats ingesting L-theanine solution (0, 50, 200, and 400 mg/kg body weight) per day for two weeks. The decline of insulin secretion and glucose concentration in the serum was observed by L-theanine. Urea and high-density lipoprotein were also reduced by 50 mg/kg L-theanine. Jejunal and ileac basic amino acids transporters SLC7a1 and SLC7a9 , neutral SLC1a5 and SLC16a10 , and acidic SLC1a1 expression were upregulated. The expression of intestinal SGLT3 and GLUT5 responsible for carbohydrates uptake and GPR120 and FABP2 associated with fatty acids transport were inhibited. These results indicated that L-theanine could inhibit the glucose uptake by downregulating the related gene expression in the small intestine of rats. Intestinal gene expression of transporters responding to amino acids absorption was stimulated by L-theanine administration.
Higuchi, Teruhisa; Moriyama, Mitsuhiko; Fukushima, Akiko; Matsumura, Hiroshi; Matsuoka, Shunichi; Kanda, Tatsuo; Sugitani, Masahiko; Tsunemi, Akiko; Ueno, Takahiro; Fukuda, Noboru
2018-05-25
Excess iron is associated with non-alcoholic steatohepatitis (NASH). mRNA expression of duodenal cytochrome b, divalent metal transporter 1, ferroportin 1, hepcidin, hephaestin and transferrin receptor 1 in liver were higher in high fat, high cholesterol-containing diet (HFCD) group than in normal diet (ND) group. mRNA levels of divalent metal transporter 1 and transferrin receptor 1, which stimulate iron absorption and excretion, were enhanced in small intestine. Epithelial mucosa of small intestine in HFCD group was characterized by plasma cell and eosinophil infiltration and increased vacuoles. Iron absorption was enhanced in this NASH model in the context of chronic inflammation of small intestinal epithelial cells, consequences of intestinal epithelial cell impairment caused by HFCD. Iron is transported to hepatocytes via portal blood, and abnormalities in iron absorption and excretion occur in small intestine from changes in iron transporter expression, which also occurs in NASH liver. Knockdown of hepcidin antimicrobial peptide led to enhanced heavy chain of ferritin expression in human hepatocytes, indicating association between hepcidin production and iron storage in hepatocytes. Iron-related transporters in liver and lower/upper portions of small intestine play critical roles in NASH development. Expression of iron metabolism-related genes in liver and small intestine was analyzed in stroke-prone spontaneously hypertensive rats (SHR-SP), which develop NASH. Five-week-old SHR-SP fed ND or HFCD were examined. mRNA and protein levels of iron metabolism-related genes in liver and small intestine from 12- and 19-week-old rats were evaluated by real-time RT-PCR and immunohistochemistry or Western blot.
Musaev, Kh N; Almatov, K T; Rakhimov, M M; Akhmedov, R
1981-01-01
Oxidative phosphorylation in mitochondria of small intestinal mucosa was studied after repeated overheating of rats. The hyperthermia affected the respiratory chains of mitochondrial membranes, facilitating the penetration of ADP, succinate, alpha-ketoglutarate and NADH across the membranes. Under these conditions thermostability of the respiratory chain multienzyme system was decreased and the rate of exogenous cytochrome c incorporation into mitochondrial membranes was altered. In the mitochondrial membranes from small intestinal mucosa there was noted development of latent impairments, the reversibility of which depended on the intensity and duration of hyperthermia.
Xue, Meilan; Ji, Xinqiang; Liang, Hui; Liu, Ying; Wang, Bing; Sun, Lingling; Li, Weiwei
2018-02-21
Recent research studies have shown that the intestinal flora are related to the occurrence and progress of breast cancer. This study investigates the effect of fucoidan on intestinal flora and intestinal barrier function in rats with 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancers. Sixty female Sprague-Dawley rats were randomly assigned to the control group, the model group, and the F1 and F2 groups, which were fed fucoidan at concentrations of 200 and 400 mg per kg bw (body weight), respectively. Intestinal histopathological analysis was performed and 16S rDNA high-throughput sequencing was used to provide an overview of the intestinal flora composition. The contents of d-lactic acid (d-LA), diamine oxidase (DAO) and endotoxin in plasma were detected by ELISA. Expression levels of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were measured using western blotting. Our results suggested that the intestinal wall of the model group was damaged. However, after fucoidan intervention, the villi were gradually restored. ELISA showed that the levels of plasma endotoxin, d-LA and DAO decreased in the F1 and F2 groups compared to those in the model group. Fucoidan treatment also increased the expressions of ZO-1, occludin, claudin-1 and claudin-8. Furthermore, the expression levels of phosphorylated p38 MAPK and ERK1/2 were upregulated in fucoidan treatment groups. The results of 16S rDNA high-throughput sequencing indicated that fucoidan increased the diversity of the intestinal microbiota and induced changes in microbial composition, with the increased Bacteroidetes/Firmicutes phylum ratio. In conclusion, the supplement of fucoidan could improve the fecal microbiota composition and repair the intestinal barrier function. The study suggested the use of fucoidan as an intestinal flora modulator for potential prevention of breast cancer.
Gross, Gabriele; Wildner, Jessica; Schonewille, Arjan; Rademaker, Jan L. W.; van der Meer, Roelof; Snel, Johannes
2008-01-01
Application of phytohemagglutinin (PHA) in weaning feed has been suggested to stimulate intestinal epithelium maturation. In this study, PHA strongly affected the fecal bacterial population structure of rats. Escherichia coli overgrowth was not prevented by probiotic mannose-adhering Lactobacillus plantarum 299v. Therefore, use of PHA in weaning feed deserves careful evaluation. PMID:18606805
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crow, J. Allen; Borazjani, Abdolsamad; Potter, Philip M.
2007-05-15
Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrinmore » are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are {approx} 2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts ({approx} 40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could be detected. Together, these results demonstrate that extrahepatic esterolytic metabolism of specific pyrethroids may be significant. Moreover, hepatic cytosolic and microsomal hydrolytic metabolism should each be considered during the development of pharmacokinetic models that predict the disposition of pyrethroids and other esterified compounds.« less
Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover
Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G
1998-01-01
Background—The functions of urokinase in intestinal epithelia are unknown. Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347
Gomes, J R; Freitas, J R; Grassiolli, S
2016-10-01
The small intestine plays a role in obesity as well as in satiation. However, the effect of physical exercise on the morphology and function of the small intestine during obesity has not been reported to date. This study aimed to evaluate the effects of physical exercise on morphological aspects of the rat small intestine during hypothalamic monosodium glutamate (MSG)-induced obesity. The rats were divided into four groups: Sedentary (S), Monosodium Glutamate (MSG), Exercised (E), and Exercised Monosodium Glutamate (EMSG). The MSG and EMSG groups received a daily injection of monosodium glutamate (4 g/kg) during the 5 first days after birth. The S and E groups were considered as control groups and received injections of saline. At weaning, at 21 days after birth, the EMSG and E groups were submitted to swimming practice 3 times a week until the 90th day, when all groups were sacrificed and the parameters studied recorded. Exercise significantly reduced fat deposits and the Lee Index in MSG-treated animals, and also reduced the thickness of the intestinal wall, the number of goblet cells and intestinal alkaline phosphatase activity. However, physical activity alone increased the thickness and height of villi, and the depth of the crypts. In conclusion, regular physical exercise may alter the morphology or/and functions of the small intestine, reducing the prejudicial effects of hypothalamic obesity. Anat Rec, 299:1389-1396, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Human Ghrelin Mitigates Intestinal Injury and Mortality after Whole Body Irradiation in Rats
Wang, Zhimin; Yang, Weng Lang; Jacob, Asha; Aziz, Monowar; Wang, Ping
2015-01-01
Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury. PMID:25671547
Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.
Wang, Zhimin; Yang, Weng Lang; Jacob, Asha; Aziz, Monowar; Wang, Ping
2015-01-01
Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury.
Development and characterization of an effective food allergy model in Brown Norway rats.
Abril-Gil, Mar; Garcia-Just, Alba; Pérez-Cano, Francisco J; Franch, Àngels; Castell, Margarida
2015-01-01
Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods. The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization. Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer's patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified. Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression. These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression.
Development and Characterization of an Effective Food Allergy Model in Brown Norway Rats
Abril-Gil, Mar; Garcia-Just, Alba; Pérez-Cano, Francisco J.; Franch, Àngels; Castell, Margarida
2015-01-01
Background Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Currently, there is no optimal animal model of FA for the screening of immunotherapies or for testing the allergenicity of new foods. Objective The aim of the present study was to develop an effective and rapid model of FA in Brown Norway rats. In order to establish biomarkers of FA in rat, we compared the immune response and the anaphylactic shock obtained in this model with those achieved with only intraperitoneal immunization. Methods Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bordetella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an oral challenge, body temperature, intestinal permeability, motor activity, and mast cell protease II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA, spleen cytokine production, lymphocyte composition of Peyer’s patches and mesenteric lymph nodes, and gene expression in the small intestine were quantified. Results Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization but were highly augmented after the oral OVA administration. Anti-OVA IgE increased twofold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups decreased body temperature and motor activity, whereas intestinal permeability increased. Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal mRNA expression. Conclusions These results show both an effective and relatively rapid model of FA assessed by means of specific antibody titres and the high production of RMCP-II and its intestinal gene expression. PMID:25923134
Rebamipide promotes healing of colonic ulceration through enhanced epithelial restitution.
Takagi, Tomohisa; Naito, Yuji; Uchiyama, Kazuhiko; Okuda, Toshimitsu; Mizushima, Katsura; Suzuki, Takahiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Yoshikawa, Toshikazu
2011-09-07
To investigate the efficacy of rebamipide in a rat model of colitis and restitution of intestinal epithelial cells in vitro. Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. Rats received intrarectal rebamipide treatment daily starting on day 7 and were sacrificed on day 14 after TNBS administration. The distal colon was removed to evaluate the various parameters of inflammation. Moreover, wound healing assays were used to determine the enhanced restitution of rat intestinal epithelial (RIE) cells treated with rebamipide. Intracolonic administration of rebamipide accelerated TNBS-induced ulcer healing. Increases in the wet weight of the colon after TNBS administration were significantly inhibited by rebamipide. The wound assay revealed that rebamipide enhanced the migration of RIE cells through phosphorylation of extracellular signal-regulated kinase (ERK) and activation of Rho kinase. Rebamipide enema healed intestinal injury by enhancing restitution of RIE cells, via ERK activation. Rebamipide might be a novel therapeutic approach for inflammatory bowel disease.
Rebamipide promotes healing of colonic ulceration through enhanced epithelial restitution
Takagi, Tomohisa; Naito, Yuji; Uchiyama, Kazuhiko; Okuda, Toshimitsu; Mizushima, Katsura; Suzuki, Takahiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Yoshikawa, Toshikazu
2011-01-01
AIM: To investigate the efficacy of rebamipide in a rat model of colitis and restitution of intestinal epithelial cells in vitro. METHODS: Acute colitis was induced with trinitrobenzene sulfonic acid (TNBS) in male Wistar rats. Rats received intrarectal rebamipide treatment daily starting on day 7 and were sacrificed on day 14 after TNBS administration. The distal colon was removed to evaluate the various parameters of inflammation. Moreover, wound healing assays were used to determine the enhanced restitution of rat intestinal epithelial (RIE) cells treated with rebamipide. RESULTS: Intracolonic administration of rebamipide accelerated TNBS-induced ulcer healing. Increases in the wet weight of the colon after TNBS administration were significantly inhibited by rebamipide. The wound assay revealed that rebamipide enhanced the migration of RIE cells through phosphorylation of extracellular signal-regulated kinase (ERK) and activation of Rho kinase. CONCLUSION: Rebamipide enema healed intestinal injury by enhancing restitution of RIE cells, via ERK activation. Rebamipide might be a novel therapeutic approach for inflammatory bowel disease. PMID:21987622
González-Abuín, Noemi; Martínez-Micaelo, Neus; Blay, Mayte; Ardévol, Anna; Pinent, Montserrat
2014-02-05
Grape-seed procyanidin extract (GSPE) has been reported to improve insulin resistance in cafeteria rats. Because glucagon-like peptide-1 (GLP-1) is involved in glucose homeostasis, the preventive effects of GSPE on GLP-1 production, secretion, and elimination were evaluated in a model of diet-induced insulin resistance. Rats were fed a cafeteria diet for 12 weeks, and 25 mg of GSPE/kg of body weight was administered concomitantly. Vehicle-treated cafeteria-fed rats and chow-fed rats were used as controls. The cafeteria diet decreased active GLP-1 plasma levels, which is attributed to a decreased intestinal GLP-1 production, linked to reduced colonic enteroendocrine cell populations. Such effects were prevented by GSPE. In the same context, GSPE avoided the decrease on intestinal dipeptidyl-peptidase 4 (DPP4) activity and modulated the gene expression of GLP-1 and its receptor in the hypothalamus. In conclusion, the preventive treatment with GSPE abrogates the effects of the cafeteria diet on intestinal GLP-1 production and DPP4 activity.
Vijayalakshmi, Bodiga; Sesikeran, Boindala; Udaykumar, Putcha; Kalyanasundaram, Subramaniam; Raghunath, Manchala
2006-01-01
AIM: To investigate if cisplatin alters vitamin status and if VR modulates cisplatin induced intestinal apoptosis and oxidative stress in Wistar/NIN (WNIN) male rats. METHODS: Weanling, WNIN male rats (n = 12 per group) received adlibitum for 17 wk: control diet (20% protein) or the same with 50% vitamin restriction. They were then sub-divided into two groups of six rats each and administered cisplatin (2.61 mg/kg bodyweight) once a week for three wk or PBS (vehicle control). Intestinal epithelial cell (IEC) apoptosis was monitored by morphometry, Annexin-V binding, M30 cytodeath assay and DNA fragmentation. Structural and functional integrity of the villus were assessed by villus height / crypt depth ratio and activities of alkaline phosphatase, lys, ala-dipeptidyl amino-peptidase, respectively. To assess the probable mechanism(s) of altered apoptosis, oxidative stress parameters, caspase-3 activity, and expression of Bcl-2 and Bax were determined. RESULTS: Cisplatin per se decreased plasma vitamin levels and they were the lowest in VR animals treated with cisplatin. As expected VR increased only villus apoptosis, whereas cisplatin increased stem cell apoptosis in the crypt. However, cisplatin treatment of VR rats increased apoptosis both in villus and crypt regions and was associated with higher levels of TBARS, protein carbonyls and caspase-3 activity, but lower GSH concentrations. VR induced decrease in Bcl-2 expression was further lowered by cisplatin. Bax expression, unaffected by VR was increased on cisplatin treatment. Mucosal functional integrity was severely compromised in cisplatin treated VR-rats. CONCLUSION: Low intake of vitamins increases the sensitivity of rats to cisplatin and promotes intestinal epithelial cell apoptosis. PMID:16534849
Saidi, Saber Abdelkader; Ncir, Marwa; Chaaben, Rim; Jamoussi, Kamel; van Pelt, Jos; Elfeki, Abdelfattah
2017-10-01
Intestinal ischemia-reperfusion (IIR) not only leads to severe intestine damage but also induced subsequent destruction of remote organs. We investigated the protective effect of Pistascia lentiscus L. (Anacardiaceae) oil on IIR. Wistar rats were divided into three groups: sham, intestinal IR and P. lentiscus pretreatment (n = 18 each). In the pretreatment group, oil was administered 1 h before induction of warm ischemia. IIR led to severe liver damage manifested as a significant (p < .05) increase of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Pistacia lentiscus oil decreased the visible intestinal damage, as well as a significant decrease in serum AST and ALT levels. In addition, Pistacia lentiscus reduce liver injury, as evidenced by the decrease in liver tissue myeloperoxidase activity and lipoperoxidation (MDA) level. Pistascia lentiscus attenuates liver injury induced by IIR, attributable to the antioxidant and anti-inflammatory effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowland, I.R.; Davies, M.J.; Evans, J.G.
1980-05-01
The effect of intestinal flora on the absorption and disposition of mercury in tissues was investigated using conventional rats, and rats treated with antibiotics to eliminate their gut flora. Antibiotic-treated rats given (/sup 203/Hg) -labeled methylmercuric chloride orally had significantly more mercury in their tissues, especially in kidney, brain, lung, blood, and skeletal muscle, and also excreted less mercury in the feces than conventional rats. Furthermore, in the kidneys of the antibiotic-treated rats, the proportion of mercury present as organic mercury was greater than in the kidneys of the conventional rats. The results support the hypothesis that the metabolism ofmore » methylmercuric chloride by the gut flora reduces the tissue content of mercury. When rats were administered 10 mg methylmercuric chloride/Kg.day for 6 days, four or five of those given antibiotics developed neurological symptoms of toxicity, whereas only one of five conventional rats given methylmercuric chloride was affected.« less
Yuan, Bosi; Zhou, Shuping; Lu, Youke; Liu, Jiong; Jin, Xinxin; Wan, Haijun; Wang, Fangyu
2015-01-01
Background/Aims This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Methods Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. Results The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. Conclusions There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability. PMID:25717051
Yuan, Bosi; Zhou, Shuping; Lu, Youke; Liu, Jiong; Jin, Xinxin; Wan, Haijun; Wang, Fangyu
2015-11-23
This animal study aimed to define the underlying cellular mechanisms of intestinal barrier dysfunction. Rats were fed 4% with dextran sodium sulfate (DSS) to induce experimental colitis. We analyzed the sugars in 24-hour urine output by high pressure liquid chromatography. The expression of claudins, mannan-binding lectin (MBL), and MBL-associated serine proteases 2 (MASP-2) were detected in the colonic mucosa by immunohistochemistry; and apoptotic cells in the colonic epithelium were detected by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling method assay. The lactulose and sucralose excretion levels in the urine of rats with DSS-induced colitis were significantly higher than those in the control rats. Mannitol excretion was lower and lactulose/mannitol ratios and sucralose/mannitol ratios were significantly increased compared with those in the control group (p<0.05). Compared with the controls, the expression of sealing claudins (claudin 3, claudin 5, and claudin 8) was significantly decreased, but that of claudin 1 was increased. The expression of pore-forming claudin 2 was upregulated and claudin 7 was downregulated in DSS-induced colitis. The epithelial apoptotic ratio was 2.8%±1.2% in controls and was significantly increased to 7.2%±1.2% in DSS-induced colitis. The expression of MBL and MASP-2 in the intestinal mucosa showed intense staining in controls, whereas there was weak staining in the rats with colitis. There was increased intestinal permeability in DSS-induced colitis. Changes in the expression and distribution of claudins, increased epithelial apoptosis, and the MASP-2-induced immune response impaired the intestinal epithelium and contributed to high intestinal permeability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Regina, A.; Petrillo, P.; Sbacchi, M.
1988-01-01
The k-opioid compound U-69,593 was studied in rats in vitro in binding assays to assess its selectivity at the single types of opioid sites and in vivo to assess its analgesic activity and effect on intestinal propulsion. In vitro the U-69,593 inhibition curve of (/sup 3/H)-(-)-bremazocine binding suppressed at ..mu..- and delta-sites was biphasic and the inhibition constant (K/sub l/) at the high-affinity site (10-18nM) was two orders of magnitude smaller the K/sub l/ at the low-affinity site. The K/sub l/ at ..mu..- and delta-sites were respectively 3.3 and 8.5 ..mu..M. Thus (/sup 3/H)-(-)-bremazocine, suppressed at ..mu..- and delta-sites, maymore » still bind more than one site, which U-69,593 might distinguish. In vivo U-69,593 i.p. prolonged the reaction time of rats on a 55/sup 0/C hot-plate and the dose of naloxone required to antagonize this effect was 40 times the dose that antagonized morphine-induced antinociception, suggesting the involvement of the k-receptor. In the intestinal transit test U-69,593 at doses between 0.5 and 15 mg/kg i.p. only slightly slowed intestinal transit of a charcoal meal in rats with no dose-relation; it partly but significantly antagonized morphine-induced constipation. These results suggest that the k-type of opioid receptor, with which U-69,593 interacts may induce analgesia, but has no appreciable role in the mechanisms of opioid-induced inhibition of intestinal transit in rats.« less
Proctor, Deborah M.; Suh, Mina; Haws, Laurie C.; Kirman, Christopher R.; Harris, Mark A.
2013-01-01
Chronic exposure to high concentrations of hexavalent chromium (Cr(VI)) in drinking water causes intestinal adenomas and carcinomas in mice, but not in rats. Cr(VI) causes damage to intestinal villi and crypt hyperplasia in mice after only one week of exposure. After two years of exposure, intestinal damage and crypt hyperplasia are evident in mice (but not rats), as are intestinal tumors. Although Cr(VI) has genotoxic properties, these findings suggest that intestinal tumors in mice arise as a result of chronic mucosal injury. To better understand the mode of action (MOA) of Cr(VI) in the intestine, a 90-day drinking water study was conducted to collect histological, biochemical, toxicogenomic and pharmacokinetic data in intestinal tissues. Using MOA analyses and human relevance frameworks proposed by national and international regulatory agencies, the weight of evidence supports a cytotoxic MOA with the following key events: (a) absorption of Cr(VI) from the intestinal lumen, (b) toxicity to intestinal villi, (c) crypt regenerative hyperplasia and (d) clonal expansion of mutations within the crypt stem cells, resulting in late onset tumorigenesis. This article summarizes the data supporting each key event in the MOA, as well as data that argue against a mutagenic MOA for Cr(VI)-induced intestinal tumors. PMID:23445218
BTZO-15, an ARE-Activator, Ameliorates DSS- and TNBS-Induced Colitis in Rats
Yukitake, Hiroshi; Kimura, Haruhide; Suzuki, Hirobumi; Tajima, Yasukazu; Sato, Yoshimi; Imaeda, Toshihiro; Kajino, Masahiro; Takizawa, Masayuki
2011-01-01
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that are primarily represented by ulcerative colitis and Crohn's disease. The etiology of IBD is not well understood; however, oxidative stress is considered a potential etiological and/or triggering factor for IBD. We have recently reported the identification of BTZO-1, an activator of antioxidant response element (ARE)-mediated gene expression, which protects cardiomyocytes from oxidative stress-induced insults. Here we describe the potential of BTZO-15, an active BTZO-1 derivative for ARE-activation with a favorable ADME-Tox profile, for the treatment of IBD. BTZO-15 induced expression of heme oxygenase-1 (HO-1), an ARE-regulated cytoprotective protein, and inhibited NO-induced cell death in IEC-18 cells. Large intestine shortening, rectum weight gain, diarrhea, intestinal bleeding, and an increase in rectal myeloperoxidase (MPO) activity were observed in a dextran sulfate sodium (DSS)-induced colitis rat model. Oral administration of BTZO-15 induced HO-1 expression in the rectum and attenuated DSS-induced changes. Furthermore BTZO-15 reduced the ulcerated area and rectal MPO activity in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rats without affecting rectal TNF-α levels. These results suggest that BTZO-15 is a promising compound for a novel IBD therapeutic drug with ARE activation properties. PMID:21853095
Camuesco, D; Comalada, M; Concha, A; Nieto, A; Sierra, S; Xaus, J; Zarzuelo, A; Gálvez, J
2006-06-01
Previous studies have described the intestinal anti-inflammatory effects exerted by the bioflavonoid quercitrin (QR) and by an n-3 polyunsaturated fatty acids (PUFA)-enriched diet in experimental models of rat colitis. The aim of the present study was to test if the combination of both treatments would result in an improvement in the intestinal anti-inflammatory effect achieved separately. Colitis was induced in female Wistar rats by incorporating dextran sodium sulfate (DSS) in drinking water at 5% (w/v) for 5 days and at 2% (w/v) for the following 10 days. Five groups of rats (n=10) were used: two of them received an olive-oil-based diet with fish oil, rich in n-3 PUFA (FO diet) for 2 weeks before colitis induction and until the end of the experiment, and one of those also was administered daily QR (1mg/kg, PO), starting when DSS concentration was changed. DSS colitis was induced in other two groups fed with standard rat diet, one of them being administered QR as before. A non-colitic group fed standard diet was also included. After that period, the rats were sacrificed and colonic damage was assessed both histologically and biochemically. The concurrent administration of FO diet and QR exhibited an intestinal anti-inflammatory effect, as evidenced by a significant improvement of all biochemical parameters of colonic inflammation assayed in comparison with non-treated colitic rats. Thus, both colonic myeloperoxidase (MPO) and alkaline phosphatase (AP) activities were significantly reduced compared with untreated colitic rats. In addition, a complete restoration of colonic glutathione content, which was depleted as a consequence of the colonic insult, was obtained in rats treated with QR plus FO diet; this content was even higher than that obtained when colitic rats were treated with FO diet alone. When compared with the control colitic group, the combined treatment was also associated with a lower colonic nitric oxide synthase and cyclooxygenase-2 expression as well as with a significant reduction in different colonic proinflammatory mediators assayed, i.e. leukotriene B(4), tumor necrosis factor alpha and interleukin 1beta, showing a significantly greater inhibitory effect of the latter in comparison with rats receiving FO diet without the flavonoid. These results support the potential synergism between the administration of the flavonoid and the incorporation of olive oil and n-3 PUFA to the diet for the treatment of these intestinal inflammatory disorders.
Guan, Jun; Liu, Shaoze; Lin, Zhaofen; Li, Wenfang; Liu, Xuefeng; Chen, Dechang
2014-01-01
Infections caused by multidrug-resistant pathogens are frequent and life threatening in critically ill patients. To investigate whether severe sepsis affects gut colonization by resistant pathogens and genetic exchange between opportunistic pathogens, we tested the intestinal-colonization ability of an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strain carrying the SHV-18 resistance gene and the transfer ability of the resistance gene to endogenous Escherichia coli under ceftriaxone treatment in rats with burn injury only or severe sepsis induced by burns plus endotoxin exposure. Without ceftriaxone treatment, the K. pneumoniae strain colonized the intestine in both septic and burned rats for a short time, with clearance occurring earlier in burn-only rats but never in sham burn rats. In both burned and septic rats, the colonization level of the challenge strain dropped at the beginning and then later increased during ceftriaxone treatment, after which it declined gradually. This pattern coincided with the change in resistance of K. pneumoniae to ceftriaxone during and after ceftriaxone treatment. Compared with burn-only injury, severe sepsis had a more significant effect on the change in antimicrobial resistance to ceftriaxone. Only in septic rats was the resistance gene successfully transferred from the challenge strain to endogenous E. coli during ceftriaxone treatment; the gene persisted for at least 4 weeks after ceftriaxone treatment. We concluded that severe sepsis can facilitate intestinal colonization by an exogenous resistant pathogen and the transfer of the resistance gene to a potential endogenous pathogen during antimicrobial treatment.
Peritoneal lavage with povidone-iodine solution in colorectal cancer-induced rats.
Song, Hua-Li; Zhang, Dong-Mei; Wen, Heng; Wang, Meng; Zhao, Na; Gao, Yu-Hua; Ding, Ni
2018-08-01
Although peritoneal lavage with povidone-iodine (PVPI) is frequently performed after surgery on the gastrointestinal tract, the effects of PVPI on the intestinal epithelial barrier are unknown. The purpose of this study was to investigate the effects of abdominal irrigation with PVPI on the intestinal epithelial barrier in a colorectal cancer (CRC)-induced rat model. The CRC model was induced in rats with azoxymethane and dextran sodium sulfate. Next, a total of 24 male CRC-induced rats were randomly divided into three groups (n = 8): (1) a sham-operated group, (2) an NS group (peritoneal lavage 0.9% NaCl), and (3) a PVPI group (peritoneal lavage with 0.45%-0.55% PVPI). The mean arterial pressure was continuously monitored throughout the experiment. The levels of plasma endotoxin and D-lactate, blood gases, and protein concentration were measured. The ultrastructural changes of the epithelial tight junctions were observed by transmission electron microscopy. The mean arterial pressure after peritoneal lavage was lower in the PVPI group than that in the NS group. The protein concentration and levels of endotoxin and D-lactate were higher in the PVPI group than they were in the PVPI group. In addition, PVPI treatment resulted in a markedly severe metabolic acidosis and intestinal mucosal injury compared with NS rats. Peritoneal lavage with PVPI dramatically compromises the integrity of the intestinal mucosa barrier and causes endotoxin shock in CRC rats. It is unsafe for clinical applications to include peritoneal lavage with PVPI in colorectal operations. Copyright © 2018 Elsevier Inc. All rights reserved.
Oral Toxicity and Intestinal Transport Mechanism of Colloidal Gold Nanoparticle-Treated Red Ginseng
Bae, Song-Hwa; Yu, Jin; Go, Mi-Ran; Kim, Hyun-Jin; Hwang, Yun-Gu; Choi, Soo-Jin
2016-01-01
(1) Background: Application of nanotechnology or nanomaterials in agricultural food crops has attracted increasing attention with regard to improving crop production, quality, and nutrient utilization. Gold nanoparticles (Au-NPs) have been reported to enhance seed yield, germination rate, and anti-oxidant potential in food crops, raising concerns about their toxicity potential. In this study, we evaluated the oral toxicity of red ginseng exposed to colloidal Au-NPs during cultivation (G-red ginseng) in rats and their intestinal transport mechanism. (2) Methods: 14-day repeated oral administration of G-red ginseng extract to rats was performed, and body weight, hematological, serum biochemical, and histopathological values were analyzed. An in vitro model of human intestinal follicle-associated epithelium (FAE) and an intestinal epithelial monolayer system were used for intestinal transport mechanistic study. (3) Results: No remarkable oral toxicity of G-red ginseng extract in rats was found, and Au-NPs did not accumulate in any organ, although Au-NP transfer to G-red ginseng and some increased saponin levels were confirmed. Au-NPs were transcytozed by microfold (M) cells, but not by a paracellular pathway in the intestinal epithelium. (4) Conclusion: These findings suggest great potential of Au-NPs for agricultural food crops at safe levels. Further study is required to elucidate the functional effects of Au-NPs on ginseng and long-term toxicity. PMID:28335336
Gurien, Lori A; Wyrick, Deidre L; Smith, Samuel D; Maxson, R Todd
2016-05-01
Although this issue remains unexamined, pediatric surgeons commonly use simple interrupted suture for bowel anastomosis, as it is thought to improve intestinal growth postoperatively compared to continuous running suture. However, effects on intestinal growth are unclear. We compared intestinal growth using different anastomotic techniques during the postoperative period in young rats. Young, growing rats underwent small bowel transection and anastomosis using either simple interrupted or continuous running technique. At 7-weeks postoperatively after a four-fold growth, the anastomotic site was resected. Diameters and burst pressures were measured. Thirteen rats underwent anastomosis with simple interrupted technique and sixteen with continuous running method. No differences were found in body weight at first (102.46 vs 109.75g) or second operations (413.85 vs 430.63g). Neither the diameters (0.69 vs 0.79cm) nor burst pressures were statistically different, although the calculated circumference was smaller in the simple interrupted group (2.18 vs 2.59cm; p=0.03). No ruptures occurred at the anastomotic line. This pilot study is the first to compare continuous running to simple interrupted intestinal anastomosis in a pediatric model and showed no difference in growth. Adopting continuous running techniques for bowel anastomosis in young children may lead to faster operative time without affecting intestinal growth. Copyright © 2016 Elsevier Inc. All rights reserved.
Ontogeny of intestinal safety factors: lactase capacities and lactose loads.
O'Connor, T P; Diamond, J
1999-03-01
We measured intestinal safety factors (ratio of a physiological capacity to the load on it) for lactose digestion in developing rat pups. Specifically, we assessed the quantitative relationships between lactose load and the series capacities of lactase and the Na+-glucose cotransporter (SGLT-1). Both capacities increased significantly with age in suckling pups as a result of increasing intestinal mass and maintenance of mass-specific activities. The youngest pups examined (5 days) had surprisingly high safety factors of 8-13 for both lactase and SGLT-1, possibly because milk contains lactase substrates other than lactose; it also, however, suggests that their intestinal capacities were being prepared to meet future demands rather than just current ones. By day 10 (and also at day 15), increased lactose loads resulted in lower safety factors of 4-6, values more typical of adult intestines. The safety factor of SGLT-1 in day 30 (weanling) and day 100 (adult) rats was only approximately 1.0. This was initially unexpected, because most adult intestines maintain a modest reserve capacity beyond nutrient load values, but postweaning rats appear to use hindgut fermentation, assessed by gut morphology and hydrogen production assays, as a built-in reserve capacity. The series capacities of lactase and SGLT-1 varied in concert with each other over ontogeny and as lactose load was manipulated by experimental variation in litter size.
Nicken, Petra; von Keutz, Anne; Willenberg, Ina; Ostermann, Annika I; Schebb, Nils Helge; Giovannini, Samoa; Kershaw, Olivia; Breves, Gerhard; Steinberg, Pablo
2016-05-01
Colorectal cancer is one of the most frequent cancers in Western countries. Chronic intestinal diseases such as Crohn's disease and ulcerative colitis, in which the intestinal barrier is massively disturbed, significantly raise the risk of developing a colorectal tumour. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a genotoxic heterocyclic aromatic amine that is formed after strongly heating fish and meat. In this study, the hypothesis that PhIP uptake in the gut is increased during chronic colitis was tested. Chronic colitis was induced by oral administration of dextran sulphate sodium (DSS) to Fischer 344 rats. The transport of PhIP in eight different rat intestinal segments was examined in Ussing chambers. The tissues were incubated with 10 µM PhIP for 90 min, and the concentration of PhIP was determined in the mucosal and serosal compartments of the Ussing chambers as well as in the clamped tissues by LC-MS. Although chronic colitis was clearly induced in the rats, no differences in the intestinal transport of PhIP were observed between control and DSS-treated animals. The hypothesis that in the course of chronic colitis more PhIP is taken up by the intestinal epithelium, thereby increasing the risk of developing colorectal cancer, could not be confirmed in the present report.
Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul
2016-12-01
The present study investigated the effects of myo-inositol on muscle glucose uptake and intestinal glucose absorption ex vivo as well as in normal and type 2 diabetes model of rats. In ex vivo study, both intestinal glucose absorption and muscle glucose uptake were studied in isolated rat jejunum and psoas muscle respectively in the presence of increasing concentrations (2.5 % to 20 %) of myo-inositol. In the in vivo study, the effect of a single bolus dose (1 g/kg bw) of oral myo-inositol on intestinal glucose absorption, blood glucose, gastric emptying and digesta transit was investigated in normal and type 2 diabetic rats after 1 h of co-administration with 2 g/kg bw glucose, when phenol red was used as a recovery marker. Myo-inositol inhibited intestinal glucose absorption (IC 50 = 28.23 ± 6.01 %) and increased muscle glucose uptake, with (GU 50 = 2.68 ± 0.75 %) or without (GU 50 = 8.61 ± 0.55 %) insulin. Additionally, oral myo-inositol not only inhibited duodenal glucose absorption and reduced blood glucose increase, but also delayed gastric emptying and accelerated digesta transit in both normal and diabetic animals. Results of this study suggest that dietary myo-inositol inhibits intestinal glucose absorption both in ex vivo and in normal or diabetic rats and also promotes muscle glucose uptake in ex vivo condition. Hence, myo-inositol may be further investigated as a possible anti-hyperglycaemic dietary supplement for diabetic foods and food products.
Cui, Li; Blanchard, Raymond K; Cousins, Robert J
2003-01-01
Deficient intake of zinc from the diet upregulates both uroguanylin (UG) and inducible nitric oxide synthase (iNOS) expression in rats. Because these changes influence intestinal fluid secretion and intestinal cell pathophysiology, they relate to the incidence of diarrheal disease and its reversal by zinc as well as intestinal inflammation in general. A model of moderate zinc deficiency in rats, which changes molecular indices of zinc deficiency, was used to further explore the effects of the proinflammatory cytokine interleukin (IL)-1alpha and zinc repletion on these changes. IL-1alpha has been shown to have a role in the intestinal inflammation that occurs with bacterial infection. Our results showed a permissive effect of zinc deficiency on both UG and iNOS expression. Specifically, UG expression was responsive to zinc deficiency and IL-1alpha challenge, which were additive when combined, whereas iNOS expression was upregulated by IL-1alpha only during the deficiency. Immunohistochemistry showed that the increase in UG was limited to enterocytes of the upper villus but, in contrast, the increase in iNOS was principally in cells of the lamina propria of IL-1alpha-treated rats. Cells exhibiting UG upregulation did not co-express serotonin. Repletion with zinc reversed upregulation of the iNOS gene within 1 d, whereas UG upregulation required 3-4 d to return to normal. This differential response to repletion suggests that mechanisms of UG and iNOS dysregulation are different. Dysregulation of both genes may contribute to the severity of zinc-responsive diarrheal disease and intestinal inflammatory disease.
Martins, Heber Amilcar; Sehaber, Camila Caviquioli; Hermes-Uliana, Catchia; Mariani, Fernando Augusto; Guarnier, Flavia Alessandra; Vicentini, Geraldo Emílio; Bossolani, Gleison Daion Piovezana; Jussani, Laraine Almeida; Lima, Mariana Machado; Bazotte, Roberto Barbosa; Zanoni, Jacqueline Nelisis
2016-12-01
This study aimed to evaluate the intestinal mucosa of the duodenum and jejunum of Walker-256 tumor-bearing rats supplemented with L-glutamine. Thirty-two male 50-day-old Wistar rats (Rattus norvegicus) were randomly divided into four groups: control (C), control supplemented with 2 % L-glutamine (GC), Walker-256 tumor (WT), and Walker-256 tumor supplemented with 2 % L-glutamine (TWG). Walker-256 tumor was induced by inoculation viable tumor cells in the right rear flank. After 10 days, celiotomy was performed and duodenal and jejunal tissues were removed and processed. We evaluated the cachexia index, proliferation index, villus height, crypt depth, total height of the intestinal wall, and number of goblet cells by the technique of periodic acid-Schiff (PAS). Induction of Walker-256 tumor promoted a reduction of metaphase index in the TW group animals, which was accompanied by a reduction in the villous height and crypt depths, resulting in atrophy of the intestinal wall as well as increased PAS-positive goblet cells. Supplementation with L-glutamine reduced the tumor growth and inhibited the development of the cachectic syndrome in animals of the TWG group. Furthermore, amino acid supplementation promoted beneficial effects on the intestinal mucosa in the TWG animals through restoration of the number of PAS-positive goblet cells. Therefore, supplementation with 2 % L-glutamine exhibited a promising role in the prevention of tumor growth and cancer-associated cachexia as well as restoring the intestinal mucosa in the duodenum and jejunum of Walker-256 tumor-bearing rats.
Bourgin, P; Lebrand, C; Escourrou, P; Gaultier, C; Franc, B; Hamon, M; Adrien, J
1997-03-01
Rapid eye movement sleep can be elicited in the rat by microinjection of the cholinergic agonist carbachol into the oral pontine reticular nucleus. Intracerebroventricular administration, during the light period, of vasoactive intestinal peptide enhances rapid eye movement sleep in several species. Since this peptide is co-localized with acetylcholine in many neurons in the central nervous system, it was assumed that the oral pontine tegmentum could also be one target for vasoactive intestinal peptide to induce rapid eye movement sleep. This hypothesis was tested by recording the sleep-wakefulness cycle in freely-moving rats injected with vasoactive intestinal peptide or its fragments (1-12 and 10-28) directly into the oral pontine reticular nucleus. when administered into the posterior part of this nucleus, vasoactive intestinal peptide at 1 and 10 ng (in 0.1 microliter of saline), but not its fragments, induced a 2-fold enhancement of rapid eye movement sleep during 4 h, at the expense of wakefulness. At the dose of 10 ng, a significant increase in rapid eye movement sleep persisted for up to 8 h. Moreover, when the peptide was injected into the centre of the positive zone, rapid eye movement sleep was enhanced during three to eight consecutive days. These data provide the first evidence that rapid eye movement sleep can be elicited at both short- and long-term by a single intracerebral microinjection of vasoactive intestinal peptide. Peptidergic mechanisms, possibly in association with cholinergic mechanisms, within the caudal part of the oral pontine reticular nucleus may play a critical role in the long-term regulation of rapid eye movement sleep in rats.
Úbeda, María; Lario, Margaret; Muñoz, Leticia; Borrero, María-José; Rodríguez-Serrano, Macarena; Sánchez-Díaz, Ana-María; Del Campo, Rosa; Lledó, Lourdes; Pastor, Óscar; García-Bermejo, Laura; Díaz, David; Álvarez-Mon, Melchor; Albillos, Agustín
2016-05-01
In advanced cirrhosis, gut bacterial translocation is the consequence of intestinal barrier disruption and leads to bacterial infection. Bile acid abnormalities in cirrhosis could play a role in the integrity of the intestinal barrier and the control of microbiota, mainly through the farnesoid X receptor. We investigated the long-term effects of the farnesoid X receptor agonist, obeticholic acid, on gut bacterial translocation, intestinal microbiota composition, barrier integrity and inflammation in rats with CCl4-induced cirrhosis with ascites. Cirrhotic rats received a 2-week course of obeticholic acid or vehicle starting once ascites developed. We then determined: bacterial translocation by mesenteric lymph node culture, ileum expression of antimicrobial peptides and tight junction proteins by qPCR, fecal albumin loss, enteric bacterial load and microbiota composition by qPCR and pyrosequencing of ileum mucosa-attached contents, and intestinal inflammation by cytometry of the inflammatory infiltrate. Obeticholic acid reduced bacterial translocation from 78.3% to 33.3% (p<0.01) and upregulated the expression of the farnesoid X receptor-associated gene small heterodimer partner. Treatment improved ileum expression of antimicrobial peptides, angiogenin-1 and alpha-5-defensin, tight junction proteins zonulin-1 and occludin, and reduced fecal albumin loss and liver fibrosis. Enteric bacterial load normalized, and the distinctive mucosal microbiota of cirrhosis was reduced. Gut immune cell infiltration was reduced and inflammatory cytokine and Toll-like receptor 4 expression normalized. In ascitic cirrhotic rats, obeticholic acid reduces gut bacterial translocation via several complementary mechanisms at the intestinal level. This agent could be used as an alternative to antibiotics to prevent bacterial infection in cirrhosis. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Yang, Jun; Zhao, Xiaofeng; Patel, Archana; Potru, Rachana; Azizi-Ghannad, Sadra; Dolinger, Michael; Mazurkiewicz, Joseph; Conti, David; Jones, David; Huang, Yunfei; Zhu, Xinjun
2016-01-01
Background & Aims The immunosuppressant rapamycin frequently causes non-infectious diarrhea in recipients of organ transplants. We investigated the mechanisms of this process. Methods We performed a retrospective analysis of renal transplant recipients treated with rapamycin from 2003 through 2010 at Albany Medical College, collecting data on serum levels of rapamycin. Levels of the Na+/H+ exchanger 3 (NHE3) were measured in human ileal biopsies from patients who did and did not receive rapamycin (controls), in ileum tissues from rats or mice given rapamycin, and in mice with intestine-specific disruption of Mtor (mTORf/f:Villin-cre mice) or Atg7 (Atg7flox/flox; Villin-Cre). Exchange activity and intestinal water absorption were measured using a pH-sensitive dye and small intestine perfusion, respectively. Results Episodes of non-infectious diarrhea occurred in organ recipients following increases in serum levels of rapamycin. Expression of NHE3 was reduced in the ileal brush border of patients with diarrhea. In rats and mice, continuous administration of low doses of rapamycin reduced levels of NHE3 in intestinal tissues; this effect was not observed in mice with intestinal deletion of ATG7, indicating that autophagy is required for the reduction. Administration of single high doses of rapamycin to mice, to model the spikes in rapamycin levels that occur in patients with severe diarrheal episodes, resulted in reduced phosphorylation of S6 and AKT in ileal tissues, indicating inhibition of the mTOR complex (mTORC1 and mTORC2). Intestines of mice with intestine-specific deletion of mTOR were dilated and contained large amount of liquid stools; they also had reduced levels of total NHE3 and NHERF1, compared with control mice. We observed a significant reduction in Na+/H+ exchange activity in ileum tissues from these mice. Conclusions Rapamycin inhibition of mTOR reduces levels of NHE3 and Na+/H+ exchange activity in intestinal tissues of patients and rodents. This process appears to require the autophagic activity mediated by ATG7. Loss of mTOR regulation of NHE3 could mediate the development of diarrhea in patients undergoing rapamycin therapy. PMID:25836987
Yang, Jun; Zhao, Xiaofeng; Patel, Archana; Potru, Rachana; Azizi-Ghannad, Sadra; Dolinger, Michael; Cao, James; Bartholomew, Catherine; Mazurkiewicz, Joseph; Conti, David; Jones, David; Huang, Yunfei; Zhu, Xinjun Cindy
2015-07-01
The immunosuppressant rapamycin frequently causes noninfectious diarrhea in organ transplant recipients. We investigated the mechanisms of this process. We performed a retrospective analysis of renal transplant recipients treated with rapamycin from 2003 through 2010 at Albany Medical College, collecting data on serum levels of rapamycin. Levels of the Na+/H+ exchanger 3 (NHE3) were measured in human ileal biopsy specimens from patients who did and did not receive rapamycin (controls), in ileum tissues from rats or mice given rapamycin, and in mice with intestine-specific disruption of mammalian target of rapamycin (Mtor) (mTOR(f/f):Villin-cre mice) or Atg7 (Atg7(flox/flox); Villin-Cre). Exchange activity and intestinal water absorption were measured using a pH-sensitive dye and small intestine perfusion, respectively. Episodes of noninfectious diarrhea occurred in organ recipients after increases in serum levels of rapamycin. The expression of NHE3 was reduced in the ileal brush border of patients with diarrhea. In rats and mice, continuous administration of low doses of rapamycin reduced levels of NHE3 in intestinal tissues; this effect was not observed in mice with intestinal deletion of ATG7, indicating that autophagy is required for the reduction. Administration of single high doses of rapamycin to mice, to model the spikes in rapamycin levels that occur in patients with severe diarrheal episodes, resulted in reduced phosphorylation of S6 and AKT in ileal tissues, indicating inhibition of the mTOR complex (mTORC1 and mTORC2). The intestines of mice with intestine-specific deletion of mTOR were dilated and contained large amounts of liquid stools; they also had reduced levels of total NHE3 and NHERF1 compared with control mice. We observed a significant reduction in Na(+)/H(+) exchange activity in ileum tissues from these mice. Rapamycin inhibition of mTOR reduces levels of NHE3 and Na(+)/H(+) exchange activity in intestinal tissues of patients and rodents. This process appears to require the autophagic activity mediated by ATG7. Loss of mTOR regulation of NHE3 could mediate the development of diarrhea in patients undergoing rapamycin therapy. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Nagaya, Yoko; Takenaka, Osamu; Kusano, Kazutomi; Yoshimura, Tsutomu
2013-05-01
New chemical entities often exhibit nonlinear pharmacokinetics (PK) profiles in experimental animals. However, the number of studies that have focused on species differences in nonlinear PK is very limited; thus, the aim of this study was to clarify the mechanism of the nonlinear PK of E2074 (2-[(2R)-2-fluoro-3-{(3r)-[(3-fluorobenzyl)oxy]-8-azabicyclo[3.2.1]oct-8-yl}propyl]-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-one), a novel sodium channel inhibitor, in rats, dogs, and monkeys. Nonlinear PK profiles with more than dose-proportional increases of Cmax and area under the plasma concentration curve were observed in all species after oral administration. The Michaelis-Menten constant (Km) values of hepatic microsomal metabolism were 7.23 and 0.41 μM in rats and dogs in vitro, respectively, which were lower than the unbound maximum plasma concentrations after oral administration in vivo, indicating that the nonlinear PK in rats and dogs was attributable to the saturation of hepatic metabolism. However, we do not believe that the saturation of hepatic metabolism was the mechanism of nonlinearity in monkeys because of the high Km value (42.44 μM) observed in liver microsomes. Intestinal metabolism was observed in monkey intestinal microsomes but not in rats and dogs, and the nonlinear PK in monkeys was diminished by inhibition of intestinal metabolism with a concomitant oral dose of ketoconazole. These results suggest that saturation of the intestinal metabolism is the potential mechanism of nonlinearity in monkeys. P-glycoprotein was not involved in the nonlinear PK profiles in any species. In conclusion, the mechanism of the nonlinear PK of E2074 is species dependent, with the saturation of hepatic metabolism in rats and dogs and that of intestinal metabolism in monkeys being the primary cause.
Huang, Hsien-Hao; Chen, Liang-Yu; Doong, Ming-Luen; Chang, Shi-Chuan; Chen, Chih-Yen
2017-01-01
Acyl ghrelin-induced intake depends on hypothalamic neuropeptide Y and agouti-related protein (AgRP) neurotransmitters. Intracerebroventricular (ICV) injection of AgRP increases feeding through competitive antagonism at melanocortin receptors. ICV administration of α-melanocyte stimulating hormone (α-MSH), a natural antagonist of AgRP, may modulate the acyl ghrelin-induced orexigenic effect. This study aimed to investigate the modulating effect of α-MSH on the central acyl ghrelin-induced food intake, gastrointestinal motility, and colonic secretion in rats. We examined the effects of α-MSH and acyl ghrelin on food intake, gastric emptying, small intestinal transit, colonic motility, and secretion in conscious rats with a chronic implant of ICV catheters. ICV injection of O - n -octanoylated ghrelin (0.1 nmol/rat) significantly increased the cumulative food intake up to 8 h ( P <0.01), enhanced non-nutrient semi-liquid gastric emptying ( P <0.001), increased the geometric center and running percentage of small intestinal transit ( P <0.001), accelerated colonic transit time ( P <0.05), and increased fecal pellet output ( P <0.01) and total fecal weight ( P <0.01). Pretreatment with ICV injection of α-MSH (1.0 and 2.0 nmol/rat) attenuated the acyl ghrelin-induced hyperphagic effect, fecal pellet output, and total fecal weight, while higher dose of α-MSH (2.0 nmol/rat) attenuated the increase in the geometric center of small intestinal transit ( P <0.01). However, neither dose of α-MSH altered acyl ghrelin-stimulated gastroprokinetic effect, increase in the running percentage of small intestinal transit, nor accelerated colonic transit time. α-MSH is involved in central acyl ghrelin-elicited feeding, small intestinal transit, fecal pellet output, and fecal weight. α-MSH does not affect central acyl ghrelin-induced acceleration of gastric emptying and colonic transit time in rats.
Absence of diamine oxidase activity from rabbit and rat lungs.
Rao, S B; Rao, K S; Mehendale, H M
1986-01-01
To study the presence of diamine oxidase (DAO) activity in any tissue with putrescine as the substrate, it is necessary to use inhibitors to block all pathways that could further metabolize gamma-aminobutyraldehyde, which is the product of enzyme reaction. It is also necessary to inhibit any enzyme that may convert putrescine into higher polyamines. By this approach it was observed that lung tissue of both rat and rabbit exhibited no DAO activity. DAO activity was observed in the rat and rabbit intestine, the former showing 3 times as much activity as the latter. The other potential pathways of putrescine metabolism are of no consequence in the rat and rabbit intestine and lungs. PMID:3087348
Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira
2016-02-29
In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium. Copyright © 2015 Elsevier B.V. All rights reserved.
Sodium alginate inhibits methotrexate-induced gastrointestinal mucositis in rats.
Yamamoto, Atsuki; Itoh, Tomokazu; Nasu, Reishi; Kajiwara, Eiji; Nishida, Ryuichi
2013-01-01
Gastrointestinal mucositis is one of the most prevalent side effects of chemotherapy. Methotrexate is a pro-oxidant compound that depletes dihydrofolate pools and is widely used in the treatment of leukemia and other malignancies. Through its effects on normal tissues with high rates of proliferation, methotrexate treatment leads to gastrointestinal mucositis. In rats, methotrexate-induced gastrointestinal mucositis is histologically characterized by crypt loss, callus fusion and atrophy, capillary dilatation, and infiltration of mixed inflammatory cells. The water-soluble dietary fiber sodium alginate (AL-Na) is derived from seaweed and has demonstrated muco-protective and hemostatic effects on upper gastrointestinal ulcers. In the present study, we evaluated the effects of AL-Na on methotrexate-induced small intestinal mucositis in rats. Animals were subcutaneously administered methotrexate at a dosage of 2.5 mg/kg once daily for 3 d. Rats were treated with single oral doses of AL-Na 30 min before and 6 h after methotrexate administration. On the 4th day, small intestines were removed and weighed. Subsequently, tissues were stained with hematoxylin-eosin and bromodeoxyuridine. AL-Na significantly prevented methotrexate-induced small intestinal mucositis. Moreover, AL-Na prevented decreases in red blood cell numbers, hemoglobin levels, and hematocrit levels. These results suggest the potential of AL-Na as a therapy for methotrexate-induced small intestinal mucositis.
Yue, Yuan; Wu, Shuangchan; Li, Zhike; Li, Jian; Li, Xiaofei; Xiang, Jin; Ding, Hong
2015-08-01
Dietary polysaccharides provide various beneficial effects for our health. We investigated the protective effects of wild jujube (Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou) sarcocarp polysaccharides (WJPs) against experimental inflammatory bowel disease (IBD) by enabling enhanced intestinal barrier function. Colitis was induced in rats by the intrarectal administration of TNBS. We found that WJPs markedly ameliorated the colitis severity, including less weight loss, decreased disease activity index scores, and improved mucosal damage in colitis rats. Moreover, WJPs suppressed the inflammatory response via attenuation of TNF-α, IL-1β, IL-6 and MPO activity in colitis rats. And then, to determine the effect of WJPs on the intestinal barrier, we measured the effect of WJPs on the transepithelial electrical resistance (TER) and FITC-conjugated dextran permeability in Caco-2 cell stimulation with TNF-α. We further demonstrated that the alleviation of WJPs to colon injury was associated with barrier function by assembly of tight junction proteins. Moreover, the effect of WJPs on TER was eliminated by the specific inhibitor of AMPK. AMPK activity was also up-regulated by WJPs in Caco-2 cell stimulation with TNF-α and in colitis rats. This study demonstrates that WJPs protect against IBD by enabling enhanced intestinal barrier function involving the activation of AMPK.
Intestinal transport of gentamicin with a novel, glycosteroid drug transport agent
NASA Technical Reports Server (NTRS)
Axelrod, H. R.; Kim, J. S.; Longley, C. B.; Lipka, E.; Amidon, G. L.; Kakarla, R.; Hui, Y. W.; Weber, S. J.; Choe, S.; Sofia, M. J.
1998-01-01
PURPOSE: The objective was to investigate the ability of a glycosteroid (TC002) to increase the oral bioavailability of gentamicin. METHODS: Admixtures of gentamicin and TC002 were administered to the rat ileum by injection and to dogs by ileal or jejunal externalized ports, or PO. Bioavailability of gentamicin was determined by HPLC. 3H-TC002 was injected via externalized cannulas into rat ileum or jejunum, or PO and its distribution and elimination was determined. The metabolism of TC002 in rats was evaluated by solid phase extraction and HPLC analysis of plasma, urine and feces following oral or intestinal administration. RESULTS: The bioavailability of gentamicin was substantially increased in the presence of TC002 in both rats and dogs. The level of absorption was dependent on the concentration of TC002 and site of administration. Greatest absorption occurred following ileal orjejunal administration. TC002 was significantly more efficacious than sodium taurocholate, but similar in cytotoxicity. TC002 remained primarily in the GI tract following oral or intestinal administration and cleared rapidly from the body. It was only partly metabolized in the GI tract, but was rapidly and completely converted to its metabolite in plasma and urine. CONCLUSIONS: TC002 shows promise as a new drug transport agent for promoting intestinal absorption of polar molecules such as gentamicin.
Possible mechanism of acute effect of ethanol on intestinal IgA expression in rat.
Budec, Mirela; Koko, Vesna; Todorović, Vera; Marković, Dragana; Postić, Marija; Drndarević, Neda; Spasić, Andelka; Mitrović, Olivera
2007-06-01
The purpose of this study was to investigate the possible mechanism of acute effect of ethanol on IgA expression in rat intestine. To this end, adult female Wistar rats showing diestrus day 1 were treated with (a) ethanol (2 or 4 g/kg, i.p.); (b) N omega-nitro-L-arginine-methyl ester (L-NAME), which inhibits the activity of all isoforms of nitric oxide synthase, (30 mg/kg, s.c.) followed by ethanol 3 h later; and (c) L-NAME (30 mg/kg, s.c.) followed by saline 3 h later. Saline-injected and untreated rats were used as controls. The animals were sacrificed 0.5 h after ethanol administration. Intestinal expression of IgA was evaluated by both immunohistochemistry and Western immunoblotting. Morphometric analysis showed that acute ethanol treatment increased the number of IgA-immunoreactive cells in a dose-dependent manner. Pretreatment with L-NAME abolished this action of alcohol. Injection of L-NAME followed by saline had no influence on the number of IgA+cells. The results, obtained by Western immunoblotting, paralleled our immunohistochemical findings. Taken together, these data suggest that acute effect of ethanol on intestinal IgA might be mediated by endogenous nitric oxide.
The effect of amino acids on the intestinal absorption of immunoglobulins in the neonatal rat
Bamford, D. R.; Donnelly, H.
1974-01-01
An in vitro preparation of 10-day-old rat intestine was used to examine the absorption of a number of amino acids and immunoglobulins. Evidence was obtained for the active absorption of alanine, leucine, methionine, histidine and lysine, but not for aspartic acid. A selective absorption of the homologous molecule was found in experiments where 131I-labelled rat and bovine IgG were presented to the ileum in 10-minute incubations. The greater uptake of rat IgG was unrelated to the relative rates of catabolism of the two molecules. Although the uptake of rat IgG was unaffected by 100 mM concentrations of neutral and acidic amino acids, the basic amino acids arginine and lysine significantly stimulated uptake. PMID:4854740
On the enterohepatic cycle of triiodothyronine in rats; importance of the intestinal microflora
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Herder, W.W.; Hazenberg, M.P.; Pennock-Schroeder, A.M.
1989-01-01
Until 70 h after a single iv injection of 10 uCi ({sup 125}I)triiodothyronine (T{sub 3}), normal rats excreted 15.8 {plus minus} 2.8% of the radioactivity with the feces and 17.5 {plus minus} 2.7% with the urine, while in intestine-decontaminated rats fecal and urinary excretion over this period amounted to 25.1 {plus minus} 7.2% and 23.6 {plus minus} 4.0% of administered radioactivity, respectively (mean {plus minus} SD, n=4). In fecal extracts of decontaminated rats 11.5 {plus minus} 6.8% of the excreted radioactivity consisted of T{sub 3} glucuronide (T{sub 3}G) and 10.9 {plus minus} 2.8% of T{sub 3} sulfate (T{sub 3}S), whereasmore » no conjugates were detected in feces from normal rats. Until 26 h after ig administration of 10 uCi ({sup 125}I)T{sub 3}, integrated radioactivity in blood of decontaminated rats was 1.5 times higher than that in normal rats. However, after ig administration of 10 uCi ({sup 125}I)T{sub 3}G or ({sup 125}I)T{sub 3}S, radioactivity in blood of decontaminated rats was 4.9- and 2.8-fold lower, respectively, than in normal rats. The radioactivity in the serum of control animals was composed of T{sub 3} and iodide in proportions independent of the tracer injected, while T{sub 3} conjugates represented <10 % of serum radioactivity. These results suggest an important role of the intestinal microflora in the enterohepatic circulation of T{sub 3} in rats.« less
Zeng, Xiao-yan; Dong, Shu; He, Nan-nan; Jiang, Chun-jie; Dai, Yue; Xia, Yu-feng
2015-09-01
Arctigenin is the main active ingredient of Fructus Arctii for the treatment of type 2 diabetes. In this study, the pharmacokinetics of arctigenin in normal and type 2 diabetic rats following oral and intravenous administration was investigated. As compared to normal rats, Cmax and AUC(0-10h) values of oral arctigenin in diabetic rats increased by 356.8% and 223.4%, respectively. In contrast, after intravenous injection, the Cmax and AUC(0-10h) values of arctigenin showed no significant difference between diabetic and normal rats. In order to explore how the bioavailability of oral arctigenin increased under diabetic condition, the absorption behavior of arctigenin was evaluated by in situ single-pass intestinal perfusion (SPIP). The results indicated that arctigenin was a substrate of P-glycoprotein (P-gp). The absorption difference of arctigenin in the normal and diabetic rats could be eliminated by the pretreatment of classic P-gp inhibitor verapamil, suggesting that P-gp might be the key factor causing the absorption enhancement of arctigenin in diabetic rats. Further studies revealed that the uptake of rhodamine 123 (Rho123) in diabetic rats was significantly higher, indicating that diabetes mellitus might impair P-gp function. Consistently, a lower mRNA level of P-gp in the intestine of diabetic rats was found. In conclusion, the absorption of arctigenin after oral administration was promoted in diabetic rats, which might be partially attribute to the decreased expression and impaired function of P-gp in intestines. Copyright © 2015 Elsevier B.V. All rights reserved.
de Haan, Jacco J; Thuijls, Geertje; Lubbers, Tim; Hadfoune, M'hamed; Reisinger, Kostan; Heineman, Erik; Greve, Jan-Willem M; Buurman, Wim A
2010-07-01
Early gut wall integrity loss and local intestinal inflammation are associated with the development of inflammatory complications in surgical and trauma patients. Prevention of these intestinal events is a potential target for therapies aimed to control systemic inflammation. Previously, we demonstrated in a rodent shock model that lipid-rich enteral nutrition attenuated systemic inflammation and prevented organ damage through a cholecystokinin receptor-dependent vagal pathway. The influence of lipid-rich nutrition on very early intestinal compromise as seen after shock is investigated. Next, the involvement of cholecystokinin receptors on the nutritional modulation of immediate gut integrity loss and intestinal inflammation is studied. Randomized controlled in vivo study. University research unit. Male Sprague-Dawley rats. Liquid lipid-rich nutrition or control low-lipid feeding was administered per gavage before hemorrhagic shock. Cholecystokinin receptor antagonists were used to investigate involvement of the vagal antiinflammatory pathway. Gut permeability to horseradish peroxidase increased as soon as 30 mins postshock and was prevented by lipid-rich nutrition compared with low-lipid (p<.01) and fasted controls (p<.001). Furthermore, lipid-rich nutrition reduced plasma levels of enterocyte damage marker ileal lipid binding protein at 60 mins (p<.05). Early gut barrier dysfunction correlated with rat mast cell protease plasma concentrations at 30 mins (rs=0.67; p<.001) and intestinal myeloperoxidase levels at 60 mins (rs=0.58; p<.05). Lipid-rich nutrition significantly reduced plasma rat mast cell protease (p<.01) and myeloperoxidase (p<.05) before systemic inflammation was detectable. Protective effects of lipid-rich nutrition were abrogated by cholecystokinin receptor antagonists (horseradish peroxidase; p<.05 and rat mast cell protease; p<.05). Lipid-rich enteral nutrition prevents early gut barrier loss, enterocyte damage, and local intestinal inflammation before systemic inflammation develops in a cholecystokinin receptor-dependent manner. This study identifies activation of the vagal antiinflammatory pathway with lipid-rich nutrition as a potential therapy in patients prone to develop a compromised gut.
Govers, Coen; van der Meulen, Jan; van Hoef, Angeline; Stoopen, Geert; Hamers, Astrid; Hoekman, Arjan; de Vos, Ric; Bovee, Toine F. H.; Smits, Mari; Mes, Jurriaan J.
2016-01-01
Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells) and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP) technique) to study the effect of food compounds. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies. PMID:27631494
de Wit, Nicole J W; Hulst, Marcel; Govers, Coen; van der Meulen, Jan; van Hoef, Angeline; Stoopen, Geert; Hamers, Astrid; Hoekman, Arjan; de Vos, Ric; Bovee, Toine F H; Smits, Mari; Mes, Jurriaan J; Hendriksen, Peter J M
2016-01-01
Human intestinal tissue samples are barely accessible to study potential health benefits of nutritional compounds. Numbers of animals used in animal trials, however, need to be minimalized. Therefore, we explored the applicability of in vitro (human Caco-2 cells) and ex vivo intestine models (rat precision cut intestine slices and the pig in-situ small intestinal segment perfusion (SISP) technique) to study the effect of food compounds. In vitro digested yellow (YOd) and white onion extracts (WOd) were used as model food compounds and transcriptomics was applied to obtain more insight into which extent mode of actions depend on the model. The three intestine models shared 9,140 genes which were used to compare the responses to digested onions between the models. Unsupervised clustering analysis showed that genes up- or down-regulated by WOd in human Caco-2 cells and rat intestine slices were similarly regulated by YOd, indicating comparable modes of action for the two onion species. Highly variable responses to onion were found in the pig SISP model. By focussing only on genes with significant differential expression, in combination with a fold change > 1.5, 15 genes showed similar onion-induced expression in human Caco-2 cells and rat intestine slices and 2 overlapping genes were found between the human Caco-2 and pig SISP model. Pathway analyses revealed that mainly processes related to oxidative stress, and especially the Keap1-Nrf2 pathway, were affected by onions in all three models. Our data fit with previous in vivo studies showing that the beneficial effects of onions are mostly linked to their antioxidant properties. Taken together, our data indicate that each of the in vitro and ex vivo intestine models used in this study, taking into account their limitations, can be used to determine modes of action of nutritional compounds and can thereby reduce the number of animals used in conventional nutritional intervention studies.
Xu, Ling-Fen; Li, Jun; Sun, Mei; Sun, Hong-Wei
2005-01-01
AIM: To study the expressions of intestinal trefoil factor (ITF) and proliferating cell nuclear antigen (PCNA) and histologic changes in intestine, to investigate the relationship between ITF and intestinal damage and repair after intrauterine hypoxia so as to understand the mechanism of intestinal injury and to find a new way to prevent and treat gastrointestinal diseases. METHODS: Wistar rats, pregnant for 21 d, were used to establish animal models of intrauterine asphyxia by clamping one side of vessels supplying blood to uterus for 20 min, another side was regarded as sham operation group. Intestinal tissues were taken away at 0, 24, 48 and 72 h after birth and stored in different styles. ITF mRNA was detected by RT-PCR. PCNA expression was measured by immunohistochemistry. Intestinal tissues were studied histologically by HE staining in order to observe the areas and degree of injury and to value the intestinal mucosa injury index (IMDI). RESULTS: ITF mRNA appeared in full-term rats and increased with age. After ischemia, ITF mRNA was decreased to the minimum (0.59±0.032) 24 h after birth, then began to increase higher after 72 h than it was in the control group (P<0.01). PCNA positive staining located in goblet cell nuclei. The PCNA level had a remarkable decline (53.29±1.97) 48 h after ischemia. Structure changes were obvious in 48-h group, IMDI (3.40±0.16) was significantly increased. Correlation analyses showed that IMDI had a negative correlation with ITF mRNA and PCNA (r = -0.543, P<0.05; r = -0.794, P<0.01, respectively). CONCLUSION: Intrauterine ischemia can result in an early decrease of ITF mRNA expression. ITF and PCNA may play an important role in the damage and repair of intestinal mucosa. PMID:15818741
Luo, C C; Chen, H M; Chiu, C H; Lin, J N; Chen, J C
2001-07-01
Subclinical intestinal ischemia-reperfusion injury (IRI) causes an increase in mucosal permeability and may represent an early event in the pathogenesis of necrotizing enterocolitis in premature infants. Previous studies suggested that continuous, endogenous formation of nitric oxide (NO) maintains the mucosal integrity of the intestine, thus protecting the gut from injuries from blood-borne toxins and tissue-destructive mediators. This study was undertaken to assess whether the inhibition of NO production causes an increase in intestinal permeability in rats following IRI. Sprague-Dawley rats weighing 200-300 g were divided into 4 groups: (1) untreated group (normal control); (2) ischemia-reperfusion group; (3) early N(G)-nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of NO production, treatment group, and (4) late L-NAME treatment group. Transient IRI was induced by 30-min occlusion, followed by reperfusion of the isolated ileal loop. The L-NAME was administered 15 min before and after mesenteric ischemia as a 25-mg/kg bolus. Fluorescein isothiocyanate-dextran (FITC-D) was used to quantitatively assess the alteration in mucosal permeability of the intestine. There was no significant increase in the portal vein FITC-D level among normal controls, ischemia-reperfusion group and late L-NAME-treated group, but there was an approximately 6-fold increase in the early L-NAME treatment group. The pathological features of the intestine following IRI include denudation of the villus epithelium and reduction of villus height, associated with marked inflammatory cell infiltration over the lamina propria. These results suggest that endogenous NO may play a role in the protecting intestinal integrity after IRI. Copyright 2001 S. Karger AG, Basel
Ikeda, Saiko; Uchida, Tomono; Ichikawa, Tomio; Watanabe, Takashi; Uekaji, Yukiko; Nakata, Daisuke; Terao, Keiji; Yano, Tomohiro
2010-01-01
To determine the bioavailability of tocotrienol complex with gamma-cyclodextrin, the effects of tocotrienol/gamma-cyclodextrin complex on tocotrienol concentration in rat plasma and tissues were studied. Rats were administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. At 3 h after administration, the plasma gamma-tocotrienol concentration of the rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the rats administered tocotrienol and gamma-cyclodextrin. In order to determine the effect of complexation on tocotrienol absorption, rats were injected with Triton WR1339, which prevents the catabolism of triacylglycerol-rich lipoprotein by lipoprotein lipase, and then administered by oral gavage an emulsion containing tocotrienol, tocotrienol with gamma-cyclodextrin, or tocotrienol/gamma-cyclodextrin complex. The plasma gamma-tocotrienol concentration of the Triton-treated rats administered tocotrienol/gamma-cyclodextrin complex was higher than that of the other Triton-treated rats. These results suggest that complexation of tocotrienol with gamma-cyclodextrin elevates plasma and tissue tocotrienol concentrations by enhancing intestinal absorption.
Forsyth, Christopher B; Farhadi, Ashkan; Jakate, Shriram M; Tang, Yueming; Shaikh, Maliha; Keshavarzian, Ali
2009-03-01
Because only 30% of alcoholics develop alcoholic liver disease (ALD), a factor other than heavy alcohol consumption must be involved in the development of alcohol-induced liver injury. Animal and human studies suggest that bacterial products, such as endotoxins, are the second key co-factors, and oxidant-mediated gut leakiness is one of the sources of endotoxemia. Probiotics have been used to prevent and treat diseases associated with gut-derived bacterial products and disorders associated with gut leakiness. Indeed, "probiotic"Lactobacillus rhamnosus has been successfully used to treat alcohol-induced liver injury in rats. However, the mechanism of action involved in the potential beneficial effects of L. rhamnosus in alcohol liver injury is not known. We hypothesized that probiotics could preserve normal barrier function in an animal model of ALD by preventing alcohol-induced oxidative stress and thus prevent the development of hyperpermeability and subsequent alcoholic steatohepatitis (ASH). Male Sprague-Dawley rats were gavaged with alcohol twice daily (8 gm/kg) for 10 weeks. In addition, alcoholic rats were also treated with once daily gavage of either 2.5 x 10(7) live L. rhamnosus Gorbach-Goldin (LGG) or vehicle (V). Intestinal permeability (baseline and at 10 weeks) was determined using a sugar bolus and GC analysis of urinary sugars. Intestinal and liver tissues were analyzed for markers of oxidative stress and inflammation. In addition, livers were assessed histologically for severity of ASH and total fat (steatosis). Alcohol+LGG (ALC+LGG)-fed rats had significantly (P< or =.05) less severe ASH than ALC+V-fed rats. L. rhamnosus Gorbach-Goldin also reduced alcohol-induced gut leakiness and significantly blunted alcohol-induced oxidative stress and inflammation in both intestine and the liver. L. rhamnosus Gorbach-Goldin probiotic gavage significantly ameliorated ASH in rats. This improvement was associated with reduced markers of intestinal and liver oxidative stress and inflammation and preserved gut barrier function. Our study provides a scientific rationale to test probiotics for treatment and/or prevention of alcoholic liver disease in man.
Barbieri, S; Buttini, F; Rossi, A; Bettini, R; Colombo, P; Ponchel, G; Sonvico, F; Colombo, G
2015-08-01
Tamoxifen citrate is an anticancer drug slightly soluble in water. Administered orally, it shows great intra- and inter-patient variations in bioavailability. We developed a nanoformulation based on phospholipid and chitosan able to efficiently load tamoxifen and showing an enzyme triggered release. In this work the permeation of tamoxifen released from lecithin/chitosan nanoparticles across excised rat intestinal wall mounted in an Ussing chamber was investigated. Compared to tamoxifen citrate suspension, the amount of the drug permeated using the nanoformulation was increased from 1.5 to 90 times, in absence or in presence of pancreatin or lipase, respectively. It was also evidenced the formation of an active metabolite of tamoxifen, 4-hydroxy tamoxifen, however, the amount of metabolite permeated remained roughly constant in all experiments. The effect of enzymes on intestinal permeation of tamoxifen was shown only when tamoxifen-loaded nanoparticles were in intimate contact with the mucosal surface. The encapsulation of tamoxifen in lecithin/chitosan nanoparticles improved the non-metabolized drug passing through the rat intestinal tissue via paracellular transport. Copyright © 2015 Elsevier B.V. All rights reserved.
Somasundaram, S; Sigthorsson, G; Simpson, R J; Watts, J; Jacob, M; Tavares, I A; Rafi, S; Roseth, A; Foster, R; Price, A B; Wrigglesworth, J M; Bjarnason, I
2000-05-01
The pathogenesis of NSAID-induced gastrointestinal damage is believed to involve a nonprostaglandin dependent effect as well as prostaglandin dependent effects. One suggestion is that the nonprostaglandin mechanism involves uncoupling of mitochondrial oxidative phosphorylation. To assess the role of uncoupling of mitochondrial oxidative phosphorylation in the pathogenesis of small intestinal damage in the rat. We compared key pathophysiologic events in the small bowel following (i) dinitrophenol, an uncoupling agent (ii) parenteral aspirin, to inhibit cyclooxygenase without causing a 'topical' effect and (iii) the two together, using (iv) indomethacin as a positive control. Dinitrophenol altered intestinal mitochondrial morphology, increased intestinal permeability and caused inflammation without affecting gastric permeability or intestinal prostanoid levels. Parenteral aspirin decreased mucosal prostanoids without affecting intestinal mitochondria in vivo, gastric or intestinal permeability. Aspirin caused no inflammation or ulcers. When dinitrophenol and aspirin were given together the changes in intestinal mitochondrial morphology, permeability, inflammation and prostanoid levels and the macro- and microscopic appearances of intestinal ulcers were similar to indomethacin. These studies allow dissociation of the contribution and consequences of uncoupling of mitochondrial oxidative phosphorylation and cyclooxygenase inhibition in the pathophysiology of NSAID enteropathy. While uncoupling of enterocyte mitochondrial oxidative phosphorylation leads to increased intestinal permeability and low grade inflammation, concurrent decreases in mucosal prostanoids appear to be important in the development of ulcers.
Sukhotnik, I; Berkowitz, D; Dorfman, T; Halabi, Salim; Pollak, Y; Bejar, J; Bitterman, A; Coran, A G
2016-02-01
Bone morphogenetic proteins (BMPs) are a group of growth factors that are implicated in intestinal growth, morphogenesis, differentiation, and homeostasis. The role of the BMP signaling cascade in stimulation of cell proliferation after massive small bowel resection is unknown. The purpose of this study was to evaluate the role of BMP signaling during intestinal adaptation in a rat model of short bowel syndrome (SBS). Male rats were divided into two groups: Sham rats underwent bowel transection and SBS rats underwent a 75 % bowel resection. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined 2 weeks after operation. Illumina's Digital Gene Expression analysis was used to determine the BMP signaling gene expression profiling. BMP-related genes and protein expression were determined using real-time PCR, Western blotting and immunohistochemistry. From the total number of 20,000 probes, 8 genes related to BMP signaling were investigated. From these genes, five genes were found to be up-regulated in jejunum (BMP1-10 %, BMP2-twofold increase, BMP3-10 %, BMP2R-12 % and STAT3-28 %) and four genes to be up-regulated in ileum (BMP1-16 %, BMP2-27 %, BMP3-10 %, and STAT3-20 %) in SBS vs sham animals with a relative change in gene expression level of 10 % or more. SBS rats also demonstrated a significant increase in BMP2 and STAT3 mRNA and protein levels (determined by real-time PCR and Western blot) compared to control animals. Two weeks following massive bowel resection in rats, the BMP signaling pathway is stimulated. BMP signaling may serve as an important mediator of reciprocal interactions between the epithelium and the underlying mesenchymal stroma during intestinal adaptation following massive bowel resection in a rat.
NASA Technical Reports Server (NTRS)
Battles, August H.; Knapka, Joseph T.; Stevens, Bruce R.; Lewis, Laura; Lang, Marie T.; Gruendel, Douglas J.
1991-01-01
Rats were fed an irradiated high-moisture diet (KSC-25) with or without access to a water bottle. Physiologic values were compared between these two groups and a group of rats fed a purified diet. Hematologic and serum biochemical values, urine specific gravity, and intestinal enzyme activities were determined from samples collected from the three groups of rats. Sprague Dawley rats (n=32) fed the irradiated high-moisture diet with or without a water bottle were the test animals. Rats (n=16) fed an irradiated purified diet and water provided via a water bottle were the control group. The purified diet formulation, modified AIN-76A, is a commonly used purified diet for laboratory rodents. All rats remained alert and healthy throughout the study. A comparison of the physiologic values of rats in this study with reported normal values indicated that all of the rats in the study were in good health. Significant differences (P less than 0.05) of the physiologic values from each rat group are reported.
Hirotani, Yoshihiko; Yamamoto, Kaoru; Ikeda, Kenji; Arakawa, Yukio; Li, Jun; Kitamura, Kazuyuki; Kurokawa, Nobuo; Tanaka, Kazuhiko
2006-11-01
Glucagon-like peptide 2 (GLP-2) is a potent intestinal epithelium-specific growth factor that has been shown to reduce the severity of inflammatory disorders of the intestine in rodent models. We examined whether a relationship exists between plasma level of GLP-2 and the degree of intestinal injury induced by chemotherapeutic agents in the rat. Methotrexate (MTX) was administrated orally for 6 consecutive days at doses of 1.25, 2.5, and 5.0 mg/kg body weight per day. Mucosal samples of rat duodenum, jejunum, and ileum were used for assessment of mucosal weight, DNA and protein content. Plasma GLP-2 levels were measured on day 8. MTX significantly reduced body weight. The values of all indices tended to decrease in all segments with increases in MTX dose. Plasma GLP-2 levels were significantly higher in the MTX 2.5 mg/kg/d group (p<0.05) and the MTX 5.0 mg/kg/d group (p<0.01) than in the control group. Correlations were found between plasma GLP-2 levels and mucosal weight, DNA and protein content. We concluded that plasma GLP-2 levels reflect the degree of intestinal injury following MTX administration in this preclinical model.
Xu, Haiyan; Kulkarni, Kaustubh H.; Singh, Rashim; Yang, Zhen; Wang, Stephen W.J.; Tam, Vincent H.; Hu, Ming
2010-01-01
The purposes of this study were to investigate how efflux transporters and UDP-glucuronosyltransferases (UGT) affect the disposition of naringenin. A rat intestinal perfusion model with bile duct cannulation was used along with rat intestinal and liver microsomes. In the intestinal perfusion model, both absorption and subsequent excretion of naringenin metabolites were rapid and site-dependent (p < 0.05). Naringenin was absorbed the most in colon and its glucuronides were excreted the most in duodenum. In metabolism studies, the intrinsic clearance value of naringenin glucuronidation was the highest in jejunum microsomes, followed by liver, ileal and colonic microsomes. The rapid metabolism in microsomes did not always translate into more efficient excretion in the rat perfusion model, however, because of presence of rate-limiting efflux transporters. When used separately, MK-571 (an inhibitor of multidrug resistance-related protein 2 or Mrp2) or dipyridamole (an inhibitor of breast cancer resistance protein or Bcrp1) did not affect excretion of naringenin glucuronides, but when used together, they significantly (p < 0.05) decreased intestinal and biliary excretion of naringenin glucuronides. In conclusion, efflux transporters Mrp2 and Bcrp1 are shown to compensate for each other and enable the intestinal excretion of flavonoid (i.e., naringenin) glucuronides. PMID:19736994
PDGF-α stimulates intestinal epithelial cell turnover after massive small bowel resection in a rat.
Sukhotnik, Igor; Mogilner, Jorge G; Pollak, Yulia; Blumenfeld, Shiri; Bejar, Jacob; Coran, Arnold G
2012-06-01
Numerous cytokines have been shown to affect epithelial cell differentiation and proliferation through epithelial-mesenchymal interaction. Growing evidence suggests that platelet-derived growth factor (PDGF) signaling is an important mediator of these interactions. The purpose of this study was to evaluate the effect of PDGF-α on enterocyte turnover in a rat model of short bowel syndrome (SBS). Male rats were divided into four groups: Sham rats underwent bowel transection, Sham-PDGF-α rats underwent bowel transection and were treated with PDGF-α, SBS rats underwent a 75% bowel resection, and SBS-PDGF-α rats underwent bowel resection and were treated with PDGF-α. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined at euthanasia. Illumina's Digital Gene Expression analysis was used to determine PDGF-related gene expression profiling. PDGF-α and PDGF-α receptor (PDGFR-α) expression was determined by real-time PCR. Western blotting was used to determine p-ERK, Akt1/2/3, bax, and bcl-2 protein levels. SBS rats demonstrated a significant increase in PDGF-α and PDGFR-α expression in jejunum and ileum compared with sham animals. SBS-PDGF-α rats demonstrated a significant increase in bowel and mucosal weight, villus height, and crypt depth in jejunum and ileum compared with SBS animals. PDGF-α receptor expression in crypts increased in SBS rats (vs. sham) and was accompanied by an increased cell proliferation following PDGF-α administration. A significant decrease in cell apoptosis in this group was correlated with lower bax protein levels. In conclusion, in a rat model of SBS, PDGF-α stimulates enterocyte turnover, which is correlated with upregulated PDGF-α receptor expression in the remaining small intestine.
Raymond, Arthur; Mercade-Loubière, Myriam; Salvador-Cartier, Christel; Ringot, Bélinda; Léonard, Renaud; Fourquaux, Isabelle; Ait-Belgnaoui, Afifa; Loubière, Pascal; Théodorou, Vassilia; Mercier-Bonin, Muriel
2015-01-01
The present study aimed at detecting the exogenously applied probiotic Lactobacillus farciminis in rats, after exposure to IBS-like chronic stress, based on 4-day Water Avoidance Stress (WAS). The presence of L. farciminis in both ileal and colonic mucosal tissues was demonstrated by FISH and qPCR, with ileum as the preferential niche, as for the SFB population. A different spatial distribution of the probiotic was observed: in the ileum, bacteria were organized in micro-colonies more or less close to the epithelium whereas, in the colon, they were mainly visualized far away from the epithelium. When rats were submitted to WAS, the L. farciminis population substantially decreased in both intestinal regions, due to a stress-induced increase in colonic motility and defecation, rather than a modification of bacterial binding to the intestinal mucin Muc2. PMID:26367538
Da Silva, Stéphanie; Robbe-Masselot, Catherine; Raymond, Arthur; Mercade-Loubière, Myriam; Salvador-Cartier, Christel; Ringot, Bélinda; Léonard, Renaud; Fourquaux, Isabelle; Ait-Belgnaoui, Afifa; Loubière, Pascal; Théodorou, Vassilia; Mercier-Bonin, Muriel
2015-01-01
The present study aimed at detecting the exogenously applied probiotic Lactobacillus farciminis in rats, after exposure to IBS-like chronic stress, based on 4-day Water Avoidance Stress (WAS). The presence of L. farciminis in both ileal and colonic mucosal tissues was demonstrated by FISH and qPCR, with ileum as the preferential niche, as for the SFB population. A different spatial distribution of the probiotic was observed: in the ileum, bacteria were organized in micro-colonies more or less close to the epithelium whereas, in the colon, they were mainly visualized far away from the epithelium. When rats were submitted to WAS, the L. farciminis population substantially decreased in both intestinal regions, due to a stress-induced increase in colonic motility and defecation, rather than a modification of bacterial binding to the intestinal mucin Muc2.
Intestinal transfer of choline in rat and hamster
Sanford, P. A.; Smyth, D. H.
1971-01-01
1. The transfer of choline was studied with sacs of everted intestine of rat and hamster. 2. The choline transfer can be divided into two components, a diffusion process and a saturable process. The latter plays a relatively greater part at low concentrations of choline, which include the physiological concentration in the plasma. The saturable process is better seen in the hamster than in the rat. 3. Intestinal transfer of choline is influenced by substances altering the availability of energy in the cell, and by some substances chemically or pharmacologically related to choline. These findings are consistent with some kind of specific mechanism for choline transfer. 4. Part of the choline taken up by the cell appears as a metabolite not yet identified. The formation of the metabolite is a saturable process and is abolished by anaerobic conditions and by homogenization. 5. The results are also discussed in relation to parameters of transfer. PMID:5090994
Nöhle, U; Schauer, R
1981-11-01
N-Acetyl-D-[2-14C,9-3H]neuraminic acid, enzymically prepared from sodium [2-14C]-pyruvate and N-acetyl-D-[6-3H]mannosamine by N-acetylneuraminate lyase in 75% yield, was orally administered to 20 day old fasted mice. 90% of the administered neuraminic acid was absorbed from the intestine in the course of 4 h, at a rate depending on the retention time of neuraminic acid in the intestine and the mental conditions of the animals. Between 60 and 90% of the neuraminic acid was excreted in the urine without chemical alteration within the first 6 h. Four hours after administration 10% of the 3H- and 1.3% of the 14C-radioactivity were recovered in the whole blood and in liver, spleen, kidney and brain. After 3 days 0.5% of 3H- and 0.01% of 14C-radioactivity still remained in these tissues. The discrepancy of the 14C-amount relative to the 3H-quantity was accounted for by exhaled 14CO2. After intravenous injection of N-acetylneuraminic acid into rats, 90% of the radioactivity corresponding to the original substance was excreted in the urine within 10 min. Four hours after administration only 5% of the applied 3H- and 1.2% of the 14C-radioactivity were left in the blood and in liver, spleen, kidney and brain. The experiments show that neither orally nor intravenously applied N-acetylneuraminic acid can penetrate cell membranes to a large extent, with the exception of the intestine. The isotopic ratio and N-acetylneuraminate lyase activity suggest that the small amount of the neuraminic acid retained in tissues was largely cleaved by the lyase, followed by metabolism of the reaction products. It may be concluded from these observations that neuraminic acid occurring in food cannot directly be used for the biosynthesis of glycoconjugates on a large scale.
Incecayir, Tuba; Tsume, Yasuhiro; Amidon, Gordon L
2013-03-04
The purpose of this study was to investigate labetalol as a potential high permeability reference standard for the application of Biopharmaceutics Classification Systems (BCS). Permeabilities of labetalol and metoprolol were investigated in animal intestinal perfusion models and Caco-2 cell monolayers. After isolating specific intestinal segments, in situ single-pass intestinal perfusions (SPIP) were performed in rats and mice. The effective permeabilities (Peff) of labetalol and metoprolol, an FDA standard for the low/high Peff class boundary, were investigated in two different segments of rat intestine (proximal jejunum and distal ileum) and in the proximal jejunum of mouse. No significant difference was found between Peff of metoprolol and labetalol in the jejunum and ileum of rat (0.33 ± 0.11 × 10(-4) vs 0.38 ± 0.06 × 10(-4) and 0.57 ± 0.17 × 10(-4) vs 0.64 ± 0.30 × 10(-4) cm/s, respectively) and in the jejunum of mouse (0.55 ± 0.05 × 10(-4) vs 0.59 ± 0.13 × 10(-4) cm/s). However, Peff of metoprolol and labetalol were 1.7 and 1.6 times higher in the jejunum of mouse, compared to the jejunum of rat, respectively. Metoprolol and labetalol showed segmental-dependent permeability through the rat intestine, with increased Peff in the distal ileum in comparison to the proximal jejunum. Most significantly, Peff of labetalol was found to be concentration-dependent. Decreasing concentrations of labetalol in the perfusate resulted in decreased Peff compared to Peff of metoprolol. The intestinal epithelial permeability of labetalol was lower than that of metoprolol in Caco-2 cells at both apical pH 6.5 and 7.5 (5.96 ± 1.96 × 10(-6) vs 9.44 ± 3.44 × 10(-6) and 15.9 ± 2.2 × 10(-6) vs 23.2 ± 7.1 × 10(-6) cm/s, respectively). Labetalol exhibited higher permeability in basolateral to apical (BL-AP) compared to AP-BL direction in Caco-2 cells at 0.1 times the highest dose strength (HDS) (46.7 ± 6.5 × 10(-6) vs 14.2 ± 1.5 × 10(-6) cm/s). The P-gp inhibitor, verapamil, significantly increased AP-BL and decreased BL-AP direction transport of labetalol. Overall, labetalol showed high Peff in rat and mouse intestinal perfusion models similar to metoprolol at a concentration based on HDS. However, the concentration-dependent permeability of labetalol in mice due to P-gp and the inhibition study with verapamil in Caco-2 cells indicated that labetalol is not an ideal reference standard for BCS classification.
Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats
Bradaric, Brinda D.; Dodiya, Hemraj B.; Ohene-Nyako, Michael; Forsyth, Christopher B.; Keshavarzian, Ali; Shaikh, Maliha; Napier, T. Celeste
2018-01-01
The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1), two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults. PMID:29293553
Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats.
Persons, Amanda L; Bradaric, Brinda D; Dodiya, Hemraj B; Ohene-Nyako, Michael; Forsyth, Christopher B; Keshavarzian, Ali; Shaikh, Maliha; Napier, T Celeste
2018-01-01
The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1), two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults.
Liu, Sheng-Zi; Deng, Yuan-Xiong; Chen, Bo; Zhang, Xiao-Jie; Shi, Qun-Zhi; Qiu, Xi-Min
2013-01-30
Scutellaria-coptis herb couple (SC) is the main herb couple in many traditional Chinese compound formulas used for the treatment of diabetes mellitus, which has been used to treat diabetes mellitus for thousands of years in China. In this study we provide experimental evidence for the clinical use of SC in the treatment of diabetes mellitus. To confirm the anti-diabetic effect of SC extract and its main components, and to explore its mechanism from the effect on intestinal disaccharidases by in vivo and in vitro experiment. SC extract was prepared and the main components (namely berberine and baicalin) contained in the extract were assayed with high performance liquid chromatography (HPLC). And diabetic model rats were induced by intraperitoneal injection of streptozotocin (STZ). After grouped randomly, diabetic rats were administered SC extract, berberine, baicalin, berberine+baicalin, acarbose and vehicle for 33d, respectively. Body weight, food intake, urine volume, urine sugars, fasting plasma glucose and fasting plasma insulin were monitored to evaluate the antidiabetic effects on diabetic rats. Intestinal mucosa homogenate was prepared and the activities of intestinal disaccharidases were assayed. Moreover, oral sucrose tolerance test (OSTT) was performed and the inhibitory effects of SC extract and its main components (berberine and baicalin) on the maltase and sucrase in vitro was evaluated. After the treatment of SC extract and its main components, the body weight and the fasting plasma insulin level were found to be increased while food intake, urine volume, urine sugars and fasting plasma were decreased. OSTT showed that SC extract and its main components could lower the postprandial plasma glucose level of diabetic rats. Furthermore, SC extract and its main components could inhibit the activities of intestinal disaccharidases in diabetic rats, whereas only SC extract and berberine could inhibit the activity of maltase in vitro. According to our present findings, scutellaria-coptis herb couple (SC) possessed potent anti-hyperglycemic effect on STZ-induced diabetic rats. And SC extract and its main components exerted anti-hyperglycemic effect partly via inhibiting the increased activities of intestinal disaccharidases and elevating the level of plasma insulin in diabetic rats induced by STZ. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Gao, Jin-Hang; Wen, Shi-Lei; Tong, Huan; Wang, Chun-Hui; Yang, Wen-Juan; Tang, Shi-Hang; Yan, Zhao-Ping; Tai, Yang; Ye, Cheng; Liu, Rui; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Tang, Cheng-Wei
2016-06-01
Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis. Copyright © 2016 the American Physiological Society.
Verschuren, P M; Nugteren, D H
1989-01-01
The influence of jojoba oil (JO) incorporation in the diet on stomach emptying and intestinal transit time, and the digestion and absorption of JO were investigated in short-term feeding studies in rats. The animals were fed purified diets containing 18% (w/w) fat, of which half consisted of a mixture of lard and sunflower seed oil (SF) supplemented with an equivalent amount of JO. The control animals were fed a mixture of lard and SF (18%). No treatment-related differences were observed in the rate of stomach emptying or the intestinal transit time. Comparative lipid analysis of lymph, intestinal content, intestinal mucosa and faeces indicated that most of the ingested JO was degraded and absorbed. Part of the JO was present as wax ester in the lymph. Hydrolysis of JO was much slower than that of triacylglycerols and continued in the alimentary tract beyond the small intestine due to bacterial processes. JO did not influence the absorption of the conventional fat.
Lay, Christophe; Sutren, Malène; Lepercq, Pascale; Juste, Catherine; Rigottier-Gois, Lionel; Lhoste, Evelyne; Lemée, Riwanon; Le Ruyet, Pascale; Doré, Joël; Andrieux, Claude
2004-09-01
The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR-temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 10(5)-10(8) bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, alpha and beta-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism.
[The specificity between "fei and dachang" in the lung injury of rats with ulcerative colitis].
Zhu, Li; Wang, Xin-yue; Yang, Xue; Jing, Shan; Zhou, Bo; Huang, Xiu-xia; Jia, Xu
2013-03-01
To observe the features of bronchopulmonary lesions in ulcerative colitis (UC) rats and the specificity with Fei and Dachang, thus providing reliance for the theory of "intestinal diseases involved Fei". The UC rat model was duplicated by using rabbit intestine mucosa tissue allergenic model and TNBS-ethanol model. A normal rat group was set up as the control. The pulmonary functions [including inspiratory resistance (Ri), expiratory resistance (Re), forced vital capacity (FVC); FEV. 2/FVC, maximal voluntary ventilation (MVV), forced expiratory flow rate (FEF25% - 75%)], and indicators of liver and kidney functions [serum alanine aminotransferase (ALT), aspartate amino transferase (AST), blood urea nitrogen (BUN), and creatinine (Cr)] were detected in the two groups. The pathological changes of colon, lung, liver, and kidney were observed in the two groups. Rats in the model group in both acute and chronic stages had weight loss, mucus and loose stool. Partial rats had such symptoms as dyspnea, shortness of breath, and wheezing. Compared with the normal group, the MW, FVC, FEV0.2 and FEF25% -75% in the acute stage; Ri, Re, MVV, FVC, and FEF25% - 75% in the chronic stage all significantly decreased (P <0.05, P <0.01), and FEV0.2/FVC significantly increased in the model group (P <0.05). The pathological results showed interstitial pneumonia and pulmonary interstitial fibrosis in the model group. But the indicators of liver and kidney functions were all in the normal range. No obvious pathological change was seen in the renal and liver tissues in the two groups. UC could specifically induce bronchopulmonary lesions. Lung injury was one of UC's intestinal manifestations. The theory of "Fei and Dachang being interior-exteriorly correlated" was demonstrated from the theory of "intestinal diseases involved Fei".
Abhari, Kh; Shekarforoush, S. S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S
2015-01-01
An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 109/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 109 spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (P<0.05) increment in lactic acid bacteria (LAB), total aerobic and total anaerobic population compared the prebiotic and control diets. A significant decrease in Enterobacteriaceae counts of various segments of GI tract (except small intestine) in synbiotic, probiotic and prebiotic fed groups were also seen. The obvious decline in spores count through passing GI tract and high surviving spore counts in faecal samples showed that spores are not a normal resident of GI microbiota and affect intestinal microbiota by temporary proliferation. In conclusion, the present study clearly showed probiotic B. coagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect. PMID:27175187
Yu, Jinyun; Chen, Tingjin; Xie, Zhizhi; Liang, Pei; Qu, Honglin; Shang, Mei; Mao, Qiang; Ning, Dan; Tang, Zeli; Shi, Mengchen; Zhou, Lina; Huang, Yan; Yu, Xinbing
2015-07-01
Caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensis, human clonorchiasis remains a major public health problem in China. In previous study, we had expressed enolase from C. sinensis (CsENO) on the surface of Bacillus subtilis spore and the recombinant spore induced a pronounced protection in terms of reduced worm burden and eggs per gram feces, suggesting B. subtilis spore as an ideal vehicle for antigen delivery by oral treatment and CsENO as a promising vaccine candidate against clonorchiasis. In the current study, we detected CsENO-specific IgG and IgA levels both in serum and in intestinal mucus from rats orally administrated with B. subtilis spore surface expressing CsENO by ELISA. Lysozyme levels in serum and in intestinal mucus were analyzed too. In addition, IgA-secreting cells in intestine epithelium of the rats were detected by immunohistochemistry assay. The intestinal villi lengths of duodenum, jejunum, and ileum were also measured. Rats orally treated with B. subtilis spore or normal saline were used as controls. Our results showed that, compared with the control groups, oral administration of B. subtilis spore expressing CsENO induced both systemic and local mucosal immune response. The recombinant spores also enhanced non-specific immune response in rats. The spores had no side effect on liver function. Moreover, it might facilitate food utilization and digestion of the rats. Our work will pave the way to clarify the involved mechanisms of protective efficacy elicited by B. subtilis spore expressing CsENO and encourage us to carry out more assessment trails of the oral treated spore to develop vaccine against clonorchiasis.
Abhari, Kh; Shekarforoush, S S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S
2015-01-01
An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 10(9)/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 10(9) spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (P<0.05) increment in lactic acid bacteria (LAB), total aerobic and total anaerobic population compared the prebiotic and control diets. A significant decrease in Enterobacteriaceae counts of various segments of GI tract (except small intestine) in synbiotic, probiotic and prebiotic fed groups were also seen. The obvious decline in spores count through passing GI tract and high surviving spore counts in faecal samples showed that spores are not a normal resident of GI microbiota and affect intestinal microbiota by temporary proliferation. In conclusion, the present study clearly showed probiotic B. coagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect.
Lallès, Jean-Paul; Orozco-Solís, Ricardo; Bolaños-Jiménez, Francisco; de Coppet, Pierre; Le Dréan, Gwénola; Segain, Jean-Pierre
2012-11-01
Nutrient restriction during gestation and/or suckling is associated with an increased risk of developing inflammation, obesity and metabolic diseases in adulthood. However, the underlying mechanisms, including the role of the small intestine, are unclear. We hypothesized that intestinal adaptation to the diet in adulthood is modulated by perinatal nutrition. This hypothesis was tested using a split-plot design experiment with 20 controls and 20 intrauterine growth-retarded (IUGR) rats aged 240 days and randomly assigned to be fed a standard chow or a high-fat (HF) diet for 10 days. Jejunal tissue was collected at necropsy and analyzed for anatomy, digestive enzymes, goblet cells and mRNA levels. Cecal contents and blood serum were analyzed for alkaline phosphatase (AP). IUGR rats failed to adapt to HF by increasing AP activity in jejunal tissue and cecal content as observed in controls. mRNA levels of transcription factors KLF4 and Cdx1 were blunted in jejunal epithelial cell of IUGR rats fed HF. mRNA levels of TNF-α were lower in IUGR rats. They also displayed exacerbated aminopeptidase N response and reduced jejunal goblet cell density. Villus and crypt architecture and epithelial cell proliferation increased with HF in both control and IUGR rats. Serum AP tended to be lower, and serum levamisole inhibition-resistant AP fraction was lower, in IUGR than controls with HF. Serum fatty acids and triglycerides were higher in IUGR rats and higher with HF. In conclusion, the adult intestine adapts to an HF diet differentially depending on early nutrition, jejunal AP and transcription factors being blunted in IUGR individuals fed HF. Copyright © 2012 Elsevier Inc. All rights reserved.
Intestinal sweet-sensing pathways and metabolic changes after Roux-en-Y gastric bypass surgery
Bhutta, Hina Y.; Deelman, Tara E.; le Roux, Carel W.; Ashley, Stanley W.; Rhoads, David B.
2014-01-01
Studies suggest that improvements in type 2 diabetes (T2D) post- Roux-en-Y gastric bypass (RYGB) surgery are attributable to decreased intestinal glucose absorption capacity mediated by exclusion of sweet taste-sensing pathways in isolated proximal bowel. We probed these pathways in rat models that had undergone RYGB with catheter placement in the biliopancreatic (BP) limb to permit post-RYGB exposure of isolated bowel to sweet taste stimulants. Lean Sprague Dawley (n = 13) and obese Zucker diabetic fatty rats (n = 15) underwent RYGB with BP catheter placement. On postoperative day 11 (POD 11), rats received catheter infusions of saccharin [sweet taste receptor (T1R2/3) agonist] or saline (control). Jejunum was analyzed for changes in glucose transporter/sensor mRNA expression and functional sodium-glucose transporter 1 (SGLT1)-mediated glucose uptake. Saccharin infusion did not alter glucose uptake in the Roux limb of RYGB rats. Intestinal expression of the glucose sensor T1R2 and transporters (SGLT1, glucose transporter 2) was similar in saccharin- vs. saline-infused rats of both strains. However, the abundance of SGLT3b mRNA, a putative glucose sensor, was higher in the common limb vs. BP/Roux limb in both strains of bypassed rats and was significantly decreased in the Roux limb after saccharin infusion. We concluded that failure of BP limb exposure to saccharin to increase Roux limb glucose uptake suggests that isolation of T1R2/3 is unlikely to be involved in metabolic benefits of RYGB, as restimulation failed to reverse changes in intestinal glucose absorption capacity. The altered expression pattern of SGLT3 after RYGB warrants further investigation of its potential involvement in resolution of T2D after RYGB. PMID:24994857
Intestinal sweet-sensing pathways and metabolic changes after Roux-en-Y gastric bypass surgery.
Bhutta, Hina Y; Deelman, Tara E; le Roux, Carel W; Ashley, Stanley W; Rhoads, David B; Tavakkoli, Ali
2014-09-01
Studies suggest that improvements in type 2 diabetes (T2D) post- Roux-en-Y gastric bypass (RYGB) surgery are attributable to decreased intestinal glucose absorption capacity mediated by exclusion of sweet taste-sensing pathways in isolated proximal bowel. We probed these pathways in rat models that had undergone RYGB with catheter placement in the biliopancreatic (BP) limb to permit post-RYGB exposure of isolated bowel to sweet taste stimulants. Lean Sprague Dawley (n = 13) and obese Zucker diabetic fatty rats (n = 15) underwent RYGB with BP catheter placement. On postoperative day 11 (POD 11), rats received catheter infusions of saccharin [sweet taste receptor (T1R2/3) agonist] or saline (control). Jejunum was analyzed for changes in glucose transporter/sensor mRNA expression and functional sodium-glucose transporter 1 (SGLT1)-mediated glucose uptake. Saccharin infusion did not alter glucose uptake in the Roux limb of RYGB rats. Intestinal expression of the glucose sensor T1R2 and transporters (SGLT1, glucose transporter 2) was similar in saccharin- vs. saline-infused rats of both strains. However, the abundance of SGLT3b mRNA, a putative glucose sensor, was higher in the common limb vs. BP/Roux limb in both strains of bypassed rats and was significantly decreased in the Roux limb after saccharin infusion. We concluded that failure of BP limb exposure to saccharin to increase Roux limb glucose uptake suggests that isolation of T1R2/3 is unlikely to be involved in metabolic benefits of RYGB, as restimulation failed to reverse changes in intestinal glucose absorption capacity. The altered expression pattern of SGLT3 after RYGB warrants further investigation of its potential involvement in resolution of T2D after RYGB. Copyright © 2014 the American Physiological Society.
Athukuri, Bhargavi Latha; Neerati, Prasad
2017-01-01
Domperidone is a commonly used antiemetic drug. The oral bioavailability of domperidone is very low due to its rapid first pass metabolism in the intestine and liver. Piperine, the main alkaloid present in black pepper has been reported to show inhibitory effects on Cytochrome P-450 (CYP-450) enzymes and P-glycoprotein (P-gp). In the present study we investigated the effect of piperine pretreatment on the intestinal transport and oral bioavailability of domperidone in male Wistar rats. The intestinal transport of domperidone was evaluated by an in-vitro non-everted sac method and in-situ single pass intestinal perfusion (SPIP) study. The oral pharmacokinetics of domperidone was evaluated by conducting oral bioavailability study in rats. A statistically significant improvement in apparent permeability (Papp) was observed in rats pretreated with piperine compared to the respective control group. The effective permeability (Peff) of domperidone was increased in the ileum of the piperine treated group. Following pretreatment with piperine, the peak plasma concentration (Cmax) and area under the concentration- time curve (AUC) were significantly increased. A significant decrease in time to reach maximum plasma concentration (Tmax), clearance and elimination rate constant (Kel) was observed in rats pretreated with piperine. Piperine enhanced the oral bioavailability of domperidone by inhibiting CYP3A1 and P-gp in rats. This observation suggests the possibility that the combination of piperine with other CYP3A4 and P-gp dual substrates may also improve bioavailability. Further clinical studies are recommended to verify this drug interaction in human volunteers and patients. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Satoh, Hiroshi; Matsumoto, Hiroki; Hirakawa, Tomoe; Wada, Naoki
2016-01-01
How to prevent the small intestinal damage induced by NSAIDs is an urgent issue to be resolved. In the present study, we examined the effects of soluble dietary fibers on both anti-inflammatory and ulcerogenic effects of indomethacin in arthritic rats. Male Wistar rats weighing 180-220 g were used. Arthritis was induced by injecting Freund's complete adjuvant (killed M. tuberculosis) into the plantar region of the right hindpaw. The animals were fed a regular powder diet for rats or a diet supplemented with soluble dietary fibers such as pectin or guar gum. Indomethacin was administered once a day for 3 days starting 14 days after the adjuvant injection, when marked arthritis was observed. The volumes of the hindpaw were measured before and after indomethacin treatment to evaluate the effect of indomethacin on edema. The lesions in the small intestine were examined 24 h after the final dosing of indomethacin. Hindpaw volume was increased about 3 times 14 days after injection of the adjuvant. Indomethacin (3-10 mg/kg, p.o.) decreased hindpaw volume dose-dependently, but caused severe lesions in the small intestine at doses of 6 and 10 mg/kg. The addition of pectin (1-10 %) or guar gum (10 %) to the diet markedly decreased the lesion formation without affecting the anti-edema action of indomethacin. The same effects of pectin were observed when indomethacin was administered subcutaneously. It is suggested that soluble dietary fibers can prevent intestinal damage induced by NSAIDs without affecting the anti-inflammatory effect of these agents.
Moran-Ramos, Sofia; He, Xuan; Chin, Elizabeth L; Tovar, Armando R; Torres, Nimbe; Slupsky, Carolyn M; Raybould, Helen E
2017-01-01
Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism.
Moran-Ramos, Sofia; He, Xuan; Chin, Elizabeth L.; Tovar, Armando R.; Torres, Nimbe; Slupsky, Carolyn M.; Raybould, Helen E.
2017-01-01
Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism. PMID:28196086
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoadley, J.E.; Leinart, A.S.; Cousins, R.J.
1988-04-01
Intestinal 65Zn transport and metallothionein levels were examined in rats fed zinc-adequate and zinc-deficient diets and in rats subjected to an overnight fast. 65Zn uptake by intestines perfused with 1.5 microM 65Zn was greater in both zinc-deficient and fasted groups than in the control group. Mucosal retention of 65Zn was also greater in the zinc-deficient group but not in the fasted group. The greater 65Zn uptake in the fasted group was associated with a compartment that readily released 65Zn back into the lumen. Kinetic analysis of the rate of 65Zn transfer to the vascular space (absorption) showed that 65Zn absorptionmore » involved approximately 3% of mucosal 65Zn in a 40-min perfusion period. The half-life (t1/2) of this mucosal 65Zn rapid transport pool corresponded directly to changes in intestinal metallothionein levels. Both metallothionein and t1/2 were higher in the fasted group and lower in the zinc-deficient group than in controls. While the rate of 65Zn transport from this rapid transport pool decreased with increasing metallothionein level, the predicted pool size increased when the metallothionein level was elevated by fasting. These results indicate that the rate of zinc absorption is inversely related to intestinal metallothionein levels, but the portion of mucosal 65Zn available for absorption is directly related to intestinal metallothionein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Y.-H.; Jen, L.-N.; Su, H.-Y.
Garlic and its active components are known to possess antioxidant and antiinflammatory effects. The present study investigated the effects of garlic oil and its organosulfur compounds on endotoxin-induced intestinal mucosal damage. Wistar rats received by gavage 50 or 200 mg/kg body weight garlic oil (GO), 0.5 mmol/kg body weight diallyl disulfide or diallyl trisulfide, or the vehicle (corn oil; 2 ml/kg body weight) every other day for 2 weeks before being injected with endotoxin (i.p., 5 mg/kg body weight). Control rats were administered with corn oil and were injected with sterile saline. Samples for the measurement of proinflammatory cytokines weremore » collected 3 h after injection, and all other samples were collected 18 h after injection. The low dose of GO suppressed endotoxin-induced inducible nitric oxide synthase (iNOS) activity, ulceration, and apoptosis in the intestinal mucosa (P < 0.05). The high dose of GO significantly lowered the peripheral level of nitrate/nitrite and endotoxin-induced iNOS activity in the intestinal mucosa (P < 0.05) but worsened intestinal mucosal damage accompanied by elevated peripheral proinflammatory cytokines. Diallyl trisulfide but not diallyl disulfide showed similar toxic effect as that of high-dose GO. These results suggest the preventive effect and possible toxicity of garlic oil and its organosulfur compounds in endotoxin-induced systemic inflammation and intestinal damage.« less
Zeng, Qing; He, Xiaolong; Puthiyakunnon, Santhosh; Xiao, Hansen; Gong, Zelong; Boddu, Swapna; Chen, Lecheng; Tian, Huiwen; Huang, Sheng-He; Cao, Hong
2017-01-01
Escherichia coli (E. coli) K1 sepsis and meningitis is a severe infection characterized by high mortality in neonates. Successful colonization and translocation across the intestinal mucosa have been regarded as the critical steps for E. coli K1 sepsis and meningitis. We recently reported that the probiotic mixture, Golden Bifido (containing live Lactobacillus bulgaricus, Bifidobacterium, and Streptococcus thermophilus, LBS) has a preventive role against neonatal E. coli K1 bacteremia and meningitis. However, the interaction between the neonatal gut barrier, probiotics and E. coli K1 is still not elucidated. The present study aims to investigate how LBS exerts its protective effects on neonatal gut barrier during E. coli K1 infection. The beneficial effects of LBS were explored in vitro and in vivo using human colon carcinoma cell lines HT-29 and rat model of neonatal E. coli K1 infection, respectively. Our results showed that stimulation with E. coli K1 was able to cause intestinal barrier dysfunction, which were reflected by E. coli K1-induced intestinal damage and apoptosis of intestinal epithelial cells, reduction of mucin, immunoglobulin A (IgA) and tight junction proteins expression, as well as increase in intestinal permeability, all these changes facilitate E. coli K1 intestinal translocation. However, these changes were alleviated when HT-29 cells were treated with LBS before E. coli K1 infection. Furthermore, we found that LBS-treated neonatal rats (without E. coli K1 infection) have showed higher production of mucin, ZO-1, IgA, Ki67 in intestinal mucosa as well as lower intestinal permeability than that of non-treated rats, indicating that LBS could accelerate the development of neonatal intestinal defense. Taken together, our results suggest that enhancement of the neonatal intestinal defense to fight against E. coli K1 translocation could be the potential mechanism to elucidate how LBS confers a protective effect against neonatal E. coli K1 bacteremia and meningitis. This indirect mechanism makes LBS exert preventive effect on most of gut-derived pathogenic infections rather than only E. coli. PMID:28979247
Zeng, Qing; He, Xiaolong; Puthiyakunnon, Santhosh; Xiao, Hansen; Gong, Zelong; Boddu, Swapna; Chen, Lecheng; Tian, Huiwen; Huang, Sheng-He; Cao, Hong
2017-01-01
Escherichia coli ( E. coli ) K1 sepsis and meningitis is a severe infection characterized by high mortality in neonates. Successful colonization and translocation across the intestinal mucosa have been regarded as the critical steps for E. coli K1 sepsis and meningitis. We recently reported that the probiotic mixture, Golden Bifido (containing live Lactobacillus bulgaricus, Bifidobacterium , and Streptococcus thermophilus , LBS) has a preventive role against neonatal E. coli K1 bacteremia and meningitis. However, the interaction between the neonatal gut barrier, probiotics and E. coli K1 is still not elucidated. The present study aims to investigate how LBS exerts its protective effects on neonatal gut barrier during E. coli K1 infection. The beneficial effects of LBS were explored in vitro and in vivo using human colon carcinoma cell lines HT-29 and rat model of neonatal E. coli K1 infection, respectively. Our results showed that stimulation with E. coli K1 was able to cause intestinal barrier dysfunction, which were reflected by E. coli K1-induced intestinal damage and apoptosis of intestinal epithelial cells, reduction of mucin, immunoglobulin A (IgA) and tight junction proteins expression, as well as increase in intestinal permeability, all these changes facilitate E. coli K1 intestinal translocation. However, these changes were alleviated when HT-29 cells were treated with LBS before E. coli K1 infection. Furthermore, we found that LBS-treated neonatal rats (without E. coli K1 infection) have showed higher production of mucin, ZO-1, IgA, Ki67 in intestinal mucosa as well as lower intestinal permeability than that of non-treated rats, indicating that LBS could accelerate the development of neonatal intestinal defense. Taken together, our results suggest that enhancement of the neonatal intestinal defense to fight against E. coli K1 translocation could be the potential mechanism to elucidate how LBS confers a protective effect against neonatal E. coli K1 bacteremia and meningitis. This indirect mechanism makes LBS exert preventive effect on most of gut-derived pathogenic infections rather than only E. coli .
Reis, E; Kama, N A; Coskun, T; Korkusuz, P; Ors, U; Aksoy, M; Kulaçoglu, S
1997-01-01
Bacterial translocation induced by intestinal obstruction is suggested to be due to increased intestinal luminal volume, leading to intestinal overgrowth with certain enteric microorganisms and intestinal mucosal damage. If this suggestion is true, maintenance of intestinal mucosal integrity by a cytoprotective agent, a-tocopherol, and inhibition of gastrointestinal secretions by octreotide should decrease the incidence of bacterial translocation and extent of mucosal injury due to intestinal obstruction. Complete intestinal obstruction was created in the distal ileum of male Wistar Albino rats by a single 3-0 silk suture. The animals received subcutaneous injections of 1 ml of physiologic saline (group 1) (PS 24) and 1 ml of saline containing octreotide acetate (100 micrograms/kg) (group 2) (OC 24), at 0, 12 and 24 hours of obstruction. In group 3 (PS 48) and group 4 (OC 48), the rats were treated with subcutaneous physiologic saline (1 ml) and octreotide acetate (100 micrograms/kg), respectively, beginning at the time of obstruction and every 12 hours for 48 hours. The rats in group 5 (Toc 24), were pretreated with intramuscular a-tocopherol 500 mg/kg on day 1 and 8, and underwent laparotomy on day 9. A third dose of a-tocopherol was injected at the time of obstruction on day 9 and no treatment was given thereafter. We tested the incidence of bacterial translocation in systemic organs and circulation and evaluated the histopathological changes in all groups. Treatment with octreotide acetate was found to be ineffective in reducing the incidence of translocation, with no histopathological improvement. Mucosal damage scores, on the other hand, in the a-tocopherol group were statistically less than those in the octreotide and control groups (p < 0.05). Additionally, a-tocopherol treatment decreased the incidence of organ invasion with translocating bacteria, although this difference did not reach statistical significance. Octreotide acetate treatment in complete intestinal obstruction has no effect on the incidence of bacterial translocation. a-Tocopherol, on the other hand, has a cytoprotective effect on intestinal mucosa in intestinal obstruction which, in turn, is thought to decrease bacterial translocation when used in physiological doses and prophylactically.
Harari, Y; Grossie, V B; Castro, G A
1996-06-01
Appropriate enteral nutrition provided immediately after injury or trauma to the gastrointestinal tract may limit or reverse damage to the mucosal barrier. In this regard, diets containing amino acids, such as arginine and glutamine, or fish oil have been identified as beneficial. This report assesses the role of amino acids as "essential nutrients" in the repair of intestinal mucosa damaged by gamma radiation. Rats were used experimentally to test the hypothesis that the recovery of the immune responses in the intestinal mucosa, which are suppressed by radiation, can be improved by feeding an elemental amino acid diet, referred to hereafter as the diet, immediately after irradiation. The objective was to assess the impact of the diet on the expression of type I hypersensitivity or anaphylaxis in the jejunal mucosa. The local expression of this immunological response, which involves several radiosensitive cell types, was studied in rats immunized by oral infection with the nematode parasite, Trichinella spiralis. Rats that recover from infection become immunized and their small intestine undergoes anaphylaxis when subsequently challenged with parasite-derived antigen. This hypersensitivity response is expressed, in part, as Cl- secretion and can be observed in vitro or in vivo. When challenge is provided by a secondary inoculum of infective T. spiralis larvae, Cl- secretion is accompanied by fluid secretion and by the rapid expulsion of the parasite from the intestine. Immunized rats maintained on a stock diet and exposed to 7 Gy of total-abdominal irradiation from a cobalt-60 gamma-ray source failed to express antigen-induced Cl- secretion fully for up to 14 days postirradiation, and rejection of the parasite was suppressed for at least 30 days postirradiation. The suppression of immune responsiveness is associated with the disappearance of intestinal mucosal mast cells, which normally trigger the anaphylactic response. When rats are maintained on the diet after irradiation, the capacity to reject the parasite remains suppressed. However, the ability to express anaphylaxis-mediated Cl- secretion returns by 3 days postirradiation. The quick, diet-supported recovery of antigen-induced Cl- secretion occurs despite the continued absence of mast cells. Although the recovery of anaphylaxis-mediated responses suppressed by irradiation is only partial, our experimental results underscore the potential for enhancing the recovery process through nutritional support.
Turan, Inci; Sayan Ozacmak, Hale; Ozacmak, V Haktan; Barut, Figen; Ozacmak, I Diler
2018-06-01
Intestinal ischemia and reperfusion (I/R) induces oxidative stress, inflammatory response, and acute lung injury. S-nitrosoglutathione (GSNO), a nitric oxide donor, has been documented to have protective effects on experimental ischemia models. The aim of this study was to examine the effect of GSNO on I/R-induced intestine and lung damage and detect the potential mechanisms emphasizing the protective role of GSNO. Intestinal I/R was induced by occluding the superior mesenteric artery for 30 min followed by reperfusion for 180 min. GSNO was administered intravenously before reperfusion period (0.25 mg/kg). The levels of lipid peroxidation, reduced glutathione, and myeloperoxidase (MPO), histopathological evaluation and immunohistochemical expressions of both nuclear factor KappaB (NF-κB) and inducible nitric oxide (iNOS) in intestine and lung tissues were assessed. Histolopathologic evaluation demonstrated that intestinal I/R induced severe damages in the intestine and the lung tissues. Histopathological scores decreased with GSNO treatment. GSNO treatment reduced lipid peroxidation and MPO levels and inhibited expression of NF-κB and iNOS in the intestine. Our results suggest that GSNO treatment may ameliorate the intestinal and lung injury in rats, at least in part, by inhibiting inflammatory response and oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modelling Spatially Regulated β-Catenin Dynamics and Invasion in Intestinal Crypts
Murray, Philip J.; Kang, Jun-Won; Mirams, Gary R.; Shin, Sung-Young; Byrne, Helen M.; Maini, Philip K.; Cho, Kwang-Hyun
2010-01-01
Experimental data (e.g., genetic lineage and cell population studies) on intestinal crypts reveal that regulatory features of crypt behavior, such as control via morphogen gradients, are remarkably well conserved among numerous organisms (e.g., from mouse and rat to human) and throughout the different regions of the small and large intestines. In this article, we construct a partial differential equation model of a single colonic crypt that describes the spatial distribution of Wnt pathway proteins along the crypt axis. The novelty of our continuum model is that it is based upon assumptions that can be directly related to processes at the cellular and subcellular scales. We use the model to predict how the distributions of Wnt pathway proteins are affected by mutations. The model is then extended to investigate how mutant cell populations can invade neighboring crypts. The model simulations suggest that cell crowding caused by increased proliferation and decreased cell loss may be sufficient for a mutant cell population to colonize a neighboring healthy crypt. PMID:20682248
Luo, Li-Yu; Fan, Miao-Xuan; Zhao, Hai-Yu; Li, Ming-Xing; Wu, Xu; Gao, Wen-Yuan
2018-03-21
Formononetin and its glycoside ononin are bioactive isoflavones widely present in legumes. The present study investigated the pharmacokinetics, bioavailability, and in vitro absorption of formononetin and ononin. After an oral administration to rats, formononetin showed a higher systemic exposure over ononin. The oral bioavailability of formononetin and ononin were 21.8% and 7.3%, respectively. Ononin was more bioavailable than perceived, and its bioavailability reached 21.7% when its metabolite formononetin was taken into account. Both formononetin and ononin exhibited better absorption in large intestine segments than that in small intestine segments. Formononetin displayed a better permeability in all intestinal segments over ononin. Transport of formononetin across Caco-2 cell monolayer was mainly through passive diffusion, while ononin was actively pumped out by MRP2 but not P-gp. The results provide evidence for better understanding of the pharmacological actions of formononetin and ononin, which advocates more in vivo evaluations or human trials.
Li, Yue; Jiang, Cuihua; Jiang, Xiao; Sun, Ziping; Cona, Marlein Miranda; Liu, Wei; Ni, Yicheng
2015-01-01
Necrosis targeting radiopharmaceutical 131I-hypericin (131I-Hyp) has been studied for the therapy of solid malignancies. However, serious side effects may be caused by its unwanted radioactivity after being metabolized by the liver and excreted via bile in the digestive tract. Thus the aim of this study was to investigate two kinds of bile draining for reducing them. Thirty-eight normal rats were intravenously injected with 131I-Hyp, 24 of which were subjected to the common bile duct (CBD) drainage for gamma counting of collected bile and tissues during 1–6, 7–12, 13–18, and 19–24 h (n = 6 each group), 12 of which were divided into two groups (n = 6 each group) for comparison of the drainage efficiency between CBD catheterization and duodenum intubation by collecting their bile at the first 4 h. Afterwards the 12 rats together with the last two rats which were not drained were scanned via single-photon emission computerized tomography/computed tomography (SPECT/CT) to check the differences. The images showed that almost no intestinal radioactivity can be found in those 12 drained rats while discernible radioactivity in the two undrained rats. The results also indicated that the most of the radioactivity was excreted from the bile within the first 12 h, accounting to 92% within 24 h. The radioactive metabolites in the small and large intestines peaked at 12 h and 18 h, respectively. No differences were found in those two ways of drainages. Thus bile drainage is highly recommended for the patients who were treated by 131I-Hyp if human being and rats have a similar excretion pattern. This strategy can be clinically achieved by using a nasobiliary or nasoduodenal drainage catheter. PMID:25956680
Goodlad, R A; Lenton, W; Ghatei, M A; Adrian, T E; Bloom, S R; Wright, N A
1987-01-01
Refeeding starved rats with a fibre free 'elemental' diet increased crypt cell production rate (CCPR) in the proximal small intestine but not in the distal regions of the gut. Little effect on CCPR was seen when inert bulk (kaolin) was added to the 'elemental' diet. Addition of a poorly fermentable dietary 'fibre' (purified wood cellulose) had little effect on intestinal epithelial cell proliferation except in the distal colon where it significantly increased CCPR. A more readily fermentable 'fibre' (purified wheat bran) caused a large proliferative response in the proximal, mid and distal colon and in the distal small intestine. A gel forming 'fibre' also stimulated proliferation in the distal colon. There was no significant correlation between CCPR and plasma gastrin concentrations, but plasma enteroglucagon concentrations were significantly correlated with CCPR in almost all the sites studied. Plasma PYY concentrations also showed some correlation with CCPR, especially in the colon. Thus, whilst inert bulk cannot stimulate colonic epithelial cell proliferation, fermentable 'fibre' is capable of stimulating proliferation in the colon, and especially in the distal colon: it can also stimulate proliferation in the distal small intestine and it is likely that plasma enteroglucagon may have a role to play in this process. PMID:2826311
Hartwich, G; Domschke, W; Matzkies, F
1976-01-01
Vincristin sulphate or 3-(2-chloroethyl)-2-(2-chloroethyl-amino)-tetrahydro-2H-1,3,2-oxazaphosphorine-2-oxide (ifosfamide)--given alone--may reduce intestinal disaccharidase activities in the rat. However, combined administration of both the drugs, as used as a therapeutic means, results in a much more drastic decrease in enzyme activities. Consequently, also in man maldigestion of disaccharides might occur due to that polychemotherapy.
NASA Astrophysics Data System (ADS)
Miyake, M.; Yamasaki, M.; Hazama, A.; Ijiri, K.; Shimizu, T.
It is important to assure whether digestive system can develop normally in neonates during spaceflight. Because the small intestine changes its function and structure drastically around weaning known as redifferentiation. Lactase expression declines and sucrase increases in small intestine for digestion of solid food before weaning. In this paper, we compared this enzyme transition and structural development of small intestine in neonatal rats after spaceflight. To find digestive genes differentially expressed in fight rats, DNA membrane macroarray was also used. Eight-day old rats were loaded to Space Shuttle Columbia, and housed in the animal facility for 16 days in space (STS-90, Neurolab mission). Two control groups (AGC; asynchronous ground control and VIV; vivarium) against flight group (FLT) were prepared. There was no difference in structure (crypt depth) and cell differentiation of epithelium between FLT and AGC by immunohistochemical analysis. We found that the amount of sucrase mRNA compared to lactase was decreased in FLT by RT-PCR. It reflected the enzyme transition was inhibited. Increase of 5 genes (APO A-I, APO A-IV, ACE, aFABP and aminopeptidase M) and decrease of carboxypeptidase-D were detected in FLT using macroarray. We think nutrition differences (less nourishment and late weaning) during spaceflight may cause inhibition of enzyme transition at least partly. The weightlessness might contribute to the inhibition through behavioral change.
Sánchez, Elisabet; Nieto, Juan C.; Vidal, Silvia; Santiago, Alba; Martinez, Xavier; Sancho, Francesc J.; Sancho-Bru, Pau; Mirelis, Beatriz; Corominola, Helena; Juárez, Candido; Manichanh, Chaysavanh; Guarner, Carlos; Soriano, German
2017-01-01
Probiotics can prevent pathological bacterial translocation by modulating intestinal microbiota and improving the gut barrier. The aim was to evaluate the effect of a fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 on bacterial translocation in rats with carbon tetrachloride (CCl4)-induced cirrhosis. Sprague-Dawley rats treated with CCl4 were randomized into a probiotic group that received fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 in drinking water or a water group that received water only. Laparotomy was performed one week after ascites development. We evaluated bacterial translocation, intestinal microbiota, the intestinal barrier and cytokines in mesenteric lymph nodes and serum. Bacterial translocation decreased and gut dysbiosis improved in the probiotic group compared to the water group. The ileal β-defensin-1 concentration was higher and ileal malondialdehyde levels were lower in the probiotic group than in water group. There were no differences between groups in serum cytokines but TNF-α levels in mesenteric lymph nodes were lower in the probiotic group than in the water group. Fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 decreases bacterial translocation, gut dysbiosis and ileal oxidative damage and increases ileal β-defensin-1 expression in rats treated with CCl4, suggesting an improvement in the intestinal barrier integrity. PMID:28368023
Analysis of ecdysteroids in different developmental stages of Hymenolepis diminuta.
Mercer, J G; Munn, A E; Arme, C; Rees, H H
1987-08-01
Prepatent and patent adult Hymenolepis diminuta from the intestines of rats, H. diminuta eggs recovered from the faeces of rats harbouring patent infections, and infective cysticercoids from the beetle intermediate host were analysed for free and conjugated ecdysteroids. Adult worms and eggs contained both free ecdysteroids and hydrolysable polar conjugated ecdysteroids, with comparatively large amounts of immunoreactive material also being detected following hydrolysis of the possible apolar conjugated ecdysteroid fraction. Free ecdysteroids were not detected in the cysticercoid sample. The concentration of free ecdysteroids in H. diminuta eggs was higher than that detected in the tissues of the adult worms. Ecdysone and 20-hydroxyecdysone were the major identified compounds of the free ecdysteroid fraction, whereas in the hydrolysed polar conjugated ecdysteroid fraction these two compounds were accompanied by 20,26-dihydroxyecdysone. The free ecdysteroid fraction also contained comparatively large amounts of unidentified immunoreactive material.
Ji, Chen-Guang; Xie, Xiao-Li; Yin, Jie; Qi, Wei; Chen, Lei; Bai, Yun; Wang, Na; Zhao, Dong-Qiang; Jiang, Xiao-Yu; Jiang, Hui-Qing
2017-04-01
Bile acids stimulate intestinal epithelial proliferation in vitro. We sought to investigate the role of the bile acid receptor TGR5 in the protection of intestinal epithelial proliferation in obstructive jaundice. Intestinal tissues and serum samples were obtained from patients with malignant obstructive jaundice and from bile duct ligation (BDL) rats. Intestinal permeability and morphological changes in the intestinal mucosa were observed. The functions of TGR5 in cell proliferation in intestinal epithelial injury were determined by overexpression or knockdown studies in Caco-2 and FHs 74 Int cells pretreated with lipopolysaccharide (LPS). Internal biliary drainage was superior to external biliary drainage in recovering intestinal permeability and mucosal histology in patients with obstructive jaundice. In BDL rats, feeding of chenodeoxycholic acid (CDCA) decreased intestinal mucosa injury. The levels of PCNA, a marker of proliferation, increased in response to CDCA feeding and were paralleled by elevated TGR5 expression. CDCA upregulated TGR5 expression and promoted proliferation in Caco-2 and FHs 74 Int cells pretreated with LPS. Overexpression of TGR5 resulted in increased PCNA, cell viability, EdU incorporation, and the proportion of cells in S phase, whereas knockdown of TGR5 had the opposite effect. Our data indicate that bile acids promote intestinal epithelial cell proliferation and decrease mucosal injury by upregulating TGR5 expression in obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.
Böttcher, I; Schweizer, A; Glatt, M; Werner, H
1987-01-01
CGP 28237 (5-methylsulphonylamino-6-phenoxy-1-indanone) belongs to a series of structurally novel indanones. The compound is a weak acid (pK = 6.98), but it does not contain a carboxylic group. CGP 28237 exhibits potent anti-inflammatory activity in developing and established adjuvant arthritis in rats (ED40 approximately 0.5 mg/kg p.o.) and good activity in carrageenin oedema (ED40 approximately 3 mg/kg p.o.). It inhibits yeast-induced fever in rats with ED50 values of 1, 2 and 10 mg/kg p.o. at 1, 3 and 5 hours after drug administration. The antinociceptive activity in mice (phenyl-p-benzoquinone writhing) and rats (acetic-acid writhing) is weak. CGP 28237 has been shown to be non-ulcerogenic in rats under acute and chronic test conditions: it does not cause mucosal lesions in the stomach at 2 X 400 mg/kg p.o., it does not enhance gastro-intestinal blood loss during 10 days' oral treatment with 400 mg/kg p.o., and it did not induce gastro-intestinal lesions in a 4-week toxicity study up to 1000 mg/kg p.o. Although CGP 28237 is not a cyclooxygenase inhibitor in bovine seminal vesicle microsomes, it inhibits prostaglandin synthesis in zymosan-stimulated murine macrophages (IC50 approximately 3 X 10(-6) mol/l) and protects rabbits against arachidonic acid-induced lung embolism with 10 mg/kg p.o. CGP 28237 may represent a novel anti-inflammatory drug with excellent gastro-intestinal tolerability.
Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans
2017-01-01
Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.
Torrents, D; Torres, R; De Mora, F; Vergara, P
2002-08-01
Nerve growth factor (NGF) could be involved in the development of hyperalgesia as well as in nervous remodeling consequence of inflammation. Both dysmotility and increase of visceral sensitivity have been described in functional gastrointestinal disorders such as irritable bowel syndrome. Trichinella spiralis-infected rats show an exacerbated spontaneous motility and a significant increase of the excitatory response to cholecystokinin (CCK), both associated with a reversible inflammatory process and the hypertrophy of the muscle layers. In this study we determined the intestinal expression of NGF mRNA by polymerase chain reaction and NGF by enzyme-linked immunosorbent assay. We implanted serosal strain gauge transducers on duodenum, jejunum, and ileum of anesthetized Sprague-Dawley rats to record circular muscle contractions. The experimental protocol included the evaluation of intestinal spontaneous motor activity (SMA), the response to CCK-8, and the ascending contraction induced by electrical mucosal stimulation. This protocol was performed in healthy and infected nontreated rats, in healthy rats with an NGF antibody treatment (1.6 mg/rat i.p.), and in infected rats with the same treatment applied at 0 or 3 days postinfection. NGF and NGF mRNA levels in the bowel were increased during inflammation. Although anti-NGF treatments did not prevent or reverse inflammatory response, the treatment was effective in preventing the motor alterations induced by the T. spiralis infection, i.e., inhibited increased SMA, reversed altered response to CCK, and reversed in part exacerbated response to electrical stimulation.
Drug gastrointestinal absorption in rat: Strain and gender differences.
Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival
2015-10-12
Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. Copyright © 2015 Elsevier B.V. All rights reserved.
Boylu, Sukru; Ozbas, Serdar; Bozdag, Ali Dogan; Culhaci, Nil; Tuncyurek, Pars; Yardim, Serhat
2005-08-01
Major surgeries as well as other types of injury have been shown to affect the gut function. Enteral diets influence intestinal mucosal morphometry to different extents depending on their composition. Little is known about the effects of these defined-formula diets in patients with surgical stress but no malnutrition. This experimental study was undertaken to compare the effects of different enteral diets on the mucosal morphometrics of small bowel in surgically stressed rats without malnutrition Male Wistar-Albino rats (n=84) weighing between 160-220 g were randomised into three groups. Group A received standard rat chow. Group B received a complete balanced nutrition supplemented with fibre, and the rats in Group C were given an isocaloric specialized elemental nutrition enriched with specific combination of nutrients and arginine. The feeding was started two days before the operation and continued until re-operation. Laparotomy, ileal transection, and end-to-end anastomosis was performed as the surgical procedure. The rats were sacrificed on days 0, 2 and 7 post-operatively. One cm of ileal segment containing the anastomosis was examined histologically. Parameters for intestinal mucosal morphometry (number of villi, villous height, mucosal thickness) and number of mucous containing cells were determined. Number of mucous cells per villus was significantly (P<0.05) higher in group A compared to groups B and C on days 0 and 2 post-operation. On day 7 villous height and mucosal thickness were also significantly higher in group A compared to the other two groups. Laparotomy and a minor surgical intervention such as small bowel transection was not a major surgical stress for intestinal mucosal atrophy in rats without malnutrition. The effect of fibre and arginine enriched defined-formula diets did not seem to improve intestinal mucosal changes in such a surgical stress model compared with normal rat chow.
Yu, Qing-Sheng; Yu, Hong-Liang; Pan, Jin-Fang
2011-02-01
To observe the effect of Qihuang Decoction (QHD) on mRNA expression of apoptosis genes Bcl-2, Bax, and signal transduction molecules Caspase-3, 9 in intestinal mucosa epithelium of ischemia/ reperfusion (I/R) injured rats. Forty Wistar rats were randomized equally into 4 groups, the control group, the model group, the glutamine group, and the QHD group. Rats in the latter two groups were gastric infused with glutamine and QHD respectively for 3 days, but saline was infused instead to rats in the control group and model group. After then, except those in the control group intervened only by sham operation, rats were made into I/R injured model by 45 min occlusion of superior mesenteric artery followed by 1 h reperfusion. Immediately after modeling, mRNA expressions of Bcl-2, Bax, Caspase-3, and Caspase-9 in intestinal mucosa epithelium of rats were detected by reverse transcription-polymerase chain reaction (RT-PCR). Compared with the control group, mRNA expressions of Bcl-2, Bax, Caspase-3 and Caspase-9 were higher in the other three groups (P < 0.05). Compared with the model group, Bcl-2 mRNA expression was higher, while the expressions of the other three indices were lower in both the glutamine group and the QHD group (P < 0.05); and comparisons between the glutamine group and the QHD group showed a more depressed Bax mRNA expression (0.281 +/- 0.087 vs 0.350 +/- 0.053) and higher Bcl-2/Bax ratio (1.648 vs 1. 374) in the QHD group. QHD can reduce the I/R injury in the intestinal mucosa epithelium by inhibiting the cell apoptosis. The mechanism may be correlated with increased Bcl-2 mRNA expressions and decreased mRNA expressions of Bax, Caspase-3 and Caspase-9.
Scioli, Maria Giovanna; Stasi, Maria Antonietta; Passeri, Daniela; Doldo, Elena; Costanza, Gaetana; Camerini, Roberto; Fociani, Paolo; Arcuri, Gaetano; Lombardo, Katia; Pace, Silvia; Borsini, Franco; Orlandi, Augusto
2014-03-20
Microvascular endothelial dysfunction characterizes ulcerative colitis (UC), the most widespread form of inflammatory bowel disease. Intestinal mucosal microvessels in UC display aberrant expression of cell adhesion molecules (CAMs) and increased inflammatory cell recruitment. Propionyl-L-carnitine (PLC), an ester of L-carnitine required for the mitochondrial transport of fatty acids, ameliorates propionyl-CoA bioavailability and reduces oxidative stress in ischemic tissues. The present study aimed to document the efficacy of anti-oxidative stress properties of PLC in counteracting intestinal microvascular endothelial dysfunction and inflammation. To evaluate the efficacy in vivo, we analyzed the effects in intestinal biopsies of patients with mild-to-moderate UC receiving oral PLC co-treatment and in rat TNBS-induced colitis; in addition, we investigated antioxidant PLC action in TNF-α-stimulated human intestinal microvascular endothelial cells (HIMECs) in vitro. Four-week PLC co-treatment reduced intestinal mucosal polymorph infiltration and CD4(+) lymphocytes, ICAM-1(+) and iNOS(+) microvessels compared with placebo-treated patients with UC. Oral and intrarectal administration of PLC but not L-carnitine or propionate reduced intestinal damage and microvascular dysfunction in rat TNBS-induced acute and reactivated colitis. In cultured TNF-α-stimulated HIMECs, PLC restored β-oxidation and counteracted NADPH oxidase 4-generated oxidative stress-induced CAM expression and leukocyte adhesion. Inhibition of β-oxidation by L-aminocarnitine increased reactive oxygen species production and PLC beneficial effects on endothelial dysfunction and leukocyte adhesion. Finally, PLC reduced iNOS activity and nitric oxide accumulation in rat TNBS-induced colitis and in HIMEC cultures. Our results show that the beneficial antioxidant effect of PLC targeting intestinal microvasculature restores endothelial β-oxidation and function, and reduces mucosal inflammation in UC patients.
Scioli, Maria Giovanna; Stasi, Maria Antonietta; Passeri, Daniela; Doldo, Elena; Costanza, Gaetana; Camerini, Roberto; Fociani, Paolo; Arcuri, Gaetano; Lombardo, Katia; Pace, Silvia; Borsini, Franco; Orlandi, Augusto
2014-01-01
Objectives: Microvascular endothelial dysfunction characterizes ulcerative colitis (UC), the most widespread form of inflammatory bowel disease. Intestinal mucosal microvessels in UC display aberrant expression of cell adhesion molecules (CAMs) and increased inflammatory cell recruitment. Propionyl-L-carnitine (PLC), an ester of L-carnitine required for the mitochondrial transport of fatty acids, ameliorates propionyl-CoA bioavailability and reduces oxidative stress in ischemic tissues. The present study aimed to document the efficacy of anti-oxidative stress properties of PLC in counteracting intestinal microvascular endothelial dysfunction and inflammation. Methods: To evaluate the efficacy in vivo, we analyzed the effects in intestinal biopsies of patients with mild-to-moderate UC receiving oral PLC co-treatment and in rat TNBS-induced colitis; in addition, we investigated antioxidant PLC action in TNF-α-stimulated human intestinal microvascular endothelial cells (HIMECs) in vitro. Results: Four-week PLC co-treatment reduced intestinal mucosal polymorph infiltration and CD4+ lymphocytes, ICAM-1+ and iNOS+ microvessels compared with placebo-treated patients with UC. Oral and intrarectal administration of PLC but not L-carnitine or propionate reduced intestinal damage and microvascular dysfunction in rat TNBS-induced acute and reactivated colitis. In cultured TNF-α-stimulated HIMECs, PLC restored β-oxidation and counteracted NADPH oxidase 4-generated oxidative stress-induced CAM expression and leukocyte adhesion. Inhibition of β-oxidation by L-aminocarnitine increased reactive oxygen species production and PLC beneficial effects on endothelial dysfunction and leukocyte adhesion. Finally, PLC reduced iNOS activity and nitric oxide accumulation in rat TNBS-induced colitis and in HIMEC cultures. Conclusions: Our results show that the beneficial antioxidant effect of PLC targeting intestinal microvasculature restores endothelial β-oxidation and function, and reduces mucosal inflammation in UC patients. PMID:24646507
P-gp, MRP2 and OAT1/OAT3 mediate the drug-drug interaction between resveratrol and methotrexate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Yongming
The purpose of present study was to investigate the effect of resveratrol (Res) on altering methotrexate (MTX) pharmacokinetics and clarify the related molecular mechanism. Res significantly increased rat intestinal absorption of MTX in vivo and in vitro. Simultaneously, Res inhibited MTX efflux transport in MDR1-MDCK and MRP2-MDCK cell monolayers, suggesting that the target of drug interaction was MDR1 and MRP2 in the intestine during the absorption process. Furthermore, there was a significant decrease in renal clearance of MTX after simultaneous intravenous administration. Similarly, MTX uptake was markedly inhibited by Res in rat kidney slices and hOAT1/3-HEK293 cell, indicating that OAT1more » and OAT3 were involved in the drug interaction in the kidney. Additionally, concomitant administration of Res decreased cytotoxic effects of MTX in hOAT1/3-HEK293 cells, and ameliorated nephrotoxicity caused by MTX in rats. Conversely, intestinal damage caused by MTX was not exacerbated after Res treatment. In conclusion, Res enhanced MTX absorption in intestine and decreased MTX renal elimination by inhibiting P-gp, MRP2, OAT1 and OAT3 in vivo and in vitro. Res improved MTX-induced renal damage without increasing intestinal toxicity. - Highlights: • DDI between MTX and Res will occur when they are co-administered. • The first targets of the DDI are P-gp and MRP2 located in intestine. • The second targets of the DDI are OAT1 and OAT3 in kidney. • Res improved MTX-induced renal damage without increasing intestinal toxicity.« less
Guzel, Ahmet; Kanter, Mehmet; Guzel, Aygul; Pergel, Ahmet; Erboga, Mustafa
2012-06-01
The purpose of this study was to investigate the role of infliximab on acute lung injury induced by intestinal ischemia/reperfusion (I/R). A total of 30 male Wistar albino rats were divided into three groups: sham, I/R and I/R+ infliximab; each group contain 10 animals. Sham group animals underwent laparotomy without I/R injury. After I/R groups animals underwent laparotomy, 1 h of superior mesenteric artery ligation were followed by 1 h of reperfusion. In the infliximab group, 3 days before I/R, infliximab (3 mg/kg) was administered by intravenously. All animals were sacrificed at the end of reperfusion and lung tissues samples were obtained for biochemical and histopathological investigation in all groups. To date, no more biochemical and histopathological changes on intestinal I/R injury in rats by infliximab treatment have been reported. Infliximab treatment significantly decreased the elevated tissue malondialdehyde levels and increased of reduced superoxide dismutase, and glutathione peroxidase enzyme activities in lung tissues samples. Intestinal I/R caused severe histopathological injury including edema, hemorrhage, increased thickness of the alveolar wall and a great number of inflammatory cells that infiltrated the interstitium and alveoli. Infliximab treatment significantly attenuated the severity of intestinal I/R injury. Furthermore, there is a significant reduction in the activity of inducible nitric oxide synthase and arise in the expression of surfactant protein D in lung tissue of acute lung injury induced by intestinal I/R with infliximab therapy. It was concluded that infliximab treatment might be beneficial in acute lung injury, therefore, shows potential for clinical use. Because of its anti-inflammatory and antioxidant effects, infliximab pretreatment may have protective effects in acute lung injury induced by intestinal I/R.
Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia.
Figueira, R L; Gonçalves, F L; Simões, A L; Bernardino, C A; Lopes, L S; Castro E Silva, O; Sbragia, L
2016-06-23
Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.
Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia
Figueira, R.L.; Gonçalves, F.L.; Simões, A.L.; Bernardino, C.A.; Lopes, L.S.; Castro e Silva, O.; Sbragia, L.
2016-01-01
Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers. PMID:27356106
Zur, Moran; Gasparini, Marisa; Wolk, Omri; Amidon, Gordon L; Dahan, Arik
2014-05-05
Although recognized as overly conservative, metoprolol is currently the common low/high BCS permeability class boundary reference compound, while labetalol was suggested as a potential alternative. The purpose of this study was to identify the various characteristics that the optimal marker should exhibit, and to investigate the suitability of labetalol as the permeability class reference drug. Labetalol's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Labetalol was found to be unequivocally a high-solubility compound. In the pH range throughout the small intestine (6.5-7.5), labetalol exhibited pH-dependent permeability, with higher permeability at higher pH values. While in vitro octanol-buffer partitioning (Log D) values of labetalol were significantly higher than those of metoprolol, the opposite was evident in the in vitro PAMPA permeability assay. The results of the in vivo perfusion studies in rats lay between the two contradictory in vitro studies; metoprolol was shown to have moderately higher rat intestinal permeability than labetalol. Theoretical distribution of the ionic species of the drugs was in corroboration with the experimental in vitro and the in vivo data. We propose three characteristics that the optimal permeability class reference drug should exhibit: (1) fraction dose absorbed in the range of 90%; (2) the optimal marker drug should be absorbed largely via passive transcellular permeability, with no/negligible carrier-mediated active intestinal transport (influx or efflux); and (3) the optimal marker drug should preferably be nonionizable. The data presented in this paper demonstrate that neither metoprolol nor labetalol can be regarded as optimal low/high-permeability class boundary standard. While metoprolol is too conservative due to its complete absorption, labetalol has been shown to be a substrate for P-gp-mediated efflux transport, and both drugs exhibit significant segmental-dependent permeability along the gastrointestinal tract. Nevertheless, the use of metoprolol as the marker compound does not carry a risk of bioinequivalence: Peff value similar to or higher than metoprolol safely indicates high-permeability classification. On the other hand, a more careful data analysis is needed if labetalol is used as the reference compound.
Effect of fulvic and humic acids on iron and manganese homeostasis in rats.
Szabó, József; Vucskits, András Valentin; Berta, Erzsébet; Andrásofszky, Emese; Bersényi, András; Hullár, István
2017-03-01
The objective of this study was to investigate the effects of fulvic acid (FA) and humic acid (HA) as the two main compounds of humic substances, separately on Fe and Mn homeostasis. Seventy-two male Wistar rats were randomly divided into 9 experimental groups. The control diet (AIN-93G formula) and diets supplemented with 0.1%, 0.2%, 0.4% and 0.8% HA or FA were fed for 26 days. Fe and Mn concentrations of the large intestinal content, liver, kidney, femur and hair were determined. No significant differences were observed in the production parameters. The effects of FA and HA on iron homeostasis were significantly different. FA proved to be a good iron source, and slightly increased the iron content of liver and kidney, but - up to a dietary iron level of 52.7 mg/kg - it did not influence the efficiency of iron absorption. Above a dietary iron level of 52.7 mg/kg down-regulation of Fe absorption can be assumed. HA significantly stimulated the iron uptake and there was no down-regulation of Fe absorption up to 0.8% dietary HA supplementation level (61.5 mg Fe/kg diet). In the HA groups the iron content of the liver and kidney decreased significantly, suggesting that in spite of the better Fe absorption, the HA-Fe complex does not provide iron to the investigated organs. Neither FA nor HA supplementation influenced the Fe content of the femur and hair and slightly decreased the Mn concentration in the large intestinal content. This effect was significant (with a 22.7% Mn concentration decrease) only at the HA supplementation rate of 0.8%. Neither FA nor HA influenced significantly the Mn concentrations of the liver, kidney and femur. The Mn concentration of the hair in rats receiving FA- or HA-supplemented diets was higher than in the control rats; however, this result needs further confirmation.
Vitamin D endocrine system after short-term space flight
NASA Technical Reports Server (NTRS)
Rhoten, William B. (Principal Investigator); Sergeev, Igor N. (Principal Investigator)
1996-01-01
The exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca(2+) metabolism, yet the cellular/molecular mechanisms leading to these changes are poorly understood. There is some evidence for microgravity-induced alterations in the vitamin D endocrine system, which is known to be primarily involved in the regulation of Ca(2+) metabolism. Vitamin D-dependent Ca(2+) binding proteins, or calbindins, are believed to have a significant role in maintaining cellular Ca(2+) homeostasis. We used immunocytochemical, biochemical and molecular approaches to analyze the expression of calbindin-D(sub 28k) and calbindin-D(sub 9k) in kidneys and intestines of rats flown for 9 days aboard the Spacelab 3 mission. The effects of microgravity on calbindins in rats in space vs. 'grounded' animals (synchronous Animal Enclosure Module controls and tail suspension controls) were compared. Exposure to microgravity resulted in a significant decrease in calbindin-D(sub 28k) content in kidneys and calbindin-D(sub 9k) in the intestine of flight and suspended animals, as measured by enzyme-linked immunosorbent assay (ELISA). Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in kidneys and intestine, and insulin in pancreas. There was a large decrease in the distal tubular cell-associated calbindin-D(sub 28k) and absorptive cell-associated calbindin-D(sub 9k) immunoreactivity in the space and suspension kidneys and intestine, as compared with matched ground controls. No consistent differences in pancreatic insulin immunoreactivity between space, suspension and ground controls was observed. There were significant correlations between results by quantitative ICC and ELISA. Western blot analysis showed no consistent changes in the low levels of intestinal and renal vitamin D receptors. These findings suggest that a decreased expression of calbindins after a short-term exposure to microgravity and modelled weightlessness, may affect cellular Ca(2+) homeostasis and contribute to Ca(2+) and bone metabolism disorders induced by space flight.
High-fat enteral nutrition reduces intestinal mucosal barrier damage after peritoneal air exposure.
Tan, Shan-Jun; Yu, Chao; Yu, Zhen; Lin, Zhi-Liang; Wu, Guo-Hao; Yu, Wen-Kui; Li, Jie-Shou; Li, Ning
2016-05-01
Peritoneal air exposure is needed in open abdominal surgery, but long-time exposure could induce intestinal mucosal barrier dysfunction followed by many postoperative complications. High-fat enteral nutrition can ameliorate intestinal injury and improve intestinal function in many gastrointestinal diseases. In the present study, we investigated the effect of high-fat enteral nutrition on intestinal mucosal barrier after peritoneal air exposure and the underlying mechanism. Male adult rats were administrated saline, low-fat or high-fat enteral nutrition via gavage before and after peritoneal air exposure for 3 h. Rats undergoing anesthesia without laparotomy received saline as control. Twenty four hours after surgery, samples were collected to assess intestinal mucosal barrier changes in serum D-lactate levels, intestinal permeability, intestinal tight junction protein ZO-1 and occludin levels, and intestinal histopathology. The levels of malondialdehyde and the activity of superoxide dismutase in the ileum tissue were also measured to assess the status of intestinal oxidative stress. High-fat enteral nutrition significantly decreased the serum D-lactate level and increased the intestinal tight junction protein ZO-1 level when compared to the group treated with low-fat enteral nutrition (P < 0.05). Meanwhile, histopathologic findings showed that the intestinal mucosal injury assessed by the Chiu's score and the intestinal epithelial tight junction were also improved much more in the high-fat enteral nutrition-treated group (P < 0.05). In addition, the intestinal malondialdehyde level was lower, and the intestinal superoxide dismutase activity was higher in the high-fat enteral nutrition-treated group than that in the low-fat enteral nutrition-treated group (P < 0.05). These results suggest that high-fat enteral nutrition could reduce intestinal mucosal barrier damage after peritoneal air exposure, and the underlying mechanism may be associated with its antioxidative action. Perioperative administration of high-fat enteral nutrition may be a promising intervention to preserve intestinal mucosal barrier function in open abdominal surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Akinrinmade, Fadeyemi Joseph; Akinrinde, Akinleye Stephen; Amid, Adetayo
2016-05-01
Aflatoxins are known to produce chronic carcinogenic, mutagenic, and teratogenic effects, as well as acute inflammatory effects, especially in the gastrointestinal tract. The potentials of the flavonoid-rich extract from Chromolena odorata (FCO) and melatonin (a standard anti-oxidant and anti-inflammatory agent) against aflatoxin B1 (AFB1)-induced alterations in pro-inflammatory cytokine levels and morphology of liver and small intestines were evaluated in this study. We utilized Wistar albino rats (200-230 g) randomly divided into five groups made up of group A, control rats; group B, rats given AFB1 (2.5 mg/kg, intraperitoneal) twice on days 5 and 7; rats in groups C, D, and E were treated with melatonin (10 mg/kg, intraperitoneal) or oral doses of FCO1 (50 mg/kg) and FCO2 (100 mg/kg) for 7 days, respectively, along with AFB1 injection on days 5 and 7. Serum levels of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) were determined using commercial ELISA kits and histopathological evaluation of the liver, duodenum, and ileum were also carried out. We observed significant elevation (p < 0.05) in serum IL-1β correlating with hemorrhages and leucocytic and lymphocytic infiltration in the liver and intestines as evidences of an acute inflammatory response to AFB1 administration. All treatments yielded significant reduction (p < 0.05) in IL-1β levels, although TNF-α levels were not significantly altered in all rats that received AFB1, irrespective of the treatments. Melatonin and FCO2 produced considerable protection of hepatic tissues, although melatonin was not quite effective in protecting the intestinal lesions. Our findings suggest a modulation of cytokine expression that may, in part, be responsible for the abilities of C. odorata or melatonin in amelioration of hepatic and intestinal lesions associated with aflatoxin B1 injury.
Zhang, Yupei; Tang, Kairui; Deng, Yuanjun; Chen, Runsen; Liang, Shu; Xie, Huijun; He, Yifang; Chen, Yanning; Yang, Qinhe
2018-06-01
Worldwide, non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease closely associated with obesity, diabetes and other metabolic diseases. Shenling Baizhu powder (SLBZP), a formulation of a variety of natural medicinal plants, has hepatoprotective properties and clinical efficacy in treating non-infectious intestinal disease. SLBZP has improved NAFLD symptoms; however, its mechanism of action is unknown. We established an NAFLD model in rats given a high-fat diet (HFD), administered different interventions and measured serum biochemical indices and inflammatory factors. Liver tissues were stained with hematoxylin and eosin (HE) and oil red O, and colon tissues were analyzed by immunohistochemistry. The expression profiles of liver TLR4 pathway related protein was confirmed by western blotting. Changes in intestinal microbiota composition were analyzed using a 16S rDNA sequencing technique. Of note, SLBZP effectively reduced body weight in HFD-fed rats (p < 0.05). Serum biochemical analysis indicated that SLBZP decreased the serum level of total cholesterol (TC) and improved liver function. Additionally, SLBZP decreased the serum level of endotoxin, tumor necrosis factor α (TNF-α), interleukin-1β (IL-β) (p < 0.05), and decreased the expression of TLR4 pathway related protein. Pathological examination showed that SLBZP alleviates hepatic steatosis and repairs colon mucosa. Microbiome analysis revealed that SLBZP improved the abundance of intestinal microbiota. In taxonomy-based analysis, compared with control rats, SLBZP-treated rats showed obvious changes in intestinal microbiota composition. Moreover, SLBZP increased the relative abundance of short-chain fatty acid (SCFA)-producing bacteria, including Bifidobacterium and Anaerostipes. Taken together, these results suggest that the effects of SLBZP against NAFLD may be related to the increased abundance of beneficial gut microbiota and decreased levels of LPS in the portal vein. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Influence of Chronic Social Defeat Stress on Digestive System Functioning in Rats.
Toyoda, Atsushi; Iio, Wataru; Matsukawa, Noriko; Tsukahara, Takamitsu
2015-01-01
Mental disorders are caused by chronic psychosocial stress, and can cause various symptoms related to the digestive system. We focused on the conjugation of intestinal absorptive and enzymatic mechanisms between chronic social defeat stress (CSDS) model rats and healthy controls to obtain general biochemical data about the intestine of the model in this study. The small intestine was divided into three regions: proximal (PI), middle (MI), and distal (DI); mRNA expression associated with a nutrient absorption, glucose absorption activity, and activities of the digestive enzymes such as maltase, sucrase and lactase was measured. Expression of both sodium-dependent glucose transporter 1 (Sglt1) and glucose transporter 2 gene tended to be higher in the stress group compared to the control group in PI. Glucose absorption was also higher in PI of the CSDS group. Sglt1 and peptide transporter 1 gene expressions in the CSDS group were significantly higher than those in the control group in DI. Furthermore, in PI, expression of the aquaporin 1 gene was significantly higher in the CSDS group compared to the control group. Thus, absorption of some nutrients might be higher in the small intestine of the CSDS rat.
Breast milk-derived exosomes promote intestinal epithelial cell growth.
Hock, Alison; Miyake, Hiromu; Li, Bo; Lee, Carol; Ermini, Leonardo; Koike, Yuhki; Chen, Yong; Määttänen, Pekka; Zani, Augusto; Pierro, Agostino
2017-05-01
Breast milk administration prevents necrotizing enterocolitis (NEC). However, the mechanism remains unclear. Exosomes are cell-derived vesicles highly present in human milk and regulate intercellular signaling, inflammation, and immune response. We hypothesized that milk-derived exosomes beneficially affect intestinal epithelial cells. Rat milk was collected, and exosomes were isolated using ExoQuick reagent and visualized by Nanoparticle Tracking Analysis. Protein was extracted from encapsulating exosomes, and concentration was measured. 2×10 4 intestinal epithelial cells (IEC-18) were treated for five hours with 0.5-μg/μl exosomes, an equal volume of exosome-free milk, or control solution (PBS). IEC-18 viability was measured using a colorimetric assay (MTT), and gene expression was analyzed by qRT-PCR. Data were compared using one-way ANOVA with Bonferroni post-test. Rat milk was collected, and exosome isolation was confirmed. Compared to control, treatment with exosomes significantly increased IEC viability, proliferation, and stem cell activity (all p<0.05). However, administration of exosome-free milk had less significant effects. Rat milk-derived exosomes promote IEC viability, enhance proliferation, and stimulate intestinal stem cell activity. These findings provide insight into the mechanism of action of breast milk in the intestines. Exosome administration is a promising prevention method for infants at risk of developing NEC when breastfeeding is not tolerated. Copyright © 2017 Elsevier Inc. All rights reserved.
Tatsuta, A; Iishi, H; Baba, M; Yano, H; Murata, K; Mukai, M; Akedo, H
2000-01-01
The effect of a naturally occurring flavonoid apigenin on the development of bombesin-enhanced peritoneal metastasis from intestinal adenocarcinomas induced by azoxymethane was investigated in male Wistar rats. From the start of the experiment, rats were given weekly s.c. injections of azoxymethane (7.4 mg/kg body weight) for 10 weeks and s.c. injection of bombesin (40 microg/kg body weight) every other day, and from week 16, s.c. injections of apigenin (0.75 or 1.5 mg/kg body weight) every other day until the end of the experiment in week 45. Bombesin significantly increased the incidence of intestinal tumors and cancer metastasis to the peritoneum in week 45. It also significantly increased the labeling index of intestinal cancers. Although administration of apigenin at either dose with bombesin had little or no effect on the enhancement of intestinal carcinogenesis by bombesin, the location, histologic type, depth of involvement, infiltrating growth patterns and labeling index, it was found to decrease significantly the incidence of cancer metastasis. Apigenin significantly decreased the incidence of lymphatic vessel invasion of adenocarcinomas, which was enhanced by bombesin. In vitro experiments revealed that apigenin inhibited bombesin-enhanced phosphorylation of mitogen-activated protein kinase (MAPK), but not matrix metalloprotease (MMP)-9 expression. Our findings indicate that apigenin inhibits cancer metastasis through inhibition of phosphorylation of MAPK.
[Space-time organization of systems of membrane hydrolysis and transport in rat small intestine].
Loginov, G I
1977-05-01
Glucose transport by the concentration gradient with the incubation for 90 min in 0.2% glucose and soluble starch solutions was studied in Wistar rats in 5 segments of the small intestine by the "sac turned inside out" method. Serous fluid was completely replaced by a new portion of Ringer's solution every 15 or 30 min. Substrate load synchronized the enterocyte population and stabilized the transport systems. The changes of glucose absorption during the period of about an hour proved to differ in the 5 segments against the background of continuous and interrupted substrate load. These differences were due to the properties of the transported systems autocontrol and the reactivity level of the given enterocyte population. Areas with different reactivity were found to alternate along the intestine. Between the 8th and 16th hour (rats were sacrificed every 2 hours) starch glucose transport fell sharply in the proximal, and, to a lesser extent, in the middle segments. On the contrary, absorption between the 8th and the 12th hour was considerably intensified in the distal segments. The changes of the strach glucose transport during the period of about an hour along the intestine differed. The data obtained are discussed with consideration to the possible role of the undulating processes in the individual enterocyte population and in the small intestine as an integral system.
Tomaszewska, Ewa; Dobrowolski, Piotr; Kwiecień, Małgorzata
2016-05-01
Copper (Cu) is required for basically all biochemical and physiological processes in the body. The aim was to evaluate the effects of different sources of dietary copper on jejunal epithelium histomorphometry in adolescent rats. Male rats at the age of 5 weeks were used in the 12-week experiment. The control group was fed with standard diet providing the required Cu level (5 mg/kg body weight (bw) per day) in an inorganic form (sulfate) covered 100 % of daily demand, and the other three groups were supplemented with Cu-glycine complex covered 50, 75, and 100 % daily demand. Basal hematological and plasma biochemical analyses as well as histomorphometric examinations of the jejunal epithelium and liver were performed. Cu given in the organic form in 100 % of daily demand depressed the muscular and submucosa layer and the crypt depth (P < 0.05) without an influence of the innervation of the jejunum. In turn, organic Cu given in 75 % of daily demand did not influence the intestinal morphology in adult rats. Dietary organic Cu given to rats covering the daily demand in 50 or 75 % appears to be less harmful with regard to the intestinal epithelium than when administered in 100 % of daily demand.
Kirsch, Michael; Petrat, Frank
2017-01-01
Therapeutic effects of continuous intravenous infusions of solvent-free low doses of resveratrol on organ injury and systemic consequences resulting from severe hemorrhagic shock in rats were studied. Hemorrhagic shock was induced by withdrawing arterial blood until a mean arterial blood pressure (MAP) of 25–30 mmHg was reached. Following a shock phase of 60 min, rats were resuscitated with the withdrawn blood plus lactated Ringer’s. Resveratrol (20 or 60 μg/kg × h) was continuously infused intravenously starting with the resuscitation phase (30 min) and continued until the end of the experiment (total treatment time 180 min). Animals of the shock control group received 0.9% NaCl solution. After the observation phase (150 min), rats were sacrificed. Resveratrol significantly stabilized the MAP and peripheral oxygen saturation after hemorrhagic shock, decreased the macroscopic injury of the small intestine, significantly attenuated the shock-induced increase in tissue myeloperoxidase activity in the small intestine, liver, kidney and lung, and diminished tissue hemorrhages (particularly in the small intestine and liver) as well as the rate of hemolysis. Already very low doses of resveratrol, continuously infused during resuscitation after severe hemorrhagic shock, can significantly improve impaired systemic parameters and attenuate multiple organ damage in rats. PMID:28817064
Ajibola, Abdulwahid; Chamunorwa, Joseph P; Erlwanger, Kennedy H
2013-04-01
The high intake of refined sugars, mainly fructose has been implicated in the epidemiology of metabolic diseases in adults and children. With an aim to determine whether honey can substitute refined sugars without adverse effect, the long-term effects of natural honey and cane syrup have been compared on visceral morphology in growing rats fed from neonatal age. Honey increased the caecum and pancreas weights in male rats, which could enhance enzymatic activities of pancreas and digestive functions by intestinal microflora of caecum. Unlike honey, cane syrup caused fatty degenerations in the liver of both male and female rats. Honey enhanced intestinal villi growth, and did not cause pathology in the rodents' abdominal viscera, suggesting potential nutritional benefit as substitution for refined sugars in animal feed.
Sukhotnik, Igor; Mogilner, Jorge G; Ben Lulu, Shani; Bashenko, Yulia; Shaoul, Ron; Chemodanov, Elena; Coran, Arnold G
2011-02-01
Transforming growth factor beta (TGF-β) has been shown to affect epithelial cell differentiation and proliferation through epithelial-mesenchymal and epithelial-immune cell interaction. In the present study, we evaluated the effect of TGF-β2-enriched polymeric diet (Modulen) on enterocyte turnover in a rat model of short bowel syndrome (SBS). Male rats were divided into four groups: Sham rats and Sham-TGF-β rats underwent bowel transection, and were treated with TGF-β from the 4th postoperative day, SBS rats underwent a 75% bowel resection, and SBS-TGF-β rats underwent bowel resection and were treated with TGF-β-enriched diet similar to Group B. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined on day 15. Real-time PCR was used to determine Bax and Bcl-2 mRNA expression. Treatment of SBS animals with TGF-β2 supplemented diet led to a significant decrease (vs. SBS rats) in bowel weight in ileum (18%, P < 0.05), mucosal DNA content in jejunum (threefold decrease, P < 0.05) and ileum (2.5-fold decrease, P < 0.05), and mucosal protein in jejunum (twofold decrease, P < 0.05) compared to SBS-untreated animals (Group B). Treatment with TGF-β resulted in a mild decrease in enterocyte proliferation in jejunum (25%, P < 0.05) and ileum (18%, P < 0.05). A decreased cell apoptosis in the SBS-TGF-β group was accompanied by a decreased Bax and increased Bcl-2 mRNA expression. In a rat model of SBS, dietary TGF-β inhibits intestinal adaptation. Decreased enterocyte proliferation is responsible for this effect.
Bai, Shaochun; Wang, Hongwei; Shen, Jikun; Zhou, Randal; Bushinsky, David A; Favus, Murray J
2010-01-01
Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)2D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)2D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H3. These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H3. © 2010 American Society for Bone and Mineral Research. PMID:19929616
Eltahawy, N A; Elsonbaty, S M; Abunour, S; Zahran, W E
2017-03-01
Environmental and occupational exposure to aluminum along with ionizing radiation results in serious health problems. This study was planned to investigate the impact of oxidative stress provoked by exposure to ionizing radiation with aluminum administration upon cellular ultra structure and apoptotic changes in Paneth cells of rat small intestine . Animals received daily aluminum chloride by gastric gavage at a dose 0.5 mg/Kg BW for 4 weeks. Whole body gamma irradiation was applied at a dose 2 Gy/week up to 8 Gy. Ileum malondialdehyde, advanced oxidative protein products, protein carbonyl and tumor necrosis factor-alpha were assessed as biomarkers of lipid peroxidation, protein oxidation and inflammation respectively along with superoxide dismutase, catalase, and glutathione peroxidase activities as enzymatic antioxidants. Moreover, analyses of cell cycle division and apoptotic changes were evaluated by flow cytometry. Intestinal cellular ultra structure was investigated using transmission electron microscope.Oxidative and inflammatory stresses assessment in the ileum of rats revealed that aluminum and ionizing radiation exposures exhibited a significant effect upon the increase in oxidative stress biomarkers along with the inflammatory marker tumor necrosis factor-α accompanied by a significant decreases in the antioxidant enzyme activities. Flow cytometric analyses showed significant alterations in the percentage of cells during cell cycle division phases along with significant increase in apoptotic cells. Ultra structurally, intestinal cellular alterations with marked injury in Paneth cells at the sites of bacterial translocation in the crypt of lumens were recorded. The results of this study have clearly showed that aluminum and ionizing radiation exposures induced apoptosis with oxidative and inflammatory disturbance in the Paneth cells of rat intestine, which appeared to play a major role in the pathogenesis of cellular damage. Furthermore, the interaction of these two intestinal toxic routes was found to be synergistic.
Huang, Cuilan; Zhan, Jianhua; Luo, Jinhua
2015-02-01
To observe the effects of astragalus polysaccharide (AP) on the intestinal mucosal morphology, level of secretory IgA (s-IgA) in intestinal mucus, and distribution of T lymphocyte subsets in Peyer's patch in rats with severe scald injury. One hundred and thirty SD rats were divided into sham injury group (SI, sham injured, n = 10), scald group (S, n = 30), low dosage group (LD, n = 30), moderate dosage group (MD, n = 30), and high dosage group (HD, n = 30) according to the random number table. Rats in the latter 4 groups were inflicted with 30% TBSA full-thickness scald on the back. From post injury hour 2, rats in groups LD, MD, and HD were intraperitoneally injected with 0.5 mL AP solution with the dosage of 100, 200, and 300 mg/kg each day respectively, and rats in group S were injected with 0.5 mL normal saline instead. Ten rats from group SI immediately after injury and 10 rats from each of the latter 4 groups on post injury day (PID) 3, 7, 14 were sacrificed, and their intestines were harvested. The morphology of ileal mucosa was examined after HE staining; the level of s-IgA in ileal mucus was determined with double-antibody sandwich ELISA method; the proportions of CD3⁺, CD4⁺, CD8⁺ T lymphocytes in Peyer's patches of intestine were determined with flow cytometer, and the proportion of CD4⁺ to CD8⁺ was calculated. Data were processed with one-way analysis of variance, analysis of variance of factorial design, and SNK test. (1) Villi in normal form and intact villus epithelial cells were observed in rats of group SI immediately after injury, while edema of villi and necrosis and desquamation of an enormous amount of villi were observed in groups with scalded rats on PID 3, with significant infiltration of inflammatory cells. On PID 7, no obvious improvement in intestinal mucosal lesion was observed in groups with scalded rats. On PID 14, the pathology in intestinal mucosa of rats remained nearly the same in group S, and it was alleviated obviously in groups LD and MD, and the morphology of intestinal mucosa of rats in group HD was recovered to that of group SI. (2) On PID 3, 7, and 14, the level of s-IgA in intestinal mucus significantly decreased in groups S, LD, MD, and HD [(43 ± 5), (45 ± 5), (46 ± 5) µg/mL; (47 ± 5), (48 ± 5), (49 ± 6) µg/mL; (50 ± 6), (51 ± 5), (52 ± 5) µg/mL; (53 ± 6), (54 ± 5), (55 ± 5) µg/mL] as compared with that of rats in group SI immediately after injury [(69 ± 4) µg/mL, with P values below 0.05]. The level of s-IgA in intestinal mucus of rats in group MD was significantly higher than that in group S at each time point (with P values below 0.05), and that of group HD was significantly higher than that in groups S and LD at each time point (with P values below 0.05). (3) Compared with those of rats in group SI immediately after injury, the proportions of CD3⁺ T lymphocytes and CD4⁺ T lymphocytes significantly decreased in groups with scalded rats at each time point (with P values below 0.05), except for those in group HD on PID 14. The proportion of CD4⁺ T lymphocytes of rats in group LD was significantly higher than that in group S on PID 3 (P < 0.05). The proportions of CD3⁺ T lymphocytes and CD4⁺ T lymphocytes were significantly higher in groups MD and HD than in groups S and LD (except for the proportion of CD4⁺ T lymphocytes in group MD on PID 3 and 14) at each time point (with P values below 0.05). The proportion of CD3⁺ T lymphocytes on PID 7 and 14 and that of CD4⁺ T lymphocytes on PID 3 were significantly higher in group HD than in group MD (with P values below 0.05). Compared with that of rats in group SI immediately after injury, the proportion of CD8⁺ T lymphocytes significantly increased in the other 4 groups at each time point (with P values below 0.05). The proportion of CD8⁺ T lymphocytes was significantly lower in rats of group LD on PID 7 and 14 and groups MD and HD at each time point than in group S (with P values below 0.05). The proportion of CD8⁺ T lymphocytes was significantly lower in rats of group MD on PID 7 and 14 and group HD at each time point than in group LD (with P values below 0.05). The proportion of CD8⁺ T lymphocytes was significantly lower in rats of group HD on PID 7 and 14 than in group MD (with P values below 0.05). On PID 3, 7, and 14, the proportion of CD4⁺ to CD8⁺ was significantly lower in groups S, LD, MD, and HD (0.65 ± 0.11, 0.68 ± 0.13, 0.73 ± 0.22; 0.76 ± 0.15, 0.78 ± 0.14, 0.90 ± 0.10; 0.85 ± 0.21, 0.89 ± 0.18, 1.08 ± 0.19; 0.99 ± 0.20, 1.05 ± 0.21, 1.25 ± 0.23) as compared with that of rats in group SI immediately after injury (1.74 ± 0.20, with P values below 0.05). The proportion of CD4⁺ to CD8⁺ was significantly higher in rats of group HD than in group MD on PID 7 (P < 0.05), and the proportion was significantly higher in these two groups than in group S at each time point (with P values below 0.05). The proportion of CD4⁺ to CD8⁺ was significantly higher in rats of group MD on PID 14 and group HD at each time point than in group LD (with P values below 0.05). Compared within each group, the proportions of CD3⁺, CD4⁺, CD8⁺ T lymphocytes and the proportion of CD4⁺ to CD8⁺ of rats in groups LD, MD, and HD showed a trend of gradual elevation along with passage of time. AP can improve the injury to intestinal mucosa and modulate the balance of T lymphocyte subsets in Peyer's patch in a time- and dose-dependent manner, and it can promote s-IgA secretion of intestinal mucosa in a dose-dependent manner.
Schepens, Marloes A A; ten Bruggencate, Sandra J M; Schonewille, Arjan J; Brummer, Robert-Jan M; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J
2012-04-01
An increased intestinal permeability is associated with several diseases. Previously, we have shown that dietary Ca decreases colonic permeability in rats. This might be explained by a calcium-phosphate-induced increase in luminal buffering capacity, which protects against an acidic pH due to microbial fermentation. Therefore, we investigated whether dietary phosphate is a co-player in the effect of Ca on permeability. Rats were fed a humanised low-Ca diet, or a similar diet supplemented with Ca and containing either high, medium or low phosphate concentrations. Chromium-EDTA was added as an inert dietary intestinal permeability marker. After dietary adaptation, short-chain fructo-oligosaccharides (scFOS) were added to all diets to stimulate fermentation, acidify the colonic contents and induce an increase in permeability. Dietary Ca prevented the scFOS-induced increase in intestinal permeability in rats fed medium- and high-phosphate diets but not in those fed the low-phosphate diet. This was associated with higher faecal water cytotoxicity and higher caecal lactate levels in the latter group. Moreover, food intake and body weight during scFOS supplementation were adversely affected by the low-phosphate diet. Importantly, luminal buffering capacity was higher in rats fed the medium- and high-phosphate diets compared with those fed the low-phosphate diet. The protective effect of dietary Ca on intestinal permeability is impaired if dietary phosphate is low. This is associated with a calcium phosphate-induced increase in luminal buffering capacity. Dragging phosphate into the colon and thereby increasing the colonic phosphate concentration is at least part of the mechanism behind the protective effect of Ca on intestinal permeability.
Cheah, Ker Y; Howarth, Gordon S; Yazbeck, Roger; Wright, Tessa H; Whitford, Eleanor J; Payne, Caroline; Butler, Ross N; Bastian, Susan E P
2009-02-01
Mucositis is a common side-effect of high-dose chemotherapy regimens. Grape seed extract (GSE) represents a rich source of proanthocyanidins with the potential to decrease oxidative damage and inflammation within the gastrointestinal tract. We evaluated GSE for its capacity to decrease the severity of chemotherapy-induced mucositis in vitro and in vivo. In vitro: GSE was administered to IEC-6 intestinal epithelial cells prior to damage induced by 5-Fluorouracil (5-FU). Cell viability was determined by neutral red assay. In vivo: Female Dark Agouti rats (130-180 g) were gavaged with 1 ml GSE (400 mg/kg) daily (day 3-11) and received 5-FU (150 mg/kg) by intraperitoneal (i.p.) injection on day nine to induce mucositis. Rats were sacrificed at day 12 and intestinal tissues collected for myeloperoxidase and sucrase activity assays and histological analyses. Statistical analysis was performed by one-way ANOVA. GSE prevented the decrease in IEC-6 cell viability induced by 5-FU (p < 0.01). Compared with 5-FU controls, GSE significantly reduced myeloperoxidase activity by 86% and 27% in the proximal jejunum (p < 0.001) and distal ileum (p < 0.05) respectively; decreased qualitative histological scores of damage (p < 0.05) in the proximal jejunum; increased villus height in the proximal jejunum (17%; p < 0.05) and distal ileum (50%; p < 0.01), and attenuated the 5-FU-induced reduction of mucosal thickness by 16% in the jejunum (p < 0.05) and 45% in the ileum (p < 0.01). GSE partially protected IEC-6 cells from 5-FU-induced cytotoxicity and ameliorated intestinal damage induced by 5-FU in rats. GSE may represent a promising prophylactic adjunct to conventional chemotherapy for preventing intestinal mucositis.
Morel, Fanny B; Oozeer, Raish; Piloquet, Hugues; Moyon, Thomas; Pagniez, Anthony; Knol, Jan; Darmaun, Dominique; Michel, Catherine
2015-03-01
Increasing evidence suggests that early nutrition has programming effects on adult health. Identifying mechanisms underlying nutritional programming would aid in the design of new disease prevention strategies. The intestinal microbiota could be a key player in this programming because it affects host metabolic homeostasis, postnatal gut colonization is sensitive to early nutrition, and initial microbial set-up is thought to shape microbiota composition for life. The aim of this study was to determine whether early manipulation of intestinal microbiota actually programs adult microbiota in rats. Suckling rats pups were supplemented with fructo-oligosaccharides, galacto-oligosaccharides/long-chain fructan mix (GOS/lcF, 9/1), acidic oligosaccharides, amoxicillin, or vehicle from the fifth to the fourteenth day of life, and weaned to standard chow at day 21. Ceco-colonic microbiota was characterized at 14 and 131 d by real-time polymerase chain reaction analysis. At day 14, all treatments affected microbiota. Amoxicillin had the most significant effect. All oligosaccharides decreased Firmicutes levels, whereas only fructo-oligosaccharides and GOS/lcF increased bifidobacteria. At day 131, most of these effects had faded away but a significant, albeit minor, adult microbiota programming was observed for rats that received GOS/lcF mix before weaning, regarding Roseburia intestinalis cluster, one subdivision of the Erysipelotrichaceae family as well as butyrate kinase gene. As revealed by a targeted quantitative polymerase chain reaction approach, programming of adult intestinal microbiota seems to vary according to the nature of the preweaning microbiotal modulator. This suggests that intestinal microbiota may, only under specific circumstances, serve as a relay of neonatal nutrition and thus potentially contribute to nutritional programming of host physiology. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak; Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd
2016-10-01
The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes ( n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.
Gao, Qiong; Zhang, Yufeng; Wo, Siukwan; Zuo, Zhong
2014-03-01
The current study aims to investigate intestinal absorption and metabolism of arctigenin (AR) through simultaneous monitoring of AR and its major metabolites in rat plasma. An UPLC/MS/MS assay was developed with chromatographic separation of all analytes achieved by a C18 Column (3.9mm×150mm, 3.5μm) and a gradient elution with acetonitrile and 0.1% formic acid within 9min. Sample extraction with acetonitrile was optimized to achieve satisfactory recovery for both AR and its major metabolites. The lower limit of quantification (LLOQ) for all analytes was 25ng/ml. The intra-day and inter-day precision and accuracy of each analyte at LLOQ and three quality control (QC) concentrations (low, middle and high) in rat plasma was within 15.0% RSD and 15.0% bias. The extraction recoveries were within the range of 83.8-94.0% for all analytes. The developed and validated assay was then applied to the absorption study of AR in both Caco-2 cell monolayer model and in situ single-pass rat intestinal perfusion model. High absorption permeability of AR was demonstrated in both models with Papp of (1.76±0.48)×10(-5) (A→B) (Caco-2) and Pblood of (8.6±3.0)×10(-6)cm/s (intestinal perfusion). Extensive first-pass metabolism of AR to arctigenic acid (AA) and arctigenin-4'-O-glucuronide (AG) was identified in rat intestinal perfusion study with Cummins's extraction ratios of 0.458±0.012 and 0.085±0.013, respectively. The current assay method demonstrated to be a practical tool for pharmacokinetics investigation of AR with complicated metabolism pathways and multiple metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.
Polydatin Alleviates Small Intestine Injury during Hemorrhagic Shock as a SIRT1 Activator
Zeng, Zhenhua; Chen, Zhongqing; Xu, Siqi; Song, Rui; Yang, Hong; Zhao, Ke-seng
2015-01-01
Objective. To evaluate the role of SIRT1 in small intestine damage following severe hemorrhagic shock and to investigate whether polydatin (PD) can activate SIRT1 in shock treatment. Research Design and Methods. The severe hemorrhagic shock model was reproduced in Sprague Dawley rats. Main Outcome Measures. Two hours after drug administration, half of the rats were assessed for survival time evaluation and the remainder were used for small intestinal tissue sample collection. Results. Bleeding and swelling appeared in the small intestine with epithelial apoptosis and gut barrier disturbance during hemorrhagic shock. SIRT1 activity and PGC-1α protein expression of the small intestine were decreased, which led to an increase in acetylated SOD2 and decreases in the expression and activity of SOD2, resulting in severe oxidative stress. The decreased SIRT1 activity and expression were partially restored in the PD administration group, which showed reduced intestine injury and longer survival time. Notably, the effect of PD was abolished after the addition of Ex527, a selective inhibitor of SIRT1. Conclusions. The results collectively suggest a role for the SIRT1-PGC-1α-SOD2 axis in small intestine injury following severe hemorrhagic shock and that PD is an effective SIRT1 activator for the shock treatment. PMID:26301045
Chuang, Er-Yuan; Lin, Kun-Ju; Huang, Tring-Yo; Chen, Hsin-Lung; Miao, Yang-Bao; Lin, Po-Yen; Chen, Chiung-Tong; Juang, Jyuhn-Huarng; Sung, Hsing-Wen
2018-06-06
Increasing the intestinal dissolution of orally administered poorly water-soluble drugs that have poor oral bioavailability to a therapeutically effective level has long been an elusive goal. In this work, an approach that can greatly enhance the oral bioavailability of a poorly water-soluble drug such as curcumin (CUR) is developed, using a "Transformers"-like nanocarrier system (TLNS) that can self-emulsify the drug molecules in the intestinal lumen to form nanoemulsions. Owing to its known anti-inflammation activity, the use of CUR in treating pancreatitis is evaluated herein. Structural changes of the TLNS in the intestinal environment to form the CUR-laden nanoemulsions are confirmed in vitro. The therapeutic efficacy of this TLNS is evaluated in rats with experimentally induced acute pancreatitis (AP). Notably, the CUR-laden nanoemulsions that are obtained using the proposed TLNS can passively target intestinal M cells, in which they are transcytosed and then transported into the pancreatic tissues via the intestinal lymphatic system. The pancreases in rats that are treated with the TLNS yield approximately 12 times stronger CUR signals than their counterparts receiving free CUR, potentially improving the recovery of AP. These findings demonstrate that the proposed TLNS can markedly increase the intestinal drug dissolution, making oral delivery a favorable noninvasive means of administering poorly water-soluble drugs.
Berdún, S; Rychter, J; Vergara, P
2016-06-01
Surgical handling of the bowel evokes degranulation of peritoneal mast cells (PMC). Nonetheless, role of PMCs in postoperative ileus (POI) is somewhat controversial. We aimed to investigate if intestinal manipulation elicits changes in afferent mediators related to MC activation and alteration of gastrointestinal (GI) motility. Postoperative ileus was induced by intestinal manipulation in Sprague-Dawley rats. Additionally, compound 48/80 (C48/80) and ketotifen were used to modulate MC activity. Rat mast cell protease 6 (RMCP-6, ELISA) release was determined in peritoneal lavage 20 min after intestinal manipulation. At 24 h, GI transit was determined. Gene expression of calcitonin gene-related peptide (CGRP), protease-activated receptor-2 (PAR-2), nerve growth factor (NGF), and TrkA receptor was determined (PCR) in dorsal root ganglia (DRG). Ileal wall inflammation was assessed by myeloperoxidase (MPO) activity, interleukin-6 expression (IL-6). Intestinal manipulation and exposure to C48/80-induced degranulation of PMCs delayed GI transit and up-regulated IL-6 and MPO activity. Intestinal manipulation, but not C48/80, up-regulated CGRP, PAR-2, and NGF/TrkA in DRGs. Ketotifen only improved gastric emptying and fecal output. Up-regulation of CGRP and TrkA expression in DRG was not prevented by ketotifen. Postoperative ileus is accompanied by activation of CGRP, NGF-TrkA, and PAR-2 in DRGs. Our results suggest that these mediators could be a target in further POI studies in order to find new therapeutic targets for this medical condition. © 2016 John Wiley & Sons Ltd.
Erdosteine and ebselen as useful agents in intestinal ischemia/reperfusion injury.
Tunc, Turan; Uysal, Bulent; Atabek, Cuneyt; Kesik, Vural; Caliskan, Bahadir; Oztas, Emin; Ersoz, Nail; Oter, Sukru; Guven, Ahmet
2009-08-01
Reactive oxygen and nitrogen species generated during reperfusion of the tissue are characteristic of ischemia/reperfusion (I/R) injury. The purpose of the present study was to investigate whether erdosteine and ebselen, molecules with antioxidant properties and peroxynitrite scavenging capability, respectively, can reduce oxidative stress and histological damage in the rat small bowel subjected to mesenteric I/R injury. Forty Sprague-Dawley rats were divided into five groups equally: sham, I/R, I/R plus erdosteine, I/R plus ebselen, and I/R plus erdosteine and ebselen. Intestinal ischemia for 45 min and reperfusion for 3 d were carried out. Ileal specimens were obtained to determine the tissue levels of malondialdehide (MDA), protein carbonyl content (PCC), superoxide dismutase (SOD), glutathione peroxidase (GPx), nitrite/nitrate (NO(x)) level and histological changes. Intestinal I/R resulted in increased tissue MDA, PCC, and NO(x) levels and decreased SOD and GPx activities. Both erdosteine and ebselen alone significantly decreased MDA, PCC, and NO(x) levels and increased antioxidant enzymes activities, but all values were different from control. These changes almost returned to control values in the group treated with erdostein and ebselen. Histopathologically, the intestinal injury in rats treated with erdosteine and ebselen as well as combination were less than I/R group. Both erdosteine and ebselen were able to attenuate I/R injury of the intestine via inhibition of lipid peroxidation and protein oxidation, maintenance of antioxidant, and free radical scavenger properties. Nevertheless, combination treatment showed more promising results, suggesting that scavenging peroxynitrite nearby antioxidant activity is important in preventing intestinal I/R injury.
Incecayir, Tuba; Tsume, Yasuhiro; Amidon, Gordon L.
2013-01-01
The purpose of this study was to investigate labetalol as a potential high permeability reference standard for the application of Biopharmaceutics Classification Systems (BCS). Permeabilities of labetalol and metoprolol were investigated in animal intestinal perfusion models and Caco-2 cell monolayers. After isolating specific intestinal segments, in situ single-pass intestinal perfusions (SPIP) were performed in rats and mice. The effective permeabilities (Peff) of labetalol and metoprolol, an FDA standard for the low/high Peff class boundary, were investigated in two different segments of rat intestine (proximal jejunum and distal ileum), and in the proximal jejunum of mouse. No significant difference was found between Peff of metoprolol and labetalol in the jejunum and ileum of rat (0.33±0.11 ×10−4 vs. 0.38±0.06 ×10−4 and 0.57±0.17 ×10−4 vs. 0.64±0.30 ×10−4 cm/s, respectively) and in the jejunum of mouse (0.55±0.05 ×10−4 vs. 0.59±0.13 ×10−4 cm/s). However, Peff of metoprolol and labetalol were 1.7 and 1.6 times higher in the jejunum of mouse, compared to the jejunum of rat, respectively. Metoprolol and labetalol showed segmental dependent permeability through the rat intestine, with increased Peff in the distal ileum in comparison to the proximal jejunum. Most significantly, Peff of labetalol was found to be concentration dependent. Decreasing concentrations of labetalol in the perfusate resulted in decreased Peff compared to Peff of metoprolol. The intestinal epithelial permeability of labetalol was lower than that of metoprolol in Caco-2 cells at both apical pH 6.5 and 7.5 (5.96±1.96 ×10−6 vs. 9.44±3.44 ×10−6 and 15.9±2.2 ×10−6 vs. 23.2±7.1 ×10−6 cm/s, respectively). Labetalol exhibited higher permeability in basolateral to apical (BL-AP) compared to AP-BL direction in Caco-2 cells at 0.1 times the highest dose strength (HDS) (46.7±6.5 ×10−6 vs. 14.2±1.5 ×10−6 cm/s). The P-gp inhibitor, verapamil significantly increased AP-BL and decreased BL-AP direction transport of labetalol. Overall, labetalol showed high Peff in rat and mouse intestinal perfusion models similar to metoprolol at a concentration based on HDS. However, the concentration dependent permeability of labetalol in mice due to P-gp and the inhibition study with verapamil in Caco-2 cells indicated that labetalol is not an ideal reference standard for BCS classification. PMID:23327720
2017-09-01
primary outcome), physiologic, and biomarker evidence of intestinal and kidney injury in this model with administration of escalating doses of bovine...these techniques is necessary for surgical repair, the associated ischemia-reperfusion injury to the intestines and kidneys can lead to substantial...prevention of intestinal and kidney injury after pediatric cardiopulmonary bypass with deep hypothermic circulatory arrest. In this model, we place 5-10kg
Choline deficiency impairs intestinal lipid metabolism in the lactating rat.
da Silva, Robin P; Kelly, Karen B; Lewis, Erin D; Leonard, Kelly-Ann; Goruk, Sue; Curtis, Jonathan M; Vine, Donna F; Proctor, Spencer D; Field, Catherine J; Jacobs, René L
2015-10-01
Choline is a precursor to phosphatidylcholine (PC), a structural molecule in cellular membranes that is crucial for cell growth and function. PC is also required for the secretion of lipoprotein particles from liver and intestine. Choline requirements are increased during lactation when maternal choline is supplied to the offspring through breast milk. To investigate the effect of dietary choline on intestinal lipid metabolism during lactation, choline-supplemented (CS), phosphatidylcholine-supplemented (PCS) or choline-deficient (CD) diets were fed to dams during the suckling period. CD dams had lower plasma triacylglycerol, cholesterol and apoB in the fasted state and following a fat-challenge (P < .05). There was a higher content of neutral lipids and lower content of PC in the intestine of CD dams, compared with CS and PCS fed animals (P < .05). In addition, there was lower (P < .05) villus height in CD dams, which indicated a reduced absorptive surface area in the intestine. Choline is critical for the absorption of fat in lactating rats and choline deficiency alters intestinal morphology and impairs chylomicron secretion by limiting the supply of PC. Copyright © 2015 Elsevier Inc. All rights reserved.
Small intestinal sulphoxidation of albendazole.
Villaverde, C; Alvarez, A I; Redondo, P; Voces, J; Del Estal, J L; Prieto, J G
1995-05-01
1. The in vitro sulphoxidation of Albendazole (ABZ) by rat intestinal microsomes has been examined. The results revealed intestinal sulphoxidation of ABZ by intestinal microsomes in a NADPH-dependent enzymatic system. The kinetic constants for sulphoxidase activity were Vmax = 46 pmol/min/mg protein and Michaelis constant Km = 6.8 microM. 2. The possible effect of inducers (Arochlor 1254 and ABZ pretreatment) and inhibitors (erythromycin, methimazole, carbon monoxide and fenbendazole), was also studied. In rat pretreated with Arochlor 1254, Vmax was 52 pmol/min/mg protein, whereas oral administration of ABZ increased the intestinal sulphoxidation of the drug, Vmax being 103 pmol/min/mg protein. 3. Erythromycin did not change the enzymatic bioconversion of ABZ, but methimazole and carbon monoxide inhibited the enzyme activity by approximately 60 and 30% respectively. Fenbendazole (a structural analogue of ABZ) was a competitive inhibitor of the sulphoxidation process, characterized by a Ki or 69 microM. 4. These data demonstrate that the intestinal enzymes contributing to the initial sulphoxidation of ABZ may be similar to the hepatic enzymes involved in the biotransformation process by the P450 and FMO systems, a conclusion that needs to be further established.
Kawase, Atsushi; Araki, Yasuha; Ueda, Yukiko; Nakazaki, Sayaka; Iwaki, Masahiro
2016-08-01
Niemann-Pick C1-like 1 (NPC1L1), ATP-binding cassette (ABC)G5, and ABCG8 are all involved in intestinal cholesterol absorption. It is unclear whether a high-cholesterol (HC) diet affects the expression of these transporters in rats and mice as well as humans. We examined the effects of an HC diet on their expression in small intestine and the differences between rats and mice in the responsive of this expression to an HC diet. In addition to these transporters, alterations in six representative drug and nutrient transporters (multidrug resistance-associated protein, breast cancer resistance protein, peptide transporter, sodium-glucose linked transporter, glucose transporter, and L-type amino acid transporter) and transcriptional factors such as hepatocyte nuclear factor (HNF)4α, sterol regulatory element-binding protein (SREBP)2, and liver X receptor (LXR)α were determined. In rats and mice fed an HC diet for 7 days, the mRNA and protein levels of NPC1L1 in the small intestine were determined by real-time reverse transcription polymerase chain reaction and western blotting, respectively. The mRNA levels of ABCG5 and ABCG8, six representative transporters, and transcriptional factors such as HNF4α, SREBP2, and LXR were examined. Significant decreases in the expression levels of NPC1L1 were observed in mice, but not rats, fed the HC diet. The mRNA levels of ABCG5 and ABCG8 were significantly increased in HC rats but not in mice. Only minor changes in the mRNA levels of the other transporters were seen in HC rats and mice. Decreased mRNA levels of HNF4α and SREBP2 in mice could be involved in the reduction in NPC1L1 expression observed upon the introduction of an HC diet. These results indicate that the effects of an HC diet on the expression levels of NPC1L1, ABCG5, and ABCG8 differ between mice and rats.
Gandini, Marco; Cerri, Simona; Pregel, Paola; Giusto, Gessica; Vercelli, Cristina; Iussich, Selina; Tursi, Massimiliano; Farca, Anna Maria
2016-05-01
To evaluate the effects of an intraperitoneal solution of methylene blue (MB), lidocaine and pentoxyphylline (PTX) on intestinal ischemic and reperfusion injury. Superior mesenteric artery was isolated and clamped in 36 adult male Sprague Dawley rats. After 60 minutes, clamp was removed and a group received intraperitoneally UNITO solution (PTX 25mg/kg + lidocaine 5mg/kg + MB 2mg/kg), while the other group was treated with warm 0.9% NaCl solution. Rats were euthanized 45 min after drug administration. Lung and bowel were collected for histological evaluation (using Park's score) and determination of myeloperoxidase (MPO) and malondialdehyde (MDA) levels. Control samples showed lymphoplasmocytic infiltrate and crypt necrosis of villi. MPO and MDA measurements shown no differences between treated and control groups. The combination of lidocaine, methylene blue and pentoxyphylline administered intraperitoneally at the studied dose, did not decreased histological lesion scores and biochemical markers levels in intestinal ischemia/reperfusion injury.
Olivera, Leticia; Canul, Rossana Rodriguez; Pereira-Pacheco, Fabiola; Cockburn, Joanna; Soldani, Florinda; McKenzie, Norma H; Duncan, Michelle; Olvera-Novoa, Miguel A; Grant, George
2003-01-01
The nutritional and physiological effects of raw cowpea (Vigna unguiculata (L) Walp.) seed meal, protein isolate (globulins), or starch on the metabolism of young growing rats have been evaluated in 14-day trials. Wet and dry weight gain, feed conversion efficiency, and lipid and protein accretion were significantly reduced as a result of inclusion of seed meal, globulins, or starch in the diet, with growth retardation being most marked with the seed meal. The proportional weights of the small intestine and pancreas were increased by meal diets, and serum cholesterol levels were slightly reduced. The globulins and raw starch also increased relative small intestine weights but had no effect on the pancreas or serum constituents. The effects of cowpeas on rats appeared to be due primarily to the combined actions of globulins, resistant starches, protease inhibitors, and possibly fiber and non-starch polysaccharides on intestinal and systemic metabolism.
Zhang, Q F; Xu, S J; Liang, L M; Feng, J K; Xu, Y F; Tu, L L
2017-03-20
Objective: To investigate influences of high-voltage electrical burns on microcirculation perfusion on serosal surface of small intestine of rats and the interventional effects of pentoxifylline (PTX). Methods: Totally 180 SD rats were divided into sham injury group, simple electrical burn group, and treatment group according to the random number table, with 60 rats in each group. The electrical current was applied to the outside proximal part of left forelimb of rats and exited from the outside proximal part of right hind limb of rats. Rats in simple electrical burn group and treatment group were inflicted with high-voltage electrical burn wounds of 1cm×1cm at current entrances and exits, with the voltage regulator and experimental transformer. Rats in sham injury group were sham injured through connecting the same equipments without electricity. At 2 min post injury, rats in sham injury group and simple electrical burn group were intraperitoneally injected with 2 mL normal saline, and rats in treatment group were injected with 2 mL PTX injection (50 mg/mL). At 15 min before injury and 5 min, 1 h, 2 h, 4 h, and 8 h post injury, 10 rats in each group were selected to collect blood of heart respectively. Serum were separated from the blood to determine the level of soluble vascular cell adhesion molecule-1(sVCAM-1) with enzyme-linked immunosorbent assay method. The number of adhesional leukocyte in mesenteric venule of rats was determined with Bradford variable projection microscope system. The microcirculation perfusion on serosal surface of small intestine of rats was detected with laser Doppler perfusion imager. Data were processed with analysis of variance of factorial design and LSD test. Results: (1) At 5 min, 1 h, 2 h, 4 h, 8 h post injury, the serum content of sVCAM-1 in rats of simple electrical burn group were (8 502±1 158), (11 793±3 310), (9 960±2 146), (9 708±1 429), (7 292±1 386) ng/mL respectively, higher than that in sham injury group and treatment group [ (1 897±946), (1 882±940), (1 882±938), (1 888±946), (1 884±942) ng/mL, and (6 840±1 558), (6 742±2 465), (5 625±2 593), (2 373±1 463), (5 187±2 797) ng/mL, respectively, with P values below 0.001]. The serum content of sVCAM-1 in rats of sham injury group and treatment group at all time points post injury, except 4 h post injury of treatment group, was higher than that of the same group at 15 min before injury (with P values below 0.001). (2) At all time points post injury, the number of adhesional leukocyte in mesenteric venule of rats in simple electrical burn group was higher than that in sham injury group and treatment group (with P values below 0.001). The number of adhesional leukocyte in mesenteric venule of rats in simple electrical burn group and treatment group at all time points post injury was higher than that of the same group at 15 min before injury (with P values below 0.001). (3) At all time points post injury, the microcirculation perfusion on serosal surface of small intestine of rats in simple electrical burn group was lower than that in sham injury group and treatment group (with P values below 0.001). The microcirculation perfusion on serosal surface of small intestine of rats in simple electrical burn group and treatment group at all time points post injury was lower than that of the same group at 15 min before injury (with P values below 0.001). Conclusions: High-voltage electrical burns can increase the serum content of sVCAM-1, the number of adhesional leukocyte in mesenteric venule, and reduce microcirculation perfusion on serosal surface of small intestine of rats. PTX can inhibit secretion of serum sVCAM-1, reduce the number of adhensional leukocyte in mesenteric venule to alleviate microcirculation disturbance caused by high-voltage electrical burns.
Oliveira-Menezes, A; Lanfredi-Rangel, A; Lanfredi, R M
2011-06-01
Physaloptera bispiculata (Nematoda: Spiruroidaea) is a parasite of Nectomys squamipes (Rodentia: Cricetidae), a water rat that only occurs in Brazil. Naturally infected rodents were captured in the municipality of Rio Bonito, Rio de Janeiro, Brazil. Adult P. bispiculata worms were collected, prepared and analysed by light and scanning electron microscopy. Under scanning electron microscopy, several eggs were seen glued by cement to the cloacal aperture. Light microscopy revealed that some male worms had an uncountable number of embryonated eggs in the ejaculatory duct, cloaca and also in the posterior portion of the intestine. The probable explanation is that the eggs developing in the female uterus are pumped by the female or sucked by the male to the cloacal opening and from this point to the intestine and ejaculatory duct. The male probably does not have the ability to expel the eggs and for this reason a large number were found in these organs. On the other hand, this could be an important adaptation for the parasite, i.e. male worms expelled by the host can carry a large number of eggs and spread them to intermediate hosts when ingested by these hosts. As far as we know this is the first record of a physalopterid nematode harbouring eggs in the cloacal region, ejaculatory duct or intestine.
Lee, Yonghyun; Kim, Jungyun; Kim, Wooseong; Nam, Joon; Jeong, Seongkeun; Lee, Sunyoung; Yoo, Jin-Wook; Kim, Min-Soo; Jung, Yunjin
2015-01-01
Celecoxib, a selective cyclooxygenase-2 inhibitor, is potentially useful for the treatment of colonic diseases such as colorectal cancer and colitis. However, the cardiovascular toxicity of celecoxib limits its routine use in the clinic. Generally, colon-specific delivery of a drug both increases the therapeutic availability in the large intestine and decreases the systemic absorption of the drug, most likely resulting in enhanced therapeutic effects against colonic diseases such as colitis and reduced systemic side effects. To develop a colon-specific prodrug of celecoxib that could reduce its cardiovascular toxicity and improve its therapeutic activity, dextran-glutamic acid-celecoxib conjugate (glutam-1-yl celecoxib-dextran ester [G1CD]) was prepared and evaluated. While stable in pH 1.2 and 6.8 buffer solutions and small-intestinal contents, G1CD efficiently released celecoxib in cecal contents. Oral administration of G1CD to rats delivered a larger amount of celecoxib to the large intestine than free celecoxib. G1CD prevented the systemic absorption of celecoxib and did not decrease the serum level of 6-ketoprostaglandin F1α, an inverse indicator of cardiovascular toxicity of celecoxib. Collectively, G1CD may be a polymeric colon-specific celecoxib prodrug with therapeutic and toxicological advantages.
Liu, Y T; Li, Y Q; Wang, Y Z
2016-12-20
Objective: To investigate the protective effect of Saccharomyces boulardii against intestinal mucosal barrier injury in rats with nonalcoholic fatty liver disease (NAFLD). Methods: A total of 36 healthy male Sprague-Dawley rats with a mean body weight of 180±20 g were randomly divided into control group, model group, and treatment group, with 12 rats in each group, after adaptive feeding for 1 week. The rats in the control group were given basic feed, and those in the model group and treatment group were given high-fat feed. After 12 weeks of feeding, the treatment group was given Saccharomyces boulardii (75×10 8 CFU/kg/d) by gavage, and those in the control group and model group were given isotonic saline by gavage. At the 20th week, blood samples were taken from the abdominal aorta to measure the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), intestinal fatty acid binding protein (IFABP), tumor necrosis factor-α (TNF-α), and endotoxins. The liver pathological changes, intestinal histopathological changes, and expression of occludin in the intestinal mucosa were observed. Fecal samples were collected to measure the changes in Escherichia coli and Bacteroides. A one-way analysis of variance and the SNK test were used for comparison between multiple groups, and the rank sum test was used as the non-parametric test. Results: Compared with the control group, the model group had significantly higher body weight, liver mass, and liver index ( P < 0.05), and compared with the model group, the treatment group had significant reductions in body weight, liver mass, and liver index ( P < 0.05). The model group had significant increases in TG, ALT, and AST compared with the control group ( P < 0.05), the treatment group had a significant reduction in AST compared with the model group ( P < 0.05), and the treatment group had slight reductions in TG and ALT compared with the model group ( P > 0.05). Compared with the control group, the model group had significant increases in the levels of endotoxin, TNF-α, and IFABP ( P < 0.05), and the treatment group had significant reductions in the levels of endotoxin, TNF-α, and IFABP ( P < 0.05). Liver tissue staining showed that the model group had significantly increased hepatocyte steatosis compared with the control group ( P < 0.05), and that the treatment group had significantly reduced hepatocyte steatosis compared with the model group ( P < 0.05). The intestinal villi in the control group had ordered arrangement and a complete structure; in the model group, the intestinal villi were shortened with local shedding and a lack of ordered arrangement; compared with the model group, the treatment group had mild edema and ordered arrangements of the intestinal villi. The model group had a significantly reduced level of occludin protein compared with the control group ( P < 0.05), and the treatment group had a slight increase compared with the model group. The model group had a significantly increased number of Escherichia coli and a significantly reduced number of Bacteroides compared with the control group ( P < 0.05), and the treatment group had a significantly reduced number of Escherichia coli and a significantly increased number of Bacteroides compared with the model group ( P < 0.05). Conclusion: High-fat diet can successfully induce NAFLD in rats, and intervention with Saccharomyces boulardii can reduce body weight and improve hepatocyte steatosis. Saccharomyces boulardii can reduce endotoxemia in NAFLD rats and thus alleviate inflammatory response. Saccharomyces boulardii can also adjust the proportion of Escherichia coli and Bacteroides in the intestine of NAFLD rats.
Tian, Jiaxing; Li, Min; Zhao, Jingbo; Li, Junling; Liu, Guifang; Zhen, Zhong; Cao, Yang; Gregersen, Hans; Tong, Xiaolin
2017-01-01
Previous studies have demonstrated that TWA, a Chinese herbal medicine, could significantly improve the symptoms of patients with diabetic gastrointestinal dysfunction. However, the specific mechanism of regulating intestinal peristalsis has not been found. This study aimed to discover TWA’s therapeutic mechanism for regulating intestinal motility. The intestinal propulsion rate of diabetic rats was significantly increased after treatment with TWA for 8 weeks. Aiming at the mechanical structure, biomechanical testing indicated that TWA can significantly decrease the no-load intestinal wall thickness, cross-sectional area, and angular spread in a zero-stress state. Notably, intestinal stress-strain curve shifted to the right, which indicated TWA can inhibit intestinal hyperplasia and hardening and improve biomechanical remodeling. Further study of the mechanism revealed that TWA significantly inhibited the expression of AGE in the villi, crypt, and muscle and RAGE in crypt and upregulated the expression of nerve regulator (PSD95, C-kit and SCF). Radioimmunoassay showed TWA treatment decreased levels of serum somatostatin and vasoactive intestinal peptide. Moreover, associations were found between the intestinal propulsion rate with the morphologic and biomechanical remodeling parameters, changes of nerve factors, and endocrine hormones. Morphologic and biomechanical remodeling of the intestinal wall are the pathologic basis of gastrointestinal dysfunction. TWA can benefit intestinal motility by improving biomechanical and morphologic remodeling and by regulating expression of neuroendocrine factors. The results showed that the effect of TWA was dose-dependent, the higher the dose, the greater is the improvement. Thus, traditional Chinese medicine might be a valuable tool for treating diabetic gastrointestinal dysfunction. PMID:28559973
Chiba, T; Ohi, R
1998-01-01
Short-gut syndrome is likely to impair enteric fat utilization. This study was undertaken to develop a clinical test of lipid absorption without fecal collection. The absorption of enterally fed radioactive long-chain fatty acid, beta-methyl-p-(123I)-iodophenylpentadecanoic acid was investigated with continuous chyle collection in rats. The changes in excretion and time-dependent biodistribution of radioactivity of the enterally fed agent were assessed in normal control animals. Similarly, sequential urinary excretion and biodistribution were studied along with scintigraphy using sham-operated and short-gut animals. Approximately 64% of the enterally fed radioactivity was recovered in the collected chyle (24 hours). A comparison of normal control, sham-operated, and short-gut animals showed significantly less urinary and greater fecal excretions of radioactivity in short-gut animals. With the use of sequential scintigraphy, the small intestine, whole-body soft tissues, and urinary bladder were well visualized in sham-operated animals, whereas the large intestine and feces were demonstrated earlier in short-gut animals. Our results suggest that enteral feeding of the agent might be feasible for determining lipid absorption from the the dynamic changes of radioactivity in visualized abdominal organs and in urine.
David, Dahlgren; Carl, Roos; Pernilla, Johansson; Christer, Tannergren; Anders, Lundqvist; Peter, Langguth; Markus, Sjöblom; Erik, Sjögren; Hans, Lennernäs
2018-05-11
Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients (CPEs), or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs/CPEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME/CPE effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME/CPE evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations. Copyright © 2018. Published by Elsevier B.V.
Kasparek, M S; Fatima, J; Iqbal, C W; Duenes, J A; Sarr, M G
2008-03-01
Intestinal denervation contributes to enteric motor dysfunction after intestinal transplantation [small bowel transplantation (SBT)]. Our aim was to determine long-term effects of extrinsic denervation on functional non-adrenergic, non-cholinergic innervation with vasoactive intestinal polypeptide (VIP) and substance P. Contractile activity of jejunal longitudinal muscle from six age-matched, naïve control rats (NC) and eight rats 1 year after syngeneic SBT were studied in tissue chambers. Spontaneous contractile activity did not differ between groups. Exogenous VIP inhibited contractile activity dose-dependently in both groups, greater in NC than in SBT. The VIP antagonist ([D-p-Cl-Phe(6),Leu(17)]-VIP) and the nitric oxide synthase inhibitor l-N(G)-nitro arginine prevented inhibition by exogenous VIP and electrical field stimulation (EFS) in both groups. Exogenous substance P increased contractile activity dose-dependently, greater in NC than in SBT. The substance P antagonist ([D-Pro(2),D-Trp(7,9)]-substance P) inhibited effects of exogenous substance P and increased the EFS-induced inhibitory response. Immunohistofluorescence showed staining for tyrosine hydroxylase in the jejunoileum 1 year after SBT suggesting sympathetic reinnervation. In rat jejunal longitudinal muscle after chronic denervation, response to exogenous VIP and substance P is decreased, while endogenous release of both neurotransmitters is preserved. These alterations in excitatory and inhibitory pathways occur despite extrinsic reinnervation and might contribute to enteric motor dysfunction after SBT.
KASPAREK, M. S.; FATIMA, J.; IQBAL, C. W.; DUENES, J. A.; SARR, M. G.
2008-01-01
Intestinal denervation contributes to enteric motor dysfunction after intestinal transplantation [small bowel transplantation (SBT)]. Our aim was to determine long-term effects of extrinsic denervation on functional non-adrenergic, non-cholinergic innervation with vasoactive intestinal polypeptide (VIP) and substance P. Contractile activity of jejunal longitudinal muscle from six age-matched, naïve control rats (NC) and eight rats 1 year after syngeneic SBT were studied in tissue chambers. Spontaneous contractile activity did not differ between groups. Exogenous VIP inhibited contractile activity dose-dependently in both groups, greater in NC than in SBT. The VIP antagonist ([D-p-Cl-Phe6,Leu17]-VIP) and the nitric oxide synthase inhibitor L-NG-nitro arginine prevented inhibition by exogenous VIP and electrical field stimulation (EFS) in both groups. Exogenous substance P increased contractile activity dose-dependently, greater in NC than in SBT. The substance P antagonist ([D-Pro2,D-Trp7,9]-substance P) inhibited effects of exogenous substance P and increased the EFS-induced inhibitory response. Immunohistofluorescence showed staining for tyrosine hydroxylase in the jejunoileum 1 year after SBT suggesting sympathetic reinnervation. In rat jejunal longitudinal muscle after chronic denervation, response to exogenous VIP and substance P is decreased, while endogenous release of both neurotransmitters is preserved. These alterations in excitatory and inhibitory pathways occur despite extrinsic reinnervation and might contribute to enteric motor dysfunction after SBT. PMID:17971029
Bolus oral or continuous intestinal amino acids reduce hypothermia during anesthesia in rats.
Imoto, Akinobu; Yokoyama, Takeshi; Suwa, Kunio; Yamasaki, Fumiyasu; Yatabe, Tomoaki; Yokoyama, Reiko; Yamashita, Koichi; Selldén, Eva
2010-01-01
We hypothesized that, with oral or intestinal administration of amino acids (AA), we may reduce hypothermia during general anesthesia as effectively as with intravenous AA. We, therefore, examined the effect of bolus oral and continuous intestinal AA in preventing hypothermia in rats. Male Wistar rats were anesthetized with sevoflurane for induction and with propofol for maintenance. In the first experiment, 30 min before anesthesia, rats received one bolus 42 mL/kg of AA solution (100 g/L) or saline orally. Then for the next 3 h during anesthesia, they received 14 mL/kg/h of AA and/or saline intravenously. They were in 4 groups: I-A/A, both AA; I-A/S, oral AA and intravenous saline; I-S/A, oral saline and intravenous AA; I-S/S, both saline. In the second experiment, rats received 14 mL/kg/h duodenal AA and/or saline for 2 h. They were in 3 groups: II-A/S, duodenal AA and intravenous saline; II-S/A, duodenal saline and intravenous AA; II-S/S, both saline. Core body temperature was measured rectally. After the second experiment, serum electrolytes were examined. In both experiments, rectal temperature decreased in all groups during anesthesia. However, the decrease in rectal temperature was significantly less in groups receiving AA than in groups receiving only saline. In the second experiment, although there was no significant difference in the decrease in body temperature between II-A/S and II-S/A, Na(+) concentration was significantly lower in II-S/A. In conclusion, AA, administered orally or intestinally, tended to keep the body temperature stable during anesthesia without disturbing electrolyte balance. These results suggest that oral or enteral AA may be useful for prevention of hypothermia in patients.
Athukuri, Bhargavi Latha; Neerati, Prasad
2016-12-01
Cytochrome P450-2D6 (CYP2D6), a member of the CYP450 mixed function oxidase system, is an important CYP isoform with regard to herbal-drug interactions and is responsible for the metabolism of nearly 25% of drugs. Until now, studies on the effects of various phytochemicals on CYP2D6 activity in vivo have been very rare. Gallic acid and ellagic acid are natural polyphenols which are widely distributed in fruits and medicinal plants. In the present study, the effects of gallic acid and ellagic acid pretreatment on intestinal transport and oral bioavailability of metoprolol were investigated. The intestinal transport of metoprolol was assessed by conducting an in situ single pass intestinal perfusion (SPIP) study. The bioavailability study was conducted to evaluate the pharmacokinetic parameters of orally administered metoprolol in rats. After pretreatment with gallic acid and ellagic acid, no significant change in effective permeability of metoprolol was observed at the ileum part of rat intestine. A significant improvement in the peak plasma concentration (Cmax) and area under the serum concentration-time profile (AUC) and decrease in clearance were observed in rats pretreated with gallic acid and ellagic acid. Gallic acid and ellagic acid significantly enhanced the oral bioavailability of metoprolol by inhibiting CYP2D6-mediated metabolism in the rat liver. Hence, adverse herbal-drug interactions may result with concomitant ingestion of gallic acid and ellagic acid supplements and drugs that are CYP2D6 substrates. The clinical assessment of these interactions should be further investigated in human volunteers.
van Heek, Margaret; Farley, Constance; Compton, Douglas S; Hoos, Lizbeth; Davis, Harry R
2001-01-01
Ezetimibe potently inhibits the transport of cholesterol across the intestinal wall, thereby reducing plasma cholesterol in preclinical animal models of hypercholesterolemia. The effect of ezetimibe on known absorptive processes was determined in the present studies.Experiments were conducted in the hamster and/or rat to determine whether ezetimibe would affect the absorption of molecules other than free cholesterol, namely cholesteryl ester, triglyceride, ethinylestradiol, progesterone, vitamins A and D, and taurocholic acid. In addition, to determine whether exocrine pancreatic function is involved in the mechanism of action of ezetimibe, a biliary anastomosis model, which eliminates exocrine pancreatic function from the intestine while maintaining bile flow, was established in the rat.Ezetimibe reduced plasma cholesterol and hepatic cholesterol accumulation in cholesterol-fed hamsters with an ED50 of 0.04 mg kg−1. Utilizing cholesteryl esters labelled on either the cholesterol or the fatty acid moiety, we demonstrated that ezetimibe did not affect cholesteryl ester hydrolysis and the absorption of fatty acid thus generated in both hamsters and rats. The free cholesterol from this hydrolysis, however, was not absorbed (92 – 96% inhibition) in the presence of ezetimibe. Eliminating pancreatic function in rats abolished hydrolysis of cholesteryl esters, but did not affect the ability of ezetimibe to block absorption of free cholesterol (−94%). Ezetimibe did not affect the absorption of triglyceride, ethinylestradiol, progesterone, vitamins A and D, and taurocholic acid in rats.Ezetimibe is a potent inhibitor of intestinal free cholesterol absorption that does not require exocrine pancreatic function for activity. Ezetimibe does not affect the absorption of triglyceride as a pancreatic lipase inhibitor (Orlistat) would, nor does it affect the absorption of vitamin A, D or taurocholate, as a bile acid sequestrant (cholestyramine) would. PMID:11564660
Fetih, Gihan; Lindberg, Sara; Itoh, Katsuhito; Okada, Naoki; Fujita, Takuya; Habib, Fawsia; Artersson, Per; Attia, Mohammed; Yamamoto, Akira
2005-04-11
In general, absorption enhancing effects of various absorption enhancers were greater in the large intestine than those in the small intestinal regions. Therefore, the effectiveness of absorption enhancers is expected to be remarkably observed, if these enhancers can be delivered to the large intestine with some poorly absorbable drugs after oral administration. In this study, therefore, we examined whether chitosan capsules were effective for the colon-specific delivery of a certain absorption enhancer and can improve the absorption enhancing action of the absorption enhancer after oral administration. 5(6)-Carboxyfluorescein (CF) was used as a model drug to investigate the site-dependent effectiveness of various absorption enhancers by an in situ closed loop method. Sodium glycocholate (NaGC), n-dodecyl-beta-d-maltopyranoside (LM), sodium salicylate (NaSal) and sodium caprate (NaCap) were used as models of absorption enhancers in this study. Overall, the absorption enhancing effects of these enhancers for intestinal absorption of CF were greater in the colon than those in the jejunum and the ileum. Especially, among these enhancers tested in this study, LM showed much greater absorption enhancing effect in the colon than in the jejunum and the ileum. Therefore, LM was selected as a model absorption enhancer to examine the effect of chitosan capsules on the absorption enhancing effect of LM. When CF and LM were orally administered to rats using chitosan capsules, the plasma concentration of CF was much higher than those in other dosage forms including solution and gelatin capsules. Therefore, chitosan capsules may be useful carriers for colon-specific delivery of LM, thereby increasing its absorption enhancing effect from the intestinal membranes.
Stable gastric pentadecapeptide BPC 157 heals rat colovesical fistula.
Grgic, Tihomir; Grgic, Dora; Drmic, Domagoj; Sever, Anita Zenko; Petrovic, Igor; Sucic, Mario; Kokot, Antonio; Klicek, Robert; Sever, Marko; Seiwerth, Sven; Sikiric, Predrag
2016-06-05
To establish the effects of BPC 157 on the healing of rat colovesical fistulas, Wistar Albino male rats were randomly assigned to different groups. BPC 157, a stable gastric pentadecapeptide, has been used in clinical applications-specifically, in ulcerative colitis-and was successful in treating both external and internal fistulas. BPC 157 was provided daily, perorally, in drinking water (10µg/kg, 12ml/rat/day) until sacrifice or, alternatively, 10µg/kg or 10ng/kg intraperitoneally, with the first application at 30min after surgery and the last at 24h before sacrifice. Controls simultaneously received an equivolume of saline (5.0ml/kg ip) or water only (12ml/rat/day). Assessment (i.e., colon and vesical defects, fistula leaking, fecaluria and defecation through the fistula, adhesions and intestinal obstruction as healing processes) took place on days 7, 14 and 28. Control colovesical fistulas regularly exhibited poor healing, with both of the defects persisting; continuous fistula leakage; fecaluria and defecation through the fistula; advanced adhesion formation; and intestinal obstruction. By contrast, BPC 157 given perorally or intraperitoneally and in µg- and ng-regimens rapidly improved the whole presentation, with both colon and vesical defects simultaneously ameliorated and eventually healed. The maximal instilled volume was continuously raised until it reached the values of healthy rats, there were no signs of fecaluria and no defecation through the fistula, there was counteraction of advanced adhesion formation or there was an intestinal obstruction. In conclusion, BPC 157 effects appear to be suited to inducing full healing of colocutaneous fistulas in rats. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Xiong; Ogawa, Hiroshi; Kishida, Taro; Ebihara, Kiyoshi
2009-02-01
The effect of amylose content on digestibility of starch in the small intestine and on the concentration of plasma lipid were studied in ileorectostomized rats and in ovariectomized rats, respectively. Seven kinds of starch with different amylose content (0, 27, 54, 62, 76, 79, 86 %) were used as test starch, which contained 0.4, 5.6, 37.1, 40.2, 45.6, 36.9 and 36.1 % resistant starch (RS), respectively. Rats were fed one of test diets containing 30 % test starch with different amylose content for 14 d in ileorectostomized and for 21 d in ovariectomized rats. Food intake was not significantly different among the groups. In ileorectostomized rats, the small intestinal starch digestibility decreased with increasing intakes of amylose and RS. In ovariectomized rats, body weight gain was lower on the higher amylose maize starch diets. The concentrations of plasma TAG and cholesterol decreased with increasing intake of RS. The concentrations of liver total lipids and TAG decreased with increasing intake of RS, but that of liver cholesterol did not. There was significant positive correlation between the level of sterol regulatory element-binding protein-1c mRNA and concentration of liver TAG. Total SCFA amount in the caecum increased logarithmically with increasing dry weight of caecal contents. The amount of bile acids in the small intestinal content and the excretions of bile acids and neutral steroids in faeces increased with increasing RS intake. These results show that starch rich in RS is more effective in preventing ovarian hormone deficiency-induced hyperlipidaemia.
Boyle, Michael C; Crabbs, Torrie A; Wyde, Michael E; Painter, J Todd; Hill, Georgette D; Malarkey, David E; Lieuallen, Warren G; Nyska, Abraham
2012-06-01
To investigate the toxicity and carcinogenic potential of indole-3-carbinol (I3C), the National Toxicology Program has conducted 13-week subchronic studies in Fisher 344 rats and B6C3F1 mice, and chronic 2-year bioassays in Sprague-Dawley rats and B6C3F1 mice. While the chronic study results are not yet available, subchronic study results and short-term special evaluations of interim sacrifices in the 2-year rat bioassay are presented. F344 rats were orally gavaged ≤300 mg I3C/kg body weight 5 days a week for 13 weeks. Rats treated with ≥150 mg/kg demonstrated a dose-related dilation of lymphatics (lymphangiectasis) of the duodenum, jejunum, and mesenteric lymph nodes. Material within dilated lacteals stained positively for Oil Red O and Sudan Black, consistent with lipid. Electron microscopic evaluation confirmed extracellular lipid accumulation within the villar lamina propria, lacteals, and within villar macrophages. Analyses of hepatic and pulmonary CYP1A enzymes demonstrated dose-dependent I3C induction of CYP1A1 and 1A2. B6C3F1 mice orally gavaged ≤250 mg I3C/kg body weight did not demonstrate histopathological changes; however, hepatic CYP induction was similar to that in rats. The histopathologic changes of intestinal lymphangiectasis and lipidosis in this study share similarities with intestinal lymphangiectasia as observed in humans and dogs. However, the resultant clinical spectrum of protein-losing enteropathy was not present.
Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans
2017-01-01
Background Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05). The stress relaxed less in the diabetic intestinal segment (P<0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. PMID:29238211
Presence of leptin receptors in rat small intestine and leptin effect on sugar absorption.
Lostao, M P; Urdaneta, E; Martínez-Ansó, E; Barber, A; Martínez, J A
1998-02-27
Leptin is involved in food intake and thermogenesis regulation. Since leptin receptor expression has been found in several tissues including small intestine, a possible role of leptin in sugar absorption by the intestine was investigated. Leptin inhibited D-galactose uptake by rat small intestinal rings 33% after 5 min of incubation. The inhibition increased to 56% after 30 min. However, neither at 5 min nor at 30 min did leptin prevent intracellular galactose accumulation. This leptin effect was accompanied by a decrease of the active sugar transport apparent Vmax (20 vs. 4.8 micromol/g wet weight 5 min) and apparent Km (15.8 vs. 5.3 mM) without any change in the phlorizin-resistant component. On the other hand, immunohistochemical experiments using anti-leptin monoclonal antibodies recognized leptin receptors in the plasma membrane of immune cells located in the lamina propria. These results indicate for the first time that leptin has a rapid inhibitory effect on sugar absorption and demonstrate the presence of leptin receptors in the intestinal mucosa.
Wnt/β-catenin signaling cascade down-regulation following massive small bowel resection in a rat.
Sukhotnik, Igor; Roitburt, Alex; Pollak, Yulia; Dorfman, Tatiana; Matter, Ibrahim; Mogilner, Jorge G; Bejar, Jacob; Coran, Arnold G
2014-02-01
Growing evidence suggests that the Wnt/β-catenin signaling cascade is implicated in the control of stem cell activity, cell proliferation, lineage commitment, and cell survival during normal development and tissue regeneration of the gastrointestinal epithelium. The roles of this signaling cascade in stimulation of cell proliferation after massive small bowel resection are unknown. The purpose of this study was to evaluate the role of Wnt/β-catenin signaling during late stages of intestinal adaptation in a rat model of short bowel syndrome (SBS). Male rats were divided into two groups: sham rats underwent bowel transection and SBS rats underwent a 75 % bowel resection. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined 2 weeks after operation. Illumina's digital gene expression analysis was used to determine Wnt/β-catenin signaling gene expression profiling. Twelve Wnt/β-catenin-related genes and β-catenin protein expression were determined using real-time PCR, western blotting and immunohistochemistry. From the total number of 20,000 probes, 20 genes related to Wnt/β-catenin signaling were investigated. From these genes, seven genes were found to be up-regulated and eight genes to be down-regulated in SBS vs. sham animals with a relative change in gene expression level of 20 % or more. From 12 genes determined by real-time PCR, nine genes were down-regulated in SBS rats compared to control animals including target gene c-Myc. SBS rats also showed a significant decrease in β-catenin protein compared to control animals. Two weeks following massive bowel resection in rats, Wnt/β-catenin signaling pathway is inhibited. In addition, it appears that cell differentiation rather than proliferation is most important in the late stages of intestinal adaptation.
NASA Astrophysics Data System (ADS)
Yang, Patricia; Lamarca, Morgan; Kravets, Victoria; Hu, David
According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequency of intestinal contractions in rats, as a function of distance down the intestine. We find that intestines Contract radially ten times faster than longitudinally. This motion promotes mixing and, in turn, absorption of food products by the intestinal wall. We calculate viscous dissipation in the intestinal fluid to rationalize the relationship between frequency of intestinal contraction and the viscosity of the intestinal contents. Our findings may help to understand the evolution of the intestine as an ideal mixer.
NASA Astrophysics Data System (ADS)
Yang, Patricia; Lamarca, Morgan; Hu, David
2015-11-01
According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequency of intestinal contractions in rats, as a function of distance down the intestine. We find that intestines contract radially ten times faster than longitudinally. This motion promotes mixing and, in turn, absorption of food products by the intestinal wall. We calculate viscous dissipation in the intestinal fluid to rationalize the relationship between frequency of intestinal contraction and the viscosity of the intestinal contents. Our findings may help to understand the evolution of the intestine as an ideal mixer.
Olier, Maïwenn; Sekkal, Soraya; Harkat, Cherryl; Eutamene, Hélène; Theodorou, Vassilia
2017-05-01
Reticulated gelatin (RG), hibiscus and propolis (RGHP) is a medical device that can reduce the bacterial adherence to epithelial cultured cells and invasion by enteropathogens, thus gathering relevant properties to decrease the risk of urinary tract infections (UTIs). We aimed at evaluating in Wistar rats the efficacy of RGHP, RG and vehicle against intestinal commensals commonly involved in UTIs. Animals received orally (with supplemental Na 2 CO 3 ): RGHP 1540 mg/day/rat; RG 500 mg/day/rat or vehicle. RGHP significantly reduced fecal Escherichia coli and Enterococcus spp. levels without affecting other targeted Enterobacteriaceae. The antagonistic property of RGHP was confirmed in streptomycin-pretreated rats highly colonized with a human commensal E. coli strain with uropathogenic potential. RGHP may decrease the risk of UTIs by reducing colonization by opportunistic uropathogens.
Involvement of brain-gut axis in treatment of cerebral infarction by β-asaron and paeonol.
He, Xiaogang; Cai, Qiufang; Li, Jianxiang; Guo, Weifeng
2018-02-14
Cerebral infarction (CI) causes severe brain damage with high incidence. This study aimed to investigate the involvement of brain-gut axis in the treatment of CI by combined administration of β-asaron and paeonol. Rat middle cerebral artery occlusion (MCAO) model was established, the interleukin-1beta (IL-1β) and tumor necrosis factor α (TNF-α) in the rat peripheral blood were determined by ELISA assay, and brain tissue damage was evaluated by TUNNEL assay. The correlation of cholecystokinin (CCK) and nuclear factor-kappaB (NF-κB) signaling components between intestinal mucosa and prefrontal cortex of MCAO rats treated with β-asaron and paeonol were analyzed by quantitative RT-PCR and western blotting. In vitro transwell co-culture was performed to confirm the correlated expression. The expression of CCK and NF-κB signaling components were closely correlated between the intestinal mucosa and prefrontal cortex of MCAO rats treated with β-asaron and paeonol. The combined administration also regulates the IL-1β and TNF-α in the MCAO rat peripheral blood and ameliorate the brain damage in MCAO rats. Elevated expression of related genes was observed in the cortical neurons co-cultured with intestinal mucosal epithelial cells treated by β-asaron and paeonol. The brain-gut axis mediates the therapeutic effect of β-asaron and paeonol for cerebral infarction through CCK and NF-κB signaling. Copyright © 2017 Elsevier B.V. All rights reserved.