Hilakivi-Clarke, L.
1997-01-01
The present study investigated whether handling of pregnant rats would affect mammary tumorigenesis in their female offspring. Pregnant Sprague-Dawley rats were injected daily with 0.05 ml of vehicle between days 14 and 20 of gestation or were left undisturbed. Handling did not have any effects on pregnancy or early development of the offspring. The female offspring were administered 10 mg of 7,12-dimethylbenz(a)anthracene (DMBA) at the age of 55 days. The rats whose mothers were handled during pregnancy had a significantly reduced mammary tumour incidence when compared with the offspring of non-handled mothers. Thus, on week 18 after DMBA exposure, 15% of the handled offspring had developed mammary tumours, whereas 44% of the non-handled offspring had tumours. No significant differences in the latency to tumour appearance, in the size of the tumours or in their growth rates were noted. Daily handling performed during post-natal days 5 and 20 produced similar data to that obtained for prenatal handling; on week 18 after DMBA exposure, the mammary tumour incidence among the post-natally handled rats was 22% and among the non-handled rats 44%. Possible deviations in hormonal parameters were also studied in adult female rats exposed in utero to handling. The onset of puberty tended to occur later among the handled offspring, but no differences in the uterine wet weights or serum oestradiol levels between the groups were noted. In conclusion, maternal handling reduced the offspring's risk to develop mammary tumours, and this effect was independent of the oestrogenic environment at adulthood. We propose that handling of a pregnant rat reduces mammary tumorigenesis in her offspring by means of changing the morphology of the mammary gland, the pattern of expression of specific genes and/or immune functions. PMID:9231913
Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats.
Sen, Sarbattama; Simmons, Rebecca A
2010-12-01
Obesity in pregnancy significantly increases the risk of the offspring developing obesity after birth. The aims of this study were to test the hypothesis that maternal obesity increases oxidative stress during fetal development, and to determine whether administration of an antioxidant supplement to pregnant Western diet-fed rats would prevent the development of adiposity in the offspring. Female Sprague Dawley rats were started on the designated diet at 4 weeks of age. Four groups of animals were studied: control chow (control); control + antioxidants (control+Aox); Western diet (Western); and Western diet + antioxidants (Western+Aox). The rats were mated at 12 to 14 weeks of age, and all pups were weaned onto control diet. Offspring from dams fed the Western diet had significantly increased adiposity as early as 2 weeks of age as well as impaired glucose tolerance compared with offspring of dams fed a control diet. Inflammation and oxidative stress were increased in preimplantation embryos, fetuses, and newborns of Western diet-fed rats. Gene expression of proadipogenic and lipogenic genes was altered in fat tissue of rats at 2 weeks and 2 months of age. The addition of an antioxidant supplement decreased adiposity and normalized glucose tolerance. CONCLUSIONS; Inflammation and oxidative stress appear to play a key role in the development of increased adiposity in the offspring of Western diet-fed pregnant dams. Restoration of the antioxidant balance during pregnancy in the Western diet-fed dam is associated with decreased adiposity in offspring.
Pereira, Troy J; Fonseca, Mario A; Campbell, Kristyn E; Moyce, Brittany L; Cole, Laura K; Hatch, Grant M; Doucette, Christine A; Klein, Julianne; Aliani, Michel; Dolinsky, Vernon W
2015-01-01
Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring. Key points Gestational diabetes mellitus is a common complication of pregnancy, but its effects on the offspring are poorly understood. We developed a rat model of diet-induced gestational diabetes mellitus that recapitulates many of the clinical features of the disease, including excessive gestational weight gain, glucose intolerance, hyperinsulinaemia and mild hyperglycaemia. Compared to the offspring of lean dams, exposure to gestational diabetes mellitus during the prenatal period resulted in obesity, hepatic steatosis and insulin resistance in young rat offspring that consumed a postnatal diet that was low in fat. The combination of maternal gestational diabetes mellitus and the postnatal consumption of a high-fat diet by the offspring caused a more severe metabolic phenotype. Metabolomic profiling of the liver tissues of the offspring of gestational diabetic dams revealed accumulation of lipotoxic lipids and reduced phosphatidylethanolamine levels compared to the offspring of lean dams. The results establish that gestational diabetes mellitus is a driver of hepatic steatosis and insulin resistance in the offspring. PMID:25922055
Mychasiuk, R; Harker, A; Ilnytskyy, S; Gibb, R
2013-06-25
Although there has been an abundance of research focused on offspring outcomes associated with maternal experiences, there has been limited examination of the relationship between paternal experiences and offspring brain development. As spermatogenesis is a continuous process, experiences that have the ability to alter epigenetic regulation in fathers may actually change developmental trajectories of offspring. The purpose of this study was to examine the effects of paternal stress prior to conception on behaviour and the epigenome of both male and female developing rat offspring. Male Long-Evans rats were stressed for 27 consecutive days and then mated with control female rats. Early behaviour was tested in offspring using the negative geotaxis task and the open field. At P21 offspring were sacrificed and global DNA methylation levels in the hippocampus and frontal cortex were analysed. Paternal stress prior to conception altered behaviour of all offspring on the negative geotaxis task, delaying acquisition of the task. In addition, male offspring demonstrated a reduction in stress reactivity in the open field paradigm spending more time than expected in the centre of the open field. Paternal stress also altered DNA methylation patterns in offspring at P21, global methylation was reduced in the frontal cortex of female offspring, but increased in the hippocampus of both male and female offspring. The results from this study clearly demonstrate that paternal stress during spermatogenesis can influence offspring behaviour and DNA methylation patterns, and these affects occur in a sex-dependent manner. Development takes place in the centre of a complex interaction between maternal, paternal, and environmental influences, which combine to produce the various phenotypes and individual differences that we perceive. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
This study examined whether or not exposure to 4-nonylphenol (NP) during late gestation affects reproductive and mammary development in the offspring of female rats. Time pregnant Long Evans rats were gavaged with NP (10 or 100 mg/kg), atrazine (ATR, 100 mg/kg), or corn oil on ge...
Li, Wen; Li, Zhenshu; Li, Shou; Wang, Xinyan; Wilson, John X.; Huang, Guowei
2018-01-01
Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function. PMID:29494536
Fontelles, Camile Castilho; Guido, Luiza Nicolosi; Rosim, Mariana Papaléo; Andrade, Fábia de Oliveira; Jin, Lu; Inchauspe, Jessica; Pires, Vanessa Cardoso; de Castro, Inar Alves; Hilakivi-Clarke, Leena; de Assis, Sonia; Ong, Thomas Prates
2016-07-26
Although males contribute half of the embryo's genome, only recently has interest begun to be directed toward the potential impact of paternal experiences on the health of offspring. While there is evidence that paternal malnutrition may increase offspring susceptibility to metabolic diseases, the influence of paternal factors on a daughter's breast cancer risk has been examined in few studies. Male Sprague-Dawley rats were fed, before and during puberty, either a lard-based (high in saturated fats) or a corn oil-based (high in n-6 polyunsaturated fats) high-fat diet (60 % of fat-derived energy). Control animals were fed an AIN-93G control diet (16 % of fat-derived energy). Their 50-day-old female offspring fed only a commercial diet were subjected to the classical model of mammary carcinogenesis based on 7,12-dimethylbenz[a]anthracene initiation, and mammary tumor development was evaluated. Sperm cells and mammary gland tissue were subjected to cellular and molecular analysis. Compared with female offspring of control diet-fed male rats, offspring of lard-fed male rats did not differ in tumor latency, growth, or multiplicity. However, female offspring of lard-fed male rats had increased elongation of the mammary epithelial tree, number of terminal end buds, and tumor incidence compared with both female offspring of control diet-fed and corn oil-fed male rats. Compared with female offspring of control diet-fed male rats, female offspring of corn oil-fed male rats showed decreased tumor growth but no difference regarding tumor incidence, latency, or multiplicity. Additionally, female offspring of corn oil-fed male rats had longer tumor latency as well as decreased tumor growth and multiplicity compared with female offspring of lard-fed male rats. Paternal consumption of animal- or plant-based high-fat diets elicited opposing effects, with lard rich in saturated fatty acids increasing breast cancer risk in offspring and corn oil rich in n-6 polyunsaturated fatty acids decreasing it. These effects could be linked to alterations in microRNA expression in fathers' sperm and their daughters' mammary glands, and to modifications in breast cancer-related protein expression in this tissue. Our findings highlight the importance of paternal nutrition in affecting future generations' risk of developing breast cancer.
Ambrosetti, Valery; Guerra, Marcelo; Ramírez, Luisa A; Reyes, Aldo; Álvarez, Daniela; Olguín, Sofía; González-Mañan, Daniel; Fernandois, Daniela; Sotomayor-Zárate, Ramón; Cruz, Gonzalo
2016-07-01
Maternal obesity during pregnancy has been related with several pathological states in offspring. However, the impact of maternal obesity on reproductive system on the progeny is beginning to be elucidated. In this work, we characterize the effect of maternal obesity on puberty onset and follicular development in adult offspring in rats. We also propose that alterations in ovarian physiology observed in offspring of obese mothers are due to increased levels of estradiol during early development. Offspring of control dams and offspring of dams exposed to a high-fat diet (HF) were studied at postnatal days (PND) 1, 7, 14, 30, 60, and 120. Body weight and onset of puberty were measured. Counting of ovarian follicles was performed at PND 60 and 120. Serum estradiol, estriol, androstenedione, FSH, LH, and insulin levels were measured by ELISA. Hepatic CYP3A2 expression was determined by Western blot. HF rats had a higher weight than controls at all ages and they also had a precocious puberty. Estradiol levels were increased while CYP3A2 expression was reduced from PND 1 until PND 60 in HF rats compared to controls. Estriol was decreased at PND60 in HF rats. Ovaries from HF rats had a decrease in antral follicles at PND60 and PND120 and an increase in follicular cysts at PND60 and PND120. In this work, we demonstrated that maternal obesity in rats alters follicular development and induces follicular cysts generation in the adult offspring. We observed that maternal obesity produces an endocrine disruption through increasing endogenous estradiol in early life. A programmed failure in hepatic metabolism of estradiol is probably the cause of its increase.
Li, Ning; Chen, Xuyong; Zhou, Xuefeng; Zhang, Wen; Yuan, Jiyan; Feng, Jiexiong
2015-12-01
The purpose of this study was to investigate the mechanism of dibutyl phthalate (DBP) induced hypospadias and shortened anogenital distance (AGD). AGD, hypospadias, and cryptorchidism incidence was observed in male offspring of DBP treated pregnant Wistar rats. Testicular development and testosterone levels of normal and DBP-treated rat embryos were compared. Male offspring of 300mg and 900mg DBP-treated pregnant Wistar rats exhibited shortened average AGD compared with the control group. A 22.7% hypospadias incidence was observed in the 300mg group, but no offspring with cryptorchidism were identified. In the 900mg group, hypospadias and cryptorchidism incidence reached 43.5% and 17.4%, respectively. Between E15.5 and E17.5, the 300mg group exhibited delayed testicular development and testosterone secretion. However, testicular development and testosterone secretion subsequently recovered. The 300mg treated and control groups had similar measures after E19.5. Contrastingly, testicular development and testosterone secretion were significantly diminished throughout development in the 900mg group. Exogenous testosterone partially counteracted DBP-induced changes in the reproductive organs of male offspring of DBP-treated rats. High-dose DBP exposure may induce testicular dysgenesis in rat embryos. Additionally, low-dose DBP may delay testicular development and testosterone secretion during urethral development. This disruption may result in hypospadias. Copyright © 2015 Elsevier Inc. All rights reserved.
Lee, Hyunchan; Chung, Sooyeon; Noh, Jihyun
2016-10-01
Prenatal nicotine exposure over an entire pregnancy has been associated with an increased prevalence of hyperactivity, anxiety-like behavior and depression-like behavior in mature rats. However, the effects of maternal nicotine exposure in late gestation and lactation on the psychology and behavior of adolescent rat offspring are unclear. Thus, we investigated the effect of nicotine exposure during late gestation and lactation on anxiety-like and impulsive decision-making behavior in adolescent offspring of rat. Female rats were orally exposed to nicotine which is within range of plasma level of human chronic smokers during the period of third last period of gestation and lactation. When the offspring were weaned, we observed alterations in the anxiety-like behavior and decision-making ability of adolescent rat offspring using light/dark box test and T-maze delay-based cost-benefit decision-making task. The maternal consumption of nicotine reduced both the time spent in the light compartment and the number of transitions compared to nicotine-free rats. Moreover, such nicotine exposed adolescent offspring rats showed impulsive decision making which chose the instant reward in a decision-making situation. We found that nicotine exposure during late gestation and lactation induces an increase in anxiety-like and impulsive decision-making behavior at this developmental stage. These findings suggest that maternal nicotine-exposed offspring are at an increased risk of developing anxious and impulsive behavior.
USDA-ARS?s Scientific Manuscript database
The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosi...
Rao Barkur, Rajashekar; Bairy, Laxminarayana K
2015-01-01
Widespread use of heavy metal lead (Pb) for various commercial purposes has resulted in the environmental contamination caused by this metal. The studies have shown a definite relationship between low level lead exposure during early brain development and deficit in children's cognitive functions. This study investigated the passive avoidance learning and spatial learning in male rat pups exposed to lead through their mothers during specific periods of early brain development. Experimental male rats were divided into 5 groups: i) the normal control group (NC) (N = 12) consisted of rat offspring born to mothers who were given normal drinking water throughout gestation and lactation, ii) the pre-gestation lead exposed group (PG) (N = 12) consisted of rat offspring, mothers of these rats had been exposed to 0.2% lead acetate in the drinking water for 1 month before conception, iii) the gestation lead exposed group (G) (N = 12) contained rat offspring born to mothers who had been exposed to 0.2% lead acetate in the drinking water throughout gestation, iv) the lactation lead exposed group (L) (N = 12) had rat offspring, mothers of these rats exposed to 0.2% lead acetate in the drinking water throughout lactation and v) the gestation and lactation lead exposed group (GL) (N = 12) contained rat offspring, mothers of these rats were exposed to 0.2% lead acetate throughout gestation and lactation. The study found deficit in passive avoidance learning in the G, L and GL groups of rats. Impairment in spatial learning was found in the PG, G, L and GL groups of rats. Interestingly, the study found that gestation period only and lactation period only lead exposure was sufficient to cause deficit in learning and memory in rats. The extent of memory impairment in the L group of rats was comparable with the GL group of rats. So it can be said that postnatal period of brain development is more sensitive to neurotoxicity compared to prenatal exposure. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Torabi, Masoumeh; Pooriamehr, Alireza; Bigdeli, Imanollah; Miladi-Gorji, Hossein
2017-10-17
This study was designed to examine whether maternal swimming exercise during pregnancy would attenuate prenatally morphine-induced anxiety, depression and voluntary consumption of morphine in the pubertal male and female rat offspring. Pregnant rats during the development of morphine dependence were allowed to swim (30-45min/d, 3days per a week) on gestational days 11-18. Then, the pubertal male and female rat offspring were tested for the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that male and female rat offspring born of the swimmer morphine-dependent mothers exhibited an increase in EPM open arm time and entries, higher levels of sucrose preference than their sedentary control mothers. Voluntary consumption of morphine was less in the male and female rat offspring born of the swimmer morphine-dependent mothers as compared with their sedentary control mothers during three periods of the intake of drug. Thus, swimming exercise in pregnant morphine dependent mothers decreased anxiety, depressive-like behavior and also the voluntary morphine consumption in the pubertal male and female offspring, which may prevent prenatally morphine-induced behavioral sensitization in offspring. Copyright © 2017 Elsevier B.V. All rights reserved.
Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana
2017-01-01
Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925
Shirai, Tomoyuki; Wang, Jianqing; Kawabe, Mayumi; Wake, Kanako; Watanabe, So-ichi; Takahashi, Satoru; Fujiwara, Osamu
2017-01-01
In everyday life, people are exposed to radiofrequency (RF) electromagnetic fields (EMFs) with multiple frequencies. To evaluate the possible adverse effects of multifrequency RF EMFs, we performed an experiment in which pregnant rats and their delivered offspring were simultaneously exposed to eight different communication signal EMFs (two of 800 MHz band, two of 2 GHz band, one of 2.4 GHz band, two of 2.5 GHz band and one of 5.2 GHz band). Thirty six pregnant Sprague-Dawley (SD) 10-week-old rats were divided into three groups of 12 rats: one control (sham exposure) group and two experimental (low- and high-level RF EMF exposure) groups. The whole body of the mother rats was exposed to the RF EMFs for 20 h per day from Gestational Day 7 to weaning, and F1 offspring rats (46–48 F1 pups per group) were then exposed up to 6 weeks of age also for 20 h per day. The parameters evaluated included the growth, gestational condition and organ weights of the dams; the survival rates, development, growth, physical and functional development, memory function, and reproductive ability of the F1 offspring; and the embryotoxicity and teratogenicity in the F2 rats. No abnormal findings were observed in the dams or F1 offspring exposed to the RF EMFs or to the F2 offspring for any of the parameters evaluated. Thus, under the conditions of the present experiment, simultaneous whole-body exposure to eight different communication signal EMFs at frequencies between 800 MHz and 5.2 GHz did not show any adverse effects on pregnancy or on the development of rats. PMID:27694283
Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.
Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young
2015-04-01
Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.
Coelho, Deise R; De-Carvalho, Rosangela R; Rocha, Rafael C C; Saint'Pierre, Tatiana D; Paumgartten, Francisco J R
2014-12-01
Meglumine antimoniate (MA) is a pentavalent antimony drug used to treat leishmaniases. We investigated the neurobehavioral development, sexual maturation and fertility of the offspring of MA-treated rats. Dams were administered MA (0, 75, 150, 300 mg Sb(V)/kg body wt/d, sc) from gestation day 0, throughout parturition and lactation, until weaning. At the highest dose, MA reduced the birth weight and the number of viable newborns. In the male offspring, MA did not impair development (somatic, reflex maturation, weight gain, puberty onset, open field test), sperm count, or reproductive performance. Except for a minor effect on body weight gain and vertical exploration in the open field, MA also did not affect the development of female offspring. Measurements of the Sb levels (ICP-MS) in the blood of MA-treated female rats and their offspring demonstrated that Sb is transferred to the fetuses via the placenta and to the suckling pups via milk. Copyright © 2014 Elsevier Inc. All rights reserved.
Nazeri, Masoud; Ebrahimi, Arezoo; Aghaei, Iraj; Ghotbi Ravandi, Samaneh; Shabani, Mohammad
2017-01-01
Prenatal stress could have great influence on development of offspring and might alter cognitive function and other physiological processes of children. The current study was conducted to study the effect of physical or psychological prenatal stress on addictive and anxiety-like behavior of male and female offspring during their adolescence period (postnatal day (PND) 40). Adult female rats were exposed to physical (swimming) or psychological (observing another female rat swimming) stress from day six of gestation for 10 days. Male and female offspring were assayed for anxiety-like behavior, motor and balance function and morphine conditioned place preference using the open field, elevated plus maze (EPM), rotarod and wire grip assay and conditioned place preference. Offspring in both physical and psychological prenatal stress groups demonstrated significant increase in anxiety-like behavior in EPM paradigm, but no alterations were observed in motor and balance function of animals. Offspring in the psychological prenatal stress group had an increased preference for morphine in comparison to control and physical prenatal stress groups. Results of the current study demonstrated that animals exposed to psychological stress during fetal development are at a higher risk of developing addictive behaviors. Further research might elucidate the exact mechanisms involved to provide better preventive and therapeutic interventions. PMID:28900372
Hong, Liang-Li; Tian, Dong-Ping; Su, Min; Shen, Xiu-Na; Gao, Yuxia
2006-01-01
To establish the selenium (Se) deficient animal model on F344 inbred line rats and observe the effects of a long-term Se-deficiency on the offspring's neuro-behavior, abilities of learning and memory. Feeding F344 inbred line rats on Se-deficient diet to establish Se-deficient animal model. For the offspring, the body weight, physiological indexes nervous reflections for growth and development were monitored during the early postnatal period. The Se-deficient diet contained less than 0.01 mg/kg and the glutathione peroxidase (GSH-Px) activity in blood of the Se-deficient group rats is lower than the Se-normal group after feeding on Se-deficient diet for 4 weeks. For the offspring, the birth weight and the body weight of Se-deficient group were obviously lower than the Se-normal group before weaning. Se-deficient offspring rats differed from Se-normal controls in lower scores in surface righting reflex (RR) test at postnatal 4th day after delivery, cliff avoidance test at postnatal 7th day and auditory acuity trial at postnatal 10th day respectively. But these differences disappear after a few days in the same tests. In addition, no significant differences between two groups in suspending test and walking ability test at postnatal 12th and 14th day. In open field test, Se-deficient male offspring stayed less time in the middle grid and moved less. In Morris water maze test, the Se-deficient offspring spent more time to find the hidden platform at the 6th and 9th training tests in the place navigation trial. Furthermore, the Se-deficient group spent less time in target quadrant when giving the spatial probe trial. A Se-deficient animal model have been established on F344 inbred line rats successfully. A long-term Se deficiency could retard the development of the offspring in uterus and after delivery. Se deficiency also decreased the offspring's abilities of spatial learning and memory in Morris water maze test and resulted in the male offspring's nervousness to new stimulant.
Reversal of prenatal morphine exposure-induced memory deficit in male but not female rats.
Nasiraei-Moghadam, Shiva; Sherafat, Mohammad Amin; Safari, Mir-Shahram; Moradi, Fatemeh; Ahmadiani, Abolhassan; Dargahi, Leila
2013-05-01
Impaired memory performance in offspring is one of the long-lasting neurobehavioral consequences of prenatal opiate exposure. Here, we studied the effects of prenatal morphine exposure on inhibitory avoidance memory performance in male and female offspring and also investigated whether these deficits are reversible during the postnatal development. Pregnant Wistar rats received morphine sulfate through drinking water, from the first day of gestation up to the day 13, M₁₋₁₃, or to the time of delivery, M₁₋₂₁. Four- and ten-week-old (adolescent and adult, respectively) male and female offspring were subjected to behavioral assays and then analysis of proteins involved in apoptosis or in synaptic plasticity. Results revealed that adolescent and adult female rats failed in passive avoidance retention task in both M₁₋₁₃ and M₁₋₂₁ groups. Adolescent and adult male offspring were similar to control animals in M₁₋₁₃ group. However M₁₋₂₁ impaired retention task in prepubertal male offspring, and this memory loss was repaired in postpubertal stage. Consistently, Bax/Bcl-2 ratio and cleaved caspase-3 were significantly increased in both M₁₋₁₃ and M₁₋₂₁ adolescent and adult female rats, but only in M₁₋₂₁ adolescent male rats. Furthermore, prenatal morphine exposure reduced the expression of brain-derived neurotrophic factor precursor protein in adolescent and adult female offspring and also decreased p-ca(2+)/calmodulin-dependent kinase II/ca(2+)/calmodulin-dependent kinase II ratio in adolescent male and female rats. Altogether, the results show that prenatal morphine exposure, depending on the time or duration of exposure, has distinct effects on male and female rats, and postnatal development may reverse these deficits more likely in males.
Kiss, Ana Carolina Inhasz; Woodside, Barbara; Felício, Luciano Freitas; Anselmo-Franci, Janete; Damasceno, Débora Cristina
2012-10-10
The aim of the present study was to evaluate the effect of maternal mild hyperglycemia on maternal behavior, as well as the development, behavior, reproductive function, and glucose tolerance of the offspring. At birth, litters were assigned either to Control (subcutaneous (sc)-citrate buffer) or STZ groups (streptozotocin (STZ)-100mg/kg-sc.). On PND 90 both STZ-treated and Control female rats were mated. Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were performed during pregnancy. Pregnancy duration, litter size and sex ratio were assessed. Newborns were classified according to birth weight as small (SPA), adequate (APA), or large for pregnancy age (LPA). Maternal behavior was analyzed on PND 5 and 10. Offspring body weight, length, and anogenital distance were measured and general activity was assessed in the open field. Sexual behavior was tested in both male and female offspring. Levels of reproductive hormones and estrous cycle duration were evaluated in female offspring. Female offspring were mated and both a GTT and ITT performed during pregnancy. Neonatal STZ administration caused mild hyperglycemia during pregnancy and changed some aspects of maternal care. The hyperglycemic intrauterine milieu impaired physical development and increased immobility in the open field in the offspring although the latter effect appeared at different ages for males (adulthood) and females (infancy). There was no impairment in the sexual behavior of either male or female offspring. As adults, female offspring of STZ-treated mothers did not show glucose intolerance during pregnancy. Thus, offspring of female rats that show mild hyperglycemia in pregnancy have fewer behavioral and developmental impairments than previously reported in the offspring of severely diabetic dams suggesting that the degree of impairment is directly related to the mother glycemic intensity. Copyright © 2012 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Maternal low protein diets during prenatal development contribute to the development of obesity and insulin resistance in offspring. In this study, obese-prone Sprague -Dawley rats were fed diets having either 8% (low protein, LP) or 20% (normal protein, NP) protein for 3-wk prior to conception and...
Monosodium glutamate versus diet induced obesity in pregnant rats and their offspring.
Afifi, M M; Abbas, Amr M
2011-06-01
We aim at determining the role of monosodium glutamate (MSG) compared with high caloric chow(HCC) in development of obesity in pregnant rats and their offspring. Ninety pregnant rats were divided into 3 groups, control, MSG and HCC fed. We determined energy intake, body weight (BW), abdominal fat, fat to body weight ratio, serum glucose, insulin, leptin, lipid profile, ob and leptin receptor-b gene expressions in pregnant rats and ob and leptin receptor-b gene expressions, serum insulin,glucose, leptin, triacylglycerides (TAG), total lipids (TL) and BW in offspring. Although daily energy intake and BW of MSG treated rats were lower than those of HCC fed rats, their abdominal fat and fat body weight ratio were higher. MSG or HCC increased Ob gene expression, leptin, insulin,LDL, cholesterol, total lipids (TL), glucose and decreased leptin receptor-b gene expression. In offspring of MSG treated rats, BW, serum glucose, insulin, leptin, TAG, TL and Ob gene expression increased and leptin receptor-b gene expression decreased whereas in offspring of HCC fed rats, serum insulin, leptin, Ob and leptin receptor-b gene expression increased but serum glucose, TAG, TL or BW did not change. We conclude that in pregnant rats, MSG, in spite of mild hypophagia, caused severe increase in fat body weight ratio, via leptin resistance, whereas, HCC increased BW and fat body weight ratio, due to hyperphagia with consequent leptin resistance. Moreover, maternal obesity in pregnancy, caused by MSG, has greater impact on offspring metabolism and BW than that induced by HCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiellaro, Marília; Correa-Costa, Matheus; Vitoretti, Luana Beatriz
Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillatedmore » water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment.« less
Shirakashi, Daisy J; Leal, Rosana P; Colombo, Natalia H; Chiba, Fernando Y; Garbin, Cléa A S; Jardim, Elerson G; Antoniali, Cristina; Sumida, Doris H
2013-03-01
Periodontal disease during pregnancy has been recognized as one of the causes of preterm and low-birth-weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P <0.05) in the PEDO group compared with the CNO group. Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.
NASA Technical Reports Server (NTRS)
Alberts, J. R.; Burden, H. W.; Hawes, N.; Ronca, A. E.
1996-01-01
To assess prenatal and postnatal developmental status in the offspring of a group of animals, it is typical to examine fetuses from some of the dams as well as infants born to the remaining dams. Statistical limitations often arise, particularly when the animals are rare or especially precious, because all offspring of the dam represent only a single statistical observation; littermates are not independent observations (biologically or statistically). We describe a study in which pregnant laboratory rats were laparotomized on day 7 of gestation (GD7) to ascertain the number and distribution of uterine implantation sites and were subjected to a simulated experience on a 10-day space shuttle flight. After the simulated landing on GD18, rats were unilaterally hysterectomized, thus providing a sample of fetuses from 10 independent uteruses, followed by successful vaginal delivery on GD22, yielding postnatal samples from 10 uteruses. A broad profile of maternal and offspring morphologic and physiologic measures indicated that these novel sampling procedures did not compromise maternal well-being and maintained normal offspring development and function. Measures included maternal organ weights and hormone concentrations, offspring body size, growth, organ weights, sexual differentiation, and catecholamine concentrations.
Endo, Hitoshi; Eto, Tomoo; Yoshii, Fumihito; Owada, Satoshi; Watanabe, Tetsu; Tatemichi, Masayuki; Kimura, Minoru
2017-07-22
Embryo transfer (ET) to recipient female animals is a useful technique in biological and experimental animal studies. While cryopreservation of two-cell stage rat embryos and ET to recipient rats are currently well-defined, it is unknown whether these artificial reproductive techniques and maternal factors affect offspring phenotype, particularly higher brain functions. Therefore, we assessed the effects of cryopreservation, ET, and maternal care on learning behaviour of the offspring, using Tokai high avoider (THA) rats that have a high learning ability phenotype. We found that the high learning ability of THA rat offspring was not replicated following ET to surrogate Wistar rats with a low-avoidance phenotype. Additionally, the characteristic phenotype of offspring obtained through mating of ET-derived rats was similar to that of THA rats. A postnatal cross-fostering investigation with the offspring of Wistar and THA rats showed that maternal behaviour, including postnatal care and lactation traits, did not differ between the dams of low-avoidance Wistar rats and THA rats; therefore, learning behaviour was retained in both Wistar and THA rat offspring. We conclude that the offspring phenotype, although unchanged, has an imperceptible effect on the learning ability of ET-derived THA rats through the intrauterine environment of the recipient. Copyright © 2017 Elsevier Inc. All rights reserved.
Balasubramanian, Priya; Varde, Pratibha A; Abdallah, Simon Labib; Najjar, Sonia M; MohanKumar, P S; MohanKumar, Sheba M J
2015-09-15
Stress during pregnancy is a known contributing factor for the development of obesity in the offspring. Since maternal obesity is on the rise, we wanted to identify the effects of prenatal stress in the offspring of diet-induced obese (DIO) rats and compare them with the offspring of dietary-resistant (DR) rats. We hypothesized that prenatal stress would make both DIO and DR offspring susceptible to obesity, but the effect would be more pronounced in DIO rats. Pregnant DIO and DR rats were divided into two groups: nonstressed controls (control) and prenatal stress (subjected to restraint stress, three times/day from days 14 to 21 of gestation). After recording birth weight and weaning weight, male offspring were weaned onto a chow diet for 9 wk and shifted to a high-fat (HF) diet for 1 wk. At the end of the 10th wk the animals were euthanized, and visceral adipose mass, blood glucose, serum insulin, and C-peptide levels were measured. Prenatal stress resulted in hyperinsulinemia and higher C-peptide levels without altering caloric intake, body weight gain, or fat mass in the DIO offspring after 1 wk of HF intake, but not in DR offspring. To determine the mechanism underlying the hyperinsulinemia, we measured the levels of CEACAM1 that are responsible for insulin clearance. CEACAM1 levels in the liver were reduced in prenatally stressed DIO offspring after the HF challenge, suggesting that preexisting genetic predisposition in combination with prenatal stress increases the risk for obesity in adulthood, especially when offspring are fed a HF diet. Copyright © 2015 the American Physiological Society.
Shirai, Tomoyuki; Wang, Jianqing; Kawabe, Mayumi; Wake, Kanako; Watanabe, So-Ichi; Takahashi, Satoru; Fujiwara, Osamu
2017-01-01
In everyday life, people are exposed to radiofrequency (RF) electromagnetic fields (EMFs) with multiple frequencies. To evaluate the possible adverse effects of multifrequency RF EMFs, we performed an experiment in which pregnant rats and their delivered offspring were simultaneously exposed to eight different communication signal EMFs (two of 800 MHz band, two of 2 GHz band, one of 2.4 GHz band, two of 2.5 GHz band and one of 5.2 GHz band). Thirty six pregnant Sprague-Dawley (SD) 10-week-old rats were divided into three groups of 12 rats: one control (sham exposure) group and two experimental (low- and high-level RF EMF exposure) groups. The whole body of the mother rats was exposed to the RF EMFs for 20 h per day from Gestational Day 7 to weaning, and F 1 offspring rats (46-48 F1 pups per group) were then exposed up to 6 weeks of age also for 20 h per day. The parameters evaluated included the growth, gestational condition and organ weights of the dams; the survival rates, development, growth, physical and functional development, memory function, and reproductive ability of the F 1 offspring; and the embryotoxicity and teratogenicity in the F 2 rats. No abnormal findings were observed in the dams or F 1 offspring exposed to the RF EMFs or to the F 2 offspring for any of the parameters evaluated. Thus, under the conditions of the present experiment, simultaneous whole-body exposure to eight different communication signal EMFs at frequencies between 800 MHz and 5.2 GHz did not show any adverse effects on pregnancy or on the development of rats. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Li, Ki Angel; Lund, Emilie Torp; Voigt, Jörg-Peter W
2016-01-01
The early postnatal period is a sensitive period in rodents as behavioural systems are developing and maturing during this time. However, relatively little information is available about the impact of environmental enrichment on offspring behaviour if enrichment is implemented only during this period. Here, environmental enrichment was provided from postnatal day 1 until weaning. On post-natal day 9, maternal behaviour and nonmaternal behaviour of the dam was observed. Nursing time in the enriched group was reduced but dams showed more non-maternal appetitive behaviours. Offspring were exposed to either the open field or the elevated plus maze (EPM) after weaning. In the open field, rats from the enriched group approached the more aversive inner zone of the open field later than control rats. Offspring from the enriched group made fewer entries into the inner zone and spent less time in this part of the arena. Enrichment had no impact on behaviour in the EPM. The present study provides evidence that postnatal enrichment can interfere with maternal behaviour in rats and can possibly lead to increased anxiety in the offspring. The findings suggest that enrichment procedures can have potentially unintended effects, interfering with the development of emotional behaviours in rats. Copyright © 2015 Elsevier B.V. All rights reserved.
Moussa, Y Y; Tawfik, S H; Haiba, M M; Saad, M I; Hanafi, M Y; Abdelkhalek, T M; Oriquat, G A; Kamel, M A
2017-06-01
The present study aimed to evaluate the changes in levels of different independent risk factors for vascular diseases in the rat offspring of maternal obesity and malnutrition as maternal health disturbances are thought to have direct consequences on the offspring health. The effect of postnatal diet on the offspring was also assessed. Three groups of female Wistar rats were used (control, obese and malnourished). After the pregnancy and delivery, the offspring were weaned to control diet or high-caloric (HCD) diet and followed up for 30 weeks. Every 5 weeks postnatal, 20 pups (10 males and 10 females) of each subgroup were sacrificed after overnight fasting, the blood sample was obtained, and the rats were dissected out to obtain heart muscle. The following parameters were assessed; lipid profile, NEFA, homocysteine (Hcy), nitric oxide end product (NOx) and myocardial triglyceride content. Maternal obesity and malnutrition caused significant elevation in the body weight, triglycerides, NEFA, Hcy and NOx in the F1 offspring especially those maintained under HCD. Also, the male offspring showed more prominent changes than female offspring. Maternal malnutrition and obesity may increase the risk of the development of cardiovascular diseases in the offspring, especially the male ones.
Sadeghi, Akram; Ebrahimzadeh Bideskan, Alireza; Alipour, Fatemeh; Fazel, Alireza; Haghir, Hossein
2013-02-01
The aim of this study was to investigate ascorbic acid and garlic protective effects on lead-induced neurotoxicity during rat hippocampus development. 90 pregnant wistar rats were divided randomly into nine groups: 1- Animals received leaded water (L). 2- Rats received leaded water and ascorbic acid (L+AA). 3- Animals received leaded water and garlic juice (L+G). 4-Animals received leaded water, ascorbic acid and garlic juice (L+G+AA). 5- Rats treated with ascorbic acid (AA). 6- Rats treated with garlic juice (G). 7- Rats treated with ascorbic acid and garlic juice (AA+G). 8- Rats treated with tap water plus 0.4 ml/l normal hydrogen chloride (HCl) and 0.5 mg/l Glucose (Sham). 9- Normal group (N). Leaded water (1500 ppm), garlic juice (1 ml/100g/day, gavage) and ascorbic acid (500 mg/kg/day, IP) were used. Finally, blood lead levels (BLL) were measured in both rats and their offspring. The rat offspring brain sections were stained using Toluidine Blue and photographed. Dark neurons (DNs) were counted to compare all groups. BLL significantly increased in L group compared to control and sham groups and decreased in L+G and L+AA groups in comparison to the L group (P<0.05). the number of DNs in the CA1, CA3, and DG of rat offspring hippocampus significantly increased in L group in comparison to control and sham groups (P<0.05) and decreased in L+G and L+AA groups compared to L group (P<0.05). Garlic juice and ascorbic acid administration during pregnancy and lactation may protect lead-induced neural damage in rat offspring hippocampus.
USDA-ARS?s Scientific Manuscript database
In utero exposure to maternal obesity increases the offspring’s risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND) 21. In the current s...
Pomar, C A; van Nes, R; Sánchez, J; Picó, C; Keijer, J; Palou, A
2017-08-01
The suckling period is a critical phase of development, in which maternal overnutrition may program the susceptibility of developing chronic diseases and disorders, such as obesity and metabolic alterations, in adult life. Here, we questioned whether the consumption of a cafeteria diet throughout lactation in rats affects the macronutrient composition of milk and whether it results in permanent metabolic effects in the offspring. Nursing rats were fed a control diet or a cafeteria diet during lactation. Milk was obtained at different time points of lactation. Offspring (males and females) were weaned onto a control diet until the age of 6 months. Circulating parameters were measured under ad libitum feeding and under 12-h fasting conditions at weaning and at 3 and 6 months of age. An oral glucose tolerance test (OGTT) was performed at 3 and 6 months of age. Rats fed a cafeteria diet during lactation consumed an unbalanced diet, with lower protein and higher fat content versus controls, which was reflected in the composition of the milk. The offspring of rats fed a cafeteria diet during lactation showed lower body weight and lower lean mass, but greater fat accumulation, compared with controls. They also displayed hyperleptinaemia, altered lipid profile and impaired response to an OGTT. Maternal consumption of a cafeteria diet throughout lactation in rats produces lasting effects in the metabolic health of their offspring, which are not associated with a higher body weight but with a greater fat accumulation, similarly to the thin-outside-fat-inside phenotype.
Murray, Brendan G; Davies, Don A; Molder, Joel J; Howland, John G
2017-05-01
Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia in the offspring. Patients with schizophrenia display an array of cognitive symptoms, including impaired working memory capacity. Rodent models have been developed to understand the relationship between maternal immune activation and the cognitive symptoms of schizophrenia. The present experiment was designed to test whether maternal immune activation with the viral mimetic polyinosinic:polycytidylic acid (polyI:C) during pregnancy affects working memory capacity of the offspring. Pregnant Long Evans rats were treated with either saline or polyI:C (4mg/kg; i.v.) on gestational day 15. Male offspring of the litters (2-3months of age) were subsequently trained on a nonmatching-to-sample task with odors. After a criterion was met, the rats were tested on the odor span task, which requires rats to remember an increasing span of different odors to receive food reward. Rats were tested using delays of approximately 40s during the acquisition of the task. Importantly, polyI:C- and saline-treated offspring did not differ in performance of the nonmatching-to-sample task suggesting that both groups could perform a relatively simple working memory task. In contrast, polyI:C-treated offspring had reduced span capacity in the middle and late phases of odor span task acquisition. After task acquisition, the rats were tested using the 40s delay and a 10min delay. Both groups showed a delay-dependent decrease in span, although the polyI:C-treated offspring had significantly lower spans regardless of delay. Our results support the validity of the maternal immune activation model for studying the cognitive symptoms of neurodevelopmental disorders such as schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.
Capobianco, Evangelina; Pelesson, Magalí; Careaga, Valeria; Fornes, Daiana; Canosa, Ivana; Higa, Romina; Maier, Marta; Jawerbaum, Alicia
2015-10-01
Maternal diabetes can program metabolic and cardiovascular diseases in the offspring. The aim of this work was to address whether an olive oil supplemented diet during pregnancy can prevent lipid metabolic alterations in the heart of the offspring of mild diabetic rats. Control and diabetic Wistar rats were fed during pregnancy with either a standard diet or a 6% olive oil supplemented diet. The heart of adult offspring from diabetic rats showed increases in lipid concentrations (triglycerides in males and phospholipids, cholesterol, and free fatty acids in females), which were prevented with the maternal diets enriched in olive oil. Maternal olive oil supplementation increased the content of unsaturated fatty acids in the hearts of both female and male offspring from diabetic rats (possibly due to a reduction in lipoperoxidation), increased the expression of Δ6 desaturase in the heart of male offspring from diabetic rats, and increased the expression of peroxisome proliferator activated receptor α in the hearts of both female and male offspring from diabetic rats. Relevant alterations in cardiac lipid metabolism were evident in the adult offspring of a mild diabetic rat model, and regulated by maternal diets enriched in olive oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nabeshima, T; Yamaguchi, K; Hiramatsu, M; Ishikawa, K; Furukawa, H; Kameyama, T
1987-11-01
The effects of prenatal and perinatal administration of a nonteratogenic dose of phencyclidine (PCP) on the behavioral development of Sprague-Dawley rats were examined. In the offspring prenatally treated with PCP (10 mg/kg) between days 7 and 17 of gestation, a decrease in maternal body weight in the gestation period, a decrease in fetal body weight and body length, a decrease in viability of offsprings, and a decrease in the body weights of the offspring in the nursing period were observed. Furthermore, PCP pups had difficulty performing the rota-rod task at 4 weeks and exhibited a decrease in sensitivity to challenged PCP at 5 weeks (female). In the offspring prenatally treated with PCP between days 7 and 21 of gestation, a decrease in the body weights of dams, fetuses and offspring, and a decrease in the viability of offsprings were observed. PCP pups showed an increase in the score for head-twitch response (male), a delay in the development of ambulation, negative geotaxis (male), bar holding and rope-descending behavior (female). However, the PCP administration during prenatal (between days 17 and 21 of gestation) and nursing periods showed only a decrease in viability and body weight of offspring, and a delay in the development of the separation of eyelids. These results suggest that more attention should be given to the developmental toxicity of PCP.
Gamma-linoleic acid and ascorbate improves skeletal ossification in offspring of diabetic rats.
Braddock, Rattana; Simán, C Martin; Hamilton, Katherine; Garland, Hugh O; Sibley, Colin P
2002-05-01
Maternal diabetes causes a range of complications in offspring, including reduced skeletal ossification. This study examined whether feeding gamma-linoleic acid (GLA) and ascorbate, alone or in combination, to diabetic pregnant rats improves skeletal development in their offspring. In addition, Ca(2+) concentration was monitored in maternal plasma and fetal tissue, as well as placental mRNA expression of calbindin-D(9k). Female rats rendered diabetic with streptozotocin were fed GLA (500 mg/kg/d), ascorbate (290 mg/kg/d), ascorbyl-GLA (790 mg/kg/d), or GLA and ascorbate (500 and 290 mg/kg/d, respectively) throughout pregnancy. Fetal skeletons were studied after alizarin red staining. Fewer ossification centers were observed in offspring of diabetic rats compared with offspring of control rats (68 +/- 4% of control, p = 0.01). An almost complete restoration of ossification occurred with all the treatments (92-95 +/- 3% of control). The effects of treatment on fetal ossification could not be explained by altered maternal plasma Ca(2+) concentrations or by mRNA expression of the placental Ca(2+)-transporting protein calbindin-D(9K). We conclude that GLA and/or ascorbate treatment was effective against diabetes-induced fetal ossification defects by a mechanism not related to placental Ca(2+) supply.
Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats.
Fride, E; Dan, Y; Feldon, J; Halevy, G; Weinstock, M
1986-01-01
This study investigated the hypotheses that unpredictable prenatal stress has effects on the offspring, similar to those induced by perinatal administration of glucocorticoids and increases the vulnerability to stressful situations at adulthood. Rats were exposed to random noise and light stress throughout pregnancy. Offspring were tested for the development of spontaneous alternation behavior (SA) and at adulthood, their response to novel or aversive situations, open field, extinction and punishment following acquisition of an appetitive response and two-way active avoidance, were assessed. In prenatally stressed rats, the development of SA was significantly delayed. On repeated exposure to an open field they were less active; control rats had elevated plasma corticosterone (CCS) on days 2 and 4 of open field exposure, while prenatally stressed rats had significantly raised plasma CCS after each exposure (days 1-8). Furthermore, punishment-induced suppression of an appetitive response was enhanced. Acquisition of active avoidance was faciliated in female but reduced in male prenatally stressed offspring. It is suggested that random prenatal noise and light stress may cause impairment of development of hippocampal function which lasts into adulthood. This impairment is manifested as an increase in vulnerability and a decrease in habituation to stressful stimuli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, D.; Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071; Wu, Y.
Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; themore » level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury of hippocampus in IUGR offspring rats.« less
Akbarabadi, Ardeshir; Niknamfar, Saba; Vousooghi, Nasim; Sadat-Shirazi, Mitra-Sadat; Toolee, Heidar; Zarrindast, Mohammad-Reza
2018-02-01
Drug addiction is a chronic disorder resulted from complex interaction of genetic, environmental, and developmental factors. Epigenetic mechanisms play an important role in the development and maintenance of addiction and also memory formation in the brain. We have examined passive avoidance memory and morphine conditioned place preference (CPP) in the offspring of male and/or female rats with a history of adulthood morphine consumption. Adult male and female animals received chronic oral morphine for 21days and then were maintained drug free for 10days. After that, they were let to mate with either an abstinent or control rat. Male offspring's memory was evaluated by step through test. Besides, rewarding effects of morphine were checked with CCP paradigm. Offspring of abstinent animals showed significant memory impairment compared to the control group which was more prominent in the offspring of abstinent females. Conditioning results showed that administration of a high dose of morphine (10mg/kg) that could significantly induce CPP in control rats, was not able to induce similar results in the offspring of morphine abstinent parents; and CPP was much more prominent when it was induced in the offspring of morphine exposed females compared to the progeny of morphine exposed males. It is concluded that parental morphine consumption in adulthood even before mating has destructive effects on memory state of the male offspring and also leads to tolerance to the rewarding effects of morphine. These effects are greater when the morphine consumer parent is the female one. Copyright © 2017 Elsevier Inc. All rights reserved.
Dos Santos, Alice Hartmann; Ramos, Aline Camargo; Silveira, Kennia Moura; Kiss, Ana Carolina Inhasz; Longhini, Renata; Diniz, Andréa; de Mello, João Carlos Palazzo; Gerardin, Daniela Cristina Ceccatto
2015-05-26
Trichilia catigua is broadly used in folk medicine due to its mental and physical tonic activities and stimulant effects. In animal models, its antidepressant-like effects have been associated with the dopaminergic (DA) system modulation, which has an important role on maternal behavior and male offspring reproductive development. Since little is known about the adverse effects of the exposure to T. catigua crude extract (CAT) in rats, specially regarding maternal homeostasis and offspring development, the aim of the present study was to evaluate whether CAT exposure may influence maternal toxicity parameters and behavior or disrupt male offspring physical and reproductive development. Dams were treated daily (by gavage) with 400mg/kg of CAT or vehicle (control=CTR) throughout pregnancy and lactation. Fertility and maternal behavior tests were conducted in dams. Male offspring reproductive and behavioral parameters were analyzed. Dams exposed to CAT showed increased pre- and post-implantation losses rates when compared to CTR group. No significant changes regarding maternal behavior or male offspring parameters were observed. In conclusion, maternal exposure to CAT interfered with implantation during the initial phases of pregnancy but did not induce changes on maternal behavior or male offspring reproductive and behavioral parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat
Zhao, Tianyun; Li, Chuanxiang; Wei, Wei; Zhang, Haixing; Ma, Daqing; Song, Xingrong; Zhou, Libing
2016-01-01
Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings. PMID:27226073
Nakhjiri, Elnaz; Saboory, Ehsan; Roshan-Milani, Shiva; Rasmi, Yousef; Khalafkhani, Davod
2017-03-01
Stressful events and exposure to opiates during gestation have important effects on the later mental health of the offspring. Anxiety is among the most common mental disorders. The present study aimed to identify effects of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration (PVC) and anxiety behaviors in rats. Pregnant rats were divided into four groups (n = 6, each): saline, morphine, stress + saline and stress + morphine treatment. The stress procedure consisted of restraint twice per day, two hours per session, for three consecutive days starting on day 15 of pregnancy. Rats in the saline and morphine groups received either 0.9% saline or morphine intraperitoneally on the same days. In the morphine/saline + stress groups, rats were exposed to restraint stress and received either morphine or saline intraperitoneally. All offspring were tested in an elevated plus maze (EPM) on postnatal day 90 (n = 6, each sex), and anxiety behaviors of each rat were recorded. Finally, blood samples were collected to determine PVC. Prenatal morphine exposure reduced anxiety-like behaviors. Co-administration of prenatal stress and morphine increased locomotor activity (LA) and PVC. PVC was significantly lower in female offspring of the morphine and morphine + stress groups compared with males in the same group, but the opposite was seen in the saline + stress group. These data emphasize the impact of prenatal stress and morphine on fetal neuroendocrine development, with long-term changes in anxiety-like behaviors and vasopressin secretion. These changes are sex specific, indicating differential impact of prenatal stress and morphine on fetal neuroendocrine system development. Lay Summary Pregnant women are sometimes exposed to stressful and painful conditions which may lead to poor outcomes for offspring. Opiates may provide pain and stress relief to these mothers. In this study, we used an experimental model of maternal exposure to stress and morphine in pregnant rats. The findings indicated that maternal stress increased anxiety in offspring while morphine decreased such effects, but had negative effects on the levels of a hormone controlling blood pressure, and activity of offspring. Hence morphine should not be used in pregnancy for pain and stress relief.
Corvino, Silvana B; Damasceno, Débora C; Sinzato, Yuri K; Netto, Aline O; Macedo, Nathália C D; Zambrano, Elena; Volpato, Gustavo T
2017-01-01
The aim of this study was to compare two models of swimming applied to pregnant rats born small for pregnancy age (SPA). Diabetes was chemically induced in adult female rats to develop an inadequate intrauterine environment, leading to birth of a SPA offspring. In adulthood, the female SPA rats were mated and submitted to different swimming programs. The exercise program 1 (Ex1) consisted of swimming for 15 minutes, followed by 15 minutes of rest and another 15 minutes of swimming, 3 days a week before and during pregnancy. Another program (Ex2) was applied during 60 minutes uninterrupted a day, 6 days/week during pregnancy. The pregnant rats presented no interference on body weight and glycemia. The rats submitted to Ex2 model showed decreased insulin and blood glucose levels by oral glucose tolerance test, and reduction in area under curve values. The offspring from dams submitted to both exercise protocols presented an increased rate of newborns SPA. However, the offspring from Ex2 dams showed percentage twice higher of newborns SPA than Ex1 offspring. Our data suggests that continuous exercise of 60 min/day ameliorated the enhanced peripheral insulin sensitivity in growth-restricted females. However, this protocol employed at pregnancy leads to intrauterine growth restriction.
Social behavior impairment in offspring exposed to maternal seizures in utero.
Novaes, Gisane Faria; Amado, Debora; Scorza, Fulvio Alexandre; Cysneiros, Roberta Monterazzo
2012-06-01
Human and animal models have demonstrated that maternal seizures in utero could be deleterious to the development of the offspring. This study focused on the social behavior of offspring exposed to seizures in utero. A pilocarpine model of temporal lobe epilepsy was induced in female Wistar rats that were mated after the first spontaneous seizure. Early after birth, pups from an epileptic mother were reared by a control mother. To evaluate the influence of the adoption process, two other groups were added: rat pups from control mothers cross-fostered with other control mothers, and rat pups reared by their birth mother. Animals exposed to seizures in utero showed impaired social behavior with no signs of anxiety-like behavior. This study demonstrated that epileptic seizures during pregnancy could be harmful to brain development and may increase the risk of developing neurodevelopmental disorders. The mechanisms underlying the abnormalities of social behavior are not well understood, and further studies in this field are warranted.
Grote, Konstanze; Hobler, Carolin; Andrade, Anderson J M; Grande, Simone Wichert; Gericke, Christine; Talsness, Chris E; Appel, Klaus E; Chahoud, Ibrahim
2007-09-05
The organotin compound (OTC) triphenyltin (TPT) is used extensively as a herbicide, pesticide and fungicide in agriculture as well as, together with tributyltin (TBT), in marine antifouling paints. We studied the effects of in utero exposure to 2 or 6 mg triphenyltinchloride (TPTCl)/kgb.w. on pregnancy outcome and postnatal development in rat offspring. Gravid Wistar rats were treated per gavage from gestational day 6 until the end of lactation. In the 6 mg TPTCl dose group gestational mortality in dams as well as an increased incidence of anticipated and delayed parturition was observed. Furthermore, treatment resulted in a significant increase in perinatal mortality, a decrease in lactational body weight gain as well as in delayed physical maturation of offspring. Similarily, exposure to 2mg TPTCl/kgb.w. resulted in a significant increase in perinatal mortality and in delayed eye opening. Lactational body weight gain and other landmarks of physical maturation were unaffected in the low dose group. We conclude, that in utero exposure to TPTCl at the described dose levels severely affected pregnancy outcome and perinatal survival of offspring. These results were unexpected, as in two earlier studies with pubertal rats TPTCl at the same dose levels no signs of general toxicity were observed.
Xu, Hongwu; Wu, Weizhao; Lai, Xiulan; Ho, Guyu; Ma, Lian; Chen, Yunbin
2013-01-01
In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions. PMID:24324800
Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B
2015-01-01
Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.
Ahmed, O M; Ahmed, R G; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M
2012-10-01
Excessive concentrations of free radicals in the developing brain may lead to neurons maldevelopment and neurons damage and death. Thyroid hormones (THs) states play an important role in affecting the modulation of oxidative stress and antioxidant defense system. Thus, the objective of this study was to clarify the effect of hypothyroidism and hyperthyroidism in rat dams on the neurons development of different brain regions of their offspring at several postnatal weeks in relation to changes in the oxidative stress and antioxidant defense system. The adult female rats were administered methimazole (MMI) in drinking water (0.02% w/v) from gestation day 1 to lactation day 21 to induce hypothyroidism and exogenous thyroxine (T4) in drinking water (0.002% w/v) beside intragastric incubation of 50--200 T4 μg/kg body weight (b. wt.) to induce hyperthyroidism. In normal female rats, the sera total thyroxine (TT4) and total triiodothyronine (TT3) levels were detectably increased at day 10 post-partum than those at day 10 of pregnancy. Free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations in normal offspring were elevated at first, second and third postnatal weeks in an age-dependent manner. In hypothyroid group, a marked depression was observed in sera of dam TT3 and TT4 as well as offspring FT3, FT4 and GH, while there was a significant increase in TSH level with the age progress. The reverse pattern to latter state was recorded in hyperthyroid group. Concomitantly, in control offspring, the rate of neuron development in both cerebellar and cerebral cortex was increased in its density and complexity with age progress. This development may depend, largely, on THs state. Both maternal hypothyroidism and hyperthyroidism caused severe growth retardation in neurons of these regions of their offspring from the first to third weeks. Additionally, in normal offspring, seven antioxidant enzymes, four non-enzymatic antioxidants and one oxidative stress marker (lipid peroxidation, LPO) followed a synchronized course of alterations in cerebrum, cerebellum and medulla oblongata. In both thyroid states, the oxidative damage has been demonstrated by the increased LPO and inhibition of enzymatic and non-enzymatic antioxidants in most examined ages and brain regions. These disturbances in the antioxidant defense system led to deterioration in the neuronal maturation and development. In conclusion, it can be suggested that the maldevelopment of neurons and dendrites in different brain regions of offspring of hypothyroid and hyperthyroid mother rat dams may be attributed, at least in part, to the excess oxidative stress and deteriorated antioxidant defense system in such conditions. Published by Elsevier Ltd.
Gallant, S; Welch, L; Martone, P; Shalev, U
2017-06-15
Patients with schizophrenia display impaired cognitive functioning and increased sensitivity to psychomimetic drugs. The neurodevelopmental hypothesis of schizophrenia posits that disruption of the developing brain predisposes neural networks to lasting structural and functional abnormalities resulting in the emergence of such symptoms in adulthood. Given the critical role of the glutamatergic system in early brain development, we investigated whether chronic prenatal exposure to the glutamate NMDA receptor antagonist, MK-801, induces schizophrenia-like behavioural and neurochemical changes in juvenile and adult rats. Pregnant Long-Evans rats were administered saline or MK-801 (0.1mg/kg; s.c.) at gestation day 7-19. Object recognition memory and cognitive flexibility were assessed in the male offspring using a novel object preference task and a maze-based set-shifting procedure, respectively. Locomotor-activating effects of acute amphetamine and MK-801 were also assessed. Adult, but not juvenile, prenatally MK-801-treated rats failed to show novel object preference after a 90min delay, suggesting that object recognition memory may have been impaired. In addition, the set-shifting task revealed impaired acquisition of a new rule in adult prenatally MK-801-treated rats compared to controls. This deficit appeared to be driven by regression to the previously learned behaviour. There were no significant differences in drug-induced locomotor activity in juvenile offspring or in adult offspring following acute amphetamine challenges. Unexpectedly, MK-801-induced locomotor activity in adult prenatally MK-801-treated rats was lower compared to controls. Glutamate transmission dysfunction during early development may modify behavioural parameters in adulthood, though these parameters do not appear to model deficits observed in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.
Ni, Qubo; Tan, Yang; Zhang, Xianrong; Luo, Hanwen; Deng, Yu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui
2015-01-01
Epidemiological evidence indicates that osteoarthritis (OA) and prenatal ethanol exposure (PEE) are both associated with low birth weight but possible causal interrelationships have not been investigated. To investigate the effects of PEE on the susceptibility to OA in adult rats that experienced intrauterine growth retardation (IUGR), and to explore potential intrauterine mechanisms, we established the rat model of IUGR by PEE and dexamethasone, and the female fetus and 24-week-old adult offspring subjected to strenuous running for 6 weeks were sacrificed. Knee joints were collected from fetuses and adult offspring for histochemistry, immunohistochemistry and qPCR assays. Histological analyses and the Mankin score revealed increased cartilage destruction and accelerated OA progression in adult offspring from the PEE group compared to the control group. Immunohistochemistry showed reduced expression of insulin-like growth factor-1 (IGF-1) signaling pathway components. Furthermore, fetuses in the PEE group experienced IUGR but exhibited a higher postnatal growth rate. The expression of many IGF-1 signaling components was downregulated, which coincided with reduced amounts of type II collagen in the epiphyseal cartilage of fetuses in the PEE group. These results suggest that PEE enhances the susceptibility to OA in female adult rat offspring by down-regulating IGF-1 signaling and retarding articular cartilage development. PMID:26434683
NASA Astrophysics Data System (ADS)
Ni, Qubo; Tan, Yang; Zhang, Xianrong; Luo, Hanwen; Deng, Yu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui
2015-10-01
Epidemiological evidence indicates that osteoarthritis (OA) and prenatal ethanol exposure (PEE) are both associated with low birth weight but possible causal interrelationships have not been investigated. To investigate the effects of PEE on the susceptibility to OA in adult rats that experienced intrauterine growth retardation (IUGR), and to explore potential intrauterine mechanisms, we established the rat model of IUGR by PEE and dexamethasone, and the female fetus and 24-week-old adult offspring subjected to strenuous running for 6 weeks were sacrificed. Knee joints were collected from fetuses and adult offspring for histochemistry, immunohistochemistry and qPCR assays. Histological analyses and the Mankin score revealed increased cartilage destruction and accelerated OA progression in adult offspring from the PEE group compared to the control group. Immunohistochemistry showed reduced expression of insulin-like growth factor-1 (IGF-1) signaling pathway components. Furthermore, fetuses in the PEE group experienced IUGR but exhibited a higher postnatal growth rate. The expression of many IGF-1 signaling components was downregulated, which coincided with reduced amounts of type II collagen in the epiphyseal cartilage of fetuses in the PEE group. These results suggest that PEE enhances the susceptibility to OA in female adult rat offspring by down-regulating IGF-1 signaling and retarding articular cartilage development.
Alzamendi, Ana; Castrogiovanni, Daniel; Gaillard, Rolf C; Spinedi, Eduardo; Giovambattista, Andrés
2010-09-01
An adverse endogenous environment during early life predisposes the organism to develop metabolic disorders. We evaluated the impact of intake of an iso-caloric fructose rich diet (FRD) by lactating mothers (LM) on several metabolic functions of their male offspring. On postnatal d 1, ad libitum eating, lactating Sprague-Dawley rats received either 10% F (wt/vol; FRD-LM) or tap water (controls, CTR-LM) to drink throughout lactation. Weaned male offspring were fed ad libitum a normal diet, and body weight (BW) and food intake were registered until experimentation (60 d of age). Basal circulating levels of metabolic markers were evaluated. Both iv glucose tolerance and hypothalamic leptin sensitivity tests were performed. The hypothalamus was dissected for isolation of total RNA and Western blot analysis. Retroperitoneal (RP) adipose tissue was dissected and either kept frozen for gene analysis or digested to isolate adipocytes or for histological studies. FRD rats showed increased BW and decreased hypothalamic sensitivity to exogenous leptin, enhanced food intake (between 49-60 d), and decreased hypothalamic expression of several anorexigenic signals. FRD rats developed increased insulin and leptin peripheral levels and decreased adiponectinemia; although FRD rats normally tolerated glucose excess, it was associated with enhanced insulin secretion. FRD RP adipocytes were enlarged and spontaneously released high leptin, although they were less sensitive to insulin-induced leptin release. Accordingly, RP fat leptin gene expression was high in FRD rats. Excessive fructose consumption by lactating mothers resulted in deep neuroendocrine-metabolic disorders of their male offspring, probably enhancing the susceptibility to develop overweight/obesity during adult life.
Gáspárová, Zdenka; Snirc, Vladimír; Stolc, Svorad; Dubovický, Michal; Mach, Mojmír; Ujházy, Eduard
2010-01-01
Damage to the developing brain may be caused by maternal environment, nutritional deficiencies, failure of protective mechanisms, etc. Further, the developing brain may be damaged by intrauterine ischemia or by ischemia in newborns complicated by perinatal asphyxia. There is an effort to find agents with neuroprotective effect on the developing brain. The aim was to study the effect of the new pyridoindole antioxidant SMe1EC2 on the resistance of offspring hippocampus exposed to ischemia in vitro after treatment of mothers. The electrically evoked responses were determined by extracellular recording from offspring hippocampal slices. The effect of oral treatment of rats with SMe1EC2 over 18 consecutive days, from day 15 of gestation to day 10 post partum (PP) was analyzed in the model of ischemia in vitro measured on the hippocampus of 21-day-old pups, with focus on neuronal function recovery in reoxygenation. Increased recovery of neuronal response was found at the end of 20-min reoxygenation in offspring hippocampal slices exposed to 10-min hypoxia/hypoglycemia from rats whose mothers were treated with the dose of 50 and 250 mg/kg of SMe1EC2, compared to control offspring slices (mothers received vehicle over the same time). The increased offspring hippocampus resistance to hypoxia/hypoglycemia due to 18-day maternal treatment with SMe1EC2 might have been obtained via the transplacental way as well as in the neonatal period via breast milk, skin and saliva. The manifested neuroprotective effect of SMe1EC2 on the developing brain might find exploitation during risk pregnancy and delivery.
Chen, Lian-Hui; Liang, Li; Fang, Yan-Lan; Wang, Ying-Min; Zhu, Wei-Fen
2016-10-01
To determine whether maternal intrauterine undernutrition and post-weaning fish oil intake influence lipid profile in juvenile offspring, and explore the possible mechanisms at transcriptional levels. After weaning, 32 control offspring and 24 intrauterine growth retardation (IUGR) offspring were randomly allocated to standard chow or fish oil diet. At 10 weeks, fasting plasma glucose, triglycerides, total cholesterol and expressions of related hepatic genes were examined. IUGR offspring without catch-up growth tended to develop hyperglycemia, dyslipidemia and hepatic steatosis. Down-regulation of CPT-1 and LDLR at transcriptional levels were found in IUGR offspring. Early short-term fish oil intervention reversed these unfavorable changes in juvenile rats with IUGR. The mechanisms might be mediated by decreased expression of ACC-1, increased expression of CPT-1, LDLR and ABCG5. These data suggest that IUGR offspring already present lipid abnormality in juvenile stage, and early short-term fish oil consumption is beneficial to prevent these unfavorable changes.
Chen, Hwei-Hsien; Chiang, Yao-Chang; Yuan, Zung Fan; Kuo, Chung-Chih; Lai, Mei-Dan; Hung, Tsai-Wei; Ho, Ing-Kang; Chen, Shao-Tsu
2015-01-01
Methadone and buprenorphine are widely used for treating people with opioid dependence, including pregnant women. Prenatal exposure to opioids has devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. This study aimed at comparing the behavioral outcomes of young rats prenatally exposed to buprenorphine, methadone, and morphine. Pregnant Sprague-Dawley rats were administered saline, morphine, methadone, and buprenorphine during embryonic days 3-20. The cognitive function, social interaction, anxiety-like behaviors, and locomotor activity of offsprings were examined by novel object recognition test, social interaction test, light-dark transition test, elevated plus-maze, and open-field test between 6 weeks and 10 weeks of age. Prenatal exposure to methadone and buprenorphine did not affect locomotor activity, but significantly impaired novel object recognition and social interaction in both male and female offsprings in the same manner as morphine. Although prenatal exposure to methadone or buprenorphine increased anxiety-like behaviors in the light-dark transition in both male and female offsprings, the effects were less pronounced as compared to that of morphine. Methadone affected elevated plus-maze in both sex, but buprenorphine only affected the female offsprings. These findings suggest that buprenorphine and methadone maintenance therapy for pregnant women, like morphine, produced detrimental effects on cognitive function and social behaviors, whereas the offsprings of such women might have a lower risk of developing anxiety disorders.
Chen, Hwei-Hsien; Chiang, Yao-Chang; Yuan, Zung Fan; Kuo, Chung-Chih; Lai, Mei-Dan; Hung, Tsai-Wei; Ho, Ing-kang; Chen, Shao-Tsu
2015-01-01
Methadone and buprenorphine are widely used for treating people with opioid dependence, including pregnant women. Prenatal exposure to opioids has devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. This study aimed at comparing the behavioral outcomes of young rats prenatally exposed to buprenorphine, methadone, and morphine. Pregnant Sprague-Dawley rats were administered saline, morphine, methadone, and buprenorphine during embryonic days 3–20. The cognitive function, social interaction, anxiety-like behaviors, and locomotor activity of offsprings were examined by novel object recognition test, social interaction test, light–dark transition test, elevated plus-maze, and open-field test between 6 weeks and 10 weeks of age. Prenatal exposure to methadone and buprenorphine did not affect locomotor activity, but significantly impaired novel object recognition and social interaction in both male and female offsprings in the same manner as morphine. Although prenatal exposure to methadone or buprenorphine increased anxiety-like behaviors in the light–dark transition in both male and female offsprings, the effects were less pronounced as compared to that of morphine. Methadone affected elevated plus-maze in both sex, but buprenorphine only affected the female offsprings. These findings suggest that buprenorphine and methadone maintenance therapy for pregnant women, like morphine, produced detrimental effects on cognitive function and social behaviors, whereas the offsprings of such women might have a lower risk of developing anxiety disorders. PMID:25834439
Bayol, Stéphanie A; Farrington, Samantha J; Stickland, Neil C
2007-10-01
Obesity is generally associated with high intake of junk foods rich in energy, fat, sugar and salt combined with a dysfunctional control of appetite and lack of exercise. There is some evidence to suggest that appetite and body mass can be influenced by maternal food intake during the fetal and suckling life of an individual. However, the influence of a maternal junk food diet during pregnancy and lactation on the feeding behaviour and weight gain of the offspring remains largely uncharacterised. In this study, six groups of rats were fed either rodent chow alone or with a junk food diet during gestation, lactation and/or post-weaning. The daily food intakes and body mass were measured in forty-two pregnant and lactating mothers as well as in 216 offspring from weaning up to 10 weeks of age. Results showed that 10 week-old rats born to mothers fed the junk food diet during gestation and lactation developed an exacerbated preference for fatty, sugary and salty foods at the expense of protein-rich foods when compared with offspring fed a balanced chow diet prior to weaning or during lactation alone. Male and female offspring exposed to the junk food diet throughout the study also exhibited increased body weight and BMI compared with all other offspring. This study shows that a maternal junk food diet during pregnancy and lactation may be an important contributing factor in the development of obesity.
Prenatal and early postnatal dietary sodium restriction sensitizes the adult rat to amphetamines.
McBride, Shawna M; Culver, Bruce; Flynn, Francis W
2006-10-01
Acute sodium deficiency sensitizes adult rats to psychomotor effects of amphetamine. This study determined whether prenatal and early life manipulation of dietary sodium sensitized adult offspring to psychomotor effects of amphetamine (1 or 3 mg/kg ip) in two strains of rats. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) dams were fed chow containing low NaCl (0.12%; LN), normal NaCl (1%; NN), or high NaCl (4%; HN) throughout breeding, gestation, and lactation. Male offspring were maintained on the test diet for an additional 3 wk postweaning and then fed standard chow thereafter until testing began. Overall, blood pressure (BP), total fluid intake, salt preference, and adrenal gland weight were greater in SHR than in WKY. WKY LN offspring had greater water intake and adrenal gland weight than did WKY NN and HN offspring, whereas WKY HN offspring had increased BP, salt intake, and salt preference compared with other WKY offspring. SHR HN offspring also had increased BP compared with other SHR offspring; all other measures were similar for SHR offspring. The low-dose amphetamine increased locomotor and stereotypical behavior compared with baseline and saline injection in both WKY and SHR offspring. Dietary sodium history affected the rats' psychomotor response to the higher dose of amphetamine. Injections of 3 mg/kg amphetamine in both strains produced significantly more behavioral activity in the LN offspring than in NN and HN offspring. These results show that early life experience with low-sodium diets produce long-term changes in adult rats' behavioral responses to amphetamine.
Vargas, Vladimir E; Gurung, Sunam; Grant, Benjamin; Hyatt, Kimberly; Singleton, Krista; Myers, Sarah M; Saunders, Debra; Njoku, Charity; Towner, Rheal; Myers, Dean A
2017-01-01
The effect of gestational hypoxia on the neonatal leptin surge, development of hypothalamic arcuate nuclei (ARH) projections and appetite that could contribute to the programming of offspring obesity is lacking. We examined the effect of 12% O2 from gestational days 15-19 in the Sprague-Dawley rat on post-weaning appetite, fat deposition by MRI, adipose tissue cytokine expression, the neonatal leptin surge, ARH response to exogenous leptin, and αMSH projections to the paraventricular nucleus (PVN) in response to a high fat (HFD) or control diet (CD) in male offspring. Normoxia (NMX) and Hypoxia (HPX) offspring exhibited increased food intake when fed a HFD from 5-8 weeks post-birth; HPX offspring on the CD had increased food intake from weeks 5-7 vs. NMX offspring on a CD. HPX offspring on a HFD remained hyperphagic through 23 weeks. Body weight were the same between offspring from HPX vs. NMX dams from 4-12 weeks of age fed a CD or HFD. By 14-23 weeks of age, HPX offspring fed the CD or HFD as well as male NMX offspring fed the HFD were heavier vs. NMX offspring fed the CD. HPX offspring fed a CD exhibited increased abdominal adiposity (MRI) that was amplified by a HFD. HPX offspring fed a HFD exhibited the highest abdominal fat cytokine expression. HPX male offspring had higher plasma leptin from postnatal day (PN) 6 through 14 vs. NMX pups. HPX offspring exhibited increased basal c-Fos labeled cells in the ARH vs. NMX pups on PN16. Leptin increased c-Fos staining in the ARH in NMX but not HPX offspring at PN16. HPX offspring had fewer αMSH fibers in the PVN vs. NMX offspring on PN16. In conclusion, gestational hypoxia impacts the developing ARH resulting in hyperphagia contributing to adult obesity on a control diet and exacerbated by a HFD.
Vargas, Vladimir E.; Gurung, Sunam; Grant, Benjamin; Hyatt, Kimberly; Singleton, Krista; Myers, Sarah M.; Saunders, Debra; Njoku, Charity; Towner, Rheal
2017-01-01
The effect of gestational hypoxia on the neonatal leptin surge, development of hypothalamic arcuate nuclei (ARH) projections and appetite that could contribute to the programming of offspring obesity is lacking. We examined the effect of 12% O2 from gestational days 15–19 in the Sprague-Dawley rat on post-weaning appetite, fat deposition by MRI, adipose tissue cytokine expression, the neonatal leptin surge, ARH response to exogenous leptin, and αMSH projections to the paraventricular nucleus (PVN) in response to a high fat (HFD) or control diet (CD) in male offspring. Normoxia (NMX) and Hypoxia (HPX) offspring exhibited increased food intake when fed a HFD from 5–8 weeks post-birth; HPX offspring on the CD had increased food intake from weeks 5–7 vs. NMX offspring on a CD. HPX offspring on a HFD remained hyperphagic through 23 weeks. Body weight were the same between offspring from HPX vs. NMX dams from 4–12 weeks of age fed a CD or HFD. By 14–23 weeks of age, HPX offspring fed the CD or HFD as well as male NMX offspring fed the HFD were heavier vs. NMX offspring fed the CD. HPX offspring fed a CD exhibited increased abdominal adiposity (MRI) that was amplified by a HFD. HPX offspring fed a HFD exhibited the highest abdominal fat cytokine expression. HPX male offspring had higher plasma leptin from postnatal day (PN) 6 through 14 vs. NMX pups. HPX offspring exhibited increased basal c-Fos labeled cells in the ARH vs. NMX pups on PN16. Leptin increased c-Fos staining in the ARH in NMX but not HPX offspring at PN16. HPX offspring had fewer αMSH fibers in the PVN vs. NMX offspring on PN16. In conclusion, gestational hypoxia impacts the developing ARH resulting in hyperphagia contributing to adult obesity on a control diet and exacerbated by a HFD. PMID:28957383
Yüksel, Murat; Nazıroğlu, Mustafa; Özkaya, Mehmet Okan
2016-05-01
We investigated the effects of mobile phone (900 and 1800 MHz)- and Wi-Fi (2450 MHz)-induced electromagnetic radiation (EMR) exposure on uterine oxidative stress and plasma hormone levels in pregnant rats and their offspring. Thirty-two rats and their forty newborn offspring were divided into the following four groups according to the type of EMR exposure they were subjected to: the control, 900, 1800, and 2450 MHz groups. Each experimental group was exposed to EMR for 60 min/day during the pregnancy and growth periods. The pregnant rats were allowed to stand for four generations (total 52 weeks) before, plasma and uterine samples were obtained. During the 4th, 5th, and 6th weeks of the experiment, plasma and uterine samples were also obtained from the developing rats. Although uterine lipid peroxidation increased in the EMR groups, uterine glutathione peroxidase activity (4th and 5th weeks) and plasma prolactin levels (6th week) in developing rats decreased in these groups. In the maternal rats, the plasma prolactin, estrogen, and progesterone levels decreased in the EMR groups, while the plasma total oxidant status, and body temperatures increased. There were no changes in the levels of reduced glutathione, total antioxidants, or vitamins A, C, and E in the uterine and plasma samples of maternal rats. In conclusion, although EMR exposure decreased the prolactin, estrogen, and progesterone levels in the plasma of maternal rats and their offspring, EMR-induced oxidative stress in the uteri of maternal rats increased during the development of offspring. Mobile phone- and Wi-Fi-induced EMR may be one cause of increased oxidative uterine injury in growing rats and decreased hormone levels in maternal rats. TRPV1 cation channels are the possible molecular pathways responsible for changes in the hormone, oxidative stress, and body temperature levels in the uterus of maternal rats following a year-long exposure to electromagnetic radiation exposure from mobile phones and Wi-Fi devices. It is likely that TRPV1-mediated Ca(2+) entry in the uterus of pregnant rats involves accumulation of oxidative stress and opening of mitochondrial membrane pores that consequently leads to mitochondrial dysfunction, substantial swelling of the mitochondria with rupture of the outer membrane and release of oxidants such as superoxide (O2 (-)) and hydrogen peroxide (H2O2). The superoxide radical is converted to H2O2 by superoxide dismutase (SOD) enzyme. Glutathione peroxidase (GSH-Px) is an important antioxidant enzyme for removing lipid hydroperoxides and hydrogen peroxide and it catalyzes the reduction of H2O2 to water.
ADVERSE EFFECTS OF TCDD ON MAMMARY GLAND DEVELOPMENT IN LONG EVANS RATS: A TWO GENERATIONAL STUDY
Recent studies have demonstrated variable effects on mammary gland development in rat offspring exposed to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin, 1 ug/kg, gavage) on day 15 of gestation. We have characterized these effects in Long Evans rats, in both one and two-generational...
Bernardi, Maria M; Kirsten, Thiago B; Matsuoka, Suzana M; Teodorov, Elizabeth; Habr, Soraya F; Penteado, Sandra H W N; Palermo-Neto, João
2010-01-01
This study investigates the effects of prenatal lipopolysaccharide (LPS) exposure on the maternal behavior of pregnant rats and the physical development and sexual behavior of their male offspring in adulthood. For two experiments, pregnant rats were injected with LPS (250 microg/kg, i.p.) on gestation day (GD) 21. In the first experiment, the maternal behavior (postnatal day, PND, 6) and the dam's open-field general activity (PND7) were evaluated. In the second experiment, the maternal pre- and postnatal parameters, the pup's development, the offspring's sexual behavior in adulthood, and the pup's organ weights were assessed. Compared to the control group, the LPS-treated dams presented reduced maternal behavior, decreased general activity, a smaller body weight difference between GD21 and PND1, a greater number of perinatal deaths, and smaller litters. For the male pups, LPS treatment resulted in a decreased body weight on PND2, whereas the anogenital distance and the day of testis descent were not modified. The male sexual behavior was impaired by prenatal LPS. Particularly the number of ejaculating animals was reduced. The testis weight was also lower in the prenatally LPS-treated rats than in the control rats. We propose that prenatal LPS exposure on GD21 acts as an imprinting factor that interferes with the programming of brain sexual determination in offspring. Copyright 2009 S. Karger AG, Basel.
Sanders, Marijke W; Fazzi, Gregorio E; Janssen, Ger M J; Blanco, Carlos E; De Mey, Jo G R
2005-07-01
A suboptimal fetal environment increases the risk to develop cardiovascular disease in the adult. We reported previously that intrauterine stress in response to reduced uteroplacental blood flow in the pregnant rat limits fetal growth and compromises renal development, leading to an altered renal function in the adult offspring. Here we tested the hypothesis that high dietary sodium intake in rats with impaired renal development attributable to intrauterine stress, results in increased blood pressure, altered renal function, and organ damage. In rats, intrauterine stress was induced by bilateral ligation of the uterine arteries at day 17 of pregnancy. At the age of 12 weeks, the offspring was given high-sodium drinking water (2% sodium chloride). At the age of 16 weeks, rats were instrumented for monitoring of blood pressure and renal function. After intrauterine stress, litter size and birth weight were reduced, whereas hematocrit at birth was increased. Renal blood flow, glomerular filtration rate, and the glomerular filtration fraction were increased significantly after intrauterine stress. High sodium intake did not change renal function and blood pressure in control animals. However, during high sodium intake in intrauterine stress offspring, renal blood flow, glomerular filtration rate, and the filtration fraction were decreased, and blood pressure was increased. In addition, these animals developed severe albuminuria, an important sign of renal dysfunction. Thus, a suboptimal fetal microenvironment, which impairs renal development, results in sodium-dependent hypertension and albuminuria.
Huang, Yuejun; Shen, Zhiwei; Hu, Liu; Xia, Fang; Li, Yuewa; Zhuang, Jingwen; Chen, Peishan; Huang, Qingjun
2016-12-30
There is increasing evidence that mothers' exposure to stress before or during pregnancy is linked to an incidence of psychiatric disorders in offspring. However, a few studies have estimated the role of sex in the detrimental effects of pre-gestational stress on the offspring rats at early adolescence. Sex differences regarding the metabolism of gamma-aminobutyric acid and glutamate in the right hippocampus were investigated by MRS when the offspring rats reached 30 days. Additionally, the impact of pre-gestational stress exposed on an additional short-term acute stressor, such as forced swim, was examined in the male and female offspring rats. Our findings showed female offspring rats were more vulnerable to stressful conditions for either pre-gestational stress or acute stress in early adolescence, and had decreased GABA/Cr+PCr and Glu/Cr+PCr in the right hippocampus. Interestingly, in response to forced swim, male offspring rats whose mothers were exposed to pre-gestational stress were more affected by the short-term acute stressor and this was manifested by change of Glu/GABA and Glu/Gln in the right hippocampus. These data indicated that although female offspring rats were more vulnerable to pre-gestational stress from their mothers than males, in response to an additional acute stressor they showed better response. Therefore, both sexually dimorphic manner and combination of stressful procedures should be carefully considered in the study of stress-related psychiatric disorders in early adolescence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Luo, Foquan; Hu, Yan; Zhao, Weilu; Zuo, Zhiyi; Yu, Qi; Liu, Zhiyi; Lin, Jiamei; Feng, Yunlin; Li, Binda; Wu, Liuqin; Xu, Lin
2016-01-01
Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring's learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; Luo, Hanwen; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071
Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected.more » Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine metabolic dysfunction than male. • There were interactions among caffeine, high-fat diet and gender.« less
[In utero exposure to dichlorvos induces apoptosis of Leydig cells in rats].
Zeng, Li; Wang, Yu-Yun; Zhang, Jie; Lin, Ping; Gong, Xue-De; Huang, Lu-Gang
2009-11-01
To observe the influence of the organophosphate insecticide dichlorvos on the apoptosis of Leydig cells in the male offspring of the SD rats exposed to dichlorvos, and to investigate the role of the changes of Leydig cells in genitourinary malformation. Twenty-one pregnant SD rats were divided into a corn oil control group and 6 dichlorvos groups, the former given by gavage 1.0 ml corn oil daily, and the latter dichlorvos at the dose of 1, 4, 8, 16, 20 and 24 mg/kg daily from the 12th to 17th day of conception. After birth, 5 male neonates were randomly selected from each of the control and dichlorvos groups, and their testes were harvested to be analyzed by HE staining, immunohistochemistry with anti-caspase-3 antibodies and DAPI fluorescent staining. At 90 days after birth, another 5 of the male offspring were taken from each group and their testes were collected for the same analyses. Statistically significant differences were found in the number of both the caspase-3 positive and DAPI labeled Leydig cells in the testes of the rat offspring between the corn oil and the 4, 8, 16, 20 and 24 mg/kg dichlorvos groups (P < 0.05), but not between the control and the 1 mg/kg dichlorvos groups (P > 0.05). The apoptosis of Leydig cells was increased in the male offspring of the dichlorvos-exposed SD rats in a dose-dependent manner. Exposure of pregnant rats to dichlorvos can increase the apoptosis of Leydig cells in the male offspring, which, in turn, may reduce the number of Leydig cells, interfere with the testis function during the embryonic period, and damage the development of the genitourinary system.
Prenatal exposure to angiotensin II increases blood pressure and decreases salt sensitivity in rats.
Svitok, Pavel; Senko, Tomas; Panakova, Zuzana; Olexova, Lucia; Krskova, Lucia; Okuliarova, Monika; Zeman, Michal
2017-01-01
Renin angiotensin aldosterone system (RAAS) plays an essential role in the homeostatic control of arterial blood pressure, perfusion of tissues, and control of extracellular fluid. Its components are highly expressed in the developing kidney, general vasculature, brain, and heart. A modified intrauterine environment alters mechanisms controlling blood pressure (BP) and can lead to hypertension in the adult offspring and developmentally programmed RAAS can be involved in this process. There are very little data about the effects of increased angiotensin II (Ang II) concentrations during pregnancy on in utero development of the fetus. In our study, we administered Ang II to pregnant female rats via osmotic mini-pumps and evaluated the postnatal development and BP control in the offspring. To estimate possible developmental changes in sensitivity to salt, we exposed the offspring to a diet with increased salt content and measured plasma aldosterone levels and plasma renin activity. Increased Ang II during pregnancy raised BP in the offspring; however, salt sensitivity was decreased in comparison to controls. Relative weight of the left ventricle was decreased in the offspring prenatally exposed to Ang II, while relative kidney weight was reduced only in female offspring. Prenatal treatment led to increased aldosterone levels and decreased plasma renin activity, suggesting a complex physiological response. Our results suggest that conditions leading to upregulation of RAAS during pregnancy can influence the cardiovascular system of the fetus and have a long-term impact on the offspring's health.
Cross-fostering reduces obesity induced by early exposure to monosodium glutamate in male rats.
Miranda, Rosiane Aparecida; da Silva Franco, Claudinéia Conationi; de Oliveira, Júlio Cezar; Barella, Luiz Felipe; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; Pavanello, Audrei; da Conceição, Ellen Paula Santos; Torrezan, Rosana; Armitage, James; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar; de Freitas Mathias, Paulo Cezar; Vieira, Elaine
2017-01-01
Maternal obesity programmes a range of metabolic disturbances for the offspring later in life. Moreover, environmental changes during the suckling period can influence offspring development. Because both periods significantly affect long-term metabolism, we aimed to study whether cross-fostering during the lactation period was sufficient to rescue a programmed obese phenotype in offspring induced by maternal obesity following monosodium L-glutamate (MSG) treatment. Obesity was induced in female Wistar rats by administering subcutaneous MSG (4 mg/g body weight) for the first 5 days of postnatal life. Control and obese female rats were mated in adulthood. The resultant pups were divided into control second generation (F 2 ) (CTLF 2 ), MSG-treated second generation (F 2 ) (MSGF 2 ), which suckled from their CTL and MSG biological dams, respectively, or CTLF 2 -CR, control offspring suckled by MSG dams and MSGF 2 -CR, MSG offspring suckled by CTL dams. At 120 days of age, fat tissue accumulation, lipid profile, hypothalamic leptin signalling, glucose tolerance, glucose-induced, and adrenergic inhibition of insulin secretion in isolated pancreatic islets were analysed. Maternal MSG-induced obesity led to an obese phenotype in male offspring, characterized by hyperinsulinaemia, hyperglycaemia, hyperleptinaemia, dyslipidaemia, and impaired leptin signalling, suggesting central leptin resistance, glucose intolerance, impaired glucose-stimulated, and adrenergic inhibition of insulin secretion. Cross-fostering normalized body weight, food intake, leptin signalling, lipid profiles, and insulinaemia, but not glucose homeostasis or insulin secretion from isolated pancreatic islets. Our findings suggest that alterations during the lactation period can mitigate the development of obesity and prevent the programming of adult diseases.
Gao, Jing; Su, Hong; Yin, Jingwen; Cao, Fuyuan; Feng, Peipei; Liu, Nan; Xue, Ling; Zheng, Guoying; Li, Qingzhao; Zhang, Yanshu
2015-06-01
To investigate the effects of nano-lead exposure on learning and memory and iron homeostasis in the brain of the offspring rats on postnatal day 21 (PND21) and postnatal day 42 (PND42). Twenty adult pregnant female Sprague-Dawley rats were randomly divided into control group and nano-lead group. Rats in the nano-lead group were orally administrated 10 mg/kg nano-lead, while rats in the control group were administrated an equal volume of normal saline until PND21. On PND21, the offspring rats were weaned and given the same treatment as the pregnant rats until 42 days after birth. The learning and memory ability of offspring rats on PND21 and PND42 was evaluated by Morris water maze test. The hippocampus and cortex s amples of offspring rats on PND21 and PND42 were collected to determine iron and lead levels in the hippocampus and cortex by inductively coupled plasma-mass spectrometry. The distributions of iron in the hippocampus and cortex were observed by Perl's iron staining. The expression levels of ferritin, ferroportin 1 (FPN1), hephaestin (HP), and ceruloplasmin (CP) were measured by enzyme-linked immunosorbent assay. After nano-lead exposure, the iron content in the cortex of offspring rats on PND21 and PND42 in the nano-lead group was significantly higher than those in the control group (32.63 ± 6.03 µg/g vs 27.04 ± 5.82 µg/g, P<0.05; 46.20 ±10.60 µg/g vs 36.61 ± 10.2µg/g, P<0.05). The iron content in the hippocampus of offspring rats on PND42 in the nano-lead group was significantly higher than that in the control group (56.9 ± 4.37µg/g vs 37.71 ± 6.92µg/g, P<0.05). The Perl's staining showed massive iron deposition in the cortex and hippocampus in the nano-lead group. FPNl level in the cotfex of offspring rats on PND21 in the nano-lead group was significantly lower than that in the control group (3.64 ± 0.23 ng/g vs 4.99 ± 0.95 ng/g, P<0.05). FPN1 level in the hippocampus of offspring rats on PND42 in the nano-lead group was significantly lower than that in the control group (2.28 ± 0.51 ng/g vs 3.69 ± 0.69 ng/g, P<0.05). The escape latencies of offspring rats on PND21 and PND42 in the nano-lead group were longer than those in the control group (15.54 ± 2.89 s vs 9.01 ± 4.66 s; 6.16 ± 1.42 s vs 4.26 ± 1.51 s). The numbers of platform crossings of offspring rats on PND21 and PND42 in the nano- lead group were significantly lower than those in the control group (7.77 ± 2.16 times vs 11.2 ± 1.61 times, P<0.05; 8.12 ± 1.51 times vs 13.0 ± 2.21 times, P<0.05). n Nano-lead exposure can result in iron homeostasis disorders in the hippocampus and cortex of offspring rats and affect their learning and memory ability.
Effects of paternal obesity on growth and adiposity of male rat offspring.
Lecomte, Virginie; Maloney, Christopher A; Wang, Kristy W; Morris, Margaret J
2017-02-01
Emerging evidence suggests that paternal obesity plays an important role in offspring health. Our previous work using a rodent model of diet-induced paternal obesity showed that female offspring from high-fat diet (HFD)-fed fathers develop glucose intolerance due to impairment of pancreatic insulin secretion. Here, we focused on the health outcomes of male offspring from HFD-fed fathers. Male Sprague-Dawley rats (3 wk old) were fed control (CD-F0) or HFD (HFD-F0) for 12 wk before mating with control-fed females. Male offspring were fed control diets for up to 8 wk or 6 mo. Although male offspring from HFD-F0 did not develop any obvious glucose metabolism defects in this study, surprisingly, a growth deficit phenotype was observed from birth to 6 mo of age. Male offspring from HFD-F0 had reduced birth weight compared with CD-F0, followed by reduced postweaning growth from 9 wk of age. This resulted in 10% reduction in body weight at 6 mo with significantly smaller fat pads and skeletal muscles. Reduced circulating levels of growth hormone (GH) and IGF-I were detected at 8 wk and 6 mo, respectively. Expression of adipogenesis markers was decreased in adipose tissue of HFD-F0 offspring at 8 wk and 6 mo, and expression of growth markers was decreased in muscle of HFD-F0 offspring at 8 wk. We propose that the reduced GH secretion at 8 wk of age altered the growth of male offspring from HFD-F0, resulting in smaller animals from 9 wk to 6 mo of age. Furthermore, increased muscle triglyceride content and expression of lipogenic genes were observed in HFD-F0 offspring, potentially increasing their metabolic risk. Copyright © 2017 the American Physiological Society.
Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo
2016-01-01
Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490
Ong, Z. Y.; Muhlhausler, B. S.
2011-01-01
Individuals exposed to high-fat, high-sugar diets before birth have an increased risk of obesity in later life. Recent studies have shown that these offspring exhibit increased preference for fat, leading to suggestions that perinatal exposure to high-fat, high-sugar foods results in permanent changes within the central reward system that increase the subsequent drive to overconsume palatable foods. The present study has determined the effect of a maternal “junk-food” diet on the expression of key components of the mesolimbic reward pathway in the offspring of rat dams at 6 wk and 3 mo of age. We show that offspring of junk-food-fed (JF) dams exhibit higher fat intake from weaning until at least 3 mo of age (males: 16±0.6 vs. 11±0.8 g/kg/d; females: 19±1.3 vs. 13±0.4 g/kg/d; P<0.01). mRNA expression of μ-opioid receptor (Mu) was 1.6-fold higher (P<0.01) and dopamine active transporter (DAT) was 2-fold lower (P<0.05) in JF offspring at 6 wk of age. By 3 mo, these differences were reversed, and Mu mRNA expression was 2.8-fold lower (P<0.01) and DAT mRNA expression was 1.9-fold higher (P<0.01) in the JF offspring. These findings suggest that perinatal exposure to high-fat, high-sugar diets results in altered development of the central reward system, resulting in increased fat intake and altered response of the reward system to excessive junk-food intake in postnatal life.—Ong, Z. Y., Muhlhausler, B. S. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. PMID:21427213
Paul, Heather A; Bomhof, Marc R; Vogel, Hans J; Reimer, Raylene A
2016-02-12
Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy.
Paul, Heather A.; Bomhof, Marc R.; Vogel, Hans J.; Reimer, Raylene A.
2016-01-01
Maternal obesity and overnutrition during pregnancy and lactation can program an increased risk of obesity in offspring. In this context, improving maternal metabolism may help reduce the intergenerational transmission of obesity. Here we show that, in Sprague-Dawley rats, selectively altering obese maternal gut microbial composition with prebiotic treatment reduces maternal energy intake, decreases gestational weight gain, and prevents increased adiposity in dams and their offspring. Maternal serum metabolomics analysis, along with satiety hormone and gut microbiota analysis, identified maternal metabolic signatures that could be implicated in programming offspring obesity risk and highlighted the potential influence of maternal gut microbiota on maternal and offspring metabolism. In particular, the metabolomic signature of insulin resistance in obese rats normalized when dams consumed the prebiotic. In summary, prebiotic intake during pregnancy and lactation improves maternal metabolism in diet-induced obese rats in a manner that attenuates the detrimental nutritional programming of offspring associated with maternal obesity. Overall, these findings contribute to our understanding of the maternal mechanisms influencing the developmental programming of offspring obesity and provide compelling pre-clinical evidence for a potential strategy to improve maternal and offspring metabolic outcomes in human pregnancy. PMID:26868870
Gemmel, Mary; Rayen, Ine; Lotus, Tiffany; van Donkelaar, Eva; Steinbusch, Harry W; De Lacalle, Sonsoles; Kokras, Nikolaos; Dalla, Christina; Pawluski, Jodi L
2016-04-01
Selective serotonin reuptake inhibitor medication exposure during the perinatal period can have a long term impact in adult offspring on neuroplasticity and the serotonergic system, but the impact of these medications during early development is poorly understood. The aim of this study was to determine the effects of developmental exposure to the SSRI, fluoxetine, on the serotonergic system, dopaminergic system, and synaptophysin density in the prefrontal cortex and hippocampus, as well as number of immature neurons in the dentate gyrus, in juvenile rat offspring at weaning. To model aspects of maternal depression, prenatal restraint stress was used. Sprague-Dawley rat offspring were exposed to either prenatal stress and/or fluoxetine. Main findings show that developmental fluoxetine exposure to prenatally stressed offspring decreased 5-HT and 5-HIAA levels and altered the dopaminergic system in the hippocampus. Prenatal stress, regardless of fluoxetine, increased synaptophysin density in the PFC. This work indicates that early exposure to maternal stress and SSRI medication can alter brain monoamine levels and synaptophysin density in offspring at weaning. © 2015 Wiley Periodicals, Inc.
2013-01-01
Background Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze.Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Results Results showed that prenatal and postnatal TRF supplementation increased the brain (4–6 fold increase) and plasma α-tocotrienol (0.8 fold increase) levels in male off-springs. There is also notably better cognitive performance based on the Morris water maze test among these male off-springs. Conclusion Based on these results, it is concluded that prenatal and postnatal TRF supplementation improved cognitive function development in male progeny rats. PMID:23902378
Nagapan, Gowri; Meng Goh, Yong; Shameha Abdul Razak, Intan; Nesaretnam, Kalanithi; Ebrahimi, Mahdi
2013-07-31
Recent findings suggest that the intake of specific nutrients during the critical period in early life influence cognitive and behavioural development profoundly. Antioxidants such as vitamin E have been postulated to be pivotal in this process, as vitamin E is able to protect the growing brain from oxidative stress. Currently tocotrienols are gaining much attention due to their potent antioxidant and neuroprotective properties. It is thus compelling to look at the effects of prenatal and early postnatal tocotrienols supplementation, on cognition and behavioural development among offsprings of individual supplemented with tocotrienols. Therefore, this study is aimed to investigate potential prenatal and early postnatal influence of Tocotrienol-Rich Fraction (TRF) supplementation on cognitive function development in male offspring rats. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Eight-week-old adult female Sprague Dawley (SD) rats were randomly assigned into five groups of two animals each. The animals were fed either with the base diet as control (CTRL), base diet plus vehicle (VHCL), base diet plus docosahexanoic acid (DHA), base diet plus Tocotrienol-Rich fraction (TRF), and base diet plus both docosahexaenoic acid, and tocotrienol rich fraction (DTRF) diets for 2 weeks prior to mating. The females (F0 generation) were maintained on their respective treatment diets throughout the gestation and lactation periods. Pups (F1 generation) derived from these dams were raised with their dams from birth till four weeks post natal. The male pups were weaned at 8 weeks postnatal, after which they were grouped into five groups of 10 animals each, and fed with the same diets as their dams for another eight weeks. Learning and behavioural experiments were conducted only in male off-spring rats using the Morris water maze. Results showed that prenatal and postnatal TRF supplementation increased the brain (4-6 fold increase) and plasma α-tocotrienol (0.8 fold increase) levels in male off-springs. There is also notably better cognitive performance based on the Morris water maze test among these male off-springs. Based on these results, it is concluded that prenatal and postnatal TRF supplementation improved cognitive function development in male progeny rats.
Effects of a prolonged administration of valepotriates in rats on the mothers and their offspring.
Tufik, S; Fujita, K; Seabra, M de L; Lobo, L L
1994-01-01
Valeriana officinalis L. (Valerianaceae) is widely known to be associated with sedative properties. The effects of a valepotriates mixtures on mothers and progeny were evaluated in rats. A 30-day administration of valepotriates did not change the average length of estral cycle, nor the number of estrous phases during this period. Also, there were no changes on the fertility index. Fetotoxicity and external examination studies did not show differences, although internal examination revealed an increase in number of retarded ossification after the highest doses employed--12 and 24 mg/kg. No changes were detected in the development of the offspring after treatment during pregnancy. As for temperature, valepotriates caused a hypothermizant effect after administration by the intraperitoneal route but not after oral administration. Generally, the valepotriates employed induced some alterations after administration by the intraperitoneal route, but doses given orally were innocuous to pregnant rats and their offspring.
Bayol, Stéphanie A; Simbi, Bigboy H; Fowkes, Robert C; Stickland, Neil C
2010-04-01
With rising obesity rates, nonalcoholic fatty liver disease is predicted to become the main cause of chronic liver disease in the next decades. Rising obesity prevalence is attributed to changes in dietary habits with increased consumption of palatable junk foods, but maternal malnutrition also contributes to obesity in progeny. This study examines whether a maternal junk food diet predisposes offspring to nonalcoholic fatty liver disease. The 144 rat offspring were fed either a balanced chow diet alone or with palatable junk foods rich in energy, fat, sugar, and/or salt during gestation, lactation, and/or after weaning up to the end of adolescence. Offspring fed junk food throughout the study exhibited exacerbated hepatic steatosis, hepatocyte ballooning, and oxidative stress response compared with offspring given free access to junk food after weaning only. These offspring also displayed sex differences in their hepatic molecular metabolic adaptation to diet-induced obesity with increased expression of genes associated with insulin sensitivity, de novo lipogenesis, lipid oxidation, and antiinflammatory properties in males, whereas the gene expression profile in females was indicative of hepatic insulin resistance. Hepatic inflammation and fibrosis were not detected indicating that offspring had not developed severe steatohepatitis by the end of adolescence. Hepatic steatosis and increased oxidative stress response also occurred in offspring born to junk food-fed mothers switched to a balanced chow diet from weaning, highlighting a degree of irreversibility. This study shows that a maternal junk food diet in pregnancy and lactation contributes to the development of nonalcoholic fatty liver disease in offspring.
Bayol, Stéphanie A.; Simbi, Bigboy H.; Fowkes, Robert C.; Stickland, Neil C.
2010-01-01
With rising obesity rates, nonalcoholic fatty liver disease is predicted to become the main cause of chronic liver disease in the next decades. Rising obesity prevalence is attributed to changes in dietary habits with increased consumption of palatable junk foods, but maternal malnutrition also contributes to obesity in progeny. This study examines whether a maternal junk food diet predisposes offspring to nonalcoholic fatty liver disease. The 144 rat offspring were fed either a balanced chow diet alone or with palatable junk foods rich in energy, fat, sugar, and/or salt during gestation, lactation, and/or after weaning up to the end of adolescence. Offspring fed junk food throughout the study exhibited exacerbated hepatic steatosis, hepatocyte ballooning, and oxidative stress response compared with offspring given free access to junk food after weaning only. These offspring also displayed sex differences in their hepatic molecular metabolic adaptation to diet-induced obesity with increased expression of genes associated with insulin sensitivity, de novo lipogenesis, lipid oxidation, and antiinflammatory properties in males, whereas the gene expression profile in females was indicative of hepatic insulin resistance. Hepatic inflammation and fibrosis were not detected indicating that offspring had not developed severe steatohepatitis by the end of adolescence. Hepatic steatosis and increased oxidative stress response also occurred in offspring born to junk food-fed mothers switched to a balanced chow diet from weaning, highlighting a degree of irreversibility. This study shows that a maternal junk food diet in pregnancy and lactation contributes to the development of nonalcoholic fatty liver disease in offspring. PMID:20207831
Haron, M N; Mohamed, M
2016-06-01
Exposure to prenatal stress is associated with impaired reproductive function in male rat offspring. Honey is traditionally used by the Malays for enhancement of fertility. The aim of this study was to determine the effect of honey on reproductive system of male rat offspring exposed to prenatal restraint stress. Dams were divided into four groups (n = 10/group): control, honey, stress and honey + stress groups. Dams from honey and honey + stress groups received oral honey (1.2 g kg(-1) body weight) daily from day 1 of pregnancy, meanwhile dams from stress and honey + stress groups were subjected to restraint stress (three times per day) from day 11 of pregnancy until delivery. At 10 weeks old, each male rat offspring was mated with a regular oestrus cycle female. Male sexual behaviour and reproductive performance were evaluated. Then, male rats were euthanised for assessment on reproductive parameters. Honey supplementation during prenatal restraint stress significantly increased testis and epididymis weights as well as improved the percentages of abnormal spermatozoa and sperm motility in male rat offspring. In conclusion, this study might suggest that supplementation of honey during pregnancy seems to reduce the adverse effects of restraint stress on reproductive organs weight and sperm parameters in male rat offspring. © 2015 Blackwell Verlag GmbH.
Nakamura, Noriko; Inselman, Amy L.; White, Gene A.; Chang, Ching-Wei; Trbojevich, Raul A.; Sepehr, Estatira; Voris, Kristie L.; Patton, Ralph E.; Bryant, Matthew S.; Harrouk, Wafa; McIntyre, Barry; Foster, Paul M.; Hansen, Deborah K.
2015-01-01
BACKGROUND 2-hydroxy-4-methoxybenzophenone (HMB) is an ultraviolet (UV)-absorbing compound used in many cosmetic products as a UV-protecting agent and in plastics for preventing UV-induced photodecomposition. HMB has been detected in over 95% of randomly collected human urine samples from adults and from premature infants, and it may have estrogenic potential. METHODS To determine the effects of maternal and lactational exposure to HMB on development and reproductive organs of offspring, time-mated female Harlan Sprague-Dawley rats were dosed with 0, 1,000, 3,000, 10,000, 25,000, or 50,000 ppm HMB (7-8 per group) added to chow from gestation day 6 until weaning on postnatal day (PND) 23. RESULTS AND CONCLUSION Exposure to HMB was associated with reduced body and organ weights in female and male offspring. No significant differences were observed in the number of implantation sites/litter, mean resorptions/litter, % litters with resorptions, number and weights of live fetuses, or sex ratios between the control and HMB dose groups. Normalized anogenital distance in male pups at PND 23 was decreased in the highest dose group. Spermatocyte development was impaired in testes of male offspring in the highest dose group. In females, follicular development was delayed in the highest dose group. However, by evaluating levels of the compound in rat serum, the doses at which adverse events occurred are much higher than usual human exposure levels. Thus, exposure to less than 10,000 ppm HMB does not appear to be associated with adverse effects on the reproductive system in rats. PMID:25707689
Steinberg, Rebecca M.; Walker, Deena M.; Juenger, Thomas E.; Woller, Michael J.; Gore, Andrea C.
2009-01-01
Perinatal exposures to endocrine-disrupting chemicals such as polychlorinated biphenyls (PCBs) can cause latent effects on reproductive function. Here, we tested whether PCBs administered during late pregnancy would compromise reproductive physiology in both the fetally-exposed female offspring (F1 generation), as well as in their female offspring (F2 generation). Pregnant Sprague-Dawley rats were treated with the PCB mixture Aroclor (A) 1221 (0, 0.1, 1 or 10 mg/kg) on embryonic days 16 and 18. Somatic and reproductive development of F1 and their F2 female offspring were monitored, including ages of eye opening, pubertal landmarks, and serum reproductive hormones. The results showed that low doses of A1221 given during this critical period of neuroendocrine development caused differential effects of A1221 on F1 and F2 female rats. In both generations, litter sex ratio was skewed towards females. In the F1 generation, additional effects were found including a significant alteration of serum luteinizing hormone (LH) in the 1 mg/kg A1221 group. The F2 generation showed more profound alterations, particularly with respect to fluctuations in hormones and reproductive tract tissues across the estrous cycle. On proestrus, the day of the preovulatory GnRH/gonadotropin surge, F2 females whose mothers had been perinatally exposed to A1221 exhibited substantially suppressed LH and progesterone concentrations, and correspondingly smaller uterine and ovarian weights on estrus, compared to F2 decendants of control rats. These latter changes suggest a dysregulation of reproductive physiology. Thus, low levels of exposure to PCBs during late fetal development cause significant consequences on the maturation and physiology of two generations of female offspring. These findings have implications for reproductive health and fertility of wildlife and humans. PMID:18305224
Maternal fructose intake disturbs ovarian estradiol synthesis in rats.
Munetsuna, Eiji; Yamada, Hiroya; Yamazaki, Mirai; Ando, Yoshitaka; Mizuno, Genki; Ota, Takeru; Hattori, Yuji; Sadamoto, Nao; Suzuki, Koji; Ishikawa, Hiroaki; Hashimoto, Shuji; Ohashi, Koji
2018-06-01
Recent increases in fructose consumption have raised concerns regarding the potential adverse intergenerational effects, as maternal fructose intake may induce physiological dysfunction in offspring. However, no reports are available regarding the effect of excess maternal fructose on reproductive tissues such as the ovary. Notably, the maternal intrauterine environment has been demonstrated to affect ovarian development in the subsequent generation. Given the fructose is transferred to the fetus, excess fructose consumption may affect offspring ovarian development. As ovarian development and its function is maintained by 17β-estradiol, we therefore investigated whether excess maternal fructose intake influences offspring ovarian estradiol synthesis. Rats received a 20% fructose solution during gestation and lactation. After weaning, offspring ovaries were isolated. Offspring from fructose-fed dams showed reduced StAR and P450(17α) mRNA levels, along with decreased protein expression levels. Conversely, attenuated P450arom protein level was found in the absence of mRNA expression alteration. Consistent with these phenomena, decreased circulating levels of estradiol were observed. Furthermore, estrogen receptor α (ERα) protein levels were also down-regulated. In accordance, the mRNA for progesterone receptor, a transcriptional target of ERα, was decreased. These results suggest that maternal fructose might alter ovarian physiology in the subsequent generation. Copyright © 2018 Elsevier Inc. All rights reserved.
Weiser, Michael J.; Wynalda, Kelly; Salem, Norman; Butt, Christopher M.
2015-01-01
DHA is an important omega-3 PUFA that confers neurodevelopmental benefits. Sufficient omega-3 PUFA intake has been associated with improved mood-associated measures in adult humans and rodents, but it is unknown whether DHA specifically influences these benefits. Furthermore, the extent to which development and puberty interact with the maternal diet and the offspring diet to affect mood-related behaviors in adolescence is poorly understood. We sought to address these questions by 1) feeding pregnant rats with diets sufficient or deficient in DHA during gestation and lactation; 2) weaning their male offspring to diets that were sufficient or deficient in DHA; and 3) assessing depression-related behaviors (forced swim test), plasma biomarkers [brain-derived neurotrophic factor (BDNF), serotonin, and melatonin], and brain biomarkers (BDNF) in the offspring before and after puberty. No dietary effects were detected when the offspring were evaluated before puberty. In contrast, after puberty depressive-like behavior and its associated biomarkers were worse in DHA-deficient offspring compared with animals with sufficient levels of DHA. The findings reported here suggest that maintaining sufficient DHA levels throughout development (both pre- and postweaning) may increase resiliency to emotional stressors and decrease susceptibility to mood disorders that commonly arise during adolescence. PMID:25411442
Lin, Yong; Zhang, Hao; Wang, Wen-dong; Wu, De-sheng; Jiang, Song-hui; Qu, Wei-dong
2006-07-01
To investigate the mechanism and effect of rat perinatal exposure to bisphenol A (BPA) resulting in midbrain dopaminergic neuronal cell apoptosis and tyrosine hydroxylase expression of male offspring. Rat dams were randomLy divided into 4 groups on gestational day(GD) 10 and given orally the bisphenol A doses as 0, 0.5, 5, 50 mg/kg x d from GD10 to weaning. The brains of male offspring were obtained for detecting, with immunohistochemistry protocol, the Caspase-3, Bcl-2 and tyrosine hydroxylase expression in the midbrain on postnatal day 21 or 30 respectively, and the midbrain apoptotic neuronal cell were detected by TUNEL on PND21. The expression of Caspase-3 in the midbrain of rat male offspring were increased but bcl-2 were decreased on PND21 and 30, respectively. On PND21, apoptotic neuronal cell were found in the midbrain of high and medium doses groups. TH protein expression was decreased. Perinatal exposure to bisphenol A can induce the apoptosis of midbrain dopaminergic neuron in the male rat offspring even after weaning, and concomitantly decrease the midbrain TH immunoreactivity, this may cause the abnormal function of dopaminergic pathway of rat male offspring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axelstad, Marta, E-mail: maap@food.dtu.dk; Boberg, Julie; Hougaard, Karin Sorig
Octyl Methoxycinnamate (OMC) is a frequently used UV-filter in sunscreens and other cosmetics. The aim of the present study was to address the potential endocrine disrupting properties of OMC, and to investigate how OMC induced changes in thyroid hormone levels would be related to the neurological development of treated offspring. Groups of 14-18 pregnant Wistar rats were dosed with 0, 500, 750 or 1000 mg OMC/kg bw/day during gestation and lactation. Serum thyroxine (T{sub 4}), testosterone, estradiol and progesterone levels were measured in dams and offspring. Anogenital distance, nipple retention, postnatal growth and timing of sexual maturation were assessed. Onmore » postnatal day 16, gene expression in prostate and testes, and weight and histopathology of the thyroid gland, liver, adrenals, prostate, testes, epididymis and ovaries were measured. After weaning, offspring were evaluated in a battery of behavioral and neurophysiological tests, including tests of activity, startle response, cognitive and auditory function. In adult animals, reproductive organ weights and semen quality were investigated. Thyroxine (T{sub 4}) levels showed a very marked decrease during the dosing period in all dosed dams, but were less severely affected in the offspring. On postnatal day 16, high dose male offspring showed reduced relative prostate and testis weights, and a dose-dependent decrease in testosterone levels. In OMC exposed female offspring, motor activity levels were decreased, while low and high dose males showed improved spatial learning abilities. The observed behavioral changes were probably not mediated solely by early T{sub 4} deficiencies, as the observed effects differed from those seen in other studies of developmental hypothyroxinemia. At eight months of age, sperm counts were reduced in all three OMC-dosed groups, and prostate weights were reduced in the highest dose group. Taken together, these results indicate that perinatal OMC-exposure can affect both the reproductive and neurological development of rat offspring, which may be a cause of concern, as humans are systematically exposed to the compound through usage of sunscreens and other cosmetics.« less
Castro, Heriberto; Pomar, Catalina Amadora; Palou, Andreu; Picó, Catalina; Sánchez, Juana
2017-03-01
We studied in rats whether the expected detrimental effects in offspring associated to maternal dietary obesity may be reverted by obesogenic diet removal 1 month before mating. Female rats were fed a cafeteria diet (CD) from days 10 to 100 and then a standard diet (SD) (postcafeteria rats). One month after CD removal, postcafeteria rats and a group of SD-fed female rats (controls) were mated with males. At weaning, offspring were fed SD and followed until 4 months old. CD was effective at inducing obesity in dams. Its removal led to a reduction in body weight, although, after 30 days, rats retained excess body weight and fat than controls. During lactation, postcafeteria dams showed greater body fat, and higher leptin and adiponectin levels in milk than controls. From 2 months of life, offspring of postcafeteria dams displayed lower body weight than controls, with no differences in the percentage of fat, homeostatic model assessment for insulin resistance, or circulating parameters. Removal of CD in obese rats before gestation, although without complete reversion of body weight excess, may prevent the expected detrimental effects in offspring associated to an excess fat accumulation in adulthood and the related metabolic disturbances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Camacho, Alberto; Montalvo-Martinez, Larisa; Cardenas-Perez, Robbi E; Fuentes-Mera, Lizeth; Garza-Ocañas, Lourdes
2017-07-14
Contextual food conditioned behaviors require plasticity of glutamatergic neurotransmission in the reward system, involving changes in the expression of including a-amino-3-hydroxy-5-methylisoxazole 4-propionate receptors (AMPA), N-methyl-d-aspartic acid (NMDA) and metabotropic glutamate 2,3 (mGlur 2,3). However, the role of changes in glutamatergic synaptic markers on energy-dense palatable food preference during development has not been described. Here, we determine the effect of nutritional programing during gestation on fat food choices using a conditioned place preference (CPP) test and an operant training response and its effect on glutamatergic markers in the nucleus accumbens (Nac) shell and prefrontal cortex (PFC). Our data showed that rats displayed preference for palatable fat food and an increase in caloric intake when compared to a chow diet. Notably, 74% of rats showing a preference for fat food intake correlate with a positive HFD-paired score whereas 26% failed to get HFD-conditioned. Also, male rats trained under an operant training response schedule (FR1, FR5 and PR) showed high and low responder groups to work for food. Notably, hypercaloric nutritional programing of female rats leads to exacerbation for reinforcers in female offspring compared to offspring from chow diet. Finally, we found that an operant training response to palatable reinforcers correlates with upregulation of mGlur 2,3 in the NAc shell and PFC of male rats and female offspring. Also, we found selective Nr1 upregulation in NAc shell and the PFC of female offspring. Our data suggest that nutritional programing by hypercaloric intake leads to incentive motivation to work for food and synaptic plasticity alteration in the mesolimbic system. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Yan-Hong; Ye, Ting-Ting; Liu, Chong-Xiao; Wang, Lei; Chen, Yuan-Wen; Dong, Yan
2017-01-01
This study aimed to assess the impact of perinatal high-fat (HF) diet in female Sprague-Dawley rats (F0) on glucose metabolism and islet function in their early life of second-generation of offspring (F2). F0 rats were fed with a standard chow (SC) or HF diet for 8 weeks before mating, up to termination of lactation for their first-generation of offspring (F1-SC and F1-HF). F1 females were mated with normal males at the age of week 11, and producing F2 offspring (F2-SC, F2-HF). All the offspring were fed SC diet after weaning for 3 weeks. The glucose level and islet function of F2 offspring were assessed at the age of week 3 and 12. The F2-HF offspring had a high birth weight and maintained a higher body mass at the age of week 3 and 12, along with an impaired glucose tolerance and lower serum insulin levels compared with the F2-SC. β-cell proliferation was also impaired in the islets of F2-HF rats at the age of week 3 and 12. The pancreatic and duodenal homeobox factor-1 (Pdx1) and Neurogenic differentiation 1 (NeuroD1) expressions were decreased in the islet of F2-HF rats at the age of week 12. Maternal HF diet during pre-gestation, gestation, and lactation in rats could result in the increased body weight and glucose intolerance in their early life of F2 offspring due to impaired β-cell function and proliferation.
Nathanielsz, PW; Ford, SP; Long, NM; Vega, CC; Reyes-Castro, LA; Zambrano, E
2013-01-01
Maternal obesity is a global epidemic affecting the developed and developing world. Human and animal studies indicate that maternal obesity programs development predisposing offspring to later-life chronic diseases. Several mechanisms act together to produce these adverse health problems. There is a need for effective interventions that prevent these outcomes and guide management in human pregnancy. We report here dietary and exercise intervention studies in both altricial and precocial species, rats and sheep, designed to prevent adverse offspring outcomes. Both interventions present exciting opportunities to at least in part prevent adverse metabolic and other outcomes in mother and offspring. PMID:24147928
de Almeida Chaves Rodrigues, Aline Fernanda; de Lima, Ingrid Lauren Brites; Bergamaschi, Cássia Toledo; Campos, Ruy Ribeiro; Hirata, Aparecida Emiko; Schoorlemmer, Guus Hermanus Maria; Gomes, Guiomar Nascimento
2013-01-15
The exposure of the fetus to a hyperglycemic environment promotes the development of hypertension and renal dysfunction in the offspring at adult age. We evaluated the role of renal nerves in the hypertension and renal changes seen in offspring of diabetic rats. Diabetes was induced in female Wistar rats (streptozotocin, 60 mg/kg ip) before mating. Male offspring from control and diabetic dams were studied at an age of 3 mo. Systolic blood pressure measured by tail cuff was increased in offspring of diabetic dams (146 ± 1.6 mmHg, n = 19, compared with 117 ± 1.4 mmHg, n = 18, in controls). Renal function, baseline renal sympathetic nerve activity (rSNA), and arterial baroreceptor control of rSNA were analyzed in anesthetized animals. Glomerular filtration rate, fractional sodium excretion, and urine flow were significantly reduced in offspring of diabetic dams. Two weeks after renal denervation, blood pressure and renal function in offspring from diabetic dams were similar to control, suggesting that renal nerves contribute to sodium retention in offspring from diabetic dams. Moreover, basal rSNA was increased in offspring from diabetic dams, and baroreceptor control of rSNA was impaired, with blunted responses to infusion of nitroprusside and phenylephrine. Thus, data from this study indicate that in offspring from diabetic mothers, renal nerves have a clear role in the etiology of hypertension; however, other factors may also contribute to this condition.
Zambrano, E; Martínez-Samayoa, P M; Rodríguez-González, G L; Nathanielsz, P W
2010-01-01
Obesity involving women of reproductive years is increasing dramatically in both developing and developed nations. Maternal obesity and accompanying high energy obesogenic dietary (MO) intake prior to and throughout pregnancy and lactation program offspring physiological systems predisposing to altered carbohydrate and lipid metabolism. Whether maternal obesity-induced programming outcomes are reversible by altered dietary intake commencing before conception remains an unanswered question of physiological and clinical importance. We induced pre-pregnancy maternal obesity by feeding female rats with a high fat diet from weaning to breeding 90 days later and through pregnancy and lactation. A dietary intervention group (DINT) of MO females was transferred to normal chow 1 month before mating. Controls received normal chow throughout. Male offspring were studied. Offspring birth weights were similar. At postnatal day 21 fat mass, serum triglycerides, leptin and insulin were elevated in MO offspring and were normalized by DINT. At postnatal day 120 serum glucose, insulin and homeostasis model assessment (HOMA) were increased in MO offspring; glucose was restored, and HOMA partially reversed to normal by DINT. At postnatal day 150 fat mass was increased in MO and partially reversed in DINT. At postnatal day 150, fat cell size was increased by MO. DINT partially reversed these differences in fat cell size. We believe this is the first study showing reversibility of adverse metabolic effects of maternal obesity on offspring metabolic phenotype, and that outcomes and reversibility vary by tissue affected. PMID:20351043
Martins, Adriana do Nascimento; Nencioni, Ana Leonor Abrahão; Dorce, Ana Leticia Coronado; Paulo, Maria Eliza F V; Frare, Eduardo Osório; Dorce, Valquíria Abrão Coronado
2016-01-01
Scorpion stings are a public health problem in Brazil and lactating women may be affected. We aimed to study the effects of Tityus bahiensis venom in the offspring of rats treated during lactation. Mothers received a subcutaneous injection of saline (1.0ml/kg) or venom (2.5mg/kg) or an intraperitoneal injection of LPS (lipopolysaccharide) (100μg/kg) on postnatal (PN) days 2 (PN2), 10 (PN10) or 16 (PN16). The offspring were evaluated during the childhood and adulthood. Pups showed a delay in physical and reflexological development, and a decrease in motor activity. Adults displayed low anxiety. There was an increase in the number of viable neuronal cells in hippocampal areas CA1 and CA4. The levels of IFN-γ (interferon-gamma) increased in the experimental groups. Several of the parameters analyzed showed important differences between the sexes. Thus, the scorpion venom affects the development in the offspring of mothers envenomed during the lactation. Copyright © 2015 Elsevier Inc. All rights reserved.
Vorhees, C V; Fernandez, K
1986-01-01
Long-Evans rats were gavaged twice each day with 4 g/kg/day, of ethanol on days 10-14 of gestation. Ethanol and control offspring were reared by untreated surrogate dams to minimize possible postnatal maternal treatment influences. Ethanol-exposed offspring exhibited delayed olfactory orientation (discrimination) to home cage scent and delayed lower incisor eruption compared to pair-fed or ad lib fed controls. After weaning, the ethanol offspring exhibited increased open-field section entries, particularly of centrally located sections, and facilitated swimming performance in a water maze. Ethanol exposure significantly decreased weight gain and increased postnatal, but not prenatal, mortality in the progeny. The female ethanol offspring also showed delayed vaginal patency development. This was due to large delays in vaginal development in a small number of individuals in this group; no such lag was seen in any members of either control group. The data confirm that short-term prenatal alcohol exposure can produce many of the behavioral effects previously reported when alcohol is administered throughout most or all of pregnancy.
Sun, Bo; Liang, Nu-Chu; Ewald, Erin R; Purcell, Ryan H; Boersma, Gretha J; Yan, Jianqun; Moran, Timothy H; Tamashiro, Kellie L K
2013-11-01
Maternal high-fat (HF) diet has long-term consequences on the metabolic phenotype of the offspring. Here, we determined the effects of postweaning exercise in offspring of rat dams fed HF diet during gestation and lactation. Pregnant Sprague-Dawley rats were maintained on chow or HF diet throughout gestation and lactation. All pups were weaned onto chow diet on postnatal day (PND) 21. At 4 wk of age, male pups were given free access to running wheels (RW) or remained sedentary (SED) for 3 wk, after which all rats remained sedentary, resulting in four groups: CHOW-SED, CHOW-RW, HF-SED, and HF-RW. Male HF offspring gained more body weight by PND7 compared with CHOW pups and maintained this weight difference through the entire experiment. Three weeks of postweaning exercise did not affect body weight gain in either CHOW or HF offspring, but reduced adiposity in HF offspring. Plasma leptin was decreased at the end of the 3-wk running period in HF-RW rats but was not different from HF-SED 9 wk after the exercise period ended. At 14 wk of age, intracerebroventricular injection of leptin suppressed food intake in CHOW-SED, CHOW-RW, and HF-RW, while it did not affect food intake in HF-SED group. At death, HF-RW rats also had higher leptin-induced phospho-STAT3 level in the arcuate nucleus than HF-SED rats. Both maternal HF diet and postweaning exercise had effects on hypothalamic neuropeptide and receptor mRNA expression in adult offspring. Our data suggest that postweaning exercise improves central leptin sensitivity and signaling in this model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensh, R.P.; Brent, R.L.
1988-11-01
It is evident that significant permanent tissue hypoplasia can be produced following radiation exposure late in fetal development. Because two organs, brain and testes, are developmentally and functionally interrelated, it was of interest to determine whether fetal testicular hypoplasia was a primary or a secondary effect of fetal brain irradiation. Twenty-four pregnant Wistar strain rats were randomly assigned to one of four groups, and a laparotomy was performed on day 18 of gestation. The fetuses received sham irradiation, whole body irradiation, or only head/thorax or pelvic body irradiation at a dosage level of 1.5 Gy. Mothers were allowed to delivermore » and raise their offspring until postnatal day 30, when the offspring were weaned. At 60 days of age, 74 male offspring were allowed to mate with colony control females of similar age until successful insemination or until the males reached 90 days of age, when they were killed. Testes were weighed and processed for histologic examination. Direct radiation of testes, due to whole body or pelvic exposure, resulted in testicular growth retardation and significantly reduced spermatogenesis. Breeding activity of the males and the percent of positive inseminations were also slightly reduced. However, a significant percentage of male offspring receiving direct testicular radiation did produce offspring. Head/thorax-only irradiation did not adversely affect testicular growth or spermatogenesis. Therefore, the use of histologic analysis as the sole determinant of infertility may be misleading. This study indicates that testicular growth retardation and an increased infertility rate result from direct prenatal exposure of rat testes to X-radiation and are not necessarily mediated via X-irradiation effects on the central nervous system.« less
Çetin, Hasan; Nazıroğlu, Mustafa; Çelik, Ömer; Yüksel, Murat; Pastacı, Nural; Özkaya, Mehmet Okan
2014-12-01
The present study determined the effects of mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) exposure on oxidative stress in the brain and liver as well as the element levels in growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their offspring were equally divided into three different groups: the control, 900 MHz, and 1800 MHz groups. The 900 MHz and 1800 MHz groups were exposed to EMR for 60 min/d during pregnancy and neonatal development. At the 4th, 5th, and 6th weeks of the experiment, brain samples were obtained. Brain and liver glutathione peroxidase activities, as well as liver vitamin A and β-carotene concentrations decreased in the EMR groups, although brain iron, vitamin A, and β-carotene concentrations increased in the EMR groups. In the 6th week, selenium concentrations in the brain decreased in the EMR groups. There were no statistically significant differences in glutathione, vitamin E, chromium, copper, magnesium, manganese, and zinc concentrations between the three groups. EMR-induced oxidative stress in the brain and liver was reduced during the development of offspring. Mobile phone-induced EMR could be considered as a cause of oxidative brain and liver injury in growing rats.
Lin, Yu-Lung; Lin, Shu-Yi; Wang, Sabrina
2012-03-01
Maternal infection during pregnancy may affect fetal brain development and lead to neurological and mental disorders. Previously, we used lipopolysaccharide [LPS, 33 μg/kg, intraperitoneal injection] exposure on gestation day 10.5 to mimic maternal bacterial infection in rats and found reduced dopaminergic and serotoninergic neurons in the offspring. In the present study, we examined the anxiety and stress responses of the affected offspring and the neurophysiological changes in their brains. Our results show that LPS rats displayed more anxiety-like behaviors and heightened stress responses. Dopamine (DA) in the nucleus accumbens and serotonin (5-HT) in the medial prefrontal cortex and the hippocampus were significantly reduced in LPS rats. Their glucocorticoid receptors in the dorsal hippocampus and the 5-HT(1A) receptors in the dorsal and ventral hippocampus were also reduced. In addition, chronic but not acute fluoxetine treatment reversed the behavioral changes and increased hippocampal 5-HT(1A) receptor expression. This study demonstrates that LPS exposure during a critical time of embryonic development could produce long-term reduction of DA and 5-HT and other neurophysiological changes; such alterations may be associated with the increases in stress response and anxiety-like behaviors in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.
Wei, Wei; Wang, Yi; Dong, Jing; Wang, Yuan; Min, Hui; Song, Binbin; Shan, Zhongyan; Teng, Weiping; Xi, Qi; Chen, Jie
2015-11-01
Hypothyroxinemia induced by maternal mild iodine deficiency causes neurological deficits and impairments of brain function in offspring. Hypothyroxinemia is prevalent in developing and developed countries alike. However, the mechanism underlying these deficits remains less well known. Given that the myelin plays an important role in learning and memory function, we hypothesize that hippocampal myelinated growth may be impaired in rat offspring exposed to hypothyroxinemia induced by maternal mild iodine deficiency. To test this hypothesis, the female Wistar rats were used and four experimental groups were prepared: (1) control; (2) maternal mild iodine deficiency diet inducing hypothyroxinemia; (3) hypothyroidism induced by maternal severe iodine deficiency diet; (4) hypothyroidism induced by maternal methimazole water. The rats were fed the diet from 3 months before pregnancy to the end of lactation. Our results showed that the physiological changes occuring in the hippocampal myelin were altered in the mild iodine deficiency group as indicated by the results of immunofluorescence of myelin basic proteins on postnatal day 14 and postnatal day 21. Moreover, hypothyroxinemia reduced the expressions of oligodendrocyte lineage transcription factor 2 and myelin-related proteins in the treatments on postnatal day 14 and postnatal day 21. Our data suggested that hypothyroxinemia induced by maternal mild iodine deficiency may impair myelinated growth of the offspring. © 2014 Wiley Periodicals, Inc.
Krstew, Elena V.; Tait, Robert J.; Hulse, Gary K.
2012-01-01
Naltrexone is not recommended during pregnancy. However, sustained-release naltrexone implant use in humans has resulted in cases of inadvertent foetal exposure. Here, we used clinically relevant dosing to examine the effects of maternally administered sustained-release naltrexone on the rat brain by examining offspring at birth and in adulthood. Maternal treatment (naltrexone or placebo implant) started before conception and ceased during gestation, birth or weaning. Morphometry was assessed in offspring at birth and adulthood. Adult offspring were evaluated for differences in locomotor behaviour (basal and morphine-induced, 10 mg/kg, s.c.) and opioid neurochemistry, propensity to self-administer morphine and cue-induced drug-seeking after abstinence. Blood analysis confirmed offspring exposure to naltrexone during gestation, birth and weaning. Naltrexone exposure increased litter size and reduced offspring birth-weight but did not alter brain morphometry. Compared to placebo, basal motor activity of naltrexone-exposed adult offspring was lower, yet they showed enhanced development of psychomotor sensitization to morphine. Developmental naltrexone exposure was associated with resistance to morphine-induced down-regulation of striatal preproenkephalin mRNA expression in adulthood. Adult offspring also exhibited greater operant responding for morphine and, in addition, cue-induced drug-seeking was enhanced. Collectively, these data show pronounced effects of developmental naltrexone exposure, some of which persist into adulthood, highlighting the need for follow up of humans that were exposed to naltrexone in utero. PMID:23300784
Yuasa, Ko; Kondo, Tomohiro; Nagai, Hiroaki; Mino, Masaki; Takeshita, Ai; Okada, Toshiya
2016-03-01
Severe restriction of maternal protein intake to 6-8% protein diet results in intrauterine growth retardation (IUGR), low birthweight and high risk of metabolic syndrome in the adult life of the offspring. However, little information is available on the effects of maternal protein restriction on offspring under the conditions that does not have an influence on their birthweight of the offspring,. In the present study, pregnant rats were kept on a diet consisting of either 9% (low-protein, Lp rats) or 18% (normal-protein, Np rats) protein by weight/volume/etc. After birth, both Lp and Np rats were kept on a diet containing 18% protein. Neonatal body weight was significantly lower in Lp rats compared to Np rats from 4 days to 5 weeks after birth. While glomerular number per unit volume (1 mm(3) ) of the kidney (Nv) was comparable between Lp and Np rats 4 weeks after birth, the Nv was significantly decreased in Lp rats at 20 weeks after birth. Four and 20 weeks after birth, glomerular sclerosis index, interstitial fibrosis score, and ratio of ED1-positive cell ratio were all significantly higher in Lp compared to Np rats. Transforming growth factor-β1-positive cells were observed in the distal tubules in the kidney of 4- and 20-week-old Lp rats kidneys, but not in those of age-matched Np rats. Altogether, these findings revealed that maternal protein restriction that does not have an influence on the birthweight of the offspring, induces similar changes as those seen in the kidneys of IUGR neonates. © 2015 Japanese Teratology Society.
Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra
2016-03-01
The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety. Copyright © 2015 Elsevier Inc. All rights reserved.
Gugusheff, Jessica R; Bae, Sung Eun; Rao, Alexandra; Clarke, Iain J; Poston, Lucilla; Taylor, Paul D; Coen, Clive W; Muhlhausler, Beverly S
2016-03-15
Perinatal junk food exposure increases the preference for palatable diets in juvenile and adult rat offspring. Previous studies have implicated reduced sensitivity of the opioid pathway in the programming of food preferences; however it is not known when during development these changes in opioid signalling first emerge. This study aimed to determine the impact of a maternal junk food (JF) diet on mu-opioid receptor (MuR) expression and ligand binding in two key regions of the reward pathway, the nucleus accumbens (NAc) and the ventral tegmental area (VTA) in rats during the early suckling (postnatal day (PND) 1 and 7) and late suckling/early post-weaning (PND 21 and 28) periods. Female rats were fed either a JF or a control diet for two weeks prior to mating and throughout pregnancy and lactation. MuR expression in the VTA was significantly reduced in female JF offspring on PND 21 and 28 (by 32% and 57% respectively, P<0.05), but not at earlier time points (PND 1 and 7). MuR ligand binding was also reduced (by 22%, P<0.05) in the VTA of female JF offspring on PND 28. No effects of perinatal junk food exposure on MuR mRNA expression or binding were detected at these time points in male offspring. These findings provide evidence that the opioid signalling system is a target of developmental programming by the end of the third postnatal week in females, but not in males. Copyright © 2015 Elsevier B.V. All rights reserved.
Abd Elfatah, Azza A M; Ghaly, Inas S; Hanafy, Safaa M
2012-10-01
The present study evaluated the effect of aspartame intake on the histological and genetic structures of mother albino rats and their offspring. Sixty adult female albino rats and 180 of their offspring were equally divided into two groups (control and treated), each group divided into three subgroups. Each subgroup consisted of 10 pregnant rats and 30 of their offspring. The experimental design divided into three periods: (1) the gestation period (subgroup one), (2) the gestation period and three weeks after delivery (subgroup two) and (3) animals in the third subgroup treated as subgroup two then left till the end of the ninth week after delivery. Each pregnant rat in the treated subgroups was given a single daily dose of 1 mL aspartame solution (50.4 mg) by gastric gavage throughout the time intervals of experimental design. At the end of each experimental period for control and treated subgroups, the liver of half of both control and treated groups were subjected for histological study while the liver and bone marrow of the other halves were subjected for cytogenetic studies. Body weight of both groups were recorded individually twice weekly in the morning before offering the diet. The results revealed that the rats and their offspring in the subgroups of control animals showed increases in body weight, normal histological sections, low chromosomal aberration and low DNA fragmentation. The treated animals in the three subgroups rats and their offspring revealed decreases in body weight, high histological lesions, increases in the chromosomal aberration and DNA fragmentation compared with control groups. In conclusion, the consumption of aspartame leads to histopathological lesions in the liver and alterations of the genetic system in the liver and bone marrow of mother albino rats and their offspring. These toxicological changes were directly proportional to the duration of its administration and improved after its withdrawal.
Ball, Evan R; Caniglia, Mary Kay; Wilcox, Jenna L; Overton, Karla A; Burr, Marra J; Wolfe, Brady D; Sanders, Brian J; Wisniewski, Amy B; Wrenn, Craige C
2010-03-01
Endocrine disruptors, chemicals that disturb the actions of endogenous hormones, have been implicated in birth defects associated with hormone-dependent development. Phytoestrogens are a class of endocrine disruptors found in plants. In the current study we examined the effects of exposure at various perinatal time periods to genistein, a soy phytoestrogen, on reproductive development and learning in male rats. Dams were fed genistein-containing (5 mg/kg feed) food during both gestation and lactation, during gestation only, during lactation only, or during neither period. Measures of reproductive development and body mass were taken in the male offspring during postnatal development, and learning and memory performance was assessed in adulthood. Genistein exposure via the maternal diet decreased body mass in the male offspring of dams fed genistein during both gestation and lactation, during lactation only, but not during gestation only. Genistein decreased anogenital distance when exposure was during both gestation and lactation, but there was no effect when exposure was limited to one of these time periods. Similarly, spatial learning in the Morris water maze was impaired in male rats exposed to genistein during both gestation and lactation, but not in rats exposed during only one of these time periods. There was no effect of genistein on cued or contextual fear conditioning. In summary, the data indicate that exposure to genistein through the maternal diet significantly impacts growth in male offspring if exposure is during lactation. The effects of genistein on reproductive development and spatial learning required exposure throughout the pre- and postnatal periods. Copyright 2009 Elsevier Inc. All rights reserved.
Frihauf, Jennifer B; Fekete, Éva M; Nagy, Tim R; Levin, Barry E; Zorrilla, Eric P
2016-12-01
Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. Copyright © 2016 Frihauf et al.
Frihauf, Jennifer B.; Fekete, Éva M.; Nagy, Tim R.; Levin, Barry E.
2016-01-01
Maternal overnutrition or associated complications putatively mediate the obesogenic effects of perinatal high-fat diet on developing offspring. Here, we tested the hypothesis that a Western diet developmental environment increases adiposity not only in male offspring from obesity-prone (DIO) mothers, but also in those from obesity-resistant (DR) dams, implicating a deleterious role for the Western diet per se. Selectively bred DIO and DR female rats were fed chow (17% kcal fat) or Western diet (32%) for 54 days before mating and, thereafter, through weaning. As intended, despite chow-like caloric intake, Western diet increased prepregnancy weight gain and circulating leptin levels in DIO, but not DR, dams. Yet, in both genotypes, maternal Western diet increased the weight and adiposity of preweanlings, as early as in DR offspring, and increased plasma leptin, insulin, and adiponectin of weanlings. Although body weight normalized with chow feeding during adolescence, young adult Western diet offspring subsequently showed decreased energy expenditure and, in DR offspring, decreased lipid utilization as a fuel substrate. By mid-adulthood, maternal Western diet DR offspring ate more chow, weighed more, and were fatter than controls. Thus, maternal Western diet covertly programmed increased adiposity in childhood and adulthood, disrupted relations of energy regulatory hormones with body fat, and decreased energy expenditure in offspring of lean, genetically obesity-resistant mothers. Maternal Western diet exposure alone, without maternal obesity or overnutrition, can promote offspring weight gain. PMID:27654396
Arsenite in drinking water produces glucose intolerance in pregnant rats and their female offspring.
Bonaventura, María Marta; Bourguignon, Nadia Soledad; Bizzozzero, Marianne; Rodriguez, Diego; Ventura, Clara; Cocca, Claudia; Libertun, Carlos; Lux-Lantos, Victoria Adela
2017-02-01
Drinking water is the main source of arsenic exposure. Chronic exposure has been associated with metabolic disorders. Here we studied the effects of arsenic on glucose metabolism, in pregnant and post-partum of dams and their offspring. We administered 5 (A5) or 50 (A50) mg/L of sodium arsenite in drinking water to rats from gestational day 1 (GD1) until two months postpartum (2MPP), and to their offspring from weaning until 8 weeks old. Liver arsenic dose-dependently increased in arsenite-treated rats to levels similar to exposed population. Pregnant A50 rats gained less weight than controls and recovered normal weight at 2MPP. Arsenite-treated pregnant animals showed glucose intolerance on GD16-17, with impaired insulin secretion but normal insulin sensitivity; they showed dose-dependent increased pancreas insulin on GD18. All alterations reverted at 2MPP. Offspring from A50-treated mothers showed lower body weight at birth, 4 and 8 weeks of age, and glucose intolerance in adult females, probably due to insulin secretion and sensitivity alterations. Arsenic alters glucose homeostasis during pregnancy by altering beta-cell function, increasing risk of developing gestational diabetes. In pups, it induces low body weight from birth to 8 weeks of age, and glucose intolerance in females, demonstrating a sex specific response. Copyright © 2016 Elsevier Ltd. All rights reserved.
Intrauterine Growth Restricted Rats Exercised at Pregnancy: Maternal-Fetal Repercussions.
Corvino, S B; Netto, A O; Sinzato, Y K; Campos, K E; Calderon, I M P; Rudge, M V C; Volpato, G T; Zambrano, E; Damasceno, D C
2015-08-01
To evaluate the effect of swimming in pregnant rats born with intrauterine growth restriction (IUGR) and their offspring, IUGR rats were obtained using the streptozotocin-induced severe diabetic (SD) rats. In this study, the nondiabetic parental generation presented 10 rats and diabetic parental generation presented 116 rats. Of these, the mated nondiabetic female rats were 10 and the number of diabetic rats was 45. In relation to term pregnancy, there were 10 animals in the nondiabetic group and 15 rats in the diabetic group. In the offspring of SD rats (IUGR group), 43 females were classified as small for pregnancy age, 19 rats were classified as appropriate for pregnancy age, and 0 female was classified as large for pregnancy age. The nondiabetic and SD pregnant rats generated offspring with appropriate (control [C]) and small (IUGR) weight for pregnancy age, respectively. At adult life, the C group was maintained as nonexercised C group and IUGR rats were distributed into 2 subgroups, namely, nonexercised (IUGR) and exercised (IUGRex). The rate of mated rats in the IUGR group was reduced compared to the C group. During pregnancy, the IUGR rats presented hyperinsulinemia, impaired reproductive outcomes, decreased body weight, hypertriglyceridemia, and hyperlactacidemia. The IUGRex presented reduced insulin and triglyceride levels. Thus, swimming improved lipid metabolism and increased insulin sensitivity. However, the offspring showed retarded growth, reinforcing the need to stimulate the exercise practice in women under supervision with different professional expertise to promote appropriate gestational conditions and improve perinatal outcomes. © The Author(s) 2015.
Effects of prenatal caffeine exposure on glucose homeostasis of adult offspring rats
NASA Astrophysics Data System (ADS)
Kou, Hao; Wang, Gui-hua; Pei, Lin-guo; Zhang, Li; Shi, Chai; Guo, Yu; Wu, Dong-fang; Wang, Hui
2017-12-01
Epidemiological evidences show that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR). The IUGR offspring also present glucose intolerance and type 2 diabetes mellitus after maturity. We have previously demonstrated that PCE induced IUGR and increased susceptibility to adult metabolic syndrome in rats. This study aimed to further investigate the effects of PCE on glucose homeostasis in adult offspring rats. Pregnant rats were administered caffeine (120 mg/kg/day, intragastrically) from gestational days 11 to 20. PCE offspring presented partial catch-up growth pattern after birth, characterizing by the increased body weight gain rates. Meanwhile, PCE had no significant influences on the basal blood glucose and insulin phenotypes of adult offspring but increased the glucose tolerance, glucose-stimulated insulin section and β cell sensitivity to glucose in female progeny. The insulin sensitivity of both male and female PCE offspring were enhanced accompanied with reduced β cell fraction and mass. Western blotting results revealed that significant augmentation in protein expression of hepatic insulin signaling elements of PCE females, including insulin receptor (INSR), insulin receptor substrate 1 (IRS-1) and the phosphorylation of serine-threonine protein kinase (Akt), was also potentiated. In conclusion, we demonstrated that PCE reduced the pancreatic β mass but increased the glucose tolerance in adult offspring rats, especially for females. The adaptive compensatory enhancement of β cell responsiveness to glucose and elevated insulin sensitivity mainly mediated by upregulated hepatic insulin signaling might coordinately contribute to the increased glucose tolerance.
[Behavior and functional state of the dopaminergic brain system in pups of depressive WAG/Rij rats].
Malyshev, A V; Razumkina, E V; Rogozinskaia, É Ia; Sarkisova, K Iu; Dybynin, V A
2014-01-01
In the present work, it has been studied for the first time behavior and functional state of the dopaminergic brain system in pups of "depressive" WAG/Rij rats. Offspring of "depressive" WAG/Rij rats at age of 6-16 days compared with offspring of "normal" (non-depressed) outbred rats of the same age exhibited reduced rate of pshychomotor development, lower body weight, attenuation in integration of coordinated reflexes and vestibular function (greater latency of righting reflex, abnormal negative geotaxis), hyper-reactivity to tactile stimulation, reduced motivation to contact with mother (reduced infant-mother attachment). Differences in a nest seeking response induced by olfactory stimuli (olfactory discrimination test) and in locomotor activity (tests "gait reflex" and "small open field") have not been revealed. Acute injection of the antagonist of D2-like dopamine receptors clebopride 20 min before testing aggravated mother-oriented behavior in 15-days-old pups of both "depressive" and "non-depressive" rats. However this effect was greater in pups of "depressive" WAG/Rij rats compared with pups of "normal" rats that may indicate reduced functional activity of the dopaminergic brain system in offspring of "depressive" rats. It is proposed that reduced attachment behavior in pups of "depressive" WAG/Rij rats might be a consequence of maternal depression and associated with it reduced maternal care. Moreover, reduced attachment behavior in pups of "depressive" rats might be an early precursor (a marker) of depressive-like pathology which become apparent later in life (approximately at age of 3 months).
Sun, Hongli; Wu, Haibin; Liu, Jianping; Wen, Jun; Zhu, Zhongliang; Li, Hui
2017-05-01
Prenatal stress (PS) results in various behavioral and emotional alterations observed in later life. In particular, PS impairs spatial learning and memory processes but the underlying mechanism involved in this pathogenesis still remains unknown. Here, we reported that PS lowered the body weight in offspring rats, particularly in female rats, and impaired spatial learning and memory of female offspring rats in the Morris water maze. Correspondingly, the decreased CaMKII and CREB mRNA in the hippocampus were detected in prenatally stressed female offspring, which partially explained the effect of PS on the spatial learning and memory. Our findings suggested that CaMKII and CREB may be involved in spatial learning and memory processes in the prenatally stressed adult female offspring.
Ahmed, O M; Abd El-Tawab, S M; Ahmed, R G
2010-10-01
The adequate functioning of the maternal thyroid gland plays an important role to ensure that the offspring develop normally. Thus, maternal hypo- and hyperthyroidism are used from the gestation day 1 to lactation day 21, in general, to recognize the alleged association of offspring abnormalities associated with the different thyroid status. In maternal rats during pregnancy and lactation, hypothyroidism in one group was performed by antithyroid drug, methimazole (MMI) that was added in drinking water at concentration 0.02% and hyperthyroidism in the other group was induced by exogenous thyroxine (T4) (from 50 microg to 200 microg/kg body weight) intragastric administration beside adding 0.002% T4 to the drinking water. The hypothyroid and hyperthyroid states in mothers during pregnancy and lactation periods were confirmed by measuring total thyroxine (TT4) and triiodothyronine (TT3) at gestational day 10 and 10 days post-partum, respectively; the effect was more pronounced at the later period than the first. In offspring of control maternal rats, the free thyroxine (FT4), free triiodothyronine (FT3), thyrotropin (TSH) and growth hormone (GH) concentrations were pronouncedly increased as the age progressed from 1 to 3 weeks. In hypothyroid group, a marked decrease in serum FT3, FT4 and GH levels was observed while there was a significant increase in TSH level with age progress as compared with the corresponding control. The reverse pattern to latter state was recorded in hyperthyroid group. The thyroid gland of offspring of hypothyroid group, exhibited some histopathological changes as luminal obliteration of follicles, hyperplasia, fibroblastic proliferation and some degenerative changes throughout the experimental period. The offspring of hyperthyroid rats showed larger and less thyroid follicles with flattened cell lining epithelium, decreased thyroid gland size and some degenerative changes along the experimental period. On the other hand, the biochemical data revealed that in control offspring, the levels of iodothyronine 5'-monodeiodinase (5'-DI), monoamines, gamma-aminobutyric acid (GABA), acetylcholinesterase (AchE), ATPase-enzymes (Na(+),K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) follow a synchronized course of development in all investigated brain regions (cerebrum, cerebellum and medulla oblongata). In addition, the depression in 5'-DI activity, monoamines levels with age progress in all investigated regions, was more pronounced in hypothyroid offspring, while they were increased significantly in hyperthyroid ones in comparison with their respective controls. Conversely, the reverse pattern was recorded in level of the inhibitory transmitter, GABA while there was a disturbance in AchE and ATPases activities in both treated groups along the experimental period in all studied regions. In conclusion, the hypothyroid status during pregnancy and lactation produced inhibitory effects on monoamines, AchE and ATPases and excitatory actions on GABA in different brain regions of the offspring while the hyperthyroid state induced a reverse effect. Thus, the maternal hypothyroidism and hyperthyroidism may cause a number of biochemical disturbances in different brain regions of their offspring and may lead to a pathophysiological state. These alterations were age dependent. Copyright 2010 ISDN. Published by Elsevier Ltd. All rights reserved.
The renal effects of prenatal testosterone in rats.
Bábíčková, Janka; Borbélyová, Veronika; Tóthová, L'ubomíra; Kubišová, Katarína; Janega, Pavol; Hodosy, Július; Celec, Peter
2015-05-01
Previous studies have shown that prenatal testosterone affects the development of not only reproductive organs but also the brain and even glucose metabolism. Whether prenatal testosterone influences the kidney development is largely unknown. We analyzed whether testosterone modulation during prenatal development would affect renal function and the number of nephrons in adult offspring. Pregnant rats were treated with olive oil, testosterone (2 mg/kg), the androgen receptor blocker flutamide (5 mg/kg) or testosterone plus flutamide via daily intramuscular injections from gestation day 14 until delivery. Renal histology and functional parameters were assessed in male and female adult offspring. Macerated kidneys were used for nephron counting. Prenatal testosterone administration increased proteinuria in male rats by 256%. A similar 134% effect in female rats was not statistically significant. This effect was prevented when flutamide was co-administered. In male rats prenatal testosterone increased blood urea nitrogen. In female rats flutamide increased creatinine clearance. In male rats prenatal testosterone and flutamide led to higher and lower, respectively, interstitial collagen deposition in adulthood. Prenatal testosterone induces proteinuria in adulthood. This effect is mediated via androgen receptor. Additional effects seem to be sex specific. Further studies should focus on the timing and dosing of testosterone as well as the applicability to human development. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Santos, Mery; Rodríguez-González, Guadalupe L; Ibáñez, Carlos; Vega, Claudia C; Nathanielsz, Peter W; Zambrano, Elena
2015-02-01
Exercise improves health but few data are available regarding benefits of exercise in offspring exposed to developmental programming. There is currently a worldwide epidemic of obesity. Obesity in pregnant women predisposes offspring to obesity. Maternal obesity has well documented effects on offspring reproduction. Few studies address ability of offspring exercise to reduce adverse outcomes. We observed increased oxidative stress and impaired sperm function in rat offspring of obese mothers. We hypothesized that regular offspring exercise reverses adverse effects of maternal obesity on offspring sperm quality and fertility. Female Wistar rats ate chow (C) or high-energy, obesogenic diet (MO) from weaning through lactation, bred at postnatal day (PND) 120, and ate their pregnancy diet until weaning. All offspring ate C diet from weaning. Five male offspring (different litters) ran on a wheel for 15 min, 5 times/week from PND 330 to 450 and were euthanized at PND 450. Average distance run per session was lower in MO offspring who had higher body weight, adiposity index, and gonadal fat and showed increases in testicular oxidative stress biomarkers. Sperm from MO offspring had reduced antioxidant enzyme activity, lower sperm quality, and fertility. Exercise in MO offspring decreased testicular oxidative stress, increased sperm antioxidant activity and sperm quality, and improved fertility. Exercise intervention has beneficial effects on adiposity index, gonadal fat, oxidative stress markers, sperm quality, and fertility. Thus regular physical exercise in male MO offspring recuperates key male reproductive functions even at advanced age: it's never too late. Copyright © 2015 the American Physiological Society.
Lomanowska, Anna M; Melo, Angel I
2016-01-01
This article is part of a Special Issue on "Parental Care". Maternal behavior has an important function in stimulating adequate growth and development of the young. Several approaches have been used in primates and rodents to deconstruct and examine the influence of specific components of maternal stimulation on offspring development. These approaches include observational studies of typical mother-infant interactions and studies of the effects of intermittent or complete deprivation of maternal contact. In this review, we focus on one unique approach using rats that enables the complete control of maternal variables by means of rearing rat pups artificially without contact with the mother or litter, while maintaining stable nutrition, temperature and exposure to stressful stimuli. This artificial rearing model permits the removal and controlled replacement of relevant maternal and litter stimuli and has contributed valuable insights regarding the influence of these stimuli on various developmental outcomes. It also enables the analysis of factors implicated in social isolation itself and their long-term influence. We provide an overview of the effects of artificial rearing on behavior, physiology, and neurobiology, including the influence of replacing maternal tactile stimulation and littermate contact on these outcomes. We then discuss the relevance of these effects in terms of the maternal role in regulating different aspects of offspring development and implications for human research. We emphasize that artificial rearing of rats does not lead to a global insult of nervous system development, making this paradigm useful in investigating specific developmental effects associated with maternal stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Peña, Catherine Jensen; Champagne, Frances A.
2014-01-01
Previous studies in Long-Evans rats demonstrated a significant relationship between variation in pup licking/grooming and arched-back nursing (LG-ABN) and offspring development. However, maternal care is dynamic and exhibits significant temporal variation. In the current study, we assessed temporal variation in LG and ABN in lactating rats across the circadian cycle and determined the impact of these behaviors for the prediction of offspring hypothalamic gene expression, anxiety-like behavior, and responsiveness to high fat diet (HFD). We find that distinguishing between dams that engage in stable individual differences in maternal behavior (Low, Mid, High) requires assessment across the light-dark phases of the light cycle and across multiple postpartum days. Amongst juvenile female offspring, we find a positive correlation between maternal LG and mRNA levels of estrogen receptor alpha and beta and the oxytocin receptor (when LG is assessed across the light-dark cycle or in the dark phase). In young adults, we find sex-specific effects, with female High LG offspring exhibiting increased exploration of a novel environment and increased latency to approach HFD and male High LG offspring displaying increased activity in a novel environment and reduced HFD consumption. Importantly, these effects on behavior were primarily evident when LG was assessed across the light-dark cycle and ABN was not associated with these measures. Overall, our findings illustrate the dissociation between the effects of LG and ABN on offspring development and provide critical insights into the temporal characteristics of maternal behavior that have methodological implications for the study of maternal effects. PMID:23398440
Borengasser, Sarah J.; Lau, Franchesca; Kang, Ping; Blackburn, Michael L.; Ronis, Martin J. J.; Badger, Thomas M.; Shankar, Kartik
2011-01-01
In utero exposure to maternal obesity increases the offspring's risk of obesity in later life. We have also previously reported that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the liver at postnatal day (PND)21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p<0.001) and increases in RER values (p<0.001), which were further exacerbated by high fat diet (45% kcals from fat) consumption indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is known to be associated with fatty acid oxidation (FAO) in the liver. Several markers of hepatic mitochondrial function were reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012) and mitochondrial protein content (p = 0.002), electron transport chain complexes (II, III, and ATPase), and fasting PGC-1α mRNA expression (p<0.001). Moreover, hepatic LCAD, a SIRT3 target, was not only reduced 2-fold (p<0.001) but was also hyperacetylated in offspring of obese dams (p<0.005) suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such as insulin resistance and NAFLD. PMID:21901160
Désir-Vigné, Axel; Haure-Mirande, Vianney; de Coppet, Pierre; Darmaun, Dominique; Le Dréan, Gwenola; Segain, Jean-Pierre
2018-05-01
Intrauterine growth restriction (IUGR) can affect the structure and function of the intestinal barrier and increase digestive disease risk in adulthood. Using the rat model of maternal dietary protein restriction (8% vs. 20%), we found that the colon of IUGR offspring displayed decreased mRNA expression of epithelial barrier proteins MUC2 and occludin during development. This was associated with increased mRNA expression of endoplasmic reticulum (ER) stress marker XBP1s and increased colonic permeability measured in Ussing chambers. We hypothesized that ER stress contributes to colonic barrier alterations and that perinatal supplementation of dams with ER stress modulators, phenylbutyrate and glutamine (PG) could prevent these defects in IUGR offspring. We first demonstrated that ER stress induction by tunicamycin or thapsigargin increased the permeability of rat colonic tissues mounted in Ussing chamber and that PG treatment prevented this effect. Therefore, we supplemented the diet of control and IUGR dams with PG during gestation and lactation. Real-time polymerase chain reaction and histological analysis of colons from 120-day-old offspring revealed that perinatal PG treatment partially prevented the increased expression of ER stress markers but reversed the reduction of crypt depth and goblet cell number in IUGR rats. In dextran sodium sulfate-induced injury and recovery experiments, the colon of IUGR rats without perinatal PG treatment showed higher XBP1s mRNA levels and histological scores of inflammation than IUGR rats with perinatal PG treatment. In conclusion, these data suggest that perinatal supplementation with PG could alleviate ER stress and prevent epithelial barrier dysfunction in IUGR offspring. Copyright © 2017 Elsevier Inc. All rights reserved.
Rat gestation during space flight: outcomes for dams and their offspring born after return to Earth.
Wong, A M; DeSantis, M
1997-01-01
Sprague-Dawley rats were studied to learn whether gestation in the near-zero gravity, high radiation environment of space impacts selected mammalian postnatal events. Ten rats spent days nine to twenty of pregnancy aboard the space shuttle orbiter Atlantis (STS-66). Their movement was studied shortly after return to Earth; subsequently, several of their offspring were cross-fostered and examined through postnatal day 81 (P81) for whole body growth and somatic motor development. Values for the flight animals were compared to ground-based control groups. Relative to controls, the pregnant flight rats showed a marked paucity of locomotion during the first few hours after returning to Earth. There was greater likelihood of perinatal morbidity for the offspring of flight dams when compared to the control groups. Whole body weight of surviving offspring, averaged for each group separately, showed typical sigmoidal growth curves when plotted against postnatal age. The flight group for our study had a larger ratio of female to male pups, and that was sufficient to account for the lower average daily weight gained by the flight animals when compared to the control groups. Walking was universally achieved by P13 and preceded eye opening, which was complete in all pups by P17. Thus, both of these developmental horizons were attained on schedule in the flight as well as the control rats. Characteristic changes were observed in hind limb step length and gait width as the pups grew. These patterns occurred at the same time in each group of rats. Therefore, prenatal space flight from days nine to twenty of gestation did not interfere with the establishment of normal patterns for hind paw placement during walking.
Rat Gestation During Space Flight: Outcomes for Dams and Their Offspring Born After Return to Earth
NASA Technical Reports Server (NTRS)
Wong, Andre M.; DeSantis, Mark
1997-01-01
Sprague-Dawley rats were studied to learn whether gestation in the near-zero gravity, high radiation environment of space impacts selected mammalian postnatal events. Ten rats spent days nine to twenty of pregnancy aboard the space shuttle orbiter Atlantis (STS-66). Their movement was studied shortly after return to Earth; subsequently, several of their offspring were cross-fostered and examined through postnatal day 81 (P81) for whole body growth and somatic motor development. Values for the flight animals were compared to ground-based control groups. Relative to controls, the pregnant flight rats showed a marked paucity of locomotion during the first few hours after returning to Earth. There was greater likelihood of perinatal morbidity for the offspring of flight dams when compared to the control groups. Whole body weight of surviving offspring, averaged for each group separately, showed typical sigmoidal growth curves when plotted against postnatal age. The flight group for our study had a larger ratio of female to male pups, and that was sufficient to account for the lower average daily weight gained by the flight animals when compared to the control groups. Walking was universally achieved by P13 and preceded eye opening, which was complete in all pups by P17. Thus, both of these developmental horizons were attained on schedule in the flight as well as the control rats. Characteristic changes were observed in hind limb step length and gait width as the pups grew. These patterns occurred at the same time in each group of rats. Therefore, prenatal space flight from days nine to twenty of gestation did not interfere with the establishment of normal patterns for hind paw placement during walking.
Adamu, Hadiza Altine; Imam, Mustapha Umar; Ooi, Der-Jiun; Esa, Norhaizan Mohd; Rosli, Rozita; Ismail, Maznah
2017-01-21
The development of insulin resistance is multifactorial, with maternal pre- and postnatal nutrition having significant influences. In this regard, high fat diet (HFD) feeding in pregnancy has been shown to increase risks of metabolic diseases. Thus, we investigated the effects of supplementation of HFD with germinated brown rice (GBR) and GBR-derived gamma oryzanol-rich extract (OE) on insulin resistance and its epigenetic implications in pregnant rats and their offsprings. Pregnant female Sprague dawley rats were fed with HFD alone, HFD + GBR or HFD + OE (100 or 200 mg/kg/day) throughout pregnancy and lactation. Their offsprings were weaned at 4 weeks post-delivery and were followed up until 8 weeks. Serum levels of adipokines were measured in dams and their offsprings, and global DNA methylation and histone acetylation patterns were estimated from the liver. The dams and offsprings of the GBR and OE groups had lower weight gain, glycemic response, 8-Iso prostaglandin, retinol binding protein 4 and fasting insulin, and elevated adiponectin levels compared with the HFD group. Fasting leptin levels were lower only in the GBR groups. Hepatic global DNA methylation was lower in the GBR groups while hepatic H4 acetylation was lower in both GBR and OE dams. In the offsprings, DNA methylation and H4 acetylation were only lower in the OE group. However, dams and offsprings of the GBR and OE groups had higher hepatic H3 acetylation. GBR and OE can be used as functional ingredients for the amelioration of HFD-induced epigeneticallymediated insulin resistance.
Davila, Hector; Didoli, Griselda; Bottasso, Oscar; Stanford, John
2011-04-01
This article describes the first use of heat-killed, borate-buffered preparations of aerobic actinomycetales to immunize pregnant animals in order to determine the effect on their pregnancy and fertility and the survival coefficients of their offspring. Pregnant rats received three injections of Gordonia bronchialis, Rhodococcus coprophylus or physiological saline and a proportion of their offspring were challenged with live Trypanosoma cruzi at the time of weaning. Levels of parasitemia and, in some animals, of the cytokines IFN-γ and IL-10 were measured. The progress of pregnancy, fertility and survival of offspring were unaffected by the maternal immunizations. The offspring of rats immunized with G. bronchialis displayed significantly reduced parasitemias, with increased levels of IFN-γ and reduced levels of IL-10, 4 days after challenge. The offspring of rats immunized with R. coprophylus displayed greater parasitemias than did those of the control group. These unexpected results are discussed and their causation considered.
Prohaska, Joseph R.; Broderius, Margaret
2009-01-01
In an attempt to identify a sensitive and improved marker of mammalian copper status during neonatal development experiments compared two plasma cuproenzymes, peptidylglycine α-amidating monooxygenase (PAM ), an enzyme involved in peptide posttranslational activation, to ceruloplasmin (Cp), a ferroxidase involved in iron mobilization. Dietary Cu deficiency (Cu−) was studied in dams and offspring at postnatal age 3 (P3), P12, and P28. Rodent Cp activity rose during lactation whereas PAM activity fell. Reduction in Cp activity was more severe than reduction in PAM activity in Cu− offspring and dams. Cp activity was greater in rats than mice whereas PAM activity was similar in adults but greater in mouse than rat pups. Both cuproenzymes changed during neonatal development and when dietary copper was limiting. With proper controls, each enzyme can be used to assess copper status. PMID:16448835
Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui
2018-05-02
Clinical and animal studies have indicated that hypercholesterolemia and its associated diseases have intrauterine developmental origins. Our previous studies showed that prenatal caffeine exposure (PCE) led to fetal overexposure to maternal glucocorticoids (GCs) and increased serum total cholesterol levels in adult rat offspring. This study further confirms the intrauterine programming of PCE-induced hypercholesterolemia in female adult rat offspring. Pregnant Wistar rats were intragastrically administered caffeine (30, 60, and 120 mg/kg/d) from gestational day (GD)9 to 20. Female rat offspring were euthanized at GD20 and postnatal wk 12; several adult rat offspring were additionally subjected to ice-water swimming stimulation to induce chronic stress prior to death. The effects of GCs on cholesterol metabolism and epigenetic regulation were verified using the L02 cell line. The results showed that PCE induced hypercholesterolemia in adult offspring, which manifested as significantly higher levels of serum total cholesterol and LDL cholesterol (LDL-C) as well as higher ratios of LDL-C/HDL cholesterol. We further found that the cholesterol levels were increased in fetal livers but were decreased in fetal blood, accompanied by increased maternal blood cholesterol levels and reduced placental cholesterol transport. Furthermore, analysis of PCE offspring in the uterus and in a postnatal basal/chronic stress state and the results of in vitro experiments showed that hepatic cholesterol metabolism underwent GC-dependent changes and was associated with cholesterol synthase via abnormalities in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) histone acetylation. We concluded that, to compensate for intrauterine placentally derived decreases in fetal blood cholesterol levels, high intrauterine GC levels activated fetal hepatic CCAAT enhancer binding protein α signaling and down-regulated Sirtuin1 expression, which mediated the high levels of histone acetylation ( via H3K9ac and H3K14ac) and expression of HMGCR. This GC-dependent cholesterol metabolism programming effect was sustained through adulthood, leading to the occurrence of hypercholesterolemia.-Xu, D., Luo, H. W., Hu, W., Hu, S. W., Yuan, C., Wang, G. H., Zhang, L., Yu, H., Magdalou, J., Chen, L. B., Wang, H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.
Cutuli, Debora; Berretta, Erica; Pasqualini, Greta; De Bartolo, Paola; Caporali, Paola; Laricchiuta, Daniela; Sampedro-Piquero, Patricia; Gelfo, Francesca; Pesoli, Matteo; Foti, Francesca; Begega, Azucena; Petrosini, Laura
2017-01-01
Environmental enrichment (EE) is an experimental setting broadly used for investigating the effects of complex social, cognitive, and sensorimotor stimulations on brain structure and function. Recent studies point out that parental EE experience, even occurring in the pre-reproductive phase, affects neural development and behavioral trajectories of the offspring. In the present study we investigated the influences of pre-reproductive EE of female rats on maternal behavior and adolescent male offspring's coping response to an inescapable stressful situation after chronic social isolation. For this purpose female Wistar rats were housed from weaning to breeding age in enriched or standard environments. Subsequently, all females were mated and housed in standard conditions until offspring weaning. On the first post partum day (ppd 1), mother-pup interactions in undisturbed conditions were recorded. Further, after weaning the male pups were reared for 2 weeks under social isolation or in standard conditions, and then submitted or not to a single-session Forced Swim Test (FST). Offspring's neuronal activation and plastic changes were identified by immunohistochemistry for c-Fos and glucocorticoid receptors (GRs), and assessed by using stereological analysis. The biochemical correlates were measured in the hippocampus, amygdala and cingulate cortex, structures involved in hypothalamic-pituitary-adrenocortical axis regulation. Enriched dams exhibited increased Crouching levels in comparison to standard reared dams. In the offspring of both kinds of dams, social isolation reduced body weight, decreased Immobility, and increased Swimming during FST. Moreover, isolated offspring of enriched dams exhibited higher levels of Climbing in comparison to controls. Interestingly, in the amygdala of both isolated and control offspring of enriched dams we found a lower number of c-Fos immunopositive cells in response to FST and a higher number of GRs in comparison to the offspring of standard dams. These results highlight the profound influence of a stressful condition, such as the social isolation, on the brain of adolescent rats, and underline intergenerational effects of maternal experiences in regulating the offspring response to stress. PMID:28536510
Gannon, Matthew A; Brown, Clifford J; Stevens, Rachel M; Griffith, Molly S; Marczinski, Cecile A; Bardgett, Mark E
2015-03-01
Risperidone is an antipsychotic drug that is approved for use in childhood psychiatric disorders such as autism. One concern regarding the use of this drug in pediatric populations is that it may interfere with social interactions that serve to nurture brain development. This study used rats to assess the impact of risperidone administration on maternal-offspring interactions and juvenile play fighting between cage mates. Mixed-sex litters received daily subcutaneous injections of vehicle or 1.0 or 3.0mg/kg of risperidone between postnatal days (PNDs) 14-42. Rats were weaned and housed three per cage on PND 21. In observations made between PNDs 14-17, risperidone significantly suppressed several aspects of maternal-offspring interactions at 1-hour post-injection. At 23 h post-injection, pups administered risperidone had lower activity scores and made fewer non-nursing contacts with their moms. In observations of play-fighting behavior made once a week between PNDs 22-42, risperidone profoundly decreased many forms of social interaction at 1h post-injection. At 23h post-injection, rats administered risperidone made more non-social contacts with their cage mates, but engaged in less social grooming. Risperidone administration to rats at ages analogous to early childhood through adolescence in humans produces a pattern of abnormal social interactions across the day that could impact how such interactions influence brain development. Copyright © 2015 Elsevier Inc. All rights reserved.
Gannon, Matthew A.; Brown, Clifford J.; Stevens, Rachel M.; Griffith, Molly S.; Marczinski, Cecile A.; Bardgett, Mark E.
2015-01-01
Risperidone is an antipsychotic drug that is approved for use in childhood psychiatric disorders such as autism. One concern regarding the use of this drug in pediatric populations is that it may interfere with social interactions that serve to nurture brain development. This study used rats to assess the impact of risperidone administration on maternal-offspring interactions and juvenile play fighting between cage mates. Mixed-sex litters received daily subcutaneous injections of vehicle or 1.0 or 3.0 mg/kg of risperidone between postnatal days (PNDs) 14-42. Rats were weaned and housed three per cage on PND 21. In observations made between PNDs 14-17, risperidone significantly suppressed several aspects of maternal-offspring interactions at one-hour post-injection. At 23 hours post-injection, pups administered risperidone had lower activity scores and made fewer non-nursing contacts with their moms. In observations of play-fighting behavior made once a week between PNDs 22-42, risperidone profoundly decreased many forms of social interaction at one hour post-injection. At 23 hours post-injection, rats administered risperidone made more non-social contacts with their cage mates, but engaged in less social grooming. Risperidone administration to rats at ages analogous to early childhood through adolescence in humans produces a pattern of abnormal social interactions across the day that could impact how such interactions influence brain development. PMID:25600754
Girotto, Fernando; Scott, Lucas; Avchalumov, Yosef; Harris, Jacqueline; Iannattone, Stephanie; Drummond-Main, Chris; Tobias, Rose; Bello-Espinosa, Luis; Rho, Jong M.; Davidsen, Jörn; Teskey, G. Campbell; Colicos, Michael A.
2013-01-01
Maternal folic acid supplementation is essential to reduce the risk of neural tube defects. We hypothesize that high levels of folic acid throughout gestation may produce neural networks more susceptible to seizure in offspring. We hence administered large doses of folic acid to rats before and during gestation and found their offspring had a 42% decrease in their seizure threshold. In vitro, acute application of folic acid or its metabolite 4Hfolate to neurons induced hyper-excitability and bursting. Cultured neuronal networks which develop in the presence of a low concentration (50 nM) of 4Hfolate had reduced capacity to stabilize their network dynamics after a burst of high-frequency activity, and an increase in the frequency of mEPSCs. Networks reared in the presence of the folic acid metabolite 5M4Hfolate developed a spontaneous, distinctive bursting pattern, and both metabolites produced an increase in synaptic density. PMID:23492951
The frequency of Pig-a mutant red blood cells in rats exposed in utero to N-ethyl-N-nitrosourea.
Dobrovolsky, Vasily N; Heflich, Robert H; Ferguson, Sherry A
2012-07-01
The Pig-a assay has been developed as a rapid sensitive measure of gene mutation in adult rats; however, no data exist on its ability to detect mutation following in utero exposures or in neonatal animals. Pregnant Sprague-Dawley rats were treated daily on gestational days 12-18 with oral doses of 0, 6, or 12 mg/kg/day N-ethyl-N-nitrosourea (ENU); following parturition, the offspring and dams were monitored over a period of 5 months for the frequency of CD59-deficient erythrocytes as a marker of Pig-a mutation. Significant dose-related increases in Pig-a mutant red blood cells (RBCs) were observed in ENU-treated dams. However, only very weak increases in RBC Pig-a mutant frequency (MF) were noted in offspring treated in utero with the lower ENU dose. The higher ENU dose produced extremely variable responses in the offspring as a function of age, even among littermates, ranging from a steady low or moderately high Pig-a MF to a rapidly increasing or decreasing Pig-a MF. The manifestation kinetics of Pig-a mutant RBCs in the offspring suggest that the change from predominantly hepatic to predominantly bone marrow erythropoiesis that occurs during early development may have contributed to this variability. Our results indicate that using the RBC Pig-a model for mutation detection in animals treated in utero may require analysis of multiple offspring from the same litter to account for potential "jack pot" effects, and that detection of the earliest treatment effect (i.e., in neonates using the hepatic RBC fraction) may require optimization of blood processing. Published 2012 Wiley Periodicals, Inc.
Ferguson, Sherry A; Delclos, K Barry; Newbold, Retha R; Flynn, Katherine M
2003-01-01
Exogenous estrogen exposure during development often results in behavioral masculinization and/or defeminization of genetic females. Genetic males may be defeminized, hypermasculinized or even demasculinized after similar treatment. Here, pregnant Sprague-Dawley rats consumed phytoestrogen-free diets containing 0, 1, 5 or 200 ppb EE(2) beginning on gestational day (GD) 7. Offspring were weaned to the same maternal diet and maintained gonadally intact. There were mild effects on body weight and food consumption in dams of the 200 ppb group and their offspring weighed less at birth than those of the control group; however, gross assessments of nursing behavior were normal in all dietary groups. Postweaning, offspring of the 200 ppb group weighed less and consumed less food than controls. There were no EE(2)-related effects on open-field activity (tested at postnatal days (PND) 22-24, 43-45 and 64-66), play behavior (tested at PND 35), running wheel activity (PND 63-77) or intake of a 0.3% saccharin-flavored solution (PND 69-71). Intake of a 3.0% sodium chloride-flavored solution on PND 73-75 was increased in both male and female offspring of the 200 ppb group relative to same-sex controls, an effect that is reportedly estrogen mediated. Sodium chloride-flavored solution intake is a sexually dimorphic behavior for which female rats consume more than males. Here, while EE(2) exposure had few effects on the conventional tests of sexually dimorphic behaviors, exposure to 200 ppb in the diet appeared to feminize genetic males and hyperfeminize genetic females with regard to sodium intake.
Shirai, Tomoyuki; Imai, Norio; Wang, Jianqing; Takahashi, Satoru; Kawabe, Mayumi; Wake, Kanako; Kawai, Hiroki; Watanabe, So-Ichi; Furukawa, Fumio; Fujiwara, Osamu
2014-10-01
The present experimental study was carried out with rats to evaluate the effects of whole body exposure to 2.14 GHz band code division multiple access (W-CDMA) signals for 20 h a day, over three generations. The average specific absorption rate (SAR, in unit of W/kg) for dams was designed at three levels: high (<0.24 W/kg), low (<0.08 W/kg), and 0 (sham exposure). Pregnant mothers (4 rats/group) were exposed from gestational day (GD) 7 to weaning and then their offspring (F1 generation, 4 males and 4 females/dam, respectively) were continuously exposed until 6 weeks of age. The F1 females were mated with F1 males at 11 weeks old, and then starting from GD 7, they were exposed continuously to the electromagnetic field (EMF; one half of the F1 offspring was used for mating, that is, two of each sex per dam and 8 males and 8 females/group, except for all offspring for the functional development tests). This protocol was repeated in the same manner on pregnant F2 females and F3 pups; the latter were killed at 10 weeks of age. No abnormalities were observed in the mother rats (F0 , F1 , and F2 ) and in the offspring (F1 , F2 , and F3 ) in any biological parameters, including neurobehavioral function. Thus, it was concluded that under the experimental conditions applied, multigenerational whole body exposure to 2.14 GHz W-CDMA signals for 20 h/day did not cause any adverse effects on the F1 , F2 , and F3 offspring. © 2014 Wiley Periodicals, Inc.
Almeida, Mariana M; Dias-Rocha, Camilla P; Souza, André S; Muros, Mariana F; Mendonca, Leonardo S; Pazos-Moura, Carmen C; Trevenzoli, Isis H
2017-11-01
Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axelstad, Marta; Hansen, Pernille Reimar; Boberg, Julie
2008-10-01
Markedly lowered thyroid hormone levels during development may influence a child's behaviour, intellect, and auditory function. Recent studies, indicating that even small changes in the mother's thyroid hormone status early in pregnancy may cause adverse effects on her child, have lead to increased concern for thyroid hormone disrupting chemicals in the environment. The overall aim of the study was therefore to provide a detailed knowledge on the relationship between thyroid hormone levels during development and long-lasting effects on behaviour and hearing. Groups of 16-17 pregnant rats (HanTac:WH) were dosed with PTU (0, 0.8, 1.6 or 2.4 mg/kg/day) from gestation daymore » (GD) 7 to postnatal day (PND) 17, and the physiological and behavioural development of rat offspring was assessed. Both dams and pups in the higher dose groups had markedly decreased thyroxine (T{sub 4}) levels during the dosing period, and the weight and histology of the thyroid glands were severely affected. PTU exposure caused motor activity levels to decrease on PND 14, and to increase on PND 23 and in adulthood. In the adult offspring, learning and memory was impaired in the two highest dose groups when tested in the radial arm maze, and auditory function was impaired in the highest dose group. Generally, the results showed that PTU-induced hypothyroxinemia influenced the developing rat brain, and that all effects on behaviour and loss of hearing in the adult offspring were significantly correlated to reductions in T{sub 4} during development. This supports the hypothesis that decreased T{sub 4} may be a relevant predictor for long-lasting developmental neurotoxicity.« less
Axelstad, Marta; Hansen, Pernille Reimar; Boberg, Julie; Bonnichsen, Mia; Nellemann, Christine; Lund, Søren Peter; Hougaard, Karin Sørig; Hass, Ulla
2008-10-01
Markedly lowered thyroid hormone levels during development may influence a child's behaviour, intellect, and auditory function. Recent studies, indicating that even small changes in the mother's thyroid hormone status early in pregnancy may cause adverse effects on her child, have lead to increased concern for thyroid hormone disrupting chemicals in the environment. The overall aim of the study was therefore to provide a detailed knowledge on the relationship between thyroid hormone levels during development and long-lasting effects on behaviour and hearing. Groups of 16-17 pregnant rats (HanTac:WH) were dosed with PTU (0, 0.8, 1.6 or 2.4 mg/kg/day) from gestation day (GD) 7 to postnatal day (PND) 17, and the physiological and behavioural development of rat offspring was assessed. Both dams and pups in the higher dose groups had markedly decreased thyroxine (T(4)) levels during the dosing period, and the weight and histology of the thyroid glands were severely affected. PTU exposure caused motor activity levels to decrease on PND 14, and to increase on PND 23 and in adulthood. In the adult offspring, learning and memory was impaired in the two highest dose groups when tested in the radial arm maze, and auditory function was impaired in the highest dose group. Generally, the results showed that PTU-induced hypothyroxinemia influenced the developing rat brain, and that all effects on behaviour and loss of hearing in the adult offspring were significantly correlated to reductions in T(4) during development. This supports the hypothesis that decreased T(4) may be a relevant predictor for long-lasting developmental neurotoxicity.
Othman, Haifa; Ammari, Mohamed; Rtibi, Kaïs; Bensaid, Noura; Sakly, Mohsen; Abdelmelek, Hafedh
2017-06-01
The present work investigated the effects of prenatal exposure to radiofrequency waves of conventional WiFi devices on postnatal development and behavior of rat offspring. Ten Wistar albino pregnant rats were randomly assigned to two groups (n=5). The experimental group was exposed to a 2.45GHz WiFi signal for 2h a day throughout gestation period. Control females were subjected to the same conditions as treated group without applying WiFi radiations. After delivery, the offspring was tested for physical and neurodevelopment during its 17 postnatal days (PND), then for anxiety (PND 28) and motricity (PND 40-43), as well as for cerebral oxidative stress response and cholinesterase activity in brain and serum (PND 28 and 43). Our main results showed that the in-utero WiFi exposure impaired offspring neurodevelopment during the first seventeen postnatal days without altering emotional and motor behavior at adult age. Besides, prenatal WiFi exposure induced cerebral oxidative stress imbalance (increase in malondialdehyde level (MDA) and hydrogen peroxide (H 2 O 2 ) levels and decrease in catalase (CAT) and superoxide dismutase (SOD) activities) at 28 but not 43days old, also the exposure affected acethylcolinesterase activity at both cerebral and seric levels. Thus, the current study revealed that maternal exposure to WiFi radiofrequencies led to various adverse neurological effects in the offspring by affecting neurodevelopment, cerebral stress equilibrium and cholinesterase activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Martins, Isabela Peixoto; Pavanello, Audrei; de Oliveira, Júlio Cezar; Prates, Kelly Valério; Miranda, Rosiane Aparecida; da Silva Franco, Claudinéia Conationi; Gomes, Rodrigo Mello; Francisco, Flávio Andrade; Alves, Vander Silva; de Almeida, Douglas Lopes; Moreira, Veridiana Mota; Palma-Rigo, Kesia; Vieira, Elaine; Fabricio, Gabriel Sergio; da Silva Rodrigues, Marcos Ricardo; Rinaldi, Wilson; Malta, Ananda; de Freitas Mathias, Paulo Cezar
2017-08-09
Low intensity exercise during pregnancy and lactation may create a protective effect against the development of obesity in offspring exposed to overnutrition in early life. To test these hypotheses, pregnant rats were randomly assigned into 2 groups: Sedentary and Exercised, low intensity, on a rodent treadmill at 30% VO 2Max /30-minute/session/3x/week throughout pregnancy and the lactation. Male offspring were raised in small litters (SL, 3 pups/dam) and normal litters (NL, 9 pups/dam) as models of early overnutrition and normal feed, respectively. Exercised mothers showed low mesenteric fat pad stores and fasting glucose and improved glucose-insulin tolerance, VO 2max during lactation and sympathetic activity. Moreover, the breast milk contained elevated levels of insulin. In addition, SL of sedentary mothers presented metabolic dysfunction and glucose and insulin intolerance and were hyperglycemic and hyperinsulinemic in adulthood. SL of exercised mothers showed lower fat tissue accretion and improvements in glucose tolerance, insulin sensitivity, insulinemia and glycemia. The results suggest that maternal exercise during the perinatal period can have a possible reprogramming effect to prevent metabolic dysfunction in adult rat offspring exposed to early overnutrition, which may be associated with the improvement in maternal health caused by exercise.
Gray, Clint; Al-Dujaili, Emad A; Sparrow, Alexander J; Gardiner, Sheila M; Craigon, Jim; Welham, Simon J M; Gardner, David S
2013-01-01
Hypertension is common and contributes, via cardiovascular disease, towards a large proportion of adult deaths in the Western World. High salt intake leads to high blood pressure, even when occurring prior to birth - a mechanism purported to reside in altered kidney development and later function. Using a combination of in vitro and in vivo approaches we tested whether increased maternal salt intake influences fetal kidney development to render the adult individual more susceptible to salt retention and hypertension. We found that salt-loaded pregnant rat dams were hypernatraemic at day 20 gestation (147±5 vs. 128±5 mmoles/L). Increased extracellular salt impeded murine kidney development in vitro, but had little effect in vivo. Kidneys of the adult offspring had few structural or functional abnormalities, but male and female offspring were hypernatraemic (166±4 vs. 149±2 mmoles/L), with a marked increase in plasma corticosterone (e.g. male offspring; 11.9 [9.3-14.8] vs. 2.8 [2.0-8.3] nmol/L median [IQR]). Furthermore, adult male, but not female, offspring had higher mean arterial blood pressure (effect size, +16 [9-21] mm Hg; mean [95% C.I.]. With no clear indication that the kidneys of salt-exposed offspring retained more sodium per se, we conducted a preliminary investigation of their gastrointestinal electrolyte handling and found increased expression of proximal colon solute carrier family 9 (sodium/hydrogen exchanger), member 3 (SLC9A3) together with altered faecal characteristics and electrolyte handling, relative to control offspring. On the basis of these data we suggest that excess salt exposure, via maternal diet, at a vulnerable period of brain and gut development in the rat neonate lays the foundation for sustained increases in blood pressure later in life. Hence, our evidence further supports the argument that excess dietary salt should be avoided per se, particularly in the range of foods consumed by physiologically immature young.
ATRAZINE DISPOSITION IN PREGNANT AND LACTATING LONG-EVANS RATS
Atrazine (ATR) is a widely used herbicide shown to delay early mammary development in female offspring of gestationally exposed rats. The effects of ATR can be induced by in utero exposure and/or suckling from a dam exposed during late pregnancy, but ATR is reported to have a hal...
Almeida, Mara Ribeiro; Mabasa, Lawrence; Crane, Courtney; Park, Chung S; Venâncio, Vinícius Paula; Bianchi, Maria Lourdes Pires; Antunes, Lusânia Maria Greggi
2016-07-01
Vitamin B6 plays crucial roles on brain development and its maternal deficiency impacts the gamma-aminobutyric acid (GABA)ergic, serotonergic, glutamatergic, and dopaminergic systems in offspring. However, the molecular mechanisms underlying these neurological changes are not well understood. Thus, we aimed at evaluating which components of those neurotransmitter metabolism and signaling pathways can be modulated by maternal vitamin B6 -deficient or B6 -supplementated diets in the hippocampus of rat dams and their offspring. Female Wistar rats were fed three different diets: control (6 mg vitamin B6 /kg), supplemented (30 mg vitamin B6 /kg) or deficient diet (0 mg vitamin B6 /kg), from 4 weeks before pregnancy through lactation. Newborn pups (10 days old) from rat dams fed vitamin B6 -deficient diet presented hyperhomocysteinemia and had a significant increase in mRNA levels of glutamate decarboxylase 1 (Gad1), fibroblast growth factor 2 (Fgf2), and glutamate-ammonia ligase (Glul), while glutaminase (Gls) and tryptophan hydroxylase 1 (Tph1) mRNAs were downregulated. Vitamin B6 supplementation or deficiency did not change hippocampal global DNA methylation. A maternal vitamin B6 -deficient diet affects the expression of genes related to GABA, glutamate, and serotonin metabolisms in offspring by regulating Gad1, Glul, Gls, and Tph1 mRNA expression. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kačarević, Željka Perić; Grgić, Anđela; Šnajder, Darija; Bijelić, Nikola; Belovari, Tatjana; Cvijanović, Olga; Blažičević, Valerija; Radić, Radivoje
2017-09-01
Obesity is related to increased TNF-alpha production in different tissues. TNF-alpha is connected to mitochondrial dysfunction in the liver and also development of fatty infiltration of the liver. Also, postnatal change from normal to high-fat diet causes a significant increase in TNF-alpha serum levels. The aim of this research was to determine how maternal diet and switching male offspring to a different dietary regime after lactation influences rat liver. Ten female Sprague Dawley rats at nine weeks of age were randomly divided in two groups and fed either standard laboratory chow or high-fat diet during six weeks, and then mated with the same male subject. After birth and lactation male offspring from both groups were further divided into four subgroups depending on their subsequent diet. At 22 weeks of age, the animals were weighted, sacrificed and major organs were collected and weighted. Immunohistochemistry for TNF-alpha was performed on liver, and liver samples were analyzed for pathohistological changes. The group in which mothers were fed standard chow and offspring high-fat diet had the most pronounced changes: heaviest liver, poorest histopathological findings and strongest TNF-alpha immunohistochemical staining of liver parenchyma. High-fat diet during pregnancy and lactation and switching to high-fat diet postnatally affects liver weight, histological structure and TNF-alpha expression in male offspring. Copyright © 2017 Elsevier GmbH. All rights reserved.
Kurata, Akiko; Morinobu, Shigeru; Fuchikami, Manabu; Yamamoto, Shigeto; Yamawaki, Shigeto
2009-06-01
It is known that the early environment affects the mental development of rodent and human offspring. However, it is not known specifically whether a postpartum depressive state influences the depressive state in offspring. Using learned helplessness (LH) in rats as an animal model of depression, we examined the influence of maternal postpartum LH on responses to the LH test of offspring. Dam rats were judged as LH or non-helpless (nLH) on postnatal days (PN) 2-3, and maternal behavior was recorded during PN2-14. On PN 45-46, offspring were subjected to the LH test. Plasma corticosterone (CORT) levels, hippocampal levels of glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) mRNA were measured before and after the LH test in offspring. Active nursing in LH dams was significantly lower than that in nLH dams. Susceptibility to LH in the offspring of LH dams was significantly higher than in those of nLH dams, and was negatively correlated with active nursing by LH dams. The GR mRNA levels before and after the LH test were lower in the offspring of LH dams than in those of nLH dams, and the reduced basal GR mRNA and protein might have resulted in the higher CORT response after the LH test. There was no significant difference in BDNF mRNA in the offspring of LH and nLH dams. These findings suggest that early postpartum LH decreased active nursing and increased depression-like behavior in the adolescent offspring via dysfunction of the hypothalamic-pituitary-adrenal axis.
Cohick, Wendie S; Crismale-Gann, Catina; Stires, Hillary; Katz, Tiffany A
2015-01-01
Fetal alcohol spectrum disorders affect a significant number of live births each year, indicating that alcohol consumption during pregnancy is an important public health issue. Environmental exposures and lifestyle choices during pregnancy may affect the offspring's risk of disease in adulthood, leading to the idea that a woman's risk of breast cancer may be pre-programmed prior to birth. Exposure of pregnant rats to alcohol increases tumorigenesis in the adult offspring in response to mammary carcinogens. The estrogen and insulin-like growth factor (IGF-I) axes occupy central roles in normal mammary gland development and breast cancer. 17-β estradiol (E2) and IGF-I synergize to regulate formation of terminal end buds and ductal elongation during pubertal development. The intracellular signaling pathways mediated by the estrogen and IGF-I receptors cross-talk at multiple levels through both genomic and non-genomic mechanisms. Several components of the E2 and IGF-I systems are altered in early development in rat offspring exposed to alcohol in utero, therefore, these changes may play a role in the enhanced susceptibility to mammary carcinogens observed in adulthood. Alcohol exposure in utero induces a number of epigenetic alterations in non-mammary tissues in the offspring and other adverse in utero exposures induce epigenetic modifications in the mammary gland. Future studies will determine if fetal alcohol exposure can induce epigenetic modifications in genes that regulate E2/IGF action at key phases of mammary development, ultimately leading to changes in susceptibility to carcinogens.
Meems, Laura M G; Mahmud, Hasan; Buikema, Hendrik; Tost, Jörg; Michel, Sven; Takens, Janny; Verkaik-Schakel, Rikst N; Vreeswijk-Baudoin, Inge; Mateo-Leach, Irene V; van der Harst, Pim; Plösch, Torsten; de Boer, Rudolf A
2016-12-01
Vitamin D deficiency is one of the most common nutritional deficiencies worldwide. Maternal vitamin D deficiency is associated with increased susceptibility to hypertension in offspring, but the reasons for this remain unknown. The aim of this study was to determine if parental vitamin D deficiency leads to altered DNA methylation in offspring that may relate to hypertension. Male and female Sprague-Dawley rats were fed a standard or vitamin D-depleted diet. After 10 wk, nonsibling rats were mated. The conceived pups received standard chow. We observed an increased systolic and diastolic blood pressure in the offspring from depleted parents (F1-depl). Genome-wide methylation analyses in offspring identified hypermethylation of the promoter region of the Pannexin-1 (Panx1) gene in F1-depl rats. Panx1 encodes a hemichannel known to be involved in endothelial-dependent relaxation, and we demonstrated that in F1-depl rats the increase in blood pressure was associated with impaired endothelial relaxation of the large vessels, suggesting an underlying biological mechanism of increased blood pressure in children from parents with vitamin deficiency. Parental vitamin D deficiency is associated with epigenetic changes and increased blood pressure levels in offspring. Copyright © 2016 the American Physiological Society.
Effects of Tianeptine on Adult Rats Following Prenatal Stress
Lee, Hwayoung; Kim, Hyung-Ki; Kwon, Jun-Tack; Kim, Young Ock; Seo, Jonghoon; Lee, Sanghyun; Cho, Ik-Hyun
2018-01-01
Objective Exposing a pregnant female to stress during the critical period of embryonic fetal brain development increases the risk of psychiatric disorders in the offspring. The objective of this study was to investigate the effect of antidepressant tianeptine on prenatally stressed (PNS) rats. Methods In this study, a repeated variable stress paradigm was applied to pregnant rats during the last week of gestation. To investigate the effects of antidepressant tianeptine on PNS rats, behavioral and protein expression analyses were performed. Forced swim test, open field test, and social interaction test were performed to determine changes in PNS rats compared to non-stressed offspring. Haloperidol was used as a positive control as an antipsychotic drug based on previous studies. Results Behavioral changes were restored after treatment with tianeptine or haloperidol. Western blot and immunohistochemical analyses of the prefrontal cortex revealed downregulation of several neurodevelopmental proteins in PNS rats. After treatment with tianeptine or haloperidol, their expression levels were increased. Conclusion Downregulation of several proteins in PNS rats might have caused subsequent behavioral changes in PNS rats. After tianeptine or haloperidol treatment, behavioral changes in PNS rats were restored. Therefore, tianeptine might decrease incidence of prenatal stress related-psychiatric disorders such as depression and schizophrenia. PMID:29739134
Beltrand, J.; Sloboda, D. M.; Connor, K. L.; Truong, M.; Vickers, M. H.
2012-01-01
Epidemiological and experimental studies report associations between overweight mothers and increased obesity risk in offspring. It is unclear whether neonatal leptin regulation mediates this association between overweight mothers and offspring obesity. We investigated the effect of neonatal treatment with a leptin antagonist (LA) on growth and metabolism in offspring of mothers fed either a control or a high fat diet. Wistar rats were fed either a control (CON) or a high fat diet (MHF) during pregnancy and lactation. Male CON and MHF neonates received either saline (S) or a rat-specific pegylated LA on days 3, 5, and 7. Offspring were weaned onto either a control or a high fat (hf) diet. At day 100, body composition, blood glucose, β-hydroxybutyrate and plasma leptin and insulin were determined. In CON and MHF offspring, LA increased neonatal bodyweights compared to saline-treated offspring and was more pronounced in MHF offspring. In the post-weaning period, neonatal LA treatment decreased hf diet-induced weight gain but only in CON offspring. LA treatment induced changes in body length, fat mass, body temperature, and bone composition. Neonatal LA treatment can therefore exert effects on growth and metabolism in adulthood but is dependent upon interactions between maternal and post-weaning nutrition. PMID:22548153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronco, Ana Maria, E-mail: amronco@inta.cl; Montenegro, Marcela; Castillo, Paula
2011-03-01
Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remainedmore » unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.« less
Paternain, L; de la Garza, A L; Batlle, M A; Milagro, F I; Martínez, J A; Campión, J
2013-03-01
Stress during pregnancy can induce metabolic disorders in adult offspring. To analyze the possible differential response to a high-fat-sucrose (HFS) diet in offspring affected by prenatal stress (PNS) or not, pregnant Wistar rats (n = 11) were exposed to a chronic mild stress during the third week of gestation. The aim of this study was to model a chronic depressive-like state that develops over time in response to exposure of rats to a series of mild and unpredictable stressors. Control dams (n = 11) remained undisturbed. Adult offspring were fed chow or HFS diet (20% protein, 35% carbohydrate, 45% fat) for 10 weeks. Changes in adiposity, biochemical profile, and retroperitoneal adipose tissue gene expression by real-time polymerase chain reaction were analyzed. An interaction was observed between HFS and PNS concerning visceral adiposity, with higher fat mass in HFS-fed stressed rats, statistically significant only in females. HFS modified lipid profile and increased insulin resistance biomarkers, while PNS reduced insulin concentrations and the homeostasis model assessment index. HFS diet increased gene (mRNA) expression for leptin and apelin and decreased cyclin-dependent kinase inhibitor 1A and fatty acid synthase (Fasn), whereas PNS increased Fasn and stearoyl-CoA desaturase1. An interaction between diet and PNS was observed for adiponutrin (Adpn) and peroxisome proliferator-activated receptor-γ coactivator1-α (Ppargc1a) gene expression: Adpn was increased by the PNS only in HFS-fed rats, whereas Ppargc1a was increased by the PNS only in chow-fed rats. From these results, it can be concluded that experience of maternal stress during intrauterine development can enhance predisposition to obesity induced by a HFS diet intake.
ERIC Educational Resources Information Center
Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario
2016-01-01
Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell…
NASA Astrophysics Data System (ADS)
Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.
Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.
Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie
2016-09-01
Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.
Shen, W; Chen, J; Yin, J; Wang, S-L
2016-01-01
Lead is a common environmental contaminant. Lead accumulation in the body is especially dangerous for pregnant women and newborns. Selenium is a trace element which may rectify the damaging effects of lead. Here we tested potential protective effects of selenium against gestational lead exposure. Pregnant SD rats were exposed to 200 mg/L of lead acetate (given with water), with or without sodium selenite supplementation (2-8 mg/kg/day via intragastric administration). Pregnant rats not exposed to lead or selenium served as control animals. The outcomes in pregnant rats were serum lead and selenium levels, reproductive hormone (follicle-stimulating hormone, luteinizing hormone, prolactin, oestradiol, progesterone) levels, and uterine and ovarian morphological changes. The outcomes in the offspring were sex differentiation, survival rates (day 21 after birth), weight (days 0-35 after birth), weight of reproductive organs, and puberty onset (foreskin separation or vaginal opening). Selenium supplementation dose-dependently decreased serum lead levels, rectified reproductive hormone levels, and attenuated reproductive morphological changes caused by lead exposure. Lead exposure did not affect sex differentiation, but significantly (p < 0.05 vs. control animals) decreased the offspring weight on days 0-28 and the weight of their reproductive organs. Furthermore, lead exposure delayed the onset of puberty. These pathological changes were dose-dependently rectified or attenuated by selenium supplementation. Gestational lead exposure causes damages to the reproductive system of pregnant rats, and negatively modulates growth and reproductive system development of the offspring. These adverse effects are rectified or attenuated by selenium supplementation.
Aljunaidy, Mais M; Morton, Jude S; Kirschenman, Raven; Phillips, Tom; Case, C Patrick; Cooke, Christy-Lynn M; Davidge, Sandra T
2018-05-17
Intrauterine growth restriction, a common consequence of prenatal hypoxia, is a leading cause of fetal morbidity and mortality with a significant impact on population health. Hypoxia may increase placental oxidative stress and lead to an abnormal release of placental-derived factors, which are emerging as potential contributors to developmental programming. Nanoparticle-linked drugs are emerging as a novel method to deliver therapeutics targeted to the placenta and avoid risking direct exposure to the fetus. We hypothesize that placental treatment with antioxidant MitoQ loaded onto nanoparticles (nMitoQ) will prevent the development of cardiovascular disease in offspring exposed to prenatal hypoxia. Pregnant rats were intravenously injected with saline or nMitoQ (125 μM) on gestational day (GD) 15 and exposed to either normoxia (21% O 2 ) or hypoxia (11% O 2 ) from GD15-21 (term: 22 days). In one set of animals, rats were euthanized on GD 21 to assess fetal body weight, placental weight and placental oxidative stress. In another set of animals, dams were allowed to give birth under normal atmospheric conditions (term: GD 22) and male and female offspring were assessed at 7 and 13 months of age for in vivo cardiac function (echocardiography) and vascular function (wire myography, mesenteric artery). Hypoxia increased oxidative stress in placentas of male and female fetuses, which was prevented by nMitoQ. 7-month-old male and female offspring exposed to prenatal hypoxia demonstrated cardiac diastolic dysfunction, of which nMitoQ improved only in 7-month-old female offspring. Vascular sensitivity to methacholine was reduced in 13-month-old female offspring exposed to prenatal hypoxia, while nMitoQ treatment improved vasorelaxation in both control and hypoxia exposed female offspring. Male 13-month-old offspring exposed to hypoxia showed an age-related decrease in vascular sensitivity to phenylephrine, which was prevented by nMitoQ. In summary, placental-targeted MitoQ treatment in utero has beneficial sex- and age-dependent effects on adult offspring cardiovascular function. Copyright © 2018 Elsevier Ltd. All rights reserved.
Andrade, Fábia de Oliveira; de Assis, Sonia; Jin, Lu; Fontelles, Camile Castilho; Barbisan, Luís Fernando; Purgatto, Eduardo; Hilakivi-Clarke, Leena; Ong, Thomas Prates
2015-09-05
The persistent effects of animal fat consumption during pregnancy and nursing on the programming of breast cancer risk among female offspring were studied here. We have previously found that female offspring of rat dams that consumed a lard-based high-fat (HF) diet (60% fat-derived energy) during pregnancy, or during pregnancy and lactation, were at a reduced risk of developing mammary cancer. To better understand the unexpected protective effects of early life lard exposure, we have applied lipidomics and nutrigenomics approaches to investigate the fatty acid profile and global gene expression patterns in the mammary tissue of the female offspring. Consumption of this HF diet during gestation had few effects on the mammary tissue fatty acids profile of young adult offspring, while exposure from gestation throughout nursing promoted significant alterations in the fatty acids profile. Major differences were related to decreases in saturated fatty acids (SFA) and increases in omega-6 polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs) and conjugated linolenic acid (CLA) concentrations. In addition several differences in gene expression patterns by microarray analysis between the control and in utero or in utero and during lactation HF exposed offspring were identified. Differential dependency network (DDN) analysis indicated that many of the genes exhibited unique connections to other genes only in the HF offspring. These unique connections included Hrh1-Ythdf1 and Repin1-Elavl2 in the in utero HF offspring, and Rnf213-Htr3b and Klf5-Chrna4 in the in utero and lactation HF offspring, compared with the control offspring. We conclude that an exposure to a lard-based HF diet during early life changes the fatty acid profile and transcriptional network in mammary gland in young adult rats, and these changes appear to be consistent with reduced mammary cancer risk observed in our previous study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Baer, Lisa A.; Wade, Charles E.; Ronca, April E.; Dalton, Bonnie (Technical Monitor)
2002-01-01
Rat dams and offspring were exposed to 1.5-g, 1.75-g or 2.0-g hypergravity (hg) from Gestational day (G) 11 until Postnatal day (P) 10. To ascertain the role of maternal factors in reduced postnatal body weights of offspring developed in hg, the dams' lactational hormones were measured. Oxytocin (OT), the major hormone responsible for milk ejection, was reduced in hg dams whereas prolactin (Prl), involved in milk production, was unchanged. Video analyses of nursing behavior revealed that hg dams spent more time nursing relative to 1-g controls. We hypothesized impaired milk transfer from dam to pup, however pup body weight gains following a discrete suckling episode were comparable across conditions. Changes in lactational hormones and nursing behavior by dams exposed to hg do not account for reduced body masses of their offspring.
Pooriamehr, Alireza; Sabahi, Parviz; Miladi-Gorji, Hossein
2017-08-24
Chronic morphine exposure during puberty increased morphine-induced rewarding effects and sensitization in the next generation. Given the well-known beneficial effects of environmental enrichment on the severity of physical and psychological dependence on morphine, we examined effects of enriched environment during morphine abstinence in morphine dependent parental rats before mating on the anxiety and depressive-like behaviors, and voluntary morphine consumption in their offspring. Paternal and/or maternal rats were injected with bi-daily doses (10mg/kg, 12h intervals) of morphine for 14days followed by rearing in a standard environment (SE) or enriched environment (EE) during 30days of morphine abstinence before mating. The pubertal male and female rat offspring were tested for anxiety (the elevated plus maze- EPM) and depression (sucrose preference test-SPT), and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that EE experience in morphine-dependent both parents result in an increase in the percentage of time spent into open arms/time spent on both arms using EPM in male offspring, higher levels of sucrose preference in female offspring and lower levels of voluntary morphine consumption in male and female offspring. Thus, EE experience in morphine-dependent both parents reduced anxiety, depressive-like behavior and also the voluntary morphine consumption in their offspring during puberty which may prevent the vulnerability of the next generation to drug abuse. Copyright © 2017 Elsevier B.V. All rights reserved.
Guo, Yitian; Luo, Hanwen; Wu, Yimeng; Magdalou, Jacques; Chen, Liaobin; Wang, Hui
2018-05-22
Epidemiological surveys suggest that adult hypercholesterolemia has an intrauterine origin and exhibits gender differences. Our previous study demonstrated that adult rats with intrauterine growth retardation (IUGR) offspring rats induced by prenatal caffeine exposure (PCE) had a higher serum total cholesterol (TCH) level. In this study, we aimed to analyze the influencing factors, underlying mechanism and interactions affecting hypercholesterolemia in adult offspring with caffeine exposure during pregnancy. Pregnant rats were administered caffeine (120 mg/kg d) from gestational day 11 until delivery. Offspring rats fed a normal diet or a high-fat diet (HFD) were euthanized at postnatal week 24, and blood and liver samples were collected. The results showed that PCE could increase the serum levels of TCH and low-density lipoprotein-cholesterol (LDL-C), and the hepatic expression of HMG CoA reductase (HMGCR) and apolipoprotein B (ApoB), but decreased the high-density lipoprotein-cholesterol (HDL-C) level and the hepatic expression of scavenger receptor B1 (SR-B1) and LDL receptor (LDLR). Furthermore, PCE, HFD and gender interact with each other to influence the serum cholesterol phenotype and expression of hepatic cholesterol metabolic genes. These results suggest that the hypercholesterolemia in adult offspring rats induced by PCE mainly resulted from enhanced synthesis and the weakened reverse transport of cholesterol in the liver, furthermore HFD could aggravate this effect, which is caused by hepatic cholesterol metabolic disorders. Moreover, cholesterol metabolism in female rats was more sensitive to neuroendocrine changes and HFD than that in males. This study confirmed the influencing factors (such as a HFD and female gender) of hypercholesterolemia in IUGR offspring providing theoretical and experimental bases for the effective prevention of fetal-originated hypercholesterolemia. Copyright © 2018 Elsevier Inc. All rights reserved.
behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil.Electrophysiological measures of 'memory' in form of plasticity model known as long term potentiation (LTP)Molecular changes induced by LTPThis dataset is associated with the following publication:Gilbert , M., K. Sanchez-Huerta, and C. Wood. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats. ENDOCRINOLOGY. Endocrine Society, 157(2): 774-87, (2016).
SUMMARY
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure during gestation has revealed reproductive anomalies in rat offspring, including inconclusive reports of stunted mammary development in females (Brown et al., 1998, Lewis et al., 2001). The current studies wer...
Schneider, Steffen; Marxfeld, Heike; Gröters, Sibylle; Buesen, Roland; van Ravenzwaay, Bennard
2013-06-01
The goal of this study was to examine the potential transgenerational inheritance of anti-androgenic effects induced by Vinclozolin administered intraperitoneally to pregnant Wistar rats (Crl:WI[Han]). Dams were dosed with Vinclozolin at 0, 4 or 100mg/kg bw/d on gestation days 6-15. Male offspring of F1-F3 generations were bred with untreated females to yield F2-F4 offspring. No evident anti-androgenic effects were observed at 4mg/kg bw/d, but a case of hypospadias as well as delayed sexual maturation in F1 male offspring was observed as a sign of anti-androgenicity at 100mg/kg bw/d. However, F1-F3 males developed normally to sexual maturity and were able to mate and to generate healthy progeny. Sperm count, morphology and motility were not affected in F1-F4 generation male offspring. In conclusion, transgenerational inheritance of Vinclozolin's anti-androgenic effects was not evident in outbred Wistar rats. Copyright © 2013 Elsevier Inc. All rights reserved.
Li, Min; Li, Xiaobai; Zhang, Xinxin; Ren, Jintao; Jiang, Han; Wang, Yan; Ma, Yuchao; Cheng, Wenwen
2014-06-01
Stress during pregnancy has been implicated as a risk factor for the development of many mental disorders; however, the influence of prenatal stress on the fear or anxiety-related behaviors, especially the fear extinction in adult offspring has been little investigated. In order to investigate how prenatal stress affects fear extinction, which is regarded as a form of new learning that counteracts the expression of Pavlovian's conditioned fear, a rat model of prenatal chronic mild stress (PNS) was used to evaluate the effects of PNS on fear extinction in adult offspring. The expression of hippocampal glycogen synthase kinase-3s (GSK-3α, β), N-methyl-d-aspartic acid receptors (NMDARs)-2B and the hippocampal cell proliferation in dentate gyrus in the adult offspring during fear extinction were studied. Our results showed that PNS significantly reduced body weight of pups, indicating PNS might induce growth retardation in offspring. Moreover, PNS significantly enhanced the freezing behavior of offspring at the phase of extinction, suggesting PNS impaired the abilities of fear extinction learning. In addition, PNS significantly increased the levels of GSK-3α, β and NR2B, but reduced hippocampal cell proliferation during fear extinction. Taken together, our findings suggest that maternal stress during pregnancy can impair the fear extinction of adult offspring, probably by affecting the neural plasticity of brain. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.
Prasolova, L A; Trut, L N; Os'kina, I N; Gulevich, R G; Pliusnina, I Z; Vsevolodov, E B; Latypov, I F
2006-01-01
The effect of methyl supplements to the diet of pregnant homozygous (AAHH) female rats with agouti coat color mated with homozygous (aahh) males on the phenotypic modification of the coat color of their heterozygous offspring (AaHh) has been studied. Comparative morphological analysis of the main parameters of hair that determine coat color, including the total length of hairs of different types and the length of the upper black (eumelanin) and light (pheomelanin) parts of awn hairs has been performed. The pattern of pigment granule distribution among hair layers has been analyzed. The melanin content of the hair has been determined using electron spin resonance (ESR). Although all offspring have a typical agouti coat color (alternating black and light portions of hair), 39% of them have a darker coat color than control and other experimental rats have. The main differences between the offspring with darkened and standard coat colors are accounted for by the ratio between the eumelanin and pheomelanin portions of awn hairs. In darkened offspring, this ratio is significantly higher than in control rats. The possible mechanisms of the phenotypic modification of agouti coat color in experimental animals are discussed.
Influence of Panax ginseng on the offspring of adult rats exposed to prenatal stress
KIM, YOUNG OCK; LEE, HWA-YOUNG; WON, HANSOL; NAH, SEONG-SU; LEE, HWA-YOUNG; KIM, HYUNG-KI; KWON, JUN-TACK; KIM, HAK-JAE
2015-01-01
The exposure of pregnant females to stress during a critical period of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. Schizophrenia is a group of common mental disorders of unclear origin, affecting approximately 1% of the global population, showing a generally young age at onset. In the present study, a repeated variable stress paradigm was applied to pregnant rats during the final week of gestation. The effects of an extract of Panax ginseng C.A. Meyer (PG) on rats exposed to prenatal stress (PNS) were investigated in terms of behavioral activity and protein expression analyses. In the behavioral tests, grooming behavior in a social interaction test, line-crossing behavior in an open-field test and swimming activity in a forced-swim test were decreased in the rats exposed to PNS compared with the non-stressed offspring; the changes in behavioral activity were reversed upon oral treatment with PG (300 mg/kg). Subsequently, western blot analysis and immunohistochemical analyses of the prefrontal cortex and hippocampus revealed that the downregulation of several neurodevelopmental genes which occurred following exposure to PNS was reversed upon treatment with PG. The current findings demonstrate that the downregulation of several genes following exposure to PNS may affect subsequent behavioral changes, and that these phenomena are reversed following treatment with PG during pregnancy. Our results suggest that oral treatment with PG reduces the incidence of psychiatric disorders, such as schizophrenia. PMID:25394395
Gallo, Linda A; Walton, Sarah L; Mazzuca, Marc Q; Tare, Marianne; Parkington, Helena C; Wlodek, Mary E; Moritz, Karen M
2018-03-31
Low weight at birth increases the risk of developing chronic diseases in adulthood A diet that is high in salt is known to elevate blood pressure, which is a major risk factor for cardiovascular and kidney diseases The present study demonstrates that growth restricted male rats have a heightened sensitivity to high dietary salt, in the context of raised systolic blood pressure, reduced urinary sodium excretion and stiffer mesenteric resistance vessels Other salt-induced effects, such as kidney hyperfiltration, albuminuria and glomerular damage, were not exacerbated by being born small The present study demonstrates that male offspring born small have an increased cardiovascular susceptibility to high dietary salt, such that that minimizing salt intake is probably of particular benefit to this at-risk population ABSTRACT: Intrauterine growth restriction increases the risk of developing chronic diseases in adulthood. Lifestyle factors, such as poor dietary choices, may elevate this risk. We determined whether being born small increases the sensitivity to a dietary salt challenge, in the context of hypertension, kidney disease and arterial stiffness. Bilateral uterine vessel ligation or sham surgery (offspring termed Restricted and Control, respectively) was performed on 18-day pregnant Wistar Kyoto rats. Male offspring were allocated to receive a diet high in salt (8% sodium chloride) or remain on standard rat chow (0.52% sodium chloride) from 20 to 26 weeks of age for 6 weeks. Systolic blood pressure (tail-cuff), renal function (24 h urine excretions) and vascular stiffness (pressure myography) were assessed. Restricted males were born 15% lighter than Controls and remained smaller throughout the study. Salt-induced hypertension was exacerbated in Restricted offspring, reaching a peak systolic pressure of ∼175 mmHg earlier than normal weight counterparts. The natriuretic response to high dietary salt in Restricted animals was less than in Controls and may explain the early rise in arterial pressure. Growth restricted males allocated to a high salt diet also had increased passive arterial stiffness of mesenteric resistance arteries. Other aspects of renal function, including salt-induced hyperfiltration, albuminuria and glomerular damage, were not exacerbated by uteroplacental insufficiency. The present study demonstrates that male offspring exposed to uteroplacental insufficiency and born small have an increased sensitivity to salt-induced hypertension and arterial remodelling. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Othman, Haifa; Ammari, Mohamed; Sakly, Mohsen; Abdelmelek, Hafedh
2017-05-30
The present study was carried out to investigate the potential combined influence of maternal restraint stress and 2.45GHz WiFi signal exposure on postnatal development and behavior in the offspring of exposed rats. 24 pregnant albino Wistar rats were randomly assigned to four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint occurred 2h/day along gestation till parturition. The pups were evaluated for physical development and neuromotor maturation. Moreover, elevated plus maze test, open field activity and stationary beam test were also determined on postnatal days 28, 30 and 31, respectively. After behavioral tests, the rats were anesthetized and their brains were removed for biochemical analysis. Our main findings showed no detrimental effects on gestation progress and outcomes at delivery in all groups. Subsequently, WiFi and restraint, per se and mainly in concert altered physical development of pups with slight differences between genders. Behaviorally, the gestational WiFi irradiation, restraint and especially the associated treatment affected the neuromotor maturation mainly in male progeny. At adult age, we noticed anxiety, motor deficit and exploratory behavior impairment in male offspring co-exposed to WiFi radiation and restraint, and in female progeny subjected to three treatments. The biochemical investigation showed that, all three treatments produced global oxidative stress in brain of both sexes. As for serum biochemistry, phosphorus, magnesium, glucose, triglycerides and calcium levels were disrupted. Taken together, prenatal WiFi radiation and restraint, alone and combined, provoked several behavioral and biochemical impairments at both juvenile and adult age of the offspring. Copyright © 2017 Elsevier B.V. All rights reserved.
LEE, HWAYOUNG; JOO, JAESOON; NAH, SEONG-SU; KIM, JONG WOO; KIM, HYUNG-KI; KWON, JUN-TACK; LEE, HWA-YOUNG; KIM, YOUNG OCK; KIM, HAK-JAE
2015-01-01
Exposure to stress during critical periods of fetal brain development is an environmental risk factor for the development of schizophrenia in adult offspring. In the present study, a repeated-variable stress paradigm was applied to pregnant rats during the last week of gestation, which is analogous to the second trimester of brain development in humans. Behavioral and proteomic analyses were conducted in prenatally-stressed (PNS) adult offspring and non-stressed (NS) adult controls. In the behavioral tests, grooming behavior in the social interaction test, line-crossing behavior in the open field test, and swimming behavior in the forced swimming test were decreased in the PNS group. Western blot analysis and immunohistochemical analysis revealed that the expression of dihydropyrimidinase-like 2 (Dpysl2) or collapsin response mediator protein 2 (Crmp2) was downregulated in the prefrontal cortex and hippocampus of rats in the PNS group. Subsequently, single-nucleotide polymorphisms (SNPs) of the human dihydropyrimidinase-like 2 (DPYSL2) gene were analyzed in a population. Two functional SNPs (rs9886448 in the promoter region and rs2289593 in the exon region) were associated with susceptibility to schizophrenia. The present findings demonstrated that the downregulation of genes such as Dpysl2 and Dypsl3 in a rat model of prenatal stress may affect subsequent behavioral changes and that polymorphisms of the DPYSL2 gene in humans may be associated with the development of schizophrenia. Taken together with previous studies investigating the association between the DPYSL2 gene and schizophrenia, the present findings may contribute additional evidence regarding developmental theories of the pathophysiology of schizophrenia. PMID:25847191
Zhao, Qiuying; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Jiang, Wei; Wu, Xiaohui; Yan, Shuo; Chen, Yubo; Peng, Cheng; You, Zili
2015-01-01
Despite the potential adverse effects of maternal sleep deprivation (MSD) on physiological and behavioral aspects of offspring, the mechanisms remain poorly understood. The present study was intended to investigate the roles of microglia on neurodevelopment and cognition in young offspring rats with prenatal sleep deprivation. Pregnant Wistar rats received 72 h sleep deprivation in the last trimester of gestation, and their prepuberty male offspring were given the intraperitoneal injection with or without minocycline. The results showed the number of Iba1+ microglia increased, that of hippocampal neurogenesis decreased, and the hippocampus-dependent spatial learning and memory were impaired in MSD offspring. The classical microglial activation markers (M1 phenotype) IL-1β, IL-6, TNF-α, CD68 and iNOS were increased, while the alternative microglial activation markers (M2 phenotype) Arg1, Ym1, IL-4, IL-10 and CD206 were reduced in hippocampus of MSD offspring. After minocycline administration, the MSD offspring showed improvement in MWM behaviors and increase in BrdU+/DCX+ cells. Minocycline reduced Iba1+ cells, suppressed the production of pro-inflammatory molecules, and reversed the reduction of M2 microglial markers in the MSD prepuberty offspring. These results indicate that dysregulation in microglial pro- and anti-inflammatory activation is involved in MSD-induced inhibition of neurogenesis and impairment of spatial learning and memory. PMID:25830666
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johri, Ashu; Yadav, Sanjay; Dhawan, Alok
2008-08-15
ABSTRACT: Prenatal exposure to low doses of lindane has been shown to affect the ontogeny of xenobiotic metabolizing cytochrome P450s (CYPs), involved in the metabolism and neurobehavioral toxicity of lindane. Attempts were made in the present study to investigate the responsiveness of CYPs in offspring prenatally exposed to lindane (0.25 mg/kg b. wt.; 1/350th of LD{sub 50}; p. o. to mother) when challenged with 3-methylcholanthrene (MC) or phenobarbital (PB), inducers of CYP1A and 2B families or a sub-convulsant dose of lindane (30 mg/kg b. wt., p. o.) later in life. Prenatal exposure to lindane was found to produce an increasemore » in the mRNA and protein expression of CYP1A1, 1A2, 2B1, 2B2 isoforms in brain and liver of the offspring at postnatal day 50. The increased expression of the CYPs in the offspring suggests the sensitivity of the CYPs during postnatal development, possibly, to low levels of lindane, which may partition into mother's milk. A higher increase in expression of CYP1A and 2B isoenzymes and their catalytic activity was observed in animals pretreated prenatally with lindane and challenged with MC (30 mg/kg, i. p. x 5 days) or PB (80 mg/kg, i. p. x 5 days) when young at age (approx. 7 weeks) compared to animals exposed to MC or PB alone. Further, challenge of the control and prenatally exposed offspring with a single sub-convulsant dose of lindane resulted in an earlier onset and increased incidence of convulsions in the offspring prenatally exposed to lindane have demonstrated sensitivity of the CYPs in the prenatally exposed offspring. Our data assume significance as the subtle changes in the expression profiles of hepatic and cerebral CYPs in rat offspring during postnatal development could modify the adult response to a later exposure to xenobiotics.« less
Xu, D; Wu, Y; Liu, F; Liu, Y S; Shen, L; Lei, Y Y; Liu, J; Ping, J; Qin, J; Zhang, C; Chen, L B; Magdalou, J; Wang, H
2012-11-01
Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic-pituitary-adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
Sandeep, M S; Nandini, C D
2017-08-01
In-utero exposure of foetus to hyperglycaemic condition affects the growth and development of the organism. The brain is one of the first organs that start to develop during embryonic period and glycosaminoglycans (GAGs) and proteoglycans (PGs) are one of the key molecules involved in its development. But studies on the effect of hyperglycaemic conditions on brain GAGs/PGs are few and far between. We, therefore, looked into the changes in brain GAGs and PGs at various developmental stages of pre- and post-natal rats from non-diabetic and diabetic mothers as well as in adult rats induced with diabetes using a diabetogenic agent, Streptozotocin. Increased expression of GAGs especially that of heparan sulphate class in various developmental stages were observed in the brain as a result of in-utero hyperglycaemic condition but not in that of adult rats. Changes in disaccharides of heparan sulphate (HS) were observed in various developmental stages. Furthermore, various HSPGs namely, syndecans-1 and -3 and glypican-1 were overexpressed in offspring from diabetic mother. However, in adult diabetic rats, only glypican-1 was overexpressed. The offsprings from diabetic mothers became hyperphagic at the end of 8 weeks after birth which can have implications in the long run. Our results highlight the likely impact of the in-utero exposure of foetus to hyperglycaemic condition on brain GAGs/PGs compared to diabetic adult rats.
Reproductive toxicity evaluation of dietary butyl benzyl phthalate (BBP) in rats.
Tyl, Rochelle W; Myers, Christina B; Marr, Melissa C; Fail, Patricia A; Seely, John C; Brine, Dolores R; Barter, Robert A; Butala, John H
2004-01-01
Butyl benzyl phthalate (BBP) was administered in the diet at 0, 750, 3750, and 11,250 ppm ad libitum to 30 rats per sex per dose for two offspring generations, one litter/breeding pair/generation, through weaning of F2 litters. Adult F0 systemic toxicity and adult F1 systemic and reproductive toxicity were present at 11,250 ppm (750 mg/kg per day). At 11,250 ppm, there were reduced F1 and F2 male anogenital distance (AGD) and body weights/litter during lactation, delayed acquisition of puberty in F1 males and females, retention of nipples and areolae in F1 and F2 males, and male reproductive system malformations. At 3750 ppm (250 mg/kg per day), only reduced F1 and F2 offspring male AGD was present. There were no effects on parents or offspring at 750 ppm (50 mg/kg per day). The F1 parental systemic and reproductive toxicity no observable adverse effect level (NOAEL) was 3750 ppm. The offspring toxicity NOAEL was 3750 ppm. The offspring toxicity no observable effect level (NOEL) was 750 ppm, based on the presence of reduced AGD in F1 and F2 males at birth at 3750 ppm, but no effects on reproductive development, structures, or functions.
Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe
2015-06-01
Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.
Gholami, Hanieh; Jeddi, Sajad; Zadeh-Vakili, Azita; Farrokhfall, Khadije; Rouhollah, Fatemeh; Zarkesh, Maryam; Ghanbari, Mahboubeh; Ghasemi, Asghar
2017-01-01
Transient congenital hypothyroidism (TCH) could disturb carbohydrate metabolism in adulthood. Aging is associated with increased risk of type 2 diabetes. This study aims to address effects of TCH on mRNA expressions of glucose transporters (GLUTs) and glucokinase (GcK) in islets and insulin target tissues of aged offspring rats. The TCH group received water containing 0.025% 6-propyl-2-thiouracil during gestation. Offspring from control and TCH groups (n=6 in each group) were followed until month 19. Gene expressions of GLUTs and GcK were measured at months 3 and 19. Compared to controls, aged TCH rats had higher GLUT4 expression in heart (4.88 fold) and soleus (6.91 fold), while expression was lower in epididymal fat (12%). In TCH rats, GLUT2 and GcK expressions in islets were lower in young (12% and 10%, respectively) and higher in aged (10.85 and 8.42 fold, respectively) rats. In addition, liver GLUT2 and GcK expressions were higher in young (13.11 and 21.15 fold, respectively) and lower in aged rats (44% and 5%, respectively). Thyroid hormone deficiency during fetal period impaired glucose sensing apparatus and changed glucose transporter expression in insulin-sensitive tissues of aged offspring rats. These changes may contribute to impaired carbohydrate metabolism. © 2017 The Author(s). Published by S. Karger AG, Basel.
Maternal nutrition during pregnancy and postnatal offspring nutrition may influence offspring traits. We investigated the effects of maternal and postweaning offspring dietary nitrogen on immune function and hematology in two species of rodent: the hispid cotton rat (Sigmodon his...
Nonhereditary enhancement of progeny growth
NASA Technical Reports Server (NTRS)
Khan, Amir S.; Fiorotto, Marta L.; Hill, Leigh-Anne; Malone, P. Brandon; Cummings, Kathleen K.; Parghi, Deena; Schwartz, Robert J.; Smith, Roy G.; Draghia-Akli, Ruxandra
2002-01-01
The im electroporated injection of a protease-resistant GH-releasing hormone cDNA into rat dams at 16 d gestation resulted in enhanced long-term growth of the F(1) offspring. The offspring were significantly heavier by 2 wk of age, and the difference was sustained to 10 wk of age. Consistent with their augmented growth, the plasma IGF-I concentration of the F(1) progeny was increased significantly. The pituitary gland of the offspring was significantly heavier and contained an increased number of somatotrophs and PRL-secreting cells, which is indicative of modification of cell lineage differentiation. These unique findings demonstrate that enhanced GH-releasing hormone expression in pregnant dams can result in intergenerational growth promotion by altering development of the pituitary gland in the offspring.
Multigeneration Reproduction and Male Developmental Toxicity Studies on Atrazine in Rats
DeSesso, John M; Scialli, Anthony R; White, Tacey E K; Breckenridge, Charles B
2014-01-01
BACKGROUND Reproductive toxicity of Atrazine (ATR) was evaluated in two rat multigenerational studies. Development of male reproductive parameters was evaluated in separate studies after prenatal or postnatal exposure. METHODS In multigenerational studies, rats received dietary concentrations of 0, 10, 50, 100 or 500 ppm ATR. In separate studies in female rats, ATR was administered by gavage at 0, 1, 5, 25 or 125 mg/kg/day during pregnancy (GD6–21) or lactation (LD2–21). Plasma testosterone concentration, testicular and epididymal weights, and sperm counts were measured in male offspring on PND70 and 170. RESULTS In the multigenerational studies, parental systemic toxicity occurred at 500 ppm (38.7 mg/kg/day), but reproductive endpoints were unaffected. In the prenatal study, maternal toxicity and embryo-fetal mortality occurred at 125 mg/kg/day. In male offspring, testosterone levels and sperm counts were unaffected, although the percentage of abnormal sperm increased at 125 mg/kg/day (PND 70) and 25 mg/kg/day (PND170). In the postnatal study, maternal toxicity and reduced body weights of male offspring occurred at 125 mg/kg/day. Additionally, reduced testicular (PND70, PND170) and epididymal (PND70) weights and increased numbers of abnormal sperm (PND70, PND170) were seen, but no changes in plasma testosterone or sperm counts. CONCLUSIONS Dietary administration of ATR did not affect rat reproduction up to a parentally toxic dose of 38.7 mg/kg/day. Some effects on male reproductive system development occurred after high dose, bolus administration to dams, but doses were much higher than expected under normal use conditions. Thus, oral RfDs for ATR would be protective for reproductive effects PMID:24797874
Multigeneration reproduction and male developmental toxicity studies on atrazine in rats.
DeSesso, John M; Scialli, Anthony R; White, Tacey E K; Breckenridge, Charles B
2014-06-01
Reproductive toxicity of Atrazine (ATR) was evaluated in two rat multigenerational studies. Development of male reproductive parameters was evaluated in separate studies after prenatal or postnatal exposure. In multigenerational studies, rats received dietary concentrations of 0, 10, 50, 100 or 500 ppm ATR. In separate studies in female rats, ATR was administered by gavage at 0, 1, 5, 25 or 125 mg/kg/day during pregnancy (GD6-21) or lactation (LD2-21). Plasma testosterone concentration, testicular and epididymal weights, and sperm counts were measured in male offspring on PND70 and 170. In the multigenerational studies, parental systemic toxicity occurred at 500 ppm (38.7 mg/kg/day), but reproductive endpoints were unaffected. In the prenatal study, maternal toxicity and embryo-fetal mortality occurred at 125 mg/kg/day. In male offspring, testosterone levels and sperm counts were unaffected, although the percentage of abnormal sperm increased at 125 mg/kg/day (PND 70) and 25 mg/kg/day (PND170). In the postnatal study, maternal toxicity and reduced body weights of male offspring occurred at 125 mg/kg/day. Additionally, reduced testicular (PND70, PND170) and epididymal (PND70) weights and increased numbers of abnormal sperm (PND70, PND170) were seen, but no changes in plasma testosterone or sperm counts. Dietary administration of ATR did not affect rat reproduction up to a parentally toxic dose of 38.7 mg/kg/day. Some effects on male reproductive system development occurred after high dose, bolus administration to dams, but doses were much higher than expected under normal use conditions. Thus, oral RfDs for ATR would be protective for reproductive effects. © 2014 Wiley Periodicals, Inc.
Jarosz, Patricia A; Fata, Ellen; Bowen, Scott E; Jen, K-L Catherine; Coscina, Donald V
2008-03-18
Inhalant abuse during pregnancy lowers birth weight and impedes early development. These studies explored the effects of brief, repeated, prenatal toluene exposures in pregnant female rats on body weight, metabolic rate, body composition, and food intake in their offspring. Rats were exposed to 0, 8000, 12,000, or 16,000 ppm of toluene twice daily for 15 min from gestational days 8 to 20. The effects of such exposures on post-weaning litter weights, oxygen consumption, carbon dioxide output, and body fat content were determined in 2 cohorts (n=23, n=24) of offspring. Food intakes and weight changes in response to 3 different diets (regular chow, purified diet, purified high fat diet) were examined in another cohort (n=24) from postnatal days 72 to 116. Litter weights showed a significant linear decrease as a function of toluene dose. Offspring exposed to the 16,000 ppm toluene dose displayed statistically lower energy expenditures than control rats. Male rats exposed to 8000 or 16,000 ppm toluene had significantly greater percentage of body fat as well as total body fat than the other groups. Toluene also significantly suppressed weight gain over the time chow was consumed compared to the 0 ppm control group. Finally there were trends for a main effect of toluene dose on food intake during chow and during high fat diet consumption, with rats in the 12,000 ppm group consuming more than the 0 ppm group on both diets. These data suggest that, in addition to other previously documented abnormalities in neurological development and behavior, the physiological regulation of metabolism and body composition in males as well as food intake and weight gain in both sexes may be altered by prenatal exposure to toluene.
Interventions to prevent adverse fetal programming due to maternal obesity during pregnancy.
Nathanielsz, Peter W; Ford, Stephen P; Long, Nathan M; Vega, Claudia C; Reyes-Castro, Luis A; Zambrano, Elena
2013-10-01
Maternal obesity is a global epidemic affecting both developed and developing countries. Human and animal studies indicate that maternal obesity adversely programs the development of offspring, predisposing them to chronic diseases later in life. Several mechanisms act together to produce these adverse health effects. There is a consequent need for effective interventions that can be used in the management of human pregnancy to prevent these outcomes. The present review analyzes the dietary and exercise intervention studies performed to date in both altricial and precocial animals, rats and sheep, with the aim of preventing adverse offspring outcomes. The results of these interventions present exciting opportunities to prevent, at least in part, adverse metabolic and other outcomes in obese mothers and their offspring. © 2013 International Life Sciences Institute.
Ramírez-López, María Teresa; Vázquez, Mariam; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemi; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Bindila, Laura
2017-01-01
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight. PMID:28346523
Ramírez-López, María Teresa; Vázquez, Mariam; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemi; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Bindila, Laura; Rodríguez de Fonseca, Fernando
2017-01-01
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight.
Mammalian development in space
NASA Technical Reports Server (NTRS)
Ronca, April E.
2003-01-01
Life on Earth, and thus the reproductive and ontogenetic processes of all extant species and their ancestors, evolved under the constant influence of the Earth's l g gravitational field. These considerations raise important questions about the ability of mammals to reproduce and develop in space. In this chapter, I review the current state of our knowledge of spaceflight effects on developing mammals. Recent studies are revealing the first insights into how the space environment affects critical phases of mammalian reproduction and development, viz., those events surrounding fertilization, embryogenesis, pregnancy, birth, postnatal maturation and parental care. This review emphasizes fetal and early postnatal life, the developmental epochs for which the greatest amounts of mammalian spaceflight data have been amassed. The maternal-offspring system, the coordinated aggregate of mother and young comprising mammalian development, is of primary importance during these early, formative developmental phases. The existing research supports the view that biologically meaningful interactions between mothers and offspring are changed in the weightlessness of space. These changes may, in turn, cloud interpretations of spaceflight effects on developing offspring. Whereas studies of mid-pregnant rats in space have been extraordinarily successful, studies of young rat litters launched at 9 days of postnatal age or earlier, have been encumbered with problems related to the design of in-flight caging and compromised maternal-offspring interactions. Possibilities for mammalian birth in space, an event that has not yet transpired, are considered. In the aggregate, the results indicate a strong need for new studies of mammalian reproduction and development in space. Habitat development and systematic ground-based testing are important prerequisites to future research with young postnatal rodents in space. Together, the findings support the view that the environment within which young mammals develop, comprised of its mother and siblings, is of paramount importance in interpreting spaceflight effects.
Studies toward birth and early mammalian development in space
NASA Astrophysics Data System (ADS)
Ronca, April E.
2003-10-01
Sustaining life beyond Earth on either space stations or other planets will require a clear understanding of how the space environment affects key phases of mammalian reproduction and development. Pregnancy, parturition (birth) and the early development of offspring are complex processes essential for successful reproduction and the proliferation of mammalian species. While no mammal has yet undergone birth within the space environment, studies spanning the gravity continuum from 0- to 2-g are revealing startling insights into how reproduction and development may proceed under gravitational conditions deviating from those typically experienced on Earth. In this report, I review studies of pregnant Norway rats and their offspring flown in microgravity (μg) onboard the NASA Space Shuttle throughout the period corresponding to mid- to late gestation, and analogous studies of pregnant rats exposed to hypergravity ( ht) onboard the NASA Ames Research Center 24-ft centrifuge. Studies of postnatal rats flown in space or exposed to centrifugation are reviewed. Although many important questions remain unanswered, the available data suggest that numerous aspects of pregnancy, birth and early mammalian development can proceed under altered gravity conditions. Published by Elsevier Ltd on behalf of COSPAR.
Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J; Pak, Toni R
2017-05-01
Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. Copyright © 2016 Elsevier Inc. All rights reserved.
Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J.; Pak, Toni R.
2016-01-01
Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the last 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. PMID:27817987
Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P
2016-04-01
The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure. © 2016 John Wiley & Sons Australia, Ltd.
Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats
NASA Astrophysics Data System (ADS)
Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.
Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed
Ramírez-López, María Teresa; Vázquez, Mariam; Bindila, Laura; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemí; Alén, Francisco; Antón, María; Decara, Juan; Ouro, Daniel; Orio, Laura; Suarez, Juan; Lutz, Beat; Rodríguez de Fonseca, Fernando; Gómez de Heras, Raquel
2016-01-01
Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol) at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory, and emotions. PMID:26778987
Ong, Z Y; Muhlhausler, B S
2011-07-01
Individuals exposed to high-fat, high-sugar diets before birth have an increased risk of obesity in later life. Recent studies have shown that these offspring exhibit increased preference for fat, leading to suggestions that perinatal exposure to high-fat, high-sugar foods results in permanent changes within the central reward system that increase the subsequent drive to overconsume palatable foods. The present study has determined the effect of a maternal "junk-food" diet on the expression of key components of the mesolimbic reward pathway in the offspring of rat dams at 6 wk and 3 mo of age. We show that offspring of junk-food-fed (JF) dams exhibit higher fat intake from weaning until at least 3 mo of age (males: 16 ± 0.6 vs. 11 ± 0.8 g/kg/d; females: 19 ± 1.3 vs. 13 ± 0.4 g/kg/d; P<0.01). mRNA expression of μ-opioid receptor (Mu) was 1.6-fold higher (P<0.01) and dopamine active transporter (DAT) was 2-fold lower (P<0.05) in JF offspring at 6 wk of age. By 3 mo, these differences were reversed, and Mu mRNA expression was 2.8-fold lower (P<0.01) and DAT mRNA expression was 1.9-fold higher (P<0.01) in the JF offspring. These findings suggest that perinatal exposure to high-fat, high-sugar diets results in altered development of the central reward system, resulting in increased fat intake and altered response of the reward system to excessive junk-food intake in postnatal life.
Gray, Clint; Al-Dujaili, Emad A.; Sparrow, Alexander J.; Gardiner, Sheila M.; Craigon, Jim; Welham, Simon J.M.; Gardner, David S.
2013-01-01
Hypertension is common and contributes, via cardiovascular disease, towards a large proportion of adult deaths in the Western World. High salt intake leads to high blood pressure, even when occurring prior to birth – a mechanism purported to reside in altered kidney development and later function. Using a combination of in vitro and in vivo approaches we tested whether increased maternal salt intake influences fetal kidney development to render the adult individual more susceptible to salt retention and hypertension. We found that salt-loaded pregnant rat dams were hypernatraemic at day 20 gestation (147±5 vs. 128±5 mmoles/L). Increased extracellular salt impeded murine kidney development in vitro, but had little effect in vivo. Kidneys of the adult offspring had few structural or functional abnormalities, but male and female offspring were hypernatraemic (166±4 vs. 149±2 mmoles/L), with a marked increase in plasma corticosterone (e.g. male offspring; 11.9 [9.3–14.8] vs. 2.8 [2.0–8.3] nmol/L median [IQR]). Furthermore, adult male, but not female, offspring had higher mean arterial blood pressure (effect size, +16 [9–21] mm Hg; mean [95% C.I.]. With no clear indication that the kidneys of salt-exposed offspring retained more sodium per se, we conducted a preliminary investigation of their gastrointestinal electrolyte handling and found increased expression of proximal colon solute carrier family 9 (sodium/hydrogen exchanger), member 3 (SLC9A3) together with altered faecal characteristics and electrolyte handling, relative to control offspring. On the basis of these data we suggest that excess salt exposure, via maternal diet, at a vulnerable period of brain and gut development in the rat neonate lays the foundation for sustained increases in blood pressure later in life. Hence, our evidence further supports the argument that excess dietary salt should be avoided per se, particularly in the range of foods consumed by physiologically immature young. PMID:23991143
Hu, Min; Richard, Jennifer Elise; Maliqueo, Manuel; Kokosar, Milana; Fornes, Romina; Benrick, Anna; Jansson, Thomas; Ohlsson, Claes; Wu, Xiaoke; Skibicka, Karolina Patrycja; Stener-Victorin, Elisabet
2015-11-17
During pregnancy, women with polycystic ovary syndrome (PCOS) display high circulating androgen levels that may affect the fetus and increase the risk of mood disorders in offspring. This study investigated whether maternal androgen excess causes anxiety-like behavior in offspring mimicking anxiety disorders in PCOS. The PCOS phenotype was induced in rats following prenatal androgen (PNA) exposure. PNA offspring displayed anxiety-like behavior in the elevated plus maze, which was reversed by flutamide [androgen receptor (AR) blocker] and tamoxifen [selective estrogen receptor (ER) modulator]. Circulating sex steroids did not differ between groups at adult age. The expression of serotonergic and GABAergic genes associated with emotional regulation in the amygdala was consistent with anxiety-like behavior in female, and partly in male PNA offspring. Furthermore, AR expression in amygdala was reduced in female PNA offspring and also in females exposed to testosterone in adult age. To determine whether AR activation in amygdala affects anxiety-like behavior, female rats were given testosterone microinjections into amygdala, which resulted in anxiety-like behavior. Together, these data describe the anxiety-like behavior in PNA offspring and adult females with androgen excess, an impact that seems to occur during fetal life, and is mediated via AR in amygdala, together with changes in ERα, serotonergic, and GABAergic genes in amygdala and hippocampus. The anxiety-like behavior following testosterone microinjections into amygdala demonstrates a key role for AR activation in this brain area. These results suggest that maternal androgen excess may underpin the risk of developing anxiety disorders in daughters and sons of PCOS mothers.
Hu, Min; Richard, Jennifer Elise; Maliqueo, Manuel; Kokosar, Milana; Fornes, Romina; Benrick, Anna; Jansson, Thomas; Ohlsson, Claes; Wu, Xiaoke; Skibicka, Karolina Patrycja; Stener-Victorin, Elisabet
2015-01-01
During pregnancy, women with polycystic ovary syndrome (PCOS) display high circulating androgen levels that may affect the fetus and increase the risk of mood disorders in offspring. This study investigated whether maternal androgen excess causes anxiety-like behavior in offspring mimicking anxiety disorders in PCOS. The PCOS phenotype was induced in rats following prenatal androgen (PNA) exposure. PNA offspring displayed anxiety-like behavior in the elevated plus maze, which was reversed by flutamide [androgen receptor (AR) blocker] and tamoxifen [selective estrogen receptor (ER) modulator]. Circulating sex steroids did not differ between groups at adult age. The expression of serotonergic and GABAergic genes associated with emotional regulation in the amygdala was consistent with anxiety-like behavior in female, and partly in male PNA offspring. Furthermore, AR expression in amygdala was reduced in female PNA offspring and also in females exposed to testosterone in adult age. To determine whether AR activation in amygdala affects anxiety-like behavior, female rats were given testosterone microinjections into amygdala, which resulted in anxiety-like behavior. Together, these data describe the anxiety-like behavior in PNA offspring and adult females with androgen excess, an impact that seems to occur during fetal life, and is mediated via AR in amygdala, together with changes in ERα, serotonergic, and GABAergic genes in amygdala and hippocampus. The anxiety-like behavior following testosterone microinjections into amygdala demonstrates a key role for AR activation in this brain area. These results suggest that maternal androgen excess may underpin the risk of developing anxiety disorders in daughters and sons of PCOS mothers. PMID:26578781
Carbone, David L.; Zuloaga, Damian G.; Lacagnina, Anthony F.; McGivern, Robert F.; Handa, Robert J.
2012-01-01
Synthetic glucocorticoids (GC) have been used to promote lung development in preterm infants, thereby decreasing respiratory distress syndrome and mortality, yet, concern has arisen from reports that such treatment predisposes individuals to disease in adulthood. Given the variety of preclinical studies that show metabolic and behavioral abnormalities in adulthood following fetal exposure to synthetic GC, we examined the effect of in utero exposure to the synthetic GC, dexamethasone (DEX), on hypothalamic expression of thyrotropin-releasing hormone (TRH) a central neuropeptide involved in mediating behavior and metabolic balance. Pregnant Sprague-Dawley rats were administered 0.4 mg/kg DEX on gestational days 18–21. As adults (postnatal day (PD) 60), the offspring were fitted with temperature sensing transmitters allowing real-time monitoring of core body temperature (CBT) across the 24 hr light dark period. This revealed a significant decrease in CBT throughout the day in prenatal DEX-treated females on estrus and diestrus, but not in male offspring. The reduction in CBT by prenatal DEX exposure was accompanied by a significant decrease in the expression of Trh transcript in the paraventricular nucleus of the hypothalamus (PVN) of female rats at PD 60 and this effect was also present on PD7. There was also a female-specific reduction in the number of preproTRH -immunoreactive (ir) neurons in the PVN, with ppTRH-ir nerve fibers decreases that were present in both male and female offspring. No changes in thyroid hormone (triiodothyronine, T3; thyroxine, T4) were observed in adult offspring, but during development, both males and females (PD14) had lower T3 and T4 levels. These data indicate abnormal expression of TRH results from fetal DEX exposure during late gestation, possibly explaining the decreased CBT observed in the female offspring. PMID:22884559
Late gestational exposure to the fungicide prochloraz delays the onset of parturition and causes reproductive malformations in male rat offspring.
Nigel C. Noriega, Joseph Ostby, Christy Lambright, Vickie S. Wilson, and L. Earl Gray Jr.,
Prochloraz (PZ) is an imidazol...
Galyon, Kristina D; Farshidi, Farnoosh; Han, Guang; Ross, Michael G; Desai, Mina; Jellyman, Juanita K
2017-03-01
The obesogenic and diabetogenic effects of the environmental toxin bisphenol A during critical windows of development are well recognized. Liver and skeletal muscle play a central role in the control of glucose production, utilization, and storage. We hypothesized that maternal bisphenol A exposure disrupts insulin signaling in rat offspring liver and skeletal muscle. We determined the protein expression of hepatic and skeletal muscle insulin signaling molecules including insulin receptor beta, its downstream target insulin receptor substrate 1 and glucose transporters (glucose transporter 2, glucose transporter 4), and hepatic glucose-regulating enzymes phosphoenolpyruvate carboxykinase and glucokinase. Rat dams had ad libitum access to filtered drinking water (control) or drinking water with bisphenol A from 2 weeks prior to mating and through pregnancy and lactation. Offspring litters were standardized to 4 males and 4 females and nursed by the same dam. At weaning, bisphenol A exposure was removed from all offspring. Glucose tolerance was tested at 6 weeks and 6 months. Liver and skeletal muscle was collected from 3 week old and 10 month old offspring for protein expression (Western blot) of insulin receptor beta, insulin receptor substrate 1, glucose transporter 2, glucose transporter 4, phosphoenolpyruvate carboxykinase, and glucokinase. Male, but not female, bisphenol A offspring had impaired glucose tolerance at 6 weeks and 6 months. Both male and female adult offspring had higher glucose-stimulated insulin secretion as well as the ratio of stimulated insulin to glucose. Male bisphenol A offspring had higher liver protein abundance of the 200 kDa insulin receptor beta precursor (2-fold), and insulin receptor substrate 1 (1.5-fold), whereas glucose transporter 2 was 0.5-fold of the control at 3 weeks of age. In adult male bisphenol A offspring, the abundance of insulin receptor beta was higher (2-fold) and glucose transporter 4 was 0.8-fold of the control in skeletal muscle. In adult female bisphenol A offspring, the skeletal muscle protein abundance of glucose transporter 4 was 0.4-fold of the control. Maternal bisphenol A had sex- and tissue-specific effects on insulin signaling components, which may contribute to increased risk of glucose intolerance in offspring. Glucose transporters were consistently altered at both ages as well as in both sexes and may contribute to glucose intolerance. These data suggest that maternal bisphenol A exposure should be limited during pregnancy and lactation. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhong, Liang; Luo, Foquan; Zhao, Weilu; Feng, Yunlin; Wu, Liuqin; Lin, Jiamei; Liu, Tianyin; Wang, Shengqiang; You, Xuexue; Zhang, Wei
2016-10-01
The brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) (BDNF-TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF-TrkB signalling pathway is involved in propofol-induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real-time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated-TrkB (phospho-TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho-TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) reversed all of the observed changes. Treatment with 7,8-DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF-TrkB signalling pathway. The TrkB agonist 7,8-DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Lin, Jiamei; Wang, Shengqiang; Feng, Yunlin; Zhao, Weihong; Zhao, Weilu; Luo, Foquan; Feng, Namin
2018-05-01
Propofol is widely used in clinical practice, including non-obstetric surgery in pregnant women. Previously, we found that propofol anaesthesia in maternal rats during the third trimester (E18) caused learning and memory impairment to the offspring rats, but how about the exposure during early pregnancy and the underlying mechanisms? Histone acetylation plays an important role in synaptic plasticity. In this study, propofol was administered to the pregnant rats in the early pregnancy (E7). The learning and memory function of the offspring were tested by Morris water maze (MWM) test on post-natal day 30. Two hours before each MWM trial, histone deacetylase 2 (HDAC2) inhibitor, suberoylanilide hydroxamic acid (SAHA), Senegenin (SEN, traditional Chinese medicine), hippyragranin (HGN) antisense oligonucleotide (HGNA) or vehicle were given to the offspring. The protein levels of HDAC2, acetylated histone 3 (H3) and 4 (H4), cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), N-methyl-D-aspartate receptor (NMDAR) 2 subunit B (NR2B), HGN and synaptophysin in offspring's hippocampus were determined by Western blot or immunofluorescence test. It was discovered that infusion with propofol in maternal rats on E7 leads to impairment of learning and memory in offspring, increased the protein levels of HDAC2 and HGN, decreased the levels of acetylated H3 and H4 and phosphorylated CREB, NR2B and synaptophysin. HDAC2 inhibitor SAHA, Senegenin or HGN antisense oligonucleotide reversed all the changes. Thus, present results indicate exposure to propofol during the early gestation impairs offspring's learning and memory via inhibiting histone acetylation. SAHA, Senegenin and HGN antisense oligonucleotide might have therapeutic value for the adverse effect of propofol. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Renaud, Samantha M; Fountain, Stephen B
2016-01-01
This study investigated whether adolescent nicotine exposure in one generation of rats would impair the cognitive capacity of a subsequent generation. Male and female rats in the parental F0 generation were given twice-daily i.p. injections of either 1.0mg/kg nicotine or an equivalent volume of saline for 35days during adolescence on postnatal days 25-59 (P25-59). After reaching adulthood, male and female nicotine-exposed rats were paired for breeding as were male and female saline control rats. Only female offspring were used in this experiment. Half of the offspring of F0 nicotine-exposed breeders and half of the offspring of F0 saline control rats received twice-daily i.p. injections of 1.0mg/kg nicotine during adolescence on P25-59. The remainder of the rats received twice-daily saline injections for the same period. To evaluate transgenerational effects of nicotine exposure on complex cognitive learning abilities, F1 generation rats were trained to perform a highly structured serial pattern in a serial multiple choice (SMC) task. Beginning on P95, rats in the F1 generation were given either 4days of massed training (20patterns/day) followed by spaced training (10 patterns/day) or only spaced training. Transgenerational effects of adolescent nicotine exposure were observed as greater difficulty in learning a "violation element" of the pattern, which indicated that rats were impaired in the ability to encode and remember multiple sequential elements as compound or configural cues. The results indicated that for rats that received massed training, F1 generation rats with adolescent nicotine exposure whose F0 generation parents also experienced adolescent nicotine exposure showed poorer learning of the violation element than rats that experienced adolescent nicotine exposure only in the F1 generation. Thus, adolescent nicotine exposure in one generation of rats produced a cognitive impairment in the next generation. Copyright © 2016 Elsevier Inc. All rights reserved.
Langley-Evans, S C
2000-01-01
Maternal nutrition has been identified as a factor determining fetal growth and risk of adult disease. In rats, the feeding of a low protein diet during pregnancy retards fetal growth and induces hypertension in the resulting offspring. Rat models of low protein feeding have been extensively used to study the mechanisms that may link maternal nutrition with impaired fetal growth and later cardiovascular disease and diabetes. Low protein diets of differing composition used in different laboratories have yielded inconsistent data on the relationship between maternal protein intake and offsprings' blood pressure. Two separate low protein diet protocols were compared in terms of their ability to programme hypertension during fetal life. Pregnant rats were assigned to receive one of four diets. Two diets were obtained from a commercial supplier and provided casein at 22 or 9% by weight (H22, control; H9, low protein). The other two diets, manufactured in our own facility, provided 18% casein (S18, control) or 9% casein (S9, low protein) by weight. The diets differed principally in their overall fat content, fatty acid composition, methionine content and the source of carbohydrate. Feeding of the experimental diets commenced on the first day of pregnancy and continued until the rats delivered their litters. Following weaning all the offspring had blood pressure determined on a single occasion. Both low protein diets reduced maternal weight gain relative to their corresponding control diets. Despite this litter sizes were unaffected by the dietary protocols. Both low protein diets reduced birthweights of the pups. Systolic blood pressure was significantly elevated in the offspring of rats fed a low protein S9 diet relative to all other groups (P < 0.05). Animals exposed to H9 diet in utero had similar blood pressures to their H22 controls. It is concluded from this work that differing low protein diet manipulations in rat pregnancy elicit different programming effects upon the developing cardiovasculature. The balance of protein and other nutrients may be a critical determinant of the long-term health effects of maternal undernutrition in pregnancy.
Zeng, Hui; Chen, Ji-an; Liu, Lin; Wang, Da-hua; Fu, Wen-juan; Wang, Ling-qiao; Luo, Jiao-hua; Zhang, Liang; Tan, Yao; Qiu, Zhi-qun; Huang, Yu-jing; Shu, Wei-qun
2014-01-01
Tap water (unfiltered), filtered tap water and processed bottled water (purified water, artificial mineralized water, or natural water) are now the five most widely consumed types of drinking water in China. However, the constituents (organic chemicals and inorganic ingredients) of the five waters differ, which may cause them to have different long-term health effects on those who drink them, especially sensitive children. In order to determine which type of water among the five waters is the most beneficial regarding reproductive outcomes and the developmental behaviors of offspring, two generations of Sprague-Dawley rats were given these five waters separately, and their reproductive outcomes and the developmental behaviors of their offspring were observed and compared. The results showed that the unfiltered tap water group had the lowest values for the maternal gestation index (MGI) and offspring's learning and memory abilities (OLMA); the lowest offspring survival rate was found in the purified water group; and the highest OLMA were found in the filtered tap water group. Thus, the best reproductive and offspring early developmental outcomes were found in the group that drank filtered tap water, which had the lowest levels of pollutants and the richest minerals. Therefore, thoroughly removing toxic contaminants and retaining the beneficial minerals in drinking water may be important for both pregnant women and children, and the best way to treat water may be with granular activated carbon and ion exchange by copper zinc alloy.
Zeng, Hui; Shu, Wei-qun; Chen, Ji-an; Liu, Lin; Wang, Da-hua; Fu, Wen-juan; Wang, Ling-qiao; Luo, Jiao-hua; Zhang, Liang; Tan, Yao; Qiu, Zhi-qun; Huang, Yu-jing
2014-01-01
Tap water (unfiltered), filtered tap water and processed bottled water (purified water, artificial mineralized water, or natural water) are now the five most widely consumed types of drinking water in China. However, the constituents (organic chemicals and inorganic ingredients) of the five waters differ, which may cause them to have different long-term health effects on those who drink them, especially sensitive children. In order to determine which type of water among the five waters is the most beneficial regarding reproductive outcomes and the developmental behaviors of offspring, two generations of Sprague–Dawley rats were given these five waters separately, and their reproductive outcomes and the developmental behaviors of their offspring were observed and compared. The results showed that the unfiltered tap water group had the lowest values for the maternal gestation index (MGI) and offspring's learning and memory abilities (OLMA); the lowest offspring survival rate was found in the purified water group; and the highest OLMA were found in the filtered tap water group. Thus, the best reproductive and offspring early developmental outcomes were found in the group that drank filtered tap water, which had the lowest levels of pollutants and the richest minerals. Therefore, thoroughly removing toxic contaminants and retaining the beneficial minerals in drinking water may be important for both pregnant women and children, and the best way to treat water may be with granular activated carbon and ion exchange by copper zinc alloy. PMID:25279561
Struve, Melanie F; Turner, Katie J; Dorman, David C
2007-01-01
In vitro, the organophosphate insecticide fenitrothion is a potent competitive androgen receptor antagonist, whereas in vivo it affects the development of the male rat reproductive system. The purpose of this pilot study was to determine whether prenatal exposure to fenitrothion affects development of the rat sexually dimorphic nucleus of the medial preoptic area (SDN-POA). Pregnant rats (n = 5-6 litters/group) were orally dosed with corn oil (vehicle) or fenitrothion (20 or 25 mg kg(-1) day(-1)) from gestation day (GD) 12-21. Offspring were euthanized after reaching sexual maturity (females 60-65 days old and males 96-105 days old) and the SDN-POA volumes determined for two rats/sex/litter. Tremors, increased lacrimation and decreased body weight gain were observed in dams from both fenitrothion exposure groups. Reproductive effects in male offspring, including reduced anogenital distance on postnatal day (PND) 1 and increased retention of areolae (PND 13) were observed following fenitrothion exposure at these dose levels. These effects did not persist into adulthood. There was a dose-related increase in the SDN-POA volume in males and a dose-related decrease in SDN-POA volume in females exposed to fenitrothion. These SDN-POA volume changes contrast with those seen with flutamide, another potent anti-androgen, and suggest that fenitrothion may have mixed endocrine effects on the developing brain.
Liang, Xue; Feng, Yanni; Lin, Laixiang; Abeysekera, Iruni Roshanie; Iqbal, Umar; Wang, Tingting; Wang, Ying; Yao, Xiaomei
2018-05-01
Our aim was to investigate thyroid function alterations attributed to high iodide supplementation in maternal rats and their offspring. Depending on their iodide intake, the pregnant rats were randomly divided into three groups: normal iodide intake (NI), 10 times high iodide intake (10 HI) and 100 times high iodide intake (100 HI) groups. Iodine concentration in the urine and maternal milk; iodine content and mitochondrial superoxide production; expression of TRα1, TRβ1, NIS and Dio1 in both the thyroid and mammary glands were all measured. The offspring were exposed to different iodide-containing water (NI, 10 HI and 100 HI) from weaning to postnatal day 180 (PN180). Serum thyroid hormone levels were measured in both maternal rats and their offspring. Iodine concentration in the urine and maternal milk, as well as iodine content in the thyroid and mammary glands was significantly increased in both the 10 HI and 100 HI groups (p < .05). In the 100 HI group of maternal rats, low FT3 levels, high FT4, TPOAb and TgAb levels were detected. In addition, an increased mitochondrial superoxide production and decreased expression of TRα1, TRβ1, NIS and Dio1 in the thyroid and mammary glands was found (p < .05). A positive staining of CD4 + that co-localized with TRβ1 in the infiltrated cells within the thyroid follicles was observed. At PN180 in the offspring, the FT3 and FT4 levels showed a significant decrease, while the levels of serum TSH, TPOAb and TgAb were significantly increased in both 10 HI and 100 HI groups (p < .05). In maternal rats, although normal thyroid function can be maintained following 10 HI, thyroiditis can be induced following 100 HI on lactation days 7, 14, and 21. In the offspring at PN180, hypothyroidism complicated with thyroiditis can occur in both the 10 HI and 100 HI groups. Copyright © 2018 Elsevier GmbH. All rights reserved.
Zhou, Jiabin; Gao, Shixing; Chen, Jinglong; Zhao, Ruqian; Yang, Xiaojing
2016-07-22
Sodium butyrate (SB) is reported to regulate lipid metabolism in mammals, and the relationship between maternal nutrition and offspring growth has drawn much attention in the last several years. To elucidate the effects of maternal dietary SB supplementation on hepatic lipid metabolism in weaning rats, we fed 16 primiparous purebred female SD rats either a chow-diet or a 1 % sodium butyrate diet throughout pregnancy and lactation. At weaning age, samples of the maternal subcutaneous adipose tissue and offspring liver were taken. The serum indexes and expressions of proteins related to lipid metabolism were detected in the mother and offspring, respectively. The results showed that the maternal SB supplement increased the concentration of non-esterified fatty acid (NEFA) in the maternal and offspring serum (P < 0.05). Total cholesterol (Tch) increased significantly in the weaning-rat serum (P < 0.05). Maternal adipose tissue from the SB-supplemented rats showed higher content of protein G-coupled protein (GPR43) and protein kinase A (PKA) (P < 0.05). The expression of protein adipose triglyceride lipase (ATGL), and of total and phosphorylated hormone sensitive lipase (HSL), in the maternal adipose tissue increased significantly (P < 0.05) compared to the control group. However the proteins related to lipogenesis showed no significant changes. Moreover, the concentration of triglyceride in the offspring liver increased significantly, and this likely resulted from an increase in the levels of fatty acids binding protein (FABP) and fatty acid translocase (CD36) protein (P < 0.05). SB exposure during pregnancy and lactation increased the hepatic total cholesterol (Tch) content (P < 0.01), which was related to a significantly up-regulated offspring hepatic expression of low density lipoprotein receptor (LDLR) protein (P < 0.05). These results indicate that a maternal SB supplement during pregnancy and the lactation period promotes maternal fat mobilization, which may result in fatty acid uptake and lipid accumulation in the liver of the offspring.
Developmental Effects of Prenatal Exposure to Bisphenol A on the Uterus of Rat Offspring1
Schönfelder, Gilbert; Friedrich, Karin; Paul, Martin; Chahoud, Ibrahim
2004-01-01
Abstract Exposure to estrogenic compounds during critical periods of fetal development could result in adverse effects on the development of reproductive organs that are not apparent until later in life. Bisphenol A (BPA), which is employed in the manufacture of a wide range of consumer products, is a prime candidate for endocrine disruption. We examined BPA to address the question of whether in utero exposure affects the uterus of the offspring and studied the expression and distribution of the estrogen receptors alpha (ERα) and beta (ERβ), because estrogens influence the development, growth, and function of the uterus through both receptors. Gravid Sprague-Dawley dams were administered by gavage either 0.1 or 50 mg/kg per day BPA or 0.2 mg/kg per day 17α-ethinyl estradiol (EE2) as reference dose on gestation days 6 through 21. Female offspring were killed in estrus. Uterine morphologic changes as well as ERα and ERβ distribution and expression were measured by immunohistochemistry and Western blot analysis. Striking morphologic changes were observed in the uterine epithelium of postpubertal offspring during estrus of the in utero BPA-treated animals (the thickness of the total epithelium was significantly reduced). ERα expression was increased in the 50-mg BPA and EE2-treated group. In contrast, we observed significantly decreased ERβ expression in all BPA- and EE2-treated animals when compared with the control. In summary, these results clearly indicate that in utero exposure of rats to BPA promotes uterine disruption in offspring. We hypothesize that the uterine disruption could possibly be provoked by a dysregulation of Erα and ERβ. PMID:15548368
Canever, L; Alves, C S V; Mastella, G; Damázio, L; Polla, J V; Citadin, S; De Luca, L A; Barcellos, A S; Garcez, M L; Quevedo, J; Budni, J; Zugno, A I
2018-03-01
Although folic acid (FA) supplementation is known to influence numerous physiological functions, especially during pregnancy, little is known about its direct effects on the mothers' health. However, this vitamin is essential for the health of the mother and for the normal growth and development of the fetus. Thus, the aim of this study was (1) to evaluate the cognitive effects and biochemical markers produced by the AIN-93 diet (control), the AIN-93 diet supplemented with different doses of FA (5, 10, and 50 mg/kg), and a FA-deficient diet during pregnancy and lactation in female mother rats (dams) and (2) to evaluate the effect of maternal diets on inflammatory parameters in the adult offspring which were subjected to an animal model of schizophrenia (SZ) induced by ketamine (Ket). Our study demonstrated through the Y-maze test that rats subjected to the FA-deficient diet showed significant deficits in spatial memory, while animals supplemented with FA (5 and 10 mg/kg) showed no deficit in spatial memory. Our results also suggest that the rats subjected to the FA-deficient diet had increased levels of carbonylated proteins in the frontal cortex and hippocampus and also increased plasma levels of homocysteine (Hcy). Folate was able to prevent cognitive impairments in the rats supplemented with FA (5 and 10 mg/kg), data which may be attributed to the antioxidant effect of the vitamin. Moreover, FA prevented protein damage and elevations in Hcy levels in the rats subjected to different doses of this vitamin (5, 10, and 50 mg/kg). We verified a significant increase of the anti-inflammatory cytokine (interleukin-4 (IL-4)) and a reduction in the plasma levels of proinflammatory cytokines (interleukin-6 (IL-6)) and TNF-α) in the dams that were subjected to the diets supplemented with FA (5, 10, and 50 mg/kg), showing the possible anti-inflammatory effects of FA during pregnancy and lactation. In general, we also found that in the adult offspring that were subjected to an animal model of SZ, FA had a protective effect in relation to the levels of IL-4, IL-6, and TNF-α, which indicates that the action of FA persisted in the adult offspring, since FA showed a lasting effect on the inflammatory response, which was similar in both the dams and their offspring. In conclusion, the importance of supplementation with FA during pregnancy and lactation should be emphasized, not only for the benefit of the offspring but also for the health of the mother. All this is due to the considerable protective effect of this vitamin against oxidative damage, cognitive impairment, hyperhomocysteinemia, immune function, and also its ability in preventing common processes in post-pregnancy stages, as well as in reducing the risks of neurodevelopmental disorders and enhancing fetal immune development.
Martinez, Ashley Rae; Brunelli, Susan A; Zimmerberg, Betty
2015-02-01
Communal nesting (CN) is a mouse model of early social enrichment during pregnancy and lactation. In this study, a rat model of CN was developed to determine if CN exerts an epigenetic effect in rats selectively bred for an infantile affective trait (high and low rates of ultrasonic distress calls). High and Low offspring from CN groups were compared to standard reared (SN) offspring on five measures of social and affective behavior at three critical ages. A differential effect of the CN paradigm on High and Low lines was seen in measures of anxiety and arousal, but not in measures of depression or social behavior. Neonatal CN subjects emitted fewer distress calls than SN subjects when separated from their dams, and the High line subjects were more affected by the CN procedure. As juveniles, CN subjects showed increased social behaviors in tests of juvenile parenting and play compared to SN subjects. In adulthood, CN differentially increased the activity of Low line subjects. All CN subjects displayed less anxiety behavior in an open field compared to SN subjects; High line subjects were more anxious than Lows. CN reduced immobility and increased attempts to escape on the Porsolt forced swim task relative to SN subjects. These results extend the usefulness of this early enrichment paradigm from mice to rats, and found some rodent species differences in outcomes dependent on the behavioral test. They also emphasize the importance of social contact during pregnancy and lactation on offspring's optimal development across behaviors and ages. Copyright © 2014 Elsevier Inc. All rights reserved.
Luo, Kaiju; Chen, Pingyang; Li, Suping; Li, Wen; He, Mingfeng; Wang, Tao; Chen, Juncao
2017-01-01
The present study aimed to investigate the response of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and gluconeogenic enzymes in intrauterine growth-restricted rats to dietary L-arginine (L-Arg) supplementation during the lactation period early in life. Pregnant Sprague-Dawley rats were randomly divided into a control group (CON), an intrauterine growth restriction group (IUGR) and an L-Arg group (LA). The pregnant rats in the CON group were fed a 21% protein diet, and those in the IUGR and LA groups were fed a 10% low protein diet, and all rats were fed a 21% protein diet after delivery. Water was available ad libitum to the pregnant rats during the 21-day lactation period, and the water provided to the LA group included 200 mg/kg/day L-Arg. Blood glucose, serum insulin, homeostasis model of assessment for insulin resistance (HOMA-IR), PI3K and protein kinase B (PKB) protein expression, and phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) mRNA expression in the offspring rats were measured postnatally at 1, 3 and 8 weeks. No significant difference in blood glucose, serum insulin and HOMA-IR were identified at any time point among the three groups. PI3K and PKB expression was lower in the IUGR group offspring compared with that in the CON group offspring, but both were increased by dietary L-Arg supplementation. PEPCK mRNA and G-6-Pase mRNA expression levels in the offspring of the IUGR group were higher compared with those in the CON group but were downregulated following L-Arg supplementation. These results suggest that dietary L-Arg supplementation during the early lactation period promoted catch-up growth and reversed abnormalities in hepatic insulin signaling and gene expression of gluconeogenic enzymes in IUGR offspring rats. PMID:28962167
Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R
2016-01-15
Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K
2008-05-01
Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1-F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8-E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1-F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1-F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states.
Nilsson, Eric E; Anway, Matthew D; Stanfield, Jacob; Skinner, Michael K
2017-01-01
Endocrine disruptor exposure during gonadal sex determination was previously found to induce male rat adult onset transgenerational disease (F1–F4 generation), and this was associated with an alteration in the epigenetic (i.e., DNA methylation) programming of the male germ line. The current study was designed to characterize the transgenerational disease phenotypes of the female adult offspring. Pregnant rats (F0 generation) were treated transiently with vinclozolin (i.e., fungicide with anti-androgenic activity) on embryonic (E) days E8–E14 of gestation. F1 control and vinclozolin generation offspring from different litters were mated to produce F2 offspring, and similarly F2 generation animals produced F3 generation offspring. Observations demonstrated that 9 out of 105 pregnant rats (8.6%) from the vinclozolin F1–F3 generations exhibited uterine hemorrhage and/or anemia late in pregnancy. None (0 out of 82) of the control F1–F3 generation females had similar pregnancy problems. Complete blood cell counts and serum chemistry profiles demonstrated that selected vinclozolin generation animals, but not controls, exhibited marked regenerative anemia in late pregnancy. Examination of kidney histology revealed moderate or severe glomerular abnormalities in 67% of the vinclozolin F2 and F3 generation adult females compared with 18% of the controls. Adult female vinclozolin generation animals also developed various types of tumors in 6.5% of the animals (11 out of 170), while 2% of control-line animals (3 out of 151) developed mammary tumors. Observations demonstrate that vinclozolin exposure during gonadal sex determination promotes a transgenerational increase in pregnancy abnormalities and female adult onset disease states. PMID:18304984
Li, Yanan; Li, Xinran; Guo, Cen; Li, Lina; Wang, Yuxin; Zhang, Yiming; Chen, Yu; Liu, Wenhan; Gao, Li
2017-05-09
Early life exposure to ketamine caused neurohistopathologic changes and persistent cognitive dysfunction. For this study, a pregnant rat model was developed to investigate neurocognitive effects in the offspring, following ketamine exposure during the second trimester. Pregnant rats on gestational day 14 (equal to midtrimester pregnancy in humans), intravenously received 200 mg/kg ketamine for 3 h. Their behavior was tested (Morris water maze, odor recognition test, and fear conditioning) at postnatal days (P25-30). Furthermore, hippocampal morphology of the offspring (P30) was examined via Nissl staining and hippocampal dendritic spine density was determined via Golgi staining. The hippocampal protein levels of nerve growth factor (NGF), extracellular signal-regulated kinase (ERK), phosphorylated-ERK (p-ERK), cyclic adenosine monophosphate response element-binding (CREB), p-CREB, synaptophysin (SYP), synapsin (SYN), and postsynaptic density-95 (PSD95) were measured via western blot. Additionally, SCH772984 (an ERK inhibitor) was used to evaluate both role and underlying mechanism of the ERK pathway in PC12 cells. We found that ketamine caused long-term neurocognitive dysfunction, reduced the density of the dendritic spin, caused neuronal loss, and down-regulated the expression of NGF, ERK, p-ERK, mitogen, and stress-activated protein kinase (MSK), CREB, p-CREB, SYP, SYN, and PSD95 in the hippocampus. These results suggest that ketamine induced maternal anesthesia during period of the fetal brain development can cause long-term neurocognitive dysfunction in the offspring, which likely happens via inhibition of the NGF-ERK-CREB pathway in the hippocampus. Our results highlight the central role of ERK in neurocognition.
Fetal development and renal function in adult rats prenatally subjected to sodium overload.
Cardoso, Henriqueta D; Cabral, Edjair V; Vieira-Filho, Leucio D; Vieyra, Adalberto; Paixão, Ana D O
2009-10-01
The aims of this study were (1) to evaluate two factors that affect fetal development--placental oxidative stress (Ox) and plasma volume (PV)--in dams with sodium overload and (2) to correlate possible alterations in these factors with subsequent modifications in the renal function of adult offspring. Wistar dams were maintained on 0.17 M NaCl instead of water from 20 days before mating until either the twentieth pregnancy day/parturition or weaning. Colorimetric methods were used to measure Ox in maternal and offspring tissues, PV, 24-h urinary protein (U(Prot24 h)) and serum triacylglycerols (TG) and cholesterol (Chol). Renal hemodynamics was evaluated in the offspring at 90 days of age using a blood pressure transducer, a flow probe and inulin clearance to measure mean arterial pressure (MAP), renal blood flow and glomerular filtration rate (GFR), respectively. The number of nephrons (NN) was counted in kidney suspensions. Dams showed unchanged PV, placental Ox and fetal weight but increased U(Prot24 h) (150%, P < 0.05). Prenatally sodium-overloaded pups showed increased U(Prot24 h) (45%, P < 0.05) but unchanged MAP, renal hemodynamics, NN and kidney Ox. Prenatally and postnatally sodium-overloaded rats showed increased U(Prot24 h) (27%, P < 0.05) and kidney Ox (44%, P < 0.05), reduced GFR (12%, P < 0.05), increased PV (26%, P < 0.05) and unchanged MAP and NN. The TG increased in both groups of treated offspring (21%, P < 0.05), whereas Chol increased only in the postnatally sodium-overloaded group. We conclude that salt overload from the prenatal stage until weaning leads to alterations in lipid metabolism and in the renal function of the pups, which are additional to those alterations seen in rats only overloaded prenatally.
Ali, Elham H A; Elgoly, Amany H Mahmoud
2013-10-01
The aim of this work is to evaluate the impact of butyl paraben (BP) in brain of the pups developed for mothers administered BP from early pregnancy till weaning and its effect on studying the behavior, brain neurotransmitters and brain derived neurotrophic factor BDNF via comparing the results with valproic acid (VA) autistic-rat model preparing by a single oral injection dose of VA (800 mg/kg b.wt) at the 12.5 days of gestation. Butyl paraben was orally and subcutaneously administered (200 mg/kg b.wt) to pregnant rats from gestation day 1 to lactation day 21. The offspring male rats were subjected at the last 3 days of lactation to Morris water maze and three chamber sociability test then decapitated and the brain was excised and dissected to the cortex, hippocampus, cerebellum, midbrain and pons for the determination of norepinephrine, dopamine and serotonin (NE, DA and 5-HT) and cortex amino acids and whole brain BDNF. The results showed similar social and learning and memory behavioral deficits in VA rat model and the butyl paraben offspring in comparison with the controls. Also, some similar alterations were observed in monoamine content, amino acids and BDNF factor in the autistic-like model and butyl paraben offspring in comparison with the controls. The alterations were recorded notably in hippocampus and pons NE, midbrain DA, hippocampus and midbrain 5-HT, and frontal cortex GABA and asparagine. These data suggest that prenatal exposure to butyl paraben induced neuro-developmental disorders similar to some of the neurodevelopmental disorders observed in the VA model of autism. © 2013 Elsevier Inc. All rights reserved.
Epigenetic Mechanisms and the Transgenerational Effects of Maternal Care
Champagne, Frances A.
2009-01-01
The transmission of traits across generations has typically been attributed to the inheritance by offspring of genomic information from parental generations. However, recent evidence suggests that epigenetic mechanisms are capable of mediating this type of transmission. In the case of maternal care, there is evidence for the behavioral transmission of postpartum behavior from mothers to female offspring. The neuroendocrine and molecular mediators of this transmission have been explored in rats and implicate estrogen-oxytocin interactions and the differential methylation of hypothalamic estrogen receptors. These maternal effects can influence multiple aspects of neurobiology and behavior of offspring and this particular mode of inheritance is dynamic in response to environmental variation. In this review, evidence for the generational transmission of maternal care and the mechanisms underlying this transmission will be discussed as will the implications of this inheritance system for offspring development and for the transmission of environmental information from parents to offspring. PMID:18462782
Effect of administration of lead nitrate to pregnant rats on the lungs in their offspring.
Lebed'ko, O A; Ryzhavskii, B Ya
2005-06-01
Lead nitrate in a dose of 200 mg/kg was administered to female rats via a gartric tube on days 5 and 12 of pregnancy. The lungs of their offspring were examined on day 40 of life. We found a decrease in the ratio between the specific volumes of alveolar lumens and interalveolar septa and hypertrophy of lymphoid tissue in the bronchial wall (compared to the offspring of intact females). Chemiluminescent analysis revealed activation of lipid peroxidation and decrease in antioxidant antiradical activity of the lungs.
Giudicelli, Fanny; Brabant, Anne-Laure; Grit, Isabelle; Parnet, Patricia; Amarger, Valérie
2013-01-01
Methionine, folic acid, betaine and choline interact in the one-carbon metabolism which provides methyl groups for methylation reactions. An optimal intake of these nutrients during pregnancy is required for successful completion of fetal development and evidence is growing that they could be involved in metabolic long-term programming. However, the biological pathways involved in the action of these nutrients are still poorly known. This study investigated the interaction between methyl donors and protein content in maternal diet during the preconceptual, pregnancy and lactation periods and the consequences on the rat offspring in the short and long term. Methyl donor supplementation reduced leptin secretion in offspring, whereas insulin levels were mostly affected by protein restriction. The joint effect of protein restriction and methyl donor excess strongly impaired postnatal growth in both gender and long term weight gain in male offspring only, without affecting food intake. In addition, rats born from protein restricted and methyl donor supplemented dams gained less weight when fed a hypercaloric diet. Methylation of the leptin gene promoter in adipose tissue was increased in methyl donor supplemented groups but not affected by protein restriction only. These results suggest that maternal methyl donor supplementation may influence energy homeostasis in a gender-dependent manner, without affecting food intake. Moreover, we showed that macronutrients and micronutrients in maternal diet interact to influence the programming of the offspring. PMID:23840890
Giudicelli, Fanny; Brabant, Anne-Laure; Grit, Isabelle; Parnet, Patricia; Amarger, Valérie
2013-01-01
Methionine, folic acid, betaine and choline interact in the one-carbon metabolism which provides methyl groups for methylation reactions. An optimal intake of these nutrients during pregnancy is required for successful completion of fetal development and evidence is growing that they could be involved in metabolic long-term programming. However, the biological pathways involved in the action of these nutrients are still poorly known. This study investigated the interaction between methyl donors and protein content in maternal diet during the preconceptual, pregnancy and lactation periods and the consequences on the rat offspring in the short and long term. Methyl donor supplementation reduced leptin secretion in offspring, whereas insulin levels were mostly affected by protein restriction. The joint effect of protein restriction and methyl donor excess strongly impaired postnatal growth in both gender and long term weight gain in male offspring only, without affecting food intake. In addition, rats born from protein restricted and methyl donor supplemented dams gained less weight when fed a hypercaloric diet. Methylation of the leptin gene promoter in adipose tissue was increased in methyl donor supplemented groups but not affected by protein restriction only. These results suggest that maternal methyl donor supplementation may influence energy homeostasis in a gender-dependent manner, without affecting food intake. Moreover, we showed that macronutrients and micronutrients in maternal diet interact to influence the programming of the offspring.
Maternal sympathetic stress impairs follicular development and puberty of the offspring.
Barra, Rafael; Cruz, Gonzalo; Mayerhofer, Artur; Paredes, Alfonso; Lara, Hernán E
2014-08-01
Chronic cold stress applied to adult rats activates ovarian sympathetic innervation and develops polycystic ovary (PCO) phenotype. The PCO syndrome in humans originates during early development and is expressed before or during puberty, which suggests that the condition derived from in utero exposure to neural- or metabolic-derived insults. We studied the effects of maternal sympathetic stress on the ovarian follicular development and on the onset of puberty of female offspring. Timed pregnant rats were exposed to chronic cold stress (4 °C, 3 h/daily from 1000 to 1300 h) during the entire pregnancy. Neonatal rats exposed to sympathetic stress during gestation had a lower number of primary, primordial, and secondary follicles in the ovary and a lower recruitment of primary and secondary follicles derived from the primordial follicular pool. The expression of the FSH receptor and response of the neonatal ovary to FSH were reduced. A decrease in nerve growth factor (NGF) mRNA was found without change in the low-affinity NGF receptor. The FSH-induced development of secondary follicles was decreased. At puberty, estradiol plasma levels decreased without changes in LH plasma levels. Puberty onset (as shown by the vaginal opening) was delayed. Ovarian norepinephrine (NE) was reduced; there was no change in its metabolite, 3-methoxy-4-hydroxyphenylglycol, in stressed rats and no change in NE turnover. The changes in ovarian NE in prepubertal rats stressed during gestation could represent a lower development of sympathetic nerves as a compensatory response to the chronically increased NE levels during gestation and hence participate in delaying reproductive performance in the rat. © 2014 Society for Reproduction and Fertility.
Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring
USDA-ARS?s Scientific Manuscript database
Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...
There is a growing interest in understanding how maternal diet can increase the sensitivity of offspring to environmental exposures. In this study, we examined the influence of high fat diet (HFD) during puberty, pregnancy and lactation in Long Evans rats on the susceptibility of...
USDA-ARS?s Scientific Manuscript database
Prenatal exposure to a maternal low protein diet has been known to cause cognitive impairment, learning and memory deficits. However, the underlying mechanisms have not been identified. Herein, we demonstrate that a maternal low protein (LP) diet causes, in the brains of the neonatal rat offspring, ...
Prasolova, L A; Os'kina, I N; Pliusnina, I Z; Trut, L N
2009-05-01
The effects of selection of agouti rats (with genotype AAHH) on the tame and aggressive behavior and dietary methyl given to females from the eighth day of pregnancy to the fifth day after the birth of the offspring on the intensity of the agouti coat color in the offspring have been studied. The morphometric parameters of hair determining the darkness of the agouti color (the total length of guard hairs, the lengths of their eumelanin end and pheomelanin band, the ratio between the lengths of the eumelanin and pheomelanin portions of the hair, the total length of the awn hairs, and the relative length of their widened "lanceolate" upper end) have been compared. It has been found that selection of agouti rats for aggressive behavior is accompanied by darkening of the coat color compared to tame rats due to an increase in the ratio of the length of the black eumelanin end of the guard hairs to the length of the yellow pheomelanin band. Methyl-containing additives to the diet of females affect the intensity of the agouti coat color in the offsprings with both types of behavior, but to different extents. Aggressive offspring is more sensitive to the mother's methyl-containing diet: the percentage of animals that are darker than control rats is higher among aggressive animals than among tame ones due to a greater increase in the ratio between dark and light portions of hairs. The possible mechanisms of differences in the phenotypic modifications of coat color in control and experimental agouti rats with different types of behavior are discussed.
Tain, You-Lin; Lee, Wei-Chia; Wu, Kay L H; Leu, Steve; Chan, Julie Y H
2018-04-30
High-fructose (HF) intake, oxidative stress, nutrient-sensing signals, and gut microbiota dysbiosis are closely related to the development of hypertension. We investigated whether resveratrol can prevent hypertension induced by maternal plus post-weaning HF diets in adult offspring via the above-mentioned mechanisms. Female Sprague-Dawley rats received either a normal (ND) or 60% high-fructose (HF) diet during gestation and lactation. Male offspring were assigned to five groups (maternal diet/post-weaning diet; n = 8/group): ND/ND, ND/HF, HF/ND, HF/HF, and HF/HF+ Resveratrol. Resveratrol (50 mg/L) was administered in drinking water from weaning to three months of age. We found that HF/HF induced hypertension in adult offspring. Maternal HF diet altered gut microbiota composition in adult offspring, including decreasing the abundance of genera Bacteroides, Dysgonomonas, and Turicibacter, while increasing phylum Verrucomicrobia and Akkermansia muciniphila. Additionally, HF/HF diets increased oxidative stress and decreased renal mRNA expression of Prkaa2, Prkag2, Ppara, Pparb, Ppargc1a, and Sirt4. Resveratrol reduced renal oxidative stress, activated nutrient-sensing signals, modulated gut microbiota, and prevented associated HF/HF-induced programmed hypertension. Targeting oxidative stress, nutrient-sensing signals, and gut microbiota by resveratrol might be a useful therapeutic strategy for treatment of hypertension induced by excessive consumption of fructose in the adult rat offspring. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Sun, Yan; Ke, Lulu; Zheng, Xiangren; Li, Tao; Ouyang, Wei; Zhang, Zigui
2017-04-01
The purpose of the investigation is to reveal the influence of dietary calcium on fluorosis-induced brain cell apoptosis in rat offspring, as well as the underlying molecular mechanism. Sprague-Dawley (SD) female rats were randomly divided into five groups: control group, fluoride group, low calcium, low calcium fluoride group, and high calcium fluoride group. SD male rats were used for breeding only. After 3 months, male and female rats were mated in a 1:1 ratio. Subsequently, 18-day-old gestation rats and 14- and 28-day-old rats were used as experimental subjects. We determined the blood/urine fluoride, the blood/urine calcium, the apoptosis in the hippocampus, and the expression levels of apoptosis-related genes, namely Bcl-2, caspase 12, and JNK. Blood or blood/urine fluoride levels and apoptotic cells were found significantly increased in fluorosis rat offspring as compared to controls. Furthermore, the Bcl-2 messenger RNA (mRNA) expression levels significantly decreased, and caspase 12 mRNA levels significantly increased in each age group as compared to controls. Compared with the fluoride group, the blood/urine fluoride content and apoptotic cells evidently decreased in the high calcium fluoride group, Bcl-2 mRNA expression significantly increased and caspase 12 mRNA expression significantly decreased in each age group. All results showed no gender difference. Based on these results, the molecular mechanisms of fluorosis-induced brain cell apoptosis in rat offspring may include the decrease in Bcl-2 mRNA expression level and increase in caspase 12 mRNA expression signaling pathways. High calcium intake could reverse these gene expression trends. By contrast, low calcium intake intensified the toxic effects of fluoride on brain cells.
NASA Astrophysics Data System (ADS)
Ladd, B.; Nguon, K.; Sajdel-Sulkowska, E. M.
2006-01-01
We previously reported that hypergravity exposure affects food intake and mass gain during pregnancy. In the present study, we explored the hypothesis that changes in maternal body mass in hypergravity-exposed pregnant rat dams affect pregnancy outcome and early offspring development. Furthermore, we hypothesized that the changes observed at 1.5G will be magnified at higher gravity and by exposure during critical developmental periods. To test this hypothesis, we compared maternal body mass gain, food consumption, birth outcome and early offspring development between Sprague Dawley rat dams exposed to graded (1.5 1.75G) chronic hypergravity (HG) or rotation (rotational control, RC) on a 24-ft centrifuge for 22.5 h starting on gestational day (G) 10 with dams housed under identical conditions but not exposed to hypergravity (SC). We also compared maternal body mass, food consumption, birth outcome and early offspring development between rat dams exposed to 1.65G during different stages of pregnancy and nursing. Exposure to hypergravity resulted in transient loss in body mass and prolonged decrease in food consumption in HG dams, but the changes observed at 1.5G were not magnified at 1.65G or 1.75G. On the other hand RC dams gained more mass and consumed more food than SC dams. Exposure to hypergravity also affected pregnancy outcome as evidenced by decreased litter size, lowered neonatal mass at birth, and higher neonatal mortality; pregnancy outcome was not affected in RC dams. Neonatal changes evidenced by impaired righting response observed at 1.5G was magnified at higher gravity and was dependent on the period of hypergravity exposure. On the other hand, righting response was improved in RC neonates. Hypergravity exposure during early postpartum affected the food consumption of nursing mothers and affected early survival of their offspring. The changes observed in dams and neonates appear to be due to hypergravity exposure since animals exposed to the rotation during the same period are not affected. This study suggests that while pregnancy can proceed under altered gravity, exposure to hypergravity affects pregnant dams, pregnancy outcome and the developing fetus as well as nursing dams and neonates and raises an important question whether the mammalian system possess a gravisensing ability.
Guan, Su-Zhen; Ning, Li; Tao, Ning; Lian, Yu-Long; Liu, Ji-Wen; Ng, Tzi Bun
2016-09-01
The intrauterine environment has a significant long-term impact on individual's life, this study was designed to investigate the effect of stress during pregnancy on offspring's learning and memory abilities and analyze its mechanisms from the expression of BDNF and Arc in the hippocampus of the offspring. A rat model of maternal chronic stress during pregnancy was mating from 3rd day during been subjecting to chronic unpredictable mild stress (CUMS). The body weights and behavioral changes were recorded, and plasma corticosterone levels were determined by radioimmunoassay. The learning and memory abilities of the offspring were measured by Morris water maze testing from PND 42. The expression of hippocampal BDNF and Arc mRNA and protein were respectively measured using RT-PCR and Western blotting. Results indicated that an elevation was observed in the plasma corticosterone level of rat model of maternal chronic stress during pregnancy, a reduction in the crossing and rearing movement times and the preference for sucrose. The body weight of maternal stress's offspring was lower than the control group, and the plasma corticosterone level was increased. Chronic stress during pregnancy had a significant impact on the spatial learning and memory of the offspring. The expression of BDNF mRNA and protein, Arc protein in offspring of maternal stress during pregnancy was attenuated and some relationships existed between these parameters. Collectively, these findings disclose that long-time maternal stress during pregnancy could destroy spatial learning and memory abilities of the offspring, the mechanism of which is related to been improving maternal plasma corticosterone and reduced hippocampal BDNF, Arc of offspring rats. Copyright © 2016. Published by Elsevier B.V.
Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K
2017-01-16
Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. As expected, adult offspring fed the S diet post weaning became obese (body weight: P<0.01, %body fat per kg: P<0.001) and this was due to the reduced energy expenditure (P<0.05) and hypothalamic astrogliosis (P<0.001) irrespective of maternal diet. Interesting, offspring born to S-diet-fed mothers and fed the S diet throughout postnatal life became obese despite lower energy intake than controls (P<0.05). These SS offspring showed increased feed efficiency (P<0.001) and reduced fasting pSTAT3 activity (P<0.05) in arcuate nucleus (ARC) compared with other groups. The findings indicated that the combination of the maternal and postnatal S-diet exposure induced persistent changes in leptin signalling, hence affecting energy balance. Thus, appetite regulation was more sensitive to the effect of leptin than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with alterations in hypothalamic leptin signalling.
Bayol, Stéphanie A; Macharia, Raymond; Farrington, Samantha J; Simbi, Bigboy H; Stickland, Neil C
2009-02-01
Obesity is a multi-factorial condition generally attributed to an unbalanced diet and lack of exercise. Recent evidence suggests that maternal malnutrition during pregnancy and lactation can also contribute to the development of obesity in offspring. We have developed an animal model in rats to examine the effects of maternal overeating on a westernized "junk food" diet using palatable processed foods rich in fat, sugar and salt designed for human consumption. Using this model, we have shown that such a maternal diet can promote overeating and a greater preference for junk food in offspring at the end of adolescence. The maternal junk food diet also promoted adiposity and muscle atrophy at weaning. Impaired muscle development may permanently affect the function of this tissue including its ability to generate force. The aim of this study is to determine whether a maternal junk food diet can impair muscle force generation in offspring. Twitch and tetanic tensions were measured in offspring fed either chow alone (C) or with a junk food diet (J) during gestation, lactation and/or post-weaning up to the end of adolescence such that three groups of offspring were used, namely the CCC, JJC and JJJ groups. We show that adult offspring from mothers fed the junk food diet in pregnancy and lactation display reduced muscle force (both specific twitch and tetanic tensions) regardless of the post-weaning diet compared with offspring from mothers fed a balanced diet. Maternal malnutrition can influence muscle force production in offspring which may affect an individual's ability to exercise and thereby combat obesity.
Lotufo, Bruna M; Tenório, Frank; Barradas, Penha C; Guedes, Paulo L; Lima, Sebastião S; Rocha, Michael L M; Duarte-Pinheiro, Vitor Hugo; Rodrigues, Vanessa S T; Lisboa, Patrícia C; Filgueiras, Cláudio C; Abreu-Villaça, Yael; Manhães, Alex C
2018-04-01
It is well established that chronic undernutrition has detrimental impacts on brain development and maturation. However, protein malnutrition during the period specifically encompassing the brain growth spurt has not been widely studied, particularly regarding its effects on adolescent and adult offspring behavior. Here, we assessed the effects of a protein-free diet during the 1st 10 postnatal days on the macronutrient content of the milk produced by lactating Wistar rats, on their maternal behavior, and on the offspring's behavior. Lactating dams were fed either a protein-free or a normoprotein diet from litter parturition to Postnatal Day 10 (P10). All dams received the normoprotein diet after P10. Offspring were tested in the elevated plus-maze (anxiety-like behavior), hole board arena (novelty-seeking and locomotor activity), and radial arm water maze (memory-learning) at either P40 (adolescents) or P90 (adults). The protein-free diet reduced milk protein content at P10 but not at P20. Carbohydrate and lipid contents were unaffected. Serum corticosterone levels in the offspring (at P10, P40, or P90) and dams (at P21) were not affected by the protein-free diet. Maternal behavior was also unchanged. In the offspring, no differences were observed between groups regarding anxiety-like behaviors at both ages. The protein-free diet increased adolescent locomotor activity as well as adult novelty-seeking behavior and memory performance. Our results indicate that the brain growth spurt period is particularly sensitive to protein malnutrition, showing that even a brief nutritional insult during this period can cause specific age-dependent behavioral effects on the offspring. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Bronson, Stefanie L.; Ahlbrand, Rebecca; Horn, Paul S.; Kern, Joseph R.; Richtand, Neil M.
2011-01-01
Maternal infection during pregnancy elevates risk for schizophrenia and related disorders in offspring. Converging evidence suggests the maternal inflammatory response mediates the interaction between maternal infection, altered brain development, and behavioral outcome. The extent to which individual differences in the maternal response to immune challenge influence the development of these abnormalities is unknown. The present study investigated the impact of individual differences in maternal response to the viral mimic polyinosinic:polycytidylic acid (poly I:C) on offspring behavior. We observed significant variability in body weight alterations of pregnant rats induced by administration of poly I:C on gestational day 14. Furthermore, the presence or absence of maternal weight loss predicted MK-801 and amphetamine stimulated locomotor abnormalities in offspring. MK-801 stimulated locomotion was altered in offspring of all poly I:C treated dams; however, the presence or absence of maternal weight loss resulted in decreased and modestly increased locomotion, respectively. Adult offspring of poly I:C treated dams that lost weight exhibited significantly decreased amphetamine stimulated locomotion, while offspring of poly I:C treated dams without weight loss performed similarly to vehicle controls. Social isolation and increased maternal age predicted weight loss in response to poly I:C but not vehicle injection. In combination, these data identify environmental factors associated with the maternal response to immune challenge and functional outcome of offspring exposed to maternal immune activation. PMID:21255612
Repercussions of mild diabetes on pregnancy in Wistar rats and on the fetal development
2010-01-01
Background Experimental models are necessary to elucidate diabetes pathophysiological mechanisms not yet understood in humans. Objective: To evaluate the repercussions of the mild diabetes, considering two methodologies, on the pregnancy of Wistar rats and on the development of their offspring. Methods In the 1st induction, female offspring were distributed into two experimental groups: Group streptozotocin (STZ, n = 67): received the β-cytotoxic agent (100 mg STZ/kg body weight - sc) on the 1st day of the life; and Non-diabetic Group (ND, n = 14): received the vehicle in a similar time period. In the adult life, the animals were mated. After a positive diagnosis of pregnancy (0), female rats from group STZ presenting with lower glycemia than 120 mg/dL received more 20 mg STZ/kg (ip) at day 7 of pregnancy (2nd induction). The female rats with glycemia higher than 120 mg/dL were discarded because they reproduced results already found in the literature. In the mornings of days 0, 7, 14 and 21 of the pregnancy glycemia was determined. At day 21 of pregnancy (at term), the female rats were anesthetized and killed for maternal reproductive performance and fetal development analysis. The data were analyzed using Student-Newman-Keuls, Chi-square and Zero-inflated Poisson (ZIP) Tests (p < 0.05). Results STZ rats presented increased rates of pre (STZ = 22.0%; ND = 5.1%) and post-implantation losses (STZ = 26.1%; ND = 5.7%), reduced rates of fetuses with appropriate weight for gestational age (STZ = 66%; ND = 93%) and reduced degree of development (ossification sites). Conclusion Mild diabetes led a negative impact on maternal reproductive performance and caused intrauterine growth restriction and impaired fetal development. PMID:20416073
Novel Lean Type 2 Diabetic Rat Model Using Gestational Low Protein Programming
BLESSON, Chellakkan S.; SCHUTT, Amy K.; BALAKRISHNAN, Meena P.; PAUTLER, Robia G.; PEDERSEN, Steen E.; SARKAR, Poonam; GONZALES, Daniel; ZHU, Gang; MARINI, Juan C.; CHACKO, Shaji K.; YALLAMPALLI, Uma; YALLAMPALLI, Chandra
2016-01-01
Background Type 2 diabetes in lean individuals is not well studied and up to 26% of diabetes occurs in these individuals. Although the cause is not well understood, it has been primarily attributed to nutritional issues during early development. Objective Our objective was to develop a lean type 2 diabetes model using gestational low protein programming. Study Design Pregnant rats were fed control (20% protein) or isocaloric low protein (6%) diet from gestational day 4 until delivery. Standard diet was given to dams after delivery and to pups after weaning. Glucose tolerance test was done at 2, 4 and 6 months of age. Magnetic resonance imaging of body fat for the females was done at 4 months. Rats were sacrificed at 4 months and 8 months of age and their peri-gonadal, peri-renal, inguinal and brown fat were weighed and expressed relative to their body weight. Euglycemic-hyperinsulinemic clamp was done around 6 months of age. Results Male and female offspring exposed to a low protein diet during gestation developed glucose intolerance and insulin resistance. Further, glucose intolerance progressed with increasing age and occurred earlier and was more severe in females when compared to males. Euglycemic hyperinsulinemic clamp showed whole body insulin resistance in both sexes, with females demonstrating increased insulin resistance compared to males. Low protein females showed a 4.5-fold increase in insulin resistance while males showed a 2.5-fold increase when compared to their respective controls. Data from magnetic resonance imaging on female offspring showed no difference in the subcutaneous, inguinal and visceral fat content. We were able to validate this observation by sacrificing the rats at 4 and 8 months and measuring total body fat content. This showed no differences in body fat content between control and LP offspring in both males and females. Additionally, diabetic rats had a similar body mass index to that of the controls. Conclusion LP gestational programming produces a progressively worsening type 2 diabetes model in rats with a lean phenotype without obesity. PMID:26874300
Yao, Xing-Hai; Nguyen, Hoa K.; Nyomba, B. L. Grégoire
2013-01-01
Prenatal ethanol exposure results in increased glucose production in adult rat offspring and this may involve modulation of protein acetylation by cellular stress. We used adult male offspring of dams given ethanol during gestation days 1–7 (early), 8–14 (mid) and 15–21 (late) compared with those from control dams. A group of ethanol offspring was treated with tauroursodeoxycholic acid (TUDCA) for 3 weeks. We determined gluconeogenesis, phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase, hepatic free radicals, histone deacetylases (HDAC), acetylated foxo1, acetylated PEPCK, and C/EBP homologous protein as a marker of endoplasmic reticulum stress. Prenatal ethanol during either of the 3 weeks of pregnancy increased gluconeogenesis, gluconeogenic genes, oxidative and endoplasmic reticulum stresses, sirtuin-2 and HDAC3, 4, 5, and 7 in adult offspring. Conversely, prenatal ethanol reduced acetylation of foxo1 and PEPCK. Treatment of adult ethanol offspring with TUDCA reversed all these abnormalities. Thus, prenatal exposure of rats to ethanol results in long lasting oxidative and endoplasmic reticulum stresses explaining increased expression of gluconeogenic genes and HDAC proteins which, by deacetylating foxo1 and PEPCK, contribute to increased gluconeogenesis. These anomalies occurred regardless of the time of ethanol exposure during pregnancy, including early embryogenesis. As these anomalies were reversed by treatment of the adult offspring with TUDCA, this compound has therapeutic potentials in the treatment of glucose intolerance associated with prenatal ethanol exposure. PMID:23544086
Prenatal Exposure to the Fungicide Prochloraz alters the onset of Parturition in
the Dam and Sexual Differentiation in Male Rat Offspring.
N. Noriega1; E. Gray1; J. Ostby1; C. Lambright1; V. Wilson1
1. RTD, NHEERL, ORD, USEPA, RTP, NC, USA;
Prochloraz...
Yang, Shu; Zhao, Nannan; Yang, Yang; Hu, Yun; Dong, Haibo; Zhao, Ruqian
2018-03-21
The growth-promoting action of betaine involves activation of GH/IGF-1 signaling, yet it remains unclear whether insulin-like growth factor 2 (IGF2), an imprinting gene, is affected by maternal dietary betaine supplementation. In this study, F1 offspring rats derived from dams fed basal or betaine-supplemented diet were examined at D21 and D63. Maternal betaine significantly upregulated the hepatic expression of IGF2 mRNA and protein in offspring rats at both D21 and D63, which was accompanied by enhanced hepatic IGF2 immunoreactivity and elevated serum IGF-2 level. Higher protein expression of betaine-homocysteine methyltransferase and DNA methyltransferase 1 was detected in the betaine group at D21, but not D63. However, hypermethylation of the imprinting control region of the IGF2/H19 locus at D21 was maintained at D63. These results indicate that maternal betaine modifies DNA methylation of IGF2/H19 imprinting control region in a mitotically stable fasion, which was associated with the activation hepatic IGF2 expression in offspring rats.
Gallegos, Cristina Eugenia; Baier, Carlos Javier; Bartos, Mariana; Bras, Cristina; Domínguez, Sergio; Mónaco, Nina; Gumilar, Fernanda; Giménez, María Sofía; Minetti, Alejandra
2018-04-02
Glyphosate-based herbicides (Gly-BHs) lead the world pesticide market. Although are frequently promoted as safe and of low toxicity, several investigations question its innocuousness. Previously, we described that oral exposure of rats to a Gly-BH during pregnancy and lactation decreased locomotor activity and anxiety in the offspring. The aim of the present study was to evaluate the mechanisms of neurotoxicity of this herbicide. Pregnant Wistar rats were supplied orally with 0.2 and 0.4% of Gly-BH (corresponding to 0.65 and 1.30 g/l of pure Gly, respectively) from gestational day (GD) 0, until weaning (postnatal day, PND, 21). Oxidative stress markers were determined in whole brain homogenates of PND90 offspring. The activity of acetylcholinesterase (AChE), transaminases, and alkaline phosphatase (AP) were assessed in prefrontal cortex (PFC), striatum, and hippocampus. Recognition memory was evaluated by the novel object recognition test. Brain antioxidant status was altered in Gly-BH-exposed rats. Moreover, AChE and transaminases activities were decreased and AP activity was increased in PFC, striatum and hippocampus by Gly-BH treatment. In addition, the recognition memory after 24 h was impaired in adult offspring perinatally exposed to Gly-BH. The present study reveals that exposure to a Gly-BH during early stages of rat development affects brain oxidative stress markers as well as the activity of enzymes involved in the glutamatergic and cholinergic systems. These alterations could contribute to the neurobehavioral variations reported previously by us, and to the impairment in recognition memory described in the present work.
2011-01-01
Background Variations in maternal care are associated with neonatal stress, hormonal disturbances and reproductive injuries during adulthood. However, the effects of these variations on sex hormones and steroid receptors during ovary development remain undetermined. This study aimed to investigate whether variations in maternal care are able to influence the hormonal profile, follicular dynamics and expression of AR, ER-alpha and ER-beta in the ovaries of UCh rat offspring. Methods Twenty-four adult UCh rats, aged 120 days, were randomly divided into two groups (UChA and UChB) and mated. Maternal care was assessed from birth (day 0) to the 10th postnatal day (PND). In adulthood, twenty adult female rats (UChA and UChB offspring; n = 10/group), aged 120 days, were euthanized by decapitation during the morning estrus. Results UChA females (providing high maternal care) more frequently displayed the behaviors of carrying pups, as well as licking/grooming and arched back nursing cares. Also, mothers providing high care had elevated corticosterone levels. Additionally, offspring receiving low maternal care showed the highest estrous cycle duration, increased corticosterone and 17beta-estradiol levels, overexpression of receptors ER-alpha and ER-beta, increased numbers of primordial, antral and mature follicles and accentuated granulosa cell proliferation. Conclusions Our study suggests that low maternal care alters corticosterone and 17beta-estradiol levels, disrupting the estrous cycle and folliculogenesis and differentially regulating the expression of ER-alpha and ER-beta in the ovaries of adult rats. PMID:22192617
Lacy, Ryan T; Brown, Russell W; Morgan, Amanda J; Mactutus, Charles F; Harrod, Steven B
2016-01-01
In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers compared to PS controls. PN rats treated with METH showed significant enhancement of locomotor behavior compared to PS rats following acute and repeated injections; however, PN did not produce differential initiation or expression of behavioral sensitization. METH produced conditioned hyperactivity, and PN rats exhibited a greater conditioned response of hyperactivity relative to controls. PN and METH exposure produced changes in BDNF protein levels in all three regions, and complex interactions were observed between these two factors. Logistic regression revealed that BDNF protein levels, throughout the mesocorticolimbic system, significantly predicted the difference in the conditioned hyperactive response of the animals: both correlations were significant, but the predicted relationship between BDNF and context-elicited activity was stronger in the PN (r = 0.67) compared to the PS rats (r = 0.42). These findings indicate that low-dose PN exposure produces long-term changes in activity and enhanced sensitivity to the locomotor effects of METH. The enhanced METH-induced contextual conditioning shown by the PN animals suggests that offspring of in utero tobacco smoke exposure have greater susceptibility to learn about drug-related conditional stimuli, such as the context. The PN-induced alterations in mesocorticolimbic BDNF protein lend further support for the hypothesis that maternal smoking during pregnancy produces alterations in neuronal plasticity that contribute to drug abuse vulnerability. The current findings demonstrate that these changes are persistent into adulthood. © 2016 S. Karger AG, Basel.
THE ROLE OF PROLACTIN IN THE DEVELOPMENTAL TOXICOLOGY OF THE RAT PROSTATE
Many investigators have examined the effects of peri- or postnatal exposure to steroids and compounds with steroidogenic activity on the development of the offspring. Such exposures are known to affect sexual differentiation of the brain or the development of accessory sex tissue...
Feng, Qianjin; Niu, Xin; Xu, Kaixia; Wang, Yingli; Wang, Jinlong; Mao, Yingqiu; Gao, Shuangrong
2016-01-01
In this experiment, we used streptozotocin (STZ) to establish a model of gestational diabetes mellitus (GDM) rats, where Zuogui Wan was given to GDM rats. After pregnancy, offspring rats were divided into 4 groups: control group, high fat and sugar as the control group, GDM group, and Zuogui Wan GDM group. Rats in high fat and sugar as the control group, GDM group, and Zuogui Wan GDM group were fed with high fat and sugar diet. Rats in control group were fed the basic diet. The means of 2hPG were higher than 7.8 mmol·L−1 and lower than 11.1 mmol·L−1 on the rats of GDM group on week 15, and IGT models were successful. Body weight, abdominal fat weight, the ratio of abdominal fat weight and body weight, fasting plasma glucose, 2hPG, insulin, leptin, total cholesterol, and low density lipoprotein (LDL) of Zuogui Wan GDM group were significantly lower than GDM group. The level of adiponectin in Zuogui Wan GDM group was significantly higher than GDM group. And we concluded that giving Zuogui Wan to GDM rats can have a preventive effect on the offsprings' IGT induced by high fat and sugar diet. PMID:27034700
Saki, Ghasem; Rahim, Fakher; Vaysi, Ozra Allah
2010-01-01
AIMS: This study aimed to determine the effect of 50 days of forced swimming stress on fertilization capacity of rat and subsequent offspring quality. SETTING AND DESIGN: The prospective study designed in vivo. MATERIALS AND METHODS: Total 90 Wistar rats including 30 adult male (3 months of age, weighing 210 ± 10.6 g) and 60 female rats (3 months of age, weighing 230 ± 12.2 g) were engaged in this study. Male rats were randomly divided in two equal groups (n = 15): Control and experimental groups. Animals of the experimental group were submitted to forced swimming stress for 3 min in water at 32°C daily for 50 days. Then all adult male rats were mated with normal females (2 per each male) for 7 days. Female rats were sacrificed and autopsy was performed on day 20 of pregnancy when uterus and ovaries were examined for the number of corpora lutea, dead and live fetuses, embryo resorption, implantation sites, and fetus weight. CONCLUSION: Results of this study have important implications for families attempting pregnancy. Stress pursuant to life events may have a negative impact on in vivo fertilization capacity of male rats and subsequent offspring quality. PMID:20607006
Staley, E C; Smith, G S; Greenberg, J A
1995-10-01
Previous studies determined that safflower oil administration provided protection against the embryotoxicity seen following ingestion of 10% snakeweed (Gutierrezia microcephala) throughout pregnancy. Sixty-two young primiparous female rats born in those studies were paired with adult male Sprague-Dawley rats. After 4 d they were removed and carried their litters to term. Observations were made of the presence and extent of reproductive effects attributable to the 10% snakeweed exposure and differences in fecundity that were attributable to dosing with safflower oil or normal saline during the snakeweed exposure. Of the 62 rats, 50 carried litters to term and approximated the reproductive efficiency of normal primiparous Sprague-Dawley rats. There was no significant difference between the fecundity of females born to rats fed the 10% snakeweed and dosed with safflower oil, those born of rats fed snakeweed dosed with normal saline, or those fed a snakeweed-free diet and dosed with normal saline. Regardless of the diet or treatment administered, dams carrying their litters to parturition gave birth to healthy, normo-reproductive offspring. While the toxic principles in Gutierrezia species plants may act as estrogenic or anti-estrogenic compounds, they did not impair fertility in the female offspring of dosed rats.
Çiftçi, Zülfikar Zahit; Kırzıoğlu, Zühal; Nazıroğlu, Mustafa; Özmen, Özlem
2015-02-01
The present study determined the effects of prenatal and postnatal exposure to Wi-Fi (2.45 GHz)-induced electromagnetic radiation (EMR) on tooth and surrounding tissue development as well as the element levels in growing rats. Twenty-four rats and their offspring were equally divided into two separate groups identified as experiment and control. The experiment group was exposed to 2.45 GHz EMR for 2 h/day during the periods of pregnancy (21 days) and lactation (21 days). The offspring of these dams were also exposed to EMR up to decapitation. The control group was exposed to cage stress for 2 h per day using the same protocol established for the experimental group. On the 7th, 14th, and 21st days after birth, 8 male offspring rats from each of the two groups were decapitated, and the jaws were taken for histological and immunohistochemical examination. Caspase-3 (1/50 dilution) was used in the immunohistochemical examination for apoptotic activity. On the last day of the experiment, the rats' incisors were also collected. In samples that were histologically and immunohistochemically examined, there was an increase in apoptosis and caspase-3 in both the control and the Wi-Fi groups during the development of the teeth. However, no significant difference was observed between the two groups in terms of development and apoptotic activity. Results from the elemental analysis showed that iron and strontium concentrations were increased in the Wi-Fi group, whereas boron, copper, and zinc concentrations were decreased. There were no statistically significant differences in calcium, cadmium, potassium, magnesium, sodium, or phosphorus values between the groups. Histological and immunohistochemical examinations between the experimental and control groups showed that exposure to 2.45 GHz EMR for 2 h per day does not interfere with the development of teeth and surrounding tissues. However, there were alterations in the elemental composition of the teeth, especially affecting such oxidative stress-related elements as copper, zinc, and iron, suggesting that short-term exposure to Wi-Fi-induced EMR may cause an imbalance in the oxidative stress condition in the teeth of growing rats.
2014-01-01
Background Maternal undernutrition leads to an increased risk of metabolic disorders in offspring including obesity and insulin resistance, thought to be due to a programmed thrifty phenotype which is inappropriate for a subsequent richer nutritional environment. In a rat model, both male and female offspring of undernourished mothers are programmed to become obese, however postnatal leptin treatment gives discordant results between males and females. Leptin treatment is able to rescue the adverse programming effects in the female offspring of undernourished mothers, but not in their male offspring. Additionally, in these rats, postnatal leptin treatment of offspring from normally-nourished mothers programmes their male offspring to develop obesity in later life, while there is no comparable effect in their female offspring. Results We show by microarray analysis of the female liver transcriptome that both maternal undernutrition and postnatal leptin treatment independently induce a similar thrifty transcriptional programme affecting carbohydrate metabolism, amino acid metabolism and oxidative stress genes. Paradoxically, however, the combination of both stimuli restores a more normal transcriptional environment. This demonstrates that “leptin reversal” is a global phenomenon affecting all genes involved in fetal programming by maternal undernourishment and leptin treatment. The thrifty transcriptional programme was associated with pro-inflammatory markers and downregulation of adaptive immune mediators, particularly MHC class I genes, suggesting a deficit in antigen presentation in these offspring. Conclusions We propose a revised model of developmental programming reconciling the male and female observations, in which there are two competing programmes which collectively drive liver transcription. The first element is a thrifty metabolic phenotype induced by early life growth restriction independently of leptin levels. The second is a homeostatic set point calibrated in response to postnatal leptin surge, which is able to over-ride the metabolic programme. This “calibration model” for the postnatal leptin surge, if applicable in humans, may have implications for understanding responses to catch-up growth in infants. Additionally, the identification of an antigen presentation deficit associated with metabolic thriftiness may relate to a previously observed correlation between birth season (a proxy for gestational undernutrition) and infectious disease mortality in rural African communities. PMID:24447410
Palmer, T T
1978-06-01
The effects of primary, patent Plasmodium berghei infection in Sprague-Dawley rats during pregnancy upon the course of infection and the humoral antibody response to malaria in their offspring were examined. Malaria specific antibody determined by an indirect fluorescent antibody test correlated well with the parasitologic profiles of each experimental group. Utilization of foster mother groups indicated passive transfer of protective antibody through milk. Evidence for in utero sensitization by soluble malaria antigens was shown by an anamnestic-like antibody response during subsequent infection of offspring from infected mothers.
Ramírez-López, María Teresa; Vázquez, Mariam; Bindila, Laura; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosarío Noemí; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Ouro, Daniel; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando
2016-01-01
Exposure to inadequate nutritional conditions in critical windows of development has been associated to disturbances on metabolism and behavior in the offspring later in life. The role of the endocannabinoid system, a known regulator of energy expenditure and adaptive behaviors, in the modulation of these processes is unknown. In the present study, we investigated the impact of exposing rat dams to diet restriction (20% less calories than standard diet) during pre-gestational and gestational periods on: (a) neonatal outcomes; (b) endocannabinoid content in hypothalamus, hippocampus and olfactory bulb at birth; (c) metabolism-related parameters; and (d) behavior in adult male offspring. We found that calorie-restricted dams tended to have a reduced litter size, although the offspring showed normal weight at birth. Pups from calorie-restricted dams also exhibited a strong decrease in the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and palmitoylethanolamide (PEA) in the hypothalamus at birth. Additionally, pups from diet-restricted dams displayed reduced levels of AEA in the hippocampus without significant differences in the olfactory bulb. Moreover, offspring exhibited increased weight gain, body weight and adiposity in adulthood as well as increased anxiety-related responses. We propose that endocannabinoid signaling is altered by a maternal caloric restriction implemented during the preconceptional and pregnancy periods, which might lead to modifications of the hypothalamic and hippocampal circuits, potentially contributing to the long-term effects found in the adult offspring. PMID:27847471
Singh, Anshuman; Mudawal, Anubha; Shukla, Rajendra K; Yadav, Sanjay; Khanna, Vinay K; Sethumadhavan, Rao; Parmar, Devendra
2015-08-01
Oral administration of low doses (1.25, 2.5, or 5 mg/kg) of cypermethrin to pregnant Wistar rats from gestation days 5 to 21 led to dose-dependent differences in the induction of cytochrome P450 2D1 (CYP2D1) and 3A1 messenger RNA (mRNA) and protein in brain regions isolated from the offsprings postnatally at 3 weeks that persisted up to adulthood (12 weeks). Similar alterations were observed in the expression of GABAergic, muscarinic, dopaminergic, and serotonergic neurotransmitter receptors in brain regions of rat offsprings. Rechallenge of the prenatally exposed offsprings at adulthood (12 weeks old) with cypermethrin (p.o., 10 mg/kg for 6 days) led to a greater magnitude of alterations in the expression of CYPs, neurotransmitter receptors, and neurotransmitter receptor binding in the brain regions when compared to the control offsprings treated at adulthood with cypermethrin or prenatally exposed offsprings. A greater magnitude of decrease was also observed in the spontaneous locomotor activity (SLA) in prenatally exposed offsprings rechallenged with cypermethrin. The present data indicating similarities in the alterations in the expression of CYPs (2D1 and 3A1) and neurotransmitter receptors in brain has led us to suggest that endogenous function regulating CYPs is possibly associated with neurotransmission processes. A greater magnitude of alterations in CYP2D1, 3A1, neurotransmitter receptors, and SLA in rechallenged animals has further provided evidence that alterations in CYPs are possibly linked with neurotransmission processes.
[Detection of auditory impairment in the offsprings caused by drug treatment of the dams].
Kameyama, T; Nabeshima, T; Itoh, J
1982-12-01
To study the auditory impairment induced by prenatal administration of aminoglycosides in the offspring, the shuttle box method to measure the auditory threshold of rats (Kameyama et al., Folia pharmacol. japon. 77, 15, 1981) was employed. Four groups of pregnant rats were administered 200 mg/kg kanamycin sulfate (KM), 200 mg/kg dihydrostreptomycin sulfate (DHSM), 100 mg/kg neomycin sulfate (NM), or 1 ml/kg saline intramuscularly from the 10th to the 19th day of pregnancy. The auditory threshold of the offspring could be measured by the shuttle box method in about 90% of the live born rats at the age of 100 days. The auditory thresholds of the groups were as follows (mean +/- S.E.): saline group, 53.8 +/- 0.6 dB (N = 36); KM group, 63.8 +/- 1.1 dB (N = 34); DHSM group, 60.0 +/- 1.2 dB (N = 29); NM group, 62.4 +/- 1.2 dB (N = 24). Auditory thresholds of drug-treated groups were significantly higher than that of the saline group. However, no increase in the auditory threshold of the mother rat was detected after treatment with aminoglycosides. In addition, the experimental procedure of the shuttle box method is very easy, and the auditory threshold of a large number of rats could be measured in a short period. These findings suggest that this method is a very useful one for screening for auditory impairment induced by prenatal drug treatment in rat offspring.
Menuet, C; Wlodek, M E; Fong, A Y; Allen, A M
2016-06-01
Sympathetic nerve activity to the cardiovascular system displays prominent respiratory-related modulation which leads to the generation of rhythmic oscillations in blood pressure called Traube-Hering waves. An amplification of this respiratory modulation of sympathetic activity is observed in hypertension of both genetic, the spontaneously hypertensive rat, and induced, chronic intermittent hypoxia or maternal protein restriction during gestation, origin. Male offspring of mothers with uteroplacental insufficiency, induced by bilateral uterine vessel ligation at 18 days of gestation, are also hypertensive in adulthood. In this study we examined whether these male offspring display altered respiratory modulation of sympathetic activity at pre-hypertensive ages compared to controls. Respiratory, cardiovascular and sympathetic parameters were examined using the working heart-brainstem preparation in 35 day old male rats that had reduced birth weight due to uteroplacental insufficiency. Whilst all respiratory parameters were not different between groups, we observed an enhanced respiratory-related burst of thoracic sympathetic nerve activity and amplified Traube-Hering waves in the growth-restricted group. This group also showed an increased sympathetic and bradycardic response to activation of peripheral chemoreceptors. The observations add support to the view that altered respiratory modulation of sympathetic activity represents a common mechanism involved in the development of several forms of hypertension. Copyright © 2015 Elsevier B.V. All rights reserved.
Almeida, Mara Ribeiro; Venâncio, Vinícius Paula; Aissa, Alexandre Ferro; Darin, Joana Darc Castania; Pires Bianchi, Maria Lourdes; Antunes, Lusânia Maria Greggi
2015-06-01
Vitamin B6 is a cofactor for more than 140 essential enzymes and plays an important role in maternal health and fetal development. The goal of this study was to investigate the effects of maternal vitamin B6 on DNA damage and oxidative stress status in rat dams and their offspring. Female Wistar rats were randomly assigned to three dietary groups fed a standard diet (control diet), a diet supplemented with 30 mg/kg of vitamin B6, or a deficient diet (0 mg/kg of vitamin B6) for 10 weeks before and during mating, pregnancy and lactation. The dams were euthanized at weaning, and their male pups were euthanized either 10 days or 100 days after birth. We found that maternal vitamin B6 deficiency increased the micronucleus frequency in peripheral blood and bone marrow cells and also increased the concentration of hepatic TBARS (thiobarbituric acid reactive substances) in newborn pups (10 days old). In conclusion, maternal 5- to 6-fold over-supplementation of vitamin B6 had no adverse effects, however its deficiency may induce chromosomal damage and hepatic lipid peroxidation in the offspring. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cuthbert, Candace E; Foster, Jerome E; Ramdath, D Dan
2017-10-01
A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (P<0·05) of genes coding for v-Akt murine thymoma viral oncogene homolog 2, resistin and v-Raf-1 murine leukaemia viral oncogene homolog 1 (Raf1) in offspring skeletal muscle and acetyl-CoA carboxylase (Acaca), fatty acid synthase and phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit β in offspring liver. Skeletal muscle neuropeptide Y and hepatic Kruppel-like factor 10 were up-regulated in HFS v. CON offspring (P<0·05). Compared with CON, Acaca and Raf1 protein expression levels were significantly lower in HFS offspring. Maternal HFS induced higher homoeostasis model of assessment index of insulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.
Guzmán-Quevedo, Omar; Da Silva Aragão, Raquel; Pérez García, Georgina; Matos, Rhowena J B; de Sa Braga Oliveira, André; Manhães de Castro, Raul; Bolaños-Jiménez, Francisco
2013-01-01
Several epidemiological and experimental studies have clearly established that maternal malnutrition induces a high risk of developing obesity and related metabolic diseases in the offspring. To determine if altered nutrient sensing might underlie this enhanced disease susceptibility, here we examined the effects of perinatal protein restriction on the activation of the nutrient sensor mTOR in response to acute variations in the nutritional status of the organism. Female Wistar rats were fed isocaloric diets containing either 17% protein (control) or 8% protein (PR) throughout pregnancy and lactation. At weaning offspring received standard chow and at 4 months of age the effects of fasting or fasting plus re-feeding on the phosphorylation levels of mTOR and its downstream target S6 ribosomal protein (rpS6) in the hypothalamus were assessed by immuno-fluorescence and western blot. Under ad libitum feeding conditions, PR rats exhibited decreased mTOR and rpS6 phosphorylation in the arcuate (ARC) and ventromedial (VMH) hypothalamic nuclei. Moreover, the phosphorylation of mTOR and rpS6 in these hypothalamic nuclei decreased with fasting in control but not in PR animals. Conversely, PR animals exhibited enhanced number of pmTOR imunostained cells in the paraventricular nucleus (PVN) and fasting decreased the activation of mTOR in the PVN of malnourished but not of control rats. These alterations occurred at a developmental stage at which perinatally-undernourished animals do not show yet obesity or glucose intolerance. Collectively, our observations suggest that altered hypothalamic nutrient sensing in response to an inadequate foetal and neonatal energetic environment is one of the basic mechanisms of the developmental programming of metabolic disorders and might play a causing role in the development of the metabolic syndrome induced by malnutrition during early life.
Gopalakrishnan, Kathirvel; More, Amar S; Hankins, Gary D; Nanovskaya, Tatiana N; Kumar, Sathish
2017-06-01
Approximately 20% of pregnant women smoke despite intentions to quit. Smoking cessation drugs, such as nicotine replacement therapy (NRT) and bupropion, are recommended treatments. Adverse cardiovascular outcomes in offspring have raised concerns about NRT's safety during pregnancy. However, the effect of bupropion is unknown. Using a rat model, we determined whether NRT and bupropion interventions during pregnancy are safer than continued smoking on offspring's cardiovascular function. Male offspring of controls and dams exposed to cigarette smoke (1.6 packs/day, inhalation), nicotine (2 mg/kg/d subcutaneously), and bupropion (13 mg/kg twice daily orally) were assessed for fetoplacental weight, cardiac function, blood pressure, and vascular reactivity. Fetoplacental weights were decreased and spontaneous beating and intracellular calcium in neonatal cardiomyocytes were increased in smoking, nicotine, and bupropion offspring; however, these effects were more accentuated in smoking followed by nicotine and bupropion offspring. Increased heart rate and decreased cardiac output, stroke volume, and left ventricular percent posterior wall thickening were observed in smoking, nicotine, and bupropion offspring. The left ventricular mass was reduced in smoking and nicotine but not in bupropion offspring. Blood pressure was higher with decreased endothelium-dependent relaxation and exaggerated vascular contraction to angiotensin II in smoking and nicotine offspring, with more pronounced dysfunctions in smoking than nicotine offspring. Maternal bupropion did not impact offspring's blood pressure, endothelium-dependent relaxation, and vascular contraction. In conclusion, maternal nicotine intervention adversely affects offspring's cardiovascular outcomes, albeit less severely than continued smoking. However, bupropion causes cardiac derangement in offspring but does not adversely affect blood pressure and vascular function.
Fernandes-Lima, Flávia; Gregório, Bianca M.; Nascimento, Fernanda A. M.; Costa, Waldemar S.; Sampaio, Francisco J. B.
2018-01-01
Vitamin D deficiency is common in pregnant women and infants. The present study aimed to investigate the effects of vitamin D restricted diet on the Wistar rats offspring penis morphology. Mother rats received either standard diet (SC) or vitamin D restricted (VitD) diet. At birth, offspring were divided into SC/SC (from SC mothers, fed with SC diet) and VitD/VitD (from VitD mothers, fed with VitD diet). After euthanasia the penises were processed for histomorphometric analysis. The VitD/VitD offspring displayed metabolic changes and reduction in the cross-sectional area of the penis, corpus cavernosum, tunica albuginea, and increased area of the corpus spongiosum. The connective tissue, smooth muscle, and cell proliferation percentages were greater in the corpus cavernosum and corpus spongiosum in the VitD/VitD offspring. The percentages of sinusoidal spaces and elastic fibers in the corpus cavernosum decreased. The elastic fibers in the tunica albuginea of the corpus spongiosum in the VitD/VitD offspring were reduced. Vitamin D restriction during perinatal and postnatal periods induced metabolic and structural changes and represented important risk factors for erectile dysfunction in the penis of the adult offspring. These findings suggest that vitamin D is an important micronutrient in maintaining the cytoarchitecture of the penis. PMID:29850540
Adaptive significance of natural variations in maternal care in rats: a translational perspective
Beery, Annaliese K.; Francis, Darlene D.
2011-01-01
A wealth of data from the last fifty years documents the potency of early life experiences including maternal care on developing offspring. A majority of this research has focused on the developing stress axis and stress-sensitive behaviors in hopes of identifying factors impacting resilience and risk-sensitivity. The power of early life experience to shape later development is profound and has the potential to increase fitness of individuals for their environments. Current findings in a rat maternal care paradigm highlight the complex and dynamic relation between early experiences and a variety of outcomes. In this review we propose adaptive hypotheses for alternate maternal strategies and resulting offspring phenotypes, and ways to distinguish between these hypotheses. We also provide evidence underscoring the critical role of context in interpreting the adaptive significance of early experiences. If our goal is to identify risk-factors relevant to humans, we must better explore the role of the social and physical environment in our basic animal models. PMID:21458485
Sarkar, Dipak K
2015-01-01
The idea that exposure to adverse environmental conditions and lifestyle choices during pregnancy can result in fetal programming that underlies disease susceptibility in adulthood is now widely accepted. Fetal alcohol exposed offspring displays many behavioral and physiological abnormalities including neuroendocrine-immune functions, which often carry over into their adult life. Since the neuroendocrine-immune system plays an important role in controlling tumor surveillance, fetal alcohol exposed offspring can be vulnerable to develop cancer. Animal studies have recently showed increased cancer growth and progression in various tissues of fetal alcohol exposed offspring. I will detail in this chapter the recent evidence for increased prostate carcinogenesis in fetal alcohol exposed rats. I will also provide evidence for a role of excessive estrogenization during prostatic development in the increased incidence of prostatic carcinoma in these animals. Furthermore, I will discuss the additional possibility of the involvement of impaired stress regulation and resulting immune incompetence in the increased prostatic neoplasia in the fetal alcohol exposed offspring.
Moderate daily exercise activates metabolic flexibility to prevent prenatally induced obesity.
Miles, Jennifer L; Huber, Korinna; Thompson, Nichola M; Davison, Michael; Breier, Bernhard H
2009-01-01
Obesity and its associated comorbidities are of major worldwide concern. It is now recognized that there are a number of metabolically distinct pathways of obesity development. The present paper investigates the effect of moderate daily exercise on the underlying mechanisms of one such pathway to obesity, through interrogation of metabolic flexibility. Pregnant Wistar rats were either fed chow ad libitum or undernourished throughout pregnancy, generating control or intrauterine growth restricted (IUGR) offspring, respectively. At 250 d of age, dual-emission x-ray absorptiometry scans and plasma analyses showed that moderate daily exercise, in the form of a measured amount of wheel running (56 m/d), prevented the development of obesity consistently observed in nonexercised IUGR offspring. Increased plasma C-peptide and hepatic atypical protein kinase Czeta levels explained increased glucose uptake and increased hepatic glycogen storage in IUGR offspring. Importantly, whereas circulating levels of retinol binding protein 4 were elevated in obese, nonexercised IUGR offspring, indicative of glucose sparing without exercise, retinol binding protein 4 levels were normalized in the exercised IUGR group. These data suggest that IUGR offspring have increased flexibility of energy storage and use and that moderate daily exercise prevents obesity development through activation of distinct pathways of energy use. Thus, despite a predisposition to develop obesity under sedentary conditions, obesity development was prevented in IUGR offspring when exercise was available. These results emphasize the importance of tailored lifestyle changes that activate distinct pathways of metabolic flexibility for obesity prevention.
The developing mammalian central nervous system is dependent on thyroid hormones (TH) to control neurogenesis, differentiation and migration. In humans, low maternal serum thyroxine (T4) levels have been correlated to impaired child brain development. Perfluorinated chemicals are...
2013-01-01
Background Ancestral environmental exposures to a variety of environmental factors and toxicants have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. The present work examined the potential transgenerational actions of the insecticide dichlorodiphenyltrichloroethane (DDT) on obesity and associated disease. Methods Outbred gestating female rats were transiently exposed to a vehicle control or DDT and the F1 generation offspring bred to generate the F2 generation and F2 generation bred to generate the F3 generation. The F1 and F3 generation control and DDT lineage rats were aged and various pathologies investigated. The F3 generation male sperm were collected to investigate methylation between the control and DDT lineage male sperm. Results The F1 generation offspring (directly exposed as a fetus) derived from the F0 generation exposed gestating female rats were not found to develop obesity. The F1 generation DDT lineage animals did develop kidney disease, prostate disease, ovary disease and tumor development as adults. Interestingly, the F3 generation (great grand-offspring) had over 50% of males and females develop obesity. Several transgenerational diseases previously shown to be associated with metabolic syndrome and obesity were observed in the testis, ovary and kidney. The transgenerational transmission of disease was through both female (egg) and male (sperm) germlines. F3 generation sperm epimutations, differential DNA methylation regions (DMR), induced by DDT were identified. A number of the genes associated with the DMR have previously been shown to be associated with obesity. Conclusions Observations indicate ancestral exposure to DDT can promote obesity and associated disease transgenerationally. The etiology of disease such as obesity may be in part due to environmentally induced epigenetic transgenerational inheritance. PMID:24228800
In utero protein restriction causes growth delay and alters sperm parameters in adult male rats
2011-01-01
Background Recent studies have supported the concept of "fetal programming" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Methods Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t-test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. Results We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. Conclusions In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood. PMID:21702915
In utero protein restriction causes growth delay and alters sperm parameters in adult male rats.
Toledo, Fabíola C; Perobelli, Juliana E; Pedrosa, Flávia P C; Anselmo-Franci, Janete A; Kempinas, Wilma D G
2011-06-24
Recent studies have supported the concept of "fetal programming" which suggests that during the intrauterine development the fetus may be programmed to develop diseases in adulthood. The possible effects of in utero protein restriction on sexual development of rat male offspring were evaluated in the present study. Pregnant Wistar rats were divided into two experimental groups: one group treated with standard chow (SC, n = 8, 17% protein) and the other group treated with hypoproteic chow (HC, n = 10, 6% protein) throughout gestation. After gestation the two experimental groups received standard chow. To evaluate the possible late reproductive effects of in utero protein restriction, the male offspring of both groups were assessed at different phases of sexual development: prepubertal (30 days old); peripubertal (60 days old); adult (90 days old). Student's t-test and Mann-Whitney test were utilized. Differences were considered significant when p < 0.05. We found that in utero protein restriction reduced the body weight of male pups on the first postnatal day and during the different sexual development phases (prepubertal, peripubertal and adult). During adulthood, Sertoli cell number, sperm motility and sperm counts in the testis and epididymal cauda were also reduced in HC. Furthermore, the numbers of sperm presenting morphological abnormalities and cytoplasmic drop retention were higher in HC. In conclusion, in utero protein restriction, under these experimental conditions, causes growth delay and alters male reproductive-system programming in rats, suggesting impairment of sperm quality in adulthood.
Lehotzky, K; Ungváry, G; Szeberényi, J M; Kiss, A
1988-01-01
As a model of fetal alcohol syndrome (FAS) the rate of the maturation of the functions of the central nervous system was studied in the offspring of pregnant CFY rats receiving (from the 7th-15th day of gestation) either oral ethanol treatment or liquid diet containing ethanol. Both types of exposure caused numerous behavioural impairments, besides high perinatal mortality also the opening of the eyes and ears, and the appearance of postural reflexes were delayed. The newborn rats could be characterized by hyperactivity and weak motor coordination. The learning capacity, the avoidance conditioned reflexes was the poorest in the case of the offspring of mothers kept on liquid diet, containing alcohol, the latency of the conditioned response was significantly lenghtened. During reconditioning, in the case of the sexually already mature pups, the weakest performance was observed in the offspring of mothers having received oral alcohol treatment. This findings indicated, on one hand, that the retardation ceased and, on the other, that the learning and memory impairments caused by oral alcohol exposure was persistent. Following prenatal alcohol exposure carried out by different methods the neurotoxic effect, the retardation of the rate of maturation of the central nervous functions, and the adaptive mechanisms were all affected to different extent. Besides alcohol exposure also other factors (relative protein insufficiency, malnutrition) may be involved in the pathomechanism of the above mentioned phenomena.
Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad
2016-06-01
Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques. © The Author(s) 2014.
We previously reported that 750 mg/kg/day of diethylhexyl phthalate (DEHP) administered in utero during the period of sex differentiation resulted in a higher prevalence of gubernacular lesions in male Wistar offspring than in the male Sprague Dawley (SD) rat offspring, whereas D...
Gordon, C J; Phillips, P M; Johnstone, A F M; Schmid, J; Schladweiler, M C; Ledbetter, A; Snow, S J; Kodavanti, U P
2017-05-01
Epidemiological and experimental data suggest that obesity exacerbates the health effects of air pollutants such as ozone (O 3 ). Maternal inactivity and calorically rich diets lead to offspring that show signs of obesity. Exacerbated O 3 susceptibility of offspring could thus be manifested by maternal obesity. Thirty-day-old female Long-Evans rats were fed a control (CD) or high-fat (HF) (60% calories) diet for 6 wks and then bred. GD1 rats were then housed with a running wheel (RW) or without a wheel (SED) until parturition, creating four groups of offspring: CD-SED, CD-RW, HF-SED and HF-RW. HF diet was terminated at PND 35 and all offspring were placed on CD. Body weight and %fat of dams were greatest in order; HF-SED > HF-RW > CD-SED > CD-RW. Adult offspring were exposed to O 3 for two consecutive days (0.8 ppm, 4 h/day). Glucose tolerance tests (GTT), ventilatory parameters (plethysmography), and bronchoalveolar fluid (BALF) cell counts and protein biomarkers were performed to assess response to O 3 . Exercise and diet altered body weight and %fat of young offspring. GTT, ventilation and BALF cell counts were exacerbated by O 3 with responses markedly exacerbated in males. HF diet and O 3 led to significant exacerbation of several BALF parameters: total cell count, neutrophils and lymphocytes were increased in male HF-SED versus CD-SED. Males were hyperglycemic after O 3 exposure and exhibited exacerbated GTT responses. Ventilatory dysfunction was also exacerbated in males. Maternal exercise had minimal effects on O 3 response. The results of this exploratory study suggest a link between maternal obesity and susceptibility to O 3 in their adult offspring in a sex-specific manner.
Santos-Rocha, Juliana; Duarte, Gloria P.; Xavier, Fabiano E.
2012-01-01
This study analyzed the effect of in utero exposure to maternal diabetes on contraction to noradrenaline in mesenteric resistance arteries (MRA) from adult offspring, focusing on the role of cyclooxygenase (COX)-derived prostanoids. Diabetes in the maternal rat was induced by a single injection of streptozotocin (50 mg/kg body weight) on day 7 of pregnancy. Contraction to noradrenaline was analyzed in isolated MRA from offspring of diabetic (O-DR) and non-diabetic (O-CR) rats at 3, 6 and 12 months of age. Release of thromboxane A2 (TxA2) and prostaglandins E2 (PGE2) and F2α (PGF2α), was measured by specific enzyme immunoassay kits. O-DR developed hypertension from 6 months of age compared with O-CR. Arteries from O-DR were hyperactive to noradrenaline only at 6 and 12 months of age. Endothelial removal abolished this hyperreactivity to noradrenaline between O-CR and O-DR. Preincubation with either the COX-1/2 (indomethacin) or COX-2 inhibitor (NS-398) decreased noradrenaline contraction only in 6- and 12-month-old O-DR, while it remained unmodified by COX-1 inhibitor SC-560. In vessels from 6-month-old O-DR, a similar reduction in the contraction to noradrenaline produced by NS-398 was observed when TP and EP receptors were blocked (SQ29548+AH6809). In 12-month-old O-DR, this effect was only achieved when TP, EP and FP were blocked (SQ29548+AH6809+AL8810). Noradrenaline-stimulated TxB2 and PGE2 release was higher in 6- and 12-month-old O-DR, whereas PGF2α was increased only in 12-month-old O-DR. Our results demonstrated that in utero exposure to maternal hyperglycaemia in rats increases the participation of COX-2-derived prostanoids on contraction to noradrenaline, which might help to explain the greater response to this agonist in MRA from 6- and 12-month-old offspring. As increased contractile response in resistance vessels may contribute to hypertension, our results suggest a role for these COX-2-derived prostanoids in elevating vascular resistance and blood pressure in offspring of diabetic rats. PMID:23209788
Colbert, Nathan K.W.; Pelletier, Nicole C.; Cote, Joyce M.; Concannon, John B.; Jurdak, Nicole A.; Minott, Sara B.; Markowski, Vincent P.
2005-01-01
In this study we examined the effects of exposure to the antiandrogenic fungicide vinclozolin (Vz) on the development of two sex-differentiated behaviors that are organized by the perinatal actions of androgens. Pregnant Long-Evans rats were administered a daily oral dose of 0, 1.5, 3, 6, or 12 mg/kg Vz from the 14th day of gestation through postnatal day (PND)3. The social play behavior of juvenile offspring was examined on PND22 and again on PND34 during play sessions with a same-sex littermate. After they reached adulthood, the male offspring were examined with the ex copula penile reflex procedure to assess erectile function. Vz did not produce any gross maternal or neonatal toxicity, nor did it reduce the anogenital distance in male pups. We observed no effects of Vz on play behavior on PND22. However, the 12-mg/kg Vz dose significantly increased play behavior in the male offspring on PND34 compared with controls. The most dramatic increases were seen with the nape contact and pounce behavior components of play. The Vz effect was more pronounced in male than in female offspring. As adults, male offspring showed a significant reduction of erections at all dose levels during the ex copula penile reflex tests. The 12-mg/kg dose was also associated with an increase in seminal emissions. These effects demonstrate that perinatal Vz disrupts the development of androgen-mediated behavioral functions at exposure levels that do not produce obvious structural changes or weight reductions in androgen-sensitive reproductive organs. PMID:15929892
Karami, Mohammad; Ehsanivostacolaee, Simin; Moazedi, Ali Ahmad; Nosrati, Anahita
2013-01-01
In this study the effect of zinc chloride (ZnCl2) administration on the short-term and long-term memory of rats were assessed. We enrolled six groups of adult female and control group of eight Wistar rats in each group. One group was control group with free access to food and water, and five groups drunk zinc chloride in different doses (20, 30, 50, 70 and 100 mg/kg/day) in drinking water for two weeks during lactation .One month after birth, a shuttle box used to short- term and long-term memory and the latency in entering the dark chamber as well. This experiment showed that maternal 70 mg/kg dietary zinc during lactation influenced the working memory of rats' offspring in all groups. Rats received 100 mg/kg/day zinc during lactation so they had significant impairment in working memory (short-term) of their offspring (P<0.05). There was no significant difference in reference (long-term) memory of all groups. Drug consumption below70 mg/kg/day zinc chloride during lactation had no effect. While enhanced 100 mg/ kg/ day zinc in lactating rats could cause short-term memory impairment.
Del Bas, Josep Maria; Caimari, Antoni; Ceresi, Enzo; Arola-Arnal, Anna; Palou, Andreu; Arola, Lluís; Crescenti, Anna
2015-03-14
Diet during pregnancy and lactation is a critical factor in relation to the health of dams and their offspring. Currently, control diets used in metabolic imprinting studies differ in composition and type, i.e. semi-purified diets (SD) or chow-based diets (ND). The aim of the present study was to determine whether two widely used control diets, a SD and a ND, that mainly differ in fat content (5·08 and 3·26 %, respectively) and its sources (soyabean oil for the SD and cereals and fish for the ND), fibre (6 and 15 %, respectively), and cholesterol (26 and 69 mg/kg diet, respectively) can influence the lipid metabolism of dams and their offspring. Wistar rats were fed either the SD or the ND during pregnancy and lactation. At weaning, SD-fed dams presented severe hepatic steatosis and increased levels of circulating TAG, NEFA and insulin. Importantly, the offspring presented an altered plasma lipid profile. In contrast, the ND allowed for a normal gestation and lactation process, and did not affect the metabolism of offspring. In parallel, virgin rats fed the SD showed no metabolic alterations. A higher intake of SFA and MUFA and a lower consumption of PUFA observed in SD-fed dams during the lactation period could contribute to explaining the observed effects. In conclusion, two different control diets produced very different outcomes in the lipid metabolism of lactating rats and their offspring. The present results highlight the importance of the assessment of the metabolic state of dams when interpreting the results of metabolic programming studies.
Lacy, Ryan T; Hord, Lauren L; Morgan, Amanda J; Harrod, Steven B
2012-08-01
Prenatal tobacco smoke exposure is associated with alterations in motivated behavior in offspring, such as increased consumption of highly palatable foods and abused drugs. Animal models show that gestational nicotine (GN) exposure mediates changes in responding for sucrose and drug reward. A novel, intermittent low-dose intravenous (IV) exposure model was used to administer nicotine (0.05 mg/kg/injection) or saline 3×/day to rats on gestational days 8-21. Two experiments investigated the effect of IV GN on (1) the habituation of spontaneous locomotor activity and on (2) sucrose reinforced responding in offspring. For the operant experiments, animals acquired fixed-ratio (FR-3) responding for sucrose, 26% (w/v), and were tested on varying concentrations (0, 3, 10, 30, and 56%; Latin-square) according to a FR-3, and then a progressive-ratio (PR) schedule. Male and female adult offspring were used. IV GN did not alter birth or growth weight, or the number of pups born. No between-group differences in habituation to spontaneous locomotor activity were observed. FR testing produced an inverted U-shaped response curve, and rats showed peak responding for 10% sucrose reinforcement. Neither gestation nor sex affected responding, suggesting equivalent sensitivity to varying sucrose concentrations. PR testing revealed that GN rats showed greater motivation for sucrose reinforcement relative to controls. A low-dose, IV GN exposure model resulted in increased motivation to respond for sucrose reinforcement in adult offspring. This suggests that using a low number of cigarettes throughout pregnancy will result in increased motivation for highly palatable foods in adult, and perhaps, adolescent offspring. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Anxiety-like behaviour in adult rats perinatally exposed to maternal calorie restriction.
Levay, Elizabeth A; Paolini, Antonio G; Govic, Antonina; Hazi, Agnes; Penman, Jim; Kent, Stephen
2008-08-22
Environmental stimuli such as caloric availability during the perinatal period exert a profound influence on the development of an organism. Studies in this domain have focused on the effects of under- and malnutrition while the effects of more mild levels of restriction have not been delineated. Rat dams and their offspring were subjected to one of five dietary regimens: control, CR50% for 3 days preconception, CR25% during gestation, CR25% during lactation, and CR25% during gestation, lactation, and post-weaning (lifelong). The pup retrieval test and maternal observations were conducted during lactation to quantify maternal care. In the pup retrieval test, dams that were concurrently experiencing CR (i.e., from the lactation and lifelong groups) displayed shorter latencies to retrieve all pups than the control and preconception groups and the lactation group constructed better nests than all groups. Adult offspring were tested in three tests of anxiety: the elevated plus maze, open field, and emergence test. No differences were observed in the elevated plus maze; however, in the open field preconception animals made fewer entries and spent more time in the central zone than controls. In addition, preconception offspring exhibited longer latencies to full body emergence, spent less time fully emerged, and spent more time engaged in risk assessment behaviours than all other groups. Offspring from the preconception group were also on average 11% heavier than control rats throughout life and displayed 37% higher serum leptin concentrations than controls. A potential role for leptin in the anxiogenic effect of preconception CR is discussed.
Effects of in utero exposure to Tityus bahiensis scorpion venom in adult rats.
Dorce, Ana Leticia Coronado; Dorce, Valquiria Abrão Coronado; Nencioni, Ana Leonor Abrahão
2010-01-01
The toxicity of Tityus bahiensis scorpion venom is well known, but there are little data about the damage in offspring of dams that were exposed to the venom during pregnancy. The objective of this work was to determine the toxic effects of venom in adult offspring of Wistar rats exposed to venom in utero. Dams were divided into a control group, subcutaneously injected with saline solution on the 10th (GD10) and 16th (GD16) days, and two experimental groups, subcutaneously injected with venom (2.5mg/kg) on GD10 or GD16, respectively. Adult offspring were evaluated according to behavioral development and neuronal integrity in the hippocampus. Tests performed in the activity box and in the enriched environment demonstrated that males from GD10 had motor decrease. Females from GD10 showed a depressive-like state and were more anxious, as demonstrated by the forced swimming test and social interaction. The plus-maze discriminative avoidance task demonstrated that GD16 males had lower levels of anxiety. The number of neuronal cells was decreased in CA1, CA3 and CA4 hippocampal areas of males and females from GD10 group and in CA1 of females and CA4 of males from GD16 group. Thus, we conclude that venom exposure in pregnant dams causes subtle alteration in the behavioral and neuronal development of offspring in adult life in a gender-dependent manner. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Korgan, Austin C; O'Leary, Elizabeth; King, Jillian L; Weaver, Ian C G; Perrot, Tara S
2018-05-01
Paternal preconception risk factors (e.g. stress, diet, drug use) correlate with metabolic dysfunction in offspring, which is often comorbid with depressive and anxiety-like phenotypes. Detection of these risk factors or deleterious phenotypes informs a female about prevailing ecological demands, in addition to potential adverse environment-induced phenotypes that may be disseminated to her offspring. We examined whether a F 0 male rat's prior exposure to an obesogenic high-fat diet (HFD) influences a female's attraction towards a male, subsequent mother-infant interactions and the development of defensive (emotional) responses in the F 1 offspring. Females displayed less interest in the HFD exposed F 0 males relative to control diet-exposed F 0 males. Dams that reared F 1 offspring in larger, semi-naturalistic housing provided more licking and grooming and active arched-back-nursing behavior. However, some of these effects interacted with paternal experience. F 0 HFD and maternal rearing environment revealed sex-dependent, between group differences in F 1 offspring wean weight, juvenile social interactions and anxiety-like behavior in adolescence. Our results show for the first time in mammals that male exposure to HFD may contribute to stable behavioral variation among females in courtship, maternal care, even when the females are not directly exposed to a HFD, and anxiety-like behavior in F 1 offspring. Furthermore, when offspring were exposed to a predatory threat, hypothalamic Crf gene regulation was influenced by early housing. These results, together with our previous findings, suggest that paternal experience and maternal rearing conditions can influence maternal behavior and development of defensive responses of offspring. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ganmaa, Davaasambuu; Qin, Li-Qiang; Wang, Pei-Yu; Tezuka, Hideo; Teramoto, Shoji; Sato, Akio
2004-10-01
To examine whether the considerable quantities of increased female sex hormone levels found in modern milk as a result of modern dairy farming practices are safe for human consumption. Males and females of the P generation were maintained on a diet containing milk for 10 weeks before mating. Exposure to milk was continued up to the end of weaning of the F2b offspring. Two-generation reproduction study. Male and female Wistar Galas rats. P- and F1-generation rats were mated. Fertility, fecundity, and morphology and function of reproductive organs. Although milk had growth-promoting effects in both parents and offspring, it caused no impairments in fertility, fecundity, or reproductive organ development in either generation. However, a whole litter from a dam of the P generation was born dead, three litters in total had a pup with skeletal abnormalities, and the AGD of F2a female pups was reduced. These events occurred only in the milk-treated rats. It is unknown whether these issues had any relevance to milk or only happened by chance. Further study is required to determine whether milk from pregnant cows is completely free from adverse effects on reproductive health.
Laureano-Melo, Roberto; Império, Güínever Eustáquio do; da Silva-Almeida, Claudio; Kluck, George Eduardo Gabriel; Cruz Seara, Fernando de Azevedo; da Rocha, Fábio Fagundes; da Silveira, Anderson Luiz Bezerra; Reis, Luís Carlos; Ortiga-Carvalho, Tania Maria; da Silva Côrtes, Wellington
2015-11-01
Selenium is a micronutrient which is part of selenoprotein molecules and participates in a vast number of physiological roles and, among them,we have fetal and neonatal development. Therefore, the aimof this studywas to evaluate possible behavioral changes in offspring of female rats supplemented during pregnancy and lactation with sodium selenite. To address that, we treated two groups of female rats by saline or sodium selenite at a dose of 1mg/kg through oral route and performed neurochemical and behavioral tests. In the offspring, the thyroid profile and hippocampal neurochemistrywere evaluated. Behavioral testswere performed in pups both during childhood and adulthood. We found out that selenium (Se) supplementation increased serum levels of triiodothyronine (25%, p b 0.001) and thyroxine (18%, p b 0.05) and promoted a tryptophan hydroxylase 2 (TPH 2) expression decrease (17%, p b 0.01) and tyrosine hydroxylase (TH) expression increase (202%, p b 0.01) in the hippocampus. The cholinesterase activity was decreased (28%, p b 0.01) in Se supplemented rats, suggesting a neurochemical modulation in the hippocampal activity. During childhood, the Sesupplemented offspring had a reduction in anxiety-like behavior both in elevated plus maze test and in light–dark box test. In adulthood, Se-treated pups had an increase in the locomotor activity (36%, p b 0.05) and in rearing episodes (77%, p b 0.001) in the open field test, while in the elevated plus maze test they also exhibited an increase in the time spent in the open arms (243%, p b 0.01). For the object recognition test, Se-treated offspring showed increase in the absolute (230.16%, p b 0.05) and relative index discrimination (234%, p b 0.05). These results demonstrate that maternal supplementation by sodium selenite promoted psychobiological changes both during childhood and adulthood. Therefore, the behavioral profile observed possibly can be explained by neurochemical changes induced by thyroid hormones during the critical period of the central nervous system ontogeny.
Anderson, D K; Rhees, R W; Fleming, D E
1985-04-15
The present study was designed to determine the effects of prenatal malnutrition or environmental stress on the development of the sexually dimorphic nucleus of the preoptic area (SDN-POA). Pregnant rats were divided into a control group and two treatment groups (immobilization-illumination-heat or environmental stress, and nutritional stress). The two forms of stress were administered during the third trimester of gestation (days 14-20). Male and female offspring were sacrificed at birth, 20, and 60 days postnatally. The cross-sectional area of the SDN-POA was identified under light microscopy and was measured. The data confirm previous studies by showing a significant sex difference in the SDN-POA between control male and female rats. Prenatally stressed males sacrificed 20 and 60 days after birth showed SDN-POA areas 50% smaller than the nuclear areas of control males. The size of the SDN-POA of female offspring, however, was not significantly altered by prenatal treatments.
In vivo longitudinal micro-CT study of bent long limb bones in rat offspring.
De Schaepdrijver, Luc; Delille, Peter; Geys, Helena; Boehringer-Shahidi, Christian; Vanhove, Christian
2014-07-01
Micro-computed X-ray tomography (micro-CT) has been reported as a reliable method to assess ex vivo rat and rabbit fetal skeletons in embryo-fetal developmental toxicity studies. Since micro-CT is a non-invasive imaging modality it has the potential for longitudinal, in vivo investigation of postnatal skeletal development. This is the first paper using micro-CT to assess the reversibility of drug-induced bent long bones in a longitudinal study from birth to early adulthood in rat offspring. Analysis of the scans obtained on postnatal Day 0, 7, 21 and 80 showed complete recovery or repair of the bent long limb bones (including the scapula) within the first 3 weeks. When assessing risk the ability to demonstrate recovery is highly advantageous when interpreting such transient skeletal change. In summary, in vivo micro-CT of small laboratory animals can aid in non-clinical safety assessment, particularly for specific mechanistic purposes or to address a particular concern in developmental biology. Copyright © 2014 Elsevier Inc. All rights reserved.
Segovia, Stephanie A; Vickers, Mark H; Harrison, Claudia J; Patel, Rachna; Gray, Clint; Reynolds, Clare M
2018-01-01
Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl), high-salt (SD; 10% kcal from fat, 4% NaCl), high-fat (HF; 45% kcal from fat, 1% NaCl) or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl) diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1 . There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2 . Gut expression of inflammatory ( Il1r1, Tnfα, Il6 , and Il6r ) and renin-angiotensin system ( Agtr1a, Agtr1b ) markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin-angiotensin regulation.
Zhang, Xiaosong; Wang, Qi; Wang, Yan; Hu, Jingmin; Jiang, Han; Cheng, Wenwen; Ma, Yuchao; Liu, Mengxi; Sun, Anji; Zhang, Xinxin; Li, Xiaobai
2016-12-01
Stress during pregnancy may cause neurodevelopmental and psychiatric disorders. However, the mechanisms are largely unknown. Currently, pro-inflammatory cytokines have been identified as a risk factor for depression and anxiety disorder. Unfortunately, there is very little research on the long-term effects of prenatal stress on the neuroinflammatory system of offspring. Moreover, the relationship between antidepressant treatment and cytokines in the central nervous system, especially in the hippocampus, an important emotion modulation center, is unclear. Therefore, the aim of this study was to determine the effects of prenatal chronic mild stress during development on affective-like behaviors and hippocampal cytokines in adult offspring, and to verify whether antidepressant (duloxetine) administration from early adulthood could prevent the harmful consequences. To do so, prenatally stressed and non-stressed Sprague-Dawley rats were treated with either duloxetine (10mg/kg/day) or vehicle from postnatal day 60 for 21days. Adult offspring were divided into four groups: 1) prenatal stress+duloxetine treatment, 2) prenatal stress+vehicle, 3) duloxetine treatment alone, and 4) vehicle alone. Adult offspring were assessed for anxiety-like behavior using the open field test and depression-like behavior using the forced swim test. Brains were analyzed for pro-inflammatory cytokine markers in the hippocampus via real-time PCR. Results demonstrate that prenatal stress-induced anxiety- and depression-like behaviors are associated with an increase in hippocampal inflammatory mediators, and duloxetine administration prevents the increased hippocampal pro-inflammatory cytokine interleukin-6 and anxiety- and depression-like behavior in prenatally stressed adult offspring. This research provides important evidence on the long-term effect of PNS exposure during development in a model of maternal adversity to study the pathogenesis of depression and its therapeutic interventions. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.
Effect of GLP-1 Receptor Activation on Offspring Kidney Health in a Rat Model of Maternal Obesity.
Glastras, Sarah J; Chen, Hui; McGrath, Rachel T; Zaky, Amgad A; Gill, Anthony J; Pollock, Carol A; Saad, Sonia
2016-03-23
Maternal obesity is associated with an increased risk of chronic disease in offspring, including type 2 diabetes (T2D). Exendin-4 (Exd-4) activates the glucagon like peptide-1 (GLP-1) receptor thereby decreasing serum glucose levels and body weight. In addition, Exd-4 has been shown to reduce renal and cardiac complications in experimental models of T2D. We hypothesized that treatment with Exd-4 would ameliorate the detrimental effects of maternal and diet-induced obesity on renal characteristics in offspring. Female Sprague-Dawley rats were fed either normal or high-fat diet (HFD) for 6 weeks prior to pregnancy, during pregnancy and lactation, and their offspring were weaned to normal or HFD. The offspring were randomized to Exd-4 or placebo from weaning and their kidneys harvested at Week 9. We found that the kidneys of offspring from obese mothers, regardless of postnatal diet, had significantly increased markers of inflammation, oxidative stress and fibrosis. Exd-4 ameliorated the negative renal effects of maternal obesity and in particular, reduced renal inflammation, oxidative stress and fibrosis. In conclusion, maternal obesity has persisting effects on renal structure in the offspring. GLP-1 analogues are potentially useful for protecting against the deleterious effects of maternal obesity on renal physiology in offspring.
Cardoso, Felipe S; Araujo-Lima, Carlos F; Aiub, Claudia A F; Felzenszwalb, Israel
2016-10-17
Sorbitol is a polyol used by the food industry as a sweetener. Women are consuming diet and light products containing sorbitol during pregnancy and in the postnatal period to prevent themselves from excessive weight gain and maintain a slim body. Although there is no evidence for the genotoxicity of sorbitol in the perinatal period, this study focused on evaluating the effects of the maternal intake of sorbitol on the biochemical and toxicological parameters of lactating Wistar rat offspring after 14days of mother-to-offspring exposure. A dose-dependent reduction of offspring length was observed. An increase in sorbitol levels determined in the milk was also observed. However, we detected an inverse relationship between the exposition dose in milk fructose and triacylglycerols concentrations. There was an increase in the plasmatic levels of ALT, AST and LDLc and a decrease in proteins, cholesterol and glucose levels in the offspring. Sorbitol exposure caused hepatocyte genotoxicity, including micronuclei induction. Maternal sorbitol intake induced myelotoxicity and myelosuppression in their offspring. The Comet assay of the blood cells detected a dose-dependent genotoxic response within the sorbitol-exposed offspring. According to our results, sorbitol is able to induce important metabolic alterations and genotoxic responses in the exposed offspring. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Epidemiological and experimental data suggest that obesity exacerbates the health effects of air pollutants such as ozone (O3). Maternal inactivity and calorically rich diets lead to offspring that show signs of obesity. Exacerbated O3 susceptibility of offspring could thus be m...
USDA-ARS?s Scientific Manuscript database
The proportion of obese women who become pregnant continues to rise. Compelling evidence suggests the intrauterine environment is an important determinant of offspring health. Maternal obesity and unhealthy diets are shown to promote metabolic programming in the offspring. Mitochondria are matern...
Dunder, Linda; Halin Lejonklou, Margareta; Lind, Lars; Risérus, Ulf; Lind, P Monica
2018-06-06
Bisphenol A (BPA) is an endocrine disruptor and also a suggested obesogen and metabolism-disrupting chemical. Accumulating data indicates that the fatty acid (FA) profile and their ratios in plasma and other metabolic tissues are associated with metabolic disorders. Stearoyl-CoA desaturase 1 (SCD-1) is a key regulator of lipid metabolism and its activity can be estimated by dividing the FA product by its precursor measured in blood or other tissues. The primary aim of this study was to investigate the effect of low-dose developmental BPA exposure on tissue-specific FA composition including estimated SCD-1 activity, studied in 5- and 52-week (wk)-old Fischer 344 (F344) rat offspring. Pregnant F344 rats were exposed to BPA via their drinking water corresponding to 0: [CTRL], 0.5: [BPA0.5], or 50 µg/kg BW/day: [BPA50], from gestational day 3.5 until postnatal day 22. BPA0.5 increased SCD-16 (estimated as the 16:1n-7/16:0 ratio) and SCD-18 (estimated as the 18:1n-9/18:0 ratio) indices in inguinal white adipose tissue triglycerides (iWAT-TG) and in plasma cholesterol esters (PL-CE), respectively, in 5-wk-old male offspring. In addition, BPA0.5 altered the FA composition in male offspring, e.g. by decreasing levels of the essential polyunsaturated FA linoleic acid (18:2n-6) in iWAT-and liver-TG. No differences were observed regarding the studied FAs in 52-wk-old offspring, although a slightly increased BW was observed in 52-wk-old female offspring. Low-dose developmental BPA exposure increased SCD-16 in iWAT-TG and SCD-18 in PL-CE of male offspring, which may reflect higher SCD-1 activity in these tissues. Altered desaturation activity and signs of altered FA composition are novel findings that may indicate insulin resistance in the rat offspring. These aforementioned results, together with the observed increased BW, adds to previously published data demonstrating that BPA can act as a metabolism disrupting chemical. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Kjaergaard, M; Nilsson, C; Secher, A; Kildegaard, J; Skovgaard, T; Nielsen, M O; Grove, K; Raun, K
2017-01-01
Background/objective: Intake of high-energy foods and maternal nutrient overload increases the risk of metabolic diseases in the progeny such as obesity and diabetes. We hypothesized that maternal and postnatal intake of chocolate and soft drink will affect leptin sensitivity and hypothalamic astrocyte morphology in adult rat offspring. Methods: Pregnant Sprague-Dawley rats were fed ad libitum chow diet only (C) or with chocolate and high sucrose soft drink supplement (S). At birth, litter size was adjusted into 10 male offspring per mother. After weaning, offspring from both dietary groups were assigned to either S or C diet, giving four groups until the end of the experiment at 26 weeks of age. Results: As expected, adult offspring fed the S diet post weaning became obese (body weight: P<0.01, %body fat per kg: P<0.001) and this was due to the reduced energy expenditure (P<0.05) and hypothalamic astrogliosis (P<0.001) irrespective of maternal diet. Interesting, offspring born to S-diet-fed mothers and fed the S diet throughout postnatal life became obese despite lower energy intake than controls (P<0.05). These SS offspring showed increased feed efficiency (P<0.001) and reduced fasting pSTAT3 activity (P<0.05) in arcuate nucleus (ARC) compared with other groups. The findings indicated that the combination of the maternal and postnatal S-diet exposure induced persistent changes in leptin signalling, hence affecting energy balance. Thus, appetite regulation was more sensitive to the effect of leptin than energy expenditure, suggesting differential programming of leptin sensitivity in ARC in SS offspring. Effects of the maternal S diet were normalized when offspring were fed a chow diet after weaning. Conclusions: Maternal intake of chocolate and soft drink had long-term consequences for the metabolic phenotype in the offspring if they continued on the S diet in postnatal life. These offspring displayed obesity despite lowered energy intake associated with alterations in hypothalamic leptin signalling. PMID:28092346
Rayen, Ine; van den Hove, Daniël L; Prickaerts, Jos; Steinbusch, Harry W; Pawluski, Jodi L
2011-01-01
Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs) medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1 (P1). Adolescent male and female offspring were divided into 4 groups: 1) prenatal stress+fluoxetine exposure, 2) prenatal stress+vehicle, 3) fluoxetine exposure alone, and 4) vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity.
Banji, David; Banji, Otilia J F; Pratusha, N Gouri; Annamalai, A R
2013-09-01
The study investigated the role of Spirulina platensis in reversing sodium fluoride-induced thyroid, neurodevelopment and oxidative alterations in offspring of pregnant rats. The total antioxidant activity, phycocyanins, and β carotene content were quantified in Spirulina. Thirty female pregnant rats were allocated to six groups and treatment initiated orally from embryonic day (ED) 6 to postnatal day (PND) 15. Treatment groups included control, Spirulina alone, sodium fluoride (20 mg/kg) alone, and sodium fluoride along with Spirulina (250 and 500 mg/kg). Serum fluoride levels were determined on ED 20 and PND 11. Offspring were subjected to behavioural testing, estimation of thyroid levels, oxidative measurements in brain mitochondrial fraction and histological evaluation of the cerebellum. Fluoride-induced alterations in thyroid hormones, behaviour and increased oxidative stress. Spirulina augmented the displacement of fluoride, facilitated antioxidant formation, improved behaviour and protected Purkinje cells. Supplementing Spirulina during pregnancy could reduce the risk of fluoride toxicity in offspring. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rosa, B V; Blair, H T; Vickers, M H; Morel, P C; Cockrem, J F; Firth, E C
2012-12-01
The objectives of this study were to examine the effects of voluntary exercise during pregnancy on maternal post-lactation bone parameters and offspring growth. Pregnant Wistar rats were housed in conventional cages (control), or were housed in raised cages requiring them to rise to an erect, bipedal stance to obtain food/water, throughout pregnancy. Dual energy X-ray absorptiometry and peripheral quantitative computed tomography scans were performed pre-mating and post-weaning. Maternal stress was assessed by fecal corticosterone measurement. Offspring weights were assessed at postnatal days 1 and 25 (weaning). Changes in bone mineral over the pregnancy/lactation period were site-specific. Exercise did not affect loss of bone mineral from the lumbar spine, but did attenuate the loss of trabecular bone mineral from the tibial metaphysis and enhance the strength strain index and cross-sectional moment of inertia at the tibial diaphysis (P≤0.05) in dams in the exercised group. Fecal corticosterone did not differ between dam groups. There were no significant differences in offspring weight between the exercised and control group at either time point. Voluntary exercise in the pregnant rat can improve some post-lactation bone parameters and does not adversely affect early postnatal outcomes of the offspring.
RAGAN, C. M.; LONSTEIN, J. S.
2014-01-01
In female mammals, the postpartum period involves dramatic shifts in many socioemotional behaviors. This includes a suppression of anxiety-related behaviors that requires recent physical contact with offspring. Factors contributing to differences among females in their susceptibility to the anxiety-modulating effect of offspring contact are unknown, but could include their innate anxiety and brain monoaminergic activity. Anxiety behavior was assessed in a large group of nulliparous female rats and the least-anxious and most-anxious tertiles were mated. Anxiety was assessed again postpartum after females were permitted or prevented from contacting their offspring 4 h before testing. Levels of dopamine β-hydroxylase (DBH, norepinephrine synthesizing enzyme) and tryptophan hydroxylase- 2 (TPH2, serotonin synthesizing enzyme) were measured in the brainstem and dorsal raphe, respectively. It was found that anxiety-related behavior in the two groups did not differ when dams were permitted contact with offspring before testing. Removal of the offspring before testing, however, differentially affected anxiety based on dams’ innate anxiety. Specifically, dams reverted back to their pre-mating levels of anxiety such that offspring removal slightly increased anxiety in the most-anxious females but greatly lowered anxiety in the least-anxious females. This reduction in anxiety in the least-anxious females after litter removal was associated with lower brainstem DBH. There was no relationship between females’ anxiety and dorsal raphe TPH2. Thus, a primary effect of recent contact with offspring on anxiety-related behavior in postpartum rats is to shift females away from their innate anxiety to a more moderate level of responding. This effect is particularly true for females with the lowest anxiety, may be mediated by central noradrenergic systems, and has implications for their ability to attend to their offspring. PMID:24161285
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Beatriz Silva; Barioni, Éric Diego; Helua
Inhalation of formaldehyde (FA) during the pregnancy induces oxidative stress in the uterus, and here we hypothesized that this mechanism may be responsible for the impaired immune response detected in the offspring. In order to investigate the protective effects of Vitamin C on the oxidative stress induced by FA in the uterine microenvironment, pregnant Wistar rats were treated with vitamin C (150 mg/kg, gavage) or vehicle (distilled water, gavage) 1 h before FA exposure (0.92 mg/m{sup 3}, 1 h/day, 5 days/week), for 21 days, and the 30 days old offspring were submitted to LPS injection (Salmonella abortus equi, 5 mg/kg,more » i.p.). The enhanced gene expression of iNOS, COX-1 and COX-2 and decreased gene expression of SOD-2 in the uterus of FA exposed mothers was rescued by Vit C treatment. Moreover, vitamin C rescued the impaired immune response elicited by LPS in the offspring from FA exposed mothers, by increasing the number of blood and bone marrow leukocytes, and augmenting gene expression of IL-6 and reducing mRNA levels of IL-10 and IFN in the lungs. Vitamin C treatment did not rescue the impaired TLR4-NF-kB pathway in the lung of the offspring, suggesting that FA-induced uterine oxidative stress affects other inflammatory pathways activated by LPS in the offspring. Together, data obtained here confirm our hypothesis that FA-induced oxidative stress in the uterine microenvironment modifies the programming mechanisms of the immune defenses of offspring, leading to an impaired host defense. - Highlights: • FA exposure during pregnancy induces oxidative stress in the uterus. • Vitamin C treatment blunted the oxidative stress in uterus induced by FA exposure. • Oxidative stress in uterus after FA exposure impairs the immune response of offspring. • Vitamin C in pregnant rats rescued the impaired immune response in the offspring.« less
Blesson, Chellakkan S.; Sathishkumar, Kunju; Chinnathambi, Vijayakumar
2014-01-01
Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet–exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet–fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor substrate-1, and AS160 phosphorylation and impaired glucose transporter type 4 translocation. PMID:24797633
Reygner, Julie; Lichtenberger, Lydia; Elmhiri, Ghada; Dou, Samir; Bahi-Jaber, Narges; Rhazi, Larbi; Depeint, Flore; Bach, Veronique
2016-01-01
Increasing evidence indicates that chlorpyrifos (CPF), an organophosphorus insecticide, is involved in metabolic disorders. We assess the hypothesis whether supplementation with prebiotics from gestation to adulthood, through a modulation of microbiota composition and fermentative activity, alleviates CPF induced metabolic disorders of 60 days old offspring. 5 groups of Wistar rats, from gestation until weaning, received two doses of CPF pesticide: 1 mg/kg/day (CPF1) or 3.5 mg/kg/day (CPF3.5) with free access to inulin (10g/L in drinking water). Then male pups received the same treatment as dams. Metabolic profile, leptin sensitivity, insulin receptor (IR) expression in liver, gut microbiota composition and short chain fatty acid composition (SCFAs) in the colon, were analyzed at postnatal day 60 in the offspring (PND 60). CPF3.5 increased offspring’s birth body weight (BW) but decreased BW at PND60. Inulin supplementation restored the BW at PND 60 to control levels. Hyperinsulinemia and decrease in insulin receptor β in liver were seen in CPF1 exposed rats. In contrast, hyperglycemia and decrease in insulin level were found in CPF3.5 rats. Inulin restored the levels of some metabolic parameters in CPF groups to ranges comparable with the controls. The total bacterial population, short chain fatty acid (SCFA) production and butyrate levels were enhanced in CPF groups receiving inulin. Our data indicate that developmental exposure to CPF interferes with metabolism with dose related effects evident at adulthood. By modulating microbiota population and fermentative activity, inulin corrected adult metabolic disorders of rats exposed to CPF during development. Prebiotics supply may be thus considered as a novel nutritional strategy to counteract insulin resistance and diabetes induced by a continuous pesticide exposure. PMID:27760213
Singh, K P; Tripathi, Nidhi
2015-05-01
Reports on prenatal exposure to some of the first generation antipsychotic drugs like, haloperidol, their effects on fetal neurotoxicity and functional impairments in the offspring, are well documented. But studies on in utero exposure to second generation antipsychotics, especially quetiapine, and its effects on fetal neurotoxicity, apoptotic neurodegeneration, postnatal developmental delay and neurobehavioral consequences are lacking. Therefore, the present study was undertaken to evaluate the effect of prenatal administration to equivalent therapeutic doses of quetiapine on neuro-architectural abnormalities, neurohistopathological changes, apoptotic neurodegeneration in fetal hippocampus, and postnatal development and growth as well as its long-lasting imprint on cognitive impairment in young-adult offspring. Pregnant Wistar rats (n=24) were exposed to selected doses (55 mg, 80 mg and 100mg/kg) of quetiapine, equivalent to human therapeutic doses, from gestation day 6 to 21 orally with control subjects. Half of the pregnant subjects of each group were sacrificed at gestation day 21 for histopathological, confocal and electron microscopic studies and rest of the dams were allowed to deliver naturally. Their pups were reared postnatally up to 10 weeks of age for neurobehavioral observations. In quetiapine treated groups, there was significant alterations in total and differential thickness of three typical layers of hippocampus associated with neuronal cells deficit and enhanced apoptotic neurodegeneration in the CA1 area of fetal hippocampus. Prenatally drug treated rat offspring displayed post-natal developmental delay till postnatal day 70, and these young-adult rats displayed cognitive impairment in Morris water maze and passive avoidance regimes as long-lasting impact of the drug. Therefore, quetiapine should be used with cautions considering its developmental neurotoxicological and neurobehavioral potential in animal model, rat. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lejonklou, Margareta H.; Dunder, Linda; Bladin, Emelie; Pettersson, Vendela; Rönn, Monika; Lind, Lars; Waldén, Tomas B.
2017-01-01
Background: Bisphenol A (BPA) is an endocrine-disrupting chemical that may contribute to development of obesity and metabolic disorders. Humans are constantly exposed to low concentrations of BPA, and studies support that the developmental period is particularly sensitive. Objectives: The aim was to investigate the effects of low-dose developmental BPA exposure on metabolic parameters in male and female Fischer 344 (F344) rat offspring. Methods: Pregnant F344 rats were exposed to BPA via their drinking water, corresponding to 0.5μg/kg BW/d (BPA0.5; n=21) or 50μg/kg BW/d (BPA50; n=16), from gestational day (GD) 3.5 until postnatal day (PND) 22, and controls were given vehicle (n=26). Body weight (BW), adipose tissue, liver (weight, histology, and gene expression), heart weight, and lipid profile were investigated in the 5-wk-old offspring. Results: Males and females exhibited differential susceptibility to the different doses of BPA. Developmental BPA exposure increased plasma triglyceride levels (0.81±0.10 mmol/L compared with 0.57±0.03 mmol/L, females BPA50 p=0.04; 0.81±0.05 mmol/L compared with 0.61±0.04 mmol/L, males BPA0.5 p=0.005) in F344 rat offspring compared with controls. BPA exposure also increased adipocyte cell density by 122% in inguinal white adipose tissue (iWAT) of female offspring exposed to BPA0.5 compared with controls (68.2±4.4 number of adipocytes/HPF compared with 55.9±1.5 number of adipocytes/HPF; p=0.03) and by 123% in BPA0.5 females compared with BPA50 animals (68.2±4.4 number of adipocytes/high power field (HPF) compared with 55.3±2.9 number of adipocytes/HPF; p=0.04). In iWAT of male offspring, adipocyte cell density was increased by 129% in BPA50-exposed animals compared with BPA0.5-exposed animals (69.9±5.1 number of adipocytes/HPF compared with 54.0±3.4 number of adipocytes/HPF; p=0.03). Furthermore, the expression of genes involved in lipid and adipocyte homeostasis was significantly different between exposed animals and controls depending on the tissue, dose, and sex. Conclusions: Developmental exposure to 0.5μg/kg BW/d of BPA, which is 8–10 times lower than the current preliminary EFSA (European Food Safety Authority) tolerable daily intake (TDI) of 4μg/kg BW/d and is within the range of environmentally relevant levels, was associated with sex-specific differences in the expression of genes in adipose tissue plasma triglyceride levels in males and adipocyte cell density in females when F344 rat offspring of dams exposed to BPA at 0.5μg/kg BW/d were compared with the offspring of unexposed controls. https://doi.org/10.1289/EHP505 PMID:28657538
Li, Xin; Luo, Shu-jing; Zhang, Kai; Yang, Hui-xia
2012-10-01
To establish and assess the high-birth-weight offspring model of the diabetic rat induced by stueptozotocin, and the long-term metabolic impact of maternal hyperglycemia of those offsprings. Streptozotocin (STZ, 25 mg/kg) was given to Wistar rats (G group, n = 14) once intraperitoneally to induce maternal hyperglycemia model (blood glucose between 10 - 20 mmol/L), and there still had a number of rats defined as severe hyperglycemia model group (SG group, n = 5). The Control group (C group, n = 7) were given the same volume citrate buffer solution. The body weight and blood glucose were recorded, and the lavaging glucose tolerance test (LGTT) was performed by a glucose meter in the gestation. The offsprings were corresponding allocated into 2 groups, and the birth weight were recorded. All the offsprings were observated body weight, blood glucose blood pressure (male rats only), and so on. (1) The blood glucose of G group (16.8 ± 5.4 mmol/L) and SG group (20.5 ± 5.6 mmol/L) were increased significantly as compared with C group (7.0 ± 1.4 mmol/L) 5 days after the model was established (P < 0.01); and the average blood glucose of G group (16.6 ± 3.4 mmol/L) and SG group (23.8 ± 1.5 mmol/L) increased too as comparede with C group (5.8 ± 1.1 mmol/L), the difference was significance according to statistics (P < 0.01). (2) According to the LGTT result, which operationed on generation day 4 and day 10, the blood glucose of every time point of G group were increased significantly as compared with C group (P < 0.01). (3) The male and female birth weight of G group was remarkably higher than the C group and the SG group (P < 0.05), and the blood glucose of SG/G/C group was (6.5 ± 1.2) mmol/L, (4.1 ± 0.8) mmol/L, (4.1 ± 0.8) mmol/L respectively, according to the statistics results, the difference between SG group and G/C group respectively both remarkable (P < 0.05). (4) The body weight, Lee's index, fat weight, and the fat weight of mass ratio in C group mother rats after lactation presented dressed compared with the SG group (P < 0.05), and so as to the G group compared with the SG group (P < 0.05). (5) In the female offsprings of G group, the birth weight was remarkably increased compared with the C group (P < 0.05); the body weight of the female offsprings presented an increased trend compared with the C group since the 12 weeks, but had no statistical significance; there were significant differences of body weight between G group and C group since 15 weeks (P < 0.05), and the trend kept up until 26 weeks; in the male offsprings of G group, the body weight on birth day and 4 weeks had a marked rise compared with the C group (P < 0.05); and from then on, the body weight of the male offsprings presented an increased trend compared with the C group, but had no statistical significance until 26 weeks (P > 0.05). (6) In G group, the blood glucose on 30 min and 60 min of LGTT in female offsprings were increased than the C group since 20 weeks (P < 0.05); the blood glucose of LGTT (30 min) still had a marked rise until 24 weeks (P < 0.05); in G group, the blood glucose on 30 min of LGTT in male offsprings was remarkably increased than the C group since 16 weeks (P < 0.05) ; the blood glucose of LGTT (30 min) still had a marked rise until 24 weeks (P < 0.05). (7) The blood pressure of male offsprings in G group had a marked rise on 12 weeks compared with the C group (P < 0.05); from then on the blood pressure of G group kept up a rise trend until 26 weeks, but had no statistical significance (P > 0.05). The diabetic high-birth-weight rat model could be duplicated with STZ (25 mg/kg) once intrapertoneally on the first day of gestation, which were observed some evidently metabolic changes in weight, glucose tolerance and blood pressure. These results could represent an forward step in the clinical study of human gestational diabetes mellitus and their macrosomia babies, which may suffer some metabolic disease in their later life.
Peña, Catherine Jensen; Champagne, Frances A
2014-01-01
Maternal behavior is dependent on estrogen receptor-alpha (ERα; Esr1) and oxytocin receptor (OTR) signaling in the medial preoptic area (MPOA) of the hypothalamus, as well as dopamine signaling from the ventral tegmental area (VTA) to forebrain regions. Previous studies in rats indicate that low levels of maternal care, particularly licking/grooming (LG), lead to reduced levels of MPOA ERα and VTA dopamine neurons in female offspring and predict lower levels of postpartum maternal behavior by these offspring. The aim of the current study was to determine the functional impact on maternal behavior of neonatal manipulation of ERα in females that had experienced low vs. high levels of postnatal maternal LG. Adenovirus expressing ESR1 was targeted to the MPOA in female pups from low and high LG litters on postnatal day 2–3. Over-expression of ESR1 in low LG offspring elevated the level of ERα-immunoreactive cells in the MPOA and of tyrosine hydroxylase cells in the VTA to that observed in high LG females. Amongst juvenile female low LG offspring, ESR1 over-expression also decreased the latency to engage in maternal behavior toward donor pups. These results show that virally-mediated expression of ESR1 in the neonatal rat hypothalamus results in lasting changes in ESR1 expression through the juvenile period, and can “rescue” hormone receptor levels and behavior of offspring reared by low LG dams, potentially mediated by downstream alterations within reward circuitry. Thus, the transmission of maternal behavior from one generation to the next can be augmented by neonatal ERα in the MPOA. PMID:25044746
ADVERSE EFFECTS OF PRENATAL EXPOSURE TO ATRAZINE DURING A CRITICAL PERIOD OF MAMMARY GLAND GROWTH
Prenatal exposure to 100 mg/kg atrazine (ATR) was previously shown to delay mammary gland (MG) development in the female offspring of Long Evans (LE) rats. To determine if the fetal MG was most sensitive to ATR effects during specific periods of development, timed-pregnant dams ...
Pileggi, Chantal A.; Hedges, Christopher P.; Segovia, Stephanie A.; Markworth, James F.; Durainayagam, Brenan R.; Gray, Clint; Zhang, Xiaoyuan D.; Barnett, Matthew P. G.; Vickers, Mark H.; Hickey, Anthony J. R.; Reynolds, Clare M.; Cameron-Smith, David
2016-01-01
A maternal high-fat (HF) diet during pregnancy can lead to metabolic compromise, such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat) or a high fat diet (HFD; 45% kcal from fat) for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1) and mitochondrial transcription factor A (mtTFA) were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS) respiratory complex subunits were suppressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%), which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%). Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle. PMID:27917127
Impact of prenatal hypoxia on fetal bone growth and osteoporosis in ovariectomized offspring rats.
Yang, Yuxian; Fan, Xiaorong; Tao, Jianying; Xu, Ting; Zhang, Yingying; Zhang, Wenna; Li, Lingjun; Li, Xiang; Ding, Hongmei; Sun, Miao; Gao, Qinqin; Xu, Zhice
2018-03-07
Prenatal hypoxia causes intrauterine growth retardation. It is unclear whether/how hypoxia affects the bone in fetal and offspring life. This study showed that prenatal hypoxia retarded fetal skeletal growth in rats, inhibited extracellular matrix (ECM) synthesis and down-regulated of insulin-like growth factor 1 (IGF1) signaling in fetal growth plate chondrocytes in vivo and in vitro. In addition, ovariectomized (OVX) was used for study of postmenopausal osteoporosis. Compared with the control, OVX offspring in prenatal hypoxic group showed an enhanced osteoporosis in the femurs, associated with reduced proteoglycan and IGF1 signaling. The results indicated prenatal hypoxia not only delayed fetal skeletal growth, but also increased OVX-induced osteoporosis in the elder offspring probably through down-regulated IGF1 signaling and inhibition of ECM synthesis, providing important information of prenatal hypoxia on functional and molecular bone growth and metabolism in fetal and offspring. Copyright © 2018 Elsevier Inc. All rights reserved.
Leite, Gabriel Adan Araújo; Figueiredo, Thamiris Moreira; Guerra, Marina Trevizan; Borges, Cibele Dos Santos; Fernandes, Fábio Henrique; Anselmo-Franci, Janete Aparecida; Kempinas, Wilma De Grava
2018-05-18
Obesity during childhood and adolescence is closely related to dysfunctions on lipid profile in children. Rosuvastatin is a statin that decreases serum total cholesterol. Ascorbic acid is an important antioxidant compound for male reproduction. Pre-pubertal male rats were distributed into six experimental groups that received saline solution 0.9% (vehicle), 3 or 10 mg/kg/day of rosuvastatin, 150 mg/day of ascorbic acid, or 3 or 10 mg/kg/day of rosuvastatin co-administered with 150 mg/day of ascorbic acid by gavage from post-natal day (PND)23 until PND53. Rats were maintained until adulthood and mated with nulliparous females to obtain the male offspring, whose animals were evaluated at adulthood in relation to reproductive parameters. This study is a follow up of a previous paper addressing potential effects on F0 generation only (Leite et al., 2017). Male offspring from rosuvastatin-exposed groups showed increased sperm DNA fragmentation, androgen depletion and impairment on the testicular and epididymal structure. Ascorbic acid coadministered to the fathers ameliorated the reproductive damage in the offspring. In summary, paternal exposure to rosuvastatin may affect the reproduction in the male offspring; however, paternal supplementation with ascorbic acid was able to reduce the reproductive impairment in the male offspring caused by statin treatment to the fathers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Govindaraj, Sakthivel; Shanmuganathan, Annadurai; Rajan, Ravindran
2017-01-01
Background Stress is an inevitable part of life, and maternal stress during the gestational period has dramatic effects in the early programming of the physiology and behavior of offspring. The developmental period is crucial for the well-being of the offspring. Prenatal stress influences the developmental outcomes of the fetus, in part because the developing brain is particularly vulnerable to stress. The etiology of birth defects of the offspring is reported to be 30–40% genetic and 7–10% multifactorial, with the remaining 50% still unknown and also there is no clear cause for neonatal mortality and still-birth. Objective The present study explores the association of maternal psychological stress on mother and the offspring’s incidence of birth defects, stillbirth, and neonatal mortality. Study design Pregnant animals were restrained to induce psychological stress (3 times per day, 45 minutes per session). Except control group, other animals were exposed to restraint stress during the gestational period: early gestational stress (EGS, stress exposure during 1st day to 10th days of gestational period), late gestational stress (LGS, stress exposure during 11th day to till parturition), and full term gestational stress (FGS, stress exposure to the whole gestational period). The effects of maternal stress on the mother and their offspring were analyzed. Results Expectant female rats exposed to stress by physical restraint showed decreased body weight gain, food intake, and fecal pellet levels. Specifically, the offspring of female rats subjected to late gestational and full term gestational restraint stress showed more deleterious effects, such as physical impairment (LGS 24.44%, FGS 10%), neonatal mortality (EGS 2.56%, LGS 24.44%, FGS 17.5%), stillbirths (FGS 27.5%), low birth weight (EGS 5.42g, LGS 4.40g, FGS 4.12g), preterm births (EGS 539 Hrs, LGS 514 Hrs, FGS 520.6 Hrs), and delayed eyelid opening (EGS 15.16 Days, LGS 17 Days, FGS 17.67 Days). Conclusion The results of this study reveal that maternal stress may be associated with the offspring’s abnormal structural phenotyping, preterm birth, stillbirth and neonatal mortality. PMID:28222133
Shahkhalili, Yasaman; Moulin, Julie; Zbinden, Irene; Aprikian, Olivier; Macé, Katherine
2010-01-01
Two models of intrauterine growth restriction, maternal food restriction (FR), and dexamethasone (DEX) exposure were compared for early postnatal catch-up growth and later development of glucose intolerance and obesity in Sprague-Dawley rats. Mated dams were randomly divided into three groups at 10 days gestational age. Group FR was food restricted (50% of nongestating rats) during the last 11 days of gestation; Group DEX received DEX injections during the last week of gestation, and Group CON, the control group, had no intervention. Birth weight, catch-up growth, body weight, and food intake were measured in male offspring for 22 wk. Body composition, blood glucose, and plasma insulin in response to a glucose load were assessed at 8, 16, and 22 wk. Pups from both FR and DEX dams had similarly lower birth weights than CON (22% and 25%, P < 0.0001), but catch-up growth, which occurred during the suckling period, was much more rapid in FR than DEX offspring (6 vs. 25 days, 95% CI). Postweaning, there were no significant differences between groups in food intake, body weight, body fat, and plasma insulin, but baseline plasma glucose at 22 wk and 2-h glucose area-under-the-curve at 8 and 22 wk were greater only in FR vs. CON offspring (P < 0.05), thereby contrasting with the lack of significant differences between DEX and CON. These results suggest that prenatal food restriction is a more sensitive model than DEX exposure for studies aimed at investigating the link between low birth weight, early postnatal catch-up growth, and later development of glucose intolerance.
Prenatal testosterone exposure worsen the reproductive performance of male rat at adulthood.
Ramezani Tehrani, Fahimeh; Noroozzadeh, Mahsa; Zahediasl, Saleh; Ghasemi, Asghar; Piryaei, Abbas; Azizi, Fereidoun
2013-01-01
The reproductive system is extremely susceptible to environmental insults, for example exogenous steroids during gestational development and differentiation. Experimental induction of androgen excess during prenatal life in female animal models reprograms their reproductive physiology, however the fetal programming of the male reproductive system by androgen excess has not been well studied. We aimed to determine the effect of prenatal exposure of two different doses of testosterone on different gestational days, on the male reproductive system using a rat model. Sixteen pregnant rats were randomly divided into two experimental groups and two control groups. Experimental group І were subcutaneously injected with 3 mg free testosterone on gestational days 16-19 and its controls received solvent for that time; experimental group П were subcutaneously injected with 20 mg free testosterone on day 20 of gestational period and its controls received solvent at the same time. The reproductive system morphology and function of 32 male offspring of these study groups were compared at days 6-30-60 of age and after puberty. The anogenital distance of the male offspring of both experimental groups had no significant differences on the different days of measurement, compared with controls. In the offspring of experimental group І, the testes weight, number of Sertoli, Spermatocyte and Spermatid cells, sperm count and motility and the serum concentration of testosterone after puberty were significantly decreased; except for reduction of sperm motility (p< 0.01), the other effects were not observed in the offspring of experimental group ІІ. In summary, our data show that prenatal exposure of male rat fetuses to excess testosterone disrupted reproductive function, an effect highly dependent on the time, duration and level of exposure. It seems that the reproductive system in individuals exposed to high levels of androgens during fetal life should be evaluated at puberty and likely to be treated.
Prenatal Testosterone Exposure Worsen the Reproductive Performance of Male Rat at Adulthood
Ramezani Tehrani, Fahimeh; Noroozzadeh, Mahsa; Zahediasl, Saleh; Ghasemi, Asghar; Piryaei, Abbas; Azizi, Fereidoun
2013-01-01
The reproductive system is extremely susceptible to environmental insults, for example exogenous steroids during gestational development and differentiation. Experimental induction of androgen excess during prenatal life in female animal models reprograms their reproductive physiology, however the fetal programming of the male reproductive system by androgen excess has not been well studied. We aimed to determine the effect of prenatal exposure of two different doses of testosterone on different gestational days, on the male reproductive system using a rat model. Sixteen pregnant rats were randomly divided into two experimental groups and two control groups. Experimental group І were subcutaneously injected with 3 mg free testosterone on gestational days 16-19 and its controls received solvent for that time; experimental group П were subcutaneously injected with 20 mg free testosterone on day 20 of gestational period and its controls received solvent at the same time. The reproductive system morphology and function of 32 male offspring of these study groups were compared at days 6-30-60 of age and after puberty. The anogenital distance of the male offspring of both experimental groups had no significant differences on the different days of measurement, compared with controls. In the offspring of experimental group І, the testes weight, number of Sertoli, Spermatocyte and Spermatid cells, sperm count and motility and the serum concentration of testosterone after puberty were significantly decreased; except for reduction of sperm motility (p< 0.01), the other effects were not observed in the offspring of experimental group ІІ. In summary, our data show that prenatal exposure of male rat fetuses to excess testosterone disrupted reproductive function, an effect highly dependent on the time, duration and level of exposure. It seems that the reproductive system in individuals exposed to high levels of androgens during fetal life should be evaluated at puberty and likely to be treated. PMID:23967236
Selective cognitive deficits in adult rats after prenatal exposure to inhaled ethanol.
Oshiro, W M; Beasley, T E; McDaniel, K L; Taylor, M M; Evansky, P; Moser, V C; Gilbert, M E; Bushnell, P J
2014-01-01
Increased use of ethanol blends in gasoline suggests a need to assess the potential public health risks of exposure to these fuels. Ethanol consumed during pregnancy is a teratogen. However, little is known about the potential developmental neurotoxicity of ethanol delivered by inhalation, the most likely route of exposure from gasoline-ethanol fuel blends. We evaluated the potential cognitive consequences of ethanol inhalation by exposing pregnant Long Evans rats to clean air or ethanol vapor from gestational days 9-20, a critical period of neuronal development. Concentrations of inhaled ethanol (5000, 10,000, or 21,000 ppm for 6.5h/day) produced modeled peak blood ethanol concentrations (BECs) in exposed dams of 2.3, 6.8, and 192 mg/dL, respectively. In offspring, no dose-related impairments were observed on spatial learning or working memory in the Morris water maze or in operant delayed match-to-position tests. Two measures showed significant effects in female offspring at all ethanol doses: 1) impaired cue learning after trace fear conditioning, and 2) an absence of bias for the correct quadrant after place training during a reference memory probe in the Morris water maze. In choice reaction time tests, male offspring (females were not tested) from the 5000 and 10,000 ppm groups showed a transient increase in decision times. Also, male offspring from the 21,000 ppm group made more anticipatory responses during a preparatory hold period, suggesting a deficit in response inhibition. The increase in anticipatory responding during the choice reaction time test shows that inhaled ethanol yielding a peak BEC of ~200mg/dL can produce lasting effects in the offspring. The lack of a dose-related decrement in the effects observed in females on cue learning and a reference memory probe may reflect confounding influences in the exposed offspring possibly related to maternal care or altered anxiety levels in females. The surprising lack of more pervasive cognitive deficits, as reported by others at BECs in the 200mg/dL range, may reflect route-dependent differences in the kinetics of ethanol. These data show that response inhibition was impaired in the offspring of pregnant rats that inhaled ethanol at concentrations at least 5 orders of magnitude higher than concentrations observed during normal automotive transport and fueling operations, which rarely exceed 100 ppb. Published by Elsevier Inc.
Sene, Letícia B; Rizzi, Victor Hugo Gonçalves; Gontijo, José A R; Boer, Patricia A
2018-05-22
Studies have shown that adult offspring of mothers fed a protein-restricted diet during pregnancy present a pronounced reduction of nephron number associated with decreased fractional urinary sodium excretion and arterial hypertension. Additionally, recent advances in our understanding of the molecular pathways that govern the association of gestational nutritional restriction, intrauterine growth retardation and inflammation with impaired nephrogenesis, nephron underdosing and kidney fibrosis point to the epithelial to mesenchymal transition (EMT) as a common factor. In the current study, protein and sodium urinary excretion rates were evaluated in rats, and immunohistochemistry and western blot techniques were used to characterize kidney structure changes in 16 week old male offspring of mothers fed a low-protein diet during pregnancy (LP group) compared with age-matched (NP) controls. We also verified the expression of miRNA, mRNA and protein markers of fibrosis and the EMT in whole kidney prepared from LP offspring. We found, surprisingly, that arterial hypertension and long-term hyperfiltration, manifest by proteinuria, were associated with increased renal miR-192 and miR-200 family expression in 16 week old LP relative to age-matched NP rats. Measurement of kidney fibrosis and EMT-related protein markers, by histochemistry and immunoblot techniques, showed a significant rise of TGF-β1 and type-I collagen content in glomeruli and tubulointerstitial areas, accompanied by enhanced fibronectin and ZEB1 and decreased E-cadherin immunoreactivity in 16 week old LP offspring. The results were partially confirmed by increased gene (mRNA) expression of collagen 1α1, collagen 1α2 and ZEB1 in LP whole kidneys compared with those of age-matched NP offspring. In view of the presumed functional overload in the remaining nephrons, we suggest that hypertension and proteinuria development following maternal protein restriction may be a preponderant factor for EMT and structural kidney changes in LP offspring. However, our study was not wholly able to establish the precise role of miRNAs in LP kidney disorders. Thus, further studies will be required to assess the contribution of the miR family to renal injury in a gestational protein-restricted model of fetal programming. © 2018. Published by The Company of Biologists Ltd.
Gomide, Vânia C; Chadi, Gerson
2004-01-01
Pregnant Wistar rats received a hyperproteic liquid diet containing 37.5% ethanol-derived calories during gestation. Isocaloric amount of liquid diet, with maltose-dextrin substituted for ethanol, was given to control pair-fed dams. Offsprings were allowed to survive until 24 months of age. A set of aged female offsprings of both control diet and ethanol diet groups was registered for spontaneous motor activity, by means of an infrared motion sensor activity monitor, or for apomorphine-induced rotational behavior, while another lot of male offsprings was submitted to an unilateral striatal small mechanical lesion by a needle, 6 days before rotational recordings. Prenatal ethanol did not alter spontaneous motor parameters like resting time as well as the events of small and large movements in the aged offsprings. Bilateral circling behavior was already increased 5 min after apomorphine in the unlesioned offsprings of both the control and ethanol diet groups. However, it lasted more elevated for 45- to 75-min time intervals in the gestational ethanol-exposed offsprings, while decreasing faster in the control offsprings. Apomorphine triggered a strong and sustained elevation of contraversive turns in the striatal-lesioned 24-month-old offsprings of the ethanol group, but only a small and transient elevation was seen in the offsprings of the control diet group. Astroglial and microglial reactions were seen surrounding the striatal needle track lesion. Microdensitometric image analysis demonstrated no differences in the levels of tyrosine hydroxylase immunoreactivity in the striatum of 24-month-old unlesioned and lesioned offsprings of control and alcohol diet groups. The results suggest that ethanol exposure during gestation may alter the sensitivity of dopamine receptor in aged offsprings, which is augmented by even a small striatal lesion.
Prenatal hypoxia promotes atherosclerosis via vascular inflammation in the offspring rats.
Zhang, Pengjie; Zhu, Di; Chen, Xionghui; Li, Yongmei; Li, Na; Gao, Qinqin; Li, Lingjun; Zhou, Xiuwen; Lv, Juanxiu; Sun, Miao; Mao, Caiping; Xu, Zhice
2016-02-01
Hypoxia is a critical contributor to increased risks of cardiovascular diseases, including atherosclerosis, but the detailed mechanism that hypoxia leads to atherosclerosis remains unknown. Pregnant rats were treated with hypoxia (10.5% oxygen) during pregnancy, and HUVEC cells treated with 1% of oxygen. Blood lipids were tested at fetal stage and adult stage of offspring rats; the level of pro-inflammatory cytokines of HUVEC and offspring rats were investigated, and HIF-1α and NFκB mRNA level were also measured by Q-PCR and Elisa. We found that TC, LDL-C, ox-LDL-C, and the receptors of ox-LDL-C (lox-1) of the adult offspring were significantly higher than that of the control, while HDL-C was significantly reduced in hypoxia group. The internal elastic lamina was blocked by smooth muscle cells; and the migration of smooth muscle cells into the intima were observed in hypoxia offspring. Luciferase reporter gene experiment showed that HIF-1α activated NFκB transcription at four discrete binding sites of NFκBp65 promoter, although there was no obvious difference among the four discrete binding sites. Using transfection of pCDNA3.1-HIF-1α on HUVEC cells, HIF-1α significantly activated NFκB transcription at hypoxic conditions (1% O2), and concurrent with increased expression of IL-1β and TNF-α. Hypoxia during pregnancy activated NFκB transcription to induce pro-inflammatory cytokines, leading to the early stage of atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Cattani, Daiane; Cesconetto, Patrícia Acordi; Tavares, Mauren Kruger; Parisotto, Eduardo Benedetti; De Oliveira, Paulo Alexandre; Rieg, Carla Elise Heinz; Leite, Marina Concli; Prediger, Rui Daniel Schröder; Wendt, Nestor Cubas; Razzera, Guilherme; Filho, Danilo Wilhelm; Zamoner, Ariane
2017-07-15
We have previously demonstrated that maternal exposure to glyphosate-based herbicide (GBH) leads to glutamate excitotoxicity in 15-day-old rat hippocampus. The present study was conducted in order to investigate the effects of subchronic exposure to GBH on some neurochemical and behavioral parameters in immature and adult offspring. Rats were exposed to 1% GBH in drinking water (corresponding to 0.36% of glyphosate) from gestational day 5 until postnatal day (PND)-15 or PND60. Results showed that GBH exposure during both prenatal and postnatal periods causes oxidative stress, affects cholinergic and glutamatergic neurotransmission in offspring hippocampus from immature and adult rats. The subchronic exposure to the pesticide decreased L-[ 14 C]-glutamate uptake and increased 45 Ca 2+ influx in 60-day-old rat hippocampus, suggesting a persistent glutamate excitotoxicity from developmental period (PND15) to adulthood (PND60). Moreover, GBH exposure alters the serum levels of the astrocytic protein S100B. The effects of GBH exposure were associated with oxidative stress and depressive-like behavior in offspring on PND60, as demonstrated by the prolonged immobility time and decreased time of climbing observed in forced swimming test. The mechanisms underlying the GBH-induced neurotoxicity involve the NMDA receptor activation, impairment of cholinergic transmission, astrocyte dysfunction, ERK1/2 overactivation, decreased p65 NF-κB phosphorylation, which are associated with oxidative stress and glutamate excitotoxicity. These neurochemical events may contribute, at least in part, to the depressive-like behavior observed in adult offspring. Copyright © 2017 Elsevier B.V. All rights reserved.
Bauer, Jessica
2016-01-01
Abstract Detecting past experiences with predators of a potential mate informs a female about prevailing ecological threats, in addition to stress-induced phenotypes that may be disseminated to offspring. We examined whether prior exposure of a male rat to a predator (cat) odor influences the attraction of a female toward a male, subsequent mother–infant interactions and the development of defensive (emotional) responses in the offspring. Females displayed less interest in males that had experienced predator odor. Mothers that reared young in larger, seminaturalistic housing provided more licking and grooming and active arched back-nursing behavior toward their offspring compared with dams housed in standard housing, although some effects interacted with paternal experience. Paternal predation risk and maternal rearing environment revealed sex-dependent differences in offspring wean weight, juvenile social interactions, and anxiety-like behavior in adolescence. Additionally, paternal predator experience and maternal housing independently affected variations in crf gene promoter acetylation and crf gene expression in response to an acute stressor in offspring. Our results show for the first time in mammals that variation among males in their predator encounters may contribute to stable behavioral variation among females in preference for mates and maternal care, even when the females are not directly exposed to predator threat. Furthermore, when offspring were exposed to the same threat experienced by the father, hypothalamic crf gene regulation was influenced by paternal olfactory experience and early housing. These results, together with our previous findings, suggest that paternal stress exposure and maternal rearing conditions can influence maternal behavior and the development of defensive responses in offspring. PMID:27896313
Bernardi, Maria M; Scanzerla, Kayne K; Chamlian, Mayra; Teodorov, Elizabeth; Felicio, Luciano F
2013-08-01
Previous studies from our laboratory investigated the effects of picrotoxin (PT), a γ-aminobutyric acid receptor antagonist administered during several perinatal periods, on the sexual behavior of male and female rats. We observed that the time of perinatal exposure to PT is critical to determine either facilitation or impairment of sexual behavior. The present study evaluated the effects of prenatal administration of a single dose of PT on gestation day 18 of dams (the first critical period of male brain sexual differentiation) on sexual behavior of male and female offspring. Thus, female Wistar rats were mated with males and, on gestation day 18, received 0.6 mg/kg of PT or 0.9% saline solution subcutaneously. On postnatal day 1, the offspring were weighed and several measures of sexual development were assessed. The sexual behaviors and the general activity in the open field of adult male and ovariectomized, hormone-treated female rats were observed. On comparison with the control group, maternal PT treatment: (i) did not alter the maternal weight, pup weight, anogenital distance, or male and female general activity; (ii) increased female sexual behavior, that is, decreased the latencies to first mount, first lordosis, and tenth lordosis, and the percentage of females presenting lordosis; and (iii) did not alter male sexual behavior. It is suggested that prenatal PT exposure interfered with epigenetic mechanisms related to the development of sex differences in the brain, leading to the observed sexually dimorphic effects on sexual behavior.
Wang, Bohan; Liu, Fangwei; Dong, Jing; You, Mingdan; Fu, Yuanyuan; Li, Chao; Lu, Yiping; Chen, Jie
2018-02-15
Di (ethylhexyl) phthalate (DEHP) is a commonly used phthalates (PAEs) compound as plasticizer and becomes a severe environmental pollutant worldwide. Studies show that DEHP, as an environmental endocrine disruptor, has potential adverse effects on human. Epidemiologic studies indicate that DEHP is positively correlated to allergic diseases. Maternal exposure to DEHP may contribute to the increasing incidence of allergic diseases in offspring. However, the role of DEHP and its detailed mechanism in allergic disease of the offspring are still unclear. The aim of our study is to investigate whether DEHP maternal exposure could aggravate the allergic responses in offspring and its mechanism. Pregnant Wistar rats were randomly divided into three groups and exposed to different doses of DEHP. Half of the offspring were challenged with OVA after birth. All the pups of each group were sacrificed at postnatal day (PND)14, PND21 and PND28. The number of inflammatory cells in bronchoalveolar lavage was counted, lung pathological changes were observed, Th2 type cytokines expressions were checked, and the expression of TSLP signaling pathway were examined. Our results showed that maternal exposure to DEHP during pregnancy and lactation aggravated the eosinophils accumulation and the pathological inflammatory changes in pups' lung after OVA challenge. And maternal exposure to DEHP during pregnancy and lactation also elevated the levels of typical Th2 cytokines in OVA-challenged rats. What's more, maternal exposure to DEHP during pregnancy and lactation increased the levels of TSLP, TSLPR and IL-7R in the offspring after OVA challenge. Our study suggested that DEHP maternal exposure could aggravate the OVA-induced asthmatic responses in offspring. And this adjuvant effect of DEHP was related with the TSLP/TSLPR/IL-7R and its downstream signal pathways. Copyright © 2017. Published by Elsevier B.V.
Bar-El Dadon, Shimrit; Shahar, Ron; Katalan, Vered; Monsonego-Ornan, Efrat; Reifen, Ram
2011-09-01
Skeletal abnormalities are one of the hallmarks of growth delay during gestation. The aim of this study was to determine changes induced by leptin in skeletal growth and development in a rat model of intrauterine growth retardation (IUGR) and to elucidate the possible underlying mechanisms. Intrauterine growth retardation was induced prepartum and the effects of leptin to mothers prenatally or to offspring postnatally were studied. Radii were harvested and tested mechanically and structurally. Tibias were evaluated for growth-plate morphometry. On day 40 postpartum, total bone length and mineral density and tibial growth-plate width and numbers of cells within its zones of offspring treated with leptin were significantly greater than in the control group. Postnatal leptin administration in an IUGR model improves the structural properties and elongation rate of bone. These findings could pave the way to preventing some phenotypic presentations of IUGR. Copyright © 2011 Elsevier Inc. All rights reserved.
Boiko, O A; Lavrenchuk, H Yo; Lypska, A I; Talko, V V; Asmolkov, V S
2017-12-01
to investigate morphological changes in the primary thyroid cell culture of rat infants whose parents were prenatally exposed by radioisotope iodine 131. obtaining and culturing of thyroid tissue primary cell cultures of newborn rats, cytological (receipt and analysis of cell cultures agents for optical microscopy), biophysical (flow cytometry), statistics. It was shown that cells in thyroid primary culture of offspring rats prenatally exposed by radioisotopes of iodine 131 signs of destructive degenerative changes were observed mostly when animals of both sexes were irra diated. Increased number of two and three nuclear cells and induction of ring like cells is an evidence of signifi cant genotoxic violation and points to the genome instability in offspring of animals exposed by radioisotope iodine 131. Analysis and quantitative morphological parameters of cells in thyroid primary culture of newborn rats whose parents were exposed prenatally by radioisotopes of iodine 131 showed that upon exposure to radiation thy roid undergoes destructive changes at the cellular level and, even in the second generation of offspring, leads to disruption of its functions. O. A. Boiko, H. Yo. Lavrenchuk, A. I. Lypska, V. V. Talko, V. S. Asmolkov.
Senko, Tomas; Olexova, Lucia; Mokosakova, Miroslava; Kršková, Lucia
2017-05-01
One of the systems, which can be prenatally reprogrammed, is the renin-angiotensin-aldosterone system (RAAS). The aim of our experiment was to determine how prenatal activation of RAAS via exposure to elevated levels of angiotensin II (Ang II) influences the rat offspring's emotionality. Pregnant female rats were implanted with osmotic minipumps that continually released Ang II and oval object of the same shape and size was implanted into control dams. The adult offspring (AngII and control groups) were tested in rat grimace scale (RGS), open field test (OF) and elevated plus maze (EPM). Psychological stress increased the RGS score in both groups of animals. AngII animals had significantly lower RGS score (i.e. less negative emotions) in the home cage but higher index of emotional reactivity in RGS. AngII animals had also significantly lower frequency of defecation in OF and had no effect on changes in anxiety-like behaviour. We concluded that maternal activation of RAAS modified some aspect of emotionality of experimental animals and led to an enhanced emotional response to stress situation.
Sanchez-Hernandez, Diana; Poon, Abraham N; Kubant, Ruslan; Kim, Hwanki; Huot, Pedro S P; Cho, Clara E; Pannia, Emanuela; Pausova, Zdenka; Anderson, G Harvey
2015-04-01
High intakes of multivitamins (HV) during pregnancy by Wistar rats increase food intake, body weight, and characteristics of the metabolic syndrome in male offspring. In this study, high-fat soluble vitamins were fed in combination during gestation to test the hypothesis that they partially account for the effects of the HV diet. Pregnant Wistar rats (14-16/group) were fed a recommended multivitamin diet (1-fold all vitamins) or high-fat soluble vitamin diet (HFS; 10-fold vitamins A, D, E, and K) during pregnancy. Offspring body weight, food intake, and preference as well as expression of selected genes in the hypothalamus and hippocampus were evaluated at birth, weaning, and 14 weeks postweaning. Body weight and food intake were not affected but sucrose preference decreased by 4% in those born to dams fed the HFS gestational diet. Gene expressions of the hypothalamic anorexogenic pro-opiomelanocortin (Pomc) and orexogenic neuropeptide Y (Npy) (∼30% p = 0.008, ∼40% p = 0.007) were increased in weaning and adult rats, respectively. Hippocampal dopaminergic genes (35%-50% p < 0.05) were upregulated at birth and 14 weeks postweaning. DNA hypermethylation (2% p = 0.006) was observed in the dopamine receptor 1 (Drd1) promoter region. We conclude that a gestational diet high in vitamins A, D, E, and K does not show the effects of the HV diet on body weight or food intake but may affect the development of higher hedonic regulatory pathways associated with food preference.
Hazardous effects of fried potato chips on the development of retina in albino rats.
El-Sayyad, Hassan I; Sakr, Saber A; Badawy, Gamal M; Afify, Hanaa S
2011-08-01
To evaluate the hazardous effects of fried potato chips upon the retina of two developmental stages of the albino rats aged 7 and 14 days from parturition. PREGNANT RATS WERE ARRANGED INTO TWO GROUPS: control pregnant rats and consequently their delivered newborns until reaching 7 and 14 days old from parturition and fried potato chips group in which pregnant rats at the 6th day of gestation maintained on diet formed of fried potato chips supplied from the market mixed with standard diet at a concentration of 50% per each till 7 and 14 post-partum. Three fold integrated approaches were adopted, namely, histological, ultrastructural and proteomic analysis. Histological examination of the retina of the experimental offsprings revealed many histopathological changes, including massive degeneration, vacuolization and cell loss in the ganglion cell layer, as well as general reduction in retinal size. At the ultrastructural level, the retina of experimental offsprings exhibited number of deformities, including ill differentiated and degenerated nuclear layer, malformed and vacuolated pigment epithelium with vesiculated and fragmented rough endoplasmic reticulum, degenerated outer segment of photoreceptors, as well as swollen choriocapillaris and loss of neuronal cells. Proteomic analysis of retina of the two experimental developmental stages showed variations in the expressed proteins as a result of intoxication which illustrated the adverse toxic effects of fried potato chips upon the retina. It can be concluded that the effect of fried potato chips on the development of retina in rats may be due to the presence of acrylamide or its metabolite.
Ehrlich, David E.; Neigh, Gretchen N.; Bourke, Chase H.; Nemeth, Christina L.; Hazra, Rimi; Ryan, Steven J.; Rowson, Sydney; Jairam, Nesha; Sholar, Courtney; Rainnie, Donald G.; Stowe, Zachary N.; Owens, Michael J.
2015-01-01
Depression during pregnancy has been linked to in utero stress and is associated with long-lasting symptoms in offspring, including anxiety, helplessness, attentional deficits, and social withdrawal. Depression is diagnosed in 10-20% of expectant mothers, but the impact of antidepressant treatment on offspring development is not well documented, particularly for females. Here, we used a prenatal stress model of maternal depression to test the hypothesis that in utero antidepressant treatment could mitigate the effects of prenatal stress. We also investigated the effects of prenatal stress and antidepressant treatment on gene expression related to GABAergic and serotonergic neurotransmission in the amygdala, which may underlie behavioral effects of prenatal stress. Nulliparous female rats were implanted with osmotic minipumps delivering clinically-relevant concentrations of escitalopram and mated. Pregnant dams were exposed to 12 days of mixed-modality stressors, and offspring were behaviorally assessed in adolescence (postnatal day 28) and adulthood (beyond day 90) to determine the extent of behavioral change. We found that in utero stress exposure, regardless of escitalopram treatment, increased anxiety-like behavior in adolescent females and profoundly influenced amygdala expression of the chloride transporters KCC2 and NKCC1, which regulate GABAergic function. In contrast, prenatal escitalopram exposure alone elevated amygdala expression of 5-HT1A receptors. In adulthood, anxiety-like behavior returned to baseline and gene expression effects in the amygdala abated, whereas deficits emerged in novel object recognition for rats exposed to stress during gestation. These findings suggest prenatal stress causes age-dependent deficits in anxiety-like behavior and amygdala function in female offspring, regardless of antidepressant exposure. PMID:26032436
Makita, Yuji
2008-05-01
1,1-Dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) is the most prevalent metabolite of DDT used as a pesticide before and tributyltin (TBT) compounds are used primarily as antifouling agents on vessels, ships, and aqua culture facilities, as they exert biocidal actions. Currently, p,p'-DDE and TBT are ubiquitously distributed in the environment and bio-accumulated in marine products, especially fish or shellfish. Thus, oral p,p'-DDE and TBT intake through marine products is demonstrated to be rather high in Japan. Consequently, the fetus and neonate will be exposed to p,p'-DDE and TBT via mother. Therefore, effects of perinatal combined exposure to p,p'-DDE and TBT on the female reproductive system after maturation have been investigated in rat female offspring of dams ingesting 125ppm p,p'-DDE (approximately 10mg/kg) and 25ppm TBT (approximately 2mg/kg) during the perinatal period from gestation to lactation. In the present study, no deleterious reproductive outcomes were recognized in p,p'-DDE and/or TBT-treated dams. In contrast, growth retardation had developed in rat female offspring following perinatal exposure to TBT and sustained even after cessation of exposures. Further, reduced ovarian weights with elevated serum follicle-stimulating hormone (FSH) concentrations were observed in the reproductive system of matured female offspring following perinatal exposure to TBT. At present, biological relevance of these alterations remains unknown, but there is a possibility that these alterations lead to reproductive malfunctions in matured female offspring. Copyright © 2007 Elsevier B.V. All rights reserved.
Developmental Neurotoxicity Study of Dietary Bisphenol A in Sprague-Dawley Rats
Stump, Donald G.; Beck, Melissa J.; Radovsky, Ann; Garman, Robert H.; Freshwater, Lester L.; Sheets, Larry P.; Marty, M. Sue; Waechter, John M.; Dimond, Stephen S.; Van Miller, John P.; Shiotsuka, Ronald N.; Beyer, Dieter; Chappelle, Anne H.; Hentges, Steven G.
2010-01-01
This study was conducted to determine the potential of bisphenol A (BPA) to induce functional and/or morphological effects to the nervous system of F1 offspring from dietary exposure during gestation and lactation according to the Organization for Economic Cooperation and Development and U.S. Environmental Protection Agency guidelines for the study of developmental neurotoxicity. BPA was offered to female Sprague-Dawley Crl:CD (SD) rats (24 per dose group) and their litters at dietary concentrations of 0 (control), 0.15, 1.5, 75, 750, and 2250 ppm daily from gestation day 0 through lactation day 21. F1 offspring were evaluated using the following tests: detailed clinical observations (postnatal days [PNDs] 4, 11, 21, 35, 45, and 60), auditory startle (PNDs 20 and 60), motor activity (PNDs 13, 17, 21, and 61), learning and memory using the Biel water maze (PNDs 22 and 62), and brain and nervous system neuropathology and brain morphometry (PNDs 21 and 72). For F1 offspring, there were no treatment-related neurobehavioral effects, nor was there evidence of neuropathology or effects on brain morphometry. Based on maternal and offspring body weight reductions, the no-observed-adverse-effect level (NOAEL) for systemic toxicity was 75 ppm (5.85 and 13.1 mg/kg/day during gestation and lactation, respectively), with no treatment-related effects at lower doses or nonmonotonic dose responses observed for any parameter. There was no evidence that BPA is a developmental neurotoxicant in rats, and the NOAEL for developmental neurotoxicity was 2250 ppm, the highest dose tested (164 and 410 mg/kg/day during gestation and lactation, respectively). PMID:20164145
Mega, Filipe; de Meireles, André Luís Ferreira; Piazza, Francele Valente; Spindler, Christiano; Segabinazi, Ethiane; Dos Santos Salvalaggio, Gabriela; Achaval, Matilde; Marcuzzo, Simone
2018-08-01
Maternal exercise is known to have beneficial effects in progeny development, but the influence of paternal exercise on the offspring still unclear. Since spermatogenesis is a continuous process, the father's life experiences can reprogram epigenetic content of the sperm and somehow interfere on offspring phenotype. This study was designed to evaluate the effects of paternal physical exercise on cognitive and physical development and on hippocampal DNA methylation levels of the offspring. Adult male Wistar rats were divided into two groups: sedentary and exercised. The exercise protocol occurred before mating and consisted of treadmill running, 5 consecutive days/week for 8 weeks (20 min/day). The mothers were not trained. The following developmental parameters were examined in male offspring: body growth, physical and cognitive performance, weights of adrenal glands, gonadal fat and hindlimb muscles, BDNF expression and global DNA methylation at the hippocampus. The progeny of trained and sedentary fathers did not differ in relation to physical parameters and performance, spatial memory and BDNF expression. However, paternal exercise promoted a decrease in offspring´s relative gonadal fat weight and a lower percentage of global hippocampal DNA methylation compared to offspring of sedentary fathers. These results pointed to interference of male physical activity at the time of conception on adiposity and hippocampal epigenetic reprogramming of male offspring. The data reinforces that exercise does not harm the descendant's development and emphasize the benefits to include the practice of physical exercise in a healthier lifestyle of the parents. Nevertheless, future studies are necessary and should investigate further the long-effects of epigenetic mechanisms in order to elucidate the father's contribution in fetal programming. Copyright © 2018 Elsevier B.V. All rights reserved.
de Castro Barbosa, Thais; Ingerslev, Lars R.; Alm, Petter S.; Versteyhe, Soetkin; Massart, Julie; Rasmussen, Morten; Donkin, Ida; Sjögren, Rasmus; Mudry, Jonathan M.; Vetterli, Laurène; Gupta, Shashank; Krook, Anna; Zierath, Juleen R.; Barrès, Romain
2015-01-01
Objectives Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. Methods F0-male rats fed either HFD or chow diet for 12 weeks were mated with chow-fed dams to generate F1 and F2 offspring. Motile spermatozoa were isolated from F0 and F1 breeders to determine DNA methylation and small non-coding RNA (sncRNA) expression pattern by deep sequencing. Results Newborn offspring of HFD-fed fathers had reduced body weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD-fed F0 and their F1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. Conclusion Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations. PMID:26977389
Guarda, Deysla Sabino; Lisboa, Patricia Cristina; de Oliveira, Elaine; Nogueira-Neto, José Firmino; de Moura, Egberto Gaspar; Figueiredo, Mariana Sarto
2014-07-01
We have reported several changes in neonate or adult offspring after the maternal use of whole flaxseed or its components. However, it is unknown the use of higher oil intake in the neonatal period. Here we evaluated the effects of high maternal intake of flaxseed oil during lactation upon milk and body composition in male and female offspring. Lactating rats were divided into: (1) control (C, n=10), 7% soybean oil; (2) hyper 19% soybean oil (HS, n=10); and (3) hyper 17% flaxseed oil+2% soybean oil (HF, n=10). Dams and offspring were killed at weaning. HS and HF dams, male and female offspring presented lower body weight during lactation. HF mothers presented lower body and visceral fat masses. HF male offspring presented lower body and subcutaneous fat masses. HS and HF milk presented lower triglycerides (TG) and cholesterol. HF male and female offspring showed lower triglyceridemia and insulinemia, but no changes in glycemia and leptinemia. The higher intake of flaxseed oil during lactation reduced the body weight of mothers and offspring, decreases milk lipids and apparently increases insulin sensitivity in this critical period of life. Those changes may explain the previously reported programming effect of maternal flaxseed intake during lactation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gibson, D L; Gill, S K; Brown, K; Tasnim, N; Ghosh, S; Innis, S; Jacobson, K
2015-01-01
Our previous studies revealed that offspring from rat dams fed fish oil (at 8% and 18% energy), developed impaired intestinal barriers sensitizing the colon to exacerbated injury later in life. To discern the mechanism, we hypothesized that in utero exposure to fish oil, rich in n-3 polyunsaturated fatty acid (PUFA), caused abnormal intestinal reparative responses to mucosal injury through differences in intestinal microbiota and the presence of naïve immune cells. To identify such mechanisms, gut microbes and naïve immune cells were compared between rat pups born to dams fed either n-6 PUFA, n-3 PUFA or breeder chow. Maternal exposure to either of the PUFA rich diets altered the development of the intestinal microbiota with an overall reduction in microbial density. Using qPCR, we found that each type of PUFA differentially altered the major gut phyla; fish oil increased Bacteroidetes and safflower oil increased Firmicutes. Both PUFA diets reduced microbes known to dominate the infant gut like Enterobacteriaceae and Bifidobacteria spp. when compared to the chow group. Uniquely, maternal fish oil diets resulted in offspring showing blooms of opportunistic pathogens like Bilophila wadsworthia, Enterococcus faecium and Bacteroides fragilis in their gut microbiota. As well, fish oil groups showed a reduction in colonic CD8+ T cells, CD4+ Foxp3+ T cells and arginase+ M2 macrophages. In conclusion, fish oil supplementation in pharmacological excess, at 18% by energy as shown in this study, provides an example where excess dosing in utero can prime offspring to harbor intestinal pathobionts and alter immune cell homeostasis.
Senko, Tomáš; Svitok, Pavel; Kršková, Lucia
2017-10-01
The intrauterine condition in which the mammalian foetus develops has an important role in prenatal programming. The aim of this study was to determine the extent to which activation of the maternal renin-angiotensin-aldosterone system (RAAS) could influence social behaviour strategies in offspring via changes in social neurotransmitters in the brain. Pregnant female Wistar rats were implanted with osmotic minipumps which continually released angiotensin II for 14 days at concentration of 2 μg/kg/h. The adult offspring (angiotensin and control groups) underwent a social interaction test. The mRNA expression of vasopressin, oxytocin and the oxytocin receptor in selected brain areas was measured by in situ hybridisation. Prenatal exposure to higher levels of angiotensin II resulted in a strong trend toward decreased total social interaction time and significantly decreased time spent in close proximity and frequency of mutual sniffing. The angiotensin group showed no changes in oxytocin mRNA expression in the hypothalamic paraventricular or supraoptic nuclei, but this group had reduced vasopressin mRNA expression in the same areas. We concluded that maternal activation of RAAS (via higher levels of angiotensin II) caused inhibition of some socio-cohesive indicators and decreased vasopressinergic activity of offspring. Taken together, these results suggest a reactive rather than proactive social coping strategy.
Zuena, Anna Rita; Zinni, Manuela; Giuli, Chiara; Cinque, Carlo; Alemà, Giovanni Sebastiano; Giuliani, Alessandro; Catalani, Assia; Casolini, Paola; Cozzolino, Roberto
2016-09-01
The beneficial effects of Environmental Enrichment (EE) applied immediately after weaning or even in adulthood have been widely demonstrated. Less is known about the possible changes in behaviour and brain development of the progeny following the exposure of dams to EE. In order to further investigate this matter, female rats were reared in EE for 12weeks, from weaning until delivery. After having confirmed the presence of relevant behavioural effects of EE, both control and EE females underwent mating. Maternal behaviour was observed and male and female offspring were then administered a battery of behavioural test at different ages. EE mothers showed a decreased frequency of total nursing and, during the first 2days of lactation, an increase in licking/grooming behaviour. Maternal exposure to EE affected offspring behaviour in a sex-specific manner: social play behaviour and anxiety-like behaviour were increased in males but not in females and learning ability was improved only in females. As a general trend, maternal EE had a marked influence on motility in male and female offspring in both locomotor activity and swimming speed. Overall, this study highlights the importance of environmental stimulation, not only in the animals directly experiencing EE, but for their progeny too, opening the way to new hypothesis on the heritability mechanisms of behavioural traits. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of sodium overload on renal function of offspring from diabetic mothers.
Rocco, Luigi; Gil, Frida Zaladek; da Fonseca Pletiskaitz, Thaís Maria; de Fátima Cavanal, Maria; Gomes, Guiomar Nascimento
2008-11-01
The aim if this study was to evaluate the effect of sodium overload on blood pressure and renal function in the offspring of diabetic rat mothers. Diabetes was induced with a single dose of streptozotocin before mating. Experimental groups were control (C), offspring from diabetic mother (D), control with sodium chloride (NaCl) overload (CS), and offspring from diabetic mother submitted to NaCl overload (DS). After weaning, all groups received food ad libitum; groups C and D had water ad libitum, and CS and DS received NaCl 0.15 M as drinking water. Renal morphology and function were evaluated in 3-month-old rats. Glomerular area, macrophage infiltration, interlobular artery wall thickness, and renal vascular resistance were significantly increased in CS, D, and DS compared with C. Renal plasma flow (RPF) and glomerular filtration rate (GFR) were decreased in CS and D compared with C. In DS, GFR and fractional filtration were increased, suggesting a state of hyperfiltration. Hypertension was observed in groups D, CS, and DS from 2 months on and was more severe in DS. Our data suggest that diabetes during intrauterine development and salt overload beginning at an early age can cause hypertension and renal injury. When these conditions were associated, morphological and functional changes were much more intense, suggesting acceleration in the process of kidney injury.
Exposure to a maternal cafeteria diet changes open-field behaviour in the developing offspring.
Speight, Abigail; Davey, William G; McKenna, Emily; Voigt, Jörg-Peter W
2017-04-01
The early postnatal period is a sensitive period in rodents as behavioural systems are developing and maturing during this time. However, little is currently known about the behavioural effects of feeding a hyper-energetic cafeteria diet (CD) during the lactational period when offspring behaviour is tested during early adolescence. To this end, 23days old offspring from dams (Wistar) fed on CD during lactation were tested in either the open-field or the elevated plus-maze for exploration and anxiety-related behaviour. On postnatal day 9, maternal behaviour and non-maternal behaviour of the dam was assessed. It was hypothesized that lactational CD feeding would reduce anxiety in the offspring. CD-fed dams had a higher energy intake, due to an overconsumption of sugars and fats. When offspring from these dams were exposed to the open field after weaning, their locomotor activity was increased. They entered the more aversive inner zone of the open-field after a shorter latency, made more entries into and spent more time in the inner zone. Anxiety-related behaviour was not affected upon exposure to the elevated plus maze, suggesting anxiolysis in the open-field only. Increased maternal licking/grooming behaviour could possibly contribute to the anxiolytic phenotype as observed in the offspring from the CD group. In conclusion, we demonstrate that lactational overfeeding impacts on the development of behaviour in the early adolescent rat. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.
Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina
2018-06-01
Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.
Marques, Bruno V D; Higashi, Carolina M; da S Novi, Daniella R B; Zanluqui, Nagela G; Gregório, Thais F; Pinge-Filho, Phileno; Gerardin, Daniela C C; Pelosi, Gislaine G; Moreira, Estefânia G; Ceravolo, Graziela S
2017-10-15
Selective serotonin reuptake inhibitors are the most widely prescribed antidepressants to women during pregnancy. Maternal treatment with fluoxetine can expose fetuses and neonates to higher levels of serotonin that plays a role in stress response. Thus, the aim of the study was to evaluate whether maternal treatment with fluoxetine interferes with aorta reactivity of adult male offspring after acute restraint stress. Wistar rats were gavaged with fluoxetine (5mg/kg/day) or water (control) during pregnancy and lactation. The experiments were performed in adult male offspring, treated or not with reserpine (4mg/Kg, ip, 28h before the experimental protocol). Fluoxetine and control rats were submitted to a single restraint stress session (ST) for 1h. Curves to phenylephrine were performed in thoracic aorta with endothelium. Aortic nitric oxide (NOx) were evaluated by the Griess method. The aortic contraction induced by phenylephrine was similar between control and fluoxetine rats. The acute stress reduced contraction in aorta of control ST compared to control, and L-NAME equaled this response. In fluoxetine rats, ST did not change the aortic constriction. Reserpine treatment restored the vasoconstriction in control ST, but did not interfere with aortic contraction in control, fluoxetine or fluoxetine ST. The NOx concentration was higher in aortas from control ST than control rats, and reserpine reduced NOx levels of control ST. The NOx concentration was similar between fluoxetine and fluoxetine ST rats, treated or not with reserpine. In conclusion, maternal treatment with fluoxetine blunted acute restraint stress-induced NO system activation and aortic adaptation in adult offspring. Copyright © 2017 Elsevier B.V. All rights reserved.
Rat pup social motivation: A critical component of early psychological development
Cromwell, Howard Casey
2011-01-01
Examining the role of the offspring in early social dynamics is especially difficult. Human developmental psychology has found infant behavior to be a vital part of the early environmental setting. In the rodent model, the different ways that a rodent neonate or pup can influence social dynamics are not well known. Typically, litters of neonates or pups offer complex social interactions dominated by behavior seemingly initiated and maintained by the primary caregiver (e.g., the dam). Despite this strong role for the caregiver, the young most likely influence the litter dynamics in many powerful ways including communication signals, discrimination abilities and early approach behavior. Nelson and Panksepp (1996) developed a preference task to examine early rodent pup social motivation. We have used the same task to examine how variations in maternal care or different environmental perturbations could alter the rat pup preferences for social-related stimuli. Rat pups receiving low levels of maternal licking and grooming were impaired in maternal odor cue learning and emitted lower levels of 22 kHz ultrasounds compared to pups from the high licking and grooming cohort. Prenatal stress or early exposure to a toxicant (polychlorinated biphenyl) altered early social preferences in the rat pup in different ways indicating that diverse strategies are expressed and specific to the type of perturbation exposure. A greater focus on the offspring motivation following early ‘stressors’ will allow for more complete understanding of the dynamics in behavior during early social development. PMID:21251926
Kohara, Yumi; Kuwahara, Rika; Kawaguchi, Shinichiro; Jojima, Takeshi; Yamashita, Kimihiro
2014-05-10
This study investigated the effects of perinatal genistein (GEN) exposure on the central nervous system of rat offspring. Pregnant dams orally received GEN (1 or 10 mg/kg/day) or vehicle (1 ml/kg/day) from gestation day 10 to postnatal day 14. In order to assess the effects of GEN on rat offspring, we used a battery of behavioral tests, including the open-field, elevated plus-maze, MAZE and step-through passive avoidance tests. MAZE test is an appetite-motivation test, and we used this mainly for assessing spatial learning and memory. In the MAZE test, GEN groups exhibited shorter latency from start to goal than the vehicle-treated group in both sexes. On the other hand, performances in the step-through passive avoidance test were non-monotonically inhibited by GEN in both sexes, and a significant difference was observed in low dose of the GEN-treated group compared to the vehicle-treated group in female rats. Furthermore, we found that perinatal exposure to GEN did not significantly alter locomotor activity or emotionality as assessed by the open-field and elevated-plus maze tests. These results suggest that perinatal exposure to GEN improved spatial learning and memory of rat offspring, but impaired their passive avoidance learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.
[Pituitary function of dysgenesic femal rats. Studies with grafting method].
Vanhems, E; Busquet, J
1975-01-01
Misulban administered to pregnant rats on the 15th day of gestation provoked gonadal dysgenesia in the offspring. Study of the pituitary function of dysgenesic female rats, realized by grafting method, showed gonadotrophic hypersecretion.
Vega, Claudia C; Reyes-Castro, Luis A; Bautista, Claudia J; Larrea, Fernando; Nathanielsz, Peter W; Zambrano, Elena
2013-01-01
BACKGROUND Maternal obesity (MO) impairs maternal and offspring health. Mechanisms and interventions to prevent adverse maternal and offspring outcomes need to be determined. Human studies are confounded by socio-economic status providing the rationale for controlled animal data on effects of maternal exercise (MEx) intervention on maternal (F0) and offspring (F1) outcomes in MO. HYPOTHESIS MO produces metabolic and endocrine dysfunction, increases maternal and offspring glucocorticoid exposure, oxidative stress and adverse offspring outcomes by postnatal day (PND) 36. MEx prevents these outcomes. METHODS F0 female rats ate either control or obesogenic diet from weaning through lactation. Half of each group wheel ran (from day ninety of life through pregnancy beginning day 120) providing four groups (n=8/group) – i) controls, ii) obese, iii) exercised controls and iv) exercised obese. After weaning, PND 21, F1 offspring ate a control diet. Metabolic parameters of F0 prepregnancy and end of lactation and F1 offspring at PND 36 were analyzed. RESULTS Exercise did not change maternal weight. Before breeding, MO elevated F0 glucose, insulin, triglycerides, cholesterol, leptin, fat and oxidative stress. Exercise completely prevented the triglyceride rise and partially glucose, insulin, cholesterol and oxidative stress increases. MO decreased fertility, recovered by exercise. At the end of lactation, exercise returned all metabolic variables except leptin to control levels. Exercise partially prevented MO elevated corticosterone. F1 Offspring weights were similar at birth. At PND 36 MO increased F1 male but not female offspring leptin, triglycerides and fat mass. In controls exercise reduced male and female offspring glucose, prevented the offspring leptin increase and partially the triglyceride rise. CONCLUSIONS MEx before and during pregnancy has beneficial effects on maternal and offspring metabolism and endocrine function occurring with no weight change in mothers and offspring indicating the importance of body composition rather than weight in evaluations of metabolic status. PMID:23949616
Both high and low maternal salt intake in pregnancy alter kidney development in the offspring.
Koleganova, Nadezda; Piecha, Grzegorz; Ritz, Eberhard; Becker, Luis Eduardo; Müller, Annett; Weckbach, Monika; Nyengaard, Jens Randel; Schirmacher, Peter; Gross-Weissmann, Marie-Luise
2011-08-01
In humans, low glomerular numbers are related to hypertension, cardiovascular, and renal disease in adult life. The present study was designed 1) to explore whether above- or below-normal dietary salt intake during pregnancy influences nephron number and blood pressure in the offspring and 2) to identify potential mechanisms in kidney development modified by maternal sodium intake. Sprague-Dawley rats were fed low (0.07%)-, intermediate (0.51%)-, or high (3.0%)-sodium diets during pregnancy and lactation. The offspring were weaned at 4 wk and subsequently kept on a 0.51% sodium diet. The kidney structure was assessed at postnatal weeks 1 and 12 and the expression of proteins of interest at term and at week 1. Blood pressure was measured in male offspring by telemetry from postnatal month 2 to postnatal month 9. The numbers of glomeruli at weeks 1 and 12 were significantly lower and, in males, telemetrically measured mean arterial blood pressure after month 5 was higher in offspring of dams on a high- or low- compared with intermediate-sodium diet. A high-salt diet was paralleled by higher concentrations of marinobufagenin in the amniotic fluid and an increase in the expression of both sprouty-1 and glial cell-derived neutrophic factor in the offspring's kidney. The expression of FGF-10 was lower in offspring of dams on a low-sodium diet, and the expression of Pax-2 and FGF-2 was lower in offspring of dams on a high-sodium diet. Both excessively high and excessively low sodium intakes during pregnancy modify protein expression in offspring kidneys and reduce the final number of glomeruli, predisposing the risk of hypertension later in life.
Phthalate esters are high production volume, ubiquitous environmental chemicals some of which induce reproductive malformations in rats when administered during sexual differentiation. Recently we have shown that malformations in gubernacular ligament development induced by DEHP...
Church, M. W.; Jen, K-L. C.; Jackson, D. A.; Adams, B. R.; Hotra, J. W.
2009-01-01
Consuming omega-3 fatty acids (ω-3 FA) during pregnancy and lactation benefits fetal and infant brain development and might reduce the severity of preterm births by prolonging pregnancy. However, diets that are relatively rich in ω-3 FA can adversely affect fetal and infant development and the auditory brainstem response (ABR), a measure of brain development and sensory function. We previously examined the offspring of female rats fed excessive, adequate or deficient amounts of ω-3 FA during pregnancy and lactation. The 24-day-old offspring in the Excess group, compared to the Control group, had postnatal growth retardation and poor hearing acuity and prolonged neural transmission times as evidenced by the ABR. The Deficient group was intermediate. The current study followed these offspring to see if these poor outcomes persisted into young adulthood. Based on prior findings, we hypothesized that the Excess and Deficient offspring would “catch-up” to the Control offspring by young adulthood. Female Wistar rats received one of the three diet conditions from day 1 of pregnancy through lactation. The three diets were the Control ω-3 FA condition (ω-3/ω-6 ratio ~ 0.14), the Excess ω-3 FA condition (ω-3/ω-6 ratio ~ 14.0) and Deficient ω-3 FA condition (ω-3/ω-6 ratio ~ 0% ratio). The Control diet contained 7 % soybean oil; whereas the Deficient and Excess ω-3 FA diets contained 7% safflower oil and 7% fish oil, respectively. One male and female offspring per litter were ABR-tested as young adults using tone pip stimuli of 2, 4, 8 and 16 kHz. The postnatal growth retardation and prolonged neural transmission times in the Excess and Deficient pups had dissipated by young adulthood. In contrast, the Excess group had elevated ABR thresholds (hearing loss) at all tone pip frequencies in comparison to the Control and Deficient groups. The Deficient group had worse ABR thresholds than the Control group in response to the 8 kHz tone pips only. The Excess group also had ABR amplitude-intensity profiles suggestive of hyperacusis. These results are consistent with the Barker hypothesis concerning the fetal and neonatal origins of adult diseases. Thus, consuming diets that are excessively rich or deficient in ω-3 FA during pregnancy and lactation seems inadvisable because of risks for long-lasting adverse effects on brain development and sensory function. PMID:18834936
Workforce Effects and the Evolution of Complex Sociality in Wild Damaraland Mole Rats.
Young, Andrew J; Jarvis, Jennifer U M; Barnaville, James; Bennett, Nigel C
2015-08-01
Explaining the evolution of eusocial and cooperatively breeding societies demands that we understand the effects of workforce size on the reproductive success of breeders. This challenge has yet to be addressed in the family that arguably exhibits the most extreme outcomes of vertebrate social evolution, the African mole rats (Bathyergidae), leaving the ultimate causes of their many unusual adaptations open to debate. Here we report-using a 14-year field study of wild Damaraland mole rats, Fukomys damarensis-that workers appear to have strong but unusual effects on offspring. Groups with larger workforces exhibited substantially higher rates of offspring recruitment while maintaining high juvenile survival rates, relationships that may have favored the evolution of the delayed dispersal, cooperation, morphological specialization, and unusual patterns of longevity that characterize such societies. Offspring reared by larger workforces also showed slower growth, however. That reduced offspring growth in larger groups has also been documented under ad lib. food conditions in the laboratory raises the possibility that this reflects socially induced growth restraint rather than simple constraints on resource availability. Our findings shed new light on the evolution of complex sociality in this enigmatic clade and highlight further departures from the norms reported for other cooperative vertebrates.
Tsoulis, Michael W.; Chang, Pauline E.; Moore, Caroline J.; Chan, Kaitlyn A.; Gohir, Wajiha; Petrik, James J.; Vickers, Mark H.; Connor, Kristin L.; Sloboda, Deborah M.
2016-01-01
Maternal obesity predisposes offspring to metabolic and reproductive dysfunction. We have shown previously that female rat offspring born to mothers fed a high-fat (HF) diet throughout pregnancy and lactation enter puberty early and display aberrant reproductive cyclicity. The mechanisms driving this reproductive phenotype are currently unknown thus we investigated whether changes in ovarian function were involved. Wistar rats were mated and randomized to: dams fed a control diet (CON) or dams fed a HF diet from conception until the end of lactation (HF). Ovaries were collected from fetuses at Embryonic Day (E) 20, and neonatal ovaries at Day 4 (P4), prepubertal ovaries at P27 and adult ovaries at P120. In a subset of offspring, the effects of a HF diet fed postweaning were evaluated. The present study shows that fetuses of mothers fed a HF diet had significantly fewer oocytes at E20, and in neonates, have reduced AMH signaling that may facilitate an increased number of assembled primordial follicles. Both prepubertally and in adulthood, ovaries show increased follicular atresia. As adults, offspring have reduced FSH responsiveness, low expression levels of estrogen receptor alpha (Eralpha), the oocyte-secreted factor, Gdf9, oocyte-specific RNA binding protein, Dazl, and high expression levels of the granulosa-cell derived factor, AMH, in antral follicles. Together, these data suggest that ovarian compromise in offspring born to HF-fed mothers may arise from changes already observable in the fetus and neonate and in the long term, associated with increased follicular atresia through adulthood. PMID:26962114
Zambrano, E; Bautista, C J; Deás, M; Martínez-Samayoa, P M; González-Zamorano, M; Ledesma, H; Morales, J; Larrea, F; Nathanielsz, P W
2006-01-01
Extensive epidemiological and experimental evidence indicates that a sub-optimal environment during fetal and neonatal development in both humans and animals may programme offspring susceptibility to later development of chronic diseases including obesity and diabetes that are the result of altered carbohydrate metabolism. We determined the effects of protein restriction during pregnancy and/or lactation on growth, serum leptin, and glucose and insulin responses to a glucose tolerance test in male and female offspring at 110 days postnatal life. We fed Wistar rats a normal control 20% casein diet (C) or a restricted diet (R) of 10% casein during pregnancy. Female but not male R pups weighed less than C at birth. After delivery, mothers received the C or R diet during lactation to provide four offspring groups: CC (first letter maternal pregnancy diet and second maternal lactation diet), RR, CR and RC. All offspring were fed ad libitum with C diet after weaning. Relative food intake correlated inversely with weight. Offspring serum leptin correlated with body weight and relative, but not absolute, food intake in both male and female pups. Serum leptin was reduced in RR female pups compared with CC and increased in RC males compared with CC at 110 days of age. Offspring underwent a glucose tolerance test (GTT) at 110 days postnatal life. Female RR and CR offspring showed a lower insulin to glucose ratio than CC. At 110 days of age male RR and CR also showed some evidence of increased insulin sensitivity. Male but not female RC offspring showed evidence of insulin resistance compared with CC. Cholesterol was similar and triglycerides (TG) higher in male compared with female CC. Cholesterol and TG were higher in males than females in RR, CR and RC (P < 0.05). Cholesterol and TG did not differ between groups in females. Cholesterol and TG were elevated in RC compared with CC males. Nutrient restriction in lactation increased relative whole protein and decreased whole lipid in both males and females. RC females showed decreased relative levels of protein and increased fat. We conclude that maternal protein restriction during either pregnancy and/or lactation alters postnatal growth, appetitive behaviour, leptin physiology, TG and cholesterol concentrations and modifies glucose metabolism and insulin resistance in a sex- and time window of exposure-specific manner. PMID:16339179
Williams, M T; Davis, H N; McCrea, A E; Hennessy, M B
1999-01-01
Subjecting pregnant female rats to situations that activate the hypothalamic-pituitary-adrenal (HPA) axis can have long-term effects on the development of the offspring. Restraint under bright lights is a common method of stressing pregnant females that results in consistent behavioral changes in the offspring. We investigated the effects of gestationally administered restraint, bright lights, and heat on the HPA axis response of 21-day-old offspring following exposure to isolation in a novel environment or under resting conditions. Corticotropin-releasing factor titers in the hypothalamus were unaffected following isolation. Nonetheless, adrenocorticotropin hormone (ACTH) was found to be lower in the gestationally stressed offspring prior to or following the isolation period. Corticosterone was attenuated in gestationally stressed offspring following the postnatal stressor and there was also a tendency for the gestationally stressed females to have lower concentrations of aldosterone. Plasmatic testosterone levels were higher in the gestationally stressed males following the period of isolation. The present data suggest that the HPA axis of the offspring is differentially affected by the gestational stress procedure, that is, it is attenuated at the level of the pituitary and adrenal, but not at the level of the hypothalamus. These data have implications for behavioral differences observed in gestationally stressed animals.
Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L. H.; Leu, Steve; Chan, Julie Y. H.
2016-01-01
Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M2-, M3-muscarinic and P2X1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE. PMID:27703194
Lee, Wei-Chia; Tain, You-Lin; Wu, Kay L H; Leu, Steve; Chan, Julie Y H
2016-10-05
Maternal fructose exposure (MFE) programs the development of metabolic syndrome (MetS) in young adult offspring. Epidemiological data indicate that MetS may increase the risks of overactive bladder (OAB) symptoms. However, it remains unknown whether MFE programs MetS-associated bladder dysfunction in adult offspring. Using Sprague-Dawley rats, we investigated the effects of MFE during pregnancy and lactation on developmental programming of MetS-associated bladder dysfunction. In addition, next generation sequencing technology was used to identify potential transcripts involved in the programmed bladder dysfunction in adult male offspring to MFE. We found that MFE programmed the MetS-associated OAB symptoms (i.e., an increase in micturition frequency and a shortened mean inter-contractile interval) in young adult male offspring, alongside significant alterations in bladder transcripts, including Chrm2, Chrm3, P2rx1, Trpv4, and Vipr2 gene expression. At protein level, the expressions of M 2 -, M 3 -muscarinic and P2X 1 receptor proteins were upregulated in the MFE bladder. Functionally, the carbachol-induced detrusor contractility was reduced in the MFE offspring. These data suggest that alterations in the bladder transcripts and impairment of the bladder cholinergic pathways may underlie the pathophysiology of programmed bladder dysfunction in adult offspring to MFE.
Klein, Marianne Orlandini; MacKay, Harry; Edwards, Alexander; Park, Su-Bin; Kiss, Ana Carolina Inhasz; Felicio, Luciano Freitas; Abizaid, Alfonso
2018-02-01
Developmental programing is influenced by perinatal nutrition and it has long-lasting impacts on adult metabolism in the offspring. In particular, maternal high fat diet has been associated with increased risk of obesity and metabolic disorders during adulthood in the descendants. These effects may be due to the effects of the high fat diet on the development of the systems that regulate food intake and energy balance in the offspring hypothalamus. The arcuate nucleus (ARC) may be a particularly sensitive region to it as this nucleus contains the POMC and AgRP/NPY neurons that integrate the melanocortin system. Thus, the aim of this study was to investigate the effects of maternal high fat diet during pregnancy on the transcription factors that regulate hypothalamic development in the offspring as a potential mechanism that may result in altered neuronal expression of POMC, NPY and/or AgRP. To this end, pregnant females exposed to high fat diet (60% fat diet since day 0 of pregnancy) or standard rat chow were sacrificed on days 12, 14, 16 and 18 of gestation to obtain brains from their developing fetuses and examine the mRNA expression of transcription factors associated with the development of cells in the ARC. Results show that, while no changes in transcription factor expression between groups were observed, POMC and NPY mRNA expression were higher on embryonic day 18 in the high fat group. These results suggest that POMC and NPY expression are altered by in utero exposure to a high fat diet, but these changes in gene expression are not associated with changes in the expression of transcription factors known to determine the fate of ARC cells. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.
Studies Toward Birth and Early Mammalian Development in Space
NASA Technical Reports Server (NTRS)
Ronca, April E.; Dalton, Bonnie (Technical Monitor)
2002-01-01
Successful reproduction is the hallmark of a species' ability to adapt to its environment and must be realized to sustain life beyond Earth. Before taking this immense step, we need to understand the effects of altered gravity on critical phases of mammalian reproduction, viz., those events surrounding pregnancy, birth and the early development of offspring. No mammal has yet undergone birth in space. however studies spanning the gravity continuum from 0 to 2-g are revealing insights into how birth and early postnatal development will proceed in space. In this presentation, I will report the results of behavioral studies of rat mothers and offspring exposed from mid- to late pregnancy to either hypogravity (0-g) or hypergravity (1.5 or 2-g).
Developmental Triclosan Exposure Decreases Maternal and Offspring Thyroxine in Rats*
Epidemiological and laboratory data have demonstrated that disruption of maternal thyroid hormones during fetal developmental may result in irreversible neurological consequences in offspring. In a short-term exposure paradigm, triclosan decreased systemic thyroxine (T4) concentr...
[The effect of long-term hyperbarism on pregnant guinea pigs and their progeny].
Sviderskaia, G E; Dmitrieva, L E
1991-01-01
The effect of hyperbarism has been investigated on 1-3-, 4-5- and 8-10-week pregnant rats and their offsprings. It was found that the mortality rate of pregnant rats is two times higher after hyperbaric exposures than in control animals. The animals exhibit the highest sensitivity at a stage of 8-10 weeks. Hyperbaric conditions significantly affect offsprings. Only 53% of newborn puppies were found to be normal, whereas 35% were born dead and 12% revealed various abnormalities. The highest sensitivity was observed during organogenesis (4-5 weeks), the mortality rate during this period reached 70%. The body mass in newborn puppies was significantly lower than in control animals. The most significant retardation in the development was observed in animals which were subjected to the effect of hyperbarism at the 4-5-th week of intrauterine life.
NASA Technical Reports Server (NTRS)
Blaze, Jennifer; Asok, Arun; Borrelli, Kristyn; Tulbert, Christine; Bollinger, Justin; Ronca Finco, April E.; Roth, Tania L.
2017-01-01
DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could contribute to the long-term effects of intrauterine exposure to maternal stress on offspring behavioral outcomes. Here, we measured methylation of Brain-derived neurotrophic factor (Bdnf), a gene important in development and plasticity, and telomere length in the brains of adult rat male and female offspring whose mothers were exposed to unpredictable and variable stressors throughout gestation. Males exposed to prenatal stress had greater methylation (Bdnf IV) in the medial prefrontal cortex (mPFC) compared to non-stressed controls. Further, prenatally-stressed males had shorter telomeres than controls in the mPFC. This study provides the first evidence in a rodent model of an association between prenatal stress exposure and subsequent shorter brain telomere length. Together findings indicate a long-term impact of prenatal stress on DNA methylation and telomere biology with relevance for behavioral and health outcomes, and contribute to a growing literature linking stress to intergenerational epigenetic alterations and changes in telomere length.
Lino, Caroline A; da Silva, Ivson Bezerra; Shibata, Caroline E R; Monteiro, Priscilla de S; Barreto-Chaves, Maria Luiza M
2015-11-15
Suboptimal intrauterine conditions as changed hormone levels during critical periods of the development are considered an insult and implicate in physiological adaptations which may result in pathological outcomes in later life. This study evaluated the effect of maternal hyperthyroidism (hyper) on cardiac function in adult offspring and the possible involvement of cardiac Renin-Angiotensin System (RAS) in this process. Wistar dams received orally thyroxin (12 mg/L) from gestational day 9 (GD9) until GD18. Adult offspring at postnatal day 90 (PND90) from hyper dams presented increased SBP evaluated by plethysmography and worse recovery after ischemia-reperfusion (I/R), as evidenced by decreased LVDP, +dP/dT and -dP/dT at 25 min of reperfusion and by increased infarct size. Increased cardiac Angiotensin I/II levels and AT1R in hyper offspring were verified. Herein, we provide evidences that maternal hyperthyroidism leads to altered expression of RAS components in adult offspring, which may be correlated with worse recovery of the cardiac performance after ischemic insults and hypertension. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Beneficial effects of co-treatment with dextromethorphan on prenatally methadone-exposed offspring.
Chiang, Yao-Chang; Ye, Li-Ci; Hsu, Kuei-Ying; Liao, Chien-Wei; Hung, Tsai-Wei; Lo, Wan-Jou; Ho, Ing-Kang; Tao, Pao-Luh
2015-03-20
Heroin use among young women of reproductive age has drawn much attention around the world. Although methadone is widely used in maintenance therapy for heroin/morphine addiction, the long-term effects of prenatal exposure to methadone and preventative therapy remain unclear. For revealing this question, female pregnant Sprague-Dawley rats were sub-grouped to receive (1) vehicle, (2) methadone 5 mg/kg at embryonic day 3 (E3) and then 7 mg/kg from E4 to E20, (3) dextromethorphan (DM) 3 mg/kg, and (4) methadone + DM (the rats received methadone followed by DM treatment), subcutaneously, twice a day from E3 to E20. The body weight, natural withdrawal, pain sensitivity, ED50, conditioned place preference and water maze were conducted at different postnatal stages (P1 to P79) of offspring. The quantitative real-time RT-PCR and electrophysiology were also used to measure the gene expression of opioid receptors in the spinal cord and changes of LTP/LTD in the hippocampus, separately. Prenatal exposure to methadone or DM did not affect survival rate, body weight, water maze and LTP or LTD of offspring. However, prenatal methadone significantly increased the withdrawal symptoms, pain sensitivity, addiction liability and decreased the mRNA expression of pain related opioid receptors. Co-administration of DM with methadone in the maternal rats effectively prevented these abnormalities of offspring induced by methadone. Our study clearly showed that co-administration of dextromethorphan with methadone in the maternal rats prevented the adverse effects induced by prenatal methadone exposure. It implies that dextromethorphan may have a potential to be used in combination with methadone for maintenance treatment in pregnant heroin-addicted women to prevent the adverse effects induced by methadone on offspring.
Phthalate estersare high production volume, ubiquitous environmental chemicals some of which induce reproductive malformations in rats when administered during sexual differentiation. Recently we have shown that malformations in gubernacular ligament development induced by high d...
Stanton, M E; Crofton, K M; Gray, L E; Gordon, C J; Boyes, W K; Mole, M L; Peele, D B; Bushnell, P J
1995-11-01
The prospect of widespread human exposure associated with its use as an alternative fuel has sparked concern about the toxic potential of inhaled methanol (MeOH). Previous studies have revealed congenital malformations in rats following inhaled MeOH (Nelson et al. (1985). Fundam. Appl. Toxicol. 5, 727-736) but these studies did not include postnatal behavioral assessment. In the present study, pregnant Long-Evans rats were placed in exposure chambers containing 15,000 ppm MeOH or air for 7 hr/day on Gestational Days (GD) 7-19. The total alveolar dose of methanol was estimated at about 6.1 g/kg/day, for a total dose of about 42.7 g/kg for the entire study. Maternal body weights were recorded daily and blood methanol concentrations were determined at the end of exposure on GD 7, 10, 14, and 18. Following birth (Postnatal Day 0 [PND 0]), a number of tests were performed at various points in development, including: offspring mortality and body wt (PND 1,3), motor activity (PND 13-21, 30, 60), olfactory learning (PND 18), behavioral thermoregulation (PND 20-21), T-maze learning (PND 23-24), acoustic startle response (PND 24, 60), reflex modification audiometry (PND 60), pubertal landmarks (PND 31-56), passive avoidance (PND 72), and visual-evoked potentials (PND 160). Maternal blood MeOH levels, measured from samples taken within 15 min after removal from the exposure chamber, declined from about 3.8 mg/ml on the first day of exposure to 3.1 mg/ml on the 12th day of exposure. MeOH transiently reduced maternal body wt (4-7%) on GD 8-10, and offspring BW (5%) on PND 1. No other test revealed significant effects of MeOH. Prenatal exposure to high levels of inhaled MeOH appears to have little effect on this broad battery of tests beyond PND 1 in the rat.
Beggiato, Sarah; Borelli, Andrea Celeste; Tomasini, Maria Cristina; Morgano, Lucia; Antonelli, Tiziana; Tanganelli, Sergio; Cuomo, Vincenzo; Ferraro, Luca
2017-03-01
The long-lasting effects of gestational cannabinoids exposure on the adult brain of the offspring are still controversial. It has already been shown that pre- or perinatal cannabinoids exposure induces learning and memory disruption in rat adult offspring, associated with permanent alterations of cortical glutamatergic neurotransmission and cognitive deficits. In the present study, the risk of long-term consequences induced by perinatal exposure to cannabinoids on rat hippocampal GABAergic system of the offspring, has been explored. To this purpose, pregnant rats were treated daily with Delta 9 -tetrahydrocannabinol (Δ 9 -THC; 5mg/kg) or its vehicle. Perinatal exposure to Δ 9 -THC induced a significant reduction (p<0.05) in basal and K + -evoked [ 3 H]-GABA outflow of 90-day-old rat hippocampal slices. These effects were associated with a reduction of hippocampal [ 3 H]-GABA uptake compared to vehicle exposed group. Perinatal exposure to Δ 9 -THC induced a significant reduction of CB1 receptor binding (B max ) in the hippocampus of 90-day-old rats. However, a pharmacological challenge with either Δ 9 -THC (0.1μM) or WIN55,212-2 (2μM), similarly reduced K + -evoked [ 3 H]-GABA outflow in both experimental groups. These reductions were significantly blocked by adding the selective CB1 receptor antagonist SR141716A. These findings suggest that maternal exposure to cannabinoids induces long-term alterations of hippocampal GABAergic system. Interestingly, previous behavioral studies demonstrated that, under the same experimental conditions as in the present study, perinatal cannabinoids exposure induced cognitive impairments in adult rats, thus resembling some effects observed in humans. Although it is difficult and sometimes misleading to extrapolate findings obtained from animal models to humans, the possibility that an alteration of hippocampus aminoacidergic transmission might underlie, at least in part, some of the cognitive deficits affecting the offspring of marijuana users, is supported. Copyright © 2017 Elsevier Inc. All rights reserved.
Autonomic and Renal Alterations in the Offspring of Sleep-Restricted Mothers During Late Pregnancy.
Raimundo, Joyce R S; Bergamaschi, Cassia T; Campos, Ruy R; Palma, Beatriz D; Tufik, Sergio; Gomes, Guiomar N
2016-09-01
Considering that changes in the maternal environment may result in changes in progeny, the aim of this study was to investigate the influence of sleep restriction during the last week of pregnancy on renal function and autonomic responses in male descendants at an adult age. After confirmation of pregnancy, female Wistar rats were randomly assigned to either a control or a sleep restriction group. The sleep-restricted rats were subjected to sleep restriction using the multiple platforms method for over 20 hours per day between the 14th and 20th day of pregnancy. After delivery, the litters were limited to 6 offspring that were designated as offspring from control and offspring from sleep-restricted mothers. Indirect measurements of systolic blood pressure (BPi), renal plasma flow, glomerular filtration rate, glomerular area and number of glomeruli per field were evaluated at three months of age. Direct measurements of cardiovascular function (heart rate and mean arterial pressure), cardiac sympathetic tone, cardiac parasympathetic tone, and baroreflex sensitivity were evaluated at four months of age. The sleep-restricted offspring presented increases in BPi, glomerular filtration rate and glomerular area compared with the control offspring. The sleep-restricted offspring also showed higher basal heart rate, increased mean arterial pressure, increased sympathetic cardiac tone, decreased parasympathetic cardiac tone and reduced baroreflex sensitivity. Our data suggest that reductions in sleep during the last week of pregnancy lead to alterations in cardiovascular autonomic regulation and renal morpho-functional changes in offspring, triggering increases in blood pressure.
Chlorpyrifos induces anxiety-like behavior in offspring rats exposed during pregnancy.
Silva, Jonas G; Boareto, Ana C; Schreiber, Anne K; Redivo, Daiany D B; Gambeta, Eder; Vergara, Fernanda; Morais, Helen; Zanoveli, Janaína M; Dalsenter, Paulo R
2017-02-22
Chlorpyrifos is a pesticide, member of the organophosphate class, widely used in several countries to manage insect pests on many agricultural crops. Currently, chlorpyrifos health risks are being reevaluated due to possible adverse effects, especially on the central nervous system. The aim of this study was to investigate the possible action of this pesticide on the behaviors related to anxiety and depression of offspring rats exposed during pregnancy. Wistar rats were treated orally with chlorpyrifos (0.01, 0.1, 1 and 10mg/kg/day) on gestational days 14-20. Male offspring behavior was evaluated on post-natal days 21 and 70 by the elevated plus-maze test, open field test and forced swimming test. The results demonstrated that exposure to 0.1, 1 or 10mg/kg/day of chlorpyrifos could induce anxiogenic-like, but not depressive-like behavior at post-natal day 21, without causing fetal toxicity. This effect was reversed on post-natal day 70. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Chang-Qi; Luo, Yan-Wei; Bi, Fang-Fang; Cui, Tao-Tao; Song, Ling; Cao, Wen-Yu; Zhang, Jian-Yi; Li, Fang; Xu, Jun-Mei; Hao, Wei; Xing, Xiao-Wei; Zhou, Fiona H; Zhou, Xin-Fu; Dai, Ru-Ping
2014-01-01
Opioid addiction is a major social, economic, and medical problem worldwide. Long-term adverse consequences of chronic opiate exposure not only involve the individuals themselves but also their offspring. Adolescent maternal morphine exposure results in behavior and morphologic changes in the brain of their adult offspring. However, few studies investigate the effect of adult opiate exposure on their offspring. Furthermore, the underlying molecular signals regulating the intergenerational effects of morphine exposure are still elusive. We report here that morphine exposure of adult male and female rats resulted in anxiety-like behavior and dendritic retraction in the dentate gyrus (DG) region of the hippocampus in their adult offspring. The behavior and morphologic changes were concomitant with the downregulation of insulin-like growth factor (IGF)-2 signaling in the granular zone of DG. Overexpression of hippocampal IGF-2 by bilateral intra-DG injection of lentivirus encoding the IGF-2 gene prevented anxiety-like behaviors in the offspring. Furthermore, exposure to an enriched environment during adolescence corrected the reduction of hippocampal IGF-2 expression, normalized anxiety-like behavior and reversed dendritic retraction in the adult offspring. Thus, parental morphine exposure can lead to the downregulation of hippocampal IGF-2, which contributed to the anxiety and hippocampal dendritic retraction in their offspring. An adolescent-enriched environment experience prevented the behavior and morphologic changes in their offspring through hippocampal IGF-2 signaling. IGF-2 and an enriched environment may be a potential intervention to prevention of anxiety and brain atrophy in the offspring of parental opioid exposure. PMID:24889368
Alzamendi, Ana; Zubiría, Guillermina; Moreno, Griselda; Portales, Andrea; Spinedi, Eduardo; Giovambattista, Andrés
2016-01-01
The aim of this work was to determine the effect of a fructose rich diet (FRD) consumed by the pregnant mother on the endocrine-metabolic and in vivo and in vitro adipose tissue (AT) functions of the male offspring in adulthood. At 60 days of age, rats born to FRD-fed mothers (F) showed impaired glucose tolerance after glucose overload and high circulating levels of leptin (LEP). Despite the diminished mass of retroperitoneal AT, this tissue was characterized by enhanced LEP gene expression, and hypertrophic adipocytes secreting in vitro larger amounts of LEP. Analyses of stromal vascular fraction composition by flow cytometry revealed a reduced number of adipocyte precursor cells. Additionally, 60 day-old control (C) and F male rats were subjected to control diet (CC and FC animals) or FRD (CF and FF rats) for three weeks. FF animals were heavier and consumed more calories. Their metabolic-endocrine parameters were aggravated; they developed severe hyperglycemia, hypertriglyceridemia, hyperleptinemia and augmented AT mass with hypertrophic adipocytes. Our study highlights that manipulation of maternal diet induced an offspring phenotype mainly imprinted with a severely unhealthy adipogenic process with undesirable endocrine-metabolic consequences, putting them at high risk for developing a diabetic state. PMID:27011203
Behavioural effects of prenatal exposure to carbon disulphide and to aromatol in rats.
Lehotzky, K; Szeberényi, J M; Ungváry, G; Kiss, A
1985-01-01
The neurotoxic effects of prenatal organosolvent inhalation were studied in rats, because of the expectation that a developing organism may be more sensitive than the adult to the induction of functional deficits. The aim was to determine whether prenatal exposure to the new organosolvent mixture, Aromatol, and the well known neurotoxic carbon disulphide, would impair reflex ontogeny or produce neurobehavioural dysfunctions in the offspring. Development of gait, motor coordination, and activity, avoidance learning and swimming were tested in the offspring of CFY rat mothers, exposed to CS2 inhalation (0, less than 10, 700 and 2000 mg/m3) and to Aromatol (0, 600, 1000 and 2000 mg/m3) on days 7-15 gestation. Prenatal CS2 inhalation induced dose related perinatal mortality of pups. Eye opening and the auditory startle were retarded. There were immature gait, motor incoordination, diminished open field activity and altered behavioural patterns on day 21 and 36 but they were nearly age-appropriate on day 90. As signs of disturbed learning ability, there were diminished performance and lengthened latency of the conditioned avoidance response, related to the concentrations administered. Contrary to expectations, prenatal Aromatol inhalation had no effect on maturation of gait, behaviour patterns, or learning ability.
Marin, Evelyn Cristina Santana; Balbi, Ana Paula Coelho; Francescato, Heloísa Della Coletta; Alves da Silva, Cleonice Giovanini; Costa, Roberto Silva; Coimbra, Terezila M
2008-01-01
Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.
Gibson, DL; Gill, SK; Brown, K; Tasnim, N; Ghosh, S; Innis, S; Jacobson, K
2015-01-01
Our previous studies revealed that offspring from rat dams fed fish oil (at 8% and 18% energy), developed impaired intestinal barriers sensitizing the colon to exacerbated injury later in life. To discern the mechanism, we hypothesized that in utero exposure to fish oil, rich in n-3 polyunsaturated fatty acid (PUFA), caused abnormal intestinal reparative responses to mucosal injury through differences in intestinal microbiota and the presence of naïve immune cells. To identify such mechanisms, gut microbes and naïve immune cells were compared between rat pups born to dams fed either n-6 PUFA, n-3 PUFA or breeder chow. Maternal exposure to either of the PUFA rich diets altered the development of the intestinal microbiota with an overall reduction in microbial density. Using qPCR, we found that each type of PUFA differentially altered the major gut phyla; fish oil increased Bacteroidetes and safflower oil increased Firmicutes. Both PUFA diets reduced microbes known to dominate the infant gut like Enterobacteriaceae and Bifidobacteria spp. when compared to the chow group. Uniquely, maternal fish oil diets resulted in offspring showing blooms of opportunistic pathogens like Bilophila wadsworthia, Enterococcus faecium and Bacteroides fragilis in their gut microbiota. As well, fish oil groups showed a reduction in colonic CD8+ T cells, CD4+ Foxp3+ T cells and arginase+ M2 macrophages. In conclusion, fish oil supplementation in pharmacological excess, at 18% by energy as shown in this study, provides an example where excess dosing in utero can prime offspring to harbor intestinal pathobionts and alter immune cell homeostasis. PMID:25559197
Francisco, Flávio Andrade; Barella, Luiz Felipe; Silveira, Sandra da Silva; Saavedra, Lucas Paulo Jacinto; Prates, Kelly Valério; Alves, Vander Silva; Franco, Claudinéia Conationi da Silva; Miranda, Rosiane Aparecida; Ribeiro, Tatiane Aparecida; Tófolo, Laize Peron; Malta, Ananda; Vieira, Elaine; Palma-Rigo, Kesia; Pavanello, Audrei; Martins, Isabela Peixoto; Moreira, Veridiana Mota; de Oliveira, Júlio Cezar; Mathias, Paulo Cezar de Freitas; Gomes, Rodrigo Mello
2018-03-01
Environmental and nutritional disorders during perinatal period cause metabolic dysfunction in the progeny and impair human health. Advanced glycation end products (AGEs) are primarily produced during metabolism of excess blood glucose, which is observed in diabetes. Methylglyoxal (MG) is a precursor for the generation of endogenous AGEs, which disturbs the metabolism. This work aimed to investigate whether the maternal MG treatment during lactation programs the progeny to metabolic dysfunction later in life. Female Wistar rats were divided into two groups: control group (C) treated with saline and MG group treated with MG (60 mg/kg/day) by gavage throughout the lactation period. Both mothers and offspring were fed a standard chow. At weaning, breast milk composition was analyzed and mothers euthanized for blood and tissue sample collections. At 90 days of age, offspring were submitted to glucose tolerance test (ivGTT) and euthanized for blood and tissue samples collection. MG mothers showed increase in glucose and fructosamine levels; however, they showed low insulin levels and failure in β-cell function (p < 0.05). MG mothers also showed dyslipidemia (p < 0.05). Moreover, breast milk had elevated levels of glucose, triglycerides, cholesterol and fructosamine and low insulin (p < 0.05). Interestingly, MG offspring had increased body weight and adipose tissue at adulthood, and they also showed glucose intolerance and failure in β-cell function (p < 0.05). Besides, MG offspring showed dyslipidemia (p < 0.05) increasing cardiovascular diseases risk. Maternal MG treatment negatively affects the male rat offspring, leading to type 2 diabetes and dyslipidemia in later life, possibly by changes in breast milk composition.
Prevalence of Prediabetes Risk in Offspring Born to Mothers with Hyperandrogenism.
Tian, Shen; Lin, Xian-Hua; Xiong, Yi-Meng; Liu, Miao-E; Yu, Tian-Tian; Lv, Min; Zhao, Wei; Xu, Gu-Feng; Ding, Guo-Lian; Xu, Chen-Ming; Jin, Min; Feng, Chun; Wu, Yan-Ting; Tan, Ya-Jing; Gao, Qian; Zhang, Jian; Li, Cheng; Ren, Jun; Jin, Lu-Yang; Chen, Bin; Zhu, Hong; Zhang, Xue-Ying; Chen, Song-Chang; Liu, Xin-Mei; Liu, Ye; Zhang, Jun-Yu; Wang, Li; Zhang, Ping; Chen, Xiao-Jun; Jin, Li; Chen, Xi; Meng, Yi-Cong; Wu, Dan-Dan; Lin, Hui; Yang, Qian; Zhou, Cheng-Liang; Li, Xin-Zhu; Wang, Yi-Yu; Xiang, Yu-Qian; Liu, Zhi-Wei; Gao, Ling; Chen, Lu-Ting; Pan, Hong-Jie; Li, Rong; Zhang, Fang-Hong; Xing, Lan-Feng; Zhu, Yi-Min; Klausen, Christian; Leung, Peter C K; Li, Ju-Xue; Sun, Fei; Sheng, Jian-Zhong; Huang, He-Feng
2017-02-01
Excessive androgen exposure during pregnancy has been suggested to induce diabetic phenotypes in offspring in animal models. The aim of this study was to investigate whether pregestational maternal hyperandrogenism in human influenced the glucose metabolism in offspring via epigenetic memory from mother's oocyte to child's somatic cells. Of 1782 reproductive-aged women detected pregestational serum androgen, 1406 were pregnant between 2005 and 2010. Of 1198 women who delivered, 1116 eligible mothers (147 with hyperandrogenism and 969 normal) were recruited. 1216 children (156 children born to mothers with hyperandrogenism and 1060 born to normal mother) were followed up their glycometabolism in mean age of 5years. Imprinting genes of oocyte from mothers and lymphocytes from children were examined. A pregestational hyperandrogenism rat model was also established. Children born to women with hyperandrogenism showed increased serum fasting glucose and insulin levels, and were more prone to prediabetes (adjusted RR: 3.98 (95%CI 1.16-13.58)). Oocytes from women with hyperandrogenism showed increased insulin-like growth factor 2 (IGF2) expression. Lymphocytes from their children also showed increased IGF2 expression and decreased IGF2 methylation. Treatment of human oocytes with dihydrotestosterone upregulated IGF2 and downregulated DNMT3a levels. In rat, pregestational hyperandrogenism induced diabetic phenotypes and impaired insulin secretion in offspring. In consistent with the findings in human, hyperandrogenism also increased Igf2 expression and decreased DNMT3a in rat oocytes. Importantly, the same altered methylation signatures of Igf2 were identified in the offspring pancreatic islets. Pregestational hyperandrogenism may predispose offspring to glucose metabolism disorder via epigenetic oocyte inheritance. Clinical trial registry no.: ChiCTR-OCC-14004537; www.chictr.org. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Martin Agnoux, Aurore; El Ghaziri, Angélina; Moyon, Thomas; Pagniez, Anthony; David, Agnès; Simard, Gilles; Parnet, Patricia; Qannari, El Mostafa; Darmaun, Dominique; Antignac, Jean-Philippe; Alexandre-Gouabau, Marie-Cécile
2018-05-01
Perinatal undernutrition affects not only fetal and neonatal growth but also adult health outcome, as suggested by the metabolic imprinting concept. However, the exact mechanisms underlying offspring metabolic adaptations are not yet fully understood. Specifically, it remains unclear whether the gestation or the lactation is the more vulnerable period to modify offspring metabolic flexibility. We investigated in a rodent model of intrauterine growth restriction (IUGR) induced by maternal protein restriction (R) during gestation which time window of maternal undernutrition (gestation, lactation or gestation-lactation) has more impact on the male offspring metabolomics phenotype. Plasma metabolome and hepatic lipidome of offspring were characterized through suckling period and at adulthood using liquid chromatography-high-resolution mass spectrometry. Multivariate analysis of these fingerprints highlighted a persistent metabolomics signature in rats suckled by R dams, with a clear-cut discrimination from offspring fed by control (C) dams. Pups submitted to a nutritional switch at birth presented a metabolomics signature clearly distinct from that of pups nursed by dams maintained on a consistent perinatal diet. Control rats suckled by R dams presented transiently higher branched-chain amino acid (BCAA) oxidation during lactation besides increased fatty acid (FA) β-oxidation, associated with preserved insulin sensitivity and lesser fat accretion that persisted throughout their life. In contrast, IUGR rats displayed permanently impaired β-oxidation, associated to increased glucose or BCAA oxidation at adulthood, depending on the fact that pups experienced slow postnatal or catch-up growth, as suckled by R or C dams, respectively. Taken together, these findings provide evidence for a significant contribution of the lactation period in metabolic programming. Copyright © 2018 Elsevier Inc. All rights reserved.
Cao, Yan Jun; Wang, Qiong; Zheng, Xing Xing; Cheng, Ying; Zhang, Yan
2018-08-01
Prenatal stress (PS) exposure can cause depression-like behavior in offspring, and maladaptive responses including physiological and neurobiological changes. Glutamate neurotransmission is implicated in effects of PS and in antidepressant mechanisms; however, the mechanisms underlying its involvement remain unclear. In the synapse, the formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex is essential for vesicular docking and neurotransmitter release. To explore effects of PS on the SNARE complex, pregnant rats were assigned to a control or PS group. Both male and female offspring in each group were used in this study. PS rats were exposed to restraint stress three times daily for 45 min on days 14-20 of pregnancy. In the PS offspring, the expression of the SNARE protein SNAP-25, vesicle-associated membrane protein (VAMP)-2, and Syntaxin 1a was significantly increased in the hippocampus and prefrontal cortex. These observations were associated with increased levels of proteins that chaperone SNARE complex formation, including Munc-18, α-synuclein, CSPα, complexin1, and complexin2. Immunoblotting of hippocampal and prefrontal cortex homogenates revealed significantly increased SNARE complex formation. vGluT1 protein expression was also significantly increased in the offspring. Additionally, PS was associated with increased mRNA expression of VAMP1, VAMP2, SNAP25, Syntaxin1a, and Syntaxin1b in the hippocampus and prefrontal cortex. Increased monomeric SNARE proteins, SNARE complex formation, vesicle-associated proteins, and vGluT1 may explain the increase in glutamate and its downstream excitotoxicity. These results support the hypothesis that glutamate release and vesicular glutamate transporters play a role in PS-induced depression-like behavior of rat offspring. Copyright © 2018. Published by Elsevier B.V.
Nicolás-Toledo, L; Cervantes-Rodríguez, M; Cuevas-Romero, E; Corona-Quintanilla, D L; Pérez-Sánchez, E; Zambrano, E; Castelán, F; Rodríguez-Antolín, J
2018-04-01
The excessive consumption of carbohydrates is related to non-alcoholic fatty liver disease (NAFLD) in infants and adults. The effect of combining maternal malnutrition and a high carbohydrate intake on the development of NAFLD in adulthood remains unknown. We therefore hypothesized that consumption of 5% sucrose by the offspring of dams fed a low-protein diet during pregnancy promotes liver fat accumulation and oxidative damage differently in females and males. To test this, 12-month-old female and male offspring of mothers fed a Control (C) or low-protein diet (Restricted, R) were provided with either tap water or 5% sucrose for a period of 10 weeks. Livers were excised to measure the fat content and 3-nitrotyrosine (3-NTyr) immunostaining; serum samples were also obtained to measure the concentration of malondialdehyde (MDA). Data were analyzed using a non-repeated measures three-way analysis of variance to determine significant differences (P<0.05) regarding to the interaction among maternal diet, sucrose consumption and sex. Results showed that the liver fat content of females from R mothers was higher than that of their male counterpart. Hepatic 3-NTyr immunostaining and serum MDA concentrations were not affected by the interaction involving maternal diet, sucrose consumption and sex. Otherwise, liver fat content was correlated with the hepatic 3-NTyr immunostaining and serum MDA concentrations only in females. Thus, sucrose intake in adulthood increases fat content in the female but not in the male rat offspring of dams fed with a low-protein diet during pregnancy. This research emphasizes the importance of a balanced diet during pregnancy and the influence of the diet on the adult offspring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodavanti, Prasada; Coburn, Cary; Moser, Virginia
2010-06-01
Developmental effects of polybrominated diphenyl ethers (PBDEs) have been suspected due to their structural similarities to polychlorinated biphenyls (PCBs). This study evaluated neurobehavioral, hormonal, and reproductive effects in rat offspring perinatally exposed to a widely used pentabrominated commercial mixture, DE-71. Pregnant Long-Evans rats were exposed to 0, 1.7, 10.2, or 30.6 mg/kg/day DE-71 in corn oil by oral gavage from gestational day 6 to weaning. DE-71 did not alter maternal or male offspring body weights. However, female offspring were smaller compared with controls from postnatal days (PNDs) 35-60. Although several neurobehavioral endpoints were assessed, the only statistically significant behavioral findingmore » was a dose-by-age interaction in the number of rears in an open-field test. Developmental exposure to DE-71 caused severe hypothyroxinemia in the dams and early postnatal offspring. DE-71 also affected anogenital distance and preputial separation in male pups. Body weight gain over time, reproductive tissue weights, and serum testosterone concentrations at PND 60 were not altered. Mammary gland development of female offspring was significantly affected at PND 21. Congener-specific analysis of PBDEs indicated accumulation in all tissues examined. Highest PBDE concentrations were found in fat including milk, whereas blood had the lowest concentrations on a wet weight basis. PBDE concentrations were comparable among various brain regions. Thus, perinatal exposure to DE-71 leads to accumulation of PBDE congeners in various tissues crossing blood-placenta and blood-brain barriers, causing subtle changes in some parameters of neurobehavior and dramatic changes in circulating thyroid hormone levels, as well as changes in both male and female reproductive endpoints. Some of these effects are similar to those seen with PCBs, and the persistence of these changes requires further investigation.« less
Birnie, Andrew K; Taylor, Jack H; Cavanaugh, Jon; French, Jeffrey A
2013-12-01
Variation in the early postnatal social environment can have lasting effects on hypothalamic-pituitary-adrenal (HPA) axis stress responses. Both rats and macaque monkeys subjected to low quality or abusive maternal care during the early postnatal period have more pronounced HPA responses to environmental stressors throughout development and into adulthood compared to animals reared in higher quality early maternal environments. However, little is known about the relative contributions to HPA stress response styles in developing offspring in species in which offspring care is routinely provided by group members other than the mother, such as in cooperatively breeding mammals. Marmoset monkeys exhibit cooperative offspring rearing, with fathers and older siblings providing care in addition to that provided by the mother. We evaluated the effects of early maternal, paternal, and older sibling care on HPA responses to social separation across development in captive white-faced marmoset offspring (Callithrix geoffroyi). We monitored offspring care by mothers, fathers, and older siblings in marmosets for the first 60 days of life. Later in development, each marmoset experienced three standardized social separation/novelty exposure stressors at 6, 12, and 18 months of age. During separation, we collected urine samples and analyzed them via enzyme immunoassay for cortisol levels. Infants that received higher rates of rejections from the entire family group showed higher cortisol responses to social separation. This relationship was found when mothers, fathers, and older siblings, were analyzed separately as well. No differences in cortisol responses were found between offspring that received high and low rates of carrying or high and low rates of licking and grooming by any group member. In the cooperatively breeding marmoset, early social cues from multiple classes of caregivers may influence HPA stress responses throughout the lifespan. Published by Elsevier Ltd.
Birnie, Andrew K.; Taylor, Jack H.; Cavanaugh, Jon; French, Jeffrey A.
2013-01-01
Variation in the early postnatal social environment can have lasting effects on hypothalamic-pituitary-adrenal (HPA) axis stress responses. Both rats and macaque monkeys subjected to low quality or abusive maternal care during the early postnatal period have more pronounced HPA responses to environmental stressors throughout development and into adulthood compared to animals reared in higher quality early maternal environments. However, little is known about the relative contributions to HPA stress response styles in developing offspring in species in which offspring care is routinely provided by group members other than the mother, such as in cooperatively breeding mammals. Marmoset monkeys exhibit cooperative offspring rearing, with fathers and older siblings providing care in addition to that provided by the mother. We evaluated the effects of early maternal, paternal, and older sibling care on HPA responses to social separation across development in captive white-faced marmoset offspring (Callithrix geoffroyi). We monitored offspring care by mothers, fathers, and older siblings in marmosets for the first 60 days of life. Later in development, each marmoset experienced three standardized social separation/novelty exposure stressors at 6, 12, and 18 months of age. During separation, we collected urine samples and analyzed them via enzyme immunoassay for cortisol levels. Infants that received higher rates of rejections from the entire family group showed higher cortisol responses to social separation. This relationship was found when mothers, fathers, and older siblings, were analyzed separately as well. No differences in cortisol responses were found between offspring that received high and low rates of carrying or high and low rates of licking and grooming by any group member. In the cooperatively breeding marmoset, early social cues from multiple classes of caregivers may influence HPA stress responses throughout the lifespan. PMID:24099861
Soliani, Flaviane Cristina de Brito Guzzo; Cabbia, Rafael; Batistela, Matheus Fitipaldi; Almeida, Amarylis Garcia; Kümpel, Vinícius Dias; Yamauchi Junior, Luiz; Andrade, Telma Gonçalves Carneiro Spera de
2017-01-01
The multiple insecurities, anatomical, physiological and psychological changes arising from the gestational period can generate an overload of stress in the mother and cause disturbances in the offspring, affecting it throughout its development. The existing analysis linking prenatal stress and offspring's anxiety have divergent results, being limited as to gestational week, type of stressor and age of progeny's assessment. Social separation has been described as a stressor that causes increase in anxiety. Thus, the present study evaluated the effects of social separation applied in one of the three gestational weeks of rat dams on the manifestation of the defensive behaviors related to generalized anxiety disorder and panic in the Elevated T Maze of the male progeny in three stages of development (1, 3 or 6 months of life). It was found, in the offspring of grouped (control) dams, increased behaviors associated with generalized anxiety disorder and a reduction of panic-like behaviors throughout development. For animals whose dams were socially separated during pregnancy, the most critical period of exposure was the 2nd gestational week, which affected the acquisition of aversive memory, demonstrated by the impairment on learning of avoidances of the offspring in all ages evaluated. Stressor exposure in this week also increased the avoidances, related to generalized anxiety of progeny in the 1st month and decreased escapes, related to panic in the 3rd month of life and, at the age of 6 months old, an inverse situation, with the reduction of the defensive behaviors associated to generalized anxiety disorder. The results show that, when assessing effects of prenatal stress on the manifestation of anxiety, not only the period of exposure is important, but also the age of offspring assessed.
Micronucleated erythrocytes in newborn rats exposed to raltegravir placental transfer.
Torres-Mendoza, Blanca Miriam; Coronado-Medina, Damharis Elizabeth; Gómez-Meda, Belinda Claudia; Vázquez-Valls, Eduardo; Zamora-Perez, Ana Lourdes; Lemus-Varela, María de Lourdes; Zúñiga-González, Guillermo Moisés
2014-01-01
The use of raltegravir in treating HIV/AIDS has been proposed due to its effectiveness in suppressing high loads of HIV RNA in pregnant women, thus preventing infection of the fetus. However, administration of raltegravir during pregnancy produces a compound which is transferred to high concentrations to the offspring. The objective of this study is to evaluate the transplacental genotoxic effect of raltegravir in newborn rats. We evaluated the number of micronucleated erythrocytes (MNE), micronucleated polychromatic erythrocytes (MNPCE), and polychromatic erythrocytes (PCE) in the peripheral blood samples of the offspring of Wistar rats treated 6 days before birth with oral administration of raltegravir. The animals were randomly assigned to five groups as follows: raltegravir at doses of 15, 30, or 60 mg/day, cyclophosphamide 10 mg/kg (positive control), or 0.5 ml of sterile water (negative control). In addition, the effect of these drugs on the weight and height of newborns was assessed. There were no differences in the number of MNE, MNPCE, and PCE, and a slight decrease in the weight and height was observed in the offspring of the rat mothers treated with raltegravir. Genotoxicity studies are required in pregnant women to determine the risk of using raltegravir to the fetuses.
Michaels, Clifford C; Holtzman, Stephen G
2007-04-01
Early-life stress has been identified as a risk factor in the development of a host of disorders, including substance abuse; however the link between early postnatal stress and changes in measures of reward has not been thoroughly researched. The current study had two main objectives: 1) to determine the impact of maternal separation (an animal model of early-life stress) on the consumption of 10% and 2.5% sucrose solutions by Long-Evans rat dams and male and female offspring, and 2) to determine the effect of the opioid antagonist naltrexone (0.1-3.0 mg/kg) on drinking by each of those groups. Dam-pup separations occurred for varying lengths of time during the first two postnatal weeks. In Experiment 1, a two-bottle choice test (sucrose solution vs. water) was administered across five days to both nonhandled (NH) and maternally-separated (MS) offspring as adults and to dams 2-4 weeks post-weaning. In Experiment 2, naltrexone was administered prior to two-bottle choice tests. MS males and the dams of MS litters exhibited increased intake of total fluid and sucrose solutions, whereas results from females were less consistent. Naltrexone elicited a greater decrease in fluid intake and sucrose intake in male MS offspring compared to male NH offspring. These results indicate that early postnatal stress alters both sucrose consumption, a non-drug measure of reward, and apparently the brain opioid systems that mediate naltrexone-induced drinking suppression.
Wu, Ziyi; Li, Xingyue; Zhang, Yi; Tong, Dongyi; Wang, Lili; Zhao, Ping
2018-01-01
Fetal exposure to general anesthetics may pose significant neurocognitive risks but methods to mitigate against these detrimental effects are still to be determined. We set out, therefore, to assess whether single or repeated in utero exposure to sevoflurane triggers long-term cognitive impairments in rat offspring. Since maternal exercise during pregnancy has been shown to improve cognition in offspring, we hypothesized that maternal treadmill exercise during pregnancy would protect against sevoflurane-induced neurotoxicity. In the first experiment, pregnant rats were exposed to 3% sevoflurane for 2 h on gestational (G) day 14, or to sequential exposure for 2 h on G13, G14 and G15. In the second experiment, pregnant rats in the exercise group were forced to run on a treadmill for 60 min/day during the whole pregnancy. The TrkB antagonist ANA-12 was used to investigate whether the brain-derived neurotrophic factor (BDNF)/TrkB/Akt signaling pathway is involved in the neuroprotection afforded by maternal exercise. Our data suggest that repeated, but not single, exposure to sevoflurane caused a reduction in both histone acetylation and BDNF expression in fetal brain tissues and postnatal hippocampus. This was accompanied by decreased numbers of dendritic spines, impaired spatial-dependent learning and memory dysfunction. These effects were mitigated by maternal exercise but the TrkB antagonist ANA-12 abolished the beneficial effects of maternal exercise. Our findings suggest that repeated, but not single, exposure to sevoflurane in pregnant rats during the second trimester caused long-lasting learning and memory dysfunction in the offspring. Maternal exercise ameliorated the postnatal neurocognitive impairment by enhancing histone acetylation and activating downstream BDNF/TrkB/Akt signaling.
Zheng, Xiaoguo; Li, Zhenhua; Wang, Guishuan; Li, Zhengzheng; Liang, Ajuan; Wang, Hanshu; Dai, Yubing; Huang, Xingxu; Chen, Xuejin; Ma, Yuanwu; Sun, Fei
2017-01-01
DNA methylation is the major focus of studies on paternal epigenetic inheritance in mammals, but most previous studies about inheritable DNA methylation changes are passively induced by environmental factors. However, it is unclear whether the active changes mediated by variations in DNA methyltransferase activity are heritable. Here, we established human-derived DNMT3A (hDNMT3A) transgenic rats to study the effect of hDNMT3A overexpression on the DNA methylation pattern of rat sperm and to investigate whether this actively altered DNA methylation status is inheritable. Our results revealed that hDNMT3A was overexpressed in the testis of transgenic rats and induced genome-wide alterations in the DNA methylation pattern of rat sperm. Among 5438 reliable loci identified with 64 primer-pair combinations using a methylation-sensitive amplification polymorphism method, 28.01% showed altered amplified band types. Among these amplicons altered loci, 68.42% showed an altered DNA methylation status in the offspring of transgenic rats compared with wild-type rats. Further analysis based on loci which had identical DNA methylation status in all three biological replicates revealed that overexpression of hDNMT3A in paternal testis induced hypermethylation in sperm of both genotype-negative and genotype-positive offspring. Among the differentially methylated loci, 34.26% occurred in both positive and negative offspring of transgenic rats, indicating intergenerational inheritance of active DNA methylation changes in the absence of hDNM3A transmission. Furthermore, 75.07% of the inheritable loci were hyper-methylated while the remaining were hypomethylated. Distribution analysis revealed that the DNA methylation variations mainly occurred in introns and intergenic regions. Functional analysis revealed that genes related to differentially methylated loci were involved in a wide range of functions. Finally, this study demonstrated that active DNA methylation changes induced by hDNMT3A expression were intergenerationally inherited by offspring without transmission of the transgene, which provided evidence for the transmission of active endogenous-factors-induced epigenetic variations. PMID:29312436
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Lang; Liu, Zhongfen; Gong, Jun
Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growthmore » factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause the adaptive change of glucocorticoid-IGF1 axis.« less
Objective: Global undernutrition, low protein diet or dexamethasone treatment during pregnancy has been demonstrated in animal models to result in adverse health effects including hypertension and insulln resistance in adult offspring. Most protocols that produce these effects ca...
Navya, Harish; Yajurvedi, Hanumant Narasinhacharya
2017-04-01
The effect of obesity on testicular activity in prepubertal and pubertal rats was investigated in the present study. Obesity was induced in adult females by feeding a high-calorie diet (HCD). These females were mated with normal males and were fed an HCD during pregnancy and lactation. The male offspring born to obese mothers and fed an HCD after weaning were found to be obese. Seminiferous tubules of offspring from control mothers (OCM) and offspring from HCD-fed mothers (OHCDM) had the same set of germ cells at different age intervals, namely spermatogonia, leptotene spermatocytes, zygotene spermatocytes, pachytene spermatocytes and round and elongated spermatids on postnatal days (PND) 7, 13, 17, 24 and 36, and on the day of preputial separation, respectively. However, there was a significant decrease in round and elongated spermatids and the epididymal sperm count, coupled with a significant decrease in testosterone and an increase in leptin serum concentrations in OHCDM compared with OCM. These results show that obesity in prepubertal rats does not affect the age-dependent appearance of germ cells according to developmental hierarchy, but it does interfere with spermatid formation, resulting in a reduced sperm count, which may be due to a deficiency of testosterone mediated by hyperleptinaemia.
Effects of 2.0-g 1.75-g and 1.5-g Hypergravity on Pregnancy Outcome in Rats (Rattus norvegicus)
NASA Technical Reports Server (NTRS)
Mills, Nicole A.; Baer, Lisa A.; Ronca, April E.
2001-01-01
In 1995, ten pregnant female rats were launched on the Space Shuttle (STS-70) on Gestational day(G) 11 of their 22-day pregnancy as part of the NASA/NIH.Rodent (R)2 Experiment. Following landing on G20, fetuses were harvested from half of the dams, while the remaining five dams underwent birth. Spaceflight did not interrupt pregnancy, alter litter sizes, or affect body weights or gender ratios of the fetuses or neonates. In the present study we used the NASA/NIH.R2 experimental paradigm to analyze the effects of hypergravity on pregnancy outcome. On G10, time-bred Sprague-Dawley rat dams were assigned to either G20 or Birth conditions, then further assigned to Hypergravity (HG) 2.0-g, HG 1.75-g, HG 1.5-g, Rotational Control (RC, 1.03), or Stationary Control (SC, 1.0-g) treatments. Dams were exposed to continuous centrifugation from G11 through G20, with brief daily stops for animal health checks and maintenance. For both the G20 and Birth dams, comparable litter sizes and litter gender ratios were observed across gravity conditions. However, centrifugation-exposed (HG and RC) fetuses and neonates showed significantly lower body masses (p less than 0.05) relative to SC offspring. HG 2.0-g offspring weighed significantly less than those in all other gravity conditions (p less than 0.05). The observed reductions in offspring body mass at 1.5-g and 1.75-g, can be attributed to the rotational component of centrifugation, rather than to increased gravitational load, whereas 2.0-g hypergravity exposure further exacerbated the gravity centrifugation effect on offspring body mass. Pregnant dams exposed to centrifugation weighed significantly less than SC dams (p less than 0.05), suggesting that centrifugation effects on maternal body mass may contribute to reduced size of the developing offspring. These findings are consistent with previous reports of non-pregnant adult animals suggesting that, whereas spaceflight has virtually no effect on body mass, centrifugation is associated with changes in body weight regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, Masahiko; Tamura, Masashi; Yamashita, Junko
2005-08-15
The effects of in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the reproductive system of male rat offspring (F{sub 1}) and the sex ratio of the subsequent generation (F{sub 2}) were examined. Female Holtzman rats were gavaged with an initial loading dose of 400 ng/kg TCDD prior to mating, followed by weekly maintenance doses of 80 ng/kg during mating, pregnancy, and the lactation period. Maternal exposure to TCDD had no significant effects on fetus/pup (F{sub 1}) mortality, litter size, or sex ratio on gestation day (GD) 20 or postnatal day (PND) 2. The TCDD concentration in maternal livers and adipose tissuemore » on GD20 was 1.21 and 1.81 ng/kg, respectively, and decreased at weaning to 0.72 in the liver and 0.84 in the adipose tissue. In contrast, the TCDD concentration in pup livers was 1.32 ng/kg on PND2 and increased to 1.80 ng/kg at weaning. Ventral prostate weight of male offspring was significantly decreased by TCDD exposure on PND28 and 120 compared with that of controls. Weight of the testes, cauda epididymides, and seminal vesicle, and sperm number in the cauda epididymis were not changed by TCDD exposure at PND120. TCDD- or vehicle-exposed male offspring were mated with unexposed females. The sex ratio (percentage of male pups) of F{sub 2} offspring was significantly reduced in the TCDD-exposed group compared with controls. These results suggest that in utero and lactational TCDD exposures affect the development of male gonads in offspring (F{sub 1}), leading to changes in the sex ratio of the subsequent generation (F{sub 2})« less
Sanchez-Garrido, Miguel Angel; Ruiz-Pino, Francisco; Velasco, Inmaculada; Barroso, Alexia; Fernandois, Daniela; Heras, Violeta; Manfredi-Lozano, Maria; Vazquez, Maria Jesus; Castellano, Juan Manuel; Roa, Juan; Pinilla, Leonor; Tena-Sempere, Manuel
2018-02-01
Obesity and its comorbidities are reaching epidemic proportions worldwide. Maternal obesity is known to predispose the offspring to metabolic disorders, independently of genetic inheritance. This intergenerational transmission has also been suggested for paternal obesity, with a potential negative impact on the metabolic and, eventually, reproductive health of the offspring, likely via epigenetic changes in spermatozoa. However, the neuroendocrine component of such phenomenon and whether paternal obesity sensitizes the offspring to the disturbances induced by high-fat diet (HFD) remain poorly defined. We report in this work the metabolic and reproductive impact of HFD in the offspring from obese fathers, with attention to potential sex differences and alterations of hypothalamic Kiss1 system. Lean and obese male rats were mated with lean virgin female rats; male and female offspring were fed HFD from weaning onward and analyzed at adulthood. The increases in body weight and leptin levels, but not glucose intolerance, induced by HFD were significantly augmented in the male, but not female, offspring from obese fathers. Paternal obesity caused a decrease in luteinizing hormone (LH) levels and exacerbated the drop in circulating testosterone and gene expression of its key biosynthetic enzymes caused by HFD in the male offspring. LH responses to central kisspeptin-10 administration were also suppressed in HFD males from obese fathers. In contrast, paternal obesity did not significantly alter gonadotropin levels in the female offspring fed HFD, although these females displayed reduced LH responses to kisspeptin-10. Our findings suggest that HFD-induced metabolic and reproductive disturbances are exacerbated by paternal obesity preferentially in males, whereas kisspeptin effects are affected in both sexes. Copyright © 2018 Endocrine Society.
Anevska, Kristina; Cheong, Jean N; Wark, John D; Wlodek, Mary E; Romano, Tania
2018-02-01
Females born growth restricted have poor adult bone health. Stress exposure during pregnancy increases risk of pregnancy complications. We determined whether maternal stress exposure in growth-restricted females exacerbates long-term maternal and offspring bone phenotypes. On gestational day 18, bilateral uterine vessel ligation (restricted) or sham (control) surgery was performed on Wistar-Kyoto rats. At 4 mo, control and restricted females were mated and allocated to unstressed or stressed pregnancies. Stressed pregnancies had physiological measurements performed; unstressed females were not handled. After birth, mothers were aged to 13 mo. Second-generation (F2) offspring generated four experimental groups: control unstressed, restricted unstressed, control stressed and restricted stressed. F2 offspring were studied at postnatal day 35 (PN35), 6, 12, and 16 mo. Peripheral quantitative computed tomography was performed on maternal and F2 offspring femurs. Restricted females, irrespective of stress during pregnancy, had decreased endosteal circumference, bending strength, and increased osteocalcin concentrations after pregnancy at 13 mo. F2 offspring of stressed mothers were born lighter. F2 male offspring from stressed pregnancies had decreased trabecular content at 6 mo and decreased endosteal circumference at 16 mo. F2 female offspring from growth-restricted mothers had reduced cortical thickness at PN35 and reduced endosteal circumference at 6 mo. At 12 mo, females from unstressed restricted and stressed control mothers had decreased trabecular content. Low birth weight females had long-term bone changes, highlighting programming effects on bone health. Stress during pregnancy did not exacerbate these programmed effects. Male and female offspring responded differently to maternal growth restriction and stress, indicating gender-specific programming effects.
Toxicological outcomes in rats exposed to inhaled ethanol during gestation.
Beasley, Tracey E; Evansky, Paul A; Martin, Sheppard A; McDaniel, Katherine L; Moser, Virginia C; Luebke, Robert W; Norwood, Joel; Rogers, John M; Copeland, Carey B; Bushnell, Philip J
2014-01-01
Recent legislation has encouraged replacing petroleum-based fuels with renewable alternatives including ethanol, which is typically blended with gasoline in the United States at concentrations up to 10%, with allowances for concentrations up to 85% for some vehicles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ethanol vapors from these fuels. The well-known sensitivity of the developing nervous and immune systems to ingested ethanol, and the lack of information about its toxicity by inhalation prompted the present work on its potential developmental effects in a rat model. Pregnant Long-Evans rats were exposed for 6.5h/day on days 9-20 of gestation to clean air or ethanol vapor at concentrations of 5000, 10,000, or 21,000 ppm, which resulted in estimated peak blood ethanol concentrations (BECs) of 2.3, 6.7, and 192 mg/dL, respectively. No overt toxicity in the dams was observed. Ethanol did not affect litter size or weight, or postnatal weight gain in the pups. Motor activity was normal in offspring through postnatal day (PND) 29. On PND 62, the 5000 and 21,000 ppm groups were more active than controls. On PND 29 and 62, offspring were tested with a functional observational battery, which revealed small changes in the neuromuscular and sensorimotor domains that were not systematically related to dose. Cell-mediated and humoral immunity were not affected by ethanol exposure in 6-week-old offspring. Systolic blood pressure was increased by 10,000 ppm ethanol in males at PND 90 but not at PND 180. No differences in lipoprotein profile, liver function, or kidney function were observed. In summary, prenatal exposure to inhaled ethanol caused some mild changes in physiological and behavioral development in offspring that were not clearly related to inhaled concentration or BEC, and did not produce detectable changes in immune function. This low toxicity of inhaled ethanol may result from the slow rise in BEC by the inhalation route. Published by Elsevier Inc.
Bai, S Y; Briggs, D I; Vickers, M H
2012-10-01
An adverse prenatal environment may induce long-term metabolic consequences, in particular hypertension and cardiovascular disease. A maternal low-protein (LP) diet is well known to result in increased blood pressure (BP) in offspring. Choline has been shown to have direct BP-reducing effects in humans and animals. It has been suggested that endogenous choline synthesis via phosphatidylcholine is constrained during maternal LP exposure. The present study investigates the effect of choline supplementation to mothers fed a LP diet during pregnancy on systolic BP (SBP) in offspring as measured by tail-cuff plethysmography. Wistar rats were assigned to one of three diets to be fed ad libitum throughout pregnancy: (1) control diet (CONT, 20% protein); (2) an LP diet (9% protein); and (3) LP supplemented with choline (LP + C). Dams were fed the CONT diet throughout lactation and offspring were fed the CONT diet from weaning for the remainder of the trial. At postnatal day 150, SBP and retroperitoneal fat mass was significantly increased in LP offspring compared with CONT animals and was normalized in LP + C offspring. Effects of LP + C reduction in SBP were similar in both males and females. Plasma choline and phosphatidylcholine concentrations were not different across treatment groups, but maternal choline supplementation resulted in a significant reduction in homocysteine concentrations in LP + C offspring compared with LP and CONT animals. The present trial shows for the first time that maternal supplementation with dietary choline during periods of LP exposure can normalize increased SBP and fat mass observed in offspring in later life.
Maloney, Christopher A; Hay, Susan M; Rees, William D
2009-05-01
In humans poor maternal folate status is associated with a decrease in infant birth weight. As low birth weight increases the risk of cardiovascular and metabolic disease in adults, an inadequate supply of folic acid in the mother's diet may increase the susceptibility of the offspring to disease. We have fed laboratory rats diets deficient in folic acid and the related methyl donors methionine and choline to examine the effects on growth, blood pressure and insulin action in the offspring. Poor folate status transiently increased fetal growth but did not produce a long-term change in body weight. There were, however, small changes in the hearts of the female offspring. When folate deficiency was combined with low intakes of methionine and choline, the kidneys of the male offspring were proportionately smaller, probably because of the limited availability of methionine. There was no effect on the blood pressure of either the male or female offspring. The pancreatic insulin content of fetuses from animals fed the folate-deficient diets were higher than those of the controls. Following an oral glucose challenge, there was a weak trend for glucose-stimulated insulin release to be increased in the offspring of dams fed the folate-deficient diet. The changes in insulin concentrations were, however, much smaller than the corresponding changes observed in the offspring of animals fed protein-deficient diets. These results suggest that folate deficiency during gestation causes modest changes to the insulin axis of the fetus.
Adori, Csaba; Zelena, Dóra; Tímár, Júlia; Gyarmati, Zsuzsa; Domokos, Agnes; Sobor, Melinda; Fürst, Zsuzsanna; Makara, Gábor; Bagdy, György
2010-01-20
The recreational party drug "ecstasy" (3,4-methylenedioxymethamphetamine MDMA) is particularly popular among young adults who are in the childbearing age and thus there is a substantial risk of prenatal MDMA exposure. We applied an intermittent treatment protocol with an early first injection on pregnant Wistar rats (15 mg/kg MDMA s.c. on the E4, E11 and E18 days of gestation) to examine the potential physiological, endocrine and behavioral effects on adult male and female offspring. Prenatal MDMA-treatment provoked reduced body weight of offspring from the birth as far as the adulthood. Adult MDMA-offspring had a reduced blood-glucose concentration and hematocrit, altered relative spleen and thymus weight, had lower performance on wire suspension test and on the first trial of rotarod test. In contrast, no alteration in the locomotor activity was found. Anxiety and depression related behavioral parameters in elevated plus maze, sucrose preference or forced swimming tests were normal. MDMA-offspring had elevated concentration of the ACTH-precursor proopiomelanocortin and male MDMA-offspring exhibited elevated blood corticosterone concentration. No significant alteration was detected in the serotonergic marker tryptophan-hydroxylase and the catcholaminergic marker tyrosine-hydroxylase immunoreactive fiber densities in MDMA-offspring. The mothers exhibited reduced densities of serotonergic but not catecholaminergic fibers after the MDMA treatment. Our findings suggest that an intermittent prenatal MDMA exposure with an early first injection and a relatively low cumulative dose provokes mild but significant alterations in physical-physiological parameters and reduces motor skill learning in adulthood. In contrast, these adult offspring do not produce anxiety or depression like behavior.
Sedaghat, Katayoun; Zahediasl, Saleh; Ghasemi, Asghar
2015-02-01
Thyroid hormones play an essential role in fetal growth and maternal hypo-thyroidism which leads to cardiovascular deficiency in their offspring. Considering this, we intended to investigate the impact of gestational hypothyroidism on offspring vascular contractibility and possible underlying mechanisms. Hypothyroidism was induced in female rats by administration of 6-n-propyl-2-thiouracil in drinking water (0.02%) till delivery. The offspring aorta smooth muscle (without endothelium) contractile response to KCl (10-100 mM), KCl in the presence of nifedipine (10(-4)-10(-1) µM), phenylephrine (10(-9)-10(-6) M) and finally, phenylephrine and caffeine 100 mM in Ca(2+)-free Krebs were measured. KCl and phenylephrine-induced contractions were considerably lower in gestational hypothyroid (GH) than euthyroid offspring. GH responded to nifedipine with less sensitivity than control. The GH and control groups produced almost equal contraction in respond to phenylephrine and caffeine in Ca(2+)-free Krebs. This study suggests that in hypothyroid offspring L-type Ca(2+) channels are less functional, while intracellular Ca(2+) handling systems are less modified by low levels of maternal thyroid hormones.
Gestational undernutrition in humans can result in birth weight reductions (an indicator of a suboptimal intrauterine environment) and predisposition to adult disease in offspring including high blood pressure, insulin resistance, glucose intolerance, and obesity (key components ...
Developmental exposure to endocrine disrupting toxicants has been shown to alter a variety of physiological processes in mature offspring. Body (core) temperature (Tc) is a tightly regulated homeostatic system but is susceptible to disruptors of the hypothalamic-pituitary-thyroid...
Teo, Jonathan D; Morris, Margaret J; Jones, Nicole M
2017-07-01
In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. Before mating, HFD mothers were 11% heavier than Chow mothers (p<0.05, t-test). Righting reflex was delayed in offspring from HFD-fed mothers compared to the Chow mothers. The Chow-HI pups showed a loss in ipsilateral brain tissue, while the HFD-HI group had significantly greater loss. No significant difference was detected in brain volume between the HFD-C and Chow-C pups. When analysed on a per litter basis, the size of the injury was significantly correlated with maternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in offspring of obese mothers, these factors including gliosis and microglial infiltration are likely to contribute to enhanced brain injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Meehan, Crystal; Harms, Lauren; Frost, Jade D; Barreto, Rafael; Todd, Juanita; Schall, Ulrich; Shannon Weickert, Cynthia; Zavitsanou, Katerina; Michie, Patricia T; Hodgson, Deborah M
2017-07-01
Maternal exposure to infectious agents during gestation has been identified as a significant risk factor for schizophrenia. Using a mouse model, past work has demonstrated that the gestational timing of the immune-activating event can impact the behavioural phenotype and expression of dopaminergic and glutamatergic neurotransmission markers in the offspring. In order to determine the inter-species generality of this effect to rats, another commonly used model species, the current study investigated the impact of a viral mimetic Poly (I:C) at either an early (gestational day 10) or late (gestational day 19) time-point on schizophrenia-related behaviour and neurotransmitter receptor expression in rat offspring. Exposure to Poly (I:C) in late, but not early, gestation resulted in transient impairments in working memory. In addition, male rats exposed to maternal immune activation (MIA) in either early or late gestation exhibited sensorimotor gating deficits. Conversely, neither early nor late MIA exposure altered locomotor responses to MK-801 or amphetamine. In addition, increased dopamine 1 receptor mRNA levels were found in the nucleus accumbens of male rats exposed to early gestational MIA. The findings from this study diverge somewhat from previous findings in mice with MIA exposure, which were often found to exhibit a more comprehensive spectrum of schizophrenia-like phenotypes in both males and females, indicating potential differences in the neurodevelopmental vulnerability to MIA exposure in the rat with regards to schizophrenia related changes. Copyright © 2016. Published by Elsevier Inc.
Cohen, Joshua L; Glover, Matthew E; Pugh, Phyllis C; Fant, Andrew D; Simmons, Rebecca K; Akil, Huda; Kerman, Ilan A; Clinton, Sarah M
2015-01-01
The early-life environment critically influences neurodevelopment and later psychological health. To elucidate neural and environmental elements that shape emotional behavior, we developed a rat model of individual differences in temperament and environmental reactivity. We selectively bred rats for high versus low behavioral response to novelty and found that high-reactive (bred high-responder, bHR) rats displayed greater risk-taking, impulsivity and aggression relative to low-reactive (bred low-responder, bLR) rats, which showed high levels of anxiety/depression-like behavior and certain stress vulnerability. The bHR/bLR traits are heritable, but prior work revealed bHR/bLR maternal style differences, with bLR dams showing more maternal attention than bHRs. The present study implemented a cross-fostering paradigm to examine the contribution of maternal behavior to the brain development and emotional behavior of bLR offspring. bLR offspring were reared by biological bLR mothers or fostered to a bLR or bHR mother and then evaluated to determine the effects on the following: (1) developmental gene expression in the hippocampus and amygdala and (2) adult anxiety/depression-like behavior. Genome-wide expression profiling showed that cross-fostering bLR rats to bHR mothers shifted developmental gene expression in the amygdala (but not hippocampus), reduced adult anxiety and enhanced social interaction. Our findings illustrate how an early-life manipulation such as cross-fostering changes the brain's developmental trajectory and ultimately impacts adult behavior. Moreover, while earlier studies highlighted hippocampal differences contributing to the bHR/bLR phenotypes, our results point to a role of the amygdala as well. Future work will pursue genetic and cellular mechanisms within the amygdala that contribute to bHR/bLR behavior either at baseline or following environmental manipulations. © 2015 S. Karger AG, Basel.
Martins, Isabela Peixoto; de Oliveira, Júlio Cezar; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Previate, Carina; Tófolo, Laize Peron; Ribeiro, Tatiane Aparecida; da Silva Franco, Claudinéia Conationi; Miranda, Rosiane Aparecida; Prates, Kelly Valério; Alves, Vander Silva; Francisco, Flávio Andrade; de Moraes, Ana Maria Praxedes; de Freitas Mathias, Paulo Cezar; Malta, Ananda
2018-04-03
Protein restriction during the suckling phase can malprogram rat offspring to a lean phenotype associated with metabolic dysfunctions later in life. We tested whether protein-caloric restriction during lactation can exacerbate the effect of a high-fat (HF) diet at adulthood. To test this hypothesis, we fed lactating Wistar dams with a low-protein (LP; 4% protein) diet during the first 2 weeks of lactation or a normal-protein (NP; 23% protein) diet throughout lactation. Rat offspring from NP and LP mothers received a normal-protein diet until 60 days old. At this time, a batch of animals from both groups was fed an HF (35% fat) diet, while another received an NF (7% fat) diet. Maternal protein-caloric restriction provoked lower body weight and fat pad stores, hypoinsulinemia, glucose intolerance, higher insulin sensitivity, reduced insulin secretion and altered autonomic nervous system (ANS) function in adult rat offspring. At 90 days old, NP rats fed an HF diet in adulthood displayed obesity, impaired glucose homeostasis and altered insulin secretion and ANS activity. Interestingly, the LP/HF group also presented fat pad and body weight gain, altered glucose homeostasis, hyperleptinemia and impaired insulin secretion but at a smaller magnitude than the NP-HF group. In addition, LP/HF rats displayed elevated insulin sensitivity. We concluded that protein-caloric restriction during the first 14 days of life programs the rat metabolism against obesity and insulin resistance exacerbation induced by an obesogenic HF diet. Copyright © 2017 Elsevier Inc. All rights reserved.
Unger, Erica L.; Hurst, Amy R.; Georgieff, Michael K.; Schallert, Tim; Rao, Raghavendra; Connor, James R.; Kaciroti, Niko; Lozoff, Betsy; Felt, Barbara
2012-01-01
Developmental iron deficiency anemia (IDA) causes brain and behavioral deficits in rodent models, which cannot be reversed when treated at periods equivalent to later infancy in humans. This study sought to determine whether earlier iron treatment can normalize deficits of IDA in rats and what iron dose is optimal. The offspring of dams with IDA during gestation were cross-fostered at postnatal d (P) 8 to dams receiving diets with 1 of 3 iron concentrations until weaning (P21): 0.003–0.01 g/kg [totally iron deficient (TID)]; 0.04 g/kg [formerly iron deficient (FID-40)]; or 0.4 g/kg (FID-400). Always iron-sufficient control dams (CN-40) received a 0.04-g/kg iron diet. At P21, TID pups received a 0.01 g iron/kg diet; all others received a 0.04 g iron/kg diet. Hematocrit and brain iron and monoamine concentrations were assessed at P21 and P100. Pup growth, development, activity, object recognition, hesitancy, and watermaze performance were evaluated. Regional brain iron was restored by iron treatment. Regional monoamine and metabolite concentrations were elevated in FID-40 rats and reduced in FID-400 and TID rats compared with CN-40 rats. FID-40 offspring had motor delays similar to TID during lactation and FID-400 rats had elevated thigmotaxis similar to TID rats at P25 and P100 in the spatial watermaze. In conclusion, iron treatment at P8 in rats did not normalize all monoamine or behavioral measures after early IDA. Moderate iron treatment improved adult behavior, but higher iron treatment caused brain and behavioral patterns similar to TID in the short and long term. PMID:22990465
Koromilas, Christos; Tsakiris, Stylianos; Kalafatakis, Konstantinos; Zarros, Apostolos; Stolakis, Vasileios; Kimpizi, Despoina; Bimpis, Alexios; Tsagianni, Anastasia; Liapi, Charis
2015-02-01
Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent approaches towards the experimental simulation of congenital and early-age-occurring hypothyroidism.
Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana
2017-07-01
The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de 60 dias de idade foram medidos por meio de um método indireto de manguito de cauda usando um eletro esfigmomanômetro. Os corações (d60) foram coletados para avaliação da expressão de RNAm da conexina 43 (Cx43) e análise morfológica e morfométrica. A prole BP não mostrou diferença no peso corporal, embora tenha nascido mais leve do que a prole PN. Os níveis de PA foram significativamente mais altos no grupo BP. Observou-se um aumento significativo na área ocupada pelas fibras colágenas, diminuição do número de cardiomiócitos em 104 µm2 e aumento da área de cardiomiócitos associada ao aumento da expressão de Cx43. A RPG altera os níveis miocárdicos de RNAm de Cx43 em ratos adultos jovens, sugerindo que este mecanismo visa compensar o processo fibrótico pelo acúmulo de fibras de colágeno no interstício cardíaco.
Jacob, Sherin; Thangarajan, Sumathi
2017-06-01
Methyl mercury (MeHg) is a developmental neurotoxin that causes irreversible cognitive damage in offspring of gestationally exposed mothers. Currently, no preventive drugs are established against MeHg developmental neurotoxicity. The neuroprotective effect of gestational administration of a flavanoid against in utero toxicity of MeHg is not explored much. Hence, the present study validated the effect of a bioactive flavanoid, fisetin, on MeHg developmental neurotoxicity outcomes in rat offspring at postnatal weaning age. Pregnant Wistar rats were simultaneously given MeHg (1.5 mg/kg b.w.) and two doses of fisetin (10 and 50 mg/kg b.w. in two separate groups) orally from gestational day (GD) 5 till parturition. Accordingly, after parturition, on postnatal day (PND) 24, weaning F 1 generation rats were studied for motor and cognitive behavioural changes. Biochemical and histopathological changes were also studied in the cerebral cortex, cerebellum and hippocampus on PND 25. Administration of fisetin during pregnancy prevented behavioural impairment due to transplacental MeHg exposure in weaning rats. Fisetin decreased the levels of oxidative stress markers, increased enzymatic and non-enzymatic antioxidant levels and increased the activity of membrane-bound ATPases and cholinergic function in F 1 generation rats. In light microscopic studies, fisetin treatment protected the specific offspring brain regions from significant morphological aberrations. Between the two doses of fisetin studied, 10 mg/kg b.w. was found to be more satisfactory and effective than 50 mg/kg b.w. The present study shows that intake of fisetin during pregnancy in rats ameliorated in utero MeHg exposure-induced neurotoxicity outcomes in postnatal weaning F 1 generation rats.
Flynn, K M; Delclos, K B; Newbold, R R; Ferguson, S A
2005-09-01
Methoxychlor is an insecticide with estrogen-like activity, thus exposure during development might cause sexually dimorphic behavioral alterations. To evaluate this, pregnant rats consumed diets containing 0, 10, 100 or 1000 ppm methoxychlor from gestational day 7, and offspring continued on these diets until postnatal day (PND) 77. Assessments of sexually dimorphic behaviors in offspring indicated that intake of a 3.0% sodium chloride solution was significantly increased (41%) in males and females of the 1000 ppm group. No treatment group differed from controls in open field nor running wheel activity, play behavior, nor 0.3% saccharin solution intake. Offspring of the 1000 ppm group showed significantly decreased body weight, reaching 17% less than controls at PND 77, but not clearly related to their salt solution intake. During pregnancy, 1000 ppm dams consumed 23% less food and weighed 10% less than controls, but this did not affect litter outcomes. These results indicate that in rodents, developmental and chronic exposure to dietary methoxychlor alters the sexually dimorphic behavior of salt-solution intake in young adults of both sexes. Similar behavioral alterations with other xenoestrogens, and the potential for interactions among xenoestrogens, suggest that this report may minimize the true effects of dietary methoxychlor exposure.
MATERNAL HYPOTHYROXINEMIA LEADS TO PERSISTENT DEFICITS IN HIPPOCAMPAL SYNAPTIC TRANSMISSION AND LEARNING IN RAT OFFSPRING. M.E. Gilbert1 and Li Sui2, Neurotoxicology Division, 1US EPA and 2National Research Council, Research Triangle Pk, NC 27711.
While severe hypothyroidis...
Epidemiological studies indicate that a sedentary lifestyle combined with increased consumption of high-fat diets contributes to increased incidence of obesity and related metabolic disorders. These disorders during pregnancy may make offspring more susceptible to air pollutants....
Prenatal zinc supplementation of zinc-adequate rats adversely affects immunity in offspring
USDA-ARS?s Scientific Manuscript database
We previously showed that zinc (Zn) supplementation of Zn-adequate dams induced immunosuppressive effects that persist in the offspring after weaning. We investigated whether the immunosuppressive effects were due to in utero exposure and/or mediated via milk using a cross-fostering design. Pregnant...
Kaur, H; Toop, C R; Muhlhausler, B S; Gentili, S
2018-06-18
Perinatal exposure to sucrose or high-fructose corn syrup-55 (HFCS-55) in rats has previously been associated with altered hepatic fat content and composition post-weaning, although the effects on hepatic metabolism are unknown. The current study aimed to determine the sex-specific effects of maternal consumption of sucrose or HFCS-55 on the expression of hepatic lipogenic genes in the offspring. Liver samples were collected from offspring of albino Wistar rats provided with ad libitum access to either water (control), 10% sucrose or 10% HFCS-55 solution during pregnancy and lactation at 3 weeks (control n=16, sucrose n=22, HFCS-55 n=16) and 12 weeks (control n=16, sucrose n=10, HFCS-55 n=16) of age. Hepatic expression of the transcription factors such as carbohydrate response element-binding protein, sterol regulatory element-binding protein-1c and downstream genes was determined by quantitative real-time PCR. Sucrose-exposed offspring had higher hepatic SREBP-1c messenger RNA expression compared with control and HFCS-55 groups at both 3 weeks (P=0.01) and 12 weeks (P=0.03) of age. There were no differences in the expression of other hepatic lipogenic genes between groups at either 3 or 12 weeks. Thus, perinatal exposure to sucrose may be more detrimental to offspring hepatic metabolism compared with HFCS-55, independent of sex, and it will be important to evaluate the longer-term effects of perinatal sucrose exposure in future studies.
Liu, Min; Chen, Biao; Pei, Linguo; Zhang, Qi; Zou, Yunfei; Xiao, Hao; Zhou, Jin; Chen, Liaobin; Wang, Hui
2018-06-11
Prenatal dexamethasone exposure (PDE) could induce testicular developmental toxicity in adults. The present study aims to confirm its intrauterine origination, and to explore its potential intrauterine programming mechanism. The pregnant rats were respectively injected subcutaneously with 0.2 and 0.8 mg/kg⋅d dexamethasone during gestational days (GD) 9 to 20. The testes and serum of offspring rats were collected on GD20 and postnatal week (PW) 12. In vivo, PDE significantly induced the abnormal testicular morphology in offspring from GD20 to PW12. Moreover, the serum and intratesticular testosterone levels and the expression of testicular steroidogenic acute regulatory protein (StAR) were reduced by PDE. The expression levels of glucocorticoid receptor (GR) and histone deacetylase 7 (HDAC7) were increased in fetal testes. Furthermore, the histone 3 lysine 9 acetylation (H3K9ac) level in the StAR promoter was decreased by PDE from GD20 to PW12. In vitro, mouse Leydig tumour cell line (MLTC-1) cells were treated with dexamethasone (20, 100 and 500 nM), and the testosterone production and StAR expression were reduced. Moreover, dexamethasone increased the expression of HDAC7 by activating GR, which decreased the H3K9ac level in the StAR promoter. Taken together, PDE caused testicular dysplasia before and after birth in male offspring rats, and its mechanism was related to the low-expressional programming of StAR mediated by decreasing H3K9ac level. Copyright © 2018. Published by Elsevier B.V.
Huang, Xiao-Ting; Yue, Shao-Jie; Li, Chen; Guo, Jia; Huang, Yan-Hong; Han, Jian-Zhong; Feng, Dan-Dan; Luo, Zi-Qiang
2017-05-01
Intrauterine growth retardation (IUGR) is closely related to the later development of type 2 diabetes in adulthood. Excessive activation of N-methly-D-aspartate receptors (NMDARs) causes excitatory neurotoxicity, resulting in neuronal injury or death. Inhibition of NMDARs enhances the glucose-stimulated insulin secretion and survival of islet cells in type 2 diabetic mouse and human islets. Here, we examined whether antenatal blockade of NMDARs by Memantine could decrease the risk of diabetes induced by a high-fat (HF) diet at adulthood in IUGR rats. Pregnant SD rats were assigned to four groups: control, IUGR, Memantine, and Memantine + IUGR. The pregnant rats were exposed to hypoxic conditions (FiO2 = 0.105) for 8 h/day (IUGR group) or given a daily Memantine injection (5 mg/kg, i.p.) before hypoxia exposure from embryonic day (E) 14.5 to E 20.5 (Memantine + IUGR). The offspring were fed an HF diet with 60% of the calories from age 4 to 12 weeks. We found that NMDAR mRNAs were expressed in the fetal rat pancreas. An HF diet resulted in a high rate of diabetes at adulthood in the IUGR group. Antenatal Memantine treatment decreased the risk of diabetes at adulthood of rats with IUGR, which was associated with rescued glucose tolerance, increased insulin release, improved the insulin sensitivity, and increased expression of genes related to beta-cell function in the pancreas. Together, our results suggest that antenatal blockade of NMDARs by Memantine in pregnant rats improves fetal development and reduces the susceptibility to diabetes at adulthood in offspring. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Preconception Alcohol Increases Offspring Vulnerability to Stress
Jabbar, Shaima; Chastain, Lucy G; Gangisetty, Omkaram; Cabrera, Miguel A; Sochacki, Kamil; Sarkar, Dipak K
2016-01-01
The effect of preconception drinking by the mother on the life-long health outcomes of her children is not known, and therefore, in this study using an animal model, we determined the impact of preconception alcohol drinking of the mother on offspring stress response during adulthood. In our preconception alcohol exposure model, adult female rats were fed with 6.7% alcohol in their diet for 4 weeks, went without alcohol for 3 weeks and were bred to generate male and female offspring. Preconception alcohol-exposed offsprings' birth weight, body growth, stress response, anxiety-like behaviors, and changes in stress regulatory gene and protein hormone levels were evaluated. In addition, roles of epigenetic mechanisms in preconception alcohol effects were determined. Alcohol feeding three weeks prior to conception significantly affected pregnancy outcomes of female rats, with respect to delivery period and birth weight of offspring, without affecting maternal care behaviors. Preconception alcohol negatively affected offspring adult health, producing an increased stress hormone response to an immune challenge. In addition, preconception alcohol was associated with changes in expression and methylation profiles of stress regulatory genes in various brain areas. These changes in stress regulatory genes were normalized following treatment with a DNA methylation blocker during the postnatal period. These data highlight the novel possibility that preconception alcohol affects the inheritance of stress-related diseases possibly by epigenetic mechanisms. PMID:27296153
Wang, Chao-Chuan; Lin, Hui-Ching; Chan, Yun-Han; Gean, Po-Wu; Yang, Yen Kung; Chen, Po See
2013-10-01
Accumulating evidence suggests that dysfunction of the amygdala is related to abnormal fear processing, anxiety, and social behaviors noted in autistic spectrum disorders (ASDs). In addition, studies have shown that disrupted brain serotonin homeostasis is linked to ASD. With a valproate (VPA)-induced rat ASD model, we investigated the possible role of amygdala serotonin homeostasis in autistic phenotypes and further explored the underlying mechanism. We first discovered that the distribution of tryptophan hydroxylase immunoreactivity in the caudal raphe system was modulated on postnatal day (PD) 28 of the VPA-exposed offspring. Then, we found a significantly higher serotonin transporter availability in the amygdala of the VPA-exposed offspring on PD 56 by using single photon emission computed tomography and computed tomography co-registration following injection of (123)I-labeled 2-((2-(dimethylamino)methyl)phenyl)thio)-5-iodophenylamine((123)I[ADAM]). Furthermore, treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, increased social interaction and improved fear memory extinction in the VPA-exposed offspring. 8-OH-DPAT treatment also reversed the characteristics of miniature excitatory post-synaptic currents as well as paired pulse facilitation observed in lateral amygdala slices. These results provided further evidence to support the role of the amygdala in characteristic behavioral changes in the rat ASD model. The serotonergic projections that modulate the amygdala function might play a certain role in the development and treatment of behavioral symptoms exhibited in individuals with ASD.
Early and Later Life Stress Alter Brain Activity and Sleep in Rats
Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne
2013-01-01
Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way. PMID:23922857
Tonge, Sally R.
1973-01-01
Methylamphetamine hydrochloride (80 mg/l.) and/or chlorpromazine hydrochloride (200 mg/l.) have been administered in the drinking water of female Wistar rats during pregnancy and suckling. The offspring were weaned at 21 days and thereafter received no drugs. Nine months later, male offspring were killed and noradrenaline and normetanephrine concentrations were determined in eight discrete areas of the brains: neocortex, hippocampus, striatum, thalamus, hypothalamus, corpora quadrigemina, pons/medulla, and amygdala region. Both drugs appeared to have permanently altered catecholamine concentrations in several areas of the brain. There was evidence of antagonism between the effects of the two drugs in the hippocampus, striatum, thalamus, and corpora quadrigemina, where the individual drugs produced altered noradrenaline concentrations but a combination of the two had no effect. PMID:4722052
Shelley, Piran; Tarry-Adkins, Jane; Martin-Gronert, Malgorzata; Poston, Lucilla; Heales, Simon; Clark, John; Ozanne, Susan; McConnell, Josie
2007-01-01
We have recently reported that maternal dietary imbalance during pregnancy and lactation can reduce the lifespan of offspring. Rats that were growth restricted in utero by maternal protein restriction and underwent rapid weight gain when suckled by control fed dams died earlier than animals whose mothers were fed a control diet throughout pregnancy and lactation. We demonstrate here that mitochondrial abnormalities and DNA damage occur in the kidney of offspring who die prematurely. We have established by direct measurement and by in vitro supplementation that mitochondrial abnormalities occur because of a functional deficit of the mitochondrial cofactor coenzyme Q9 (CoQ9). These data provide molecular insight into the association between maternal nutrition and determination of offspring lifespan, and identify, a potential dietary intervention to prevent detrimental consequences of imbalanced maternal nutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hegui; He, Zheng; Zhu, Chunyan
Fetal adrenal developmental status is the major determinant of fetal tissue maturation and offspring growth. We have previously proposed that prenatal ethanol exposure (PEE) suppresses fetal adrenal corticosterone (CORT) synthesis. Here, we focused on PEE-induced adrenal developmental abnormalities of male offspring rats before and after birth, and aimed to explore its intrauterine programming mechanisms. A rat model of intrauterine growth retardation (IUGR) was established by PEE (4 g/kg·d). In PEE fetus, increased serum CORT concentration and decreased insulin-like growth factor 1 (IGF1) concentration, with lower bodyweight and structural abnormalities as well as a decreased Ki67 expression (proliferative marker), were observedmore » in the male fetal adrenal cortex. Adrenal glucocorticoid (GC)-metabolic activation system was enhanced while gene expression of IGF1 signaling pathway with steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD) was decreased. Furthermore, in the male adult offspring of PEE, serum CORT level was decreased but IGF1 was increased with partial catch-up growth, and Ki67 expression demonstrated no obvious change. Adrenal GC-metabolic activation system was inhibited, while IGF1 signaling pathway and 3β-HSD was enhanced with the steroidogenic factor 1 (SF1), and StAR was down-regulated in the adult adrenal. Based on these findings, we propose a “two-programming” mechanism for PEE-induced adrenal developmental toxicity: “the first programming” is a lower functional programming of adrenal steroidogenesis, and “the second programming” is GC-metabolic activation system-related GC-IGF1 axis programming. - Highlights: • Prenatal ethanol exposure induces adrenal developmental abnormality in offspring rats. • Prenatal ethanol exposure induces intrauterine programming of adrenal steroidogenesis. • Intrauterine GC-IGF1 axis programming might mediate adrenal developmental abnormality.« less
Gao, Shuibo; Suenaga, Toshiko; Oki, Yutaka; Yukie, Masao; Nakahara, Daiichiro
2011-10-01
The present experiment assessed whether prenatal stress (PS) can alter the ability of acute and chronic cocaine administration to increase and decrease the rewarding effectiveness of the medial forebrain bundle (MFB) using intracranial self-stimulation (ICSS), and also whether PS can affect the extinction of the MFB stimulation response. Adult male offspring of female rats that received PS or no PS (nPS) were implanted with MFB stimulating electrodes, and were then tested in ICSS paradigms. In both nPS and PS offspring, acute cocaine injection decreased ICSS thresholds dose-dependently. However, the threshold-lowering effects at any dose were not significantly different between groups. There was also no group-difference in the threshold-elevating effects of chronic cocaine administration. Nevertheless, chronically drug-administered PS rats exhibited a resistance to the extinguishing of the response for brain-stimulation reward when acutely treated with cocaine, as compared to extinction without cocaine treatment. The results suggest that PS may weaken the ability for response inhibition under cocaine loading in male adult offspring. Copyright © 2011 Elsevier B.V. All rights reserved.
Ontogenetic role of angiontensin-converting enzyme in rats: thirst and sodium appetite evaluation.
Mecawi, André S; Araujo, Iracema G; Rocha, Fábio F; Coimbra, Terezila M; Antunes-Rodrigues, José; Reis, Luís C
2010-01-12
We investigated the influence of captopril (an angiotensin converting enzyme inhibitor) treatment during pregnancy and lactation period on hydromineral balance of the male adult offspring, particularly, concerning thirst and sodium appetite. We did not observe significant alterations in basal hydromineral (water intake, 0.3M NaCl intake, volume and sodium urinary concentration) or cardiovascular parameters in adult male rats perinatally treated with captopril compared to controls. However, male offspring rats that perinatally exposed to captopril showed a significant attenuation in water intake induced by osmotic stimulation, extracellular dehydration and beta-adrenergic stimulation. Moreover, captopril treatment during perinatal period decreased the salt appetite induced by sodium depletion. This treatment also attenuated thirst and sodium appetite aroused during inhibition of peripheral angiotensin II generation raised by low concentration of captopril in the adult offspring. Interestingly, perinatal exposure to captopril did not alter water or salt intake induced by i.c.v. administration of angiotensin I or angiotensin II. These results showed that chronic inhibition of angiotensin converting enzyme during pregnancy and lactation modifies the regulation of induced thirst and sodium appetite in adulthood.
Konieczna, Jadwiga; Sánchez, Juana; Palou, Mariona; Picó, Catalina; Palou, Andreu
2015-01-01
The challenge of preventing major chronic diseases requires reliable, early biomarkers. Gestational mild undernutrition in rats is enough to program the offspring to develop later pathologies; the intake of leptin, a breastmilk component, during lactation may reverse these programming effects. We used these models to identify, in peripheral blood mononuclear cells (PBMCs), transcriptomic-based early biomarkers of programmed susceptibility to later disorders, and explored their response to neonatal leptin intake. Microarray analysis was performed in PBMCs from the offspring of control and 20% gestational calorie-restricted dams (CR), and CR-rats supplemented with physiological doses of leptin throughout lactation. Notably, leptin supplementation normalised 218 of the 224 mRNA-levels identified in PBMCs associated to undernutrition during pregnancy. These markers may be useful for early identification and subsequent monitoring of individuals who are at risk of later diseases and would specifically benefit from the intake of appropriate amounts of leptin during lactation. PMID:25766068
Sex-specific prenatal stress effects on the rat reproductive axis and adrenal gland structure
George, Susan O; Hogg, Charis O; Lai, Yu-Ting; Brunton, Paula J
2016-01-01
Abstract Social stress during pregnancy has profound effects on offspring physiology. This study examined whether an ethologically relevant social stress during late pregnancy in rats alters the reproductive axis and adrenal gland structure in post-pubertal male and female offspring. Prenatally stressed (PNS) pregnant rats (n=9) were exposed to an unfamiliar lactating rat for 10 min/day from day 16 to 20 of pregnancy inclusive, whereas control pregnant rats (n=9) remained in their home cages. Gonads, adrenal glands and blood samples were obtained from one female and one male from each litter at 11 to 12-weeks of age. Anogenital distance was measured. There was no treatment effect on body, adrenal or gonad weight at 11–12 weeks. PNS did not affect the number of primordial, secondary or tertiary ovarian follicles, numbers of corpora lutea or ovarian FSH receptor expression. There was an indication that PNS females had more primary follicles and greater ovarian aromatase expression compared with control females (both P=0.09). PNS males had longer anogenital distances (0.01±0.0 cm/g vs 0.008±0.00 cm/g; P=0.007) and higher plasma FSH concentrations (0.05 ng/mL vs 0.006 ng/mL; s.e.d.=0.023; P=0.043) compared with control males. There were no treatment effects on the number of Sertoli cells or seminiferous tubules, seminiferous tubule area, plasma testosterone concentration or testis expression of aromatase, FSH receptor or androgen receptor. PNS did not affect adrenal size. These data suggest that the developing male reproductive axis is more sensitive to maternal stress and that PNS may enhance aspects of male reproductive development. PMID:27026714
Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...
Negishi, Takayuki; Kawasaki, Katsuyoshi; Suzaki, Shingo; Maeda, Haruna; Ishii, Yoshiyuki; Kyuwa, Shigeru; Kuroda, Yoichiro; Yoshikawa, Yasuhiro
2004-01-01
The purpose of this study was to examine whether perinatal exposure to two major environmental endocrine-disrupting chemicals, bisphenol A (BPA; 0.1 mg/kg/day orally) and nonylphenol [NP; 0.1 mg/kg/day (low dose) and 10 mg/kg/day (high dose) orally] daily from gestational day 3 to postnatal day 20 (transplacental and lactational exposures) would lead to behavioral alterations in the male offspring of F344 rats. Neither BPA nor NP exposure affected behavioral characteristics in an open-field test (8 weeks of age), in a measurement of spontaneous motor activity (12 weeks of age), or in an elevated plus-maze test (14 weeks of age). A passive avoidance test (13 weeks of age) showed that both BPA- and NP-treated offspring tended to delay entry into a dark compartment. An active avoidance test at 15 weeks of age revealed that BPA-treated offspring showed significantly fewer avoidance responses and low-dose NP-treated offspring exhibited slightly fewer avoidance responses. Furthermore, BPA-treated offspring significantly increased the number of failures to avoid electrical unconditioned stimuli within 5-sec electrical shock presentation compared with the control offspring. In a monoamine-disruption test using 5 mg/kg (intraperitoneal) tranylcypromine (Tcy), a monoamine oxidase inhibitor, both BPA-treated and low-dose NP-treated offspring at 22–24 weeks of age failed to show a significant increment in locomotion in response to Tcy, whereas control and high-dose NP-treated offspring significantly increased locomotion behavior after Tcy injection. In addition, when only saline was injected during a monoamine-disruption test, low-dose NP-treated offspring showed frequent rearing compared with the control offspring. The present results indicate that perinatal low-dose BPA or NP exposure irreversibly influenced the reception of fear-provoking stimuli (e.g., electrical shock), as well as monoaminergic neural pathways. PMID:15289160
Butruille, Laura; Mayeur, Sylvain; Duparc, Thibaut; Knauf, Claude; Moitrot, Emmanuelle; Fajardy, Isabelle; Valet, Philippe; Storme, Laurent; Deruelle, Philippe; Lesage, Jean
2012-08-15
Numerous data indicate that Rho kinase inhibitors, such as Fasudil, may constitute a novel therapy for cardiovascular and metabolic diseases. We evaluated long-term effects of exposure to Fasudil during late gestation (10 mg/day) in male rat offspring from birth until 9 months. We also analyzed its effects in offspring from hypertensive mothers treated with a nitric oxide synthesis inhibitor (L-NAME; 50 mg/day). Prenatal exposure to Fasudil did not affect birth weight, but increased body weight from postnatal day 7 (P7) to 9 months. In intrauterine growth-restricted (IUGR) fetuses exposed to L-NAME, maternal Fasudil treatment increased birth weight. At P42 and P180, rats exposed to Fasudil and L-NAME showed alterations of their food intake as well as an increased basal glycemia associated with mild glucose intolerance at 6 months which was also observed in Fasudil-exposed rats. In 9 month-old rats, exposure to Fasudil increased the daily food intake as well as hypothalamic mRNA level of the orexigenic NPY peptide without modulation of the anorexigenic POMC gene expression. Altogether, our data suggest that prenatal Fasudil exposure alleviates fetal growth in IUGR rats, but programs long-term metabolic disturbances including transient perturbations of glucose metabolism, a persistent increase of body weight gain, hyperphagia and an augmented expression of hypothalamic NPY orexigenic gene. We postulate that Fasudil treatment during perinatal periods may predispose individuals to the development of metabolic disorders. Copyright © 2012 Elsevier B.V. All rights reserved.
Shen, Ying-Ling; Chen, Shao-Tsu; Chan, Tzu-Yi; Hung, Tsai-Wei; Tao, Pao-Luh; Liao, Ruey-Ming; Chan, Ming-Huan; Chen, Hwei-Hsien
2016-02-01
Prenatal morphine (PM) affects the development of brain reward system and cognitive function. The present study aimed to determine whether PM exposure increases the vulnerability to MA addiction. Pregnant Sprague-Dawley rats were administered saline or morphine during embryonic days 3-20. The acquisition, extinction and reinstatement of methamphetamine (MA) conditioned place preference (CPP) and intravenous self-administration (SA) paradigms were assessed in the male adult offspring. There was no difference in the acquisition and expression of MA CPP between saline- and PM-exposed rats, whereas PM-exposed rats exhibited slower extinction and greater MA priming-induced reinstatement of drug-seeking behavior than controls. Similarly, MA SA under progressive ratio and fixed ratio schedules was not affected by PM exposure, but PM-exposed rats required more extinction sessions to reach the extinction criteria and displayed more severe MA priming-, but not cue-induced, reinstatement. Such alterations in extinction and reinstatement were not present when PM-exposed rats were tested in an equivalent paradigm assessing operant responding for food pellets. Our results demonstrate that PM exposure did not affect the association memory formation during acquisition of MA CPP or SA, but impaired extinction learning and increased MA-primed reinstatement in both tasks. These findings suggest that the offspring of women using morphine or heroin during pregnancy might predict persistent MA seeking during extinction and enhanced propensity to MA relapse although they might not be more susceptible to the reinforcing effect of MA during initiation of drug use. Copyright © 2015 Elsevier Inc. All rights reserved.
Micronucleated Erythrocytes in Newborn Rats Exposed to Raltegravir Placental Transfer
Torres-Mendoza, Blanca Miriam; Coronado-Medina, Damharis Elizabeth; Vázquez-Valls, Eduardo; Zamora-Perez, Ana Lourdes; Lemus-Varela, María de Lourdes
2014-01-01
The use of raltegravir in treating HIV/AIDS has been proposed due to its effectiveness in suppressing high loads of HIV RNA in pregnant women, thus preventing infection of the fetus. However, administration of raltegravir during pregnancy produces a compound which is transferred to high concentrations to the offspring. The objective of this study is to evaluate the transplacental genotoxic effect of raltegravir in newborn rats. We evaluated the number of micronucleated erythrocytes (MNE), micronucleated polychromatic erythrocytes (MNPCE), and polychromatic erythrocytes (PCE) in the peripheral blood samples of the offspring of Wistar rats treated 6 days before birth with oral administration of raltegravir. The animals were randomly assigned to five groups as follows: raltegravir at doses of 15, 30, or 60 mg/day, cyclophosphamide 10 mg/kg (positive control), or 0.5 ml of sterile water (negative control). In addition, the effect of these drugs on the weight and height of newborns was assessed. There were no differences in the number of MNE, MNPCE, and PCE, and a slight decrease in the weight and height was observed in the offspring of the rat mothers treated with raltegravir. Genotoxicity studies are required in pregnant women to determine the risk of using raltegravir to the fetuses. PMID:24977162
Zhang, Wan-Xia; Li, Yin-Ping; Fan, Jie; Chen, Hui-Jian; Li, Gai-Ling; Ouyang, Yan-Qiong; Yan, You-E
2018-02-01
Maternal nicotine (NIC) exposure causes overweight, hyperleptinemia and metabolic disorders in adult offspring. Our study aims to explore the underlying mechanism of perinatal NIC exposure increases obesity susceptibility in adult female rat offspring. In our model, we found that adult NIC-exposed females presented higher body weight and subcutaneous and visceral fat mass, as well as larger adipocytes, while no change was found in food intake. Serum profile showed a higher serum glucose, insulin and leptin levels in NIC-exposed females. In adipose tissue and liver, the leptin signaling pathway was blocked at 26 weeks, presented lower Janus tyrosine kinase 2 and signal transducer and activator of transcription 3 gene expression, higher suppressor of cytokine signaling 3 gene expression (in adipose tissue) and lower leptin receptors gene expression (in liver), indicating that peripheral leptin resistance occurred in NIC-exposed adult females. In female rats, the expression of lipolysis genes was affected dominantly in adipose tissue, but lipogenesis genes was affected in liver. Furthermore, the glucose and insulin tolerance tests showed a delayed glucose clearance and a higher area under the curve in NIC-exposed females. Therefore, perinatal NIC exposure programed female rats for adipocyte hypertrophy and obesity in adult life, through the leptin resistance in peripheral tissue. Copyright © 2017 Elsevier B.V. All rights reserved.
Noble, N A; Brewer, G J
1982-03-01
During genetic selection of rats for high and low levels of red cell 2,3-diphosphoglycerate (DPG) the decreased fertility in Low-DPG animals was due to significantly (P less than 0.01) fewer offspring born per litter. The rat lines were intercrossed and animals at the tails of the F2 2,3-diphosphoglycerate distribution were mated. Subsequent matings of F3 offspring were monitored. Low-DPG F3 pregnant females killed at 20 days of gestation showed significantly (P less than 0.05) fewer corpora lutea than High-DPG F3 females. There were also significantly (P less than 0.01) fewer corpora lutea in Low-DPG line rats compared to High-DPG rats. It is concluded that the relationship between 2,3-diphosphoglycerate levels and fertility is not due to inbreeding but to a possible genetic linkage, a shared biochemical determinant or a relationship through the effect of 2,3-diphosphoglycerate levels on oxygen delivery to tissue.
Kunko, P M; Smith, J A; Wallace, M J; Maher, J R; Saady, J J; Robinson, S E
1996-06-01
Pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that the following prenatal/postnatal exposure groups were obtained: water/water, methadone/water, water/methadone and methadone/methadone. Methadone slightly reduced litter size, particularly the number of male offspring, and reduced litter birth weight. The induction or maintenance of physical dependence in the postnatal methadone exposure groups was confirmed by an experiment in which PD19 pups were challenged with naloxone (1 mg/kg, s.c.). Methadone concentrations were assayed in pup brain on postnatal days 4, 10 and 22. Postnatal exposure to methadone via maternal milk produced measurable levels of methadone which decreased with age. Neuromuscular and physical development were assessed. Exposure to methadone accelerated acquisition of the righting reflex, but tended to delay the acquisition of the negative geotaxic response. Postnatal exposure to methadone was associated with decreased somatic growth as measured through postnatal day 21. The older pups (postnatal day 21) exposed to methadone exhibited variations in activity levels: pups exposed to methadone both prenatally and postnatally exhibited the least amount of spontaneous locomotor activity and pups exposed only postnatally exhibited the most activity. Therefore, it is possible to induce and/or maintain physical dependence via lactation in rat pups fostered to methadone-treated dams. Perinatal exposure to methadone by this route produces several subtle disruptions of pup development in the absence of gross maternal or fetal toxicity.
Effects of polychlorinated biphenyls on maternal odor conditioning in rat pups.
Cromwell, Howard C; Johnson, Asia; McKnight, Logan; Horinek, Maegan; Asbrock, Christina; Burt, Shannon; Jolous-Jamshidi, Banafsheh; Meserve, Lee A
2007-08-15
Polychlorinated biphenyls (PCBs) are pervasive environmental contaminants that can have damaging effects on physiologic, motoric and cognitive function. Results from studies on PCBs and behavior have shown that exposure can alter learning and memory processes and that these shifts in cognitive abilities can be related to changes in hormonal and neural function. Little experimentation has been done on the impact of exposure to PCBs on social and emotional development. Previous work has shown that exposure to PCBs in children can alter play behavior. Importantly, exposure to PCBs has been found to change aspects of maternal-offspring interactions in rodents. The present study examined the impact of PCBs on maternal odor conditioning in rat pups 12-14 days of age. A modified version of the conditioned place preference paradigm was used that incorporated a maternal-associated odor cue (lemon scent) as the conditioned stimulus. PCBs significantly depressed the preference for the maternal-associated cue but did not impair discrimination for a novel odor. These effects could arise due to changes in the social dynamics between the dam and offspring after co-exposure to PCBs. For example, dams exposed to PCBs during gestation have been found to show elevated grooming directed towards pups exposed to PCBs. This change in maternal care can have dramatic effects on behavioral and hormonal systems in the developing rat pup. In conclusion, perinatal PCBs alter important social behaviors of both the mother and pup, and these alterations could have long-lasting effects on behavioral, cognitive and emotional development.
Couvreur, Odile; Ferezou, Jacqueline; Gripois, Daniel; Serougne, Colette; Crépin, Delphine; Aubourg, Alain; Gertler, Arieh; Vacher, Claire-Marie; Taouis, Mohammed
2011-01-01
Background Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were fed a high fat diet (HF diet), rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are unclear. Methodology/Principal Findings We thus investigated the impact of maternal high fat diet on offspring subjected to normal or high palatable diet (P diet) on metabolic and endocrine parameters. We compared offspring born to dams fed P or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC. Conclusions/Significance HF diet given during gestation and lactation protects, at least partially, offspring from excessive weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in the protective effect of maternal HF diet. PMID:21464991
Developmental Exposure to Mild Variable Stress: Adult ...
In utero exposure to mild variable stress has been reported to influence learning and memory formation in offspring. Our research aims to examine whether nonchemical environmental stressors will exacerbate effects to chemical exposure. This study utilized a varying stress paradigm to simulate human psychosocial stress incurred during and after pregnancy to identify phenotypic learning changes in adult offspring that are potential stress markers. We additionally wanted to compare these behavioral outcomes to rat performance induced by perinatal exposure to manganese (Mn), a neurotoxic environmental element, at 2 or 5 g/l in drinking water throughout gestation and lactation. Pregnant Long Evans rats were exposed to an unpredictable series of mild stressful events which had previously been shown to increase maternal corticosterone levels. Nonchemical stressors were presented from GD 13 through GD 21 and included varying noise, light, housing, and confinement during both sleep and wake cycles. A subgroup of offspring was also exposed to periods of maternal separation. Starting at PND 97 offspring were trained with a trace fear conditioning protocol whereby rats were exposed to a compound cue (light and tone) followed by 30 seconds (trace period) and a mild foot shock (1mA, 0.5 seconds). Five paired training sessions occurred on the first day. The following day, context and cue learning were assessed by measuring motor activity. Preliminary data suggests adu
ERIC Educational Resources Information Center
Roeder, Lois M., Ed.
1973-01-01
Contents of this symposium include the following papers: "Effect of Maternal Protein Malnutrition on Neonatal Lung Development and Mitochondrial Function," E. J. Hawrylewicz, J. Q. Kissane, W. H. Blair and C. A. Heppner; "Effect of the Level of Nutrition on Rates of Cell Proliferation and of RNA and Protein Syntheses in the Rat," L. M. Roeder;…
Zhang, Huaqi; Chu, Xia; Huang, Yifan; Li, Gang; Wang, Yuxia; Li, Ying; Sun, Changhao
2014-10-01
We aimed to investigate the impact of maternal vitamin D deficiency during pregnancy on insulin resistance in male offspring and examine its mechanism. Pregnant Sprague-Dawley rats were maintained on a vitamin-D-free diet with ultraviolet-free light during pregnancy (early-VDD group). Insulin resistance in the male offspring was assessed by HOMA-IR, OGTT and euglycaemic clamp. NEFA, oxidative stress and inflammation levels were estimated as risk factors for insulin resistance. DNA methylation was examined by bisulfate sequencing PCR analysis. Luciferase reporter assay was performed to validate the effect of DNA methylation. The offspring in the early-VDD group had significantly higher fasting insulin and HOMA-IR levels, markedly reduced glucose tolerance and significantly lower tissue sensitivity to exogenous insulin at 16 weeks (all p < 0.05) compared with control offspring. Significantly higher serum and liver IL-1β, IL-6, IL-8 and TNF-α concentrations were observed in the offspring of the early-VDD group at 0, 3, 8 and 16 weeks. Expression of hepatic Iκbα (also known as Nfkbia) mRNA and nuclear factor κB inhibitor α (IκBα) protein was persistently lower in the early-VDD offspring at all time points, and their hepatic Iκbα methylation levels at the cytosine phosphate guanine site +331 were significantly higher at 0 and 16 weeks (all p < 0.01). Methylation at Iκbα first exon +331 markedly decreased the luciferase activity (p < 0.05). Maternal vitamin D deficiency during pregnancy results in insulin resistance in the offspring, which is associated with persistently increased inflammation. Persistently decreased Iκbα expression, potentially caused by changes in Iκbα methylation, plays an important role in persistent inflammation.
Morimoto, S; Sosa, T C; Calzada, L; Reyes-Castro, L A; Díaz-Díaz, E; Morales, A; Nathanielsz, P W; Zambrano, E
2012-12-01
Diabetes predisposition is determined by pancreatic islet insulin secretion and insulin resistance. We studied female rat offspring exposed to low-protein maternal diet (50% control protein diet) in pregnancy and/or lactation at postnatal days 36, 110 and 450. Rats were fed either control 20% casein diet (C) or restricted diet (R - 10% casein) during pregnancy. After delivery, mothers received either C or R diet until weaning to provide four offspring groups: CC, RR, CR and RC (first letter denoting maternal pregnancy diet and the second lactation diet). Serum glucose, insulin and homeostatic model assessment (HOMA) were measured. Pancreatic islets were isolated and in vitro insulin secretion quantified in low glucose (5 mM) and high glucose (11 mM). Serum glucose, insulin and HOMA were similar in all groups at 36 and 110 postnatal days. HOMA was only higher in RR at 450 postnatal days. Only CC demonstrated differences in glucose sensitivity of β-cells to high and low doses at the three ages studied. At 36 days, RR, CR and RC and at 450 days RR and RC groups did not show glucose-stimulated insulin secretion differences between low and high glucose. Aging-associated glucose-stimulated insulin secretion loss was affected by maternal dietary history, indicating that developmental programming must be considered a major factor in aging-related development of predisposition to later-life dysfunctional insulin metabolism. Female offspring islets' insulin secretion was higher than previously reported in males.
Pallarés, María Eugenia; Adrover, Ezequiela; Baier, Carlos Javier; Bourguignon, Nadia S; Monteleone, Melisa C; Brocco, Marcela A; González-Calvar, Silvia I; Antonelli, Marta C
2013-07-01
Several studies have demonstrated that the presence of stressors during pregnancy induces adverse effects on the neuroendocrine system of the offspring later in life. In the present work, we investigated the effects of early programming on the male reproductive system, employing a prenatal stress (PS) paradigm. This study found that when pregnant dams were placed in a plastic restrainer three times a day during the last week of pregnancy, the offspring showed reduced anogenital distance and delayed testicular descent. Serum luteinising hormone (LH) and follicle-stimulating hormone (FSH) levels were decreased at postnatal day (PND) 28 and testosterone was decreased at PND 75. Increased testosterone plus dihydrotestosterone (T + DHT) concentrations correlated with increased testicular 5α Reductase-1 (5αR-1) mRNA expression at PND 28. Moreover, PS accelerated spermatogenesis at PND 35 and 60, and increased mean seminiferous tubule diameter in pubertal offspring and reduced Leydig cell number was observed at PND 35 and 60. PS offspring had increased androgen receptor (AR) mRNA level at PND 28, and at PND 35 had increased the numbers of Sertoli cells immunopositive for AR. Overall, the results confirm that stress during gestation can induce long-term effects on the male offspring reproductive system. Of particular interest is the pre-pubertal imbalance of circulating hormones that probably trigger accelerated testicular development, followed by an increase in total androgens and a decrease in testosterone concentration during adulthood. Exposure to an unfavourable intrauterine environment might prepare for harsh external conditions by triggering early puberty, increasing reproductive potential.
Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis
2008-01-01
Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.
Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis
2008-01-01
Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals. PMID:18604298
Hao, Xue-Qin; Du, Jing-Xia; Li, Yan; Li, Meng; Zhang, Shou-Yan
2014-01-01
Adult metabolic syndrome may in part have origins in fetal or early life. This study was designed to explore the effect of prenatal exposure to lipopolysaccharide and high-fat diet on metabolic syndrome in offspring rats. 32 pregnant rats were randomly divided into four groups, including Control group; LPS group (pregnant rats were injected with LPS 0.4 mg/kg intraperitoneally on the 8(th), 10(th) and 12(th) day of pregnancy); High-fat group (maternal rats had high-fat diet during pregnancy and lactation period, and their pups also had high-fat diet up to the third month of life); LPS + High-fat group (rats were exposed to the identical experimental scheme with LPS group and High-fat group). Blood pressure elevated in LPS group and High-fat group, reduced in LPS+High-fat group, accompanied by the increase of serum leptin level in LPS and High-fat group and increase of serum IL-6, TNF-a in High-fat group; both serum insulin and cholesterol increased in High-fat and LPS+High-fat group, as well as insulin in LPS group. HOMA-IR value increased in LPS, High-fat and LPS+High-fat group, and QUICKI decreased in these groups; H-E staining showed morphologically pathological changes in thoracic aorta and liver tissue in the three groups. Increased serum alanine and aspartate aminotransferase suggest impaired liver function in LPS+High-fat group. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure, insulin resistance and impaired liver function in three-month old offspring rats. The lowered blood pressure might benefit from the predictive adaptive response to prenatal inflammation.
Spatial Memory in the Progeny of Rats Subjected to Different Types of Experimental Preeclampsia.
Perfilova, V N; Zhakupova, G A; Lashchenova, L I; Lebedeva, S A; Tyurenkov, I N
2016-09-01
Spatial memory was studied in 2-month-old offspring of rats subjected to different types of experimental preeclampsia (replacement of drinking water with 1.8% NaCl from day 1 to 21 of gestation or intraperitoneal administration of non-selective NO-synthase inhibitor L-NAME to pregnant rats in a daily dose of 25 mg/kg for 7 days on gestation days 14-20). Spatial memory was evaluated in an elevated 8-arm radial maze. Both types of experimental preeclampsia impaired spatial (long-term and short-term) memory and can be used in the development of drugs correcting negative effects of this pregnancy complication on memory.
SATHISHKUMAR, Kunju; BALAKRISHNAN, Meena; CHINNATHAMBI, Vijayakumar; GAO, Haijun; YALLAMPALLI, Chandra
2012-01-01
Objective Examine temporal alterations in vascular angiotensin II (ANG II) receptors (AT1R and AT2R) and determine vascular response to ANG II in growth-restricted offspring. Study design Offspring of pregnant rats fed low-protein (6%) and control (20%) diet were compared. Results Prenatal protein restriction reprogrammed AT1aR mRNA expression in males’ mesenteric arteries to cause 1.7- and 2.3-fold increases at 3 and 6 months of age associated with arterial pressure increases of 10 and 33 mmHg, respectively; however, in females, increased AT1aR expression (2-fold) and arterial pressure (15 mmHg) occurred only at 6 months. Prenatal protein restriction did not affect AT2R expression. Losartan abolished hypertension, suggesting that AT1aR plays a primary role in arterial pressure elevation. Vasoconstriction to ANG II was exaggerated in all protein-restricted offspring, with greater potency and efficacy in males. Conclusion Prenatal protein restriction increased vascular AT1R expression and vasoconstriction to ANG II, possibly contributing to programmed hypertension. PMID:22537420
NASA Astrophysics Data System (ADS)
Mikhaylenko, E. A.; Stepchenko, L. M.
2009-04-01
The mechanism of adaptive action of peat preparations needs further understanding. Therefore, the research studied of the effects of the peat "Hydrohumate", on the adaptation processes of young rats, born from mothers who received this preparation togethewater durinr with g a lengthy time psycho-emotional stress (swimming). The test measured selected activity of proteolytic lysosomol cathepsin L in the spleen, heart and liver tissues, and in the grey matter of the large hemispheres of the cerebrum and cerebellum. The amount of cathepsin L activity was determined in 15- and 30-day-old rats with azocasein as substrate. The experiment established that rats, born from stressed mothers that drank plain water during stress had less body mass and altered organ indexes, including the adrenal gland index, compared to rats born from mothers who drank water with the peat preparation added. The change of cathepsin L activity in offspring of treated rats compared to controls demonstrates that structural adaptations occurred, affecting a perceptible and labile system such as the activity of lysosomal enzymes. Discussion will include the effect of humic preparations added to water on rats in the adaptive mechanisms of offspring after prenatal stress.
Gomes, Rodrigo Mello; Miranda, Rosiane Aparecida; Barella, Luiz Felipe; Malta, Ananda; Martins, Isabela Peixoto; Franco, Claudinéia Conationi da Silva; Pavanello, Audrei; Torrezan, Rosana; Natali, Maria Raquel Marçal; Lisboa, Patrícia Cristina; de Moura, Egberto Gaspar
2016-01-01
Metabolic malprogramming has been associated with low birth weight; however, the interplay between insulin secretion disruption and adrenal function upon lipid metabolism is unclear in adult offspring from protein-malnourished mothers during the last third of gestation. Thus, we aimed to study the effects of a maternal low-protein diet during the last third of pregnancy on adult offspring metabolism, including pancreatic islet function and morphophysiological aspects of the liver, adrenal gland, white adipose tissue, and pancreas. Virgin female Wistar rats (age 70 d) were mated and fed a protein-restricted diet (4%, intrauterine protein restricted [IUPR]) from day 14 of pregnancy until delivery, whereas control dams were fed a 20.5% protein diet. At age 91 d, their body composition, glucose-insulin homeostasis, ACTH, corticosterone, leptin, adiponectin, lipid profile, pancreatic islet function and liver, adrenal gland, and pancreas morphology were assessed. The birth weights of the IUPR rats were 20% lower than the control rats (P < .001). Adult IUPR rats were heavier, hyperphagic, hyperglycemic, hyperinsulinemic, hyperleptinemic, and hypercorticosteronemic (P < .05) with higher low-density lipoprotein cholesterol and lower high-density lipoprotein cholesterol, adiponectin, ACTH, and insulin sensitivity index levels (P < .01). The insulinotropic action of glucose and acetylcholine as well as muscarinic and adrenergic receptor function were impaired in the IUPR rats (P < .05). Maternal undernutrition during the last third of gestation disrupts the pancreatic islet insulinotropic response and induces obesity-associated complications. Such alterations lead to a high risk of metabolic syndrome, characterized by insulin resistance, visceral obesity, and lower high-density lipoprotein cholesterol. PMID:27007071
Arentson-Lantz, Emily J; Zou, Mi; Teegarden, Dorothy; Buhman, Kimberly K; Donkin, Shawn S
2016-09-01
Maternal nutritional stress during pregnancy acts to program offspring metabolism. We hypothesized that the nutritional stress caused by maternal fructose or low protein intake during pregnancy would program the offspring to develop metabolic aberrations that would be exacerbated by a diet rich in fructose or fat during adult life. The objective of this study was to characterize and compare the fetal programming effects of maternal fructose with the established programming model of a low-protein diet on offspring. Male offspring from Sprague-Dawley dams fed a 60% starch control diet, a 60% fructose diet, or a low-protein diet throughout pregnancy and lactation were weaned onto either a 60% starch control diet, 60% fructose diet, or a 30% fat diet for 15 weeks. Offspring from low-protein and fructose-fed dam showed retarded growth (P<.05) at weaning (50.3, 29.6 vs 59.1±0.8 g) and at 18 weeks of age (420, 369 vs 464±10.9 g). At 18 weeks of age, offspring from fructose dams expressed greater quantities (P<.05) of intestinal Pgc1a messenger RNA compared with offspring from control or low-protein dams (1.31 vs 0.89, 0.85; confidence interval, 0.78-1.04). Similarly, maternal fructose (P=.09) and low-protein (P<.05) consumption increased expression of Pgc1a in offspring liver (7.24, 2.22 vs 1.22; confidence interval, 2.11-3.45). These data indicate that maternal fructose feeding is a programming model that shares some features of maternal protein restriction such as retarded growth, but is unique in programming of selected hepatic and intestinal transcripts. Copyright © 2016. Published by Elsevier Inc.
Cho, Clara E; Sánchez-Hernández, Diana; Reza-López, Sandra A; Huot, Pedro S P; Kim, Young-In; Anderson, G Harvey
2013-07-01
Excess vitamins, especially folate, are consumed during pregnancy but later-life effects on the offspring are unknown. High multivitamin (10-fold AIN-93G, HV) gestational diets increase characteristics of metabolic syndrome in Wistar rat offspring. We hypothesized that folate, the vitamin active in DNA methylation, accounts for these effects through epigenetic modification of food intake regulatory genes. Male offspring of dams fed 10-fold folate (HFol) diet during pregnancy and weaned to recommended vitamin (RV) or HFol diets were compared with those born to RV dams and weaned to RV diet for 29 weeks. Food intake and body weight were highest in offspring of HFol dams fed the RV diet. In contrast, the HFol pup diet in offspring of HFol dams reduced food intake (7%, p = 0.02), body weight (9%, p = 0.03) and glucose response to a glucose load (21%, p = 0.02), and improved glucose response to an insulin load (20%, p = 0.009). HFol alone in either gestational or pup diet modified gene expression of feeding-related neuropeptides. Hypomethylation of the pro-opiomelanocortin (POMC) promoter occurred with the HFol pup diet. POMC-specific methylation was positively associated with glucose response to a glucose load (r = 0.7, p = 0.03). In conclusion, the obesogenic phenotype of offspring from dams fed the HFol gestational diet can be corrected by feeding them a HFol diet. Our work is novel in showing post-weaning epigenetic plasticity of the hypothalamus and that in utero programming by vitamin gestational diets can be modified by vitamin content of the pup diet.
Paternal and maternal alcohol consumption: effects on offspring in two strains of rats.
Abel, E L
1989-08-01
Long-Evans and Sprague-Dawley male rats were given liquid alcohol diets containing 35%, 17.5%, or 0% ethanol-derived calories (EDC). The latter two groups were pair fed to the higher alcohol diet group. A fourth group received lab chow and water ad libitum to assess the role of paternal undernutrition associated with alcohol consumption. After three or four weeks of diet consumption, these males were bred to females of the same strain. Pregnant females were divided into similarly treated alcohol groups and were fed these diets beginning on gestation Day 8, thus creating a factorial study with strain, paternal, and maternal alcohol consumption as main factors. Paternal alcohol consumption was associated with decreased litter size, decreased testosterone levels, and a strain-related effect on offspring activity. Offspring activity decreased for those sired by 35% and 17.5% EDC Long-Evans fathers. Activity also decreased for offspring sired by 17.5% EDC Sprague-Dawley fathers but increased for those sired by 35% EDC fathers. Paternal alcohol consumption did not affect postnatal mortality or passive avoidance learning of offspring. Maternal alcohol consumption was associated with lower birth weights, lower offspring weights at weaning, increased postnatal mortality, and poorer passive avoidance learning. However, offspring activity was not affected. In a separate study, levels of alcohol in the testes were found to be somewhat, but not significantly, lower than blood alcohol levels. DNA taken from sperm of Long-Evans males consuming alcohol, migrated farther under pulsed field electrophoresis than DNA from control fathers, suggestive of an alcohol-related effect on sperm DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lingxing; Cai, Ruowei; Lv, Guorong, E-mail: lxingwan502@gmail.com
The aim of the present study is to evaluate the effect of reduced fetal oxygen supply on cerebral white matter in the adult offspring and further assess its susceptibility to postnatal hypoxia and high-fat diet. Based on a 3 x 2 full factorial design consisting of three factors of maternal hypoxia, postnatal high-fat diet, and postnatal hypoxia, the ultrastructure of myelin, axon and capillaries were observed, and the expression of myelin basic protein (MBP), neurofilament-H+L(NF-H+L), and glial fibrillary acidic protein (GFAP) was analyzed in periventricular white matter of 16-month-old offspring. Demyelination, injured axon and damaged microvasculars were observed in maternalmore » hypoxia offspring. The main effect of maternal hypoxia lead to decreased expression of MBP or NF-H+L, and increased expression of GFAP (all P < 0.05). Moreover, there was positive three-way interaction among maternal hypoxia, high-fat diet and postnatal hypoxia on MBP, NF-H+L or GFAP expression (all P < 0.05). In summary, our results indicated that maternal hypoxia during pregnancy in rats lead to changes of periventricular white matter in adult offspring, including demyelination, damaged axon and proliferated astroglia. This effect was amplified by high-fat diet and postnatal hypoxia.« less
Peterson, Richard G.; de Winter, Willem; Huebert, Norman; Hansen, Michael K.
2015-01-01
Metabolic syndrome and T2D produce significant health and economic issues. Many available animal models have monogenic leptin pathway mutations that are absent in the human population. Development of the ZDSD rat model was undertaken to produce a model that expresses polygenic obesity and diabetes with an intact leptin pathway. A lean ZDF rat with the propensity for beta-cell failure was crossed with a polygenetically obese Crl:CD (SD) rat. Offspring were selectively inbred for obesity and diabetes for >30 generations. In the current study, ZDSD rats were followed for 6 months; routine clinical metabolic endpoints were included throughout the study. In the prediabetic metabolic syndrome phase, ZDSD rats exhibited obesity with increased body fat, hyperglycemia, insulin resistance, dyslipidemia, glucose intolerance, and elevated HbA1c. As disease progressed to overt diabetes, ZDSD rats demonstrated elevated glucose levels, abnormal oral glucose tolerance, increases in HbA1c levels, reductions in body weight, increased insulin resistance with decreasing insulin levels, and dyslipidemia. The ZDSD rat develops prediabetic metabolic syndrome and T2D in a manner that mirrors the development of metabolic syndrome and T2D in humans. ZDSD rats will provide a novel, translational animal model for the study of human metabolic diseases and for the development of new therapies. PMID:25961053
Cano, Ma José; Murillo, Ma Luisa; Delgado, Ma José; Carreras, Olimpia
2003-09-01
Studies on duodenal juice enzyme activities were carried out on suckling Wistar rats born to dams given ethanol during gestation and suckling. The results were compared with offspring of dams given diets containing no ethanol. Comparisons were also made with offspring of dams given ethanol and folic acid supplementation to observe whether a folate supplement could sufficiently reverse the negative effect of ethanol consumption. The dams were fed increased amounts of ethanol (5% to 20%, vol/vol) in tap water for 4 wk. The maximum quantity, 20% ethanol, was given to the dams during pregnancy and lactation. Offspring animals were randomized into three groups: control (CG), ethanol treated (EG), and ethanol plus folic acid (EFG). Body weight at birth and at 21 d after birth and pancreatic weight were lower in offspring after ethanol treatment. Folic acid supplement increased these parameters in the EFG. Under basal conditions, decreases in amylase, lipase, and chymotrypsin activities in the duodenal juice after ethanol treatment were detected. Serum and urine amylase activities also decreased in the EG and EFG. These changes were different in the ethanol-treated progenitors. In these progenitors, ethanol treatment increased serum amylase levels. In the offspring, amylase activities in the EFG decreased with respect to the CG; however, an increase in the EG was observed. In dams the folic acid supplement did not significantly alter the serum amylase activities. Lipase and chymotrypsin activities in the EFG were similar to those in the EG. An increase of serum and urine amylase in the EFG with respect to the EG was found. Our findings indicated that, under basal conditions, ethanol treatment during gestation and lactation negatively affects the digestive function in offspring. The effects of ethanol were slightly attenuated in rats supplemented with folic acid for amylase activities. Although extrapolation from animal studies can be tenuous, the present findings may explain the use of folic acid in the prevention of damage induced by ethanol to increase the amylase levels to physiologic concentrations.
Sloboda, Deborah M.; Howie, Graham J.; Pleasants, Anthony; Gluckman, Peter D.; Vickers, Mark H.
2009-01-01
Background While prepubertal nutritional influences appear to play a role in sexual maturation, there is a need to clarify the potential contributions of maternal and childhood influences in setting the tempo of reproductive maturation. In the present study we employed an established model of nutritional programming to evaluate the relative influences of prenatal and postnatal nutrition on growth and ovarian function in female offspring. Methods Pregnant Wistar rats were fed either a calorie-restricted diet, a high fat diet, or a control diet during pregnancy and/or lactation. Offspring then were fed either a control or a high fat diet from the time of weaning to adulthood. Pubertal age was monitored and blood samples collected in adulthood for endocrine analyses. Results We report that in the female rat, pubertal timing and subsequent ovarian function is influenced by the animal's nutritional status in utero, with both maternal caloric restriction and maternal high fat nutrition resulting in early pubertal onset. Depending on the offspring's nutritional history during the prenatal and lactational periods, subsequent nutrition and body weight gain did not further influence offspring reproductive tempo, which was dominated by the effect of prenatal nutrition. Whereas maternal calorie restriction leads to early pubertal onset, it also leads to a reduction in adult progesterone levels later in life. In contrast, we found that maternal high fat feeding which also induces early maturation in offspring was associated with elevated progesterone concentrations. Conclusions These observations are suggestive of two distinct developmental pathways leading to the acceleration of pubertal timing but with different consequences for ovarian function. We suggest different adaptive explanations for these pathways and for their relationship to altered metabolic homeostasis. PMID:19707592
de Queiroz, D B; Sastre, E; Caracuel, L; Callejo, M; Xavier, F E; Blanco-Rivero, J; Balfagón, G
2015-01-01
Background and Purpose We have reported that exposure to a diabetic intrauterine environment during pregnancy increases blood pressure in adult offspring, but the mechanisms involved are not completely understood. This study was designed to analyse a possible role of perivascular sympathetic and nitrergic innervation in the superior mesenteric artery (SMA) in this effect. Experimental Approach Diabetes was induced in pregnant Wistar rats by a single injection of streptozotocin. Endothelium-denuded vascular rings from the offspring of control (O-CR) and diabetic rats (O-DR) were used. Vasomotor responses to electrical field stimulation (EFS), NA and the NO donor DEA-NO were studied. The expressions of neuronal NOS (nNOS) and phospho-nNOS (P-nNOS) and release of NA, ATP and NO were determined. Sympathetic and nitrergic nerve densities were analysed by immunofluorescence. Key Results Blood pressure was higher in O-DR animals. EFS-induced vasoconstriction was greater in O-DR animals. This response was decreased by phentolamine more in O-DR animals than their controls. L-NAME increased EFS-induced vasoconstriction more strongly in O-DR than in O-CR segments. Vasomotor responses to NA or DEA-NO were not modified. NA, ATP and NO release was increased in segments from O-DR. nNOS expression was not modified, whereas P-nNOS expression was increased in O-DR. Sympathetic and nitrergic nerve densities were similar in both experimental groups. Conclusions and Implications The activity of sympathetic and nitrergic innervation is increased in SMA from O-DR animals. The net effect is an increase in EFS-induced contractions in these animals. These effects may contribute to the increased blood pressure observed in the offspring of diabetic rats. PMID:26177571
Hattori, Yukiko; Takeda, Tomoki; Nakamura, Arisa; Nishida, Kyoko; Shioji, Yuko; Fukumitsu, Haruki; Yamada, Hideyuki; Ishii, Yuji
2018-05-16
Many forms of the toxic effects produced by dioxins and related chemicals take place following activation of the aryl hydrocarbon receptor (AHR). Our previous studies have demonstrated that treating pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic dioxin, attenuates the pituitary expression of gonadotropins to reduce testicular steroidogenesis during the fetal stage, resulting in the impairment of sexually-dimorphic behaviors after the offspring reach maturity. To investigate the contribution of AHR to these disorders, we examined the effects of TCDD on AHR-knockout (AHR-KO) Wistar rats. When pregnant AHR-heterozygous rats were given an oral dose of 1 µg/kg TCDD at gestational day (GD) 15, TCDD reduced the expression of pituitary gonadotropins and testicular steroidogenic proteins in male wild-type fetuses at GD20 without affecting body weight, sex ratio and litter size. However, the same defect did not occur in AHR-KO fetuses. Further, fetal exposure to TCDD impaired the activity of masculine sexual behavior after reaching adulthood only in the wild-type offspring. Also, in female offspring, not only the fetal gonadotropins production but also sexual dimorphism, such as saccharin preference, after growing up were suppressed by TCDD only in the wild-type. Interestingly, in the absence of TCDD, deleting AHR reduced masculine sexual behavior, as well as fetal steroidogenesis of the pituitary-gonadal axis. These results provide novel evidence that 1) AHR is required for TCDD-produced defects in sexually-dimorphic behaviors of the offspring, and 2) AHR signaling plays a role in gonadotropin synthesis during the developmental stage to acquire sexual dimorphism after reaching adulthood. Copyright © 2018 Elsevier Inc. All rights reserved.
Gestational Protein Restriction Impairs Glucose Disposal in the Gastrocnemius Muscles of Female Rats
Blesson, Chellakkan S.; Chinnathambi, Vijayakumar; Kumar, Sathish
2017-01-01
Gestational low-protein (LP) diet causes hyperglycemia and insulin resistance in adult offspring, but the mechanism is not clearly understood. In this study, we explored the role of insulin signaling in gastrocnemius muscles of gestational LP-exposed female offspring. Pregnant rats were fed a control (20% protein) or an isocaloric LP (6%) diet from gestational day 4 until delivery. Normal diet was given to mothers after delivery and to pups after weaning until necropsy. Offspring were euthanized at 4 months, and gastrocnemius muscles were treated with insulin ex vivo for 30 minutes. Messenger RNA and protein levels of molecules involved in insulin signaling were assessed at 4 months. LP females were smaller at birth but showed rapid catchup growth by 4 weeks. Glucose tolerance test in LP offspring at 3 months showed elevated serum glucose levels (P < 0.01; glycemia Δ area under the curve 342 ± 28 in LP vs 155 ± 23 in controls, mmol/L * 120 minutes) without any change in insulin levels. In gastrocnemius muscles, LP rats showed reduced tyrosine phosphorylation of insulin receptor substrate 1 upon insulin stimulation due to the overexpression of tyrosine phosphatase SHP-2, but serine phosphorylation was unaffected. Furthermore, insulin-induced phosphorylation of Akt, glycogen synthase kinase (GSK)–3α, and GSK-3β was diminished in LP rats, and they displayed an increased basal phosphorylation (inactive form) of glycogen synthase. Our study shows that gestational protein restriction causes peripheral insulin resistance by a series of phosphorylation defects in skeletal muscle in a mechanism involving insulin receptor substrate 1, SHP-2, Akt, GSK-3, and glycogen synthase causing dysfunctional GSK-3 signaling and increased stored glycogen, leading to distorted glucose homeostasis. PMID:28324067
DOE Office of Scientific and Technical Information (OSTI.GOV)
Economidou, Daina; Mattioli, Laura; Ubaldi, Massimo
The present study evaluated the consequences of perinatal {delta}{sup 9}-tetrahydrocannabinol ({delta}{sup 9}-THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB{sub 1} receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with {delta}{sup 9}-tetrahydrocannabinol, ethanol or their combination causesmore » long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, {delta}{sup 9}-THC, or EtOH + {delta}{sup 9}-THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to {delta}{sup 9}-THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB{sub 1} receptor antagonists may represent interesting agents for the pharmacotherapy of alcoholism.« less
Intrauterine Growth Restriction Alters the Postnatal Development of the Rat Cerebellum.
McDougall, Annie R A; Wiradjaja, Vanny; Azhan, Aminath; Li, Anqi; Hale, Nadia; Wlodek, Mary E; Hooper, Stuart B; Wallace, Megan J; Tolcos, Mary
2017-01-01
Intrauterine growth restriction (IUGR) is a major cause of antenatal brain injury. We aimed to characterize cerebellar deficits following IUGR and to investigate the potential underlying cellular and molecular mechanisms. At embryonic day 18, pregnant rats underwent either sham surgery (controls; n = 23) or bilateral uterine vessel ligation to restrict blood flow to fetuses (IUGR; n = 20). Offspring were collected at postnatal day 2 (P2), P7, and P35. Body weights were reduced at P2, P7, and P35 in IUGR offspring (p < 0.05) compared with controls. At P7, the width of the external granule layer (EGL) was 30% greater in IUGR than control rats (p < 0.05); there was no difference in the width of the proliferative zone or in the density of Ki67-positive cells in the EGL. Bergmann glia were disorganized at P7 and P35 in IUGR pups, and by P35, there was a 10% decrease in Bergmann glial fiber density (p < 0.05) compared with controls. At P7, trophoblast antigen-2 (Trop2) mRNA and protein levels in the cerebellum were decreased by 88 and 40%, respectively, and astrotactin 1 mRNA levels were increased by 20% in the IUGR rats (p < 0.05) compared with controls; there was no difference in ASTN1 protein. The expressions of other factors known to regulate cerebellar development (astrotactin 2, brain-derived neurotrophic factor, erb-b2 receptor tyrosine kinase 4, neuregulin 1, sonic hedgehog and somatostatin) were not different between IUGR and control rats at P7 or P35. These data suggest that damage to the migratory scaffold (Bergmann glial fibers) and alterations in the genes that influence migration (Trop2 and Astn1) may underlie the deficits in postnatal cerebellar development following IUGR. © 2017 S. Karger AG, Basel.
Development of Sensory Receptors in Skeletal Muscle
NASA Technical Reports Server (NTRS)
DeSantis, Mark
2000-01-01
There were two major goals for my project. One was to examine the hindlimb walking pattern of offspring from the Flight dams as compared with offspring of the ground control groups from initiation of walking up to two months thereafter. This initial goal was subsequently modified so that additional developmental measures were taken (e.g. body weight, eye opening) as the progeny developed, and the study period was lengthened to eighty days. Also videotapes taken shortly after the pregnant Flight dams returned to Earth were scored for locomotor activity and compared to those for the Synchronous control dams at the same stage of pregnancy. The second goal was to examine skeletal muscle. Selected hindlimb skeletal muscles were to be identified, weighed, and examined for the presence and integrity of muscle receptors, (both muscle spindles and tendon organs), at the level of the light and electron microscope. Muscles were examined from rats that were at fetal (G20), newborn (postnatal day 1 or P1, where P1 = day of birth), and young adult (approx. P100) stages. At the present time data from only the last group of rats (i.e. P100) has been completely examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Long, Nicole E.; Barry, Eric J.; Pinelli, Christopher
Hypothesis: 10–15% of women take antidepressant medications during pregnancy. A recent clinical study reported that the use of selective serotonin reuptake inhibitor antidepressants during pregnancy is linked with an increased risk of postnatal obesity. While obesity is often associated with fatty liver, dyslipidemia and inflammation, to date, the effects of perinatal exposure to SSRIs on these outcomes are unknown. Methods: Female nulliparous Wistar rats were given vehicle (N = 15) or fluoxetine hydrochloride (FLX 10 mg/kg/d; N = 15) orally for 2 weeks prior to mating until weaning. We assessed glucometabolic changes and hepatic pathophysiology in the offspring. Results: Fluoxetinemore » exposed offspring demonstrated altered glucose homeostasis without any alterations to beta cell mass. FLX-exposed offspring had a significant increase in the number of offspring with mild to moderate NASH and dyslipidemia. There was also increased inflammation of the liver in FLX-exposed offspring; males had significant elevations in TNFα, IL6 and monocyte chemoattractant protein 1 (MCP1), while female offspring had higher expression of TNFα, and increased macrophage infiltration (MCP1). Limitations: This is an animal study. Further research examining the metabolic outcomes of children exposed to antidepressants in utero are required, given the increase in childhood obesity and psychiatric medication use during pregnancy. Conclusion: These data demonstrate that fetal and neonatal exposure to FLX results in evidence of increased adiposity, fatty liver and abnormal glycemic control. Since these are all hallmarks of the metabolic syndrome, this raises concerns regarding the long term metabolic sequelae of fetal exposure to SSRIs in human populations. - Highlights: • Antenatal exposure to fluoxetine results in postnatal adiposity in the offspring. • Offspring exposed to fluoxetine have abnormal glycemic control in adulthood. • Maternal exposure to fluoxetine causes fatty liver in the offspring.« less
Frasch, Martin G; Baier, Carlos J; Antonelli, Marta C; Metz, Gerlinde A S
2018-01-01
Prenatal stress (PS) impacts early behavioral, neuroimmune, and cognitive development. Pregnant rat models have been very valuable in examining the mechanisms of such fetal programming. A newer pregnant sheep model of maternal stress offers the unique advantages of chronic in utero monitoring and manipulation. This chapter presents the techniques used to model single and multigenerational stress exposures and their pleiotropic effects on the offspring.
Yu, Fei; Hao, Shuai; Zhao, Yue; Yang, Hui; Fan, Xiao-Lan; Yang, Jun
2011-08-01
D-Galactose could give rise to free radical damage by disturbing the some maternal antioxidants. The oxidative stress induced by D-galactose is a potent inducer of apoptosis, which is accompanied by the activation of protein-splitting enzymes called caspases. Apoptosis is a crucial physiological determinant of embryonic and neonatal development, and play an essential role in the development of the inner ear structures. Recently the increasing of D-galactose exposure is due to high consumption of dairy foods or reduced galactose metabolism. An overwhelming presence of D-galactose is known to become highly ototoxicity to humans. The purpose of this study was to investigate whether supplementation of pregnant and lactational mothers with β-carotene could attenuate cochlear function damage and hair cells apoptosis induced by d-galactose in newborn rats. Pregnant rats were supplemented with D-galactose, or D-galactose and β-carotene from gestational day (GD) 7 until postnatal day (PND) 21. On PND 22, offspring were examined in the distortion product otoacoustic emission (DPOAE) task, cochleae were then harvested for assessment of apoptosis by immunohistochemical stain for cysteine-aspartic acid proteases 3 (caspase-3) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Maternal and offspring blood samples were then collected by direct cardiac puncture in heparin tubes, blood levels of D-galactose and β-carotene were measured, plasma was separated for malondialdehyde (MDA) analysis, erythrocytes were left for superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH). D-Galactose could significantly disturb the balance between maternal antioxidants and free radicals, and induce hearing loss in the offspring and cochlear hair cell apoptosis. In contrast, β-carotene supplementation, coincidentally with D-galactose exposure, ameliorated these changes. Our data offer a conceptual framework for designing clinical trials using a safe micronutrient, β-carotene, as a simple preventive strategy for D-galactose-induced ototoxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Introduction In animal models, maternal obesity (OB) leads to augmented risk of offspring OB. While placental function is influenced by maternal habitus, the effect of maternal obesity on the interacting zones of the placenta [the labyrinth (LZ), junctional (JZ) and metrial gland (MG)] remains unkno...
USDA-ARS?s Scientific Manuscript database
Adipose tissue macrophages (ATM) are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. However, it is not known whether maternal undernutrition increases ATM phenotypic expression in F1 offspring. Us...
Hardt, Daniel J; James, R Arden; Gut, Chester P; McInturf, Shawn M; Sweeney, Lisa M; Erickson, Richard P; Gargas, Michael L
2015-02-01
The inhalation toxicity of submarine contaminants is of concern to ensure the health of men and women aboard submarines during operational deployments. Due to a lack of adequate prior studies, potential general, neurobehavioral, reproductive and developmental toxicity was evaluated in male and female rats exposed to mixtures of three critical submarine atmospheric components: carbon monoxide (CO) and carbon dioxide (CO2; levels elevated above ambient), and oxygen (O2; levels decreased below ambient). In a 14-day, 23 h/day, whole-body inhalation study of exposure to clean air (0.4 ppm CO, 0.1% CO2 and 20.6% O2), low-dose, mid-dose and high-dose gas mixtures (high dose of 88.4 ppm CO, 2.5% CO2 and 15.0% O2), no adverse effects on survival, body weight or histopathology were observed. Reproductive, developmental and neurobehavioral performance were evaluated after a 28-day exposure in similar atmospheres. No adverse effects on estrus phase, mating, gestation or parturition were observed. No developmental or functional deficits were observed in either exposed parents or offspring related to motor activity, exploratory behavior or higher-level cognitive functions (learning and memory). Only minimal effects were discovered in parent-offspring emotionality tests. While statistically significant increases in hematological parameters were observed in the offspring of exposed parents compared to controls, these parameters remained within normal clinical ranges for blood cells and components and were not considered adverse. In summary, subacute exposures to elevated concentrations of the submarine atmosphere gases did not affect the ability of rats to reproduce and did not appear to have any significant adverse health effects.
Butkevich, Irina P; Mikhailenko, Viktor A; Vershinina, Elena A; Otellin, Vladimir A; Aloisi, Anna Maria
2011-10-24
Prenatal stress strengthens tonic pain and provokes depression. The serotoninergic system is involved in these processes. We recently showed that maternal buspirone, a 5-HT1A receptor agonist, protects against the adverse effects of in utero stress on depression and pain in adult rat offspring. Using a similar maternal treatment with buspirone, we focus here on the infant stage, which is important for the correction of prenatal abnormalities. Maternal buspirone before restraint stress during the last week of pregnancy decreased the time of immobility in the forced swim test in the infant offspring. Prenatal stress increased formalin-induced pain in the second part of the time-course of the response to formalin in males of middle infancy but in the first part of the response in males of late infancy. The effect was reversed by maternal buspirone. Pain dominated in males of both middle and late infancy but the time-course of formalin pain in infant females revealed a slower development of the processes. The results show that the time-course of formalin-induced pain in infant rats reacts to prenatal stress in an age-dependent and sexually dimorphic manner. Our finding of opposite influences of prenatal stress and buspirone before prenatal stress on formalin-induced pain during the interphase indicates that functional maturity of the descending serotonergic inhibitory system occurs in late infancy males (11-day-olds), and 5-HT1A receptors participate in this process. The data provide evidence that maternal treatment with buspirone prior to stress during pregnancy alleviates depression-like and tonic pain-related behaviors in the infant offspring. Copyright © 2011 Elsevier B.V. All rights reserved.
Peixoto-Silva, Nayara; Moura, Egberto G; Carvalho, Janaine C; Nobre, Jéssica L; Quitete, Fernanda T; Pinheiro, Cintia R; Santos-Silva, Ana Paula; de Oliveira, Elaine; Lisboa, Patricia C
2017-04-01
Non-pharmacological early weaning (NPEW) leads offspring to obesity, higher liver oxidative stress and microsteatosis in adulthood. Pharmacological EW (PEW) by maternal treatment with bromocriptine (BRO) causes obesity in the adult progeny but precludes hepatic injury. To test the hypothesis that BRO prevents the deleterious changes of NPEW, we injected BRO into the pups from the NPEW model in late lactation. Lactating rats were divided into two groups: dams with an adhesive bandage around the body to prevent breastfeeding on the last 3 days of lactation and dams whose pups had free suckling (C). Offspring from both groups were subdivided into two groups: pups treated with BRO (intraperitoneal (i.p.) 4 mg/kg per day) on the last 3 days of lactation (NPEW/BRO and C/BRO) or pups treated with the vehicle (NPEW and C). At PN120, offspring were challenged with a high fat diet (HFD), and food intake was recorded after 30 minutes and 12 hours. Rats were killed at PN120 and PN200. At PN120, adipocyte size was greater in the NPEW group but was normal in the NPEW/BRO group. At PN200, the NPEW group presented hyperphagia, higher adiposity, adipocyte hypertrophy, hyperleptinaemia, glucose intolerance and increased hepatic triglycerides. These parameters were normalized in the NPEW/BRO group. In the feeding test, BRO groups showed lower HFD intake at 30 minutes than did their controls; however, at 12 hours, the NPEW group ate more HFD. The treatment with BRO can preclude some deleterious effects of the NPEW model, which prevented the development of overweight and its comorbidities. © 2017 John Wiley & Sons Australia, Ltd.
da Silva, Flávia R M; Grassi, Tony F; Zapaterini, Joyce R; Bidinotto, Lucas T; Barbisan, Luis F
2017-06-01
Zinc deficiency during pregnancy and postnatal life can adversely increase risk of developing human diseases at adulthood. The present study was designed to evaluate whether dietary zinc deficiency or supplementation during the pregnancy, lactation and juvenile stages interferes in the development of mammary tumors induced by 7,12-dimethylbenzanthracene (DMBA) in female Sprague-Dawley (SD) rats. Pregnant female SD rats were allocated into three groups: zinc-adequate diet (ZnA - 35-mg/kg chow), zinc-deficient diet (ZnD - 3-mg/kg chow) or zinc-supplemented diet (ZnS - 180-mg/kg chow) during gestational day 10 (GD 10) until the litters' weaning. Female offspring received the same diets as their dams until postnatal day (PND) 51. At PND 51, the animals received a single dose of DMBA (50 mg/kg, ig) and zinc-adequate diets. At PND 180, female were euthanized, and tumor samples were processed for histological evaluation and gene expression microarray analysis. The ZnD induced a significant reduction in female offspring body weight evolution and in mammary gland development. At late in life, the ZnD or ZnS did not alter the latency, incidence, multiplicity, volume or histological types of mammary tumors in relation to the ZnA group. However, the total tumor number in ZnS group was higher than in ZnA group, accompanied by distinct expression of 4 genes up- and 15 genes down-regulated. The present findings indicate that early-in-life dietary zinc supplementation, differently to zinc deficiency, has a potential to modify the susceptibility to the development of mammary tumors induced by DMBA. Copyright © 2017 Elsevier Inc. All rights reserved.
Perfluoroctane sulfonate-induced changes in fetal rat liver gene expression
In utero exposure of rats to perfluorooctane sulfonate (PFOS, C8F17SO3), a widely disseminated product of the surfactant and coating industries, is associated with residual hepatoxic complications in the surviving offspring. This hepatocellular hypertrophy resembles that observe...
Santos-Silva, Ana P; de Moura, Egberto Gaspar; Pinheiro, Cintia R; Oliveira, Elaine; Lisboa, Patricia Cristina
2018-06-01
Neonates can be exposed to bisphenol A (BPA) through placenta and milk, and BPA is associated with disorders such as precocious puberty and obesity. We evaluated the effects of BPA exposure during breastfeeding on the biochemical and endocrine profiles in young and adult rat progeny. From postnatal day (PND) 3 to 15 dams were divided into low-dose BPA treatment [50 μg/kg/day s.c. (BPA-LD)], high-dose BPA treatment [5 mg/kg/day s.c. (BPA-HD)], and Control (vehicle) groups. Milk was collected at PND15 and 21, which represents the end of exposure and 6 days after withdrawal, respectively. Dams were euthanized at weaning. Offspring of both genders were euthanized at PND15, 21, and 180. Milk estradiol levels were lower in the BPA-HD group than in the control group at PND 15; however, they were higher at PND21. Female rats whose mothers were BPA-exposed showed more significant differences from those in the control group, including better glycemic control and lipid profiles and higher food intake without higher adiposity, in adulthood than in the weaning period, when they presented with higher adiposity and hyperestrogenism. Conversely, male rats showed more abnormalities after BPA exposure compared to control rats, including insulin, leptin, testosterone, and thyroid hormone changes, when young but exhibited fewer alterations in adulthood, with increase only in LDLc in the BPA-HD rats. Taken together, the present findings suggest that exposure to BPA exclusively through milk affects adiposity, metabolism, and/or hormones of offspring in the short and long term, possibly compromising normal development in both sexes. © Georg Thieme Verlag KG Stuttgart · New York.
Borsonelo, Elizabethe Cristina; Suchecki, Deborah; Galduróz, José Carlos Fernandes
2011-04-18
Prenatal stress (PNS) during critical periods of brain development has been associated with numerous behavioral and/or mood disorders in later life. These outcomes may result from changes in the hypothalamic-pituitary-adrenal (HPA) axis activity, which, in turn, can be modulated by environmental factors, such as nutritional status. In this study, the adult male offspring of dams exposed to restraint stress during the last semester of pregnancy and fed different diets were evaluated for depressive-like behavior in the forced swimming test and for the corticosterone response to the test. Female Wistar rats were allocated to one of three groups: regular diet, diet supplemented with coconut fat or with fish oil, offered during pregnancy and lactation. When pregnancy was confirmed, they were distributed into control or stress groups. Stress consisted of restraint and bright light for 45 min, three times per day, in the last week of pregnancy. The body weight of the adult offspring submitted to PNS was lower than that of controls. In the forced swimming test, time of immobility was reduced and swimming was increased in PNS rats fed fish oil and plasma corticosterone levels immediately after the forced swimming test were lower in PNS rats fed regular diet than their control counterparts; this response was reduced in control rats whose mothers were fed fish oil and coconut fat. The present results indicate that coconut fat and fish oil influenced behavioral and hormonal responses to the forced swimming test in both control and PNS adult male rats. Copyright © 2011 Elsevier B.V. All rights reserved.
Nyirenda, M J; Welberg, L A; Seckl, J R
2001-09-01
In a previous study, we showed that exposure of rats to dexamethasone (Dex) selectively in late pregnancy produces permanent induction of hepatic phosphoenolpyruvate carboxykinase (PEPCK) expression and hyperglycaemia in the adult offspring. The mechanisms by which glucocorticoids cause this programming are unclear but may involve direct actions on the fetus/neonate, or glucocorticoids may act indirectly by affecting maternal postnatal nursing behaviour. Using a cross-fostering paradigm, the present data demonstrate that switching the offspring at birth from Dex-treated dams to control dams does not prevent induction of PEPCK or hyperglycaemia. Similarly, offspring born to control dams but reared by Dex-treated dams from birth maintain normal glycaemic control. During the neonatal period, injection of saline per se was sufficient to cause exaggeration in adult offspring responses to an oral glucose load, with no additional effect from Dex. However, postnatal treatment with either saline or Dex did not alter hepatic PEPCK activity. Prenatal Dex permanently raised basal plasma corticosterone levels, but under stress conditions there were no differences in circulating corticosterone levels. Likewise, Dex-exposed rats had similar plasma catecholamine concentrations to control animals. These findings show that glucocorticoids programme hyperglycaemia through mechanisms that operate on the fetus or directly on the neonate, rather than via effects that alter maternal postnatal behaviour during the suckling period. The hyperglycaemic response does not appear to result from abnormal sympathoadrenal activity or hypothalamic-pituitary-adrenal response during stress.
Wong-Goodrich, Sarah J.E.; Tognoni, Christina M.; Mellott, Tiffany J.; Glenn, Melissa J.; Blusztajn, Jan K.; Williams, Christina L.
2011-01-01
Choline is a vital nutrient needed during early development for both humans and rodents. Severe dietary choline deficiency during pregnancy leads to birth defects, while more limited deficiency during mid- to late pregnancy causes deficits in hippocampal plasticity in adult rodent offspring that are accompanied by cognitive deficits only when task demands are high. Because prenatal choline supplementation confers neuroprotection of the adult hippocampus against a variety of neural insults and aids memory, we hypothesized that prenatal choline deficiency may enhance vulnerability to neural injury. To examine this, adult offspring of rat dams either fed a control diet (CON) or one deficient in choline (DEF) during embryonic days 12–17 were given multiple injections (i.p.) of saline (control) or kainic acid to induce seizures and were euthanized 16 days later. Perhaps somewhat surprisingly, DEF rats were not more susceptible to seizure induction and showed similar levels of seizure-induced hippocampal histopathology, GAD expression loss, upregulated hippocampal GFAP and growth factor expression, and increased dentate cell and neuronal proliferation as that seen in CON rats. Although prenatal choline deficiency compromises adult hippocampal plasticity in the intact brain, it does not appear to exacerbate the neuropathological response to seizures in the adult hippocampus at least shortly after excitotoxic injury. PMID:21840511
Priego, Teresa; Sánchez, Juana; García, Ana Paula; Palou, Andreu; Picó, Catalina
2013-05-01
We aimed to assess the effects of maternal supplementation with the main fat sources used in the human Western diet (olive oil, butter, margarine) on milk FA composition and on plasma FA profile of offspring, and to determine whether it may influence body-weight-gain (BWG) and adiposity of offspring during the suckling period. Wistar rats were supplemented with the different fat sources from day 14 of gestation and throughout lactation. Olive oil-supplemented dams showed the highest proportion of oleic-acid in milk, with no changes in plasma. Their offspring also showed the highest proportion of this FA in plasma, lower BWG during the suckling period, and higher levels of UCP1 in brown adipose tissue (BAT) at weaning. Margarine-supplemented dams showed the highest percentage of PUFA in milk, and a similar tendency was found in plasma of their offspring. Butter-supplemented dams displayed higher proportion of saturated FA (SFA) in milk compared to other fat-supplemented dams, but lower than controls. Control offspring also showed higher proportion of SFA in plasma and greater BWG during the suckling period than fat-supplemented groups. Significant correlations were found between the relative content of some milk FA and BWG of offspring, in particular, oleic-acid levels correlated negatively with BWG and positively with UCP1 levels. These results show that maternal dietary source of fat affects milk FA composition and circulating FA profile, as could be expected, but also BWG and thermogenic capacity of offspring during the suckling period. An effect of oleic-acid stimulating BAT thermogenic capacity of suckling pups is proposed.
Bautista, C J; Guzmán, C; Rodríguez-González, G L; Zambrano, E
2015-08-01
Predisposition to offspring metabolic dysfunction due to poor maternal nutrition differs with the developmental stage at exposure. Post-weaning nutrition also influences offspring phenotype in either adverse or beneficial ways. We studied a well-established rat maternal protein-restriction model to determine whether post-weaning dietary intervention improves adverse outcomes produced by a deficient maternal nutritional environment in pregnancy. Pregnant rats were fed a controlled diet (C, 20% casein) during pregnancy and lactation (CC) or were fed a restricted diet (R, 10% casein isocaloric diet) during pregnancy and C diet during lactation (RC). After weaning, the offspring were fed the C diet. At postnatal day (PND) 70 (young adulthood), female offspring either continued with the C diet (CCC and RCC) or were fed commercial Chow Purina 5001 (I) to further divide the animals into dietary intervention groups CCI and RCI. Another group of mothers and offspring were fed I throughout (III). Offspring food intake was averaged between PND 95-110 and 235-250 and carcass and liver compositions were measured at PND 25 and 250. Leptin (PND 110 and 250) and serum glucose, triglycerides and cholesterol (PND 250) levels were measured. Statistical analysis was carried out using ANOVA. At PND 25, body and liver weights were similar between groups; however, CCC and RCC carcass protein:fat ratios were lower compared with III diet. At PND 110 and 250, offspring CCC and RCC had higher body weight, food intake and serum leptin compared with CCI and RCI. CCI had lower carcass fat and increased protein compared with CCC and improved fasting glucose and triglycerides. Adult dietary intervention partially overcomes adverse effects of programming. Further studies are needed to determine the mechanisms involved.
Ketamine administered pregnant rats impair learning and memory in offspring via the CREB pathway.
Li, Xinran; Guo, Cen; Li, Yanan; Li, Lina; Wang, Yuxin; Zhang, Yiming; Li, Yue; Chen, Yu; Liu, Wenhan; Gao, Li
2017-05-16
Ketamine has been reported to impair the capacity for learning and memory. This study examined whether these capacities were also altered in the offspring and investigated the role of the CREB signaling pathway in pregnant rats, subjected to ketamine-induced anesthesia. On the 14th day of gestation (P14), female rats were anesthetized for 3 h via intravenous ketamine injection (200 mg/Kg). Morris water maze task, contextual and cued fear conditioning, and olfactory tasks were executed between the 25th to 30th day after birth (B25-30) on rat pups, and rats were sacrificed on B30. Nerve density and dendritic spine density were examined via Nissl's and Golgi staining. Simultaneously, the contents of Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII), p-CaMKII, CaMKIV, p-CaMKIV, Extracellular Regulated Protein Kinases (ERK), p-ERK, Protein Kinase A (PKA), p-PKA, cAMP-Response Element Binding Protein (CREB), p-CREB, and Brain Derived Neurotrophic Factor (BDNF) were detected in the hippocampus. We pretreated PC12 cells with both PKA inhibitor (H89) and ERK inhibitor (SCH772984), thus detecting levels of ERK, p-ERK, PKA, p-PKA, p-CREB, and BDNF. The results revealed that ketamine impaired the learning ability and spatial as well as conditioned memory in the offspring, and significantly decreased the protein levels of ERK, p-ERK, PKA, p-PKA, p-CREB, and BDNF. We found that ERK and PKA (but not CaMKII or CaMKIV) have the ability to regulate the CREB-BDNF pathway during ketamine-induced anesthesia in pregnant rats. Furthermore, ERK and PKA are mutually compensatory for the regulation of the CREB-BDNF pathway.
Depot- and sex-specific effects of maternal obesity in offspring's adipose tissue.
Lecoutre, Simon; Deracinois, Barbara; Laborie, Christine; Eberlé, Delphine; Guinez, Céline; Panchenko, Polina E; Lesage, Jean; Vieau, Didier; Junien, Claudine; Gabory, Anne; Breton, Christophe
2016-07-01
According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11β-hydroxysteroid dehydrogenase type 1 (11β-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner. © 2016 Society for Endocrinology.
Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Stolakis, Vasileios; Tsagianni, Anastasia; Skandali, Nikolina; Al-Humadi, Hussam; Tsakiris, Stylianos
2014-06-01
Hypothyroidism is known to exert significant structural and functional changes to the developing central nervous system, and can lead to the establishment of serious mental retardation and neurological problems. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil-induced experimental hypothyroidism on crucial brain enzyme activities of Wistar rat offspring, at two time-points of their lives: at birth (day-1) and at 21 days of age (end of lactation). Under all studied experimental conditions, offspring brain acetylcholinesterase (AChE) activity was found to be significantly decreased due to maternal hypothyroidism, in contrast to the two studied adenosinetriphosphatase (Na(+),K(+)-ATPase and Mg(2+)-ATPase) activities that were only found to be significantly altered right after birth (increased and decreased, respectively, following an exposure to gestational maternal hypothyroidism) and were restored to control levels by the end of lactation. As our findings regarding the pattern of effects that maternal hypothyroidism has on the above-mentioned crucial offspring brain enzyme activities are compared to those reported in the literature, several differences are revealed that could be attributed to both the mode of the experimental simulation approach followed as well as to the time-frames examined. These findings could provide the basis for a debate on the need of a more consistent experimental approach to hypothyroidism during neurodevelopment as well as for a further evaluation of the herein presented and discussed neurochemical (and, ultimately, neurodevelopmental) effects of experimentally-induced maternal hypothyroidism, in a brain region-specific manner. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.
Xu, Jiawei; He, Guang; Zhu, Jingde; Zhou, Xinyao; St Clair, David; Wang, Teng; Xiang, Yuqian; Zhao, Qingzhu; Xing, Qinghe; Liu, Yun; Wang, Lei; Li, Qiaoli
2015-01-01
Background: Epidemiological studies have identified prenatal exposure to famine as a risk factor for schizophrenia, and animal models of prenatal malnutrition display structural and functional brain abnormalities implicated in schizophrenia. Methods: The offspring of the RLP50 rat, a recently developed animal model of prenatal famine malnutrition exposure, was used to investigate the changes of gene expression and epigenetic modifications in the brain regions. Microarray gene expression analysis was carried out in the prefrontal cortex and the hippocampus from 8 RLP50 offspring rats and 8 controls. MBD-seq was used to test the changes in DNA methylation in hippocampus depending on prenatal malnutrition exposure. Results: In the prefrontal cortex, offspring of RLP50 exhibit differences in neurotransmitters and olfactory-associated gene expression. In the hippocampus, the differentially-expressed genes are related to synaptic function and transcription regulation. DNA methylome profiling of the hippocampus also shows widespread but systematic epigenetic changes; in most cases (87%) this involves hypermethylation. Remarkably, genes encoded for the plasma membrane are significantly enriched for changes in both gene expression and DNA methylome profiling screens (p = 2.37×10–9 and 5.36×10–9, respectively). Interestingly, Mecp2 and Slc2a1, two genes associated with cognitive impairment, show significant down-regulation, and Slc2a1 is hypermethylated in the hippocampus of the RLP50 offspring. Conclusions: Collectively, our results indicate that prenatal exposure to malnutrition leads to the reprogramming of postnatal brain gene expression and that the epigenetic modifications contribute to the reprogramming. The process may impair learning and memory ability and result in higher susceptibility to schizophrenia. PMID:25522397
Oliveira, V; Silva Junior, S D; de Carvalho, M H C; Akamine, E H; Michelini, L C; Franco, M C
2017-04-01
It has been demonstrated that intrauterine growth restriction (IUGR) can program increase cardiometabolic risk. There are also evidences of the correlation between IUGR with low-grade inflammation and, thus can contribute to development of several cardiometabolic comorbidities. Therefore, we investigated the influence of IUGR on circulating mitochondrial DNA (mtDNA)/Toll-like receptor 9 (TLR9) and TNF-α expression in adult offspring. Considering that the aerobic training has anti-inflammatory actions, we also investigated whether aerobic training would improve these inflammatory factors. Pregnant Wistar rats received ad libitum or 50% of ad libitum diet throughout gestation. At 8 weeks of age, male offspring from both groups were randomly assigned to control, trained control, restricted and trained restricted. Aerobic training protocol was performed on a treadmill and after that, we evaluated circulating mtDNA, cardiac protein expression of TLR9, plasma and cardiac TNF-α levels, and left ventricle (LV) mass. We found that IUGR promoted an increase in the circulating mtDNA, TLR9 expression and plasma TNF-α levels. Further, our results revealed that aerobic training can restore mtDNA/TLR9 content and plasma levels of TNF-α among restricted rats. The cardiac TNF-α content and LV mass were not influenced either by IUGR or aerobic training. In conclusion, IUGR can program mtDNA/TLR9 content, which may lead to high levels of TNF-α. However, aerobic training was able to normalize these alterations. These findings evidenced that the association of IUGR and aerobic training seems to exert an important interaction effect regarding pro-inflammatory condition and, aerobic training may be used as a strategy to reduce deleterious adaptations in IUGR offspring.
Badache, Soumeya; Bouslama, Slim; Brahmia, Oualid; Baïri, Abdel Madjid; Tahraoui, Abdel Krim; Ladjama, Ali
2017-05-01
We aimed to investigate in adolescent rats the individual and combined effects of prenatal noise and restraint stress on balance control, exploration, locomotion and anxiety behavior. Three groups of pregnant rats were exposed to daily repeated stress from day 11 to day 19 of pregnancy: 3 min noise (Noise Stress, NS); 10 min restraint (restraint stress, RS); or 3 min noise followed by 10 min restraint (mixed stress, MS). On postnatal days (PND) 44, 45 and 46, four groups of male rats (Control, NS, RS:, MS; 16 rats each), were tested as follows: (1) beam walking (BW), (2) open field (OF) and (3) elevated plus maze (EPM). Our results show that the NS group had significantly impaired balance control, locomotion and both horizontal and vertical exploration (p < .01 for all measures). The RS group showed only a decrease in vertical exploration (p < .05). In contrast, locomotion and balance were not affected in the MS group (OF: crossed squares: p = .34, missteps: p = .18). However, MS rats exhibited significantly higher anxiety levels (less time in EPM open arms: p < .05), and took more time to complete BW: p < .05). Hence, combined prenatal stressors exert non-additive effects on locomotion, exploration and balance control, but induce greater anxiety through additive effects. Terminal plasma ACTH concentration was increased by prenatal stress, especially noise, which group had the largest adrenal glands. Overall, contrary to expectation, combined prenatal stressors can interact to increase anxiety level, but diminish alteration of exploration, locomotion and impaired balance control, which were strongly induced by noise stress. Lay summary: Experience of stress in pregnancy can have negative effects on the offspring that are long-lasting. Here, we used laboratory rats to see whether repeated episodes of exposure to loud noise or preventing free movement, alone or together, during pregnancy had different effects on behaviors of the adolescent offspring. Using standard tests, we found the prenatal stresses caused the offspring to be anxious, and not to balance when moving around as well as normal offspring; the degree of impairment depended on the type of stress - loud noise exposure had the greatest effects, but if the stresses were combined the effects were not worse. The results point to the need to aim to avoid stress in pregnant women.
Bayol, S A; Simbi, B H; Bertrand, J A; Stickland, N C
2008-07-01
We have shown previously that a maternal junk food diet during pregnancy and lactation plays a role in predisposing offspring to obesity. Here we show that rat offspring born to mothers fed the same junk food diet rich in fat, sugar and salt develop exacerbated adiposity accompanied by raised circulating glucose, insulin, triglyceride and/or cholesterol by the end of adolescence (10 weeks postpartum) compared with offspring also given free access to junk food from weaning but whose mothers were exclusively fed a balanced chow diet in pregnancy and lactation. Results also showed that offspring from mothers fed the junk food diet in pregnancy and lactation, and which were then switched to a balanced chow diet from weaning, exhibited increased perirenal fat pad mass relative to body weight and adipocyte hypertrophy compared with offspring which were never exposed to the junk food diet. This study shows that the increased adiposity was more enhanced in female than male offspring and gene expression analyses showed raised insulin-like growth factor-1 (IGF-1), insulin receptor substrate (IRS)-1, vascular endothelial growth factor (VEGF)-A, peroxisome proliferator-activated receptor-gamma (PPARgamma), leptin, adiponectin, adipsin, lipoprotein lipase (LPL), Glut 1, Glut 3, but not Glut 4 mRNA expression in females fed the junk food diet throughout the study compared with females never given access to junk food. Changes in gene expression were not as marked in male offspring with only IRS-1, VEGF-A, Glut 4 and LPL being up-regulated in those fed the junk food diet throughout the study compared with males never given access to junk food. This study therefore shows that a maternal junk food diet promotes adiposity in offspring and the earlier onset of hyperglycemia, hyperinsulinemia and/or hyperlipidemia. Male and female offspring also display a different metabolic, cellular and molecular response to junk-food-diet-induced adiposity.
Bayol, S A; Simbi, B H; Bertrand, J A; Stickland, N C
2008-01-01
We have shown previously that a maternal junk food diet during pregnancy and lactation plays a role in predisposing offspring to obesity. Here we show that rat offspring born to mothers fed the same junk food diet rich in fat, sugar and salt develop exacerbated adiposity accompanied by raised circulating glucose, insulin, triglyceride and/or cholesterol by the end of adolescence (10 weeks postpartum) compared with offspring also given free access to junk food from weaning but whose mothers were exclusively fed a balanced chow diet in pregnancy and lactation. Results also showed that offspring from mothers fed the junk food diet in pregnancy and lactation, and which were then switched to a balanced chow diet from weaning, exhibited increased perirenal fat pad mass relative to body weight and adipocyte hypertrophy compared with offspring which were never exposed to the junk food diet. This study shows that the increased adiposity was more enhanced in female than male offspring and gene expression analyses showed raised insulin-like growth factor-1 (IGF-1), insulin receptor substrate (IRS)-1, vascular endothelial growth factor (VEGF)-A, peroxisome proliferator-activated receptor-γ (PPARγ), leptin, adiponectin, adipsin, lipoprotein lipase (LPL), Glut 1, Glut 3, but not Glut 4 mRNA expression in females fed the junk food diet throughout the study compared with females never given access to junk food. Changes in gene expression were not as marked in male offspring with only IRS-1, VEGF-A, Glut 4 and LPL being up-regulated in those fed the junk food diet throughout the study compared with males never given access to junk food. This study therefore shows that a maternal junk food diet promotes adiposity in offspring and the earlier onset of hyperglycemia, hyperinsulinemia and/or hyperlipidemia. Male and female offspring also display a different metabolic, cellular and molecular response to junk-food-diet-induced adiposity. PMID:18467362
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johri, Ashu; Yadav, Sanjay; Dhawan, Alok
2007-12-15
Oral administration of different doses (0.0625, 0.125 or 0.25 mg/kg corresponding to 1/1400th, 1/700th or 1/350th of LD{sub 50}) of lindane to the pregnant Wistar rats from gestation days 5 to 21 were found to produce a dose-dependent increase in the activity of cytochrome P450 (CYP)-dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-d) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of CYP monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver ofmore » offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have suggested that increase in CYP activity may possibly lead to the formation of metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic CYPs was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.125 and 0.25 mg/kg) of lindane and up to 9 weeks at the highest dose (0.25 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6-week of age, have further indicated that due to the reduced activity of the CYPs during the ontogeny, lindane and its metabolites may not be effectively cleared from the brain. The data suggest that low dose prenatal exposure to the pesticide has the potential to produce overexpression of xenobiotic metabolizing CYPs in brain and liver of the offspring which may account for the behavioral changes observed in the offspring.« less
DEVELOPMENTAL NEUROTOXICITY OF INHALED METHANOL IN RATS
Dr. Weiss and his colleagues conducted a controlled series of experiments in which they exposed pregnant rats and their newborn offspring to 4,500 parts per million (ppm) methanol by inhalation, and then submitted them to tests of behavioral function.
Exposure to 4,500...
Previously we reported an increased incidence of audiogenic seizures in offspring of pregnant rats exposed to an environmental mixture of polychlorinated biphenyls (PCBs). This study compares the proconvulsant properties of PCB exposure in audiogenic and electrical kindling seizu...
Zeitz, Johanna O; Most, Erika; Eder, Klaus
2016-05-31
Conjugated linoleic acid (CLA) is known to affect the lipid metabolism in growing and lactating animals. However, potential effects on the metabolism of fat-soluble vitamins in lactating animals and co-occurring effects on their offspring are unknown. We aimed to investigate the effects of dietary CLA on concentrations of tocopherol in various tissues of lactating rats and their offspring and expression of genes involved in tocopherol metabolism. Twenty-eight Wistar Han rats were allocated to 2 groups and fed either a control diet (control group) or a diet containing 0.9 % of cis-9, trans-11 and trans-10, cis-12 (1:1) CLA (CLA group) during pregnancy and lactation. Feed intake of dams and body weight of dams and their pups were recorded weekly. Tocopherol concentrations in various body tissues were determined at day 14 of lactation in dams and 1, 7 and 14 days after birth in pups. Expression of selected genes involved in metabolism of tocopherol was determined in dams and pups. The data were statistically analysed by analysis of variance. Feed intake and body weight development of nursing rats and their pups was similar in both groups. In livers of CLA-fed dams, tocopherol concentrations decreased by 24 % but expression of TTPA and CYP3A1, involved in tocopherol transport and metabolism, were not influenced. In the dams' adipose tissue, gene expression of receptors involved in tissue tocopherol uptake, LDLR and SCARB1, but not of LPL, increased by 30 to 50 % and tocopherol concentrations increased by 47 % in CLA-fed compared to control dams. Expression of LPL, LDLR and SCARB1 in mammary gland was not influenced by CLA-feeding. Tocopherol concentrations in the pup's livers and lungs were similar in both groups, but at 14 days of age, adipose tissue tocopherol concentrations, and LDLR and SCARB1 expression, were higher in the CLA-exposed pups. We show that dietary CLA affects tissue concentrations of tocopherol in lactating rats and tocopherol metabolism in rats and pups, but hardly influences tissue tocopherol concentrations in their offspring. This indicates that supplementation of CLA in pregnant and lactating animals is uncritical considering the tocopherol status of new-borns.
USDA-ARS?s Scientific Manuscript database
Early exposure to unfavorable nutrition programs increases risk of adult-onset diseases. In this rat study, we investigate morphological, metabolic and endocrinal phenotypes of offspring born to dams consuming isocaloric diets containing 30% fructose, 9.9% coconut fat and 0.5% cholesterol (F+SFA), m...
Zhang, Fan; Chen, Jian; Lin, Xinyue; Peng, Shiqiao; Yu, Xiaohui; Shan, Zhongyan; Teng, Weiping
2018-05-01
Maternal hypothyroidism during pregnancy can affect the neurodevelopment of their offspring. This study aimed to investigate the effects of maternal subclinical hypothyroidism (SCH) on spatial learning and memory, and its relationship with the apoptotic factors in cerebral cortex of the offspring. Female adult Wistar rats were randomly divided into three groups ( n = 15 per group): control (CON) group, SCH group and overt hypothyroidism (OH) group. Spatial learning and memory in the offspring were evaluated by long-term potentiation (LTP) and Morris water-maze (MWM) test. The protein expression of the p75 neurotrophin receptor (p75 NTR ), phospho-c-Jun N-terminal kinase (p-JNK), the pro-apoptotic protein p53 and Bax were detected by Western blotting. The Pups in the SCH and OH groups showed longer escape latencies in the MWM and decreased field-excitatory post synaptic potentials in LTP tests compared with those in the CON group. p75 NTR , p-JNK, p53 and Bax expression levels in the cerebral cortex increased in pups in the SCH and OH groups compared with those in the CON group. Maternal SCH during pregnancy may impair spatial learning and memory in the offspring and may be associated with the increased apoptosis in the cerebral cortex. © 2018 The authors.
Vorhees, C V; Fernandez, K; Dumas, R M; Haddad, R K
1984-07-01
Pregnant Long-Evans rats were given a single i.p. injection of 30 mg/kg of methylazoxymethanol (MAM) acetate or saline on day 14 of gestation (vaginal plug = day 0). All litters were reduced to 8 at birth and were reared by their biological dams. Between 49-192 days of age all offspring were examined on open-field, figure-8 (at two different ages), and hole-board tests of activity, as well as passive avoidance and Biel water maze tests of learning (also at two different ages). The MAM offspring showed no increase in mortality, but weighed less than controls, a difference that remained relatively constant throughout the experiment. At 204-215 days of age the MAM offspring were confirmed to be micrencephalic, a known effect of this drug at this dose and exposure period. On all tests of activity the MAM offspring were markedly hyperactive. The female progeny also exhibited a pronounced impairment of normal activity habituation patterns. The MAM males, however, showed a marked impairment of passive avoidance performance, while the females did not. At 2 months of age the MAM offspring also showed a pronounced deficit in learning a water maze. This maze deficit had not abated when tested again at 6 months of age. The MAM induced brain and behavioral abnormalities provide a potentially useful animal model of congenital micrencephaly and associated mental retardation.
Cross-fostering: Elucidating the effects of gene×environment interactions on phenotypic development.
McCarty, Richard
2017-02-01
Cross-fostering of litters from soon after birth until weaning is a valuable tool to study the ways in which gene×environment interactions program the development of neural, physiological and behavioral characteristics of mammalian species. In laboratory mice and rats, the primary focus of this review, cross-fostering of litters between mothers of different strains or treatment groups (intraspecific) or between mothers of different species (interspecific) has been conducted over the past 9 decades. Areas of particular interest have included maternal effects on emotionality, social preferences, responses to stressful stimulation, nutrition and growth, blood pressure regulation, and epigenetic effects on brain development and behavior. Results from these areas of research highlight the critical role of the postnatal maternal environment in programming the development of offspring phenotypic characteristics. In addition, experimental paradigms that have included cross-fostering have permitted investigators to tease apart prenatal versus postnatal effects of various treatments on offspring development and behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
We have shown that protein malnutrition during fetal growth followed by postnatal high-fat diets results in a rapid increase in subcutaneous adipose tissue mass in the offspring contributing to development of obesity and insulin resistance. Recent studies have shown that the absence of a key transcr...
Genetic Regulation of Development of Thymic Lymphomas Induced by N‐Propyl‐N‐nitrosourea in the Rat
Fukami, Hiroko; Nishimura, Mayumi; Matsuyama, Mutsushi
1995-01-01
To clarify the linkage between Hbb and Tls‐1 (thymic lymphoma susceptible‐1) loci and to investigate other loci concerned in thymic lymphomagenesis, the BUF/Mna rat, which is highly sensitive to the lymphomagenic activity of N‐propyl‐N‐nitrosourea (PNU), the WKY/NCrj rat, reported to be resistant, and their cross offspring were subjected to genetic analysis. F1 hybrid and backcross generations were raised from the 2 strains, and 6 genetic markers including Hbb were analyzed in individuals of the backcross generation. However, no linkage between Hbb and Tls‐1 loci could be demonstrated since WKY rats also developed a high incidence of thymic lymphomas in response to PNU. Nevertheless, thymic lymphomas developed more rapidly and reached a larger size in the BUF rats. F1 rats expressed a rather rapid and large tumor growth phenotype, while the [(WKY × BUF) × WKY] backcross generation consisted of rats with either rapidly growing or slowly growing tumors. It was thus concluded that rapid development of thymic lymphomas is determined by a gene, provisionally designated Tls‐3. Analysis of the relationship between 6 genetic markers and development of thymic lymphoma in the backcross generation demonstrated that the Tls‐3 locus is loosely linked to the Gc locus, suggesting a possible location on rat chromosome 14. Tls‐3 may not be identical with Tls‐1 and other genes known to be relevant to thymic tumors, but its relationship with Tls‐2 remains obscure. PMID:7559080
Stanko, Jason P.; Enoch, Rolondo R.; Rayner, Jennifer L.; Davis, Christine C.; Wolf, Douglas C.; Malarkey, David E.; Fenton, Suzanne E.
2010-01-01
The present study examines the postnatal reproductive development of male rats following prenatal exposure to an atrazine metabolite mixture (AMM) consisting of the herbicide atrazine and its environmental metabolites diaminochlorotriazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine. Pregnant Long Evans rats were treated by gavage with 0.09, 0.87, or 8.73 mg AMM/kg body weight (BW), vehicle, or 100 mg ATR/kg BW positive control, on gestation days 15-19. Preputial separation was significantly delayed in 0.87 mg and 8.73 mg AMM-exposed males. AMM-exposed males demonstrated a significant treatment-related increase in incidence and severity of inflammation in the prostate on postnatal day (PND) 120. A dose-dependent increase in epididymal fat masses and prostate foci were grossly visible in AMM-exposed offspring. These results indicate that a short, late prenatal exposure to mixture of chlorotriazine metabolites can cause chronic prostatitis in male LE rats. The mode of action for these effects is presently unclear. PMID:20727709
Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats
Stevens, Karen E.; Adams, Catherine E.; Mellott, Tiffany J.; Robbins, Emily; Kisley, Michael A.
2008-01-01
Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the α7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal α-bungarotoxin to visualize nicotinic α7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring. PMID:18778692
Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats.
Stevens, Karen E; Adams, Catherine E; Mellott, Tiffany J; Robbins, Emily; Kisley, Michael A
2008-10-27
Adequate choline levels in rodents during gestation have been shown to be critical to several functions, including certain learning and memory functions, when tested at adulthood. Choline is a selective agonist for the alpha7 nicotinic receptor which appears in development before acetylcholine is present. Normal sensory inhibition is dependent, in part, upon sufficient numbers of this receptor in the hippocampus. The present study assessed sensory inhibition in Sprague-Dawley rats gestated on normal (1.1 g/kg), deficient (0 g/kg) or supplemented (5 g/kg) choline in the maternal diet during the critical period for cholinergic cell development (E12-18). Rats gestated on deficient choline showed abnormal sensory inhibition when tested at adulthood, while rats gestated on normal or supplemented choline showed normal sensory inhibition. Assessment of hippocampal alpha-bungarotoxin to visualize nicotinic alpha7 receptors revealed no difference between the gestational choline levels. These data suggest that attention to maternal choline levels for human pregnancy may be important to the normal functioning of the offspring.
Abdel-Hakeem, Ahmed K; Henry, Tasmia Q; Magee, Thomas R; Desai, Mina; Ross, Michael; Mansano, Roy; Torday, John; Nast, Cynthia C.
2010-01-01
Objective Maternal food restriction during pregnancy results in growth restricted newborns and reduced glomerular number, contributing to programmed offspring hypertension. We investigated whether reduced nephrogenesis may be programmed by dysregulation of factors controlling ureteric bud branching and mesenchyme to epithelial transformation. Study Design 10 to 20 days gestation, Sprague Dawley pregnant rats (n=6/group) received ad libitum food; FR rats were 50% food restricted. At embryonic day 20, mRNA and protein expression of WT1, Pax2, FGF2, GDNF, cRET, WNT4, WNT11, BMP4, BMP7, and FGF7 were determined by real-time PCR and Western blotting. Results Maternal FR resulted in up-regulated mRNA expression for WT1, FGF2, and BMP7 whereas Pax2, GDNF, FGF7, BMP4, WNT4, and WNT11 mRNAs were down-regulated. Protein expression was concordant for WT1, GDNF, Pax2, FGF7, BMP4 and WNT4. Conclusion Maternal FR altered gene expression of fetal renal transcription and growth factors, and likely contributes to development of offspring hypertension. PMID:18639218
McDonnell-Dowling, Kate; Kelly, John P
2016-04-01
Many preclinical studies have aimed to elucidate the effects of methamphetamine (MA) exposure during pregnancy on the offspring in recent years. However, the severity of effects on the neonate may be related to the subcutaneous (sc) route of administration of the drug that is often employed (88% of preclinical studies) and consequently the delivered dose that the foetus is exposed to. To date there is a paucity of comparative studies investigating different routes of administration for MA during pregnancy and it is not known how these different routes compare when it comes to neonatal outcome. Thus, the aim of this study was to determine if the route of administration of MA (oral gavage or sc injection) during pregnancy at a pharmacological dose affects the magnitude of neurodevelopmental and behavioural effects in the resultant rat offspring. Pregnant Sprague-Dawley dams (n=10 dams/group) received MA (3.75 mg/kg) or control (distilled water) via oral gavage or sc injection from gestation day 7-21. A range of well-recognised neurodevelopmental parameters were examined in the offspring. When administered sc, MA significantly reduced maternal weight gain and altered maternal behaviour; mothers spent less time in the nest with pups and spent less time nursing compared to controls. Significant impairments in neurodevelopmental parameters were evident in both MA treatment groups. Somatic development such as pinna unfolding, fur appearance and eye opening were all delayed after MA exposure but these impairments were more pronounced in the MA sc group. Other somatic parameters such as ano-genital distance and body length were only impeded by sc MA. Behavioural development in the surface righting, inclined plane and forelimb grip tests were also altered for both MA treatment groups. This study demonstrates that prenatal MA can have a profound effect on neonatal outcome, but this can be exacerbated if given via the subcutaneous route, as well as producing additional effects not seen with the oral gavage route. Consequently, the route of administration should be considered when interpreting preclinical studies investigating prenatal MA exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cesconetto, Patricia A; Andrade, Camila M; Cattani, Daiane; Domingues, Juliana T; Parisotto, Eduardo B; Filho, Danilo W; Zamoner, Ariane
2016-01-01
Alcohol abuse during pregnancy leads to intellectual disability and morphological defects in the offspring. The aim of this study was to determine the effect of chronic maternal ethanol (EtOH) consumption during pregnancy and lactation on glutamatergic transmission regulation, energy deficit, and oxidative stress in the hippocampus of the offspring. EtOH was administered to dams in drinking water at increasing doses (2 to 20%) from the gestation day 5 to lactation day 21. EtOH and tap water intake by treated and control groups, respectively, were measured daily. Results showed that EtOH exposure does not affect fluid intake over the course of pregnancy and lactation. The toxicity of maternal exposure to EtOH was demonstrated by decreased offspring body weight at experimental age, on postnatal day 21. Moreover, maternal EtOH exposure decreased (45) Ca(2+) influx in the offspring's hippocampus. Corroborating this finding, EtOH increased both Na(+) -dependent and Na(+) -independent glial [(14) C]-glutamate uptake in hippocampus of immature rats. Also, maternal EtOH exposure decreased glutamine synthetase activity and induced aspartate aminotransferase enzymatic activity, suggesting that in EtOH-exposed offspring hippocampus, glutamate is preferentially used as a fuel in tricarboxylic acid cycle instead of being converted into glutamine. In addition, EtOH exposure decreased [U-14C]-2-deoxy-D-glucose uptake in offspring hippocampus. The decline in glucose transport coincided with increased lactate dehydrogenase activity, suggesting an adaptative response in EtOH-exposed offspring hippocampus, using lactate as an alternative fuel. These events were associated with oxidative damage, as demonstrated by changes in the enzymatic antioxidant defense system and lipid peroxidation. Taken together, the results demonstrate that maternal exposure to EtOH during pregnancy and lactation impairs glutamatergic transmission, as well as inducing oxidative stress and energy deficit in immature rat hippocampus. Copyright © 2016 by the Research Society on Alcoholism.
Lima, Ingrid L. B.; Rodrigues, Aline F. A. C.; Bergamaschi, Cássia T.; Campos, Ruy R.; Hirata, Aparecida E.; Tufik, Sergio; Xylaras, Beatriz D. P.; Visniauskas, Bruna; Chagas, Jair R.; Gomes, Guiomar N.
2014-01-01
Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring. PMID:25405471
Lima, Ingrid L B; Rodrigues, Aline F A C; Bergamaschi, Cássia T; Campos, Ruy R; Hirata, Aparecida E; Tufik, Sergio; Xylaras, Beatriz D P; Visniauskas, Bruna; Chagas, Jair R; Gomes, Guiomar N
2014-01-01
Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi - tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127 ± 2.6 (19); OCSR: 144 ± 2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: -2.6 ± 0.15 (9); OCRS: -1.6 ± 0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4 ± 15 (18); OSR: 60.2 ± 3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4 ± 0.2 (10); OCSR: 7.4 ± 0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.
In utero phthalate effects in the female rat: a model for MRKH syndrome##
Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome is characterized by uterine and vaginal canal aplasia in normal karyotype human females and is a syndrome with poorly defined etiology. Reproductive toxicity of phthalate esters (PEs) occurs in rat offspring exposed in utero, a phen...
Vaginal thread formation in the healthy offspring of untreated Long-Evans rats
Vaginal threads are characterized as cords of mesenchymal tissue that cross the vaginal opening. They are sometimes apparent in rats after weaning, and typically disappear within 1-2 days as the female reaches puberty. If persistent, they can increase uncertainty in assessing rep...
In Utero Phthalate Effects in the Female Rat: A Model for MRKH Syndrome
Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome is characterized by uterine and vaginal canal aplasia in normal karyotype human females and is a syndrome with poorly define etiology. Reproductive toxicity of phthlate esters (PEs) occurs in rat offspring exposed in utero. a phenome...
Bagheripuor, Fatemeh; Ghanbari, Mahboubeh; Piryaei, Abbas; Ghasemi, Asghar
2018-05-01
What is the central question of this study? Does fetal hypothyroidism in rats alter uterine contractions and structure in the adult offspring? What is the main finding and its importance? Our study indicated that maternal hypothyroidism during pregnancy increased gestational length and decreased litter size. In addition, maternal hypothyroidism caused delayed puberty onset, irregular uterine contractions and histological changes in the uterus in the female offspring. This model might contribute to a better understanding of the cellular and molecular mechanisms involved in uterine contractions in fetal hypothyroidism, studies which are not possible in humans, and might help to establish therapeutic methods for these disorders observed in uterine contractions. Thyroid hormones play an essential role in fetal growth. Hypothyroidism impairs reproductive function in both humans and animals. The aim of this study was to assess the effects of fetal hypothyroidism on uterine smooth muscle contraction and structure in the adult offspring. The control group of female Wistar rats consumed tap water, whereas the hypothyroid group received water containing 0.025% of 6-propyl-2-thiouracial throughout gestation from mating until delivery. Isometric contractility and histological changes in uterine tissue were evaluated in the adult female offspring. We tested the effects of carbachol (10 -10 -10 -3 m) and oxytocin (10 -13 -10 -8 m) on uterine smooth muscle contraction in the fetal hypothyroid (FH) and control groups. Compared with control uteri, carbachol induced contractions with lower amplitude in the FH group (area under the curve: 1820.0 ± 250.0 versus 1370.0 ± 125.0 a.u., control versus FH group, respectively, P < 0.001) and frequency (86.4 ± 7.3 versus 37.0 ± 6.1 a.u., P < 0.001). Likewise, after exposure to oxytocin the amplitude (6614.0 ± 492.2 versus 4793.0 ± 735.2 a.u., P < 0.001) and frequency (367.4 ± 32.0 versus 167.0 ± 39.0 a.u., P < 0.001) of uterine contractions in the FH group were significantly lower than in the control group. In addition, the thickness of the endometrium and smooth muscle layer and the cross-sectional area of the uterus were also significantly lower in the FH group. Gestational length was longer and litter size smaller in FH rats compared with control animals; FH offspring also had delayed puberty. In conclusion, thyroid hormone deficiency during pregnancy increased gestational length and decreased litter size; in the offspring, it delayed puberty onset, reduced uterine rhythmic contractions and resulted in uterine structural changes. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.
Cao, Jinyan; Echelberger, Roger; Liu, Min; Sluzas, Emily; McCaffrey, Katherine; Buckley, Brian; Patisaul, Heather B.
2015-01-01
Endocrine disrupting compounds (EDCs) are hypothesized to promote obesity and early puberty but their interactive effects with hormonally active diets are poorly understood. Here we assessed individual and combinatorial effects of soy diet or the isoflavone genistein (GEN; administered as the aglycone genistin GIN) with bisphenol A (BPA) on body weight, ingestive behavior and female puberal onset in Wistar rats. Soy-fed dams gained less weight during pregnancy and, although they consumed more than dams on a soy-free diet during lactation, did not become heavier. Their offspring (both sexes), however, became significantly heavier (more pronounced in males) pre-weaning. Soy also enhanced food intake and accelerated female pubertal onset in the offspring. Notably, pubertal onset was also advanced in females placed on soy diet at weaning. Males exposed to BPA plus soy diet, but not BPA alone, had lighter testes. BPA had no independent effects. PMID:26216788