Science.gov

Sample records for rat photothrombotic ischemia

  1. Induction and imaging of photothrombotic stroke in conscious and freely moving rats

    NASA Astrophysics Data System (ADS)

    Lu, Hongyang; Li, Yao; Yuan, Lu; Li, Hangdao; Lu, Xiaodan; Tong, Shanbao

    2014-09-01

    In experimental stroke research, anesthesia is common and serves as a major reason for translational failure. Real-time cerebral blood flow (CBF) monitoring during stroke onset can provide important information for the prediction of brain injury; however, this is difficult to achieve in clinical practice due to various technical problems. We created a photothrombotic focal ischemic stroke model utilizing our self-developed miniature headstage in conscious and freely moving rats. In this model, a high spatiotemporal resolution imager using laser speckle contrast imaging technology was integrated to acquire real-time two-dimensional CBF information during thrombosis. The feasibility, stability, and reliability of the system were tested in terms of CBF, behavior, and T2-weighted magnetic resonance imaging (MRI) findings. After completion of occlusion, the CBF in the targeted cortex of the stroke group was reduced to 16±9% of the baseline value. The mean infarct volume measured by MRI 24 h postmodeling was 77±11 mm3 and correlated well with CBF (R2=0.74). This rodent model of focal cerebral ischemia and real-time blood flow imaging opens the possibility of performing various fundamental and translational studies on stroke without the influence of anesthetics.

  2. Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model

    PubMed Central

    Alaverdashvili, Mariam; Paterson, Phyllis G.; Bradley, Michael P.

    2015-01-01

    Background The rat photothrombotic stroke model can induce brain infarcts with reasonable biological variability. Nevertheless, we observed unexplained high inter-individual variability despite using a rigorous protocol. Of the three major determinants of infarct volume, photosensitive dye concentration and illumination period were strictly controlled, whereas undetected fluctuation in laser power output was suspected to account for the variability. New method The frequently utilized Diode Pumped Solid State (DPSS) lasers emitting 532 nm (green) light can exhibit fluctuations in output power due to temperature and input power alterations. The polarization properties of the Nd:YAG and Nd:YVO4 crystals commonly used in these lasers are another potential source of fluctuation, since one means of controlling output power uses a polarizer with a variable transmission axis. Thus, the properties of DPSS lasers and the relationship between power output and infarct size were explored. Results DPSS laser beam intensity showed considerable variation. Either a polarizer or a variable neutral density filter allowed adjustment of a polarized laser beam to the desired intensity. When the beam was unpolarized, the experimenter was restricted to using a variable neutral density filter. Comparison with existing method(s) Our refined approach includes continuous monitoring of DPSS laser intensity via beam sampling using a pellicle beamsplitter and photodiode sensor. This guarantees the desired beam intensity at the targeted brain area during stroke induction, with the intensity controlled either through a polarizer or variable neutral density filter. Conclusions Continuous monitoring and control of laser beam intensity is critical for ensuring consistent infarct size. PMID:25840363

  3. Neuroprotective effects of a novel single compound 1-methoxyoctadecan-1-ol isolated from Uncaria sinensis in primary cortical neurons and a photothrombotic ischemia model.

    PubMed

    Jang, Ji Yeon; Choi, Young Whan; Kim, Ha Neui; Kim, Yu Ri; Hong, Jin Woo; Bae, Dong Won; Park, Se Jin; Shin, Hwa Kyoung; Choi, Byung Tae

    2014-01-01

    We identified a novel neuroprotective compound, 1-methoxyoctadecan-1-ol, from Uncaria sinensis (Oliv.) Havil and investigated its effects and mechanisms in primary cortical neurons and in a photothrombotic ischemic model. In primary rat cortical neurons against glutamate-induced neurotoxicity, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced neuronal death in a dose-dependent manner. In addition, treatment with 1-methoxyoctadecan-1-ol resulted in decreased neuronal apoptotic death, as assessed by nuclear morphological approaches. To clarify the neuroprotective mechanism of 1-methoxyoctadecan-1-ol, we explored the downstream signaling pathways of N-methyl-D-aspartate receptor (NMDAR) with calpain activation. Treatment with glutamate leads to early activation of NMDAR, which in turn leads to calpain-mediated cleavage of striatal-enriched protein tyrosine phosphatase (STEP) and subsequent activation of p38 mitogen activated protein kinase (MAPK). However, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly attenuated activation of GluN2B-NMDAR and a decrease in calpain-mediated STEP cleavage, leading to subsequent attenuation of p38 MAPK activation. We confirmed the critical role of p38 MAPK in neuroprotective effects of 1-methoxyoctadecan-1-ol using specific inhibitor SB203580. In the photothrombotic ischemic injury in mice, treatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced infarct volume, edema size, and improved neurological function. 1-methoxyoctadecan-1-ol effectively prevents cerebral ischemic damage through down-regulation of calpain-mediated STEP cleavage and activation of p38 MAPK. These results suggest that 1-methoxyoctadecan-1-ol showed neuroprotective effects through down-regulation of calpain-mediated STEP cleavage with activation of GluN2B-NMDAR, and subsequent alleviation of p38 MAPK activation. In addition, 1-methoxyoctadecan-1-ol might be a useful therapeutic agent for brain disorder

  4. Functional Improvement after Photothrombotic Stroke in Rats Is Associated with Different Patterns of Dendritic Plasticity after G-CSF Treatment and G-CSF Treatment Combined with Concomitant or Sequential Constraint-Induced Movement Therapy.

    PubMed

    Frauenknecht, Katrin; Diederich, Kai; Leukel, Petra; Bauer, Henrike; Schäbitz, Wolf-Rüdiger; Sommer, Clemens J; Minnerup, Jens

    2016-01-01

    We have previously shown that granulocyte-colony stimulating factor (G-CSF) treatment alone, or in combination with constraint movement therapy (CIMT) either sequentially or concomitantly, results in significantly improved sensorimotor recovery after photothrombotic stroke in rats in comparison to untreated control animals. CIMT alone did not result in any significant differences compared to the control group (Diederich et al., Stroke, 2012;43:185-192). Using a subset of rat brains from this former experiment the present study was designed to evaluate whether dendritic plasticity would parallel improved functional outcomes. Five treatment groups were analyzed (n = 6 each) (i) ischemic control (saline); (ii) CIMT (CIMT between post-stroke days 2 and 11); (iii) G-CSF (10 μg/kg G-CSF daily between post-stroke days 2 and 11); (iv) combined concurrent group (CIMT plus G-CSF) and (v) combined sequential group (CIMT between post-stroke days 2 and 11; 10 μg/kg G-CSF daily between post-stroke days 12 and 21, respectively). After impregnation of rat brains with a modified Golgi-Cox protocol layer V pyramidal neurons in the peri-infarct cortex as well as the corresponding contralateral cortex were analyzed. Surprisingly, animals with a similar degree of behavioral recovery exhibited quite different patterns of dendritic plasticity in both peri-lesional and contralesional areas. The cause for these patterns is not easily to explain but puts the simple assumption that increased dendritic complexity after stroke necessarily results in increased functional outcome into perspective.

  5. Forced arm use is superior to voluntary training for motor recovery and brain plasticity after cortical ischemia in rats

    PubMed Central

    2014-01-01

    Background and purpose Both the immobilization of the unaffected arm combined with physical therapy (forced arm use, FAU) and voluntary exercise (VE) as model for enriched environment are promising approaches to enhance recovery after stroke. The genomic mechanisms involved in long-term plasticity changes after different means of rehabilitative training post-stroke are largely unexplored. The present investigation explored the effects of these physical therapies on behavioral recovery and molecular markers of regeneration after experimental ischemia. Methods 42 Wistar rats were randomly treated with either forced arm use (FAU, 1-sleeve plaster cast onto unaffected limb at 8/10 days), voluntary exercise (VE, connection of a freely accessible running wheel to cage), or controls with no access to a running wheel for 10 days starting at 48 hours after photothrombotic stroke of the sensorimotor cortex. Functional outcome was measured using sensorimotor test before ischemia, after ischemia, after the training period of 10 days, at 3 and 4 weeks after ischemia. Global gene expression changes were assessed from the ipsi- and contralateral cortex and the hippocampus. Results FAU-treated animals demonstrated significantly improved functional recovery compared to the VE-treated group. Both were superior to cage control. A large number of genes are altered by both training paradigms in the ipsi- and contralateral cortex and the hippocampus. Overall, the extent of changes observed correlated well with the functional recovery obtained. One category of genes overrepresented in the gene set is linked to neuronal plasticity processes, containing marker genes such as the NMDA 2a receptor, PKC ζ, NTRK2, or MAP 1b. Conclusions We show that physical training after photothrombotic stroke significantly and permanently improves functional recovery after stroke, and that forced arm training is clearly superior to voluntary running training. The behavioral outcomes seen correlate with

  6. Photothrombotic infarction triggers multiple episodes of cortical spreading depression in distant brain regions.

    PubMed

    Dietrich, W D; Feng, Z C; Leistra, H; Watson, B D; Rosenthal, M

    1994-01-01

    The purposes of this study were to determine whether cortical spreading depression occurs outside of the infarct produced by photothrombotic vascular occlusion, and also the direction of spreading. Focal cerebral thrombotic infarction was produced by irradiating the exposed skull of anesthetized rats with green light (560 nm) following systemic injection of rose bengal dye. At proximal sites (approximately 2 mm anterior to the infarct border), transient, severe hyperemic episodes (THEs) lasting 1-2 min were intermittently recorded. THE frequency was greatest in the first hour and declined over a 3-h period. THEs were accompanied (and usually preceded) by a precipitous rise in [K+]0 (from approximately 3 to > 40 mM) and were associated with increases in local tissue oxygen tension (tPO2). Following the rise in [K+]0, clearance of [K+]0 to its pre-THE baseline preceded baseline recovery of CBF. These data indicate that THEs were reactive to physiologic events resembling cortical spreading depression (CSD), which provoked increased demand for oxygen and blood flow, and which spread from proximal sites to areas more distal (approximately 4 mm) from the rim of the evolving infarct. MK-801 (1 mg/kg, i.v.) inhibited subsequent CSD-like episodes. We conclude that photothrombosis-induced ischemia provoked CSD which was triggered either within the infarct core or in the infarct rim and spread to more distal sites. Whether multiple episodes of CSD during infarct generation are responsible for the remote consequences of focal brain injury remains to be determined.

  7. Focal embolic cerebral ischemia in the rat

    PubMed Central

    Zhang, Li; Zhang, Rui Lan; Jiang, Quan; Ding, Guangliang; Chopp, Michael; Zhang, Zheng Gang

    2015-01-01

    Animal models of focal cerebral ischemia are well accepted for investigating the pathogenesis and potential treatment strategies for human stroke. Occlusion of the middle cerebral artery (MCA) with an endovascular filament is a widely used model to induce focal cerebral ischemia. However, this model is not amenable to thrombolytic therapies. As thrombolysis with recombinant tissue plasminogen activator (rtPA) is a standard of care within 4.5 hours of human stroke onset, suitable animal models that mimic cellular and molecular mechanisms of thrombosis and thrombolysis of stroke are required. By occluding the MCA with a fibrin-rich allogeneic clot, we have developed an embolic model of MCA occlusion in the rat, which recapitulates the key components of thrombotic development and of thrombolytic therapy of rtPA observed from human ischemic stroke. The surgical procedures of our model can be typically completed within approximately 30 min and are highly adaptable to other strains of rats as well as mice for both genders. Thus, this model provides a powerful tool for translational stroke research. PMID:25741989

  8. Tenoxicam exerts a neuroprotective action after cerebral ischemia in rats.

    PubMed

    Galvão, Rita I M; Diógenes, João P L; Maia, Graziela C L; Filho, Emídio A S; Vasconcelos, Silvânia M M; de Menezes, Dalgimar B; Cunha, Geanne M A; Viana, Glauce S B

    2005-01-01

    In this study we investigated the effects of Tenoxicam, a type 2 cyclooxygenase (COX-2) inhibitor, on brain damage induced by ischemia-reperfusion. Male Wistar rats (18-month old average) were anesthetized and submitted to ischemia occlusion of both common carotid arteries (BCAO) for 45 min. After 24 h of reperfusion, rats were decapitated and hippocampi removed for further assays. Animals were divided into sham-operated, ischemia, ischemia + Tenoxicam 2.5 mg/kg, and ischemia + Tenoxicam 10 mg/kg groups. Tenoxicam was administered intraperitoneally immediately after BCAO. Histological analyses show that ischemia produced significant striatal as well as hippocampal lesions which were reversed by the Tenoxicam treatment. Tenoxicam also significantly reduced, to control levels, the increased myeloperoxidase activity in hippocampus homogenates observed after ischemia. However, nitrite concentrations showed only a tendency to decrease in the ischemia + Tenoxicam groups, as compared to that of ischemia alone. On the other hand, hippocampal glutamate and aspartate levels were not altered by Tenoxicam. In conclusion, we showed that ischemia is certainly related to inflammation and to increased free radical production, and selective COX-2 inhibitors might be neuroprotective agents of potential benefit in the treatment of cerebral brain ischemia.

  9. Rat model of focal cerebral ischemia in the dominant hemisphere

    PubMed Central

    Zhang, Hua; Shen, Yan; Wang, Wei; Gao, Huanmin

    2015-01-01

    In the human brain, the dominant hemisphere is more complex than the non-dominant hemisphere. Hence, cerebral ischemia of the dominant hemisphere often leads to serious consequences. This study aims to establish a rodent model of focal cerebral ischemia in the dominant hemisphere. The quadruped feeding test was used to screen 70 male Sprague Dawley rats. From this test, 48 rats with right paw preference were selected and randomly assigned numbers. Half were assigned to the dominant hemisphere ischemia (DHI) group, and the other half were assigned to the non-dominant hemisphere ischemia (NDHI) group. The middle cerebral artery was occluded 2 h before reperfusion. Neurological functions were tested. TTC and HE staining were performed. The volume of cerebral infarction was calculated. Rats in the DHI group had significantly worse neurological scores than rats in the NDHI group (P < 0.05). TTC staining indicated ischemia had more severe consequences in the dominant hemisphere than in the non-dominant hemisphere. The dominant hippocampus indicated severe neuronal loss and disorderly cellular arrangement. The volume of cerebral infarction was also greater in the DHI group compared to the NDHI group (P < 0.05). Compared to MCA occlusion in the non-dominant hemisphere, MCA occlusion in the dominant hemisphere caused greater impairment in neurological functions. The proposed rodent model is reliable and has high levels of reproducibility. Therefore, his model can be reliably for investigating the mechanism of focal cerebral ischemia in the dominant hemisphere of human brains. PMID:25785023

  10. Quercetin protects rat skeletal muscle from ischemia reperfusion injury.

    PubMed

    Ekinci Akdemir, Fazile Nur; Gülçin, İlhami; Karagöz, Berna; Soslu, Recep

    2016-01-01

    In this study, we investigated the potential beneficial effects of quercetin on skeletal muscle ischemia reperfusion injury. Twenty-four Sprague-Dawley type rats were randomly divided into four groups. In the sham group, only gastrocnemius muscle were removed and given no quercetin. In ischemia group, all the femoral artery, vein and collaterals were occluded in the left hindlimb by applying tourniquate under general anaesthesia for three hours but reperfusion was not done. In the Quercetin + Ischemia reperfusion group, quercetin (200 mg kg(-1) dose orally) was given during one-week reoperation and later ischemia reperfusion model was done. Finally, gastrocnemius muscle samples were removed to measure biochemical parameters. The biomarkers, MDA levels, SOD, CAT and GPx activities, were evaluated related to skeletal muscle ischemia reperfusion injury. MDA levels reduced and SOD, CAT and GPx activities increased significantly in Quercetin + Ischemia reperfusion group. Results clearly showed that Quercetin have a protective role against oxidative damage induced by ischemia reperfusion in rats.

  11. Fluorometry of ischemia reperfusion injury in rat lungs in vivo

    NASA Astrophysics Data System (ADS)

    Sepehr, R.; Staniszewski, K.; Jacobs, E. R.; Audi, S.; Ranji, Mahsa

    2013-02-01

    Previously we demonstrated the utility of optical fluorometry to evaluate lung tissue mitochondrial redox state in isolated perfused rats lungs under various chemically-induced respiratory states. The objective of this study was to evaluate the effect of acute ischemia on lung tissue mitochondrial redox state in vivo using optical fluorometry. Under ischemic conditions, insufficient oxygen supply to the mitochondrial chain should reduce the mitochondrial redox state calculated from the ratio of the auto-fluorescent mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavoprotein Adenine Dinucleotide). The chest of anesthetized, and mechanically ventilated Sprague-Dawley rat was opened to induce acute ischemia by clamping the left hilum to block both blood flow and ventilation to one lung for approximately 10 minutes. NADH and FAD fluorescent signals were recorded continuously in a dark room via a fluorometer probe placed on the pleural surface of the left lung. Acute ischemia caused a decrease in FAD and an increase in NADH, which resulted in an increase in the mitochondrial redox ratio (RR=NADH/FAD). Restoration of blood flow and ventilation by unclamping the left hilum returned the RR back to its baseline. These results (increase in RR under ischemia) show promise for the fluorometer to be used in a clinical setting for evaluating the effect of pulmonary ischemia-reperfusion on lung tissue mitochondrial redox state in real time.

  12. Brain polyphosphoinositide metabolism during focal ischemia in rat cortex

    SciTech Connect

    Lin, T.N.; Liu, T.H.; Xu, J.; Hsu, C.Y.; Sun, G.Y. )

    1991-04-01

    Using a rat model of stroke, we examined the effects of focal cerebral ischemia on the metabolism of polyphosphoinositides by injecting {sup 32}Pi into both the left and right cortices. After equilibration of the label for 2-3 hours, ischemia induced a significant decrease (p less than 0.001) in the concentrations of labeled phosphatidyl 4,5-bisphosphates (66-78%) and phosphatidylinositol 4-phosphate (64-67%) in the right middle cerebral artery cortex of four rats. The phospholipid labeling pattern in the left middle cerebral artery cortex, which sustained only mild ischemia and no permanent tissue damage, was not different from that of two sham-operated controls. However, when {sup 32}Pi was injected 1 hour after the ischemic insult, there was a significant decrease (p less than 0.01) in the incorporation of label into the phospholipids in both cortices of four ischemic rats compared with four sham-operated controls. Furthermore, differences in the phospholipid labeling pattern were observed in the left cortex compared with the sham-operated controls. The change in labeling pattern was attributed to the partial reduction in blood flow following ligation of the common carotid arteries. We provide a sensitive procedure for probing the effects of focal cerebral ischemia on the polyphosphoinositide signaling pathway in the brain, which may play an important role in the pathogenesis of tissue injury.

  13. Effect of carnosine on rats under experimental brain ischemia.

    PubMed

    Gallant, S; Kukley, M; Stvolinsky, S; Bulygina, E; Boldyrev, A

    2000-06-01

    The effect of dietary carnosine on the behavioral and biochemical characteristics of rats under experimental ischemia was studied. Carnosine was shown to improve the animals orientation and learning in "Open Field" and "T-Maze" tests, and this effect was accompanied with an increase in glutamate binding to N-methyl-D-aspartate (NMDA) receptors in brain synaptosomes. Long-term brain ischemia induced by both sides' occlusion of common carotid arteries resulted in 55% mortality of experimental rats, and those who survived were characterized by partial suppression of orientation in T-maze. In the group of rats treated with carnosine, mortality after ischemic attack was decreased (from 55% to 17%) and most of the learning parameters were kept at the pre-ischemic level. Monoamine oxidase B (MAO B) activity in brain of the carnosine treated rats was not changed by ischemia significantly (compared to that of ischemic untreated rats) but NMDA binding to brain synaptosomal membranes being increased by ischemic attack was significantly suppressed and reached the level characteristic of normal brain. The suggestion was made that carnosine possesses a dual effect on NMDA receptors resulting in increase in their amount after long-term treatment but decrease the capacity to bind NMDA after ischemic attack.

  14. Diffractomery analysis of human and rat erythrocytes deformability under ischemia

    NASA Astrophysics Data System (ADS)

    Lugovtsov, Andrei E.; Priezzhev, Alexander V.; Nikitin, Sergei Y.; Koshelev, Vladimir B.

    2007-07-01

    In this work, the analysis of human and rat red blood cells (RBC) deformability, internal viscosity and yield stress of RBC in norm and ischemia was performed by means of laser diffractometry - a modern technique allowing for measuring the flexibility of RBC, which determines the blood flow parameters in vessels. Ischemic diseases of people and animals are accompanied with deterioration of microrheologic properties of their blood, in particular, with impairing the RBC deformability. Human RBCs were obtained from the blood of healthy individuals and from patients suffering from ischemic diseases. The RBC deformability indices from both groups of individuals were measured. Rat RBCs were obtained from a control group of animals and from a group with experimentally induced ischemia (EII). This animal model is frequently used for studying the response of an organism to ischemia. The effect of semax, a medication that is frequently used for therapeutic treatments of human brain diseases in clinical practice, on RBC deformability was studied with its application in vitro and in vivo. It is shown that in human ischemic patients, the deformability index of RBC was lower than that from healthy individuals. Both in vivo and in vitro applied semax positively influences the impaired deformability properties of RBCs of ischemic rats.

  15. Tetramethylpyrazine inhibits neutrophil activation following permanent cerebral ischemia in rats.

    PubMed

    Chang, Cheng-Yi; Kao, Tsung-Kuei; Chen, Wen-Ying; Ou, Yen-Chuan; Li, Jian-Ri; Liao, Su-Lan; Raung, Shue-Ling; Chen, Chun-Jung

    2015-07-31

    Experimental studies have demonstrated the beneficial effects of tetramethylpyrazine (TMP) against ischemic stroke and highlighted its crucial role in anti-inflammatory activity. This study provides evidence of an alternative target for TMP and sheds light on the mechanism of its anti-inflammatory action against ischemic brain injury. We report a global inhibitory effect of TMP on inflammatory cell intracerebral activation and infiltration in a rat model of permanent cerebral ischemia. The results of immunohistochemistry, enzymatic assay, flow cytometric analysis, and cytological analysis revealed that intraperitoneal TMP administration reduced neuronal loss, macrophage/microglia activation, brain parenchyma infiltrative neutrophils, and circulating neutrophils after cerebral ischemia. Biochemical studies of cultured neutrophils further demonstrated that TMP attenuated neutrophil migration, endothelium adhesion, spontaneous nitric oxide (NO) production, and stimuli-activated NO production after cerebral ischemia. In parallel with these anti-neutrophil phenomena, TMP also attenuated the activities of ischemia-induced inflammation-associated signaling molecules, including plasma high-mobility group box-1 protein (HMGB1) and neutrophil toll-like receptor-4 (TLR4), Akt, extracellular signal-regulated kinase (ERK), and inducible nitric oxide synthase. Another finding in this study was that the anti-neutrophil effect of TMP was accompanied by a further elevated expression of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in neutrophils after cerebral ischemia. Taken together, our results suggest that both the promotion of endogenous anti-inflammatory defense capacity and the attenuation of pro-inflammatory responses via targeting of circulating neutrophils by elevating Nrf2/HO-1 expression and inhibiting HMGB1/TLR4, Akt, and ERK signaling might actively contribute to TMP-mediated neuroprotection against cerebral ischemia.

  16. Evaluation of cold ischemia for preservation of testicular function during partial orchiectomy in the rat model

    PubMed Central

    McNamara, Erin R.; Madden-Fuentes, Ramiro J.; Routh, Jonathan C.; Rouse, Douglas; Madden, John F.; Wiener, John S.; Rushton, Harry G.; Ross, Sherry S.

    2015-01-01

    Objective We hypothesized that cold ischemia during partial orchiectomy would lead to higher serum testosterone levels and preservation of testicular architecture than warm ischemia in a prepubescent rat model. Materials and methods Eighteen prepubescent male Sprague–Dawley rats were randomized to three different surgical groups: sham surgery, bilateral partial orchiectomy with 30 min of cord compression with cold ischemia, or bilateral partial orchiectomy with 30 min of cord compression with warm ischemia. Animals were killed at puberty, and serum, sperm, and testicles were collected. Histological tissue injury was graded by standardized methodology. Results Mean serum testosterone levels were 1445 ± 590 pg/mL for the sham group, 449 ± 268 pg/mL for the cold ischemia group and 879 ± 631 pg/mL for the warm ischemia group (p = 0.12). Mean sperm counts were 2.1 × 107 for sham, 4.4 × 106 for cold ischemia, and 9.9 × 106 for the warm ischemia groups (p = 0.48). Histological evaluation revealed significant difference in tissue injury grading with more injury in the cold ischemia than in the warm ischemia group (p = 0.01). Conclusions In our preclinical rat model, we found no benefit for cold ischemia over warm ischemia at 30 min. PMID:25128916

  17. Autophagy activation attenuates renal ischemia-reperfusion injury in rats

    PubMed Central

    Zhang, Ya-Li; Cui, Li-Yan; Yang, Shuo

    2015-01-01

    Ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), which is a common clinical complication but lacks effective therapies. This study investigated the role of autophagy in renal I/R injury and explored potential mechanisms in an established rat renal I/R injury model. Forty male Wistar rats were randomly divided into four groups: Sham, I/R, I/R pretreated with 3-methyladenine (3-MA, autophagy inhibitor), or I/R pretreated with rapamycin (autophagy activator). All rats were subjected to clamping of the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. The Sham group underwent the surgical procedure without ischemia. 3-MA and rapamycin were injected 15 min before ischemia. Renal function was indicated by blood urea nitrogen and serum creatinine. Tissue samples from the kidneys were scored histopathologically. Autophagy was indicated by light chain 3 (LC3), Beclin-1, and p62 levels and the number of autophagic vacuoles. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and expression of caspase-3. Autophagy was activated after renal I/R injury. Inhibition of autophagy by 3-MA before I/R aggravated renal injury, with worsened renal function, higher renal tissue injury scores, and more tubular apoptosis. In contrast, rapamycin pretreatment ameliorated renal injury, with improved renal function, lower renal tissue injury scores, and inhibited apoptosis based on fewer TUNEL-positive cells and lower caspase-3 expression. Our results demonstrate that autophagy could be activated during I/R injury and play a protective role in renal I/R injury. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Furthermore, autophagy activator may be a promising therapy for I/R injury and AKI in the future. PMID:25898836

  18. Sirtinol abrogates late phase of cardiac ischemia preconditioning in rats.

    PubMed

    Safari, Fereshteh; Shekarforoosh, Shahnaz; Hashemi, Tahmineh; Namvar Aghdash, Simin; Fekri, Asefeh; Safari, Fatemeh

    2016-09-27

    The aim of this study was to investigate the effect of sirtinol, as an inhibitor of sirtuin NAD-dependent histone deacetylases, on myocardial ischemia reperfusion injury following early and late ischemia preconditioning (IPC). Rats underwent sustained ischemia and reperfusion (IR) alone or proceeded by early or late IPC. Sirtinol (S) was administered before IPC. Arrhythmias were evaluated based on the Lambeth model. Infarct size (IS) was measured using triphenyltetrazolium chloride staining. The transcription level of antioxidant-coding genes was assessed by real-time PCR. In early and late IPC groups, IS and the number of arrhythmia were significantly decreased (P < 0.05 and P < 0.01 vs IR, respectively). In S + early IPC, incidences of arrhythmia and IS were not different compared with the early IPC group. However, in S + late IPC the IS was different from the late IPC group (P < 0.05). In late IPC but not early IPC, transcription levels of catalase (P < 0.01) and Mn-SOD (P < 0.05) increased, although this upregulation was not significant in the S + late IPC group. Our results are consistent with the notion that different mechanisms are responsible for early and late IPC. In addition, sirtuin NAD-dependent histone deacetylases may be implicated in late IPC-induced cardioprotection.

  19. Progesterone Treatment in Two Rat Models of Ocular Ischemia

    PubMed Central

    Allen, Rachael S.; Olsen, Timothy W.; Sayeed, Iqbal; Cale, Heather A.; Morrison, Katherine C.; Oumarbaeva, Yuliya; Lucaciu, Irina; Boatright, Jeffrey H.; Pardue, Machelle T.; Stein, Donald G.

    2015-01-01

    Purpose. To determine whether the neurosteroid progesterone, shown to have protective effects in animal models of traumatic brain injury, stroke, and spinal cord injury, is also protective in ocular ischemia animal models. Methods. Progesterone treatment was tested in two ocular ischemia models in rats: a rodent anterior ischemic optic neuropathy (rAION) model, which induces permanent monocular optic nerve stroke, and the middle cerebral artery occlusion (MCAO) model, which causes transient ischemia in both the retina and brain due to an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. Visual function and retinal histology were assessed to determine whether progesterone attenuated retinal injury in these models. Additionally, behavioral testing and 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining in brains were used to compare progesterone's neuroprotective effects in both retina and brain using the MCAO model. Results. Progesterone treatment showed no effect on visual evoked potential (VEP) reduction and retinal ganglion cell loss in the permanent rAION model. In the transient MCAO model, progesterone treatment reduced (1) electroretinogram (ERG) deficits, (2) MCAO-induced upregulation of glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), and (3) retinal ganglion cell loss. As expected, progesterone treatment also had significant protective effects in behavioral tests and a reduction in infarct size in the brain. Conclusions. Progesterone treatment showed protective effects in the retina following MCAO but not rAION injury, which may result from mechanistic differences with injury type and the therapeutic action of progesterone. PMID:26024074

  20. Carnosine pretreatment protects against hypoxia-ischemia brain damage in the neonatal rat model.

    PubMed

    Zhang, Xiangmin; Song, Lili; Cheng, Xiuyong; Yang, Yi; Luan, Bin; Jia, Liting; Xu, Falin; Zhang, Zhan

    2011-09-30

    Perinatal hypoxia-ischemia brain injury is a major cause of mortality and morbidity in neonates and lacks an effective treatment thus far. Carnosine has been demonstrated to play a neuroprotective role in the adult brain injuries. However, there is no information available concerning its neuroprotective role in the immature brains after hypoxia-ischemia insults. Therefore, we investigated whether carnosine could also confer neuroprotective effects in a neonatal rat hypoxia-ischemia model. Hypoxia-ischemia was induced in rats on postnatal day 7 (P7). Carnosine (250 mg/kg) was administered intraperitoneally, 30 min prior to hypoxia-ischemia induction. Morphological brain injury and biochemical markers of apoptosis and oxidative stress were evaluated 24 h after hypoxia-ischemia induction. Cognitive performance was evaluated by the Morris Water Maze test on P28-P33. We found that pretreatment with carnosine significantly reduced the infarct volume and the number of terminal-deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells in the hypoxia-ischemia brain. Carnosine also inhibited mRNA expression of apoptosis-inducing factor(AIF) and caspase-3, which was accompanied by an increase in superoxide dismutase(SOD)activity and a decrease in the malondialdehyde(MDA)level in carnosine-treated rats. Furthermore, carnosine also improved the spatial learning and memory abilities of rats declined due to hypoxia-ischemia. These results demonstrate that carnosine can protect rats against hypoxia-ischemia-induced brain damage by antioxidation.

  1. Effects of hypothermia on skeletal ischemia reperfusion injury in rats

    PubMed Central

    Kaldırım, Ümit; Akyıldız, Faruk; Bilgiç, Serkan; Koca, Kenan; Poyrazoğlu, Yavuz; Uysal, Ozgür Selim; Turğut, Hasan; Türkkan, Selim; Erşen, Ömer; Topal, Turgut; Ozkan, Huseyin

    2015-01-01

    Objective The aim of this study was to investigate the effect of hypothermia (H) on skeletal ischemia-reperfusion (IR) injury in rats by measuring malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), nitric oxide (NO), and interleukin-1 beta (IL-1β) in muscle, and measureing immunohistochemical-inducible nitric oxide synthase (iNOS) staining of skeletal muscle. Materials and Methods Eighteen Wistar Albino rats were divided randomly into three groups (sham, IR, hypothermia) (n=6). The sham group had all procedures without the IR period. The lower right extremity of rats in the IR and hypothermia groups was subjected to 2 hours of ischemia and 22 hours of reperfusion by applying a clamp on the common iliac artery and a rubber-band at the level of the lesser trochanter under general anesthesia. Rats in the hypothermia group underwent 4 hours of hypothermia during the first four hours of reperfusion in addition to a 2-hour ischemia and 22-hour reperfusion period. All rats were sacrificed at end of the IR period using a high dose of anesthesia. The tibialis anterior muscles were preserved. Immunohistochemical iNOS staining was performed, and MDA, SOD, GSH-Px, NO, and IL-1β were measured in the muscle. Results The level of MDA, NO, and IL-1β in muscle was increased in the IR group compared with that in the sham group, but these parameters were decreased in the hypothermia group compared with the IR group. The activities of SOD and GSH-Px in muscle were decreased in the IR group; however, these parameters were increased in the hypothermia group. The score and intensity of iNOS staining of skeletal muscle was dens in IR group, mild in hypothermia group, and weak in sham group. Conclusion The present study has shown that hypothermia reduced IR injury in the skeletal muscle by decreasing the levels of MDA, NO, and IL-1β, and increasing the activities of SOD and GSH-Px. In addition, hypothermia attenuated the score and intensity of i

  2. Ischemia/reperfusion injury in the rat colon.

    PubMed

    Murthy, S; Hui-Qi, Q; Sakai, T; Depace, D E; Fondacaro, J D

    1997-04-01

    This study investigated metabolic and biochemical consequences of colonic ischemia/reperfusion (I/R) in the rat and evaluated whether antioxidants prevent I/R-induced functional damage in the rat colon. The surgical preparation involved a 10 cm segment of the colon and occlusion of the superior mesenteric artery (SMA) to induce I/R. Arterial blood from the aorta and venous blood from the superior mesenteric vein (SMV) was collected to measure blood gases, lactic acid (LA) and arachidonic acid (AA) metabolites. Tissue xanthine oxidase (XO) and thiobarbituric acid (TBA) derivatives were measured before and after reperfusion. In addition, vascular and mucosal permeability, and the effect of MDL 73404 (a water soluble vitamin E analog) and 5-aminosalicylic acid on LA, AA, XO and TBA was measured. After ischemia, the colon displayed a metabolic shift from aerobic to anaerobic course by increasing lactic acid production in the colon (183% increase in SMV lactate level compared 87% in the SMA; p < 0.03). After 10 minutes of reperfusion, circulating 6-keto-prostaglandin F1 alpha increased by 3.85 fold (p < 0.001) and thromboxane B2 increased by 2 to 3 fold. An Ischemia time longer than 60 minutes was required to cause changes in tissue XO levels. Tissue TBA levels showed a good dose response corresponding with I/R time. I/R (60 minutes) caused a three and 16 fold increase (p < 0.01) in vascular and mucosal permeability, respectively. MDL 73404 and 5-aminosalicylic acid significantly inhibited the vascular permeability and decreased LA, AA, XO and TBA. These observations provide the first direct experimental evidence for I/R-induced damage in the colon and some of its effects can be reversed by conventional and novel antioxidants.

  3. Isorhamnetin protects rat ventricular myocytes from ischemia and reperfusion injury.

    PubMed

    Zhang, Najuan; Pei, Fei; Wei, Huaying; Zhang, Tongtong; Yang, Chao; Ma, Gang; Yang, Chunlei

    2011-01-01

    Ischemia/reperfusion (I/R) has been known to cause damages to ventricular myocytes. Isorhamnetin, one member of flavonoid compounds, has cardioprotective effect, the effect that suggests a possible treatment for I/R damages. In the present investigation, we found that isorhamnetin could significantly promote the viability of neonatal rat ventricular myocytes that were exposed to ischemia/reperfusion (I/R) in vitro. Ventricular myocytes were obtained from neonatal SD rats, and then were divided randomly into three groups, namely I/R-/isor-, I/R+/isor- and I/R+/isor+ group. Before the whole experiment, the most appropriate concentration of isorhamnetin (4 μM) was determined by MTT assay. Our results showed that isorhamnetin could alleviate the damages of I/R to ventricular myocytes through inhibiting lactate dehydrogenase (LDH) activity, and repressing apoptosis. Compared with the counterpart of the I/R+/isor- group, LDH activity in the isorhamnetin-treated group weakened, halving from 24.1 ± 2.3 to 11.4 ± 1.2U/L. Additionally, flow cytometry showed the apparently increased apoptosis rate induced by I/R, the result that was further confirmed by transmission electron microscope. Administration of isorhamnetin, however, assuaged the apoptosis induced by I/R. Corresponding to the reduced apoptosis rate in the I/R+/isor+ group, western blotting assay showed increased amount of Bcl-2 and p53, decreased amount of Bax, and nuclear accumulation of NF-κB/p65.

  4. Effect of human mesenchymal stem cell transplantation on cerebral ischemic volume‐controlled photothrombotic mouse model

    PubMed Central

    Choi, Yun‐Kyong; Urnukhsaikhan, Enerelt; Yoon, Hee‐Hoon; Seo, Young‐Kwon

    2016-01-01

    Abstract Various animal models of stroke have been developed to simulate the human stroke with the development of the ischemic method facilitates preclinical stroke research. The photothrombotic ischemia model, based on the intravascular photochemical reaction, is widely used for in vivo studies. However, this study has limitations, which generated a relatively small‐sized infarction model on superficial cortex compared to that of the MCAO stroke model. In this study, the photothorombosis mouse model is adapted and the optimum conditions for generation of cell death and deficits with high reproducibility is determined. The extent of damage within the cortex was assessed by infarct volume and cellular/behavioral analyses. In this model, the neural cell death and inflammatory responses is detected; moreover, the degree of behavioral impairment is correlated with the brain infarct volume. Further, to enhance the understanding of neural repair, the effect of neural differentiation by transplantation of human bone marrow‐derived mesenchymal stem cells (BM‐MSCs) is analyzed. The authors demonstrated that transplantation of BM‐MSCs promoted the neural differentiation and behavioral performance in their photothrombosis model. Therefore, this research was meaningful to provide a stable animal model of stroke with low variability. Moreover, this model will facilitate development of novel MSC‐based therapeutics for stroke. PMID:27440447

  5. Ischemia

    NASA Astrophysics Data System (ADS)

    Byeon, Suk Ho; Kim, Min; Kwon, Oh Woong

    "Ischemia" implies a tissue damage derived from perfusion insufficiency, not just an inadequate blood supply. Mild thickening and increased reflectivity of inner retina and prominent inner part of synaptic portion of outer plexiform layer are "acute retinal ischemic changes" visible on OCT. Over time, retina becomes thinner, especially in the inner portion. Choroidal perfusion supplies the outer portion of retina; thus, choroidal ischemia causes predominant change in the corresponding tissue.

  6. Diosmin Protects Rat Retina from Ischemia/Reperfusion Injury

    PubMed Central

    Tong, Nianting; Zhang, Zhenzhen; Gong, Yuanyuan; Yin, Lili

    2012-01-01

    Abstract Objective Diosmin, a natural flavone glycoside, possesses antioxidant activity and has been used to alleviate ischemia/reperfusion (I/R) injury. The aim of this study was to clarify whether the administration of diosmin has a protective effect against I/R injury induced using the high intraocular pressure (IOP) model in rat retina, and to determine the possible antioxidant mechanisms involved. Methods Retinal I/R injury was induced in the rats by elevating the IOP to 110 mmHg for 60 min. Diosmin (100 mg/kg) or vehicle solution was administered intragastrically 30 min before the onset of ischemia and then daily after I/R injury until the animals were sacrificed. The levels of malondialdehyde (MDA) and the activities of total-superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in the retinal tissues were determined 24 h after I/R injury. At 7 days post-I/R injury, electroretinograms (ERGs) were recorded, and the density of surviving retinal ganglion cells (RGCs) was estimated by counting retrograde tracer-labeled cells in whole-mounted retinas. Retinal histological changes were also examined and quantified using light microscopy. Results Diosmin significantly decreased the MDA levels and increased the activities of T-SOD, GSH-Px, and CAT in the retina of rats compared with the ischemia group (P<0.05), and suppressed the I/R-induced reduction in the a- and b-wave amplitudes of the ERG (P<0.05). The thickness of the entire retina, inner nuclear layer, inner plexiform layer, and outer retinal layer and the number of cells in the ganglion cell layer were significantly less after I/R injury (P<0.05), and diosmin remarkably ameliorated these changes on retinal morphology. Diosmin also attenuated the I/R-induced loss of RGCs of the rat retina (P<0.05). Conclusion Diosmin protected the retina from I/R injury, possibly via a mechanism involving the regulation of oxidative parameters. PMID:22509733

  7. Sulodexide pretreatment attenuates renal ischemia-reperfusion injury in rats.

    PubMed

    Yin, Jianyong; Chen, Weibin; Ma, Fenfen; Lu, Zeyuan; Wu, Rui; Zhang, Guangyuan; Wang, Niansong; Wang, Feng

    2017-02-07

    Sulodexide is a potent antithrombin agent, however, whether it has beneficial effects on renal ischemia-reperfusion injury (IRI) remains unknown. In the present study, we assessed the therapeutic effects of sulodexide in renal IRI and tried to investigate the potential mechanism. One dose of sulodexide was injected intravenously in Sprague-Dawley rats 30 min before bilateral kidney ischemia for 45 min. The animals were sacrificed at 3h and 24h respectively. Our results showed that sulodexide pretreatment improved renal dysfunction and alleviated tubular pathological injury at 24h after reperfusion, which was accompanied with inhibition of oxidative stress, inflammation and cell apoptosis. Moreover, we noticed that antithrombin III (ATIII) was activated at 3h after reperfusion, which preceded the alleviation of renal injury. For in vitro study, hypoxia/reoxygenation (H/R) injury model for HK2 cells was carried out and apoptosis and reactive oxygen species (ROS) levels were evaluated after sulodexide pretreatment. Consistently, sulodexide pretreatment could reduce apoptosis and ROS level in HK2 cells under H/R injury. Taken together, sulodexide pretreatment might attenuate renal IRI through inhibition of inflammation, oxidative stress and apoptosis, and activation of ATIII.

  8. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  9. Effect of hydrogen sulfide on inflammatory cytokines in acute myocardial ischemia injury in rats

    PubMed Central

    LIU, FANG; LIU, GUANG-JIE; LIU, NA; ZHANG, GANG; ZHANG, JIAN-XIN; LI, LAN-FANG

    2015-01-01

    Hydrogen sulfide (H2S) is believed to be involved in numerous physiological and pathophysiological processes, and now it is recognized as the third endogenous signaling gasotransmitter, following nitric oxide and carbon monoxide; however, the effects of H2S on inflammatory factors in acute myocardial ischemia injury in rats have not been clarified. In the present study, sodium hydrosulfide (NaHS) was used as the H2S donor. Thirty-six male Sprague Dawley rats were randomly divided into five groups: Sham, ischemia, ischemia + low-dose (0.78 mg/kg) NaHS, ischemia + medium-dose (1.56 mg/kg) NaHS, ischemia + high-dose (3.12 mg/kg) NaHS and ischemia + propargylglycine (PPG) (30 mg/kg). The rats in each group were sacrificed 6 h after the surgery for sample collection. Compared with the ischemia group, the cardiac damage in the rats in the ischemia + NaHS groups was significantly reduced, particularly in the high-dose group; in the ischemia + PPG group, the myocardial injury was aggravated compared with that in the ischemia group. Compared with the ischemia group, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in the serum of rats in the ischemia + medium- and high-dose NaHS groups were significantly reduced, and the expression of intercellular adhesion molecule-1 (ICAM-1) mRNA and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) protein in the myocardial tissues of rats was significantly reduced. In the ischemia + PPG group, the TNF-α, IL-1β and IL-6 levels in the serum were significantly increased, the expression of ICAM-1 mRNA was increased, although without a significant difference, and the expression of NF-κB was increased. The findings of the present study provide novel evidence for the dual effects of H2S on acute myocardial ischemia injury via the modulation of inflammatory factors. PMID:25667680

  10. [Effect of phenibut and its composition with nicotinic acid on hemostasis in rats with brain ischemia].

    PubMed

    Tiurenkov, I N; Volotova, E V; Kurkin, D V; Litvinov, A A; Tarasov, A S

    2012-01-01

    It is shown that, in rats with global cerebral ischemia modeled by a complete irreversible occlusion of the common carotid artery and forced hypotension, the hemostasis is characterized by a shift toward hypercoagulation. A single preventive introduction of phenibut and, to a greater degree, a composition of phenibut with nicotinic acid, in rats with acute cerebral ischemia reduced the extent of disturbances in the hemostasis system of experimental animals.

  11. Gastrin attenuates ischemia-reperfusion-induced intestinal injury in rats

    PubMed Central

    Liu, Zhihao; Luo, Yongli; Cheng, Yunjiu; Zou, Dezhi; Zeng, Aihong; Yang, Chunhua

    2016-01-01

    Intestinal ischemia-reperfusion (I/R) injury is a devastating complication when the blood supply is reflowed in ischemic organs. Gastrin has critical function in regulating acid secretion, proliferation, and differentiation in the gastric mucosa. We aimed to determine whether gastrin has an effect on intestinal I/R damage. Intestinal I/R injury was induced by 60-min occlusion of the superior mesenteric artery followed by 60-min reperfusion, and the rats were induced to be hypergastrinemic by pretreated with omeprazole or directly injected with gastrin. Some hypergastrinemic rats were injected with cholecystokinin-2 (CCK-2) receptor antagonist prior to I/R operation. After the animal surgery, the intestine was collected for histological analysis. Isolated intestinal epithelial cells or crypts were harvested for RNA and protein analysis. CCK-2 receptor expression, intestinal mucosal damage, cell apoptosis, and apoptotic protein caspase-3 activity were measured. We found that high gastrin in serum significantly reduced intestinal hemorrhage, alleviated extensive epithelial disruption, decreased disintegration of lamina propria, downregulated myeloperoxidase activity, tumor necrosis factor-α, and caspase-3 activity, and lead to low mortality in response to I/R injury. On the contrary, CCK-2 receptor antagonist L365260 could markedly impair intestinal protection by gastrin on intestinal I/R. Severe edema of mucosal villi with severe intestinal crypt injury and numerous intestinal villi disintegrated were observed again in the hypergastrinemic rats with L365260. The survival in the hypergastrinemic rats after intestinal I/R injury was shortened by L365260. Finally, gastrin could remarkably upregulated intestinal CCK-2 receptor expression. Our data suggest that gastrin by omeprazole remarkably attenuated I/R induced intestinal injury by enhancing CCK-2 receptor expression and gastrin could be a potential mitigator for intestinal I/R damage in the clinical setting. PMID

  12. Cerebral Ischemia/Reperfusion Injury in the Hyperthyroid Rat

    PubMed Central

    Keshavarz, Somaye; Dehghani, Gholam Abbas

    2017-01-01

    Background: Hyperthyroidism as a risk factor for stroke is not conclusive. There are no definite data on the relationship between ischemic cerebrovascular injury and hyperthyroidism. This study was designed to define whether the outcomes of post-ischemic stroke injury are influenced by chronic hyperthyroidism. Methods: Two groups of hyperthyroid (HT) and control euthyroid rats of equal numbers (n=22) were included in the study. Hyperthyroidism was induced for 4 weeks by adding L-thyroxine (300 μg/kg) to drinking water. The middle cerebral artery occlusion technique was used to induce focal cerebral ischemia. Neurological disability (neurological deficit score [NDS]) was evaluated after 24 hours, and the rats were sacrificed to obtain their brain. Triphenyl Tetrazolium Chloride (TTC) staining and Evans Blue (EB) extravasation were used to quantify cerebral infarct volume and cerebrovascular integrity disruption. Data analysis was done using SPSS, version 21. Results: Thyroid hormones levels, T3 (314±7 vs. 198±3 ng/dL;P=0.001) and T4 (9.8±0.3 vs. 3.08±0.07 μg/dL;P=0.001), were significantly higher in the HT group than in the controls. Furthermore, most clinical signs seen in hyperthyroid patients were also present in the HT group. Comparison of the data on cerebral ischemia between the HT and control groups showed significant increases in the NDS (2.76±0.16 vs. 2.23±0.09;P=0.03), cerebral infarct volume (479±12 vs. 266±17 mm3;P=0.001), and EB extravasation (50.08±2.4 vs. 32.6±1.2 μg/g;P=0.001) in the former group. Conclusion: The intensified cerebral infarct size and cerebrovascular integrity disruption suggested that chronic hyperthyroidism aggravated post-stroke injury in the rats. More investigation is required to analyze the pathological mechanisms underlying the association between cerebrovascular disease and hyperthyroidism. PMID:28293050

  13. Neuronal network disturbance after focal ischemia in rats

    SciTech Connect

    Kataoka, K.; Hayakawa, T.; Yamada, K.; Mushiroi, T.; Kuroda, R.; Mogami, H. )

    1989-09-01

    We studied functional disturbances following left middle cerebral artery occlusion in rats. Neuronal function was evaluated by (14C)2-deoxyglucose autoradiography 1 day after occlusion. We analyzed the mechanisms of change in glucose utilization outside the infarct using Fink-Heimer silver impregnation, axonal transport of wheat germ agglutinin-conjugated-horseradish peroxidase, and succinate dehydrogenase histochemistry. One day after occlusion, glucose utilization was remarkably reduced in the areas surrounding the infarct. There were many silver grains indicating degeneration of the synaptic terminals in the cortical areas surrounding the infarct and the ipsilateral cingulate cortex. Moreover, in the left thalamus where the left middle cerebral artery supplied no blood, glucose utilization significantly decreased compared with sham-operated rats. In the left thalamus, massive silver staining of degenerated synaptic terminals and decreases in succinate dehydrogenase activity were observed 4 and 5 days after occlusion. The absence of succinate dehydrogenase staining may reflect early changes in retrograde degeneration of thalamic neurons after ischemic injury of the thalamocortical pathway. Terminal degeneration even affected areas remote from the infarct: there were silver grains in the contralateral hemisphere transcallosally connected to the infarct and in the ipsilateral substantia nigra. Axonal transport study showed disruption of the corticospinal tract by subcortical ischemia; the transcallosal pathways in the cortex surrounding the infarct were preserved. The relation between neural function and the neuronal network in the area surrounding the focal cerebral infarct is discussed with regard to ischemic penumbra and diaschisis.

  14. Neuroprotective effects of pretreatment with minocycline on memory impairment following cerebral ischemia in rats.

    PubMed

    Naderi, Yazdan; Sabetkasaei, Masoumeh; Parvardeh, Siavash; Moini Zanjani, Taraneh

    2017-04-01

    Cerebral ischemia leads to memory impairment that is associated with loss of hippocampal CA1 pyramidal neurons. Neuroinflammation and oxidative stress may be implicated in the pathogenesis of ischemia/reperfusion damage. Minocycline has anti-inflammatory and antioxidant properties. We investigated the neuroprotective effects of minocycline in rats subjected to cerebral ischemia/reperfusion injury. Thirty male rats were divided into three groups: control, sham, and minocycline-pretreated group. Minocycline (40 mg/kg) was injected intraperitoneally immediately before surgery, and then ischemia was induced by occlusion of common carotid arteries for 20 min. Seven days after reperfusion, the Morris water-maze task was used to evaluate memory. Nissl staining was also performed to analyze pyramidal cell damage. We measured the contents of malondialdehyde and proinflammatory cytokines in the hippocampus by the thiobarbituric acid method and enzyme-linked immunosorbent assay, respectively. Microglial activation was also investigated by Iba1 immunostaining. The results showed that pretreatment with minocycline prevented memory impairment induced by cerebral ischemia/reperfusion. Minocycline pretreatment also significantly attenuated ischemia-induced pyramidal cell death and microglial activation in the CA1 region and reduced the levels of malondialdehyde and proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of ischemic rats. Minocycline showed neuroprotective effects on cerebral ischemia-induced memory deficit probably through its anti-inflammatory and antioxidant activities.

  15. Enhanced autophagy signaling in diabetic rats with ischemia-induced seizures.

    PubMed

    Xia, Luoxing; Lei, Zhigang; Shi, Zhongshan; Guo, Dave; Su, Henry; Ruan, Yiwen; Xu, Zao C

    2016-07-15

    Seizures are among the most common neurological sequelae of stroke, and ischemic insult in diabetes notably increases the incidence of seizures. Recent studies indicated that autophagy influences the outcome of stroke and involved in epileptogenesis. However, the association of autophagy and post-ischemic seizures in diabetes remains unclear. The present study aimed to reveal the involvement of autophagy in the seizures following cerebral ischemia in diabetes. Diabetes was induced in adult male Wistar rats by intraperitoneal injection of streptozotocin (STZ). The diabetic rats were subjected to transient forebrain ischemia. The neuronal damage was assessed using hematoxylin-eosin staining. Western blotting and immunohistochemistry were performed to investigate the alteration of autophagy marker microtubule-associated protein light chain 1B (LC3B). The results showed that all diabetic animals developed seizures after ischemia. However, no apparent cell death was observed in the hippocampus of seizure rats 12h after the insult. The expression of LC3B was significantly enhanced in naïve animals after ischemia and was further increased in diabetic animals after ischemia. Immunofluorescence double-labeling study indicated that LC3B was mainly increased in neurons. Our study demonstrated, for the first time, that autophagy activity is significantly increased in diabetic animals with ischemia-induced seizures. Further studies are needed to explore the role of autophagy in seizure generation after ischemia in diabetic conditions.

  16. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    PubMed Central

    Li, Xin-juan; Li, Chao-kun; Wei, Lin-yu; Lu, Na; Wang, Guo-hong; Zhao, Hong-gang; Li, Dong-liang

    2015-01-01

    The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors. PMID:26199610

  17. Role of histamine H3 receptors during ischemia/reperfusion in isolated rat hearts.

    PubMed

    Yamamoto, Satoshi; Tamai, Isao; Takaoka, Masanori; Matsumura, Yasuo

    2004-03-01

    Histamine H3 receptors are involved in regulating the release of norepinephrine (NE), in both central and peripheral nervous systems. We investigated the effect of R-alpha-methylhistamine (R-HA), a selective H3 receptor agonist, and thioperamide (Thiop), a selective H3 receptor antagonist, on ischemia/reperfusion-induced changes in carrier-mediated NE release and cardiac function in isolated rat heart. Hearts were subjected to 40-minute ischemia followed by 30-minute reperfusion. Ischemia/reperfusion evoked massive NE release, which was markedly suppressed by the treatment with desipramine (DMI), a neuronal NE transporter blocker. Ischemia/reperfusion-induced cardiac dysfunction (decreases in left ventricular developed pressure, LVDP, and the first derivative of left ventricular pressure, dP/dt, and a rise in left ventricular end diastolic pressure, LVEDP) was also improved by the DMI treatment. The treatment with R-HA also significantly decreased the excessive NE release induced by the ischemia/reperfusion, improved the recovery of LVDP and dP/dt, and suppressed the rise in LVEDP. Thiop did not affect NE release and cardiac function after the reperfusion. When R-HA was administered concomitantly with Thiop, R-HA failed to attenuate ischemia/reperfusion-induced NE release and cardiac dysfunction. Thus, it seems likely that the ischemia/reperfusion-induced carrier-mediated NE release in rat hearts is negatively regulated by the activation of H3 receptors, probably located on cardiac noradrenergic nerve endings.

  18. DHEA-neuroprotection and -neurotoxicity after transient cerebral ischemia in rats.

    PubMed

    Li, Zhen; Cui, Shengzhong; Zhang, Zhuo; Zhou, Rong; Ge, Yingbin; Sokabe, Masahiro; Chen, Ling

    2009-02-01

    Dehydroepiandrosterone (DHEA) has been implicated not only to prevent N-methyl-D-aspartate (NMDA)-induced neurotoxicity but also to enhance Ca(2+) influx through NMDA receptor (NMDAr). However, these DHEA effects, which would produce inconsistent outcomes about neuronal damages, are not well studied in ischemia-induced cerebral damages. Herein, we report that a single administration of DHEA (20 mg/kg) during 3 to 48 h after transient global cerebral ischemia in rats exerted neuroprotective effects such as reduction of ischemia-induced neuronal death in the hippocampal CA1 and improvement of ischemia-induced deficits in spatial learning. By contrast, at 1 h before or after ischemia, the administration of DHEA exacerbated the ischemia-induced neuronal death and learning impairment. This DHEA neurotoxicity appeared to be caused by DHEA itself, but not through its metabolite testosterone, and was inhibited by a pretreatment with the NMDAr blocker MK801 or the sigma-1 (sigma(1)) receptor antagonist NE100. However, the DHEA neuroprotection was blocked by NE100. These results show that DHEA not only provides robust ischemic neuroprotection with a long therapeutic opportunity but also exerts neurotoxicity when administered during ischemia and early reperfusion, which points to the importance of administration timing of DHEA in the clinical treatment of brain damages by the transient brain ischemia including stroke.

  19. Changes in neuropeptide Y protein expression following photothrombotic brain infarction and epileptogenesis.

    PubMed

    Kharlamov, Elena A; Kharlamov, Alexander; Kelly, Kevin M

    2007-01-05

    This study characterized morphological changes in the cortex and hippocampus of Sprague-Dawley rats following photothrombotic infarction and epileptogenesis with emphasis on the distribution of neuropeptide Y (NPY) expression. Animals were lesioned in the left sensorimotor cortex and compared with age-matched naive and sham-operated controls by immunohistochemical techniques at 1, 3, 7, and 180 days post-lesioning (DPL). NPY immunostaining was assessed by light microscopy and quantified by the optical fractionator technique using unbiased stereological methods. At 1, 3, and 7 DPL, the number of NPY-positive somata in the lesioned cortex was increased significantly compared to controls and the contralateral cortex. At 180 DPL, lesioned epileptic animals with frequent seizure activity demonstrated significant increases of NPY expression in the cortex, CA1, CA3, hilar interneurons, and granule cells of the dentate gyrus. In addition to NPY immunostaining, neuronal degeneration, cell death/cell loss, and astroglial response were assessed with cell-specific markers. Nissl and NeuN staining showed reproducible infarctions at each investigated time point. FJB-positive somata were most abundant in the infarct core at 1 DPL, decreased markedly at 3 DPL, and virtually absent by 7 DPL. Activated astroglia were detected in the cortex and hippocampus following lesioning and the development of seizure activity. In summary, NPY protein expression and morphological changes following cortical photothrombosis were time-, region-, and pathologic state-dependent. Alterations in NPY expression may reflect reactive or compensatory responses of the rat brain to acute infarction and to the development and expression of epileptic seizures.

  20. Changes in neuropeptide Y protein expression following photothrombotic brain infarction and epileptogenesis.

    PubMed Central

    Kharlamov, Elena A.; Kharlamov, Alexander; Kelly, Kevin M.

    2007-01-01

    This study characterized morphological changes in the cortex and hippocampus of Sprague-Dawley rats following photothrombotic infarction and epileptogenesis with emphasis on the distribution of neuropeptide Y (NPY) expression. Animals were lesioned in the left sensorimotor cortex and compared with age-matched naïve and sham-operated controls by immunohistochemical techniques at 1, 3, 7, and 180 days post-lesioning (DPL). NPY immunostaining was assessed by light microscopy and quantified by the optical fractionator technique using unbiased stereological methods. At 1, 3, and 7 DPL, the number of NPY-positive somata in the lesioned cortex was increased significantly compared to controls and the contralateral cortex. At 180 DPL, lesioned epileptic animals with frequent seizure activity demonstrated significant increases of NPY expression in the cortex, CA1, CA3, hilar interneurons, and granule cells of the dentate gyrus. In addition to NPY immunostaining, neuronal degeneration, cell death/cell loss, and astroglial response were assessed with cell-specific markers. Nissl and NeuN staining showed reproducible infarctions at each investigated time point. FJB-positive somata were most abundant in the infarct core at 1 DPL, decreased markedly at 3 DPL, and virtually absent by 7 DPL. Activated astroglia were detected in the cortex and hippocampus following lesioning and the development of seizure activity. In summary, NPY protein expression and morphological changes following cortical photothrombosis were time-, region- and pathologic state-dependent. Alterations in NPY expression may reflect reactive or compensatory responses of the rat brain to acute infarction and to the development and expression of epileptic seizures. PMID:17123484

  1. Changes in Retinal Morphology, Electroretinogram and Visual Behavior after Transient Global Ischemia in Adult Rats

    PubMed Central

    Zhao, Ying; Yu, Bo; Xiang, Yong-Hui; Han, Xin-Jia; Xu, Ying; So, Kwok-Fai; Xu, An-Ding; Ruan, Yi-Wen

    2013-01-01

    The retina is a light-sensitive tissue of the central nervous system that is vulnerable to ischemia. The pathological mechanism underlying retinal ischemic injury is not fully understood. The purpose of this study was to investigate structural and functional changes of different types of rat retinal neurons and visual behavior following transient global ischemia. Retinal ischemia was induced using a 4-vessel occlusion model. Compared with the normal group, the number of βIII-tubulin positive retinal ganglion cells and calretinin positive amacrine cells were reduced from 6 h to 48 h following ischemia. The number of recoverin positive cone bipolar cells transiently decreased at 6 h and 12 h after ischemia. However, the fluorescence intensity of rhodopsin positive rod cells and fluorescent peanut agglutinin positive cone cells did not change after reperfusion. An electroretinogram recording showed that the a-wave, b-wave, oscillatory potentials and the photopic negative response were completely lost during ischemia. The amplitudes of the a- and b-waves were partially recovered at 1 h after ischemia, and returned to the control level at 48 h after reperfusion. However, the amplitudes of oscillatory potentials and the photopic negative response were still reduced at 48 h following reperfusion. Visual behavior detection showed there was no significant change in the time spent in the dark chamber between the control and 48 h group, but the distance moved, mean velocity in the black and white chambers and intercompartmental crosses were reduced at 48 h after ischemia. These results indicate that transient global ischemia induces dysfunction of retinal ganglion cells and amacrine cells at molecular and ERG levels. However, transient global ischemia in a 17 minute duration does not appear to affect photoreceptors. PMID:23776500

  2. Liposome-encapsulated hemoglobin improves energy metabolism in skeletal muscle ischemia and reperfusion in the rat.

    PubMed

    Kurita, Daisuke; Kawaguchi, Akira T; Aso, Kensuke; Yamano, Mariko; Minamitani, Haruyuki; Haida, Munetaka

    2012-02-01

    The effect of liposome-encapsulated hemoglobin (LEH) was tested in a rodent model of limb ischemia and reperfusion--causing local reperfusion injury and a cascade of systemic responses. Intracellular pH (pHi) and phosphocreatine (PCr)/inorganic phosphate (Pi) ratio were serially monitored using ³¹P-nuclear magnetic resonance spectroscopy with a 2-cm solenoid coil on a rodent hind limb. After baseline measurements, the right hind limb underwent ischemia for 70 min, followed 10 min later by intravenous administration of LEH (10 mL/kg, n = 6), homologous red blood cells (RBCs, n = 6), saline (n = 6), or no treatment (n = 6). Reperfusion was then observed for an additional 60 min. While pHi decreased precipitously after the onset of ischemia and even following reperfusion, LEH-treated rats had significantly milder intracellular acidosis compared with all other groups during ischemia, and after reperfusion as well throughout the observation with the saline-treated rats. In contrast, the PCr/Pi ratio decreased regardless of treatment after ischemia until reperfusion, when the ratio returned toward normal or the energy status improved only in the LEH-treated rats, while the ratio remained depressed in the control animals receiving RBC, saline, or no treatment. Morphological studies 7 days later revealed a tendency toward suppressed mononuclear cell infiltration with preservation of muscular mass and structure in the LEH-treated rats. LEH treatment after early limb ischemia appeared to improve intracellular energy metabolism and eventually preserve skeletal muscle in a rodent model of limb ischemia and reperfusion.

  3. [Effect of semax and mexidol on brain ischemia models in rats].

    PubMed

    Iasnetsov, V V; Voronina, T A

    2009-01-01

    It was established that semax and mexidol significantly reduced neurological deficiency and increased the survival in rats with model brain ischemia induced by the bilateral ligation of common carotid arteries. Mexidol exhibited a linear dose-effect relationship (in a range of doses from 30 to 120 mg/kg per day), while the effect of semax decreased with increasing dose (in a dose range from 0.3 to 1.2 mg/kg per day). Preventive course administration of semax and mexidol considerably reduced neurologic deficiency and amnesia in a step-down passive avoidance situation in rats with model brain ischemia caused by gravitation overload.

  4. Thromboxane A2 release in ischemia and reperfusion of free flaps in rats, studied by microdialysis.

    PubMed

    Ionac, M; Schaefer, D; Geishauser, M

    2001-02-01

    Several studies have implicated enhanced eicosanoid production in reperfusion injury. The reported study investigated the use of microdialysis in the in vivo measurement of thromboxane levels during reperfusion in ischemic and reperfused experimental free muscle flaps. Microdialysis probes were inserted, via a guide, into the gracilis and semitendinosus free flap in the rat. The probe was perfused at a flow of 5 microl/min, with samples collected at intervals of 20 min, and analyzed by the ELISA technique. Animals were randomly distributed into three groups. After ischemic periods of 2, 4, and 6 hr, respectively, the free muscle flaps were revascularized on the contralateral femoral vessels. The mean thromboxane level during ischemia was 1785.34 +/- 124.81 pg/ml. The mean levels of thromboxane rose significantly (p < 0.05), compared to base level, with 151.65 percent in the 2-hr ischemia group, 192.33 percent in the 4-hr ischemia group, and 294.69 percent in the 6-hr ischemia group, and correlated well with histologic observations. The results suggest that a microdialysis technique, combined with a sensitive assay for measuring thromboxane, is a useful method for in vivo monitoring of inflammatory processes during ischemia and reperfusion. The evolution of thromboxane release following 6 hr of ischemia indicates that this mediator may be involved in facilitation of cell death, following ischemia and reperfusion, since its tissue level correlates with histologic tissue damage.

  5. Multislice diffusion mapping for 3-D evolution of cerebral ischemia in a rat stroke model.

    PubMed

    Reith, W; Hasegawa, Y; Latour, L L; Dardzinski, B J; Sotak, C H; Fisher, M

    1995-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) can quantitatively demonstrate cerebral ischemia within minutes after the onset of ischemia. The use of a DWI echo-planar multislice technique in this study and the mapping of the apparent diffusion coefficient (ADC) of water, a reliable indicator of ischemic regions, allow for the detection of the three-dimensional (3-D) evolution of ischemia in a rat stroke model. We evaluated 13 time points from 5 to 180 minutes after occlusion of the middle cerebral artery (MCA) and monitored the 3-D spread of ischemia. Within 5 minutes after the onset of ischemia, regions with reduced ADC values occurred. The core of the lesion, with the lowest absolute ADC values, first appeared in the lateral caudoputamen and frontoparietal cortex, then spread to adjacent areas. The volume of ischemic tissue was 224 +/- 48.5 mm3 (mean +/- SEM) after 180 minutes, ranging from 92 to 320 mm3, and this correlated well with the corrected infarct volume at postmortem (194 +/- 23.1 mm3, r = 0.72, p < 0.05). This experiment demonstrated that 3-D multislice diffusion mapping can detect ischemic regions noninvasively 5 minutes after MCA occlusion and follow the development of ischemia. The distribution of changes in absolute ADC values within the ischemic region can be followed over time, giving important information about the evolution of focal ischemia.

  6. Study on pretreatment of FPS-1 in rats with hepatic ischemia-reperfusion injury.

    PubMed

    Lin, Shiqing; Liu, Kexuan; Wu, Weikang; Chen, Chao; Wang, Zhi; Zhang, Xuanhong

    2009-01-01

    This study was designed to determine whether FPS-1, the water-soluble polysaccharide isolated from fuzi, protected against hepatic damage in hepatic ischemia-reperfusion injury in rats, and its mechanism. SD rats were subjected to 60 min of hepatic ischemia, followed by 120 min reperfusion. FPS-1 (160 mg/kg/day) was administered orally for 5 days before ischemia-reperfusion injury in treatment group. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and albumin (ALB) were assayed to evaluate liver functions. Liver samples were taken for histological examination and determination of malondialdehyde (MDA), superoxide dismutase (SOD), that catalase (CAT) in liver. Na(+)-K(+)-ATPase and Ca(2+)-ATPase in mitochondria were measured with colorimetry method. Morphological changes were also investigated by using both light microscopy and electron microscopy (EM). In addition, apoptosis and oncosis were detected by Annexin V-FITC/PI immunofluorescent flow cytometry analysis. Serum AST and ALT levels were elevated in groups exposed to ischemia-reperfusion (p < 0.05). Ischemia-reperfusion caused a marked increase in MDA level, and significant decreases in hepatic SOD and CAT (p < 0.05). Na(+)-K(+)-ATPase and Ca(2+)-ATPase were reduced in ischemia-reperfusion groups compared to the sham group (p < 0.05). Oncosis and apoptosis were also observed in ischemia-reperfusion groups. Pretreatment with FPS-1 reversed all these biochemical parameters as well as histological alterations, evidently by increased SOD, CAT, reduced MDA and histological scores compared to the model group (p < 0.05). FPS-1 could attenuate the necrotic states by the detection of immunofluorescent flow cytometry analysis. Pretreatment with FPS-1 reduced hepatic ischemia-reperfusion injury through its potent antioxidative effects and attenuation of necrotic states.

  7. Effect of the reperfusion after cerebral ischemia in neonatal rats using MRI monitoring.

    PubMed

    Fau, Sebastien; Po, Chrystelle; Gillet, Brigitte; Sizonenko, Stephane; Mariani, Jean; Meric, Philippe; Charriaut-Marlangue, Christiane

    2007-12-01

    Cerebral hypoxia-ischemia is an important cause of brain injury in the newborn infant. Our purpose was to study magnetic resonance (MR) imaging changes in P7 rat brains submitted to permanent or reversible ischemia. Ischemia was induced by permanent electro-cauterization of the middle cerebral artery combined with a permanent or a transient (50 min) common carotid artery occlusion. The early events during ischemia and reperfusion were investigated by T2-weighted images (T2WI) at 1 and 3 h and by serial diffusion-weighted images (DWI) during 3 h in a 7 T magnet with a standard weighted diffusion sequence (b=1282.04 s mm(-2)) and a SEMS sequence. Within the first hour after MCA occlusion, the T2WI areas of contrast enhancement increased to a mean volume of 12.9+/-6.4%, a steady state still detected at 3 h after the ischemic onset (10.5+/-2.5%). Contrast enhancement in DWI increased as soon as 15 min of ischemia in all animals up to 50 min after CCA occlusion. In permanent ischemia, DWI abnormalities volume then increased more slowly from 50 min to 3 h after CCA occlusion (+25%, n=5). In reversible ischemia, the DWI abnormalities volume either moderately decreased and reached a plateau (-8.4%, n=4) or dramatically decreased (-53.0%, n=3). Both T2WI and DWI evidenced a "patchy" pattern of recovery as also shown on cresyl violet-stained sections. In contrast to the adult, early ischemic injury in P7 rat brains is detected as an increase in hyper-intensities both in T2WI and DWI. Our data indicate that reperfusion is able to block edema evolution after neonatal stroke and that early T2WI and more accurately DWI allow to distinguish between different patterns of injury in reversible ischemia.

  8. [Antioxidant and cardioprotective effects of N-tyrosol in myocardial ischemia with reperfusion in rats].

    PubMed

    Smol'iakova, V I; Chernyshova, G A; Plotnikov, M B; Aliev, O I; Krasnov, E A

    2010-01-01

    We demonstrated in experiments on rats with left coronary artery occlusion that intravenous administration of 20 mg/kg n-tyrosol during ischemia limited manifestations of oxidative stress in myocardial tissue during early post reperfusion period: content of diene and triene conjugates lowered 16 and 20%, respectively. This was associated with higher preservation of cardiomyocytes and reduction of the infarction zone.

  9. Dragon's blood dropping pills have protective effects on focal cerebral ischemia rats model.

    PubMed

    Xin, Nian; Yang, Fang-Ju; Li, Yan; Li, Yu-Juan; Dai, Rong-Ji; Meng, Wei-Wei; Chen, Yan; Deng, Yu-Lin

    2013-12-15

    Dragon's blood is a bright red resin obtained from Dracaena cochinchinensis (Lour.) S.C.Chen (Yunnan, China). As a traditional Chinese medicinal herb, it has great traditional medicinal value and is used for wound healing and to stop bleeding. Its main biological activity comes from phenolic compounds. In this study, phenolic compounds were made into dropping pills and their protective effects were examined by establishing focal cerebral ischemia rats model used method of Middle Cerebral Artery Occlusion (MCAO), and by investigating indexes of neurological scores, infarct volume, cerebral index, cerebral water content and oxidation stress. Compared to model group, high, middle and low groups of Dragon's blood dropping pills could improve the neurological function significantly (p<0.01) and reduce cerebral infarct volume of focal cerebral ischemia rats remarkably (p<0.05-0.01). Meanwhile, each group could alleviate cerebral water content and cerebral index (p<0.05-0.01) and regulate oxidative stress of focal cerebral ischemia rats obviously (p<0.05-0.01). Activities of middle group corresponded with that treated with positive control drug. The results obtained here showed that Dragon's blood dropping pills had protective effects on focal cerebral ischemia rats.

  10. Neuronal damage and calcium accumulation following transient cerebral ischemia in the rat

    SciTech Connect

    Araki, T.; Inoue, T.; Kato, H.; Kogure, K.; Murakami, M. )

    1990-06-01

    The purpose of this study was to examine the distribution of neuronal damage following transient cerebral ischemia in the rat model of four-vessel occlusion utilizing light microscopy as well as {sup 45}Ca-autoradiography. Transient ischemia was induced for 30 min. The animals were allowed to survive for 7 d after ischemia. In the animals subjected to ischemia, the most frequently and seriously damaged areas were the paramedian region of hippocampus, the hippocampal CA1 sector, and the dorsolateral part of striatum, followed by the inferior colliculus, the substantia nigra, the frontal cortex, and the thalamus, which were moderate damaged. Furthermore, the cerebellar Purkinje neurons, the hippocampal CA4 sector, the medial geniculate body, and the hippocampal CA3 sector were slightly affected. {sup 45}Ca-autoradiographyic study also revealed calcium accumulation in the identical sites of ischemic neuronal damage, except for the frontal cortex. Regional cerebral blood flow during 10 min of ischemia was severely decreased in selectively vulnerable areas. The blood flow in the medial geniculate body, the substantia nigra, the inferior colliculus, and the cerebellum was less pronounced than that in the selectively vulnerable areas. The present study demonstrates that transient cerebral ischemia can produce significant neuronal damage not only in the selectively vulnerable regions, but also in the brainstem.

  11. Effect of Cuscuta chinensis on renal function in ischemia/reperfusion-induced acute renal failure rats.

    PubMed

    Shin, Sun; Lee, Yun Jung; Kim, Eun Ju; Lee, An Sook; Kang, Dae Gill; Lee, Ho Sub

    2011-01-01

    The kidneys play a central role in regulating water, ion composition and excretion of metabolic waste products in the urine. Cuscuta chinensis has been known as an important traditional Oriental medicine for the treatment of liver and kidney disorders. Thus, we studied whether an aqueous extract of Cuscuta chinensis (ACC) seeds has an effect on renal function parameters in ischemia/reperfusion-induced acute renal failure (ARF) rats. Administration of 250 mg/kg/day ACC showed that renal functional parameters including urinary excretion rate, osmolality, Na(+), K(+), Cl(-), creatinine clearance, solute-free water reabsorption were significantly recovered in ischemia/reperfusion-induced ARF. Periodic acid Schiff staining showed that administration of ACC improved tubular damage in ischemia/reperfusion-induced ARF. In immunoblot and immunohistological examinations, ischemia/reperfusion-induced ARF decreased the expressions of water channel AQP 2, 3 and sodium potassium pump Na,K-ATPase in the renal medulla. However, administration of ACC markedly incremented AQP 2, 3 and Na,K-ATPase expressions. Therefore, these data indicate that administration of ACC ameliorates regulation of the urine concentration and renal functions in rats with ischemia/reperfusion-induced ARF.

  12. Hypoxic-Preconditioned Bone Marrow Stem Cell Medium Significantly Improves Outcome After Retinal Ischemia in Rats

    PubMed Central

    Roth, Steven; Dreixler, John C.; Mathew, Biji; Balyasnikova, Irina; Mann, Jacob R.; Boddapati, Venkat; Xue, Lai; Lesniak, Maciej S.

    2016-01-01

    Purpose We have previously demonstrated the protective effect of bone marrow stem cell (BMSC)-conditioned medium in retinal ischemic injury. We hypothesized here that hypoxic preconditioning of stem cells significantly enhances the neuroprotective effect of the conditioned medium and thereby augments the protective effect in ischemic retina. Methods Rats were subjected to retinal ischemia by increasing intraocular pressure to 130 to 135 mm Hg for 55 minutes. Hypoxic-preconditioned, hypoxic unconditioned, or normoxic medium was injected into the vitreous 24 hours after ischemia ended. Recovery was assessed 7 days after injections by comparing electroretinography measurements, histologic examination, and apoptosis (TUNEL, terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling assay). To compare proteins secreted into the medium in the groups and the effect of hypoxic exposure, we used rat cytokine arrays. Results Eyes injected with hypoxic BMSC–conditioned medium 24 hours after ischemia demonstrated significantly enhanced return of retinal function, decreased retinal ganglion cell layer loss, and attenuated apoptosis compared to those administered normoxic or hypoxic unconditioned medium. Hypoxic-preconditioned medium had 21 significantly increased protein levels compared to normoxic medium. Conclusions The medium from hypoxic-preconditioned BMSCs robustly restored retinal function and prevented cell loss after ischemia when injected 24 hours after ischemia. The protective effect was even more pronounced than in our previous studies of normoxic conditioned medium. Prosurvival signals triggered by the secretome may play a role in this neuroprotective effect. PMID:27367588

  13. Relaxin protects against myocardial injury caused by ischemia and reperfusion in rat heart.

    PubMed Central

    Bani, D.; Masini, E.; Bello, M. G.; Bigazzi, M.; Sacchi, T. B.

    1998-01-01

    Myocardial injury caused by ischemia and reperfusion comes from multiple pathogenic events, including endothelial damage, neutrophil extravasation into tissue, platelet and mast cell activation, and peroxidation of cell membrane lipids, which are followed by myocardial cell alterations resulting eventually in cell necrosis. The current study was designed to test the possible cardioprotective effect of the hormone relaxin, which has been found to cause coronary vessel dilation and to inhibit platelet and mast cell activation. Ischemia (for 30 minutes) was induced in rat hearts in vivo by ligature of the left anterior descending coronary artery; reperfusion (for 60 minutes or less if the rats died before this predetermined time) was induced by removal of the ligature. Relaxin (100 ng) was given intravenously 30 minutes before ischemia. The results obtained showed that relaxin strongly reduces 1) the extension of the myocardial areas affected by ischemia-reperfusion-induced damage, 2) ventricular arrhythmias, 3) mortality, 4) myocardial neutrophil number, 5) myeloperoxidase activity, a marker of neutrophil accumulation, 6) production of malonyldialdehyde, an end product of lipid peroxidation, 7) mast cell granule release, 8) calcium overload, and 9) morphological signs of myocardial cell injury. This study shows that relaxin can be regarded as an agent with a marked cardioprotective action against ischemia-reperfusion-induced myocardial injury. Images Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:9588905

  14. Pyruvate dehydrogenase activity in the rat cerebral cortex following cerebral ischemia.

    PubMed

    Cardell, M; Koide, T; Wieloch, T

    1989-06-01

    The effect of cerebral ischemia on the activity of pyruvate dehydrogenase (PDH) enzyme complex (PDHC) was investigated in homogenates of frozen rat cerebral cortex following 15 min of bilateral common carotid occlusion ischemia and following 15 min, 60 min, and 6 h of recirculation after 15 min of ischemia. In frozen cortical tissue from the same animals, the levels of labile phosphate compounds, glucose, glycogen, lactate, and pyruvate was determined. In cortex from control animals, the rate of [1(-14)C]pyruvate decarboxylation was 9.6 +/- 0.5 nmol CO2/(min-mg protein) or 40% of the total PDHC activity. This fraction increased to 89% at the end of 15 min of ischemia. At 15 min of recirculation following 15 min of ischemia, the PDHC activity decreased to 50% of control levels and was depressed for up to 6 h post ischemia. This decrease in activity was not due to a decrease in total PDHC activity. Apart from a reduction in ATP levels, the acute changes in the levels of energy metabolites were essentially normalized at 6 h of recovery. Dichloroacetate (DCA), an inhibitor of PDH kinase, given to rats at 250 mg/kg i.p. four times over 2 h, significantly decreased blood glucose levels from 7.4 +/- 0.6 to 5.1 +/- 0.3 mmol/L and fully activated PDHC. In animals in which the plasma glucose level was maintained at control levels of 8.3 +/- 0.5 mumol/g by intravenous infusion of glucose, the active portion of PDHC increased to 95 +/- 4%. In contrast, the depressed PDHC activity at 15 min following ischemia was not affected by the DCA treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Role of mucus in ischemia/reperfusion-induced gastric mucosal injury in rats.

    PubMed

    Mojzis, J; Hegedüsová, R; Mirossay, L

    2000-01-01

    Gastric mucus plays an important role in gastric mucosal protection. Apart from its "barrier" function, it has been demonstrated that mucus protects gastric epithelial cells against toxic oxygen metabolites derived from the xanthine/ xanthine oxidase system. In this study, we investigated the effect of malotilate and sucralfate (mucus production stimulators) and N-acetylcysteine (mucolytic agent) on ischemia/reperfusion-induced gastric mucosal injury. Gastric ischemia was induced by 30 min clamping of the coeliac artery followed by 30 min of reperfusion. The mucus content was determined by the Alcian blue method. Sucralfate (100 mg/kg), malotilate (100 mg/kg), and N-acetylcysteine (100 mg/kg) were given orally 30 min before surgery. Both sucralfate and malotilate increased the mucus production in control rats. On the other hand, N-acetyloysteine significantly decreased mucus content in control (sham) group. A significant decrease of mucus content was found in the control and the N-acetylcysteine pretreated group during the period of ischemia. On the other hand, sucralfate and malotilate prevented the decrease the content of mucus during ischemia. A similar result can be seen after ischemia/reperfusion. In the control group and N-acetylcysteine pretreated group a significant decrease of adherent mucus content was found. However, sucralfate and malotilate increased mucus production (sucralfate significantly). Sucralfate and malotilate also significantly protected the gastric mucosa against ischemia/reperfusion-induced injury. However, N-acetylcysteine significantly increased gastric mucosal injury after ischemia/reperfusion. These results suggest that gastric mucus may be involved in the protection of gastric mucosa after ischemia/reperfusion.

  16. Neuroprotective effects of Withania coagulans root extract on CA1 hippocampus following cerebral ischemia in rats

    PubMed Central

    Sarbishegi, Maryam; Heidari, Zahra; Mahmoudzadeh- Sagheb, Hamidreza; Valizadeh, Moharram; Doostkami, Mahboobeh

    2016-01-01

    Objective: Oxygen free radicals may be implicated in the pathogenesis of ischemia reperfusion damage. The beneficial effects of antioxidant nutrients, as well as complex plant extracts, on cerebral ischemia-reperfusion injuries are well known. This study was conducted to determine the effects of the hydro-alcoholic root extract of Withania coagulans on CA1 hippocampus oxidative damages following global cerebral ischemia/reperfusion in rat. Materials and Methods: Male Wistar rats were randomly divided in five groups: control, sham operated, Ischemia/ Reperfiusion (IR), and Withania Coagulans Extract (WCE) 500 and 1000mg/kg + I/R groups. Ischemia was induced by ligation of bilateral common carotid arteries for 30 min after 30 days of WCE administration. Three days after, the animals were sacrificed, their brains were fixed for histological analysis (NISSL and TUNEL staining) and some samples were prepared for measurement of malondialdehyde (MDA) level and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity in hippocampus. Results: WCE showed neuroprotective activity by significant decrease in MDA level and increase in the SOD, CAT and GPx activity in pretreated groups as compared to I/R groups (p<0.001). The number of intact neurons was increased while the number of TUNEL positive neurons in CA1 hippocampal region in pretreated groups were decreased as compared to I/R group (p<0.001). Conclusion: WCE showed potent neuroprotective activity against oxidative stress-induced injuries caused by global cerebral ischemia/ reperfusion in rats probably by radical scavenging and antioxidant activities. PMID:27516980

  17. Effects of light-emitting diode (LED) therapy on skeletal muscle ischemia reperfusion in rats.

    PubMed

    Takhtfooladi, Mohammad Ashrafzadeh; Shahzamani, Mehran; Takhtfooladi, Hamed Ashrafzadeh; Moayer, Fariborz; Allahverdi, Amin

    2015-01-01

    Low-level laser therapy has been shown to decrease ischemia-reperfusion injuries in the skeletal muscle by induction of synthesis of antioxidants and other cytoprotective proteins. Recently, the light-emitting diode (LED) has been used instead of laser for the treatment of various diseases because of its low operational cost compared to the use of a laser. The objective of this work was to analyze the effects of LED therapy at 904 nm on skeletal muscle ischemia-reperfusion injury in rats. Thirty healthy male Wistar rats were allocated into three groups of ten rats each as follows: normal (N), ischemia-reperfusion (IR), and ischemia-reperfusion + LED (IR + LED) therapy. Ischemia was induced by right femoral artery clipping for 2 h followed by 2 h of reperfusion. The IR + LED group received LED irradiation on the right gastrocnemius muscle (4 J/cm(2)) immediately and 1 h following blood supply occlusion for 10 min. At the end of trial, the animals were euthanized and the right gastrocnemius muscles were submitted to histological and histochemical analysis. The extent of muscle damage in the IR + LED group was significantly lower than that in the IR group (P < 0.05). In comparison with other groups, tissue malondialdehyde (MDA) levels in the IR group were significantly increased (P < 0.05). The muscle tissue glutathione (GSH), superoxide dismutases (SOD), and catalase (CAT) levels in the IR group were significantly lower than those in the subjects in other groups. From the histological and histochemical perspective, the LED therapy has alleviated the metabolic injuries in the skeletal muscle ischemia reperfusion in this experimental model.

  18. Treatment with carnosine reduces hypoxia-ischemia brain damage in a neonatal rat model.

    PubMed

    Zhang, Huizhen; Guo, Shang; Zhang, Linlin; Jia, Liting; Zhang, Zhan; Duan, Hongbao; Zhang, Jingbin; Liu, Jingyan; Zhang, Weidong

    2014-03-15

    Perinatal hypoxia-ischemia brain damage (HIBD) is a major cause of mortality and morbidity in neonates, and there is currently no effective therapy for HIBD. Carnosine plays a neuroprotective role in adult brain damage. We have previously demonstrated that carnosine pretreatment protects against HIBD in a neonatal rat model. Therefore, we hypothesized that treatment with carnosine would also have neuroprotective effects. Hypoxia-ischemia was induced in rats on postnatal days 7-9 (P7-9). Carnosine was administered intraperitoneally at a dose of 250mg/kg at 0h, 24h, and 48h after hypoxia-ischemia was induced. The biochemical markers of oxidative stress and apoptosis were evaluated at 72h after hypoxia-ischemia was induced, Brain learning and memory function performance were observed using the Morris water maze test on postnatal days 28-33 (P28-33). Treatment with carnosine post-HIBD significantly reduced the concentration of 8-iso-prostaglandinF2alpha in brain tissue and decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in the hippocampus CA1 region and cortex as well as the mitochondria caspase-3 protein expression. Furthermore, carnosine also improved the cognitive function of P28-33 rats, whose cognitive function decline was due to HIBD. These results demonstrate that carnosine treatment after HIBD can reduce the brain injury, improving brain function. Carnosine could be an attractive candidate for treating HIBD.

  19. Real time measurement of myocardial oxygen dynamics during cardiac ischemia-reperfusion of rats.

    PubMed

    Lee, Gi-Ja; Kim, Seung Ki; Kang, Sung Wook; Kim, Ok-Kyun; Chae, Su-Jin; Choi, Samjin; Shin, Jae Ho; Park, Hun-Kuk; Chung, Joo-Ho

    2012-11-21

    Because oxygen plays a critical role in the pathophysiology of myocardial injury during subsequent reperfusion, as well as ischemia, the accurate measurement of myocardial oxygen tension is crucial for the assessment of myocardial viability by ischemia-reperfusion (IR) injury. Therefore, we utilized a sol-gel derived electrochemical oxygen microsensor to monitor changes in oxygen tension during myocardial ischemia-reperfusion. We also analyzed differences in oxygen tension recovery in post-ischemic myocardium depending on ischemic time to investigate the correlation between recovery parameters for oxygen tension and the severity of IR injury. An oxygen sensor was built using a xerogel-modified platinum microsensor and a coiled Ag/AgCl reference electrode. Rat hearts were randomly divided into 5 groups: control (0 min ischemia), I-10 (10 min ischemia), I-20 (20 min ischemia), I-30 (30 min ischemia), and I-40 (40 min ischemia) groups (n = 3 per group, respectively). After the induction of ischemia, reperfusion was performed for 60 min. As soon as the ischemia was initiated, oxygen tension rapidly declined to near zero levels. When reperfusion was initiated, the changes in oxygen tension depended on ischemic time. The normalized peak level of oxygen tension during the reperfusion episode was 188 ± 27 in group I-10, 120 ± 24 in group I-20, 12.5 ± 10.6 in group I-30, and 1.24 ± 1.09 in group I-40 (p < 0.001, n = 3, respectively). After 60 min of reperfusion, the normalized restoration level was 129 ± 30 in group I-10, 88 ± 4 in group I-20, 3.40 ± 4.82 in group I-30, and 0.99 ± 0.94 in group I-40 (p < 0.001, n = 3, respectively). The maximum and restoration values of oxygen tension in groups I-30 and I-40 after reperfusion were lower than pre-ischemic values. In particular, oxygen tension in the I-40 group was not recovered at all. These results were also demonstrated by TTC staining. We suggest that these recovery parameters could be utilized as an index of

  20. [Efficiency of mildronate in rats of different age with experimental-induced myocardial ischemia].

    PubMed

    Kukes, V G; Zhernakova, N I; Gorbach, T V; Romashchenko, O V; Rumbesht, V V

    2013-01-01

    Under experimental myocardial ischemia in rats of 10 months treatment with mildronate resulted in essential changes in metabolism of cardiomyocites. This includes stimulation of aerobic and anaerobic ways of power supply of heart cells: activation of glycolysis, oxidative phosphorylation and oxidative pyruvate decarboxylation with restoration of adenosine triphosphate pool to intact rats level in myocardium, serum and erythrocytes with signs of stabilization of cardiomyocytes membranes and essential decrease of tissue hypoxia. Introduction of mildronate to old rats (24 months) with an experimental myocardium ischemia was accompanied by lesser expressed changes of metabolism: activation of glycolysis and oxidative pyruvate decarboxylation without stimulation of Crebs' cycle enzymes. This became sufficient for restoration of adenosine triphosphate pool in myocardium without change of its quantity in serum and erythrocytes with signs of stabilization of cardiomyocytes membranes and moderate reduction of tissue hypoxia degree.

  1. Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats.

    PubMed

    Basile, David P; Dwinell, Melinda R; Wang, Shur-Jen; Shames, Brian D; Donohoe, Deborah L; Chen, Shaoying; Sreedharan, Rajasree; Van Why, Scott K

    2013-02-01

    Brown Norway rats (BN, BN/NHsdMcwi) are profoundly resistant to developing acute kidney injury (AKI) following ischemia reperfusion. To help define the genetic basis for this resistance, we used consomic rats, in which individual chromosomes from BN rats were placed into the genetic background of Dahl SS rats (SS, SS/JrHsdMcwi) to determine which chromosomes contain alleles contributing to protection from AKI. The parental strains had dramatically different sensitivity to ischemia reperfusion with plasma creatinine levels following 45 min of ischemia and 24 h reperfusion of 4.1 and 1.3 mg/dl in SS and BN, respectively. No consomic strain showed protection similar to the parental BN strain. Nine consomic strains (SS-7(BN), SS-X(BN), SS-8(BN), SS-4(BN), SS-15(BN), SS-3(BN), SS-10(BN), SS-6(BN), and SS-5(BN)) showed partial protection (plasma creatinine about 2.5-3.0 mg/dl), suggesting that multiple alleles contribute to the severity of AKI. In silico analysis was performed using disease ontology database terms and renal function quantitative trait loci from the Rat Genome Database on the BN chromosomes giving partial protection from AKI. This tactic identified at least 36 candidate genes, with several previously linked to the pathophysiology of AKI. Thus, natural variants of these alleles or yet-to-be identified alleles on these chromosomes provide protection against AKI. These alleles may be potential modulators of AKI in susceptible patient populations.

  2. The hepatoprotective effects of Hypericum perforatum L. on hepatic ischemia/reperfusion injury in rats.

    PubMed

    Bayramoglu, Gokhan; Bayramoglu, Aysegul; Engur, Selin; Senturk, Hakan; Ozturk, Nilgun; Colak, Suat

    2014-05-01

    Little is known about the effective role of Hypericum perforatum on hepatic ischemia-reperfusion (I/R) injury in rats. Hence, albino rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. Hypericum perforatum extract (HPE) at the dose of 50 mg/kg body weight (HPE50) was intraperitonally injected as a single dose, 15 min prior to ischemia. Rats were sacrificed at the end of reperfusion period and then, biochemical investigations were made in serum and liver tissue. Liver tissue homogenates were used for the measurement of malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GPx) levels. At the same time alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were assayed in serum samples and compared statistically. While the ALT, AST, LDH activities and MDA levels were significantly increased, CAT and GPx activities significantly decreased in only I/R-induced control rats compared to normal control rats (p < 0.05). Treatment with HPE50 significantly decreased the ALT, AST, LDH activities and MDA levels, and markedly increased activities of CAT and GPx in tissue homogenates compared to I/R-induced rats without treatment-control group (p < 0.05). In oxidative stress generated by hepatic ischemia-reperfusion, H. perforatum L. as an antioxidant agent contributes an alteration in the delicate balance between the scavenging capacity of antioxidant defence systems and free radicals in favour of the antioxidant defence systems in the body.

  3. The protective effect of erdosteine on short-term global brain ischemia/reperfusion injury in rats.

    PubMed

    Ozerol, Elif; Bilgic, Sedat; Iraz, Mustafa; Cigli, Ahmet; Ilhan, Atilla; Akyol, Omer

    2009-02-01

    Experimental studies have demonstrated that free radicals play a major role on neuronal injury during ischemia/reperfusion (I/R) in rats. Erdosteine is a thioderivative endowed with mucokinetic, mucolytic and free-radical-scavenging properties. The aim of the present study was to investigate the effect of erdosteine treatment against short-term global brain ischemia/reperfusion injury in rats. The study was carried out on Wistar rats divided into four groups. (i) Control group, (ii) ischemia/reperfusion group, (iii) ischemia/reperfusion+erdosteine group, and (iv) erdosteine group. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities as well as thiobarbituric acid reactive substances (TBARSs) and nitric oxide (NO) levels were analysed in erythrocyte and plasma of rats. Plasma NO levels were significantly higher in the ischemia/reperfusion group than the other groups. The activities of SOD and GSH-Px were decreased, while TBARS levels increased in the ischemia/reperfusion group compared to other groups in both plasma and erythrocyte. The erythrocyte CAT activity was higher in erdosteine group and there was a statistically significant increase, when compared with the erdosteine plus ischemia/reperfusion group. By treating the rats with erdosteine, the depletion of endogenous antioxidant enzymes (SOD, CAT, GSH-Px) and increase of TBARS and NO levels were prevented. This study, therefore, suggests that erdosteine reduces parameters of oxidative stress is well supported by the data.

  4. [Semax prevents elevation of nitric oxide generation caused by incomplete global ischemia in the rat brain].

    PubMed

    Fadiukova, O E; Alekseev, A A; Bashkatova, V G; Tolordava, I A; Kuzenkov, V S; Mikoian, V D; Vanin, A F; Koshelev, V B; Raevskiĭ, K S

    2001-01-01

    A twofold increase in the nitric oxide (NO) production and a moderate increase in the content of secondary products of lipid peroxidation was observed in Wistar rats with incomplete global ischemia model induced by the bilateral occlusion of common carotid arteries. A clear correlation was observed between the NO content in the rat brain and the level of neurological disturbance manifestations in the ischemized animals. The synthetic peptide semax (a fragment of ACTH4-7 Pro-Gly-Pro) in a dose of 0.3 mg/kg prevented from the development of both neurological disturbances and excess NO production in the rat brain cortex.

  5. Neuroprotective effects of daidzein on focal cerebral ischemia injury in rats

    PubMed Central

    Aras, Adem Bozkurt; Guven, Mustafa; Akman, Tarık; Ozkan, Adile; Sen, Halil Murat; Duz, Ugur; Kalkan, Yıldıray; Silan, Coskun; Cosar, Murat

    2015-01-01

    Daidzein, a plant extract, has antioxidant activity. It is hypothesized, in this study, that daidzein exhibits neuroprotective effects on cerebral ischemia. Rat models of middle cerebral artery occlusion were intraperitoneally administered daidzein. Biochemical and immunohistochemical tests showed that superoxide dismutase and nuclear respiratory factor 1 expression levels in the brain tissue decreased after ischemia and they increased obviously after daidzein administration; malondialdehyde level and apoptosis-related cysteine peptidase caspase-3 and caspase-9 immunoreactivity in the brain tissue increased after ischemia and they decreased obviously after daidzein administration. Hematoxylin-eosin staining and luxol fast blue staining results showed that intraperitoneal administration of daidzein markedly alleviated neuronal damage in the ischemic brain tissue. These findings suggest that daidzein exhibits neuroprotective effects on ischemic brain tissue by decreasing oxygen free radical production, which validates the aforementioned hypothesis. PMID:25788936

  6. Time course of ischemia/reperfusion-induced oxidative modification of neural proteins in rat forebrain.

    PubMed

    Lehotský, J; Murín, R; Strapková, A; Uríková, A; Tatarková, Z; Kaplán, P

    2004-12-01

    Time course of oxidative modification of forebrain neural proteins was investigated in the rat model of global and partial cerebral ischemia/reperfusion. Animals were subjected to 4-vessel occlusion for 15 min (global ischemia). After the end of ischemia and at different reperfusion times (2, 24 and 48 h), lipoperoxidation-dependent and direct oxidative modification neural protein markers were measured in the forebrain total membrane fraction (tissue homogenate). Ischemia itself causes significant changes only in levels of tryptophan and bityrosine fluorescence when compared to controls. All tested parameters of protein modification altered significantly and were maximal at later reperfusion stage. Content of carbonyl group in re-flow period steadily increased and culminated at 48 h of reperfusion. The highest increase in the fluorescence of bityrosines was detected after 24 h of reperfusion and was statistically significant to both sham operated and ischemic groups. The changes in fluorescence intensity of tryptophan decreased during a reperfusion time dependent manner. Formation of lysine conjugates with lipoperoxidation end-products significantly increased only at later stages of reperfusion. Total forebrain membranes from animals subjected to 3-vessel occlusion model to 15 min (partial ischemia) show no altered content of oxidatively modified proteins compared to controls. Restoration of blood flow for 24 h significantly decreased only fluorescence of aromatic tryptophan. Partial forebrain ischemia/reperfusion resulted in no detectable significant changes in oxidative products formation in extracerebral tissues (liver and kidney) homogenates. Our results suggest that global ischemia/reperfusion initiates both the lipoperoxidation-dependent and direct oxidative modifications of neural proteins. The findings support the view that spatial and temporal injury at later stages of ischemic insult at least partially involves oxidative stress-induced amino acid

  7. Therapeutic potential of cannabidiol against ischemia/reperfusion liver injury in rats.

    PubMed

    Fouad, Amr A; Jresat, Iyad

    2011-11-16

    The therapeutic potential of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated in rats exposed to ischemia/reperfusion liver injury. Ischemia was induced by clamping the pedicle of the left hepatic lobe for 30 min, and cannabidiol (5mg/kg, i.v.) was given 1h following the procedure and every 24h thereafter for 2 days. Ischemia/reperfusion caused significant elevations of serum alanine aminotransferase and hepatic malondialdehyde, tumor necrosis factor-α and nitric oxide levels, associated with significant decrease in hepatic reduced glutathione. Cannabidiol significantly attenuated the deterioration in the measured biochemical parameters mediated by ischemia/reperfusion. Histopathological examination showed that cannabidiol ameliorated ischemia/reperfusion-induced liver damage. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin protein in ischemic/reperfused liver tissue. These results emphasize that cannabidiol represents a potential therapeutic option to protect the liver against hypoxia-reoxygenation injury.

  8. Cerebroprotective activity of Wedelia calendulacea on global cerebral ischemia in rats.

    PubMed

    Prakash, T; Kotresha, D; Rama Rao, N

    2011-12-01

    The present study was to investigate the effect of W. calendulacea on ischemia and reperfusion-induced cerebral injury. Cerebral ischemia was induced by occluding right and left common carotid arteries (global cerebral ischemia) for 30 min followed by reperfusion for 1 h and 4 h individually. Various biochemical alterations, produced subsequent to the application of bilateral carotid artery occlusion (BCAO) followed by reperfusion viz. increase in lipid peroxidation (LPO), hydrogen peroxide (H2O2), and decrease in reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), level in the brain tissue, Western blot analysis (Cu-Zn-SOD and CAT) and assessment of cerebral infarct size were measured. All those enzymes are markedly reversed and restored to near normal level in the groups pretreated with W. calendulacea (250 and 500 mg/kg given orally in single and double dose/day for 10 days) in dose-dependent way. The effect of W. calendulacea had increased significantly the protein expression of copper/zinc superoxide dismutase (Cu-Zn-SOD) and CAT in cerebral ischemia. W. claendulacea was markedly decrease cerebral infarct damages but results are not statistically significant. It can be concluded that W. calendulacea possesses a neuroprotective activity against cerebral ischemia in rat.

  9. Matrine protects sinusoidal endothelial cells from cold ischemia and reperfusion injury in rat orthotopic liver transplantation.

    PubMed

    Zhu, Xinhua; Qiu, Yudong; Shi, Mingke; Ding, Yitao

    2003-01-01

    The effect of matrine on cold ischemia and reperfusion injury of sinusoidal endothelial cells (SEC) was investigated in rats using an orthotopic liver transplantation (OLT) model. Syngeneic Sprague-Dawley (SD) rats were randomly assigned to 4 groups of 32 rats: untreated group (controls), low-dose treated group, high-dose treated group, and sham operation group (normals). After 5 hr of preservation in Ringer's solution, orthotopic implantation of the donor liver was performed. At 1, 2, 4, and 24 hr after reperfusion, 6 rats from each group were killed to collect blood and to excise the median hepatic lobe; the other 8 rats were observed to assess the 1-wk survival rate post-transplantation. All transplant recipients in the untreated group (controls) died within 48 hr, mostly between 10 to 20 hr. Matrine treatment increased the 1-wk survival rate to 75% in both treated groups. Plasma levels of hyaluronic acid (HA) at 1, 2, and 4 hr post-implantation were decreased significantly by matrine treatment. The immunohistochemical expression of intercellular adhesion molecule-1 (ICAM-1) in rat liver decreased significantly in both treated groups, and the pathological changes of SEC were ameliorated. Matrine markedly inhibited the activation of Kupffer cells and their release of tumor necrosis factor (TNF). Hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activities were improved by matrine administration. In conclusion, matrine can protect SEC from cold ischemia and reperfusion injury after rat orthotopic liver transplantation.

  10. Combination of tadalafil and diltiazem attenuates renal ischemia reperfusion-induced acute renal failure in rats.

    PubMed

    El-Sisi, Alaa E; Sokar, Samia S; Abu-Risha, Sally E; Ibrahim, Hanaa A

    2016-12-01

    Life threatening conditions characterized by renal ischemia/reperfusion (RIR) such as kidney transplantation, partial nephrectomy, renal artery angioplasty, cardiopulmonary bypass and aortic bypass surgery, continue to be among the most frequent causes of acute renal failure. The current study investigated the possible protective effects of tadalafil alone and in combination with diltiazem in experimentally-induced renal ischemia/reperfusion injury in rats. Possible underlying mechanisms were also investigated such as oxidative stress and inflammation. Rats were divided into sham-operated and I/R-operated groups. Anesthetized rats (urethane 1.3g/kg) were subjected to bilateral ischemia for 30min by occlusion of renal pedicles, then reperfused for 6h. Rats in the vehicle I/R group showed a significant (p˂0.05) increase in kidney malondialdehyde (MDA) content; myeloperoxidase (MPO) activity; TNF-α and IL-1β contents. In addition significant (p˂0.05) increase in intercellular adhesion molecule-1(ICAM-1) content, BUN and creatinine levels, along with significant decrease in kidney superoxide dismutase (SOD) activity. In addition, marked diffuse histopathological damage and severe cytoplasmic staining of caspase-3 were detected. Pretreatment with combination of tadalafil (5mg/kg bdwt) and diltiazem (5mg/kg bdwt) resulted in reversal of the increased biochemical parameters investigated. Also, histopathological examination revealed partial return to normal cellular architecture. In conclusion, pretreatment with tadalafil and diltiazem combination protected against RIR injury.

  11. The preventive effects of dexmedetomidine against intestinal ischemia-reperfusion injury in Wistar rats

    PubMed Central

    Zhang, Xue-kang; Zhou, Xiao-ping; Zhang, Qin; Zhu, Feng

    2015-01-01

    Objective(s): Intestinal ischemia-reperfusion is a major problem, which may lead to multiorgan failure and death. The aim of this study was to evaluate the protective effects of dexmedetomidine on cell proliferation, antioxidant system, cell death, and structural integrity in intestinal injury induced by ischemia-reperfusion in rats. Materials and Methods: Animals were randomized into three groups: group A, sham-operated or control; group B, intestinal ischemia/reperfusion (IR); and group C, intestinal IR pretreated with 50 μg of dexmedetomidine. Intestine tissue was collected from all rats 30 min after desufflation, and fresh frozen for histological and biochemical evaluation. Results: The intestinal tissue of group B rats showed a significant decrease in the antioxidant enzyme activities. However, these enzyme activities were improved by the administration of dexmedetomidine. Inhibiting the protein expression of MCP7, PAR2, P-JAK, P-STAT1, and P-STAT3 proved the protective effect of dexmedetomidine. The immunohistochemical staining revealed its protective effect by maintaining the normal structural integrity, less caspase-3 immuno reactivity, and increased cell proliferation count in the intestinal tissues. Conclusions: Intraperitoneal injection of dexmedetomidine significantly protected intestine IR injury in rats by inhibiting the inflammatory response, intestinal epithelial apoptosis, and maintaining structural integrity of intestinal cells. PMID:26221485

  12. Protective effects of leptin on ischemia/reperfusion injury in rat bladder.

    PubMed

    Hamarat, Mehmet; Yenilmez, Aydin; Erkasap, Nilufer; Isikli, Burhanettin; Aral, Erinc; Koken, Tulay; Can, Cavit; Demirustu, Canan Baydemir

    2010-06-30

    The aim of the study was to evaluate protective effects of exogenous leptin on ischemia/reperfusion (I/R)-induced injuries to the urinary bladder tissue and to investigate the effect on tumor necrosis factor alpha (TNF-alpha) levels and apoptotic cells during I/R injury. Bladder I/R injury was induced by abdominal aorta occlusion by ischemia for 45 min, followed by 60 min of reperfusion in rats. The rats were divided into three groups: control (n = 8 + 8), I/R (n = 8 + 8) and I/R+leptin group (n = 8 + 8). The rats in the I/R+leptin group were treated intraperitoneally with leptin (10 microg/kg) 60 min prior to ischemia induction. At the end of the reperfusion period, urinary bladders of the first eight rats from each group were removed for TUNEL staining processing while the others were removed for biochemical analyses for MDA and TNF-alpha levels. In the I/R group, the ratios of TUNEL-positive nuclei were higher than the control and the I/R+leptin groups. The MDA and TNF-alpha levels of the bladder tissue in the I/R group were higher than the control and leptin-treated groups. TUNEL-staining and biochemical studies revealed that leptin has a protective effect on urinary bladder I/R injury.

  13. Complement activation is critical for placental ischemia-induced hypertension in the rat.

    PubMed

    Lillegard, Kathryn E; Johnson, Alex C; Lojovich, Sarah J; Bauer, Ashley J; Marsh, Henry C; Gilbert, Jeffrey S; Regal, Jean F

    2013-11-01

    Preeclampsia is a major obstetric problem defined by new-onset hypertension and proteinuria associated with compromised placental perfusion. Although activation of the complement system is increased in preeclampsia compared to normal pregnancy, it remains unclear whether excess complement activation is a cause or consequence of placental ischemia. Therefore, we hypothesized that complement activation is critical for placental ischemia-induced hypertension. We employed the reduced utero-placental perfusion pressure (RUPP) model of placental ischemia in the rat to induce hypertension in the third trimester and evaluated the effect of inhibiting complement activation with a soluble recombinant form of an endogenous complement regulator, human complement receptor 1 (sCR1; CDX-1135). On day 14 of a 21-day gestation, rats received either RUPP or Sham surgery and 15 mg/kg/day sCR1 or saline intravenously on days 14-18. Circulating complement component 3 decreased and complement activation product C3a increased in RUPP vs. Sham (p<0.05), indicating complement activation had occurred. Mean arterial pressure (MAP) measured on day 19 increased in RUPP vs. Sham rats (109.8±2.8 mmHg vs. 93.6±1.6 mmHg). Treatment with sCR1 significantly reduced elevated MAP in RUPP rats (98.4±3.6 mmHg, p<0.05) and reduced C3a production. Vascular endothelial growth factor (VEGF) decreased in RUPP compared to Sham rats, and the decrease in VEGF was not affected by sCR1 treatment. Thus, these studies have identified a mechanistic link between complement activation and the pregnancy complication of hypertension apart from free plasma VEGF and have identified complement inhibition as a potential treatment strategy for placental ischemia-induced hypertension in preeclampsia.

  14. Ameliorative Effect of Recombinant Human Erythropoietin and Ischemic Preconditioning on Renal Ischemia Reperfusion Injury in Rats

    PubMed Central

    Elshiekh, Mohammed; Kadkhodaee, Mehri; Seifi, Behjat; Ranjbaran, Mina; Ahghari, Parisa

    2015-01-01

    Background: Ischemia-reperfusion (IR) injury is one of the most common causes of renal dysfunction. There is increasing evidence about the role of the reactive oxygen species (ROS) in these injuries and endogenous antioxidants seem to have an important role in decreasing the renal tissue injury. Objectives: The aim of this study was to compare the effect of recombinant human erythropoietin (EPO) and ischemic preconditioning (IPC) on renal IR injury. Materials and Methods: Twenty four male Wistar rats were allocated into four experimental groups: sham-operated, IR, EPO + IR, and IPC + IR. Rats were underwent 50 minutes bilateral ischemia followed by 24 hours reperfusion. Erythropoietin (5000 IU/kg, i.p) was administered 30 minutes before onset of ischemia. Ischemic preconditioning was performed by three cycles of 3 minutes ischemia followed by 3 minutes reperfusion. Plasma concentrations of urea and creatinine were measured. Kidney samples were taken for reactive oxidative species (ROS) measurement including superoxide dismutase (SOD) activity, glutathione (GSH) contents, and malondialdehyde (MDA) levels. Results: Compared to the sham group, IR led to renal dysfunction as evidenced by significantly higher plasma urea and creatinine. Treatment with EPO or IPC decreased urea, creatinine, and renal MDA levels and increased SOD activity and GSH contents in the kidney. Conclusions: Pretreatment with EPO and application of IPC significantly ameliorated the renal injury induced by bilateral renal IR. However, both treatments attenuated renal dysfunction and oxidative stress in kidney tissues. There were no significant differences between pretreatment with EPO or application of IPC. PMID:26866008

  15. Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats.

    PubMed

    Guo, Wei; Feng, Guoying; Miao, Yanying; Liu, Guixiang; Xu, Chunsheng

    2014-06-01

    Brain edema is a major consequence of cerebral ischemia reperfusion. However, few effective therapeutic options are available for retarding the brain edema progression after cerebral ischemia. Recently, rapamycin has been shown to produce neuroprotective effects in rats after cerebral ischemia reperfusion. Whether rapamycin could alleviate this brain edema injury is still unclear. In this study, the rat stroke model was induced by a 1-h left transient middle cerebral artery occlusion using an intraluminal filament, followed by 48 h of reperfusion. The effects of rapamycin (250 μg/kg body weight, intraperitoneal; i.p.) on brain edema progression were evaluated. The results showed that rapamycin treatment significantly reduced the infarct volume, the water content of the brain tissue and the Evans blue extravasation through the blood-brain barrier (BBB). Rapamycin treatment could improve histological appearance of the brain tissue, increased the capillary lumen space and maintain the integrity of BBB. Rapamycin also inhibited matrix metalloproteinase 9 (MMP9) and aquaporin 4 (AQP4) expression. These data imply that rapamycin could improve brain edema progression after reperfusion injury through maintaining BBB integrity and inhibiting MMP9 and AQP4 expression. The data of this study provide a new possible approach for improving brain edema after cerebral ischemia reperfusion by administration of rapamycin.

  16. A study of the relationships of changes in pain and gait after tourniquet-induced ischemia-reperfusion in rats

    PubMed Central

    Aihara, Kazuki; Ono, Takeya; Umei, Namiko; Tsumiyama, Wakako; Tasaka, Atsushi; Ishikura, Hideki; Sato, Yuta; Matsumoto, Tomohiro; Oki, Sadaaki

    2017-01-01

    [Purpose] The purpose of this study was to determine the relationships of changes in pain and gait after ischemia reperfusion was induced by tourniquet in rats. [Subjects and Methods] The subjects were six ten-week-old male Wistar rats. Ischemia was induced in the left lower limbs of the experimental rats at a pressure of 300 mmHg for 90 minutes. Pain behavior evaluations were measured using the von Frey test in all the rats’ hind limbs. A consistently increasing plantar stimulus was applied until the rats exhibited an escape behavior. For the evaluation of gait, a two-dimensional motion analysis system was used to measure the distance from the calcaneus to the floor (DCF) and toe extension angle (TEA) during gait. The evaluations were performed in the normal state, 3 hours after ischemia-reperfusion, and daily until 7 days after ischemia-reperfusion. [Results] Compared with the normal state, the means of the pain threshold showed a significant decrease until 4 days after ischemia. In addition, both TEA and DCF continued to show a significant decrease at 7 days after ischemia as compared with the normal state. [Conclusion] This study revealed that hyperalgesia occurs after ischemia-reperfusion, and recovery of hyperalgesia occurred earlier than gait dysfunction recovery. PMID:28210050

  17. Accelerated infarct development, cytogenesis and apoptosis following transient cerebral ischemia in aged rats.

    PubMed

    Popa-Wagner, Aurel; Badan, Irina; Walker, Lary; Groppa, Sergiu; Patrana, Nicoleta; Kessler, Christof

    2007-03-01

    Old age is associated with a deficient recovery from stroke, but the cellular mechanisms underlying such phenomena are poorly understood. To address this issue, focal cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery in 3- and 20-month-old male Sprague-Dawley rats. Aged rats showed a delayed and suboptimal functional recovery in the post-stroke period. Using BrdU-labeling, quantitative immunohistochemistry and 3-D reconstruction of confocal images, we found that aged rats are predisposed to rapidly develop an infarct within the first few days after ischemia. The emergence of the necrotic zone is associated with a high rate of cellular degeneration, premature accumulation of proliferating BrdU-positive cells that appear to emanate from capillaries in the infarcted area, and a large number of apoptotic cells. With double labeling techniques, we were able to identify, for the first time, over 60% of BrdU-positive cells either as reactive microglia (45%), oligodendrocyte progenitors (17%), astrocytes (23%), CD8+ lymphocytes (4%), or apoptotic cells (<1%). Paradoxically, despite a robust reactive phenotype of microglia and astrocytes in aged rats, at 1-week post-stroke, the number of proliferating microglia and astrocytes was lower in aged rats than in young rats. Our data indicate that aging is associated with rapid infarct development and a poor prognosis for full recovery from stroke that is correlated with premature cellular proliferation and increased cellular degeneration and apoptosis in the infarcted area.

  18. Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation

    PubMed Central

    Wang, Liangrong; Shan, Yuanlu; Chen, Lei; Lin, Bi; Xiong, Xiangqing; Lin, Lina; Jin, Lida

    2016-01-01

    Objective(s): Neutrophils play an important role in ischemia/reperfusion (IR) induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley rats were randomly allocated into three groups IR group, colchicine treated-IR (CO) group and sham operation (SM) group. Rats of both the IR and CO groups were subjected to 3 hr of ischemia by clamping the right femoral artery followed by 2 hr of reperfusion. Colchicine (1 mg/kg) was administrated intraperitoneally prior to hindlimb ischemia in the CO group. After 2 hr of reperfusion, we measured superoxide dismutase (SOD) and myeloperoxidase (MPO) activities, and malondialdehyde (MDA), tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in the muscle samples. Plasma creatinine kinase (CK) and lactate dehydrogenase (LDH) levels were measured. We also evaluated the histological damage score and wet/dry weight (W/D) ratio. Results: The histological damage score, W/D ratio, MPO activity, MDA, TNF-α and IL-1β levels in muscle tissues were significantly increased, SOD activity was decreased, and plasma CK and LDH levels were remarkably elevated in both the IR and CO groups compared to the SM group (P<0.05). Colchicine treatment significantly reduced muscle damage and edema, oxidative stress and levels of the inflammatory parameters in the CO group compared to the IR group (P<0.05). Conclusion: Colchicine attenuates IR-induced skeletal muscle injury in rats. PMID:27482349

  19. Novel β-carboline-tripeptide conjugates attenuate mesenteric ischemia/reperfusion injury in the rat.

    PubMed

    Bi, Wei; Bi, Yue; Xue, Ping; Zhang, Yanrong; Gao, Xiang; Wang, Zhibo; Li, Meng; Baudy-Floc'h, Michele; Ngerebara, Nathaniel; Li, Xiaoxu; Gibson, K Michael; Bi, Lanrong

    2011-06-01

    We have synthesized a series of new β-carboline-tripeptide conjugates, and examined their anti-inflammatory properties in a mouse model of xylene-induced ear edema. The analgesic capacity of these compounds was further evaluated in a rodent tail flick assay. Our results indicate that β-carboline conjugate 4a manifests potent anti-inflammatory and analgesic activity while exerting a protective effect against mesenteric ischemia/reperfusion (I/R) injury in the rat.

  20. The effects of tramadol on hepatic ischemia/reperfusion injury in rats

    PubMed Central

    Mahmoud, Mona F.; Gamal, Samar; Shaheen, Mohamed A.; El-Fayoumi, Hassan M.

    2016-01-01

    Objectives: Tramadol is a centrally acting synthetic analgesic. It has a cardioprotective effect against myocardial ischemia-reperfusion (I/R) injury in isolated rat heart. We hypothesized that tramadol may exert a similar protective effect on hepatic I/R injury. Hence, the current investigation was designed to study the possible protective effects of tramadol on experimentally-induced hepatic I/R injury in rats. Materials and Methods: Tramadol was administered 30 min before ischemia following which the rats were subjected to 45 min of ischemia followed by 1 h of reperfusion. Results: Tramadol attenuated hepatic injury induced by I/R as evidenced by the reduction of transaminases, structural changes, and apoptotic cell death. It decreased the level of inflammatory markers such as tumor necrosis factor-alpha (TNF-α), TNF-α/interleukin-10 (IL-10) ratio, and nuclear factor-κB gene expression. It also increased the anti-inflammatory cytokine, IL-10 levels in hepatic tissues. Furthermore, it reduced oxidative stress parameters except manganese superoxide dismutase activity. Conclusion: The results suggest that tramadol has hepatoprotective effects against hepatic I/R injury via anti-inflammatory, antiapoptotic, and antioxidant effects. PMID:27298497

  1. Protective effect of buflomedil in a rat model of moderate cerebral ischemia.

    PubMed

    Briguglio, Francesco S; Mondello, Maria Rita; Galluzzo, Mariangela; Raneri, Eugenio; De Pasquale, Anna; Saija, Antonella; Trombetta, Domenico

    2005-01-01

    Buflomedil hydrochloride (CAS 55837-25-7) is a vasoactive drug with a variety of pharmacodynamic properties. Although a number of studies have been carried out to verify the beneficial effect of buflomedil in ischemic peripheral conditions, few data are reported to justify the efficacious employment of buflomedil in the treatment of cerebrovascular diseases. The aim of the present study was to better investigate the neuroprotective effect of buflomedil in normal pentobarbital-anaesthetized rats subjected to transient bilateral common artery occlusion (BCO) for 20 min. Buflomedil hydrochloride (10 mg/kg) was administered by slow intravenous infusion (90 min), starting 1 h after the onset of ischemia. The rats were sacrificed 48 h after carotid clamping. BCO caused dramatic death of hippocampal CA1 pyramidal neurons, and a significant increase in circulating levels of neuron-specific enolase (NSE) and lactate. Treatment with buflomedil attenuated ischemia-induced histological loss and damage of CA1 pyramidal cells. Furthermore, in ischemic rats, the drug restored blood lactate concentrations and serum NSE concentrations to near normal levels. These data clearly demonstrate that buflomedil is able to protect brain neurons against damage following moderate global cerebral ischemia. One could speculate that this protective effect could be related to the capability of buflomedil to improve cerebral blood flow and energy metabolism, or to a smooth muscle relaxant effect on cerebral blood vessels.

  2. Flutamide Enhances Neuroprotective Effects of Testosterone during Experimental Cerebral Ischemia in Male Rats

    PubMed Central

    Fanaei, Hamed; Sadeghipour, Hamid Reza; Karimian, Seyed Morteza; Hassanzade, Gholamreza

    2013-01-01

    Testosterone has been shown to worsen histological and neurological impairment during cerebral ischemia in animal models. Cell culture studies revealed that testosterone is implicated in protecting neural and glial cells against insults, and they started to elucidate testosterone pathways that underlie these protective effects. These studies support the hypothesis that testosterone can be neuroprotective throughout an episode of cerebral ischemia. Therefore, we evaluated the mechanisms underlying the shift between testosterone protective and deleterious effects via block testosterone aromatization and androgen receptors in rats subjected to 60-minute middle cerebral artery occlusion. Fifty rats were divided into five equal groups: gonadally intact male; castrated male; intact male + flutamide; intact male + letrozole; intact male + combination flutamide and letrozole. Our results indicated that castration has the ability to reduce histological damage and to improve neurological score 24 hours after middle cerebral artery occlusion. Moreover, flutamide improved histologic and neurological impairment better than castration. Letrozole induced increases in striatal infarct volume and seizures in gonadally intact rats. Combination of flutamide and letrozole showed that letrozole can reverse beneficial effects of flutamide. In conclusion, it seems that the beneficial effects of flutamide are the prevention of the deleterious effects and enhancement of neuroprotective effects of testosterone during cerebral ischemia. PMID:23401794

  3. Role of ischemia in acute pancreatitis. Hemorrhagic shock converts edematous pancreatitis to hemorrhagic pancreatitis in rats.

    PubMed

    Kyogoku, T; Manabe, T; Tobe, T

    1992-09-01

    Ischemia has been considered to play a role in the development of acute pancreatitis. The aim of this study was to investigate the effect of ischemia, caused by hemorrhagic shock, on cerulein-induced acute pancreatitis in rats. Acute pancreatitis was induced by the intravenous infusion of a supramaximally stimulating dose of cerulein (10 micrograms/kg/hr) for 6 hr. Hemorrhagic shock was induced by the removal of blood until the mean arterial blood pressure reached 35 mm Hg. This level was maintained for 30 min, after which time all the blood was reinfused. Hemorrhagic shock alone induced no morphological change in the pancreas. However, after the induction of hemorrhagic shock in animals treated with cerulein, hemorrhage and parenchymal necrosis were frequently observed in the pancreas. Seven of 20 rats (35%) receiving cerulein plus hemorrhagic shock had died by 48 hr after the start of cerulein infusion, whereas none of the rats in the cerulein or shock group died during this experiment. Cathepsin B activity in the pancreas of the cerulein plus shock group was significantly higher than in the other groups at 48 hr. These results suggest that ischemia may be a contributing factor in the pathogenesis of acute pancreatitis.

  4. Laser diffraction analysis of shear deformability of human and rat erythrocytes in norm and ischemia

    NASA Astrophysics Data System (ADS)

    Lugovtsov, A. E.; Priezzhev, A. V.; Nikitin, S. Y.; Koshelev, V. B.

    2007-05-01

    Ischemic diseases of people and animals are accompanied with deterioration of microrheologic properties of their blood, in particular, with impairing red blood cells (RBC) deformability. In this work, the analysis of human and rat RBC deformability in norm and ischemia was performed by means of the laser diffractometry - a modern technique allowing for measuring the flexibility of RBC, which determines the blood flow parameters in vessels. Human RBC were obtained from the blood of healthy individuals and from patients suffering from ischemic diseases. Human RBC deformability from both groups of individuals was measured. Rat RBC were obtained from a control group of animals and from a group with experimentally induced ischemia (EII). This animal model is frequently used for studying the response of an organism to ischemia. The effect of Semax, a medication that is frequently used for therapeutic treatments of human brain diseases in clinical practice, on RBC deformability was studied with its application in vitro and in vivo. It is shown that in human ischemic patients, the deformability of RBC was lower than that from healthy individuals. Both in vivo and in vitro applied semax positively influences the impaired deformability properties of RBC of ischemic rats.

  5. Neuroprotective activity of Wedelia calendulacea on cerebral ischemia/reperfusion induced oxidative stress in rats

    PubMed Central

    Prakash, Tigari; Kotresha, Dupadahalli; Nedendla, Rama Rao

    2011-01-01

    Objective: This study was undertaken to evaluate the neuroprotective activity of Wedelia calendulacea against cerebral ischemia/reperfusion induced oxidative stress in the rats. Materials and Methods: The global cerebral ischemia was induced in male albino Wistar rats by occluding the bilateral carotid arteries for 30 min followed by 1 h and 4 h reperfusion. At various times of reperfusion, the histopathological changes and the levels of malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione–s–transferase (GST), and hydrogen peroxide (H2O2) activity and brain water content were measured. Results: The ischemic changes were preceded by increase in concentration of MDA, hydrogen peroxide and followed by decreased GPx, GR, and GST activity. Treatment with W. calendulacea significantly attenuated ischemia–induced oxidative stress. W. calendulacea administration markedly reversed and restored to near normal level in the groups pre-treated with methanolic extract (250 and 500 mg/kg, given orally in single and double dose/day for 10 days) in dose-dependent way. Similarly, W. calendulacea reversed the brain water content in the ischemia reperfusion animals. The neurodegenaration also conformed by the histopathological changes in the cerebral-ischemic animals. Conclusion: The findings from the present investigation reveal that W. calendulacea protects neurons from global cerebral–ischemic injury in rat by attenuating oxidative stress. PMID:22144773

  6. Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain.

    PubMed

    Mun, Chin Hee; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2010-09-01

    Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.

  7. The intrinsic PEDF is regulated by PPARγ in permanent focal cerebral ischemia of rat.

    PubMed

    Zhu, Chunhua; Zhang, Xiangjian; Qiao, Huimin; Wang, Lina; Zhang, Xiaolin; Xing, Yinxue; Wang, Chaohui; Dong, Lipeng; Ji, Ye; Cao, Xiaoyun

    2012-10-01

    Inflammatory damage plays a pivotal role in cerebral ischemia and may represent a target for treatment. Pigment epithelium-derived factor (PEDF) is proven to possess neuroprotective property. But there is little known about the intrinsic PEDF after cerebral ischemia. This study evaluated the time course expression of the intrinsic PEDF and its underlying regulation mechanisms after cerebral ischemia. Male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion. Telmisartan (PPARγ agonist) and GW9662 (PPARγ antagonist) were systemically administered to explore the effect on PPARγ, PEDF, NF-κB and MMP-9 expression at 24 h after cerebral ischemia by western blot and qRT-PCR. The neurological deficits, brain water content and infarct volume were measured. Compared with normal group, the expressions of PEDF and PPARγ decreased, and the expression of NF-κB and MMP-9 increased at early stage after ischemia (P < 0.05). Compared with the vehicle group, the decrease of PEDF and PPARγ was significantly up-regulated and the increase of NF-κB and MMP-9 was down-regulated by telmisartan at 24 h (P < 0.05). The neurological deficits, brain water content and infarct volume were dramatically alleviated by telmisartan (P < 0.05). Telmisartan's effects were reversed by GW9662 co-administration (P < 0.05). The expression of intrinsic PEDF was down-regulated at the early stage of cerebral ischemia. The protective effects of intrinsic PEDF by activating PPARγ pathway may be one of the strategic targets for cerebral ischemic therapies.

  8. Nerve Protective Effect of Asiaticoside against Ischemia-Hypoxia in Cultured Rat Cortex Neurons

    PubMed Central

    Sun, Tao; Liu, Bin; Li, Peng

    2015-01-01

    Background Asiaticoside is one of the main functional components of the natural plant Centella asiatica urban. Studies have reported it has several functions such as anti-depression and nerve cell protection. Asiaticoside can reduce the cerebral infarct size in acute focal cerebral ischemia in a mouse model and asiatic acid glycosides can significantly improve neurobehavioral scores. Currently, there is a lack of understanding of asiaticoside in regard to its neural protective mechanism in cerebral ischemia. This study aimed to solve this problem by using an ischemia-hypoxia cell model in vitro. Material/Methods An in vitro ischemia hypoxia cell model was successfully established by primary cultured newborn rat cortical neurons. After being treated by asiaticoside for 24 h, cell survival rate, lactate dehydrogenase release quantity, and B-cell lymphoma gene-2 (BCL-2), Bax, and caspase-3 protein expressions was detected. Results After 10 nmol/L or 100 nmol/L of asiaticoside were given to the cells, cell survival rate increased significantly and presented concentration dependence. Asiaticoside can reduce lactate dehydrogenase release. Lactate dehydrogenase release in model cells is gradually reduced with the increase of asiaticoside concentration. The lactate dehydrogenase release in asiaticoside 10 nmol/L group, asiaticoside 100 nmol/L group and ischemia hypoxia group were 26.75±1.05, 22.36±2.87 and 52.35±5.46%, respectively (p<0.05). It was also found that asiaticoside could modulate the expression of apoptotic factors, including bcl-2, Bax, and caspase-3. Conclusions Asiaticoside helps to protect in vitro ischemia hypoxia neurons. This nerve cell protection may be mediated by the BCL-2 protein. PMID:26447863

  9. Temperature modulation of cerebral depolarization during focal cerebral ischemia in rats: correlation with ischemic injury.

    PubMed

    Chen, Q; Chopp, M; Bodzin, G; Chen, H

    1993-05-01

    The role of cerebral depolarizations in focal cerebral ischemia is unknown. We therefore measured the direct current (DC) electrical activity in the cortex of Wistar rats subjected to transient occlusion of the middle cerebral artery (MCA). Focal ischemia was induced for 90 min by insertion of an intraluminal filament to occlude the MCA. To modulate cell damage, we subjected the rats to hypothermic (30 degrees C, n = 4), normothermic (37 degrees C, n = 4), and hyperthermic (40 degrees C, n = 6) ischemia. Controlled temperatures were also maintained during 1 h of reperfusion. Continuous cortical DC potential changes were measured using two active Ag-AgCl electrodes placed in the cortical lesion. Animals were killed 1 week after ischemia. The brains were sectioned and stained with hematoxylin and eosin, for evaluation of neuronal damage, and calculation of infarct volume. All animals exhibited an initial depolarization within 30 min of ischemia, followed by a single depolarization event in hypothermic animals, and multiple periodic depolarization events in both normothermic and hyperthermic animals. Hyperthermic animals exhibited significantly more (p < 0.05) DC potential deflections (n = 6.17 +/- 0.67) than normothermic animals (n = 2.75 +/- 0.96). The ischemic infarct volume (% of hemisphere) was significantly different for the various groups; hypothermic animals exhibited no measurable infarct volume, while the ischemic infarct volume was 10.2 +/- 12.3% in normothermic animals and 36.5 +/- 3.4% in hyperthermic animals (p < 0.05). A significant correlation was detected between the volume of infarct and number of depolarization events (r = 0.90, p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Characterizing learning deficits and hippocampal neuron loss following transient global cerebral ischemia in rats.

    PubMed

    Hartman, Richard E; Lee, Jin M; Zipfel, Greg J; Wozniak, David F

    2005-05-10

    The 2-vessel-occlusion + hypotension (2VO + H) model of transient global cerebral ischemia results in neurodegeneration within the CA1 field of the hippocampus, but previous research has failed to demonstrate robust or reliable learning/memory deficits in rats subjected to this treatment. In the present study, sensitive behavioral protocols were developed in an effort to characterize the cognitive impairments following 2VO + H more precisely. Adult rats were exposed to 10 min of bilateral carotid occlusion with simultaneous hypotension. Following recovery, 2VO + H and control rats were subjected to a series of behavioral tests (locomotor activity, sensorimotor battery, water maze [cued, place, learning set], object recognition, and radial arm maze) over an extended recovery period followed by an assessment of neuronal loss in the dorsal hippocampus. The 2VO + H treatment was associated with long-lasting spatial learning deficits in the absence of other behavioral impairments and with neurodegeneration in dorsal hippocampal CA1. Water maze protocols that placed higher memory demands upon the rats (relatively "hard" vs. "easy") were more sensitive for detecting ischemia-induced deficits. We have shown that the use of appropriate behavioral tests (e.g., a relatively difficult place learning task) allowed for the observation of robust spatial learning deficits in a model previously shown to induce relatively subtle behavioral effects. Thus, the 2VO + H model induces both hippocampal neuronal loss and long-term learning deficits in rats, providing a potentially useful model for evaluating therapeutic efficacy.

  11. Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies

    PubMed Central

    2013-01-01

    Background Lixisenatide is a glucagon-like peptide-1 analog which stimulates insulin secretion and inhibits glucagon secretion and gastric emptying. We investigated cardioprotective effects of lixisenatide in rodent models reflecting the clinical situation. Methods The acute cardiac effects of lixisenatide were investigated in isolated rat hearts subjected to brief ischemia and reperfusion. Effects of chronic treatment with lixisenatide on cardiac function were assessed in a modified rat heart failure model after only transient coronary occlusion followed by long-term reperfusion. Freshly isolated cardiomyocytes were used to investigate cell-type specific mechanisms of lixisenatide action. Results In the acute setting of ischemia-reperfusion, lixisenatide reduced the infarct-size/area at risk by 36% ratio without changes on coronary flow, left-ventricular pressure and heart rate. Treatment with lixisenatide for 10 weeks, starting after cardiac ischemia and reperfusion, improved left ventricular end-diastolic pressure and relaxation time and prevented lung congestion in comparison to placebo. No anti-fibrotic effect was observed. Gene expression analysis revealed a change in remodeling genes comparable to the ACE inhibitor ramipril. In isolated cardiomyocytes lixisenatide reduced apoptosis and increased fractional shortening. Glucagon-like peptide-1 receptor (GLP1R) mRNA expression could not be detected in rat heart samples or isolated cardiomyocytes. Surprisingly, cardiomyocytes isolated from GLP-1 receptor knockout mice still responded to lixisenatide. Conclusions In rodent models, lixisenatide reduced in an acute setting infarct-size and improved cardiac function when administered long-term after ischemia-reperfusion injury. GLP-1 receptor independent mechanisms contribute to the described cardioprotective effect of lixisenatide. Based in part on these preclinical findings patients with cardiac dysfunction are currently being recruited for a randomized, double

  12. Erythropoietin reduces ischemia-reperfusion injury after liver transplantation in rats.

    PubMed

    Schmeding, Maximilian; Hunold, Gerhard; Ariyakhagorn, Veravoorn; Rademacher, Sebastian; Boas-Knoop, Sabine; Lippert, Steffen; Neuhaus, Peter; Neumann, Ulf P

    2009-07-01

    Human recombinant Erythropoietin (rHuEpo) has recently been shown to be a potent protector of ischemia- reperfusion injury in warm-liver ischemia. Significant enhancement of hepatic regeneration and survival after large volume partial hepatic resection has also been demonstrated. It was the aim of this study to evaluate the capacities of rHuEpo in the setting of rat liver transplantation. One-hundred-and-twenty Wistar rats were used: 60 recipients received liver transplantation following donor organ treatment (60 donors) with either 1000 IU rHuEpo or saline injection (controls) into portal veins (cold ischemia 18 h, University of Wisconsin (UW) solution). Recipients were allocated to two groups, which either received 1000 IU rHuEpo at reperfusion or an equal amount of saline (control). Animals were sacrificed at defined time-points (2, 4.5, 24, 48 h and 7 days postoperatively) for analysis of liver enzymes, histology [hematoxylin-eosin (HE) staining, periodic acid Schiff staining (PAS)], immunostaining [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), Hypoxyprobe] and real-time polymerase chain reaction (RT-PCR) of cytokine mRNA (IL-1, IL-6). Lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) values were significantly reduced among the epo-treated animals 24 and 48 h after liver transplantation (LT). The TUNEL and Hypoxyprobe analyses as well as necrotic index evaluation displayed significant reduction of apoptosis and necrosis in rHuEpo-treated graft livers. Erythropoietin reduces ischemia-reperfusion injury after orthotopic liver transplantation in rats.

  13. Metabolic and functional consequences of inhibiting adenosine deaminase during renal ischemia in rats.

    PubMed Central

    Stromski, M E; van Waarde, A; Avison, M J; Thulin, G; Gaudio, K M; Kashgarian, M; Shulman, R G; Siegel, N J

    1988-01-01

    The concentrations of renal ATP have been measured by 31P-nuclear magnetic resonance (NMR) before, during, and after bilateral renal artery occlusion. Using in vivo NMR, the initial postischemic recovery of ATP increased with the magnitude of the residual nucleotide pool at the end of ischemia. ATP levels after 120 min of reflow correlated with functional recovery at 24 h. In the present study the effect of blocking the degradation of ATP during ischemia upon the postischemic restoration of ATP was investigated. Inhibition of adenosine deaminase by 80% with the tight-binding inhibitor 2'-deoxycoformycin led to a 20% increase in the residual adenine nucleotide pool. This increased the ATP initial recovery after 45 min of ischemia from 52% (in controls) to 62% (in the treated animals), as compared to the basal levels. The inhibition also caused an accelerated postischemic restoration of cellular ATP so that at 120 min it was 83% in treated rats vs. 63% in untreated animals. There was a corresponding improvement in the functional recovery from the insult (increase of 33% in inulin clearance 24 h after the injury). Inhibition of adenosine deaminase during ischemia results in a injury similar to that seen after a shorter period of insult. PMID:3263396

  14. In vivo imaging of dopaminergic neurotransmission after transient focal ischemia in rats

    PubMed Central

    Martín, Abraham; Gómez-Vallejo, Vanessa; San Sebastián, Eneko; Padró, Daniel; Markuerkiaga, Irati; Llarena, Irantzu; Llop, Jordi

    2013-01-01

    The precise biologic mechanisms involved in functional recovery processes in response to stroke such as dopaminergic neurotransmission are still largely unknown. For this purpose, we performed in parallel in vivo magnetic resonance imaging and positron emission tomography (PET) with [18F]fluorodeoxyglucose ([18F]FDG) and [11C]raclopride at 1, 3, 7, 14, 21, and 28 days after middle cerebral artery occlusion in rats. In the ischemic territory, PET [18F]FDG showed a initial decrease in cerebral metabolism followed by a time-dependent recovery to quasi-normal values at day 14 after ischemia. The PET with [11C]raclopride, a ligand for dopamine D2 receptor, showed a sustained binding during the first week after ischemia that declined dramatically from day 14 to day 28. Interestingly, a slight increase in [11C]raclopride binding was observed at days 1 to 3 followed by the uppermost binding at day 7 in the contralateral territory. Likewise, in vitro autoradiography using [3H]raclopride confirmed these in vivo results. Finally, the neurologic test showed major neurologic impairment at day 1 followed by a recovery of the cerebral function at day 28 after cerebral ischemia. Taken together, these results might suggest that dopamine D2 receptor changes in the contralateral hemisphere could have a key role in functional recovery after cerebral ischemia. PMID:23149560

  15. Early treatment with xenon protects against the cold ischemia associated with chronic allograft nephropathy in rats.

    PubMed

    Zhao, Hailin; Luo, Xianghong; Zhou, Zhaowei; Liu, Juying; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2014-01-01

    Chronic allograft nephropathy (CAN) is a common finding in kidney grafts with functional impairment. Prolonged hypothermic storage-induced ischemia-reperfusion injury is associated with the early onset of CAN. As the noble gas xenon is clinically used as an anesthetic and has renoprotective properties in a rodent model of ischemia-reperfusion injury, we studied whether early treatment with xenon could attenuate CAN associated with prolonged hypothermic storage. Exposure to xenon enhanced the expression of insulin growth factor-1 (IGF-1) and its receptor in human proximal tubular (HK-2) cells, which, in turn, increased cell proliferation. Xenon treatment before or after hypothermia-hypoxia decreased cell apoptosis and cell inflammation after reoxygenation. The xenon-induced HK-2 cell proliferation was abolished by blocking the IGF-1 receptor, mTOR, and HIF-1α individually. In the Fischer-to-Lewis rat allogeneic renal transplantation model, xenon exposure of donors before graft retrieval or recipients after engraftment enhanced tubular cell proliferation and decreased tubular cell death and cell inflammation associated with ischemia-reperfusion injury. Compared with control allografts, xenon treatment significantly suppressed T-cell infiltration and fibrosis, prevented the development of CAN, and improved renal function. Thus, xenon treatment promoted recovery from ischemia-reperfusion injury and reduced susceptibility to the subsequent development of CAN in allografts.

  16. CCN1 enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia.

    PubMed

    Yin, Cunping; Liang, Yuan; Guo, Shuguang; Zhou, Xingli; Pan, Xinghua

    2014-09-01

    Implantation of autologous bone marrow mononuclear cells (BM-MNCs) has been performed in ischemic tissues, for stimulation of angiogenesis, but the limited number of BM-MNCs in patients with hindlimb ischemia disease may offset their overall therapeutic efficacy. CCN1 is a novel and essential regulator during angiogenesis. We evaluated whether CCN1 and BM-MNC are capable of promoting angiogenesis in hindlimb ischemia. In this study, we created the rat model of hindlimb ischemia, and then the rats were randomly divided into four groups: CCN1 infusion plus BM-MNC transplantation (CCN1 + BM-MNCs group), CCN1 infusion plus PBS injection (CCN1 group), vehicle infusion plus BM-MNC transplantation (BM-MNCs group) and vehicle infusion plus PBS injection (control group). The combination of CCN1 and BM-MNC therapy could increase blood perfusion, capillary/muscle fiber ratio and tissue oxygenation in ischemic hindlimb. Moreover, CCN1 could not only inhibit the apoptosis of BM-MNCs, but also enhance the adhesiveness of BM-MNCs to HUVEC. Taken together, CCN1 enhanced angiogenesis of BM-MNC transplantation, and combining CCN1 with BM-MNC transplantation is a useful alternative for ischemic limbs.

  17. Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats

    PubMed Central

    Rakhunde, Purushottam B.; Saher, Sana; Ali, Syed Ayaz

    2014-01-01

    Objectives: Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. Materials and Methods: We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. Results: The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). Conclusion: These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation. PMID:25538333

  18. Neuroprotective Effects of Isosteviol Sodium Injection on Acute Focal Cerebral Ischemia in Rats

    PubMed Central

    Hu, Hui; Sun, Xiao ou; Tian, Fang; Zhang, Hao; Liu, Qing; Tan, Wen

    2016-01-01

    Previous report has indicated that isosteviol has neuroprotective effects. However, isosteviol was administered preventively before ischemia and the inclusion criteria were limited. In the present study, a more soluble and injectable form of isosteviol sodium (STVNA) was administered intravenously hours after transient or permanent middle cerebral artery occlusion (tMCAO or pMCAO) to investigate its neuroprotective effects in rats. The rats were assessed for neurobehavioral deficits 24 hours after ischemia and sacrificed for infarct volume quantification and histology evaluation. STVNA 10 mg·kg−1 can significantly reduce the infarct volumes compared with vehicle in animals subjected to tMCAO and is twice as potent as previously reported. Additionally, the therapeutic window study showed that STVNA could reduce the infarct volume compared with the vehicle group when administered 4 hours after reperfusion. A similar effect was also observed in animals treated 4 hours after pMCAO. Assessment of neurobehavioral deficits after 24 hours showed that STVNA treatment significantly reduced neurobehavioral impairments. The number of restored NeuN-labeled neurons was increased and the number of TUNEL positive cells was reduced in animals that received STVNA treatment compared with vehicle group. All of these findings suggest that STVNA might provide therapeutic benefits against cerebral ischemia-induced injury. PMID:27047634

  19. Ouabain Contributes to Kidney Damage in a Rat Model of Renal Ischemia-Reperfusion Injury

    PubMed Central

    Villa, Luca; Buono, Roberta; Ferrandi, Mara; Molinari, Isabella; Benigni, Fabio; Bettiga, Arianna; Colciago, Giorgia; Ikehata, Masami; Messaggio, Elisabetta; Rastaldi, Maria Pia; Montorsi, Francesco; Salonia, Andrea; Manunta, Paolo

    2016-01-01

    Warm renal ischemia performed during partial nephrectomy has been found to be associated with kidney disease. Since endogenous ouabain (EO) is a neuro-endocrine hormone involved in renal damage, we evaluated the role of EO in renal ischemia-reperfusion injury (IRI). We measured plasma and renal EO variations and markers of glomerular and tubular damage (nephrin, KIM-1, Kidney-Injury-Molecule-1, α1 Na-K ATPase) and the protective effect of the ouabain inhibitor, rostafuroxin. We studied five groups of rats: (1) normal; (2) infused for eight weeks with ouabain (30 µg/kg/day, OHR) or (3) saline; (4) ouabain; or (5) saline-infused rats orally treated with 100 µg/kg/day rostafuroxin for four weeks. In group 1, 2–3 h after IRI, EO increased in ischemic kidneys while decreased in plasma. Nephrin progressively decreased and KIM-1 mRNA increased starting from 24 h. Ouabain infusion (group 2) increased blood pressure (from 111.7 to 153.4 mmHg) and ouabain levels in plasma and kidneys. In OHR ischemic kidneys at 120 h from IRI, nephrin, and KIM-1 changes were greater than those detected in the controls infused with saline (group 3). All these changes were blunted by rostafuroxin treatment (groups 4 and 5). These findings support the role of EO in IRI and suggest that rostafuroxin pre-treatment of patients before partial nephrectomy with warm ischemia may reduce IRI, particularly in those with high EO. PMID:27754425

  20. Omega-3 Fatty Acids: Possible Neuroprotective Mechanisms in the Model of Global Ischemia in Rats

    PubMed Central

    Correia, Alyne Oliveira; Mendonça, Francisco Nilson Maciel; Uchoa, Luiz Ricardo Araújo; Vasconcelos, Jessica Tamara Nunes; de Araújo, Carlos Ney Alencar; Siqueira, Rafaelly Maria Pinheiro; Neves, Kelly Rose Tavares; Arida, Ricardo Mário

    2016-01-01

    Background. Omega-3 (ω3) administration was shown to protect against hypoxic-ischemic injury. The objectives were to study the neuroprotective effects of ω3, in a model of global ischemia. Methods. Male Wistar rats were subjected to carotid occlusion (30 min), followed by reperfusion. The groups were SO, untreated ischemic and ischemic treated rats with ω3 (5 and 10 mg/kg, 7 days). The SO and untreated ischemic animals were orally treated with 1% cremophor and, 1 h after the last administration, they were behaviorally tested and euthanized for neurochemical (DA, DOPAC, and NE determinations), histological (Fluoro jade staining), and immunohistochemical (TNF-alpha, COX-2 and iNOS) evaluations. The data were analyzed by ANOVA and Newman-Keuls as the post hoc test. Results. Ischemia increased the locomotor activity and rearing behavior that were partly reversed by ω3. Ischemia decreased striatal DA and DOPAC contents and increased NE contents, effects reversed by ω3. This drug protected hippocampal neuron degeneration, as observed by Fluoro-Jade staining, and the increased immunostainings for TNF-alpha, COX-2, and iNOS were partly or totally blocked by ω3. Conclusion. This study showed a neuroprotective effect of ω3, in great part due to its anti-inflammatory properties, stimulating translational studies focusing on its use in clinic for stroke managing. PMID:27313881

  1. Ouabain Contributes to Kidney Damage in a Rat Model of Renal Ischemia-Reperfusion Injury.

    PubMed

    Villa, Luca; Buono, Roberta; Ferrandi, Mara; Molinari, Isabella; Benigni, Fabio; Bettiga, Arianna; Colciago, Giorgia; Ikehata, Masami; Messaggio, Elisabetta; Rastaldi, Maria Pia; Montorsi, Francesco; Salonia, Andrea; Manunta, Paolo

    2016-10-14

    Warm renal ischemia performed during partial nephrectomy has been found to be associated with kidney disease. Since endogenous ouabain (EO) is a neuro-endocrine hormone involved in renal damage, we evaluated the role of EO in renal ischemia-reperfusion injury (IRI). We measured plasma and renal EO variations and markers of glomerular and tubular damage (nephrin, KIM-1, Kidney-Injury-Molecule-1, α1 Na-K ATPase) and the protective effect of the ouabain inhibitor, rostafuroxin. We studied five groups of rats: (1) normal; (2) infused for eight weeks with ouabain (30 µg/kg/day, OHR) or (3) saline; (4) ouabain; or (5) saline-infused rats orally treated with 100 µg/kg/day rostafuroxin for four weeks. In group 1, 2-3 h after IRI, EO increased in ischemic kidneys while decreased in plasma. Nephrin progressively decreased and KIM-1 mRNA increased starting from 24 h. Ouabain infusion (group 2) increased blood pressure (from 111.7 to 153.4 mmHg) and ouabain levels in plasma and kidneys. In OHR ischemic kidneys at 120 h from IRI, nephrin, and KIM-1 changes were greater than those detected in the controls infused with saline (group 3). All these changes were blunted by rostafuroxin treatment (groups 4 and 5). These findings support the role of EO in IRI and suggest that rostafuroxin pre-treatment of patients before partial nephrectomy with warm ischemia may reduce IRI, particularly in those with high EO.

  2. Effects of normobaric oxygen on the progression of focal cerebral ischemia in rats.

    PubMed

    Esposito, Elga; Mandeville, Emiri T; Hayakawa, Kazuhide; Singhal, Aneesh B; Lo, Eng H

    2013-11-01

    Normobaric oxygen (NBO) reduces infarction at 24-48 h in experimental models of focal cerebral ischemia. However, to be clinically relevant, longer term safety and efficacy must be explored. Here, we assessed the effects of NBO on glial activation, neurovascular recovery, and behavioral outcomes at 2 weeks after transient focal ischemia in rats. 100 min transient focal ischemia was induced by intraluminal occlusion of the middle cerebral artery in adult male Sprague-Dawley rats. Animals were randomized into sham, controls or 85'NBO started 15 min after ischemic onset. Infarct volumes and behavioral outcomes were blindly quantified. Immunohistochemistry was used to examine the effects of NBO on glial activation and neurovascular responses. After 2 weeks of reperfusion the infarct volume was marked reduced in animals subjected to NBO. They also had better outcomes in forelimb placement test and in body-swing test and weight loss reduction. After 14 days, NBO decreased expression of Iba1, a marker of activated microglia, and GFAP, a marker of activated astrocytes. NBO treatment had no detectable effect on angiogenesis. These results suggest that protective effects of NBO may persist for up to 2 weeks post-stroke.

  3. Effects of Normobaric Oxygen on the Progression of Focal Cerebral Ischemia in Rats

    PubMed Central

    Esposito, Elga; Mandeville, Emiri T.; Hayakawa, Kazuhide; Singhal, Aneesh B.; Lo, Eng H.

    2013-01-01

    Normobaric oxygen (NBO) reduces infarction at 24–48 hrs in experimental models of focal cerebral ischemia. However, to be clinically relevant, longer term safety and efficacy must be explored. Here, we assessed the effects of NBO on glial activation, neurovascular recovery, and behavioral outcomes at 2 weeks after transient focal ischemia in rats. 100 min transient focal ischemia was induced by intraluminal occlusion of the middle cerebral artery in adult male Sprague-Dawley rats. Animals were randomized into sham, controls or 85′NBO started 15 minutes after ischemic onset. Infarct volumes and behavioral outcomes were blindly quantified. Immunohistochemistry was used to examine the effects of NBO on glial activation and neurovascular responses. After 2 weeks of reperfusion the infarct volume was marked reduced in animals subjected to NBO. They also had better outcomes in forelimb placement test and in body-swing test and weight loss reduction. After 14 days, NBO decreased expression of Iba1, a marker of activated microglia, and GFAP, a marker of activated astrocytes. NBO treatment had no detectable effect on angiogenesis. These results suggest that protective effects of NBO may persist for up to 2 weeks post-stroke. PMID:23958492

  4. Protective Effects of Repetitive Injections of Radiographic Contrast Media on the Subsequent Tolerance to Ischemia in the Isolated Rat Heart

    SciTech Connect

    Falck, Geir; Bruvold, Morten; Schjott, Jan; Jynge, Per

    2000-11-15

    Purpose: Despite detailed knowledge of the effects of X-ray contrast media on cardiac function, no studies have examined the effect of contrast media injections on the subsequent tolerance to ischemia in the heart.Methods: Isolated perfused rat hearts were exposed to repetitive injections of iohexol, iodixanol, or ioxaglate before 30 min of global ischemia and 120 min of reperfusion. These groups were compared with control (no pretreatment) and ischemic preconditioning known to reduce infarct size. Physiologic variables and infarct size were measured. Results: Pretreatment with iodixanol reduced infarct size significantly compared with control and thus afforded protection against ischemia. Injections with iohexol and ioxaglate reduced infarct size, although not significantly, compared with control.Conclusion: Pretreatment of the isolated rat heart with commonly used contrast media enhances the cardiac tolerance to subsequent ischemia. The mechanism behind this protective effect could not be determined, but could involve stretching of the heart and/or generation of nitric oxide.

  5. Dang Gui Bu Xue Tang ameliorates coronary artery ligation-induced myocardial ischemia in rats.

    PubMed

    Chunhua, Ma; Hongyan, Long; Weina, Zhu; Xiaoli, He; Yajie, Zhang; Jie, Ruan

    2017-01-28

    Dang The present study was designed to investigate cardioprotective effects of Dang Gui Bu Xue Tang (DGBUT) on coronary artery ligation-induced myocardial ischemia. Myocardial ischemia (MI) model was induced in SD rats by surgical ligation of the left anterior descending coronary artery. ST segment elevation of Electrocardiograph (ECG) infarct size, levels of lactate dehydrogenase (LDH), creatine kinase (CK), glutathione (GSH) and catalase (CAT), catalase (SOD), malondialdehyde (MDA), and inflammatory cytokines and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun NH2 terminal kinases (JNK), nuclear factor (NF)-κBp65, inhibitory kappa B (IκB) α, IκB kinase (IKK) α and IKKβ were evaluated in rats treated with or without DGBUT. DGBUT treatment significantly reduced the elevation of the ST segment of ECG, the myocardial infarct size of MI. The level of LDH, CK and MDA were suppressed, the contents of SOD, GSH and CAT were enhanced with DGBUT. The elevated concentration of inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-6 in MI rats were effectively reversed by the DGBUT administration. Also, highly expressed p-JNK, p-ERK, p-p38, p-NF-κBp65, p-IκBα, p-IKKα and p-IKKβ in MI rats were restored respectively by DGBUT treatment. The protective effect of DGBUT against MI injury might be associated with MAPK/NF-кB pathway.

  6. Metabonomic analysis of Allium macrostemon Bunge as a treatment for acute myocardial ischemia in rats.

    PubMed

    Li, Fang; Xu, Qian; Zheng, Ting; Huang, Fang; Han, Lintao

    2014-01-01

    Myocardial ischemia (MI) refers to a pathological state of the heart caused by reduced cardiac blood perfusion, which leads to a decreased oxygen supply in the heart and an abnormal myocardial energy metabolism. Acute myocardial ischemia (AMI) has posed a significant health risk for humans. Allium macrostemon Bunge (AMB), a popular traditional Chinese medicine, is used for MI treatment. The therapeutic effects of AMB were assessed and the detailed mechanisms of AMB for AMI treatment were investigated. We characterized the metabonomic variations in rats from the sham surgery, AMI, and AMB-pretreated AMI groups through a combination of nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analysis. Thirty-five metabolites including carbohydrates, a range of amino acids, and organic acids were detected. The (1)H NMR spectra of the rat serum were analyzed using the principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA). Results showed that AMI induced some physiological changes in rats and also led to metabolic disorders related to glycolysis promotion, amino acid metabolism disruption, and other metabolite metabolism perturbation. AMB pretreatment reduced the AMI injury and maintained metabolic balance, possibly by limiting the change in energy metabolism and regulating amino acid metabolism. These findings provide a comprehensive insight on the metabolic response of AMI rats to AMB pretreatment and are important for the use of AMB for AMI therapy.

  7. Diagnosis of intestinal ischemia in the rat using magnetic resonance imaging.

    PubMed

    Park, A; Towner, R A; Langer, J C

    1993-01-01

    Noninvasive diagnosis of persistent ischemia after intestinal revascularization has remained an elusive goal. Because magnetic resonance imaging (MRI) can detect changes in tissue water, we studied its efficacy in differentiating ischemic from perfused intestine in an animal model. Six-week-old rats were subjected to (1) 30-min superior mesenteric artery (SMA) occlusion and reperfusion, (2) permanent SMA ligation, or (3) sham operation, and were then imaged for 90 min using a small-animal MRI scanner with T1 weighting (TR = 1000 msec, TE = 25 msec). In an additional group of rats, the experiment was repeated using a new contrast technique consisting of oral ferrite to decrease luminal signal and intravenous gadolinium to increase bowel wall signal. Mean abdominal intensity over the scanning period was calculated for each animal (n = 5 rats per experimental group). Definition of individual bowel loops was subjectively improved in animals scanned with intravenous and oral contrast. Mean abdominal intensity was significantly lower in ligated vs sham rats (43.90 +/- 8 vs 59.63 +/- 6 and 46.19 +/- 6 vs 54.26 +/- 6, with and without contrast, respectively). There was no significant difference in intensity between reperfused and sham animals. MRI differentiated persistently ischemic bowel from viable bowel in this model, both with and without the use of contrast. These data suggest that MRI may have a potential role in the noninvasive diagnosis of persistent intestinal ischemia.

  8. Renal Ischemia/Reperfusion Injury in Diabetic Rats: The Role of Local Ischemic Preconditioning

    PubMed Central

    Ozbilgin, Sule; Ozkardesler, Sevda; Akan, Mert; Boztas, Nilay; Ozbilgin, Mucahit; Ergur, Bekir Ugur; Derici, Serhan; Guneli, Mehmet Ensari; Meseri, Reci

    2016-01-01

    Background. The aim of this study was to evaluate the effects of local ischemic preconditioning using biochemical markers and histopathologically in the diabetic rat renal IR injury model. Methods. DM was induced using streptozotocin. Rats were divided into four groups: Group I, nondiabetic sham group (n = 7), Group II, diabetic sham group (n = 6), Group III, diabetic IR group (diabetic IR group, n = 6), and Group IV, diabetic IR + local ischemic preconditioning group (diabetic IR + LIPC group, n = 6). Ischemic renal injury was induced by clamping the bilateral renal artery for 45 min. 4 h following ischemia, clearance protocols were applied to assess biochemical markers and histopathologically in rat kidneys. Results. The histomorphologic total cell injury scores of the nondiabetic sham group were significantly lower than diabetic sham, diabetic IR, and diabetic IR + LIPC groups. Diabetic IR group scores were not significantly different than the diabetic sham group. But diabetic IR + LIPC group scores were significantly higher than the diabetic sham and diabetic IR groups. Conclusion. Local ischemic preconditioning does not reduce the risk of renal injury induced by ischemia/reperfusion in diabetic rat model. PMID:26925416

  9. Lutein protects against ischemia/reperfusion injury in rat kidneys.

    PubMed

    Liu, Zhen-Guo; Qi, Zong-Cai; Liu, Wei-Liang; Wang, Wei-Zhi

    2015-03-01

    Ischemia‑reperfusion (I/R) injury has a major impact on renal dysfunction during transplantation. The present study investigated the role of lutein against I/R injury‑induced oxidative stress in rat kidneys. Biochemical analysis and oxidative stress parameters demonstrated that lutein protected the rat kidney significantly from I/R injury. Pretreatment with lutein significantly increased the total antioxidant capacity with a concomitant decline in the total oxidant status. Rats with I/R injury showed a significant increase in oxidative stress. The results revealed significant increases in the levels of lipid peroxidation and protein carbonyl content with concomitant decreases in enzymic and non‑enzymic antioxidants. The activity of these enzymes was reversed and demonstrated a significant increase following lutein pre‑treatment compared with the rats subjected to I/R injury alone. Furthermore, lutein protected the renal tissue from I/R injury by maintaining normal kidney architecture and led to a reduction in the levels of the renal markers urea and creatinine in the serum. These results demonstrated clear evidence that lutein offered a significant protective effect against I/R injury by enhancing antioxidant defense mechanisms.

  10. Prevention and repair of cerebral ischemia-reperfusion injury by Chinese herbal medicine, shengmai san, in rats.

    PubMed

    Xuejiang, W; Magara, T; Konishi, T

    1999-11-01

    The protective activity of Shengmai San, a traditional Chinese herbal medicine, was studied in cerebral ischemia-reperfusion injury in rats. Shengmai San consists of three herbal components, Panax Ginseng, Ophiopogon Japonicus and Schisandra Chinensis and is routinely being used for treating coronary heart disease. When Shengmai San was injected directly into rat duodenum 2h before cerebral ischemia by bilateral carotid artery occlusion, thiobarbituric acid reactive substance (TBARS) formation during reperfusion following ischemia was almost completely suppressed in the brain. The loss of glutathione peroxidase activity after the ischemia-reperfusion was also effectively prevented by the Shengmai San pre-administration whereas the activity was considerably decreased in the damaged brain. It was found that Shengmai San also effectively suppressed the TBARS formation even when it was administered after 45 min reperfusion following ischemia, indicating that Shengmai San improves the oxidative damage already established in the brain. Likewise, the decrease of glutathione peroxidase activity was minimized in the damaged brain by the post-administration of Shengmai San. On the other hand, none of the Shengmai San components were active in protecting the ischemia-reperfusion brain damage when they were independently administered. These experiments suggest the potential of Shengmai San in both preventive and therapeutic usages for cerebral ischemia-reperfusion injury.

  11. Neuroprotective Effects of Bone Marrow Mesenchymal Stem Cells on Bilateral Common Carotid Arteries Occlusion Model of Cerebral Ischemia in Rat

    PubMed Central

    Pourheydar, Bagher; Azimzadeh, Mostafa; Rezaei Moghadam, Adel; Marzban, Asghar

    2016-01-01

    Cell therapy is the most advanced treatment of the cerebral ischemia, nowadays. Herein, we discuss the neuroprotective effects of bone marrow mesenchymal stem cells (BMSCs) on rat hippocampal cells following intravenous injection of these cells in an ischemia-reperfusion model. Adult male Wistar rats were divided into 5 groups: control, sham (surgery without blockage of common carotid arteries), ischemia (common carotid arteries were blocked for 30 min prior to reperfusion), vehicle (7 days after ischemia PBS was injected via the tail vein), and treatment (injections of BMSC into the tail veins 7 days after ischemia). We performed neuromuscular and vestibulomotor function tests to assess behavioral function and, finally, brains were subjected to hematoxylin and eosin (H&E), anti-Brdu immunohistochemistry, and TUNEL staining. The ischemia group had severe apoptosis. The group treated with BMSCs had a lower mortality rate and also had significant improvement in functional recovery (P < 0.001). Ischemia-reperfusion for 30 min causes damage and extensive neuronal death in the hippocampus, especially in CA1 and CA3 regions, leading to several functional and neurological deficits. In conclusion, intravenous injection of BMSCs can significantly decrease the number of apoptotic neurons and significantly improve functional recovery, which may be a beneficial treatment method for ischemic injuries. PMID:27847404

  12. [Comparative evaluation of the neuroprotective activity of phenibut and piracetam under experimental cerebral ischemia conditions in rats].

    PubMed

    Tiurenkov, I N; Bagmetov, M N; Epishina, V V; Borodkina, L E; Voronkov, A V

    2006-01-01

    The neuroprotective properties of phenibut and piracetam were studied in rats with cerebral ischemia caused by bilateral irreversible simultaneous occlusion of carotid arteries and gravitational overload in craniocaudal vector. In addition, the effects of both drugs on microcirculation in brain cortex under ischemic injury conditions were studied. Phenibut and (to a lower extent) piracetam reduced a neuralgic deficiency, amnesia, and the degree of cerebral circulation drop, and improved the spontaneous movement and research activity deteriorated by brain ischemia.

  13. Farnesoid X Receptor Activation Attenuates Intestinal Ischemia Reperfusion Injury in Rats

    PubMed Central

    Decuypere, Jean-Paul; Farré, Ricard; De Hertogh, Gert; Lenaerts, Kaatje; Jochmans, Ina; Monbaliu, Diethard; Nevens, Frederik; Tack, Jan; Laleman, Wim; Pirenne, Jacques

    2017-01-01

    Introduction The farnesoid X receptor (FXR) is abundantly expressed in the ileum, where it exerts an enteroprotective role as a key regulator of intestinal innate immunity and homeostasis, as shown in pre-clinical models of inflammatory bowel disease. Since intestinal ischemia reperfusion injury (IRI) is characterized by hyperpermeability, bacterial translocation and inflammation, we aimed to investigate, for the first time, if the FXR-agonist obeticholic acid (OCA) could attenuate intestinal ischemia reperfusion injury. Material and Methods In a validated rat model of intestinal IRI (laparotomy + temporary mesenteric artery clamping), 3 conditions were tested (n = 16/group): laparotomy only (sham group); ischemia 60min+ reperfusion 60min + vehicle pretreatment (IR group); ischemia 60min + reperfusion 60min + OCA pretreatment (IR+OCA group). Vehicle or OCA (INT-747, 2*30mg/kg) was administered by gavage 24h and 4h prior to IRI. The following end-points were analyzed: 7-day survival; biomarkers of enterocyte viability (L-lactate, I-FABP); histology (morphologic injury to villi/crypts and villus length); intestinal permeability (Ussing chamber); endotoxin translocation (Lipopolysaccharide assay); cytokines (IL-6, IL-1-β, TNFα, IFN-γ IL-10, IL-13); apoptosis (cleaved caspase-3); and autophagy (LC3, p62). Results It was found that intestinal IRI was associated with high mortality (90%); loss of intestinal integrity (structurally and functionally); increased endotoxin translocation and pro-inflammatory cytokine production; and inhibition of autophagy. Conversely, OCA-pretreatment improved 7-day survival up to 50% which was associated with prevention of epithelial injury, preserved intestinal architecture and permeability. Additionally, FXR-agonism led to decreased pro-inflammatory cytokine release and alleviated autophagy inhibition. Conclusion Pretreatment with OCA, an FXR-agonist, improves survival in a rodent model of intestinal IRI, preserves the gut barrier

  14. In situ Transverse Rectus Abdominis Myocutaneous Flap: A Rat Model of Myocutaneous Ischemia Reperfusion Injury

    PubMed Central

    Edmunds, Marie-Claire; Wigmore, Stephen; Kluth, David

    2013-01-01

    Free tissue transfer is the gold standard of reconstructive surgery to repair complex defects not amenable to local options or those requiring composite tissue. Ischemia reperfusion injury (IRI) is a known cause of partial free flap failure and has no effective treatment. Establishing a laboratory model of this injury can prove costly both financially as larger mammals are conventionally used and in the expertise required by the technical difficulty of these procedures typically requires employing an experienced microsurgeon. This publication and video demonstrate the effective use of a model of IRI in rats which does not require microsurgical expertise. This procedure is an in situ model of a transverse abdominis myocutaneous (TRAM) flap where atraumatic clamps are utilized to reproduce the ischemia-reperfusion injury associated with this surgery. A laser Doppler Imaging (LDI) scanner is employed to assess flap perfusion and the image processing software, Image J to assess percentage area skin survival as a primary outcome measure of injury. PMID:23770929

  15. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus.

    PubMed

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-08-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions.

  16. Cerebroprotective activity of Pentapetes phoenicea on global cerebral ischemia in rats

    PubMed Central

    Sravanthi, Koneru Naga; Rao, Nadendla Rama

    2016-01-01

    Objectives: The study was performed to evaluate the cerebroprotective activity of methanolic extract (ME) of Pentapetes phoenicea - a folk medicine used as anti-inflammatory and in central nervous system ailments. It has high phenolic and flavonoid contents including rutin. Materials and Methods: Global cerebral ischemia was induced in male albino Wistar rats by temporary bilateral carotid artery occlusion (BCAO) for 30 min, followed by 4 h reperfusion. Groups of rats were pretreated for 10 days with 100, 200, and 400 mg/kg of ME of P. phoenicea and 3 mg/kg of edaravone, a marketed cerebroprotective agent, as standard. Antioxidant enzymes such as, the levels of malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and hydrogen peroxide (H2O2), protein content, brain water content, cerebral infarct size and the histopathological changes were measured. Results: P. phoenicea-pretreated groups restored the biochemical parameters significantly in a dose-dependent manner. The ischemic changes were involved with an increase in the concentration of MDA and H2O2, followed by decreased SOD, CAT, GPx, GR, and GST activity in rat brain. The neurodegenaration and its attenuation by P. phoenicea were confirmed by examination of triphenyl tetrazolium chloride staining and histopathological changes in the cerebral ischemic rat brains. Similarly, P. phoenicea reversed the brain water content in the ischemia-reperfusion animals. Conclusion: The result of the study indicates that the treatment with P. phoenicea enhances the antioxidant defense against BCAO-induced global cerebral ischemia/reperfusion and exerts cerebroprotection. PMID:28066109

  17. Nuclear factor-kappaB inhibition by pyrrolidinedithiocarbamate attenuates gastric ischemia-reperfusion injury in rats.

    PubMed

    El Eter, Eman; Hagar, Hanan H; Al-Tuwaijiri, Ali; Arafa, Maha

    2005-06-01

    Pyrrolidinedithiocarbamate (PDTC) is a potent antioxidant and an inhibitor of nuclear factor-kappaB (NF-kappaB). The present study examined the impact of PDTC preconditioning on gastric protection in response to ischemia-reperfusion (I/R) injury to the rat stomach. Male Wistar rats were recruited and divided into 3 groups (n = 7). One group was subjected to gastric ischemia for 30 min and reperfusion for 1 hour. The second group of rats was preconditioned with PDTC (200 mg/kg body mass i.v.) 15 min prior to ischemia and before reperfusion. The third group of rats was sham-operated and served as the control group. Gastric I/R injury increased serum lactate dehydrogenase level, vascular permeability of gastric mucosa (as indicated by Evans blue dye extravasation) and gastric content of inflammatory cytokine; tumor necrosis factor-alpha (TNF-alpha). Moreover, oxidative stress was increased as indicated by elevated lipid peroxides formation (measured as thiobarbituric acid reactive substances) and depleted reduced glutathione in gastric tissues. NF-kappaB translocation was also detected by electrophoretic mobility shift assay. Microscopically, gastric tissues subjected to I/R injury showed ulceration, hemorrhages, and neutrophil infiltration. Immunohistochemical studies of gastric sections revealed increased expression of p53 and Bcl-2 proteins. PDTC pretreatment reduced Evans blue extravasation, serum lactate dehydrogenase levels, gastric TNF-alpha levels, and thiobarbituric acid reactive substances content, and increased gastric glutathione content. Moreover, PDTC pretreatment abolished p53 expression and inhibited NF-kappaB translocation. Finally, histopathological changes were nearly restored by PDTC pretreatment. These results clearly demonstrate that NF-kappaB activation and pro-apoptotic protein p53 induction are involved in gastric I/R injury. PDTC protects against gastric I/R injury by an antioxidant, NF-kappaB inhibition, and by reduction of pro

  18. Translocation of coagulase-negative bacterial staphylococci in rats following intestinal ischemia-reperfusion injury.

    PubMed

    Luo, Chih-Cheng; Shih, Hsiang-Hung; Chiu, Cheng-Hsun; Lin, Jer-Nan

    2004-01-01

    Many patients with sepsis have bacteremia for which no septic focus is identified either clinically or by autopsy. This study was designed to determine the relationship between the ischemia-reperfusion injury (IRI) and bacterial translocation that might be involved in the pathogenesis of necrotizing enterocolitis. In the first experiment, a total of 32 Sprague-Dawley rats weighing 150-200 g were divided into four groups. The mesentery to isolated loop was occluded for 30, 60, and 90 min following 30-min reperfusion in the three groups of experimental animals with a micro-bulldog clamp. A control group involved the same technique and exposure, without occlusion of the mesentery. Two sets of blood culture were taken through a catheter in the portal vein immediately and 15 min after the reperfusion, respectively. In another experiment, bacteria isolated were fed in different doses to control rats and those after 30- or 60-min ischemia and 30-min reperfusion. Two sets of blood culture were taken following the procedure. Invasion and transcytosis of the bacteria through epithelial cells were studied in vitro using a Madin-Derby canine kidney (MDCK) cell monolayer model. PCR for delta toxin gene was performed on all bacteria isolated, using Staphylococcus epidermidis as the control. Coagulase-negative staphylococci (CoNS) were invariably isolated from mice with prolonged ischemia (90 min) and reperfusion. When bacteria were fed into mice with only 30-min ischemia, an inoculum as low as 5 x 10(5) CFU/ml could induce bacteremia. No bacterial translocation was found in control mice even fed with a higher dose of bacteria (5 x 10(8) CFU/ml). In vitro experiments showed that CoNS failed to transcytose MDCK monolayer. These isolates were not cytotoxic to MDCK cells and contained no delta toxin gene. Bacterial translocation of CoNS occurred following severe bowel ischemia and reperfusion injury. Intact mucosa integrity readily prevented bacterial translocation; however

  19. Obestatin Accelerates the Recovery in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats

    PubMed Central

    Bukowczan, Jakub; Warzecha, Zygmunt; Ceranowicz, Piotr; Kuśnierz-Cabala, Beata; Tomaszewska, Romana

    2015-01-01

    Objective Several previous studies have shown that obestatin exhibits protective and regenerative effects in some organs including the stomach, kidney, and the brain. In the pancreas, pretreatment with obestatin inhibits the development of cerulein-induced acute pancreatitis, and promotes survival of pancreatic beta cells and human islets. However, no studies investigated the effect of obestatin administration following the onset of experimental acute pancreatitis. Aim The aim of this study was to evaluate the impact of obestatin therapy in the course of ischemia/reperfusion-induced pancreatitis. Moreover, we tested the influence of ischemia/reperfusion-induced acute pancreatitis and administration of obestatin on daily food intake and pancreatic exocrine secretion. Methods Acute pancreatitis was induced by pancreatic ischemia followed by reperfusion of the pancreas. Obestatin (8nmol/kg/dose) was administered intraperitoneally twice a day, starting 24 hours after the beginning of reperfusion. The effect of obestatin in the course of necrotizing pancreatitis was assessed between 2 and 14 days, and included histological, functional, and biochemical analyses. Secretory studies were performed on the third day after sham-operation or induction of acute pancreatitis in conscious rats equipped with chronic pancreatic fistula. Results Treatment with obestatin ameliorated morphological signs of pancreatic damage including edema, vacuolization of acinar cells, hemorrhages, acinar necrosis, and leukocyte infiltration of the gland, and led to earlier pancreatic regeneration. Structural changes were accompanied by biochemical and functional improvements manifested by accelerated normalization of interleukin-1β level and activity of myeloperoxidase and lipase, attenuation of the decrease in pancreatic DNA synthesis, and by an improvement of pancreatic blood flow. Induction of acute pancreatitis by pancreatic ischemia followed by reperfusion significantly decreased daily food

  20. Effects of propofol on myocardial ischemia-reperfusion injury in rats with type-2 diabetes mellitus.

    PubMed

    Wang, Ying; Qi, Xiuru; Wang, Chunliang; Zhao, Danning; Wang, Hongjie; Zhang, Jianxin

    2017-01-01

    The current study aimed to examine the effects of propofol on myocardial ischemia-reperfusion injury (MIRI) in rats with type-2 diabetes mellitus (T2DM) and to assess the role of inflammatory mediators. Fifty healthy male adult Sprague-Dawley rats were randomly divided into the sham, ischemia-reperfusion (IR), IR plus low, middle and high-dose (6, 12 and 24 mg/kg/h, intravenous) propofol groups. The rats of all the groups were fed a high-sugar and high-fat diet for 8 weeks and streptozotocin (30 mg/kg, intraperitoneally) was used to establish the T2DM model. Apart from the sham group rats, MIRI was induced by ligating the left anterior descending coronary artery for 30 min, followed by reperfusion for 2 h. Heart rate (HR), left ventricular systolic pressure (LVSP), and the rate of left ventricular pressure increase in early systole (± dp/dtmax) were recorded. Levels of cardiac troponin T (cTnT), nitric oxide (NO), endothelin-1 (ET-1), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were also measured. Myocardial lesions were observed under light microscopy and scanning electron microscopy. Compared with levels prior to arterial occlusion, HR, LVSP, and ± dp/dtmax were significantly reduced (P<0.05) following occlusion for 30 min and reperfusion for 2 h. The administration of propofol ameliorated the cardiac function of rats as reflected by the increase in HR, LVSP and ± dp/dtmax. In addition, the administration of propofol increased the serum NO concentration, and reduced ET-1 and cTnT levels, as well as levels of inflammatory mediators including IL-1β, IL-6 and TNF-α. Thus, propofol exerts protective effects against MIRI in T2DM rats by increasing NO and reducing ET-1 and the inflammatory mediators.

  1. Protective effects of honokiol on ischemia/reperfusion injury of rat ovary: an experimental study

    PubMed Central

    Yaman Tunc, Senem; Agacayak, Elif; Goruk, Neval Yaman; Icen, Mehmet Sait; Turgut, Abdulkadir; Alabalik, Ulas; Togrul, Cihan; Ekinci, Cenap; Ekinci, Aysun; Gul, Talip

    2016-01-01

    Aim The purpose of this study was to investigate the protective effect of honokiol on experimental ischemia/reperfusion injury of rat ovary. Materials and methods A total of 40 female Wistar albino rats were used in this study. The rats were divided into five groups as follows: sham (Group I), torsion (Group II), torsion + detorsion (Group III), torsion + detorsion + saline (Group IV), and torsion + detorsion + honokiol (Group V). Bilateral adnexa in all the rats except for those in the sham group were exposed to torsion for 3 hours. The rats in Group IV were administered saline, whereas the rats in Group V were administered honokiol by intraperitoneal route 30 minutes before detorsion. Tissue and plasma concentrations of malondialdehyde and nitric oxide were determined. Ovarian tissue was histologically evaluated. Data analyses were performed by means of Kruskal–Wallis test and Mann–Whitney U-test (Bonferroni correction) in SPSS 15.0 (Statistical Package for Social Sciences; SPSS Inc., Chicago, IL, USA). Results The torsion and detorsion groups had higher scores in vascular congestion, hemorrhage, and inflammatory cell infiltration compared with the sham group (P<0.005). In addition, total histopathological scores were significantly higher in the torsion and detorsion groups compared with the sham group (P<0.005). A significant reduction was observed in hemorrhage, inflammatory cell infiltration, and cellular degeneration scores, of all histopathological scores, in the honokiol group (P<0.005). Ovarian tissue concentrations of malondialdehyde were significantly higher in the torsion and detorsion groups compared with the sham and honokiol groups (P<0.005). Ovarian tissue concentrations of nitric oxide, on the other hand, were significantly higher in the torsion group compared with the sham, saline, and honokiol groups (P<0.005). Conclusion Honokiol has a beneficial effect on ovarian torsion-related ischemia/reperfusion injury. PMID:27022246

  2. Effects of propofol on myocardial ischemia-reperfusion injury in rats with type-2 diabetes mellitus

    PubMed Central

    Wang, Ying; Qi, Xiuru; Wang, Chunliang; Zhao, Danning; Wang, Hongjie; Zhang, Jianxin

    2017-01-01

    The current study aimed to examine the effects of propofol on myocardial ischemia-reperfusion injury (MIRI) in rats with type-2 diabetes mellitus (T2DM) and to assess the role of inflammatory mediators. Fifty healthy male adult Sprague-Dawley rats were randomly divided into the sham, ischemia-reperfusion (IR), IR plus low, middle and high-dose (6, 12 and 24 mg/kg/h, intravenous) propofol groups. The rats of all the groups were fed a high-sugar and high-fat diet for 8 weeks and streptozotocin (30 mg/kg, intraperitoneally) was used to establish the T2DM model. Apart from the sham group rats, MIRI was induced by ligating the left anterior descending coronary artery for 30 min, followed by reperfusion for 2 h. Heart rate (HR), left ventricular systolic pressure (LVSP), and the rate of left ventricular pressure increase in early systole (± dp/dtmax) were recorded. Levels of cardiac troponin T (cTnT), nitric oxide (NO), endothelin-1 (ET-1), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were also measured. Myocardial lesions were observed under light microscopy and scanning electron microscopy. Compared with levels prior to arterial occlusion, HR, LVSP, and ± dp/dtmax were significantly reduced (P<0.05) following occlusion for 30 min and reperfusion for 2 h. The administration of propofol ameliorated the cardiac function of rats as reflected by the increase in HR, LVSP and ± dp/dtmax. In addition, the administration of propofol increased the serum NO concentration, and reduced ET-1 and cTnT levels, as well as levels of inflammatory mediators including IL-1β, IL-6 and TNF-α. Thus, propofol exerts protective effects against MIRI in T2DM rats by increasing NO and reducing ET-1 and the inflammatory mediators. PMID:28123710

  3. Attenuation of Heat-induced Hypothalamic Ischemia, Inflammation, and Damage by Hyperbaric Oxygen in Rats.

    PubMed

    Tai, Po-An; Chang, Chen-Kuei; Niu, Ko-Chi; Lin, Mao-Tsun; Chiu, Wen-Ta; Lin, Jia-Wei

    2010-06-25

    The present study was attempted to assess the mechanisms underlying the beneficial effects of hyperbaric oxygen (HBO2; 100% O2 at 253 kpa) in treating experimental heatstroke. Anesthetized rats were divided into five major groups: the normothermic control (NC) rats treated with normobaric air (NBA; 21% O2 at 101 kpa) (NC+NBA), the NC rats treated with HBO2 (NC+HBO2), the heatstroke (HS) rats treated with NBA (HS+NBA), the HS rats treated with hyperbaric air (HBA; 21% at 253 kpa) (HS+HBA), and the HS rats treated with HBO2 (HS+HBO2). The HS groups were exposed to heat (43o) for exactly 68 min and then allowed to recover at 26oC. HBA or HBO2 was adopted 68 min or 78 min after the start of heat exposure. The survival time values for (HS+NBA) rats, (HS+HBA) rats at 68 min, (HS+HBA) rats at 78 min, (HS+HBO2) rats at 68 min, and (HS+HBO2) rats at 78 min were found to be 90±3 mins, 133±12 mins, 109±9 mins, 240±18 mins, and 170±15 mins, respectively. Resuscitation with HBA or HBO2 at 68 mins was superior to those treated at 78 mins in prolonging the survival time values. All (HS+NBA) animals displayed hyperthermia, hypotension, and increased cellular levels of ischemia, oxidative stress and damage markers, pro-inflammatory cytokines and an indicator of polymorphonuclear cells accumulation in their hypothalamus as compared to those of normothermic controls. The heat-induced hyperthermia was not affected by HBA or HBO2 treatment. However, heat-induced hypotension and hypothalamic ischemia, oxidative stress, neuronal damage, and inflammation were all significantly reduced by HBA or HBO2 therapy. Compared to those of HBA therapy, HBO2 therapy had significantly higher beneficial effect in treating heatstroke. Our results suggested that HBO2 improved heatstroke outcomes in part by restoring normal hypothalamic function. Delaying the onset of HBO2 therapy reduced the therapeutic efficiency.

  4. Ischemic postconditioning prevents renal ischemia reperfusion injury through the induction of heat shock proteins in rats.

    PubMed

    Guo, Qiongmei; Du, Xuefang; Zhao, Yanli; Zhang, Dong; Yue, Lihui; Wang, Zhenxian

    2014-12-01

    Ischemic postconditioning (IPo) attenuates ischemia‑reperfusion injuries (IRI) in various organs, of both animals and humans. This study tested the hypothesis that IPo attenuates renal IRI through the upregulation of heat shock protein (HSP)70, HSP27 and heme oxygenase‑1 (HO‑1, also known as HSP 32) expression. Adult Sprague Dawley rats were subjected to bilateral renal ischemia for 45 min followed by reperfusion for up to 48 h. One group of rats received IPo prior to restoring full perfusion. Another group was administered 100 mg/kg HSP inhibitor quercetin, injected intraperitoneally 1 h prior to ischemia. Control rats received sham operations. Renal IR resulted in severe morphological and pathological changes, with increased serum creatinine and blood urea nitrogen concentrations. IR resulted in increased inflammation by inducing plasma tumor necrosis factor‑α and renal nuclear factor kappa‑light‑chain‑enhancer of activated B cells expression. IR also increased lipid peroxidation, as indicated by elevated malondialdehyde content, reduced superoxide dismutase activity and increased renal apoptosis. Renal HSP70, HSP27 and HO‑1 mRNA and protein levels were increased by IR and further elevated by IPo. IPo attenuated these changes observed in pathology, lipid peroxidation, apoptosis and inflammation. Quercetin treatment abolished all the protective effects of IPo. In conclusion, this study showed that IPo can attenuate lipid peroxidation, apoptosis and inflammation as well as renal IRI by upregulating the expression of HSP70, HSP27 and HO‑1.

  5. Donor pretreatment with carbon monoxide prevents ischemia/reperfusion injury following heart transplantation in rats

    PubMed Central

    Fujisaki, Noritomo; Kohama, Keisuke; Nishimura, Takeshi; Yamashita, Hayato; Ishikawa, Michiko; Kanematsu, Akihiro; Yamada, Taihei; Lee, Sungsoo; Yumoto, Tetsuya; Tsukahara, Kohei; Kotani, Joji; Nakao, Atsunori

    2016-01-01

    Because inhaled carbon monoxide (CO) provides potent anti-inflammatory and antioxidant effects against ischemia reperfusion injury, we hypothesized that treatment of organ donors with inhaled CO would decrease graft injury after heart transplantation. Hearts were heterotopically transplanted into syngeneic Lewis rats after 8 hours of cold preservation in University of Wisconsin solution. Donor rats were exposed to CO at a concentration of 250 parts per million for 24 hours via a gas-exposure chamber. Severity of myocardial injury was determined by total serum creatine phosphokinase and troponin I levels at three hours after reperfusion. In addition, Affymetrix gene array analysis of mRNA transcripts was performed on the heart graft tissue prior to implantation. Recipients of grafts from CO-exposed donors had lower levels of serum troponin I and creatine phosphokinase; less upregulation of mRNA for interleukin-6, intercellular adhesion molecule-1, and tumor necrosis factor-α; and fewer infiltrating cells. Although donor pretreatment with CO altered the expression of 49 genes expressly represented on the array, we could not obtain meaningful data to explain the mechanisms by which CO potentiated the protective effects. Pretreatment with CO gas before organ procurement effectively protected cardiac grafts from ischemia reperfusion-induced injury in a rat heterotopic cardiac transplant model. A clinical report review indicated that CO-poisoned organ donors may be comparable to non-poisoned donors. PMID:27867479

  6. Anti-inflammatory and neuroprotective effects of sanguinarine following cerebral ischemia in rats

    PubMed Central

    Wang, Qin; Dai, Peng; Bao, Han; Liang, Ping; Wang, Wei; Xing, An; Sun, Jianbin

    2017-01-01

    Stroke is one of the leading causes of mortality worldwide. Protective agents that can diminish injuries caused by cerebral ischemia-reperfusion (I/R) are important in alleviating the harmful outcomes of stroke. The aim of the present study was to investigate the protective role of sanguinarine in cerebral I/R injury. A rat middle cerebral artery occlusion model was used to assess the clinical effect of sanguinarine, and inflammatory cytokines in the serum were detected by ELISA. Western blotting was performed to examine the change in levels of apoptosis-associated proteins in the injured brains. The results suggested that sanguinarine, an anti-inflammatory agent derived from the roots of Sanguinaria canadensis, improved the state of cerebral ischemia in a rat model. The data demonstrated that when rats were treated with sanguinarine prior to middle cerebral artery occlusion, the infarct volume was reduced significantly. The inflammatory factors tumor necrosis factor-α, interleukin (IL)-6 and IL-1β were measured in sanguinarine and vehicle-treated groups using an enzyme-linked immunosorbent assay, and the expression levels of the three factors were significantly reduced following treatment with sanguinarine (P<0.05). In addition, western blot analysis demonstrated that the ratio of B-cell lymphoma 2/Bcl-2-associated X protein was significantly increased following treatment with sanguinarine (P<0.05). The study demonstrated that sanguinarine exerts a protective effect in cerebral ischemia, and that this effect is associated with the anti-inflammatory and anti-apoptotic properties of sanguinarine. PMID:28123499

  7. Intranasal Administration of Interleukin-1 Receptor Antagonist in a Transient Focal Cerebral Ischemia Rat Model

    PubMed Central

    Lee, Jae Hoon; Kam, Eun Hee; Kim, Jeong Min; Kim, So Yeon; Kim, Eun Jeong; Cheon, So Yeong; Koo, Bon-Nyeo

    2017-01-01

    The interleukin-1 receptor antagonist (IL-1RA) is a potential stroke treatment candidate. Intranasal delivery is a novel method thereby a therapeutic protein can be penetrated into the brain parenchyma by bypassing the blood-brain barrier. Thus, this study tested whether intranasal IL-1RA can provide neuroprotection and brain penetration in transient cerebral ischemia. In male Sprague-Dawley rats, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 1 h. The rats simultaneously received 50 mg/kg human IL-1RA through the intranasal (IN group) or intraperitoneal route (IP group). The other rats were given 0.5 mL/kg normal saline (EC group). Neurobehavioral function, infarct size, and the concentration of the administered human IL-1RA in the brain tissue were assessed. In addition, the cellular distribution of intranasal IL-1RA in the brain and its effect on proinflammatory cytokines expression were evaluated. Intranasal IL-1RA improved neurological deficit and reduced infarct size until 7 days after MCAO (p<0.05). The concentrations of the human IL-1RA in the brain tissue 24 h after MCAO were significantly greater in the IN group than in the IP group (p<0.05). The human IL-1RA was confirmed to be co-localized with neuron and microglia. Furthermore, the IN group had lower expression of interleukin-1β and tumor necrosis factor-α at 6 h after MCAO than the EC group (p<0.05). These results suggest that intranasal IL-1RA can reach the brain parenchyma more efficiently and provide superior neuroprotection in the transient focal cerebral ischemia. PMID:27530114

  8. Effects of Ukrain on intestinal apoptosis caused by ischemia-reperfusion injury in rats

    PubMed Central

    Akcılar, Raziye; Akcılar, Aydın; Koçak, Cengiz; Koçak, Fatma Emel; Bayat, Zeynep; Şimşek, Hasan; Şahin, Server; Savran, Bircan

    2015-01-01

    Background: To investigate the antiapoptotic effect of Ukrain on intestinal lesion induced by mesenteric ischemia-reperfusion (I/R) injury. Methods: Male Sprague-Dawley rats were divided into three groups: laparotomy (L), I/R, and Ukrain and I/R (U + I/R). In the U + I/R group, Ukrain (7 mg/kg) was given by intraperitoneal at the beginning of the study. 1 h after ukrain application, ischemia was induced for 30 minutes, and reperfusion was subsequently allowed for 120 minutes in the I/R and U + I/R groups. Rats were sacrificed at the end of reperfusion and intestinal tissues were collected for biochemical and molecular examination. Intestinal tissues caspase 3 protein were assayed. Serum Bcl-xL and iNOS were measured. The expression level of caspase-3, Bcl-xL and iNOS in intestinal tissue of rats were detected by reverse transcription-polymerase chain reaction (RT-PCR). Results: Levels of serum iNOS and mRNA expression were increased in the I/R and decreased in the U + I/R group. In addition, levels of the proapoptotic gene caspase-3 protein and mRNA expression were increased in the I/R and decreased in the U + I/R group. Levels of the antiapoptotic gene Bcl-xL serum and mRNA expression were increased in the U + I/R group. Conclusions: Ukrain can reduce the ischemia-reperfusion injury in the intestinal tissue by inhibiting the cell apoptosis. The mechanism may be correlated with increased Bcl-xL mRNA expressions and decreased mRNA expressions of Caspase-3 and iNOS. PMID:26885190

  9. Protective Effects of L-Malate against Myocardial Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Ding, Shiao; Yang, Yang; Mei, Ju

    2016-01-01

    Objective. To investigate the protective effects of L-malate against myocardial ischemia/reperfusion (I/R) injury in rats. Methods. Male Sprague-Dawley rats were randomly assigned to the following groups: sham (sham), an ischemia/reperfusion (I/R) model group (model), an DMF pretreated group (DMF), and 5 L-malate pretreated groups (15, 60, 120, 240, or 480 mg/kg, gavage) before inducing myocardial ischemia. Plasma LDH, cTn-I, TNF-α, hs-CRP, SOD, and GSH-PX were measured 3 h later I/R. Areas of myocardial infarction were measured; hemodynamic parameters during I/R were recorded. Hearts were harvested and Western blot was used to quantify Nrf2, Keap1, HO-1, and NQO-1 expression in the myocardium. Results. L-malate significantly reduced LDH and cTn-I release, reduced myocardial infarct size, inhibited expression of inflammatory cytokines, and partially preserved heart function, as well as increasing antioxidant activity after myocardial I/R injury. Western blot confirmed that L-malate reduced Kelch-like ECH-associated protein 1 in ischemic myocardial tissue, upregulated expression of Nrf2 and Nrf2 nuclear translocation, and increased expression of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1, which are major targets of Nrf2. Conclusions. L-malate may protect against myocardial I/R injury in rats and this may be associated with activation of the Nrf2/Keap1 antioxidant pathway. PMID:26941825

  10. Protective effect of the traditional Chinese medicine xuesaitong on intestinal ischemia-reperfusion injury in rats

    PubMed Central

    Xu, Xuan; Li, Dengxiao; Gao, Hong; Gao, Yuejin; Zhang, Long; Du, Yuling; Wu, Jian; Gao, Pengfei

    2015-01-01

    Objective: We investigated the effect of xuesaitong on intestinal barrier dysfunction and related mechanisms in a rat model for intestinal ischemia-reperfusion. Methods: Rats were divided into sham-operated, disease-model and Xuesaitong-treated groups. In the disease-model and Xuesaitong-treated rats an intestinal ischemia-reperfusion injury (IRI) model was introduced, which was created by a temporary obstruction of the superior mesenteric artery (SMA). The xuesaitong group was pre-treated with injections into the abdominal cavity prior to the generation of the IRI model. Tissue changes were evaluated using H&E staining and electron microscopy. Samples were analyzed at 0, 3 and 24 h post IRI. Ascites volumes as well as small intestinal mucosa bleeding, injury scores, wet to dry weight ratios, and propulsions were evaluated. Apoptotic rates were determined with TUNNEL assays. Blood serum tumor necrosis factor-α (TNF-α) levels were measured using ELISA, and Bcl-2 and caspase-3 expression in small intestinal mucosa measured using immunohistochemistry. Results: We determined a significant increase of pathological damage to small intestinal tissues, intestinal wet to dry ratios, ascites volume, TNF-α levels, apoptosis rates of small intestinal mucosa, and expression of Bcl-2 and caspase-3 proteins in the disease-model group compared to the sham-operated group (P < 0.001), and intestinal motility was significantly decreased (P < 0.001). However, comparisons between disease-model and xuesaitong pre-treated animals revealed, that in the treatment group these changes occurred in significant less severities. Conclusions: Xuesaitong can effectively alleviate intestinal barrier dysfunction caused by ischemia-reperfusion injury by reducing TNF-α, up-regulating Bcl-2 and down-regulating caspase-3 expression, in addition to increasing peristalsis. PMID:25932105

  11. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion.

    PubMed

    Chan, P H; Kawase, M; Murakami, K; Chen, S F; Li, Y; Calagui, B; Reola, L; Carlson, E; Epstein, C J

    1998-10-15

    Transient global cerebral ischemia resulting from cardiac arrest is known to cause selective death in vulnerable neurons, including hippocampal CA1 pyramidal neurons. It is postulated that oxygen radicals, superoxide in particular, are involved in cell death processes. To test this hypothesis, we first used in situ imaging of superoxide radical distribution by hydroethidine oxidation in vulnerable neurons. We then generated SOD1 transgenic (Tg) rats with a five-fold increase in copper zinc superoxide dismutase activity. The Tg rats and their non-Tg wild-type littermates were subjected to 10 min of global ischemia followed by 1 and 3 d of reperfusion. Neuronal damage, as assessed by cresyl violet staining and DNA fragmentation analysis, was significantly reduced in the hippocampal CA1 region, cortex, striatum, and thalamus in SOD1 Tg rats at 3 d, as compared with the non-Tg littermates. There were no changes in the hippocampal CA3 subregion and dentate gyrus, resistant areas in both SOD1 Tg and non-Tg rats. Quantitative analysis of the damaged CA1 subregion showed marked neuroprotection against transient global cerebral ischemia in SOD1 Tg rats. These results suggest that superoxide radicals play a role in the delayed ischemic death of hippocampal CA1 neurons. Our data also indicate that SOD1 Tg rats are useful tools for studying the role of oxygen radicals in the pathogenesis of neuronal death after transient global cerebral ischemia.

  12. Dissecting the Effects of Ischemia and Reperfusion on the Coronary Microcirculation in a Rat Model of Acute Myocardial Infarction

    PubMed Central

    Hollander, Maurits R.; de Waard, Guus A.; Konijnenberg, Lara S. F.; Meijer-van Putten, Rosalie M. E.; van den Brom, Charissa E.; Paauw, Nanne; de Vries, Helga E.; van de Ven, Peter M.; Aman, Jurjan; Van Nieuw-Amerongen, Geerten P.; Hordijk, Peter L.; Niessen, Hans W. M.; Horrevoets, Anton J. G.; Van Royen, Niels

    2016-01-01

    Background Microvascular injury (MVI) after coronary ischemia-reperfusion is associated with high morbidity and mortality. Both ischemia and reperfusion are involved in MVI, but to what degree these phases contribute is unknown. Understanding the etiology is essential for the development of new potential therapies. Methods and Findings Rats were divided into 3 groups receiving either 30 minutes ischemia, 90 minutes ischemia or 30 minutes ischemia followed by 60 minutes reperfusion. Subsequently hearts were ex-vivo perfused in a Langendorff-model. Fluorescence and electron microscopy was used for analysis of capillary density, vascular permeability and ultrastructure. Most MVI was observed after 30 minutes ischemia followed by 60 minutes reperfusion. In comparison to the 30’ and 90’ ischemia group, wall thickness decreased (207.0±74 vs 407.8±75 and 407.5±71, p = 0.02). Endothelial nuclei in the 30’-60’ group showed irreversible damage and decreased chromatin density variation (50.5±9.4, 35.4±7.1 and 23.7±3.8, p = 0.03). Cell junction density was lowest in the 30’-60’ group (0.15±0.02 vs 2.5±0.6 and 1.8±0.7, p<0.01). Microsphere extravasation was increased in both the 90’ ischemia and 30’-60’ group. Conclusions Ischemia alone for 90 minutes induces mild morphological changes to the coronary microcirculation, with increased vascular permeability. Ischemia for 30 minutes, followed by 60 minutes of reperfusion, induces massive MVI. This shows the direct consequences of reperfusion on the coronary microcirculation. These data imply that a therapeutic window exists to protect the microcirculation directly upon coronary revascularization. PMID:27391645

  13. Ischemia-Reperfusion Injury of Adipofascial Tissue: An Experimental Study Evaluating Early Histologic and Biochemical Alterations in Rats

    PubMed Central

    Kenan Coban, Yusuf; Belge Kurutas, Ergul; Ciralik, Harun

    2005-01-01

    Fat necrosis remains a serious complication in reconstructive flaps. In clinical setting, it is well known that fat tissue is more susceptible to ischemic events. We aimed to evaluate early histological and biochemical changes of adipofascial tissue in an experimantal model. An epigastric flap model in rats was used to evaluate the effect of ischemia-reperfusion (I-R) injury on adipofascial tissue. Two groups of animals (one with ischemia alone and other ischemia-reperfusion group) were used to evaluate the degree of histological edema, congestion and extravascular bleeding, and early biochemical alterations within the adipofascial flaps. The biochemical parameters included glutathione (GSH) and malondialdehyde (MDA). In each group, contralateral groin subcutaneous adipose tissue served as control. These evaluations were compared to normal unmanipulated, contralateral abdominal subcutaneous adipose tissue. The ischemia-reperfused flap group showed histologically significantly much edema congestion and bleeding than the control groups (P < .0001). The control group showed less edema in fat tissue than the ischemia-alone group (P < .05). All of the flaps in the ischemia-only group showed significantly less bleeding and edema than I-R group (P < .001). The ratio of MDA/GSH was 33 in control, 37 in ischemia alone, and 82 in ischemia-reperfusion groups, respectively. This study confirms that significant histologic and biochemical alteration occurs after ischemia and ischemia-reperfusion events in adipose tissue. Marked drop in adipose tissue antioxidant levels after I-R suggested that preemptive measures to this decrease should be undertaken in clinical settings. PMID:16258198

  14. Precise Characterization of the Penumbra Revealed by MRI: A Modified Photothrombotic Stroke Model Study

    PubMed Central

    Jiao, Yun; Yao, Hong-Hong; Chen, Yu-Chen; Yang, Jian; Ding, Jie; Yang, Xiang-Yu; Teng, Gao-Jun

    2016-01-01

    Aims To precisely characterize the penumbra by MRI based on a modified photothrombotic stroke mouse model. Methods The proximal middle cerebral artery was occluded by a convenient laser system in conjunction with an intravenous injection of Rose Bengal in mice. And the suture MCAO model was performed in seven mice as a comparison of the reproducibility. One hour after occlusion, the penumbra was defined in six random photothrombotic stroke mice by mismatch between perfusion-weighted imaging and the apparent diffusion coefficient map on a home-made workstation. After imaging, three random mice of them were chosen to perform the reperfusion surgery. And the other three mice were sacrificed to stain for several potential penumbra markers, such as c-fos and heart shock protein 90. In the remaining mice, the evolution of the lesions was detected on the apparent diffusion coefficient map, diffusion-weighted imaging and T2-weighted imaging at 1, 3, 6, 12 and 24 hours. After evaluating the neurological deficit scores, the brains were sectioned and stained by triphenyltetrazolium chloride and Nissl. Results The mice subjected to photothrombosis showed significant behavioral deficits. One hour after occlusion, the low perfusion areas on the perfusion-weighted imaging interlaced with the hypointense areas on the apparent diffusion coefficient map, demonstrating that the penumbra was located both surrounding and inside the lesions. This phenomenon was subsequently confirmed by the c-fos and heart shock protein 90 staining. The final T2-weighted images of the mice subjected to the reperfusion surgery were also consistent with the penumbra images at one hour. At early stages, the lesions were clearly identified on the apparent diffusion coefficient map; the volumes of the lesions on the diffusion-weighted imaging and T2-weighted imaging did not reach a maximum until 12 hours. The coefficient of variation (CV) of the final lesions in the photothrombotic stroke mice was 21.7% (0

  15. The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF.

    PubMed

    Han, Qianqian; Li, Bo; Feng, Hua; Xiao, Zhifeng; Chen, Bing; Zhao, Yannan; Huang, Jingchun; Dai, Jianwu

    2011-08-01

    Brain-derived neurotrophic factor (BDNF) has been shown to have therapeutic effects on cerebral ischemia. However, the delivery approach limits its application. Laminin is a rich extra cellular matrix in the central nervous system, and is highly expressed in the ischemic region after cerebral ischemia. We reported here by fusing with laminin-binding domain (LBD) to BDNF to construct laminin-binding BDNF (LBD-BDNF). LBD-BDNF could target accumulated laminin in the ischemic region and exert targeting therapy of injured neurons after ischemia. We examined the laminin-binding ability and neurotrophic bioactivity of LBD-BDNF in vitro, and assessed its targeting therapy using a rat permanent middle cerebral artery occlusion (MCAO) model in vivo. It was found that LBD-BDNF could specifically bind to laminin and maintain BDNF activity both in vitro and in vivo. LBD-BDNF treatment attenuated neural-degeneration after MCAO, and also resulted in a reduction of infarct volume that is associated with a parallel improvement in neurological functional outcome and neurogenesis in the dentate gyrus of hippocamp.

  16. Purinergic component in the coronary vasodilatation to acetylcholine after ischemia-reperfusion in perfused rat hearts.

    PubMed

    García-Villalón, Ángel Luis; Granado, Miriam; Monge, Luis; Fernández, Nuria; Carreño-Tarragona, Gonzalo; Amor, Sara

    2014-01-01

    To determine the involvement of purinergic receptors in coronary endothelium-dependent relaxation, the response to acetylcholine (1 × 10(-8) to 3 × 10(-7)M) was recorded in isolated rat hearts perfused according to the Langendorff procedure before and after 30 min of ischemia and 15 min of reperfusion and after the inhibition of nitric oxide synthesis with L-NAME (10(-4)M), in the absence and presence of the antagonist of purinergic P2X receptors, PPADS (3 × 10(-6)M), and of the antagonist of purinergic P2Y receptors, Reactive Blue 2 (3 × 10(-7)M). In control conditions, the relaxation to acetylcholine was not altered by PPADS or Reactive Blue 2. The relaxation to acetylcholine was reduced after ischemia-reperfusion, and, in this condition, it was further reduced by treatment with PPADS or Reactive Blue 2. Likewise, the relaxation to acetylcholine was reduced by L-NAME, and reduced further by Reactive Blue 2 but not by PPADS. These results suggest that the relaxation to acetylcholine may be partly mediated by purinergic receptors after ischemia-reperfusion, due to the reduction of nitric oxide release in this condition.

  17. Effects of Platelet-Rich Plasma (PRP) on a Model of Renal Ischemia-Reperfusion in Rats

    PubMed Central

    Martín-Solé, Oriol; Rodó, Joan; García-Aparicio, Lluís; Blanch, Josep; Cusí, Victoria; Albert, Asteria

    2016-01-01

    Renal ischemia-reperfusion injury is a major cause of acute renal failure, causing renal cell death, a permanent decrease of renal blood flow, organ dysfunction and chronic kidney disease. Platelet-rich plasma (PRP) is an autologous product rich in growth factors, and therefore able to promote tissue regeneration and angiogenesis. This product has proven its efficacy in multiple studies, but has not yet been tested on kidney tissue. The aim of this work is to evaluate whether the application of PRP to rat kidneys undergoing ischemia-reperfusion reduces mid-term kidney damage. A total of 30 monorrenal Sprague-Dawley male rats underwent renal ischemia-reperfusion for 45 minutes. During ischemia, PRP (PRP Group, n = 15) or saline solution (SALINE Group, n = 15) was administered by subcapsular renal injection. Control kidneys were the contralateral organs removed immediately before the start of ischemia in the remaining kidneys. Survival, body weight, renal blood flow on Doppler ultrasound, kidney weight, kidney volume, blood biochemistry and histopathology were determined for all subjects and kidneys, as applicable. Correlations between these variables were searched for. The PRP Group showed significantly worse kidney blood flow (p = 0.045) and more histopathological damage (p<0.0001). Correlations were found between body weight, kidney volume, kidney weight, renal blood flow, histology, and serum levels of creatinine and urea. Our study provides the first evidence that treatment with PRP results in the deterioration of the kidney’s response to ischemia-reperfusion injury. PMID:27551718

  18. The Relationship Between Ischemia Time and Mucous Secretion in Vaginal Reconstruction With the Jejunal Free Flap: An Experimental Study on the Rat Jejunum.

    PubMed

    Ozkan, Omer; Ozkan, Ozlenen; Bektas, Gamze; Cinpolat, Anı; Bassorgun, Ibrahim; Ciftcioglu, Akif

    2015-07-01

    Jejunum flap for reconstruction of the vagina provides a durable, stable coverage; patent tube passage; and natural esthetic appearance. However, excessive mucous secretion is a major drawback of the technique.We have recently presented our cases in which strict 3-hour ischemia with lower mucus secretion was applied. However, a quantitative analysis of goblet cells of the jejunum subjected to ischemia and ischemia-reperfusion injury on an animal model has not been reported to support this argument.Because goblet cells are responsible for the production and the maintenance of the mucous blanket, we aimed to determine whether goblet cell numbers decrease after ischemia and ischemia-reperfusion injury.This study was conducted on 3 groups of 10 animals. We applied to the rat jejunum only ischemia in group 1, one hour of ischemia followed by reperfusion in group 2, and 2 hours of ischemia followed by reperfusion in group 3. Histological samples taken from the jejunum exposed to ischemia and ischemia-reperfusion injury were evaluated in terms of goblet cell numbers, inflammation, apoptotic bodies, and necrosis.Goblet cell numbers significantly decreased in the group of animals exposed to ischemia and exposed to ischemia-reperfusion injury. We think that mucus hypersecretion of the jejenum can be limited by applying a longer period of ischemia time during free flap transfer in vaginal reconstruction.

  19. Effect of Long-Term Treatment with Fimasartan on Transient Focal Ischemia in Rat Brain

    PubMed Central

    Kim, Chi Kyung; Yang, Xiu-Li; Kim, Young-Ju; Choi, In-Young; Jeong, Han-Gil; Park, Hong-Kyun; Kim, Dohoung; Kim, Tae Jung; Jang, Hyunduk; Ko, Sang-Bae; Yoon, Byung-Woo

    2015-01-01

    Fimasartan is a newly developed angiotensin receptor blocker, which may have protective effects during myocardial infarction or atherosclerosis. In this context, we investigated the effects of long-term treatment with low-dose fimasartan on focal ischemia in rat brain. We induced focal ischemia in brain by transient intraluminal occlusion of middle cerebral artery (MCA) and administered low-dose (0.5 mg/kg) or regular doses (1 or 3 mg/kg) of fimasartan via intravenous routes. After the administration of low-dose (0.5 mg/kg) fimasartan, blood pressure did not decrease compared to the phosphate-buffered saline- (PBS-) control with MCA occlusion (MCAO) group. The infarct volume and ischemic cell death were reduced in the low-dose fimasartan-treated group (46 ± 41 mm3 for 0.5 mg/kg and 153 ± 47 mm3 for PBS-control with MCAO; P < 0.01) but not in the regular-dose groups. Low-dose fimasartan treatment improved functional recovery after ischemia and significantly decreased mortality. In our study, fimasartan reduced the degradation of IκB and the formation of an inflammatory end-product, COX-2. As a result, the recruitment of inflammatory cells in the peri-infarct area decreased in fimasartan-treated group. We have demonstrated that long-term, low-dose fimasartan treatment improved outcomes after focal ischemia in the brain via a reduction of inflammation. PMID:26448932

  20. Establishment and identification of a hypoxia-ischemia brain damage model in neonatal rats

    PubMed Central

    YAO, DAN; ZHANG, WEIRAN; HE, XUE; WANG, JINHU; JIANG, KEWEN; ZHAO, ZHENGYAN

    2016-01-01

    The present study was designed to set up a reliable model of severe hypoxia-ischemia brain damage (HIBD) in neonatal rats and several methods were used to identify whether the model was successful. A total of 40 healthy 7-day-old Sprague-Dawley rats were randomly divided into 2 groups: The sham-surgery group (n=18) and the HIBD model group (n=22). The HIBD model was produced according to the traditional Rice method. The rats were anesthetized with ethyl ether. The left common carotid artery (CCA) was exposed, ligated and cut. Following this, the rats were exposed to hypoxia in a normobaric chamber filled with 8% oxygen and 92% nitrogen for 2 h. In the sham-surgery group, the left CCA was exposed but was not ligated, cut or exposed to hypoxia. The neurobehavioral changes of the rats were observed in the 24 h after HIBD. The brains were collected after 72 h to observe the pathological morphological changes of the brain tissue. The behavioral ability and neurobehavioral changes were studied in each group. The water maze test was used for evaluating the learning-memory ability when the rats were 28 days old. Compared with the sham-surgery group, all the HIBD model rats had a lag of motor development. The rats had evident changes in anatomy and Nissl staining, and cognitive impairment was shown through the result of the water maze. Therefore, the model of HIBD in neonatal rats is feasible and provides a reliable model for subsequent studies. PMID:27073628

  1. Nimodipine prevents early loss of hippocampal CA1 parvalbumin immunoreactivity after focal cerebral ischemia in the rat.

    PubMed

    Benyó, Z; De Jong, G I; Luiten, P G

    1995-01-01

    The effect of focal cerebral ischemia induced by middle cerebral artery occlusion on hippocampal interneurons containing the calcium-binding protein parvalbumin (PV) was studied in rats. Four hours after the onset of ischemia, a reduced number of PV-immunoreactive (-ir) neurons was observed in the lateral part of the CA1 region, while PV-ir was not altered in the CA2 and CA3 areas. Pretreatment with the L-type Ca2+ channel blocker nimodipine prevented the ischemia-induced loss of PV-ir in the CA1, suggesting a role for L-type voltage sensitive calcium channels in the mechanism of early neuronal alterations in the hippocampus CA1 region after focal cerebral ischemia.

  2. Fluoro-Jade B evidence of induced ischemic tolerance in the rat spinal cord ischemia: physiological, neurological and histopathological consequences.

    PubMed

    Orendácová, J; Ondrejcák, T; Kuchárová, K; Cízková, D; Jergová, S; Mitrusková, B; Raceková, E; Vanický, I; Marsala, J

    2005-03-01

    Fluoro-Jade B, a marker of degenerating neurons, was used to label histopathological changes in the rat spinal cord after transient ischemia and ischemic preconditioning (IPC). To characterize postischemic neurodegenerations and consequent neurological changes, a particular attention was paid to the standardization of ischemic conditions in animals of both groups. 1. The control ischemic rats were submitted to a reversible occlusion of descending aorta by insertion and subsequent inflation of a 2F Fogarty catheter for 12 min. 2. In the IPC rats, an episode of short 3 min occlusion and 30 min reperfusion preceded the 12 min ischemia. Postischemic motor function testing (ambulation and stepping) was provided repeatedly for evaluation of neurological status 2 h and 24 h after surgery and at the end of postischemic survival, i.e. after 48 h. Fluoro-Jade B staining was used to demonstrate degenerated neurons. In the control rats, neurological consequences of histopathological changes in lumbosacral spinal cord, manifested as paraplegia, were present after 12 min ischemia. Thus, numbers of degenerated Fluoro-Jade B positive cells were visible in gray matter of the most injured L(4)-S(2) spinal cord segments. Slight motor function impairment, consequential from significant decreasing in Fluoro-Jade B-positivity in the L(4)-S(2) spinal cord segments of the IPC rats, was considered the pathomorpfological evidence that IPC induces spinal cord tolerance to ischemia. Our results are consistent with the previously published silver impregnation method for histopathological demonstration of ischemic degeneration.

  3. Histologic assessment of neurons in rat models of cerebral ischemia.

    PubMed

    Eke, A; Conger, K A; Anderson, M; Garcia, J H

    1990-02-01

    We describe a method for typing neurons into four progressive stages of ischemic deterioration based on visual characterization of the nucleus in terms of its optical contrast, delineation along the nuclear-cytoplasmic interface, and its shape. Difficulty in assessing nuclear shape required the introduction of an angularity comparator chart to improve the investigator's accuracy. Three investigators typed neurons obtained from normal, ischemic, and ischemic-reperfused rat brains. Accuracy and reproducibility of the investigators' typing decisions with and without the angularity comparator charts were evaluated. The accuracy of subjective shape assessment was compared with objective digitizer measurements of the same. The angularity comparator charts reduced subjective shape classification error by two thirds, and group error (overall performance expressed by the coefficient of variance) decreased from 15.9% to 4.7% for Type I (normal cells), from 33.9% to 17.3% for Type II (cells with angular nuclei), from 15.5% to 14.1% for Type III (cells with smeared nuclei), and from 3.2% to 5.5% for Type IV (dead cells). Thus, Type I and IV neurons can be assessed at a higher reproducibility than the intermediate Types II and III. Our typing method can also be used to evaluate the effect of treatment regimes on ischemic neuronal damage.

  4. Prophylactic Ozone Administration Reduces Intestinal Mucosa Injury Induced by Intestinal Ischemia-Reperfusion in the Rat

    PubMed Central

    Onal, Ozkan; Yetisir, Fahri; Sarer, A. Ebru Salman; Zeybek, N. Dilara; Onal, C. Oztug; Yurekli, Banu; Celik, H. Tugrul; Sirma, Ayse; Kılıc, Mehmet

    2015-01-01

    Objectives. Intestinal ischemia-reperfusion injury is associated with mucosal damage and has a high rate of mortality. Various beneficial effects of ozone have been shown. The aim of the present study was to show the effects of ozone in ischemia reperfusion model in intestine. Material and Method. Twenty eight Wistar rats were randomized into four groups with seven rats in each group. Control group was administered serum physiologic (SF) intraperitoneally (ip) for five days. Ozone group was administered 1 mg/kg ozone ip for five days. Ischemia Reperfusion (IR) group underwent superior mesenteric artery occlusion for one hour and then reperfusion for two hours. Ozone + IR group was administered 1 mg/kg ozone ip for five days and at sixth day IR model was applied. Rats were anesthetized with ketamine∖xyzlazine and their intracardiac blood was drawn completely and they were sacrificed. Intestinal tissue samples were examined under light microscope. Levels of superoxide dismutase (SOD), catalase (CAT), glutathioneperoxidase (GSH-Px), malondyaldehide (MDA), and protein carbonyl (PCO) were analyzed in tissue samples. Total oxidant status (TOS), and total antioxidant capacity (TAC) were analyzed in blood samples. Data were evaluated statistically by Kruskal Wallis test. Results. In the ozone administered group, degree of intestinal injury was not different from the control group. IR caused an increase in intestinal injury score. The intestinal epithelium maintained its integrity and decrease in intestinal injury score was detected in Ozone + IR group. SOD, GSH-Px, and CAT values were high in ozone group and low in IR. TOS parameter was highest in the IR group and the TAC parameter was highest in the ozone group and lowest in the IR group. Conclusion. In the present study, IR model caused an increase in intestinal injury.In the present study, ozone administration had an effect improving IR associated tissue injury. In the present study, ozone therapy prevented

  5. Hyperglycemia enhances excessive superoxide anion radical generation, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats.

    PubMed

    Tsuruta, Ryosuke; Fujita, Motoki; Ono, Takeru; Koda, Yoichi; Koga, Yasutaka; Yamamoto, Takahiro; Nanba, Masahiro; Shitara, Masaki; Kasaoka, Shunji; Maruyama, Ikuro; Yuasa, Makoto; Maekawa, Tsuyoshi

    2010-01-14

    The aim of this study was to confirm the effect of acute hyperglycemia on the superoxide anion radical (O(2)(-)) generation, using a novel electrochemical O(2)(-) sensor in forebrain ischemia/reperfusion rats. Fourteen male Wistar rats were allocated to a normoglycemia group (n= 7) and a hyperglycemia group (n=7). Hyperglycemia was induced by intravenous infusion of glucose solution. Forebrain ischemia was induced by bilateral common carotid arteries occlusion with hemorrhagic hypotension for 10 min and then was reperfused. The generated O(2)(-) was measured as the current produced, which was integrated as a quantified partial value of electricity (Q), in the jugular vein using the O(2)(-) sensor. The reacted O(2)(-) current and the Q began to increase gradually during the forebrain ischemia in both groups. These values increased remarkably just after reperfusion in the normoglycemia group and were further increased significantly in the hyperglycemia group after the reperfusion. Concentrations of malondialdehyde (MDA) and high-mobility group box 1 (HMGB1) in the brain and plasma, and soluble intercellular adhesion molecule-1 (ICAM-1) in the plasma in the hyperglycemia group were significantly higher than those in the normoglycemia group. Brain and plasma MDA, HMGB1, and ICAM-1 were correlated with a sum of Q during ischemia and after reperfusion. In conclusion, acute transient hyperglycemia enhanced the O(2)(-) generation in blood and exacerbated oxidative stress, early inflammation, and endothelial injury after the forebrain ischemia/reperfusion in the rats.

  6. Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats.

    PubMed

    Bu, Youngmin; Rho, Seongjoo; Kim, Jinmo; Kim, Mi Yeon; Lee, Dae Hee; Kim, Sun Yeou; Choi, Hoyoung; Kim, Hocheol

    2007-03-13

    Tyrosol (2-(4-hydroxyphenyl)ethanol) is a well-known phenolic compound with antioxidant properties that is present in wine, olive oil, and other plant-derived products. The purpose of this study was to determine the neuroprotective effect of tyrosol in a stroke animal model. By using the transient middle cerebral artery occlusion rat model (2 h of occlusion, 22 h of reperfusion), we investigated the effects of tyrosol on infarct volume and sensory motor function deficit by performing 2,3,5-triphenyltetrazolium chloride staining and behavior tests after ischemia. Tyrosol showed a dose-dependent neuroprotective effect that peaked at 64.9% in rats treated with 30 mg/kg of tyrosol. In rotarod, beam balance, and foot fault tests, tyrosol exhibited protective effects against the sensory motor dysfunction. In conclusion, our results suggest that tyrosol is an appropriate candidate to be used in stroke therapy.

  7. The protective role of montelukast against intestinal ischemia-reperfusion injury in rats.

    PubMed

    Wu, Shenbao; Zhu, Xuxing; Jin, Zhonghai; Tong, Xiuping; Zhu, Liqin; Hong, Xiaofei; Zhu, Xianfei; Liu, Pengfei; Shen, Weidong

    2015-10-26

    Several drugs are effective in attenuating intestinal ischemia-reperfusion injury (IRI); however little is known about the effect of montelukast. Fifty rats were randomly assigned to 3 groups: model group (operation with clamping), sham group (operation without clamping), and study group (operation with clamping and 0.2, 2 and 20 mg/kg montelukast pretreatment). Intestinal ischemia-reperfusion was performed by occlusion (clamping) of the arteria mesenterica anterior for 45 min, followed by 24 h reperfusion. Intestinal IRI in the model group led to severe damage of the intestinal mucosa, liver and kidney. The Chiu scores of the intestines from the study group (2 and 20 mg/kg) were lower than that of the model group. Intestinal IRI induced a marked increase in CysLTR1, Caspase-8 and -9 expression in intestine, liver and kidney, which were markedly reduced by preconditioning with 2 mg/kg montelukast. Preconditioning with 2 g/kg montelukast significantly attenuated hepatic tissue injury and kidney damage, and decreased plasma interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in plasma after intestinal IRI. In conclusion, preconditioning with montelukast could attenuate intestinal IRI and the subsequent systemic inflammatory response in rats.

  8. Intracerebral adenosine infusion improves neurological outcome after transient focal ischemia in rats.

    PubMed

    Kitagawa, Hisashi; Mori, Atsushi; Shimada, Jun; Mitsumoto, Yasuhide; Kikuchi, Tetsuro

    2002-04-01

    Second Institute of New Drug Research, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan In order to elucidate the role of adenosine in brain ischemia, the possible protective effects of adenosine on ischemic brain injury were investigated in a rat model of brain ischemia both in vitro and in vivo. Exogenous adenosine dose-dependently rescued cortical neuronal cells from injury after glucose deprivation in vitro. Adenosine (1 mM) also significantly reduced hypoglycemia/hypoxia-induced glutamate release from the hippocampal slice. In a rat model of transient middle cerebral artery occlusion (MCAO), extracellular adenosine concentration was increased immediately after occlusion, and then returned to the baseline by 30 min after reperfusion. Adenosine infusion through a microdialysis probe into the ipsilateral striatum (1 mM adenosine, 2 microl min(-1), total 4.5 h from the occlusion to 3 h after reperfusion) showed a significant improvement in the neurological outcome, and about 25% reduction of infarct volume, although the effect did not reach statistical significance, compared with the vehicle-treated group at 20 h after 90 min of MCAO. These results demonstrated the neuroprotective effect of adenosine against ischemic brain injury both in vitro and in vivo, suggesting the possible therapeutic application of adenosine regulating agents, which inhibit adenosine uptake or metabolism to enhance or maintain extracellular endogenous adenosine levels, for stroke treatment.

  9. Luoyutong Treatment Promotes Functional Recovery and Neuronal Plasticity after Cerebral Ischemia-Reperfusion Injury in Rats

    PubMed Central

    Wang, Ning-qun; Wang, Li-ye; Zhao, Hai-ping; Liu, Ping; Wang, Rong-liang; Song, Jue-xian; Gao, Li; Ji, Xun-ming; Luo, Yu-min

    2015-01-01

    Luoyutong (LYT) capsule has been used to treat cerebrovascular diseases clinically in China and is now patented and approved by the State Food and Drug Administration. In this retrospective validation study we investigated the ability of LYT to protect against cerebral ischemia-reperfusion injury in rats. Cerebral ischemia-reperfusion injury was induced by middle cerebral artery occlusion followed by reperfusion. Capsule containing LYT (high dose and medium dose) as treatment group and Citicoline Sodium as positive control treatment group were administered daily to rats 30 min after reperfusion. Treatment was continued for either 3 days or 14 days. A saline solution was administered to control animals. Behavior tests were performed after 3 and 14 days of treatment. Our findings revealed that LYT treatment improved the neurological outcome, decreased cerebral infarction volume, and reduced apoptosis. Additionally, LYT improved neural plasticity, as the expression of synaptophysin, microtubule associated protein, and myelin basic protein was upregulated by LYT treatment, while neurofilament 200 expression was reduced. Moreover, levels of brain derived neurotrophic factor and basic fibroblast growth factor were increased. Our results suggest that LYT treatment may protect against ischemic injury and improve neural plasticity. PMID:26697095

  10. Luoyutong Treatment Promotes Functional Recovery and Neuronal Plasticity after Cerebral Ischemia-Reperfusion Injury in Rats.

    PubMed

    Wang, Ning-Qun; Wang, Li-Ye; Zhao, Hai-Ping; Liu, Ping; Wang, Rong-Liang; Song, Jue-Xian; Gao, Li; Ji, Xun-Ming; Luo, Yu-Min

    2015-01-01

    Luoyutong (LYT) capsule has been used to treat cerebrovascular diseases clinically in China and is now patented and approved by the State Food and Drug Administration. In this retrospective validation study we investigated the ability of LYT to protect against cerebral ischemia-reperfusion injury in rats. Cerebral ischemia-reperfusion injury was induced by middle cerebral artery occlusion followed by reperfusion. Capsule containing LYT (high dose and medium dose) as treatment group and Citicoline Sodium as positive control treatment group were administered daily to rats 30 min after reperfusion. Treatment was continued for either 3 days or 14 days. A saline solution was administered to control animals. Behavior tests were performed after 3 and 14 days of treatment. Our findings revealed that LYT treatment improved the neurological outcome, decreased cerebral infarction volume, and reduced apoptosis. Additionally, LYT improved neural plasticity, as the expression of synaptophysin, microtubule associated protein, and myelin basic protein was upregulated by LYT treatment, while neurofilament 200 expression was reduced. Moreover, levels of brain derived neurotrophic factor and basic fibroblast growth factor were increased. Our results suggest that LYT treatment may protect against ischemic injury and improve neural plasticity.

  11. The protective role of montelukast against intestinal ischemia-reperfusion injury in rats

    PubMed Central

    Wu, Shenbao; Zhu, Xuxing; Jin, Zhonghai; Tong, Xiuping; Zhu, Liqin; Hong, Xiaofei; Zhu, Xianfei; Liu, Pengfei; Shen, Weidong

    2015-01-01

    Several drugs are effective in attenuating intestinal ischemia-reperfusion injury (IRI); however little is known about the effect of montelukast. Fifty rats were randomly assigned to 3 groups: model group (operation with clamping), sham group (operation without clamping), and study group (operation with clamping and 0.2, 2 and 20 mg/kg montelukast pretreatment). Intestinal ischemia-reperfusion was performed by occlusion (clamping) of the arteria mesenterica anterior for 45 min, followed by 24 h reperfusion. Intestinal IRI in the model group led to severe damage of the intestinal mucosa, liver and kidney. The Chiu scores of the intestines from the study group (2 and 20 mg/kg) were lower than that of the model group. Intestinal IRI induced a marked increase in CysLTR1, Caspase-8 and -9 expression in intestine, liver and kidney, which were markedly reduced by preconditioning with 2 mg/kg montelukast. Preconditioning with 2 g/kg montelukast significantly attenuated hepatic tissue injury and kidney damage, and decreased plasma interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in plasma after intestinal IRI. In conclusion, preconditioning with montelukast could attenuate intestinal IRI and the subsequent systemic inflammatory response in rats. PMID:26497763

  12. Autofluorescence dynamics during reperfusion following long-term renal ischemia in a rat model

    SciTech Connect

    Raman, R N; Pivetti, C D; Matthews, D L; Troppmann, C; Demos, S G

    2008-02-08

    Optical properties of near-surface kidney tissue were monitored in order to assess response during reperfusion to long (20 minutes) versus prolonged (150 minutes) ischemia in an in vivo rat model. Specifically, autofluorescence images of the exposed surfaces of both the normal and the ischemic kidneys were acquired during both injury and reperfusion alternately under 355 nm and 266 nm excitations. The temporal profile of the emission of the injured kidney during the reperfusion phase under 355 nm excitation was normalized to that under 266 nm as a means to account for changes in tissue optical properties independent of ischemia as well as changes in the illumination/collection geometrical parameters in future clinical implementation of this technique using a hand-held probe. The scattered excitation light signal was also evaluated as a reference signal and found to be inadequate. Characteristic time constants were extracted using fit to a relaxation model and found to have larger mean values following 150 minutes of injury. The mean values were then compared with the outcome of a chronic survival study where the control kidney had been removed. Rat kidneys exhibiting longer time constants were much more likely to fail. This may lead to a method to assess kidney viability and predict its ability to recover in the initial period following transplantation or resuscitation.

  13. Autofluorescence dynamics during reperfusion following long-term renal ischemia in a rat model

    NASA Astrophysics Data System (ADS)

    Raman, Rajesh N.; Pivetti, Christopher D.; Matthews, Dennis L.; Troppmann, Christoph; Demos, Stavros G.

    2008-02-01

    Optical properties of near-surface kidney tissue were monitored in order to assess response during reperfusion to long (20 minutes) versus prolonged (150 minutes) ischemia in an in vivo rat model. Specifically, autofluorescence images of the exposed surfaces of both the normal and the ischemic kidneys were acquired during both injury and reperfusion alternately under 355 nm and 266 nm excitations. The temporal profile of the emission of the injured kidney during the reperfusion phase under 355 nm excitation was normalized to that under 266 nm as a means to account for changes in tissue optical properties independent of ischemia as well as changes in the illumination/collection geometrical parameters in future clinical implementation of this technique using a hand-held probe. The scattered excitation light signal was also evaluated as a reference signal and found to be inadequate. Characteristic time constants were extracted using a fit to a relaxation model and found to have larger mean values following 150 minutes of injury. The mean values were then compared with the outcome of a chronic survival study where the control kidney had been removed. Rat kidneys exhibiting longer time constants were much more likely to fail. This may lead to a method to assess kidney viability and predict its ability to recover in the initial period following transplantation or resuscitation.

  14. Butyrate Protects Rat Liver against Total Hepatic Ischemia Reperfusion Injury with Bowel Congestion

    PubMed Central

    Wang, Qingbao; Wang, Fangrui; Ma, Zhenyu; Qiao, Yingli

    2014-01-01

    Hepatic ischemia/reperfusion (I/R) injury is an unavoidable consequence of major liver surgery, especially in liver transplantation with bowel congestion, during which endotoxemia is often evident. The inflammatory response aggravated by endotoxin after I/R contributes to liver dysfunction and failure. The purpose of the present study was to investigate the protective effect of butyrate, a naturally occurring four-carbon fatty acid in the body and a dietary component of foods such as cheese and butter, on hepatic injury complicated by enterogenous endotoxin, as well as to examine the underlying mechanisms involved. SD rats were subjected to a total hepatic ischemia for 30 min after pretreatment with either vehicle or butyrate, followed by 6 h and 24 h of reperfusion. Butyrate preconditioning markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathological changes. The inflammatory factors levels, macrophages activation, TLR4 expression, and neutrophil infiltration in live were attenuated by butyrate. Butyrate also maintained the intestinal barrier structures, reversed the aberrant expression of ZO-1, and decreased the endotoxin translocation. We conclude that butyrate inhibition of endotoxin translocation, macrophages activation, inflammatory factors production, and neutrophil infiltration is involved in the alleviation of total hepatic I/R liver injury in rats. This suggests that butyrate should potentially be utilized in liver transplantation. PMID:25171217

  15. Moutan cortex extract exerts protective effects in a rat model of cardiac ischemia/reperfusion.

    PubMed

    Dan, Hong; Zhang, Liping; Qin, Xiaolin; Peng, Xiaohui; Wong, Mingyan; Tan, Xuan; Yu, Shanggong; Fang, Nianbai

    2016-03-01

    Moutan cortex (MC) is a traditional Chinese medicine with diverse biological effects. The present study was performed to investigate the effects of MC on myocardial ischemia/reperfusion (I/R) in rats and to explore its possible mechanisms. Sprague-Dawley rats were administered MC extract (1.98 g/kg, i.g.) for 14 days and underwent a subsequent open-chest procedure involving 30 min of myocardial ischemia and 60 min of reperfusion. The cardioprotective effect of MC was demonstrated by reduced infarct size and marked improvement in the histopathological examination. The increase in the activity of superoxide dismutase (SOD) and glutathione (GSH) as well as the reduction of malondialdehyde (MDA) indicated that MC effectively promoted the anti-oxidative defense system. Increased anti-oxidative defense was accompanied by decreased release of lactate dehydrogenase (LDH) and creatine kinase (CK). The reduction in TUNEL-positive myocytes demonstrated that MC decreased myocardial apoptosis. The mRNA expression of B cell leukemia-2 (Bcl-2) was upregulated by MC and the ratio of Bcl-2/Bcl-2-associated X protein (Bax) mRNA expression was increased. MC pretreatment decreased the mRNA expression of inducible nitric oxide synthase (iNOS). The data from this study suggest that MC exerted protective effects on acute myocardial I/R injury via anti-oxidative and anti-apoptotic activities.

  16. Effect of photobiomodulation on ischemia/reperfusion-induced renal damage in diabetic rats.

    PubMed

    Asghari, Ahmad; Takhtfooladi, Mohammad Ashrafzadeh; Hoseinzadeh, Hesam Aldin

    2016-12-01

    This study was designed to investigate the possible effect of photobiomodulation (PBM) on renal damage induced by ischemia reperfusion (IR) in diabetic rats. Twenty streptozotocin-induced diabetic rats were randomly distributed into two groups, containing ten rats each: IR group (G1) and IR + PBM group (G2). After the right nephrectomy, the ischemia was produced in the left kidney for 30 min, followed by the reperfusion for 24 h. Then, a 685-nm laser diode with an output power of 15 mW (spot size = 0.28 cm(2) and energy density = 3.2 J/cm(2)) was employed. PBM was carried out by irradiating the rats over six points on the skin over the left kidney region three times, i.e., immediately after skin suturing and 1 and 2 h after initiating reperfusion for 6 min. At the end of reperfusion period, the rats were anesthetized, and blood samples were collected and used for the estimation of renal function (blood urea nitrogen (BUN) and creatinine). Then, the left kidney was harvested for histological and biochemical examination. The serum levels of BUN and creatinine were significantly higher in G1 compared to G2 (P < 0.05). G1 had higher renal malondialdehyde (MDA) levels compared to G2 (P < 0.05). Renal IR in diabetic rats (G1) resulted in a significant decrease in renal tissue glutathione (GSH) (P < 0.05) when compared to laser-treated rats (G2). A significant restoration was observed in the levels of superoxide dismutase (SOD) (P < 0.05) and catalase (CAT) (P < 0.05) in G2 as compared to G1. The levels of nitric oxide (NO) were increased in G1 in comparison to G2 (P < 0.05). The myeloperoxidase (MPO) activity was significantly higher in the renal tissue of G1 than that of G2 (P < 0.05). In addition, specimens from the G1 had a significantly greater histological injury than those from the G2 (P < 0.05). The results of present investigation revealed that PBM attenuated kidney damage induced by renal IR in diabetic rats.

  17. Protective effects of hesperidin in experimental testicular ischemia/reperfusion injury in rats

    PubMed Central

    Celik, Emrah; Sahin, Nurhan; Turtay, Muhammet Gökhan; Oguz, Fatih; Ciftci, Osman

    2015-01-01

    Introduction In this study, we aimed to determine the protective effects of hesperidin, a citrus flavonoid, in a model of testicular ischemia/reperfusion injury in rats. Material and methods Forty-two pubertal male Wistar-Albino rats were divided into six groups: group 1 – control; group 2 – 50 mg/kg hesperidin (low dose hesperidin) used without torsion (LH group); group 3 – 100 mg/kg hesperidin without torsion (HH group); group 4 – torsion/detorsion group (T/D); group 5 – T/D + 50 mg/kg hesperidin treatment group (T/D + LH); and group 6 – T/D + 100 mg/kg hesperidin treatment group (T/D + HH). Hesperidin was given to the treatment groups 30 min before detorsion. After the fourth hour of reperfusion, orchiectomy was performed on the rats under anesthesia. The tissue samples were examined histologically and biochemically. Results In the T/D group testicular malondialdehyde (MDA) levels were increased significantly (p < 0.001) whereas superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) levels were decreased compared to the control and other groups. However, hesperidin caused the effect of T/D to become closer to normal biochemical values. In addition, the histological examinations showed that T/D caused damage in the testis but hesperidin reduced this effect. The effects of hesperidin were found to be dose dependent. Thus, applying high doses would generate greater therapeutic effects. Conclusions In a rat testicular T/D model we observed biochemical and histological damage due to ischemia. However, high and low dose applications of hesperidin were shown to have protective effects against this damage. Therefore, the aforementioned citrus flavonoid may provide positive results in cases of testicular torsion. PMID:27695481

  18. Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model

    PubMed Central

    Huang, Kun-Lun; Lan, Chou-Chin; Hsu, Yu-Juei; Wu, Geng-Chin; Peng, Chia-Hui

    2017-01-01

    Lung ischemia reperfusion injury (LIRI) is one of important complications following lung transplant and cardiopulmonary bypass. Although patients on hemodialysis are still excluded as lung transplant donors because of the possible effects of renal failure on the lungs, increased organ demand has led us to evaluate the influence of chronic kidney disease (CKD) on LIRI. A CKD model was induced by feeding Sprague-Dawley rats an adenine-rich (0.75%) diet for 2, 4 and 6 weeks, and an isolated rat lung in situ model was used to evaluate ischemia reperfusion (IR)-induced acute lung injury. The clinicopathological parameters of LIRI, including pulmonary edema, lipid peroxidation, histopathological changes, immunohistochemistry changes, chemokine CXCL1, inducible nitric oxide synthase (iNOS), proinflammatory and anti-inflammatory cytokines, heat shock protein expression, and nuclear factor-κB (NF-κB) activation were determined. Our results indicated that adenine-fed rats developed CKD as characterized by increased blood urea nitrogen and creatinine levels and the deposition of crystals in the renal tubules and interstitium. IR induced a significant increase in the pulmonary arterial pressure, lung edema, lung injury scores, the expression of CXCL1 mRNA, iNOS level, and protein concentration of the bronchial alveolar lavage fluid (BALF). The tumor necrosis factor-α levels in the BALF and perfusate; the interleukin-10 level in the perfusate; and the malondialdehyde levels in the lung tissue and perfusate were also significantly increased by LIRI. Counterintuitively, adenine-induced CKD significantly attenuated the severity of lung injury induced by IR. CKD rats exhibited increased heat shock protein 70 expression and decreased activation of NF-κB signaling. In conclusion, adenine-induced CKD attenuated LIRI by inhibiting the NF-κB pathway. PMID:28291795

  19. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model.

    PubMed

    Chen, C H; Manaenko, A; Zhan, Y; Liu, W W; Ostrowki, R P; Tang, J; Zhang, J H

    2010-08-11

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested the effect of hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague-Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H(2)); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H(2) (MCAO+H(2)). All rats received an injection of 50% dextrose (6 ml/kg i.p.) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 h during reperfusion. We measured the level of blood glucose at 0 h, 0.5 h, 4 h, and 6 h after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluated by measuring the level of 8 Hydroxyguanosine (8OHG), 4-Hydroxy-2-Nonenal (HNE) and nitrotyrosine), and matrix metalloproteinase (MMP)-2/MMP-9 activity were measured at 24 h after ischemia. We found that hydrogen inhalation for 2 h reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen was accompanied by a reduction of the expression of 8OHG, HNE, and nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500+/-32.51 to 366+/-68.22 mg/dl at 4 h after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occludin, collagen IV or aquaporin4 (AQP4). In conclusion, hydrogen gas reduced brain infarction, hemorrhagic transformation, and improved neurological function in rats. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation.

  20. Effects of Nitrate Intake on Myocardial Ischemia-Reperfusion Injury in Diabetic Rats

    PubMed Central

    Jeddi, Sajad; Khalifi, Saeedeh; Ghanbari, Mahboubeh; Bageripour, Fatemeh; Ghasemi, Asghar

    2016-01-01

    Background Coronary artery disease is 2-3 times more common in diabetic individuals. Dietary nitrate/nitrite has beneficial effects in both diabetes and cardiovascular disease. It also has protective effects against myocardial ischemia-reperfusion (IR) injury in healthy animals. However, the effects of nitrate on myocardial IR injury in diabetic rats have not yet been investigated. Objective We examined the effects of dietary nitrate on myocardial IR injury in streptozotocin-nicotinamide-induced diabetic rats. Method Rats were divided into four groups (n=7 in each group): control, control+nitrate, diabetes, and diabetes+nitrate. Type 2 diabetes was induced by injection of streptozotocin and nicotinamide. Nitrate (sodium nitrate) was added to drinking water (100 mg/L) for 2 months. The hearts were perfused in a Langendorff apparatus at 2 months and assessed before (baseline) and after myocardial IR for the following parameters: left ventricular developed pressure (LVDP), minimum and maximum rates of pressure change in the left ventricle (±dP/dt), endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA expression, and levels of malondialdehyde (MDA) and NO metabolites (NOx). Results Recovery of LVDP and ±dP/dt was lower in diabetic rats versus controls, but almost normalized after nitrate intake. Diabetic rats had lower eNOS and higher iNOS expression both at baseline and after IR, and dietary nitrate restored these parameters to normal values after IR. Compared with controls, heart NOx level was lower in diabetic rats at baseline but was higher after IR. Diabetic rats had higher MDA levels both at baseline and after IR, which along with heart NOx levels decreased following nitrate intake. Conclusion Dietary nitrate in diabetic rats provides cardioprotection against IR injury by regulating eNOS and iNOS expression and inhibiting lipid peroxidation in the heart. PMID:27849257

  1. Protective role of adiponectin in a rat model of intestinal ischemia reperfusion injury

    PubMed Central

    Liu, Xu-Hui; Yang, Yue-Wu; Dai, Hai-Tao; Cai, Song-Wang; Chen, Rui-Han; Ye, Zhi-Qiang

    2015-01-01

    AIM: To determine the potential protective role of adiponectin in intestinal ischemia reperfusion (I/R) injury. METHODS: A rat model of intestinal I/R injury was established. The serum level of adiponectin in rats with intestinal I/R injury was determined by enzyme-linked immunosorbent assay (ELISA). The serum levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were also measured by ELISA. Apoptosis of intestinal cells was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The production of malondialdehyde (MDA) and superoxide dismutase (SOD) and villous injury scores were also measured. RESULTS: Adiponectin was downregulated in the serum of rats with intestinal I/R injury compared with sham rats. No significant changes in the expression of adiponectin receptor 1 and adiponectin receptor 2 were found between sham and I/R rats. Pre-treatment with recombinant adiponectin attenuated intestinal I/R injury. The production of pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-α, in rats with intestinal I/R injury was reduced by adiponectin pre-treatment. The production of MDA was inhibited, and the release of SOD was restored by adiponectin pre-treatment in rats with intestinal I/R injury. Adiponectin pre-treatment also inhibited cell apoptosis in these rats. Treatment with the AMP-activated protein kinase (AMPK) signaling pathway inhibitor, compound C, or the heme oxygenase 1 (HO-1) inhibitor, Snpp, attenuated the protective effects of adiponectin against intestinal I/R injury. CONCLUSION: Adiponectin exhibits protective effects against intestinal I/R injury, which may involve the AMPK/HO-1 pathway. PMID:26715807

  2. Differential resolution of inflammation and recovery after renal ischemia-reperfusion injury in Brown Norway compared with Sprague Dawley rats.

    PubMed

    Sáenz-Morales, David; Conde, Elisa; Blanco-Sánchez, Ignacio; Ponte, Belen; Aguado-Fraile, Elia; de Las Casas, Gonzalo; García-Martos, Maria; Alegre, Laura; Escribese, Maria M; Molina, Ana; Santiuste, Carmen; Liaño, Fernando; García-Bermejo, Maria-Laura

    2010-05-01

    To investigate mechanisms conferring susceptibility or resistance to renal ischemia, we used two rat strains known to exhibit different responses to ischemia-reperfusion. We exposed proximal tubule cells isolated from Sprague Dawley or Brown Norway rats, to a protocol of hypoxia, followed by reoxygenation in vitro. The cells isolated from both rat strains exhibited comparable responses in the disruption of intercellular adhesions and cytoskeletal damage. In vivo, after 24 h of reperfusion, both strains showed similar degrees of injury. However, after 7 days of reperfusion, renal function and tubular structure almost completely recovered and inflammation resolved, but only in Brown Norway rats. Hypoxia-inducible factor-dependent gene expression, ERK1/2, and Akt activation were different in the two strains. Inflammatory mediators MCP-1, IL-10, INF-gamma, IL-1beta, and TNF-alpha were similarly induced at 24 h in both strains but were downregulated earlier in Brown Norway rats, which correlated with shorter NFkappaB activation in the kidney. Moreover, VLA-4 expression in peripheral blood lymphocytes and VCAM-1 expression in kidney tissues were initially similar at 24 h but reached basal levels earlier in Brown Norway rats. The faster resolution of inflammation in Brown Norway rats suggests that this strain might be a useful experimental model to determine the mechanisms that promote repair of renal ischemia-reperfusion injury.

  3. Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats.

    PubMed

    Puri, Nikkita; Mohey, Vinita; Singh, Manjinder; Kaur, Tajpreet; Pathak, Devendra; Buttar, Harpal Singh; Singh, Amrit Pal

    2016-04-01

    Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI.

  4. Beneficial effect of pentoxifylline into the testis of rats in an experimental model of unilateral hindlimb ischemia/reperfusion injury

    PubMed Central

    Takhtfooladi, Mohammad Ashrafzadeh; Moayer, Fariborz; Takhtfooladi, Hamed Ashrafzadeh

    2015-01-01

    ABSTRACT Objective The objective of the present study was to investigate the role of pentoxifylline (PTX) on remote testicular injury caused by unilateral hind limb ischemia/reperfusion of rats. Materials and Methods Twenty healthy male Wistar rats were allocated randomly into two groups: ischemia/reperfusion (IR group) and ischemia/reperfusion + pentoxifylline (IR+PTX group). Ischemia was induced by placement of a rubber tourniquet at the greater trochanter for 2h. Rats in IR+PTX group received PTX (40 mg/kg IP) before the reperfusion period. At 24h after reperfusion, testes were removed and levels of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and myeloperoxidase (MPO) activity were determined in testicular tissues. Three rats of each group were used for wet/ dry weight ratio measurement. Testicular tissues were also examined histopathologically under light microscopy. Results Activities of SOD and CAT in testicular tissues were decreased by ischemia/ reperfusion (P<0.05). Significantly increased MDA levels in testicular tissues were decreased by PTX treatment (P<0.05). MPO activity in testicular tissues in the IR group was significantly higher than in the IR+PTX group (P<0.05). The wet/dry weight ratio of testicular tissues in the IR group was significantly higher than in the IR+PTX group (P<0.05). Histopathologically, there was a statistically significant difference between two groups (P<0.05). Conclusions According to histological and biochemical findings, we conclude that PTX has preventive effects in the testicular injury induced by hind limb ischemia/reperfusion. PMID:26200554

  5. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats.

    PubMed

    Liu, Rongfang; Fang, Xianhai; Meng, Chao; Xing, Jingchun; Liu, Jinfeng; Yang, Wanchao; Li, Wenzhi; Zhou, Huacheng

    2015-09-01

    Hydrogen has antioxidant and anti-inflammatory effects on lung ischemia-reperfusion injury when it is inhaled by donor or/and recipient. This study examined the effects of lung inflation with 3% hydrogen during the cold ischemia phase on lung graft function in rats. The donor lung was inflated with 3% hydrogen, 40% oxygen, and 57% nitrogen at 5 mL/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. In the control group, the donor lung was inflated with 40% oxygen and 60% nitrogen at 5 mL/kg. The recipient was euthanized 2 h after orthotropic lung transplantation. The hydrogen concentration in the donor lung during the cold ischemia phase was 1.99-3%. The oxygenation indices in the arterial blood and pulmonary vein blood were improved in the hydrogen group. The inflammation response indices, including lung W/D ratio, the myeloperoxidase activity in the grafts, and the levels of IL-8 and TNF-α in serum, were significantly lower in the hydrogen group (5.2 ± 0.8, 0.76 ± 0.32 U/g, 340 ± 84 pg/mL, and 405 ± 115 pg/mL, respectively) than those in the control group (6.5 ± 0.7, 1.1 ± 0.5 U/g, 443 ± 94 pg/mL, and 657 ± 96 pg/mL, respectively (P < 0.05), and the oxidative stress indices, including the superoxide dismutase activity and the level of malonaldehyde in lung grafts were improved after hydrogen application. Furthermore, the lung injury score determined by histopathology, the cell apoptotic index, and the caspase-3 protein expression in lung grafts were decreased after hydrogen treatment, and the static pressure-volume curve of lung graft was improved by hydrogen inflation. In conclusion, lung inflation with 3% hydrogen during the cold ischemia phase alleviated lung graft injury and improved graft function.

  6. Effect of recombinant erythropoietin on ischemia-reperfusion-induced apoptosis in rat liver.

    PubMed

    Shawky, Heba M; Younan, Sandra M; Rashed, Leila A; Shoukry, Heba

    2012-03-01

    Ischemia-reperfusion (I/R) cannot be avoided in liver transplantation procedures, and apoptosis is a central mechanism of cell death after liver reperfusion. Protective effect of recombinant erythropoietin (rhEPO) on liver apoptosis has not been clearly investigated. This work investigated intraportal (IP) rhEPO-protective effect in a rat model of hepatic I/R-induced apoptosis and its appropriated time and dose of administration. Eight groups were included (n = 10/group): sham-operated, I/R (45 min ischemia and 2 h reperfusion), preconditioned rhEPO I/R (24 h or 30 min before ischemia), and postconditioned rhEPO I/R (before reperfusion) using two different rhEPO doses (1,000 and 5,000 IU/kg). When compared with the sham-operated group, the I/R group showed significant increase of serum levels of aspartate and alanine aminotransferases (AST, ALT), hepatic caspase-9 activity(894.99 ± 176.90 relative fluorescence units (RFU)/mg/min versus 458.48 ± 82.96 RFU/mg/min), and Fas ligand (FasL) expression, histopathological damages, and significant decrease in the antiapoptotic Bcl-xL/apoptotic Bax ratio(0.38 ± 0.21 versus 3.35 ± 0.77) rhEPO-improved ALT and AST but failed to reduce FasL expression in all groups compared with the I/R group. Thirty minutes and 24 h preconditioning with rhEPO (1,000 IU/kg) increased Bcl-xL/Bax ratio and reduced caspase-9 activity, and the same effect was observed when higher dose was given 24 h before ischemia. Preconditioning was more effective than postconditioning in improving caspase-9 activity, and no dose-dependent effect was observed. In conclusion, single IP rhEPO injection 30 min before ischemia has an advantage over rhEPO postconditioning in improving post-hepatic I/R-induced apoptosis with no additional time- and dose-dependent effects which may provide potentially useful guide in liver transplantation procedures.

  7. Continuous Monitoring of Intracellular Volumes in Isolated Rat Hearts during Normothermic Perfusion and Ischemia

    NASA Astrophysics Data System (ADS)

    Askenasy, Nadir; Navon, Gil

    1997-01-01

    The present study describes an experimental setup that enables continuous measurement of cellular volumes in isolated organs. The procedure is a modification of a recently reported method that uses multinuclear NMR measured by59Co NMR of cobalticyanide and1H NMR of water in isolated rat hearts at normothermia. The new apparatus contains a background flow which is shown to improve the rate of exchange of the marker between the interstitium and the external solution and allows detection of cellular shrinkage during no-flow ischemia. A series of experiments of marker loading and wash-out were performed to validate the method. In the Langendorff preparation, intracellular volumes (in units of milliliters per gram dry weight) of hearts perfused with Krebs-Henseleit solution oscillated around a mean value of 2.50 ± 0.06 ml/gdw. During 30 min of ischemia the cells swelled to 2.88 ± 0.08 ml/gdw and residual edema was observed after 30 min of reperfusion (2.62 ± 0.08 ml/gdw). A hypoosmotic shock was used to assess changes in membrane permeability at different time points of ischemia and reperfusion. Water influx induced by the hypoosmotic shock at the end of ischemia was similar to that elicited in perfused hearts. After 15 and 30 min of reperfusion, the magnitude of the response to hypoosmolarity decreased by 9 and 37%, respectively, indicating a gradual permeabilization of the membranes, presumably to ions. The experimental setup was also used to monitor intracellular volumes as a function of time in anisoosmotic conditions. Cellular swelling/shrinkage were delayed for periods of 5 and 8 min at osmolarities of ±50 and ±100 mosmol/liter, suggesting a limited capability of the heart to absorb an anisoosmotic shock. The variation in cellular volumes was proportional to the deviation of the conditions from isoosmolarity, and activation of volume-regulatory mechanisms was demonstrated. The noninvasive technique presented in this study is capable of providing quantitative

  8. Hyperglycemia and hypercapnia suppress BDNF gene expression in vulnerable regions after transient forebrain ischemia in the rat.

    PubMed

    Uchino, H; Lindvall, O; Siesjö, B K; Kokaia, Z

    1997-12-01

    Preischemic hyperglycemia or superimposed hypercapnia exaggerates brain damage caused by transient forebrain ischemia. Because high regional levels of brain-derived neurotrophic factor (BDNF) protein correlate with resistance to ischemic damage, we studied the expression of BDNF mRNA using in situ hybridization in rats subjected to 10 minutes of forebrain ischemia under normoglycemic, hyperglycemic, or hypercapnic conditions. Compared with normoglycemic animals, the increase of BDNF mRNA using in situ hybridization in rats subjected to 10 minutes of forebrain ischemia under normoglycemic, or hypercapnic conditions. Compared with normoglycemic animals, the increase of BDNF mRNA in dentate granule cells was attenuated and that in CA3 pyramidal neurons completely prevented in hyperglycemic rats. No ischemia-induced increases of BDNF mRNA levels in the hippocampal formation were detected in hypercapnic animals. Hyperglycemic and hypercapnic rats showed transiently decreased expression of BDNF mRNA levels in the cingulate cortex, which was not observed in normoglycemic animals. The results suggest that suppression of the BDNF gene might contribute to the increased vulnerability of the CA3 region and cingulate cortex in hyperglycemic and hypercapnic animals.

  9. Severe Calorie Restriction Reduces Cardiometabolic Risk Factors and Protects Rat Hearts from Ischemia/Reperfusion Injury

    PubMed Central

    Melo, Dirceu S.; Costa-Pereira, Liliane V.; Santos, Carina S.; Mendes, Bruno F.; Costa, Karine B.; Santos, Cynthia Fernandes F.; Rocha-Vieira, Etel; Magalhães, Flávio C.; Esteves, Elizabethe A.; Ferreira, Anderson J.; Guatimosim, Sílvia; Dias-Peixoto, Marco F.

    2016-01-01

    Background and Aims: Recent studies have proposed that if a severe caloric restriction (SCR) is initiated at the earliest period of postnatal life, it can lead to beneficial cardiac adaptations later on. We investigated the effects of SCR in Wistar rats from birth to adult age on risk factors for cardiac diseases (CD), as well as cardiac function, redox status, and HSP72 content in response to ischemia/reperfusion (I/R) injury. Methods and Results: From birth to the age of 3 months, CR50 rats were fed 50% of the food that the ad libitum group (AL) was fed. Food intake was assessed daily and body weight were assessed weekly. In the last week of the SCR protocol, systolic blood pressure and heart rate were measured and the double product index was calculated. Also, oral glucose and intraperitoneal insulin tolerance tests were performed. Thereafter, rats were decapitated, visceral fat was weighed, and blood and hearts were harvested for biochemical, functional, tissue redox status, and western blot analyzes. Compared to AL, CR50 rats had reduced the main risk factors for CD. Moreover, the FR50 rats showed increased cardiac function both at baseline conditions (45% > AL rats) and during the post-ischemic period (60% > AL rats) which may be explained by a decreased cardiac oxidative stress and increased HSP72 content. Conclusion: SCR from birth to adult age reduced risk factors for CD, increased basal cardiac function and protected hearts from the I/R, possibly by a mechanism involving ROS. PMID:27092082

  10. Preconditioning somatothermal stimulation on Qimen (LR14) reduces hepatic ischemia/reperfusion injury in rats

    PubMed Central

    2014-01-01

    Background In human beings or animals, ischemia/reperfusion (I/R) injury of the liver may occur in many clinical conditions, such as circulating shock, liver transplantation and surgery and several other pathological conditions. I/R injury has a complex pathophysiology resulting from a number of contributing factors. Therefore, it is difficult to achieve effective treatment or protection by individually targeting the mediators. This study aimed at studying the effects of local somatothermal stimulation preconditioning on the right Qimen (LR14) on hepatic I/R injury in rats. Methods Eighteen male Sprague-Dawley rats were randomly divided into three groups. The rats were preconditioned with thermal tolerance study, which included one dose of local somatothermal stimulation (LSTS) on right Qimen (LR14) at an interval of 12 h, followed by hepatic ischemia for 60 min and then reperfusion for 60 min. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) have been used to assess the liver functions, and liver tissues were taken for the measurements such as malondialdehyde (MDA), glutathione (GSH), catalase (CAT), superoxidase dismutase (SOD), and myeloperoxidase (MPO). Results The results show that the plasma ALT and AST activities were higher in the I/R group than in the control group. In addition, the plasma ALT and AST activities decreased in the groups that received LSTS. The hepatic SOD levels reduced significantly by I/R injury. Moreover, the hepatic MPO activity significantly increased by I/R injury while it decreased in the groups given LSTS. Conclusions Our findings show that LSTS provides a protective effects on the liver from the I/R injury. Therefore, LSTS might offer an easy and inexpensive intervention for patients who have suffered from I/R of the liver especially in the process of hepatotomy and hepatic transplantation. PMID:24417801

  11. The effect of nimesulide on oxidative damage inflicted by ischemia-reperfusion on the rat renal tissue.

    PubMed

    Suleyman, Zeynep; Sener, Ebru; Kurt, Nezahat; Comez, Mehmet; Yapanoglu, Turgut

    2015-03-01

    The objective of our study is to research biochemically and histopathologically the effect of nimesulide on oxidative damage inflicted by ischemia-reperfusion (I/R) on the rat renal tissue. Twenty-four albino Wistar type of male rats were used for the experiment. The animals were divided into groups as: renal ischemia-reperfusion control (RIR), nimesulide+renal ischemia-reperfusion of 50 mg/kg (NRIR-50), nimesulide+renal ischemia-reperfusion of 100 mg/kg (NRIR-100), and sham groups (SG). In NRIR-50 and NRIR-100 groups were given nimesulide, and RIR and SG groups were given distilled water, an hour after anesthesia. Groups, except for the SG group, 1-h-ischemia and then 6-h-reperfusion were performed. In the renal tissue of the RIR group in which the malondialdehyde (MDA), myeloperoxidase (MPO), and 8-hydroxyguanine (8-OHGua) levels were measured, the COX-1 and COX-2 activities were recorded. Nimesulide at 100 mg/kg doses reduced the oxidant parameters more significantly than 50 mg/kg doses; on the other hand, it raised the antioxidant parameters. It has been shown that 100 mg/kg doses of nimesulide prevented the renal I/R damage more significantly than a dose of 50 mg/kg, which shows that nimesulide, in clinics, could be used in the prevention of I/R damage.

  12. Cardioprotective effect of aqueous extract of Chichorium intybus on ischemia-reperfusion injury in isolated rat heart

    PubMed Central

    Sadeghi, Najmeh; Dianat, Mahin; Badavi, Mohammad; Malekzadeh, Ahad

    2015-01-01

    Objective: Several studies have shown that Chichorium intybus (C. intybus) which possesses flavonoid compounds has an effective role in treatment of cardiovascular diseases. Contractile dysfunction mostly occurs after acute myocardial infarction, cardiac bypass surgery, heart transplantation and coronary angioplasty. The aim of the present study was to investigate the effect of aqueous extract of C. intybus on ischemia- reperfusion injury in isolated rat heart. Materials and Methods: The animals were divided into four groups (Sham, Control, 1 mg/ml and 3 mg/ml of extract) of 8 rats. The aorta was cannulated, and then the heart was mounted on a Langendorff apparatus. Next, a balloon was inserted into the left ventricle (LV) and peak positive value of time derivate of LV pressure (+dp/dt), coronary flow (CF), and left ventricular systolic pressure (LVSP) in pre-ischemia and reperfusion period were calculated by a Power Lab system. All groups underwent a 30-minute global ischemia followed by a 60-minute reperfusion. Results: The results showed that heart rate (HR), coronary flow, and left ventricular developed pressure (LVDP) and rate of pressure product (RPP) significantly decreased in the control group during reperfusion, while these values in the groups receiving the extract (3mg/ml) improved significantly during reperfusion (p<0.001). Conclusion: It seems that flavonoid compounds of aqueous extract of C. intybus reduce ischemia - reperfusion injuries, suggesting its protective effect on heart function after ischemia. PMID:26693414

  13. Protective effect of extract of Cordyceps sinensis in middle cerebral artery occlusion-induced focal cerebral ischemia in rats

    PubMed Central

    2010-01-01

    Background Ischemic hypoxic brain injury often causes irreversible brain damage. The lack of effective and widely applicable pharmacological treatments for ischemic stroke patients may explain a growing interest in traditional medicines. From the point of view of "self-medication" or "preventive medicine," Cordyceps sinensis was used in the prevention of cerebral ischemia in this paper. Methods The right middle cerebral artery occlusion model was used in the study. The effects of Cordyceps sinensis (Caterpillar fungus) extract on mortality rate, neurobehavior, grip strength, lactate dehydrogenase, glutathione content, Lipid Peroxidation, glutathione peroxidase activity, glutathione reductase activity, catalase activity, Na+K+ATPase activity and glutathione S transferase activity in a rat model were studied respectively. Results Cordyceps sinensis extract significantly improved the outcome in rats after cerebral ischemia and reperfusion in terms of neurobehavioral function. At the same time, supplementation of Cordyceps sinensis extract significantly boosted the defense mechanism against cerebral ischemia by increasing antioxidants activity related to lesion pathogenesis. Restoration of the antioxidant homeostasis in the brain after reperfusion may have helped the brain recover from ischemic injury. Conclusions These experimental results suggest that complement Cordyceps sinensis extract is protective after cerebral ischemia in specific way. The administration of Cordyceps sinensis extract significantly reduced focal cerebral ischemic/reperfusion injury. The defense mechanism against cerebral ischemia was by increasing antioxidants activity related to lesion pathogenesis. PMID:20955613

  14. Ischemic postconditioning may not influence early brain injury induced by focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Kim, Yoo Kyung; Shin, Jin Woo; Joung, Kyoung Woon

    2010-01-01

    Background Experimental studies have shown that ischemic postconditioning can reduce neuronal injury in the setting of cerebral ischemia, but the mechanisms are not yet clearly elucidated. This study was conducted to determine whether ischemic postconditioning can alter expression of heat shock protein 70 and reduce acute phase neuronal injury in rats subjected to transient focal cerebral ischemia/reperfusion. Methods Focal cerebral ischemia was induced by intraluminal middle cerebral artery occlusion for 60 min in twenty male Sprague-Dawley rats (250-300 g). Rats were randomized into control group and an ischemic postconditioning group (10 rats per group). The animals of control group had no intervention either before or after MCA occlusion. Ischemic postconditioning was elicited by 3 cycles of 30 s reperfusion interspersed by 10 s ischemia immediately after onset of reperfusion. The infarct ratios, brain edema ratios and motor behavior deficits were analyzed 24 hrs after ischemic insult. Caspase-3 reactive cells and cells showing heat shock protein 70 activity were counted in the caudoputamen and frontoparietal cortex. Results Ischemic postconditiong did not reduce infarct size and brain edema ratios compared to control group. Neurologic scores were not significantly different between groups. The number of caspase-3 reactive cells in the ischemic postconditioning group was not significantly different than the value of the control group in the caudoputamen and frontoparietal cortex. The number of cells showing heat shock protein 70 activity was not significantly different than the control group, as well. Conclusions These results suggest that ischemic postconditioning may not influence the early brain damage induced by focal cerebral ischemia in rats. PMID:20498797

  15. The Effects of Antecedent Exercise on Motor Function Recovery and Brain-derived Neurotrophic Factor Expression after Focal Cerebral Ischemia in Rats.

    PubMed

    Kim, Gyeyeop; Kim, Eunjung

    2013-05-01

    [Purpose] In the present study, we investigated the effect of antecedent exercise on functional recovery and brain-derived neurotrophic factor (BDNF) expression following focal cerebral ischemia injury. [Subjects] The rat middle cerebral artery occlusion (MCAO) model was employed. Adult male Sprague-Dawley rats were randomly divided into 4 groups. Group I included untreated normal rats (n=10); Group II included untreated rats with focal cerebral ischemia (n=10); Group III included rats that performed treadmill exercise (20 m/min) training after focal cerebral ischemia (n=10); and Group IV included rats that performed antecedent treadmill exercise (20 m/min) training before focal cerebral ischemia (n=10) as well as treadmill exercise after ischemia. At different time points (1, 7, 14, and 21 days) Garcia's score, and the hippocampal expressions level of BDNF were examined. [Results] In the antecedent exercise group, improvements in the motor behavior index (Garcia's score) were observed and hippocampal BDNF protein expression levels increased. [Conclusion] These results indicate that antecedent treadmill exercise, before permanent brain ischemia exerts a neuroprotective effect against ischemia brain injury by improving motor performance and increasing the level of BDNF expression. Furthermore, the antecedent treadmill exercise of appropriate intensity is critical for post-stroke rehabilitation.

  16. Ischemia Increases the Twitch Latent Period in the Soleus and Extensor Carpi Radialis Longus Muscles from Adult Rats.

    PubMed

    Morales, Camilo; Fierro, Leonardo

    2016-10-27

    Complete ischemia and reperfusion effects on twitch force (∫(F·t)), twitch latent period (TLP), maximal rate of rise of twitch tension (δF/δt)max, and twitch maximum relaxation rate (TMRR) were assessed. We divided 36 adult rats into four groups; two control groups (n = 9), a group undergoing 1 hour of ischemia followed by 1 hour of reperfusion (n = 9), and one group exposed to 2 hours of ischemia followed by 1 hour of reperfusion (n = 9). We have induced twitch contractions every 10 minutes in the soleus and the extensor carpi radialis longus (ECRL). Twitch contractions were recorded and then analyzed for ∫(F·t), TLP, (δF/δt)max, and TMRR. During 1 hour and 40 minutes of ischemia, TLP increased to 179 ± 24% (p < 0.05) in the soleus and to 184 ± 16% (p < 0.05) in the ECRL, an effect that was partially recovered during 1 hour of reperfusion. This increase started after 20 minutes of ischemia in the soleus and after 40 minutes of ischemia in the ECRL. The increase was faster in the ECRL and peaked at the same time for both muscular groups. ∫(F·t) and (δF/δt)max decreased during 1 hour of ischemia to 46 ± 7% (p < 0.05) in the soleus and to 40 ± 7% (p < 0.05) in the ECRL. TMRR decreased during 1 hour of ischemia to 39 ± 5% (p < 0.05) in the soleus and to 54 ± 8% (p < 0.05) in the ECRL. During 1 hour of reperfusion all of them recovered close to control values.

  17. Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology

    SciTech Connect

    Ginsberg, M.D.; Graham, D.I.; Busto, R.

    1985-10-01

    Regional patterns of cerebral glucose utilization (rCMRglc) and blood flow (rCBF) were examined in the early recovery period following transient forebrain ischemia in order to correlate early postischemic physiological events with regionally selective patterns of ischemic neuropathology. Wistar rats were subjected to 30 or 60 minutes of graded forebrain ischemia by a method combining unilateral occlusion of the common carotid artery with moderate elevation of intracranial pressure and mild hypotension; this procedure results in a high-grade ischemic deficit affecting chiefly the lateral neocortex, striatum, and hippocampus ipsilateral to the carotid occlusion. Simultaneous measurements of rCMRglc and rCBF made in regional tissue samples after 2 and 4 hours of postischemic recirculation using a double-tracer radioisotopic strategy revealed a disproportionately high level of glucose metabolism relative to blood flow in the early postischemic striatum, owing to the resumption of nearly normal rCMRglc in the face of depressed flow. In contrast, the neocortex, which had been equally ischemic, showed parallel depressions of both metabolism and blood flow during early recovery. Light microscopy at 4 and 8 hours after recovery revealed the striatum to be the predominant locus of ischemic neuronal alterations, whereas neocortical lesions were much less prominent in extent and severity at this time. The resumption of normal levels of metabolism in the setting of a disproportionate depression of rCBF in the early postischemic period may accentuate the process of neuronal injury initiated by ischemia and may contribute to the genesis of neuronal necrosis in selectively vulnerable areas of the forebrain.

  18. The role of Apigenin in testicular damage in experimental ischemia-reperfusion injury in rats

    PubMed Central

    Skondras, I; Lambropoulou, M; Tsaroucha, A; Gardikis, S; Tripsianis, G; Simopoulos, C; Vaos, G

    2015-01-01

    Background Testicular torsion is an acute urologic emergency occurring in male newborns, children or adolescents. Prolonged ischemia for more than six hours can lead to irreversible testicular damage. Surgical detorsion allows reperfusion and is the only treatment currently available. The aim of this study was to evaluate the antioxidant effect of apigenin (APG) on the testicular ischemia-reperfusion (I/R) injury. Methods Forty-two Wistar rats were randomly divided into five groups. Sham group underwent operation of the left testis. In the torsion-detorsion groups C15 and C120, the left testis was rotated 1080o for three hours. The treatment groups Ap15 and Ap120 received the same surgical procedure as groups C15 and C120, but APG was administered intravenously at the same time of detorsion via the right femoral vein. Left orchiectomy was performed 15 min after detorsion at groups C15 and Ap15, and at 120 min at groups C120 and Ap120 for histopathologic and immunohistochemical evaluation. Results In I/R-untreated groups C15 and C120, there was a moderate to severe distortion of the tubules with lesions that varied between grades III and IV according to histopathological finding. In APG-treated groups Ap15 and Ap120, most of the lesions showed injuries of grades II and III with mild and moderate histopathological features. In Terminal deoxynucleotide transferase dUTP Nick End Labeling (Tunel) assay, APG-treated animals showed a statistically significantly decreased number of apoptotic cells compared to groups C15 and C120. Conclusion Intravenous administration of APG seems to have a protective effect on testicular ischemia-reperfusion injury after testicular torsion and detorsion. Hippokratia 2015; 19 (3): 225-230. PMID:27418781

  19. Involvement of calcium-sensing receptor in ischemia/reperfusion-induced apoptosis in rat cardiomyocytes

    SciTech Connect

    Zhang Weihua; Fu Songbin; Lu Fanghao . E-mail: lufanghao1973@yahoo.com.cn; Wu Bo; Gong Dongmei; Pan, Zhen-wei; Lv Yanjie; Zhao Yajun; Li Quanfeng; Wang Rui; Yang Baofeng; Xu Changqing . E-mail: xucq@163.com

    2006-09-08

    The calcium-sensing receptor (CaR) is a seven-transmembrane G-protein coupled receptor, which activates intracellular effectors, for example, it causes inositol phosphate (IP) accumulation to increase the release of intracellular calcium. Although intracellular calcium overload has been implicated in the cardiac ischemia/reperfusion (I/R)-induced apoptosis, the role of CaR in the induction of apoptosis has not been fully understood. This study tested the hypothesis that CaR is involved in I/R cardiomyocyte apoptosis by increasing [Ca{sup 2+}]{sub i}. The isolated rat hearts were subjected to 40-min ischemia followed by 2 h of reperfusion, meanwhile GdCl{sub 3} was added to reperfusion solution. The expression of CaR increased at the exposure to GdCl{sub 3} during I/R. By laser confocal microscopy, it was observed that the intracellular calcium was significantly increased and exhibited a collapsed {delta}{psi} {sub m}, as monitored by 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide (JC-1) during reperfusion with GdCl{sub 3}. Furthermore, the number of apoptotic cells was significantly increased as shown by TUNEL assay. Typical apoptotic cells were observed with transmission electron microscopy in I/R with GdCl{sub 3} but not in the control group. The expression of cytosolic cytochrome c and activated caspase-9 and caspase-3 was significantly increased whereas the expression of mitochondrial cytochrome c significantly decreased in I/R with GdCl{sub 3} in comparison to the control. In conclusion, these results suggest that CaR is involved in the induction of cardiomyocyte apoptosis during ischemia/reperfusion through activation of cytochrome c-caspase-3 signaling pathway.

  20. Phytic acid suppresses ischemia-induced hydroxyl radical generation in rat myocardium.

    PubMed

    Obata, Toshio; Nakashima, Michiko

    2016-03-05

    The present study examined whether ischemia-reperfusion-induced hydroxyl radical (·OH) generation was attenuated by myo-inositol hexaphosphoric acid (phytic acid). A flexibly mounted microdialysis technique was used to detect the generation of ·OH in in vivo rat hearts. To measure the level of ·OH, sodium salicylate in Ringer's solution (0.5mM or 0.5 nmol/μl/min) was infused directly through a microdialysis probe to detect the generation of ·OH as reflected by the nonenzymatic formation of 2,3-dihydroxybenzoic acid (2,3-DHBA). To confirm the generation of ·OH by Fenton-type reaction, iron(II) was infused through a microdialysis probe. A positive linear correlation between iron(II) and the formation of 2,3-DHBA (R(2)=0.983) was observed. However, the level of 2,3-DHBA in norepinephrine (100 μM) plus phytic acid (100 μM) treated group were significantly lower than those observed in norepinephrine-only-treated group (n=6, *p<0.05). To examine the effect of phytic acid on ischemia-reperfusion-induced ·OH generation, the heart was subjected to myocardial ischemia for 15 min by occlusion of the left anterior descending coronary artery (LAD). When the heart was reperfused, the normal elevation of 2,3-DHBA in the heart dialysate was not observed in animals pretreated with phytic acid. These results suggest that phytic acid is associated with antioxidant effect due to the suppression of iron-induced ·OH generation.

  1. Peritoneal Potassium and pH Measurement in Early Diagnosis of Acute Mesenteric Ischemia in Rats

    PubMed Central

    Hosseinpour, Mehrdad; Khamechian, Tahere; Shahrokh, Soraya

    2014-01-01

    Background: In contemporary practice, acute mesenteric ischemia (AMI) remains a serious cause of morbidity and mortality in abdominal emergencies. Objectives: We report the measurement of peritoneal fluid potassium and pH on a small series of rats that developed extensive AMI following the surgical ligation of superior mesenteric vessels and compare the results with control groups. Materials and Methods: A total of 32 rats were used in our study. They were divided into four groups with eight rats in each one and received following treatments: group I (G-I), 60-minute controls; group II (G-II), 120-minute controls; group III (G-III), 60-minute cases; and group IV (G-IV), 120-minute cases. In case groups, the small bowel mesenteric root was double-ligated and an arrow single-lumen central venous catheter was passed through the skin to the peritoneum. In control groups, the catheter was placed without any intervention. Postoperatively, peritoneal lavage was performed at 60 (G-I, G-III) and 120 minutes (G-II, G-IV). Results: The mean peritoneal potassium values were 1.3 ± 0.3, 1.97 ± 1.06, 2.14 ± 0.89, and 3.28 ± 0.66 mmol/L in G-I, G-II, G-III, and G-IV, respectively. There were significant differences between G-III and G-IV (P = 0.002), between G-I and G-III (P = 0.024), and between G-II and G-IV (P = 0.001). The mean values of peritoneal fluid pH were 7.1 ± 0.26, 6.82 ± 0.22, 6.66 ± 0.16, and 6.78 ± 0.04 in G-I, G-II, G-III, and G-IV, respectively, which indicated significant differences between G-I and G-III (P = 0.001) and between G-II and G-IV (P = 0.018). There was a significant correlation between peritoneal fluid potassium and intestine ischemic grade (F = 4.77, P = 0.048) Conclusions Our findings show that for early detection of bowel ischemia, an evaluation of intraperitoneal potassium and pH was useful and with prolongation of ischemia, potassium changes were more significant. PMID:25599068

  2. Protective effects of ibuprofen on testicular torsion/detorsion-induced ischemia/reperfusion injury in rats.

    PubMed

    Dokmeci, Dikmen; Kanter, Mehmet; Inan, Mustafa; Aydogdu, Nurettin; Basaran, Umit Nusret; Yalcin, Omer; Turan, Fatma Nesrin

    2007-09-01

    The aim of this study was to investigate the protective effect of ibuprofen on testicular torsion/detorsion-induced ischemia/reperfusion (I/R) injury. A total of 48 prepubertal male Wistar albino rats were divided into two models: early and late orchiectomy. Testicular torsion was created by rotating the right testis 720 degrees in a clockwise direction. The ischemia period was 5 h and orchiectomy was performed after 5 h of detorsion in the early orchiectomy model (EOM). In the late orchiectomy model (LOM), the ischemia period was 5 h and orchiectomy was performed after 7 days of detorsion. In the EOM, ibuprofen (70 mg/kg, po) was administrated only once, 40 min prior to detorsion. In the LOM, ibuprofen (70 mg/kg, po) was administered 40 min before detorsion, once daily for 7 days. Bilateral orchiectomy was performed in all groups to measure the tissue levels of malondialdehyde (MDA) and to microscopically investigate light and electrons. The presence of endothelial nitric oxide synthase (eNOS) activity was shown with immunohistochemical studies. Spermatogenesis and mean seminiferous tubule diameter (MSTD) were significantly decreased in ipsilateral and contralateral testis when both early and late I/R groups were compared to the sham groups. Furthermore, ibuprofen-treated animals showed an improved histological appearance in both models of testicular torsion. Ibuprofen treatment prevented lipid peroxidation resulting in decreased MDA accumulation in the testes of both models. After I/R, eNOS immunoreactivity was increased in the testicular tissues. Ibuprofen treatment decreased eNOS immunoreactivity in the germ cells of the tubules in the contralateral testes, but intense eNOS immunoreactivity was shown in the ipsilateral testes of the LOM. Electron microscopy of the testes of rats demonstrated that ibuprofen pretreatment was particularly effective in preventing the mitochondrial degeneration in both Sertoli and spermatid cells in the LOM. Because of its anti

  3. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    PubMed Central

    Chou, Wei-Chi; Kao, Ming-Chang; Yue, Chung-Tai; Tsai, Pei-Shan; Huang, Chun-Jen

    2015-01-01

    Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR) of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group), sham-operation (Sham), or sham plus caffeine (n = 12 in each group). To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection) was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P < 0.001 and P = 0.008, resp.). Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2) and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P < 0.05). These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs. PMID:26648663

  4. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats.

    PubMed

    Chou, Wei-Chi; Kao, Ming-Chang; Yue, Chung-Tai; Tsai, Pei-Shan; Huang, Chun-Jen

    2015-01-01

    Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR) of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group), sham-operation (Sham), or sham plus caffeine (n = 12 in each group). To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection) was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P < 0.001 and P = 0.008, resp.). Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2) and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P < 0.05). These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  5. Sustained increase in adult neurogenesis in the rat hippocampal dentate gyrus after transient brain ischemia.

    PubMed

    Wang, Congmin; Zhang, Mingguang; Sun, Chifei; Cai, Yuqun; You, Yan; Huang, Liping; Liu, Fang

    2011-01-13

    It is known that the number of newly generated neurons is increased in the young and adult rodent subventricular zone (SVZ) and dentate gyrus (DG) after transient brain ischemia. However, it remains unclear whether increase in neurogenesis in the adult DG induced by ischemic stroke is transient or sustained. We here reported that from 2 weeks to 6 months after transient middle cerebral artery occlusion (MCAO), there were more doublecortin positive (DCX+) cells in the ipsilateral compared to the sham-control and contralateral DG of the adult rat. After the S-phase marker 5-bromo-2'-deoxyuridine (BrdU) was injected 2 days after MCAO to label newly generated cells, a large number of BrdU-labeled neuroblasts differentiated into mature granular neurons. These BrdU-labeled neurons survived for at least 6 months. When BrdU was injected 6 weeks after injury, there were still more newly generated neuroblasts differentiated into mature neurons in the ipsilateral DG. Altogether, our data indicate that transient brain ischemia initiates a prolonged increase in neurogenesis and promotes the normal development of the newly generated neurons in the adult DG.

  6. Ischemia-reperfusion model in rat spinal cord: cell viability and apoptosis signaling study

    PubMed Central

    de Lavor, Mário Sérgio Lima; Binda, Nancy Scardua; Fukushima, Fabíola Bono; Caldeira, Fátima Maria Caetano; da Silva, Juliana Figueira; Silva, Carla Maria Osório; de Oliveira, Karen Maciel; Martins, Bernardo de Caro; Torres, Bruno Benetti Junta; Rosado, Isabel Rodrigues; Gomez, Renato Santiago; Gomez, Marcus Vinícius; de Melo, Eliane Gonçalves

    2015-01-01

    This work aimed at determining the ideal ischemia time in an in vitro ischemia-reperfusion model of spinal cord injury. Rat spinal cord slices were prepared and then exposed or not to oxygen deprivation and low glucose (ODLG) for 30, 45, 60, 75 and 90 minutes. Cell viability was assessed by triphenyltetrazolium (TTC), lactate dehydrogenase (LDH) release, and fluorochrome dyes specific for cell dead (ethidium homodimer) using the apotome system. Glutamate release was enzymatically measured by a fluorescent method. Gene expression of apoptotic factors was assessed by real time RT-PCR. Whereas spinal cord slices exposed to ODLG exhibited mild increase in fluorescence for 30 minutes after the insult, the 45, 60, 75 and 90 minutes caused a 2-fold increase. ODLG exposure for 45, 60, 75 or 90 minutes, glutamate and LDH release were significantly elevated. nNOS mRNA expression was overexpressed for 45 minutes and moderately increased for 60 minutes in ODLG groups. Bax/bcl-xl ratio, caspase 9 and caspase 3 mRNA expressions were significantly increased for 45 minutes of ODLG, but not for 30, 60, 75 and 90 minutes. Results showed that cell viability reduction in the spinal cord was dependent on ischemic time, resulting in glutamate and LDH release. ODLG for 45 minutes was adequate for gene expression evaluation of proteins and proteases involved in apoptosis pathways. PMID:26617703

  7. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    PubMed

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p <  0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model.

  8. In vivo spectroscopic monitoring of renal ischemia and reperfusion in a rat model

    NASA Astrophysics Data System (ADS)

    Raman, Rajesh N.; Pivetti, Christopher D.; Matthews, Dennis L.; Troppmann, Christoph; Demos, Stavros G.

    2006-02-01

    Currently no clinical tool exists that measures the degree of ischemic injury incurred in tissue and assesses tissue function following transplantation. In response to this clinical problem, we explore optical spectroscopy to quantitatively assess ischemic injury. In our method we monitor the autofluorescence intensities under excitation suitable to excite specific tissue fluorophores. Specifically, a first excitation probes NADH, a biomolecule known to change its emission properties depending on the tissue's metabolic state. A second excitation is used to mainly probe tryptophan, a biomolecule expected to be minimally affected by metabolism. We postulate that the ratio of the two autofluorescence signals can be used to monitor tissue behavior during ischemia and reperfusion. To evaluate this approach, we acquire autofluorescence images of the injured and contralateral control kidney in vivo in a rat model under excitation at both wavelengths during injury and reperfusion. Our results indicate that this approach has the potential to provide real-time monitoring of organ function during transplantation.

  9. Lipoxin A4 pretreatment mitigates skeletal muscle ischemia-reperfusion injury in rats

    PubMed Central

    Zong, Haiyang; Li, Xinghui; Lin, Haodong; Hou, Chunlin; Ma, Fenfen

    2017-01-01

    The aim of this study was to investigate the protective effects and underlying anti-oxidative molecular mechanism of lipoxin A4 (LA4) in rats with ischemia/reperfusion (I/R)-injured skeletal muscle. A rat model of I/R-injured skeletal muscle was obtained by subjecting rats to a 3-h ligation of the right femoral artery followed by 3 h of reperfusion. Treatment with LA4 significantly ameliorated histological damage scores in I/R-injured skeletal muscle. LA4 treatment resulted in remarkable decreases in the wet weight/dry weight ratio (W/D ratio), inflammatory response, oxidative stress, and cell apoptosis. In addition, treatment with LA4 was accompanied by a prominently enhanced nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and expression of heme oxygenase 1 (HO-1) in the I/R-injured skeletal muscle. However, these protective effects were reversed by zinc protoporphyrin-IX (ZnPP), a specific HO-1 inhibitor. Our study shows that LA4 may have the potential as a therapeutic agent for I/R-injured muscle tissue via activation of the Nrf2/HO-1 signaling pathway. PMID:28386340

  10. Hydrogen sulfide post-conditioning preserves interfibrillar mitochondria of rat heart during ischemia reperfusion injury.

    PubMed

    Banu, Shakila A; Ravindran, Sriram; Kurian, Gino A

    2016-07-01

    Cardiac mitochondrial dysfunction is considered to be the main manifestation in the pathology of ischemia reperfusion injury, and by restoring its functional activity, hydrogen sulfide (H2S), a novel endogenous gaseotransmitter renders cardioprotection. Given that interfibrillar (IFM) and subsarcolemmal (SSM) mitochondria are the two main types in the heart, the present study investigates the specific H2S-mediated action on IFM and SSM during ischemic reperfusion in the Langendorff rat heart model. Rats were randomly divided into five groups, namely normal, ischemic control, reperfusion control (I/R), ischemic post-conditioning (POC), and H2S post-conditioning (POC_H2S). In reperfusion control, cardiac contractility decreased, and lactate dehydrogenase, creatine kinase, and infracted size increased compared to both normal and ischemic group. In hearts post-conditioned with H2S and the classical method improved cardiac mechanical function and decreased cardiac markers in the perfusate and infarct size significantly. Both POC and POC_H2S exerts its cardioprotective effect of preserving the IFM, as evident by significant improvement in electron transport chain enzyme activities and mitochondrial respiration. The in vitro action of H2S on IFM and SSM from normal and I/R rat heart supports H2S and mediates cardioprotection via IFM preservation. Our study indicates that IFM play an important role in POC_H2S mediated cardioprotection from reperfusion injury.

  11. Neuroprotective activity of gossypin from Hibiscus vitifolius against global cerebral ischemia model in rats

    PubMed Central

    Chandrashekhar, V. M.; Ganapaty, S.; Ramkishan, A.; Narsu, M. Laxmi

    2013-01-01

    Objectives: The objective of this study is to evaluate the neuroprotective effect of gossypin (isolated from Hibiscus vitifolius) against global cerebral ischemia/reperfusion (I/R) injury-induced oxidative stress in rats. Materials and Methods: Sprague Dawlet rats of wither gender were used in the study. Evaluation of cerbroprotective activity of bioflavonoid gossypin (in 5, 10 and 20 mg/kg oral doses) isolated from H. vitifolius was carried out by using the global cerebral I/R model by bilateral carotid artery occlusion for 30 min, followed by 24 h reperfusion. The antioxidant enzymatic and non-enzymatic levels were estimated along with histopathological studies. Result: Gossypin showed dose-dependent neuroprotective activity by significant decrease in lipid peroxidation (P < 0.001) and increase in the superoxide dismutase, catalase, glutathione and total thiol levels in gossypin treated groups when compared to control group. Cerebral infarction area was markedly reduced in gossypin treated groups when compared to control group. Conclusion: Gossypin showed potent neuroprotective activity against global cerebral I/R injury-induced oxidative stress in rats. PMID:24347764

  12. Sildenafil Improves Brain Injury Recovery following Term Neonatal Hypoxia-Ischemia in Male Rat Pups.

    PubMed

    Yazdani, Armin; Khoja, Zehra; Johnstone, Aaron; Dale, Laura; Rampakakis, Emmanouil; Wintermark, Pia

    2016-01-01

    Term asphyxiated newborns remain at risk of developing brain injury despite available neuropreventive therapies such as hypothermia. Neurorestorative treatments may be an alternative. This study investigated the effect of sildenafil on brain injury induced by neonatal hypoxia-ischemia (HI) at term-equivalent age. Neonatal HI was induced in male Long-Evans rat pups at postnatal day 10 (P10) by left common carotid ligation followed by a 2-hour exposure to 8% oxygen; sham-operated rat pups served as the control. Both groups were randomized to oral sildenafil or vehicle twice daily for 7 consecutive days. Gait analysis was performed on P27. At P30, the rats were sacrificed, and their brains were extracted. The surfaces of both hemispheres were measured on hematoxylin and eosin-stained brain sections. Mature neurons and endothelial cells were quantified near the infarct boundary zone using immunohistochemistry. HI caused significant gait impairment and a reduction in the size of the left hemisphere. Treatment with sildenafil led to an improvement in the neurological deficits as measured by gait analysis, as well as an improvement in the size of the left hemisphere. Sildenafil, especially at higher doses, also caused a significant increase in the number of neurons near the infarct boundary zone. In conclusion, sildenafil administered after neonatal HI may improve brain injury recovery by promoting neuronal populations.

  13. Erdosteine improves oxidative damage in a rat model of renal ischemia-reperfusion injury.

    PubMed

    Gurel, A; Armutcu, F; Cihan, A; Numanoglu, K V; Unalacak, M

    2004-01-01

    The aim of the present study was to determine the effects of erdosteine, a new antioxidant and anti-inflammatory agent, on lipid peroxidation, neutrophil infiltration, and antioxidant enzyme activities in a rat model of renal ischemia-reperfusion (I/R) injury. Twenty-eight rats were divided into three groups: sham operation, I/R, and I/R plus erdosteine groups. After the experimental procedure, rats were sacrificed and kidneys were removed and prepared for malondialdehyde (MDA) levels, myeloperoxidase (MPO), xanthine oxidase (XO), catalase (CAT) and superoxide dismutase (SOD) activities. MDA level, MPO and XO activities were significantly increased in the I/R group. On the other hand, SOD and CAT activities were found to be decreased in the I/R group compared to the sham group. Pretreatment with erdosteine significantly diminished tissue MDA level, MPO and XO activities. Our data support a role for erdosteine in attenuation in renal damage after I/R injury of the kidney, in part at least by inhibition of neutrophil sequestration and XO activity.

  14. Quantitative analysis of iron concentration and expression of ferroportin 1 in the cortex and hippocampus of rats induced by cerebral ischemia.

    PubMed

    Li, Lin; Li, Yan-wei; Zhao, Jin-ying; Liu, Yue-Ze; Holscher, Christian

    2009-11-01

    Iron overload induced by brain ischemia has been shown to be involved in neurodegenerative disease. Little is known about the relationship between brain ischemia and ferroportin 1 (FP1). The aims of this study are: (i) to determine whether iron accumulation in the brain is induced by cerebral hypoperfusion; and (ii) to test whether expression of FP1 is influenced by cerebral ischemia. The common carotid arteries (CCA) of rats were ligated bilaterally to induce cerebral ischemia, and the iron concentration of the cortex and hippocampus was measured by graphite furnace atomic absorption spectrometry. Iron was stained by Perl's method. The expression of FP1 mRNA and protein was shown by the reverse transcriptase polymerase chain reaction and immunohistochemical methods. The iron concentration in the cortex and hippocampus of ischemic rats had increased on day 7 (CCA7) and significantly on day 28 (CCA28) compared to control rats. More iron granules had been deposited in the cerebral cortex and hippocampus in rats with bilaterally ligated CCA on CCA7 and CCA28. In ischemic rats, FP1 expression in the cerebral cortex and hippocampus was decreased by CCA7 and this was more marked by CCA28 compared to control rats. We therefore concluded that iron deposition in the cerebral cortex and hippocampus of rats is induced by cerebral ischemia. Iron deposition may be attributed to the decrease in FP1 expression, and this inhibition of FP1 expression could be a major contributor to the formation of iron deposits in cerebral ischemia.

  15. EFFECTS OF HELIUM PRECONDITIONING ON INTESTINAL ISCHEMIA AND REPERFUSION INJURY IN RATS.

    PubMed

    Du, Lei; Zhang, Rongjia; Luo, Tianhang; Nie, Mingming; Bi, Jianwei

    2015-10-01

    Intestinal ischemia-reperfusion (I/R) injury can occur in clinical settings such as organ transplantation, cardiopulmonary bypass and trauma. The noble gas helium attenuates I/R injury in a number of animal organs and thus may offer a strategy for reducing I/R-induced intestinal injury in clinical settings. In the present study, we used four different helium preconditioning (HPC) profiles to investigate the potential beneficial effect of HPC on I/R-induced intestinal injury. Male Sprague-Dawley rats were pretreated with three cycles of air breathing for 5 min combined with three cycles of breathing a 70% helium:30% oxygen mixture for either 2, 5, 10, or 15 min, after which they were subjected to 60-min intestinal ischemia and 60-min reperfusion. Sixty minutes after reperfusion, the intestinal tissues of the variously treated rats were analyzed using histology, immunohistochemistry, terminal dUTP nick-end labeling staining, myeloperoxidase activity assay, Western blotting, and enzyme-linked immunosorbent assay for tumor necrosis factor α and macrophage inflammatory protein 1α. Intestinal permeability was assayed by measuring fluorescein isothiocyanate-dextran release in blood samples. The results showed that the HPC profile consisting of three cycles of 10 or 15 min of helium breathing and three cycles of 5 min of air breathing reduced I/R-induced intestinal injury, cell apoptosis, and the inflammatory response. However, the 2- or 5-min helium breathing did not confer any protective effects. It seems that longer helium episodes should be used in HPC profiles designed to attenuate intestinal I/R injury.

  16. Dietary phytoestrogens improve stroke outcome after transient focal cerebral ischemia in rats.

    PubMed

    Burguete, María C; Torregrosa, Germán; Pérez-Asensio, Fernando J; Castelló-Ruiz, María; Salom, Juan B; Gil, José V; Alborch, Enrique

    2006-02-01

    As phytoestrogens are postulated as being neuroprotectants, we assessed the hypothesis that dietary isoflavone-type phytoestrogens are neuroprotective against ischemic stroke. Transient focal cerebral ischemia (90 min) was induced by middle cerebral artery occlusion (MCAO) following the intraluminal thread technique, both in rats fed with soy-based diet and in rats fed with isoflavone-free diet. Cerebro-cortical laser-Doppler flow (cortical perfusion, CP), arterial blood pressure, core temperature, PaO2, PaCO2, pH and glycemia were measured before, during and after MCAO. Neurological examination and infarct volume measurements were carried out 3 days after the ischemic insult. Dietary isoflavones (both glycosides and aglycones) were measured by high-performance liquid chromatography. Neither pre-ischemic, intra-ischemic nor post-ischemic CP values were significantly different between the soy-based diet and the isoflavone-free diet groups. Animals fed with the soy-based diet showed an infarct volume of 122 +/- 20.2 mm3 (19 +/- 3.3% of the whole ipsilateral hemisphere volume). In animals fed with the isoflavone-free diet the mean infarct volume was significantly higher, 191 +/- 26.7 mm3 (28 +/- 4.1%, P < 0.05). Neurological examination revealed significantly higher impairment in the isoflavone-free diet group compared with the soy-based diet group (3.3 +/- 0.5 vs. 1.9 +/- 0.5, P < 0.05). These results demonstrate that dietary isoflavones improve stroke outcome after transient focal cerebral ischemia in such a way that a higher dietary isoflavone content results in a lower infarct volume and a better neurological status.

  17. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium

    PubMed Central

    Juhasz, Bela; Thirunavukkarasu, Mahesh; Pant, Rima; Zhan, Lijun; Penumathsa, Suresh Varma; Secor, Eric R.; Srivastava, Sapna; Raychaudhuri, Utpal; Menon, Venugopal P.; Otani, Hajime; Thrall, Roger S.; Maulik, Nilanjana

    2008-01-01

    Bromelain (Br), a proteolytic enzyme extracted from the stem of the pineapple, is known to possess anti-inflammatory activity and has been shown to reduce blood viscosity, prevent the aggregation of blood platelets, and improve ischemia-reperfusion (I/R) injury in a skeletal muscle model. We investigated the capacity of Br to limit myocardial injury in a global I/R model. Adult male Sprague-Dawley rats were divided into two groups: control (PBS) and Br at 10 mg/kg in PBS administered via intraperitoneal injection (twice/day) for 15 consecutive days. On day 16, the hearts were excised and subjected to 30 min of global ischemia followed by 2 h of reperfusion. Br treatment showed higher left ventricular functional recovery throughout reperfusion compared with the controls [maximum rate of rise in intraventricular pressure (dP/dtmax), 2,225 vs. 1,578 mmHg/s at 2 h reperfusion]. Aortic flow was also found to be increased in Br treatment when compared with that in untreated rats (11 vs. 1 ml). Furthermore, Br treatment reduced both the infarct size (34% vs. 43%) and the degree of apoptosis (28% vs. 37%) compared with the control animals. Western blot analysis showed an increased phosphorylation of both Akt and FOXO3A in the treatment group compared with the control. These results demonstrated for the first time that Br triggers an Akt-dependent survival pathway in the heart, revealing a novel mechanism of cardioprotective action and a potential therapeutic target against I/R injury. PMID:18192224

  18. Verapamil augments the neuroprotectant action of berberine in rat model of transient global cerebral ischemia.

    PubMed

    Singh, Dhirendra Pratap; Chopra, Kanwaljit

    2013-11-15

    Various potential molecules with putative positive role in stroke pathology have failed to confer neuro-protection in animal models due to their insufficient bioavailability in brain. Efflux of these molecules by P-glycoprotein (P-gp), on blood brain barrier (BBB) is one of the reasons of their poor bioavailability. Berberine, have anti-inflammatory, antioxidant, anti-apoptotic properties, but also having low oral bioavailabilty. Verapamil, which increased the central nervous system uptake of few drugs, when concomitantly administered with berberine was evaluated in this animal model. Wistar rats were subjected to bilateral common carotid artery occlusion to induce acute cerebral ischemia for 15 min followed by reperfusion resulting in transient global cerebral ischemia. For 19 days berberine (5, 10, 20mg/kg, p.o.) alone and in similar doses concomitantly with verapamil (2mg/kg, p.o.) was evaluated employing various neuro-behavioral test, biochemical parameters and molecular estimations. The adjunction of berberine with verapamil improved the neurological outcome in a battery of behavioral paradigms, improved spatial memory in Morris water maze task, ameliorated the oxidative-nitrosative stress, increased acetylcholinesterase (AChE) activity, as well as improved mitochondrial complex (I, II, and IV) activity, reducing tumor necrosis factor-alpha, interleukin-1 beta and caspase-3 levels in brain tissues as compared to berberine alone group in ischemic rats. There is a strong possibility of improved brain bioavailabity of berberine when combined with verapamil. The findings suggested that the combination of berberine with verapamil, which could enhance its brain uptake, will surely provide a greater impact in neroprotection drug discovery for search of such combination.

  19. Short-Term Sleep Deprivation Stimulates Hippocampal Neurogenesis in Rats Following Global Cerebral Ischemia/Reperfusion

    PubMed Central

    Cheng, Oumei; Li, Rong; Zhao, Lei; Yu, Lijuan; Yang, Bin; Wang, Jia; Chen, Beibei; Yang, Junqing

    2015-01-01

    Background Sleep deprivation (SD) plays a complex role in central nervous system (CNS) diseases. Recent studies indicate that short-term SD can affect the extent of ischemic damage. The aim of this study was to investigate whether short-term SD could stimulate hippocampal neurogenesis in a rat model of global cerebral ischemia/reperfusion (GCIR). Methods One hundred Sprague-Dawley rats were randomly divided into Sham, GCIR and short-term SD groups based on different durations of SD; the short-term SD group was randomly divided into three subgroups: the GCIR+6hSD*3d-treated, GCIR+12hSD-treated and GCIR+12hSD*3d-treated groups. The GCIR rat model was induced via the bilateral occlusion of the common carotid arteries and hemorrhagic hypotension. The rats were sleep-deprived starting at 48 h following GCIR. A Morris water maze test was used to assess learning and memory ability; cell proliferation and differentiation were analyzed via 5-bromodeoxyuridine (BrdU) and neuron-specific enolase (NSE), respectively, at 14 and 28 d; the expression of hippocampal BDNF was measured after 7 d. Results The different durations of short-term SD designed in our experiment exhibited improvement in cognitive function as well as increased hippocampal BDNF expression. Additionally, the short-term SD groups also showed an increased number of BrdU- and BrdU/NSE-positive cells compared with the GCIR group. Of the three short-term SD groups, the GCIR+12hSD*3d-treated group experienced the most substantial beneficial effects. Conclusions Short-term SD, especially the GCIR+12hSD*3d-treated method, stimulates neurogenesis in the hippocampal dentate gyrus (DG) of rats that undergo GCIR, and BDNF may be an underlying mechanism in this process. PMID:26039740

  20. Polyol pathway and modulation of ischemia-reperfusion injury in Type 2 diabetic BBZ rat hearts

    PubMed Central

    Li, Qing; Hwang, Yuying C; Ananthakrishnan, Radha; Oates, Peter J; Guberski, Dennis; Ramasamy, Ravichandran

    2008-01-01

    We investigated the role of polyol pathway enzymes aldose reductase (AR) and sorbitol dehydrogenase (SDH) in mediating injury due to ischemia-reperfusion (IR) in Type 2 diabetic BBZ rat hearts. Specifically, we investigated, (a) changes in glucose flux via cardiac AR and SDH as a function of diabetes duration, (b) ischemic injury and function after IR, (c) the effect of inhibition of AR or SDH on ischemic injury and function. Hearts isolated from BBZ rats, after 12 weeks or 48 weeks diabetes duration, and their non-diabetic littermates, were subjected to IR protocol. Myocardial function, substrate flux via AR and SDH, and tissue lactate:pyruvate (L/P) ratio (a measure of cytosolic NADH/NAD+), and lactate dehydrogenase (LDH) release (a marker of IR injury) were measured. Zopolrestat, and CP-470,711 were used to inhibit AR and SDH, respectively. Myocardial sorbitol and fructose content, and associated changes in L/P ratios were significantly higher in BBZ rats compared to non-diabetics, and increased with disease duration. Induction of IR resulted in increased ischemic injury, reduced ATP levels, increases in L/P ratio, and poor cardiac function in BBZ rat hearts, while inhibition of AR or SDH attenuated these changes and protected hearts from IR injury. These data indicate that AR and SDH are key modulators of myocardial IR injury in BBZ rat hearts and that inhibition of polyol pathway could in principle be used as a therapeutic adjunct for protection of ischemic myocardium in Type 2 diabetic patients. PMID:18957123

  1. Effect of thymoquinone, a constituent of Nigella sativa L., on ischemia-reperfusion in rat skeletal muscle.

    PubMed

    Hosseinzadeh, Hossein; Taiari, Samaneh; Nassiri-Asl, Marjan

    2012-05-01

    Thymoquinone have been shown to decrease ischemia-reperfusion injury (IRI) in some tissues such as gastric mucosa and brain. In this study, the effect of thymoquinone was evaluated on an animal model of IRI in the rat hind limb. Hind limb ischemia was induced by clamping the common femoral artery and vein. After 2 h ischemia, the clamp on the femoral vessels was taken off and the animal underwent 1 h reperfusion. Muscle injuries were evaluated by recording the electromyographic (EMG) potentials and performing some biochemical analysis including thiobarbituric acid reactive substances (TBARS), total sulfhydryl (SH) groups, and antioxidant capacity of muscle using ferric reducing ability of plasma (FRAP) assay. Ischemia was induced using free-flap surgery in skeletal muscle. Thymoquinone (20, 40 and 80 mg/kg) and normal saline (10 ml/kg) were administered intraperitoneally 1 h prior to reperfusion. The average peak-to-peak amplitude during ischemic reperfusion was significantly increased in thymoquinone groups in comparison with the control group. Following thymoquinone administration, the total SH contents and antioxidant capacity were elevated in muscle flap. The malondialdehyde (MDA) level was declined significantly in test groups. It is concluded that thymoquinone have some protective effects against the muscle tissue injury caused by lower limb ischemia-reperfusion.

  2. Reoxygenation, but neither hypoxia nor intermittent ischemia, increases ( sup 125 I)endothelin-1 binding to rat cardiac membranes

    SciTech Connect

    Liu, J.J.; Gu, X.H.; Casley, D.J.; Nayler, W.G. )

    1990-03-01

    Standard binding techniques were used to establish whether either hypoxia, reoxygenation, perfusion under acidotic conditions, or stunning of the myocardium resembles ischemia and postischemic reperfusion in increasing cardiac membrane ({sup 125}I)endothelin-1 (ET-1) binding site density (Bmax). Membranes from aerobically perfused rat hearts bound ({sup 125}I)ET-1 to a single population of sites, with an affinity (KD) of 0.093 +/- 0.004 nM and a Bmax of 98.8 +/- 5.2 fmol/mg of protein. Bmax was increased (p less than 0.01) after 30 min of global ischemia, and further increased upon reperfusion, without changes in KD or selectivity. Neither three 10 min episodes of ischemia separated by 15 min of perfusion, nor perfusion at pH 6.8 instead of 7.4, nor 60 min of hypoxia altered Bmax, KD, or selectivity. Reoxygenation after 60 min of hypoxia increased Bmax (p less than 0.01) and KD (p less than 0.01) without changing selectivity. These results are interpreted to mean that the ischemia-induced increase in Bmax for ({sup 125}I)ET-1 cannot be explained simply in terms of the ischemia-induced acidosis, or the accompanying reduction in tissue adenosine triphosphate and creatine phosphate.

  3. Inhibition of mTOR Pathway by Rapamycin Reduces Brain Damage in Rats Subjected to Transient Forebrain Ischemia

    PubMed Central

    Yang, Xiao; Hei, Changhun; Liu, Ping; Song, Yaozu; Thomas, Taylor; Tshimanga, Sylvie; Wang, Feng; Niu, Jianguo; Sun, Tao; Li, P. Andy

    2015-01-01

    The aims of this study are to clarify the role of mTOR in mediating cerebral ischemic brain damage and the effects of rapamycin on ischemic outcomes. Ten minutes of forebrain ischemia was induced in rats, and their brains were sampled after 3 h, 16 h, and 7 days reperfusion for histology, immunohistochemistry and biochemical analysis. Our data demonstrated that cerebral ischemia resulted in both apoptotic and necrotic neuronal death; cerebral ischemia and reperfusion led to significant increases of mRNA and protein levels of p-mTOR and its downstream p-P70S6K and p-S6; elevation of LC3-II, and release of cytochrome c into the cytoplasm in both the cortex and hippocampus. Inhibition of mTOR by rapamycin markedly reduced ischemia-induced damage; suppressed p-Akt, p-mTOR, p-P70S6K and p-S6 protein levels; decreased LC3-II and Beclin-1; and prevented cytochrome c release in the two structures. All together, these data provide evidence that cerebral ischemia activates mTOR and autophagy pathways. Inhibition of mTOR deactivates the mTOR pathway, suppresses autophagy, prevents cytochrome c release and reduces ischemic brain damage. PMID:26681922

  4. Antiinflammatory effects of soluble complement receptor type 1 promote rapid recovery of ischemia/reperfusion injury in rat small intestine.

    PubMed

    Eror, A T; Stojadinovic, A; Starnes, B W; Makrides, S C; Tsokos, G C; Shea-Donohue, T

    1999-02-01

    We examined the effect of soluble complement receptor type 1 (sCR1) on mucosal injury and inflammation in a rat model of ischemia/reperfusion. Groups of vehicle- and sCR1-treated rats underwent 30 min of mesenteric ischemia followed by 60 or 120 min of reperfusion. When compared to vehicle-treated rats, treatment with sCR1 (12 mg/kg) prior to 120 min of reperfusion significantly reduced mucosal injury, neutrophil infiltration, leukotriene B4 production, and restored villus height to control levels. The protective effect of sCR1 evident at 120 min of reperfusion was not observed at 60 min of reperfusion despite rapid inactivation of complement. These data suggest that complement inhibition minimized mucosal disruption by facilitating mucosal restitution or interrupting the inflammatory process. Delayed administration of sCR1 for 30 or 60 min into the reperfusion period progressively reduced the protection. sCR1-mediated rapid recovery of rat intestine after ischemia/reperfusion underscores the fundamental role of complement activation in neutrophil-mediated tissue injury.

  5. Functional study of TREK-1 potassium channels during rat heart development and cardiac ischemia using RNAi techniques.

    PubMed

    Yang, Xiaojuan; Guo, Peng; Li, Jiang; Wang, Weiping; Xu, Shaofeng; Wang, Ling; Wang, Xiaoliang

    2014-08-01

    To explore the physiological and pathological significance of the 2-pore domain potassium channel TWIK-related K(+) (TREK)-1 in rat heart, its expression and role during heart development and cardiac ischemia were investigated. In the former study, the ventricles of Sprague Dawley rats were collected from embryo day 19 to postnatal 18 months and examined for mRNA and protein expression of TREK-1. It was found that both increased during development, reached a maximum at postnatal day 28, and remained higher at postnatal day 3 through to postnatal 18 months. In the latter study, protein expression of TREK-1 was examined after initiation of acute heart ischemia by ligation of the left anterior descending coronary artery. TREK-1 expression was found to be increased in the endocardium but unchanged in the epicardium. In primary cultured rat neonatal ventricular myocytes subjected to hypoxia (oxygen-glucose deprivation), TREK-1 expression was increased. In cultured neonatal cardiomyocytes, silencing of the TREK-1 gene by lentivirus delivery of the short-hairpin RNAs, L-sh-492 and L-sh-605, was found to promote their viability and number. In addition, both short-hairpin RNA provided protection against hypoxia-induced injury to cardiomyocytes in vitro. These results suggest that TREK-1 plays an important role in neonatal rat heart development and downregulation of TREK-1 may provide protection against ischemic injury. It seems that TREK-1 is a potential drug target for treatment of acute heart ischemia.

  6. Minocycline mitigates motor impairments and cortical neuronal loss induced by focal ischemia in rats chronically exposed to ethanol during adolescence.

    PubMed

    Oliveira, Gedeão Batista; Fontes, Enéas de Andrade; de Carvalho, Sabrina; da Silva, Josiane Batista; Fernandes, Luanna Melo Pereira; Oliveira, Maria Cristina Souza Pereira; Prediger, Rui Daniel; Gomes-Leal, Walace; Lima, Rafael Rodrigues; Maia, Cristiane Socorro Ferraz

    2014-05-02

    Ethanol is an important risk factor for the occurrence of cerebral ischemia contributing to poor prognosis and inefficacy of drug treatments for stroke-related symptoms. Females have a higher lifetime risk for stroke than males. Moreover, female gender has been associated with increased ethanol consumption during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence may potentiate the motor impairments and cortical damage induced by focal ischemia in female rats. We also addressed whether these effects can be mitigated by minocycline, which has been shown to be neuroprotective against different insults in the CNS. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) for 55 days by gavage. Focal ischemia was induced by microinjections of endothelin-1 (ET-1) into the motor cortex. Animals of both groups were treated daily with minocycline (25-50 mg/kg, i.p.) or sterile saline (i.p.) for 5 days, and motor function was assessed using open field, inclined plane and rotarod tests. Chronic ethanol exposure exacerbated locomotor activity and motor coordination impairments induced by focal ischemia in rats. Moreover, histological analysis revealed that microinjections of ET-1 induced pyramidal neuron loss and microglial activation in the motor cortex. Minocycline reversed the observed motor impairments, microglial activation and pyramidal neuron loss in the motor cortex of ischemic rats even in those exposed to ethanol. These results suggest that minocycline induces neuroprotection and functional recovery in ischemic female rats intoxicated with ethanol during adolescence. Furthermore, the mechanism underlying this protective effect may be related to the modulation of neuroinflammation.

  7. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation

    PubMed Central

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    Purpose: The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. Methods: A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Results: Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Conclusions: Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease. PMID:27648122

  8. In vivo estimation of optical properties of rat liver using single-reflectance fiber probe during ischemia and reperfusion

    NASA Astrophysics Data System (ADS)

    Akter, Sharmin; Tanabe, Tomoki; Maejima, Satoshi; Kawauchi, Satoko; Sato, Shunichi; Hinoki, Akinari; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi

    2016-04-01

    To quantify the changes in optical properties of in vivo rat liver tissue, we applied diffuse reflectance spectroscopy (DRS) system using single-reflectance fiber probe during ischemia and reperfusion evoked by hepatic portal occlusion (hepatic artery, portal vein and bile duct). Changes in the reduced scattering coefficient μ s', the absorption coefficient μ a, the tissue oxygen saturation StO2, and the oxidation of heme aa3 in cytochrome c oxidase (C cO) OHaa3 of in vivo rat liver (n = 6) were evaluated. Heme aa3 in C cO were significantly reduced (P < 0.05) during ischemia, which indicates a sign of mitochondrial energy failure induced by oxygen insufficiency of liver tissue. We found that OHaa3 obtained from the proposed method was unchanged immediately after the onset of ischemia and started gradually decreasing at 2 min after the onset of ischemia. Difference in the time course between OHaa3 and the conventional ratio metric analysis with μ a(605)/ μ a(620) reported in literature demonstrates that the proposed method is effective in reduction of optical cross talk between hemoglobin and heme aa3. Our results suggest that DRS technique is applicable and useful for assessing in vivo tissue viability and hemodynamics in liver intraoperatively.

  9. Insulin Reduces Cerebral Ischemia/Reperfusion Injury in the Hippocampus of Diabetic Rats

    PubMed Central

    Collino, Massimo; Aragno, Manuela; Castiglia, Sara; Tomasinelli, Chiara; Thiemermann, Christoph; Boccuzzi, Giuseppe; Fantozzi, Roberto

    2009-01-01

    OBJECTIVE—There is evidence that insulin reduces brain injury evoked by ischemia/reperfusion (I/R). However, the molecular mechanisms underlying the protective effects of insulin remain unknown. Insulin is a well-known inhibitor of glycogen synthase kinase-3β (GSK-3β). Here, we investigate the role of GSK-3β inhibition on I/R-induced cerebral injury in a rat model of insulinopenic diabetes. RESEARCH DESIGN AND METHODS—Rats with streptozotocin-induced diabetes were subjected to 30-min occlusion of common carotid arteries followed by 1 or 24 h of reperfusion. Insulin (2–12 IU/kg i.v.) or the selective GSK-3β inhibitor TDZD-8 (0.2–3 mg/kg i.v.) was administered during reperfusion. RESULTS—Insulin or TDZD-8 dramatically reduced infarct volume and levels of S100B protein, a marker of cerebral injury. Both drugs induced phosphorylation of the Ser9 residue, thereby inactivating GSK-3β in the rat hippocampus. Insulin, but not TDZD-8, lowered blood glucose. The hippocampi of the drug-treated animals displayed reduced oxidative stress at 1 h of reperfusion as shown by the decreased generation of reactive oxygen species and lipid peroxidation. I/R-induced activation of nuclear factor-κB was attenuated by both drug treatments. At 24 h of reperfusion, TDZD-8 and insulin significantly reduced plasma levels of tumor necrosis factor-α; neutrophil infiltration, measured as myeloperoxidase activity and intercellular-adhesion-molecule-1 expression; and cyclooxygenase-2 and inducible-NO-synthase expression. CONCLUSIONS—Acute administration of insulin or TDZD-8 reduced cerebral I/R injury in diabetic rats. We propose that the inhibitory effect on the activity of GSK-3β contributes to the protective effect of insulin independently of any effects on blood glucose. PMID:18840784

  10. Intermedin protects against myocardial ischemia-reperfusion injury in diabetic rats

    PubMed Central

    2013-01-01

    Background Diabetic patients, through incompletely understood mechanisms, endure exacerbated ischemic heart injury compared to non-diabetic patients. Intermedin (IMD) is a novel calcitonin gene-related peptide (CGRP) superfamily member with established cardiovascular protective effects. However, whether IMD protects against diabetic myocardial ischemia/reperfusion (MI/R) injury is unknown. Methods Diabetes was induced by streptozotocin in Sprague–Dawley rats. Animals were subjected to MI via left circumflex artery ligation for 30 minutes followed by 2 hours R. IMD was administered formally 10 minutes before R. Outcome measures included left ventricular function, oxidative stress, cellular death, infarct size, and inflammation. Results IMD levels were significantly decreased in diabetic rats compared to control animals. After MI/R, diabetic rats manifested elevated intermedin levels, both in plasma (64.95 ± 4.84 pmol/L, p < 0.05) and myocardial tissue (9.8 ± 0.60 pmol/L, p < 0.01) compared to pre-MI control values (43.62 ± 3.47 pmol/L and 4.4 ± 0.41). IMD administration to diabetic rats subjected to MI/R decreased oxidative stress product generation, apoptosis, infarct size, and inflammatory cytokine release (p < 0.05 or p < 0.01). Conclusions By reducing oxidative stress, inflammation, and apoptosis, IMD may represent a promising novel therapeutic target mitigating diabetic ischemic heart injury. PMID:23777472

  11. Effect of sildenafil citrate in nicotine-induced ischemia: An experimental study using a rat model.

    PubMed

    Baykan, Halit; Ozyazgan, Irfan; Selçuk, Caferi Tayyar; Altiparmak, Mehmet; Ozköse, Mehmet; Ozyurt, Kemal

    2013-01-01

    Recent experimental and clinical studies have demonstrated the negative effects of nicotine on the viability of skin flaps. Necrotic damage to skin flaps can result in significant complications including delayed wound healing, dehiscence and wound contraction. Phosphodiesterase type 5 inhibitors, such as sildenafil citrate, have a protective effect in ischemic injuries of the brain, kidney, myocardium, spinal cord, ileum and testes. In the present study, the authors evaluated the effect of sildenafil citrate on the viability of skin exposed to nicotine-induced ischemia in Sprague Dawley rats. In the preoperative period, the rats were divided into three groups of 10 rats each. Group C was treated with subcutaneous saline and group S and group N were treated with 2 mg/kg nicotine, administered subcutaneously twice per day for 28 days. McFarlane flaps were created in all experimental animals using an incision measuring 7 cm × 3 cm. Postoperative treatment varied among the groups: group S was treated with 20 mg/kg/day sildenafil citrate, while group C and group N were treated with equivalent doses of saline for seven days. A laser Doppler flow meter was used to monitor the microvasculature. Preoperative measurements of the microvasculature revealed decreased blood flow in group N and group S, both of which were treated with subcutaneous nicotine. During the postoperative evaluation, a trend toward increased blood flow was observed in group S compared with the group with nicotine-induced ischemia treated with saline alone postoperatively (group N). A visual fluorescein dye test was used to predict skin viability and demonstrated diminished skin viability in group N and group S (P<0.05) during the preoperative period. Following treatment with sildenafil for seven days, a statically significant improvement in skin viability was observed in group S (P<0.05). Nicotine decreased blood flow within the skin and impaired skin viability, while postoperative application of

  12. Gastrodin improves cognitive dysfunction and decreases oxidative stress in vascular dementia rats induced by chronic ischemia

    PubMed Central

    Li, Yang; Zhang, Zhenxing

    2015-01-01

    Objective: To study the potential protective effects of gastrodin on reducing tissue oxidative stress and attenuating cognitive deficits in vascular dementia induced by cerebral chronic hyperfusion. To explore the detailed molecular mechanisms. Methods: 6 to 8 week old male Wistar rats were adopted as experimental animals. Animals were divided into the following groups: Group 1 (sham group with no occlusion), Group 2 (control group with 2VO procedure), Group 3 (sham group with gastrodin administration), Group 4 (2VO group with gastrodin administration). Morris water maze (MWM) test was adopted to test the learning and memory function of rats within different groups. MDA, glutathione peroxidase and total thiol assessment was done to reflect the oxidative stress in the brain tissue. Cell counting kit-8 (CCK8) and flow cytometry (FCM) were performed to examine the cell viability and apoptosis rate of SH-SY5Y cells induced by hydrogen peroxide and rescued by gastrodin treatments. Reactive oxygen species (ROS) generation was determined by the 2’, 7’-dichlorofluorescein diacetate (DCFH-DA) assay. qPCR and Western blot (WB) were adopted to detect the molecular mechanisms related to the anti-apoptosis and ROS scavenging effects of gastrodin. Results: Our results indicated an obvious protective effect of gastrodin on vascular dementia induced brain ischemia. Administration of gastrodin could improve the impaired learning and memory function induced by 2VO procedure in rats. The levels of MDA were partially decreased by the administration of gastrodin. The levels of glutathione peroxidase and total thiol were partially restored by the administration of gastrodin. Cell viability was improved by gastrodin in a dose-dependent pattern on SH-SY5Y cells induced by hydrogen peroxide (P < 0.05). Cell apoptosis rate was reduced by gastrodin in a dose-dependent pattern on SH-SY5Y cells induced by hydrogen peroxide (P < 0.05). Gastrodin could scavenge ROS generation induced by pre

  13. Assessment transcallosal Diaschisis in a model of focal cerebral ischemia in rats

    PubMed Central

    Muñoz Ospina, Beatriz Elena; Castaño, Daniel Manrique; Potes, Laura; Umbarila Prieto, John

    2016-01-01

    Objective: To evaluate transcallosal changes after a local ischemic injury in rats by using the monoclonal marker anti-NeuN (Mouse anti-neuronal nuclei). Methods: Twenty-eight adult, male, Wistar rats were subjected to focal injury in the right hemisphere. The technique used was the experimental model of focal ischemic injury through intraluminal suture of the middle cerebral artery. Analyses were made for the five groups: after the lesion (control), at 24 h, 96 h, 10 days and 20 days. Exofocal neuronal damage was inferred from neuronal immunoreactivity changes to NeuN. Results: In the cortex contralateral to the lesion, immunoreactivity was diminished. This finding was most notable in the supra-granular sheets 24 h post ischemia. After 96 h, there was a generalized diminishment of the inmmunoreactivity in the supra and infra-granular sheets. At 10 and 20 days, the tissue recovered some immunoreactivity to NeuN, but there were some changes in the VI layer. Conclusion: The immunoreactive changes to NeuN support the process of inter-hemispheric diaschisis. Changes in immunoreactivity could indicate metabolic stress secondary to the disruption in connectivity to the site of lesion. PMID:27546930

  14. Ischemic postconditioning provides protection against ischemia-reperfusion injury in intestines of rats.

    PubMed

    Chu, Weiwei; Li, Sheng; Wang, Shanwei; Yan, Aili; Nie, Lei

    2015-01-01

    In the present study, we investigated the protective role of ischemic postconditioning (IPOST) against intestine ischemia-reperfusion (I/R) injury in rats. Male Sprague-Dawley rats were divided into sham-operation group (S), I/R group (I/R), ischemic preconditioning group (IPC), ischemic postconditioning group (IPOST). After reperfusion, small intestines were resected for histopathologic evaluations. To evaluate DNA fragmentation, resolving agarose gel electrophoresis was performed. To measure cellular apoptotic rates in intestine tissues, we performed TUNEL staining. To examine lipid peroxidation, production of superoxide radicals and tissue neutrophil infiltration, we tested the content of malondialdehyde and activities of superoxidase dismutase and myeloperoxidase in intestine tissues, respectively. Under light microscope, intestinal mucosal impairment in IPOST and IPC groups was found milder than that in I/R group (P < 0.05). The number of apoptosis cells in I/R group was significantly higher than that in IPOST and IPC groups (P < 0.05). The content of malondialdehyde and activity of myeloperoxidase were significantly reduced in IPOST group and IPC group compared with I/R group, but the activity of superoxidase dismutase in IPOST group and IPC group was enhanced compared with I/R group (P < 0.05). These results suggest that IPOST results in protection against intestine I/R injury, which may be related to reduced production of reactive oxygen species, enhanced activities of antioxidant systems and inhibited apoptosis of intestinal mucosal cells.

  15. Cardioprotective Effects of Astragalin against Myocardial Ischemia/Reperfusion Injury in Isolated Rat Heart

    PubMed Central

    Qu, Daoxu; Ren, Huanhuan; Yang, Wenxiao; Zhang, Xinjie; Zheng, Qiusheng; Wang, Dong

    2016-01-01

    This study aims to evaluate the cardioprotective effects of astragalin against myocardial ischemia/reperfusion (I/R) injury in isolated rat heart. The cardioprotective effects of astragalin on myocardial I/R injury were investigated on Langendorff apparatus. Adult male Sprague-Dawley rats were randomly divided into five groups. The results showed that astragalin pretreatment improved myocardial function. Compared with I/R group, lactate dehydrogenase (LDH) and creatine kinase (CK) activities in coronary flow decreased in astragalin pretreatment groups, whereas superoxide dismutase (SOD) activity and glutathione/glutathione disulfide (GSH/GSSG) ratio significantly increased. The levels of malondialdehyde (MDA), intracellular reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) decreased in astragalin-treated groups. The infarct size (IS) and apoptosis rate in hearts from astragalin-treated groups were lower than those in hearts from the I/R group. Western blot analysis also revealed that astragalin preconditioning significantly reduced Bax level, whereas Bcl-2 was increased in the myocardium. Therefore, astragalin exhibited cardioprotective effects via its antioxidative, antiapoptotic, and anti-inflammatory activities. PMID:26788251

  16. Exogenous NAD+ administration significantly protects against myocardial ischemia/reperfusion injury in rat model

    PubMed Central

    Zhang, Youjun; Wang, Ban; Fu, Xingli; Guan, Shaofeng; Han, Wenzheng; Zhang, Jie; Gan, Qian; Fang, Weiyi; Ying, Weihai; Qu, Xinkai

    2016-01-01

    Acute myocardial infarction is one of the leading causes for death around the world. Although essential for successful interventional therapy, it is inevitably complicated by reperfusion injury. Thus effective approaches to reduce ischemia/reperfusion (I/R) injury are still critically needed. To test our hypothesis that intravenous administration of NAD+ can attenuate I/R injury by reducing apoptotic damage and enhancing antioxidant capacity, we used a rat mode of myocardial I/R. Our study found that administration of 10-20 mg/kg NAD+ can dose dependently reduce myocardial infarct induced by I/R, with an approximately 85% reduction of the infarct at the dosage of 20 mg/kg NAD+. We further found that the injection of NAD+ can significantly decrease I/R-induced apoptotic damage in the heart: NAD+ administration can both decrease the TUNEL signals, Bax, cleaved caspase-3 levels and increase the Bcl-XL levels in the rats that are subjected to myocardial I/R injury. NAD+ administration can also significantly attenuate I/R-induced decreases in SOD activity and SOD-2 protein levels in the hearts. NAD+ can profoundly decrease myocardial I/R injury at least partially by attenuating apoptotic damage and enhancing the antioxidant capacity, thus suggesting that NAD+ may become a promising therapeutic agent for myocardial I/R injury. PMID:27648125

  17. Effect of maternal exercise on biochemical parameters in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Marcelino, Thiago Beltram; de Lemos Rodrigues, Patrícia Idalina; Miguel, Patrícia Maidana; Netto, Carlos Alexandre; Pereira Silva, Lenir Orlandi; Matté, Cristiane

    2015-10-05

    Pregnancy is a critical period for brain metabolic programming, being affected by individual environment, such as nutrition, stress, and physical exercise. In this context, we previously reported a cerebral antioxidant upregulation and mitochondrial biogenesis in the offspring delivered from exercised mothers, which could provide neuroprotection against neonatal insults. Hypoxia-ischemia (HI) encephalopathy is one of the most studied models of neonatal brain injury; disrupting motor, cognitive, and learning abilities. Physiopathology includes oxidative stress, allied to mitochondria energy production failure, glutamatergic excitotoxicity, and cell death. In this study we evaluated the effect of maternal swimming during pregnancy on offspring׳s brain oxidative status evaluated fourteen days after HI stablishment. Swimming exercise was performed by female adult rats one week before and during pregnancy, in controlled environment. Their offspring was submitted to HI on postnatal day 7, and the brain samples for biochemical assays were obtained in the weaning. Contrary to our expectations, maternal exercise did not prevent the oxidative alterations observed in brain from HI-rats. In a general way, we found a positive modulation in the activities of antioxidant enzymes, measured two weeks after HI, in hippocampus, striatum, and cerebellum of pups delivered from exercised mothers. Reactive species levels were modulated differently in each structure evaluated. Considering the scenery presented, we concluded that HI elicited a neurometabolic adaptation in both brain hemispheres, particularly in hippocampus, parietal cortex, and cerebellum; while striatum appears to be most damaged. The protocol of aerobic maternal exercise was not enough to fully prevent HI-induced brain damages.

  18. Polymyxin B protects against hepatic ischemia/reperfusion injury in a rat model of obstructive jaundice.

    PubMed

    Xu, Feng; Dai, Chao-Liu; Peng, Song-Lin; Zhao, Yang; Jia, Chang-Jun; Xu, Yong-Qing; Zhao, Chuang

    2014-08-01

    This study was conducted in order to investigate the effects of polymyxin B (PMB) against hepatic ischemia/reperfusion (I/R) injury in rats with obstructive jaundice. Thirty-six Wistar rats (eighteen each) with induced hepatic I/R injury by biliary tract ligation and recanalization were assigned to a control group (reperfused with normal saline) and a PMB group (reperfused with PMB). Indicators involving liver function, oxidation resistance, pro-inflammatory state, and anti-apoptosis effect were determined following the instructions. Compared with normal saline, PMB reperfusion resulted in a significant improvement of liver function (increase of glutathione and reduction of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase), oxidation resistance (decreased malondialdehyde and myeloperoxidase activity), alleviation of pro-inflammatory state (less tumor necrosis factor (TNF)-α, interleukin-1 beta (IL-1β), nuclear factor kappa B (NF-κB) mRNA, and intercellular adhesion molecule (ICAM)-1), and anti-apoptosis effect (more Bcl-2 and less Bax). PMB protects the liver from I/R injury mainly through reducing cellular oncosis and apoptosis and regulating the expression of NF-κB, TNF-α, IL-1β, and ICAM-1.

  19. Optical coherence tomography reveals in vivo cortical structures of adult rats in response to cerebral ischemia injury

    NASA Astrophysics Data System (ADS)

    Ni, Yi-rong; Guo, Zhou-yi; Shu, So-yun; Bao, Xin-min

    2008-12-01

    Optical coherence tomography(OCT) is a high resolution imaging technique which uses light to directly image living tissue. we investigate the potential use of OCT for structural imaging of the ischemia injury mammalian cerebral cortex. And we examine models of middle cerebral artery occlusion (MCAO) in rats in vivo using OCT. In particular, we show that OCT can perform in vivo detection of cortex and differentiate normal and abnormal cortical anatomy. This OCT system in this study provided an axial resolution of 10~15μ m, the transverse resolution of the system is about 25 μm. OCT can provide cross-sectional images of cortical of adult rats in response to cerebral ischemia injury.We conclude that OCT represents an exciting new approach to visualize, in real-time, pathological changes in the cerebral cortex structures and may offer a new tool for Possible neuroscience clinical applications.

  20. Bilateral changes after neonatal ischemia in the P7 rat brain.

    PubMed

    Spiegler, Maria; Villapol, Sonia; Biran, Valérie; Goyenvalle, Catherine; Mariani, Jean; Renolleau, Sylvain; Charriaut-Marlangue, Christiane

    2007-06-01

    Neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and subgranular zone (SGZ) and increases in the adult after brain injury. In this study, postnatal day 7 rats underwent middle cerebral artery electrocoagulation and transient homolateral common carotid artery occlusion, a lesioning protocol that resulted in ipsilateral (IL) forebrain ischemic injury, leading to a cortical cavity 3 weeks later. The effects of neonatal ischemia on hemispheric damage, cell death, cell proliferation, and neurogenesis were examined 4 hours to 6 weeks later by the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay and immunohistochemistry of Ki-67 in proliferating cells and of doublecortin, a microtubule-associated protein expressed only by immature neurons. Neonatal ischemic injury resulted in persistent reduced IL and transient reduced contralateral (CL) hemispheric areas, a consequence of sustained and transient cell death in the IL and CL areas, respectively. Ki-67 immunostaining revealed 3 peaks of newly generated cells in the dorsal SVZ and SGZ in the IL side and also in the CL side at 48 hours and 7 and 28 days after ischemia. Double immunofluorescence revealed that most of the Ki-67-positive cells were astrocytes at 48 hours. Ischemic injury also stimulated SVZ neurogenesis, based on increased doublecortin immunostaining in both SVZs at 7 to 14 days after injury. Doublecortin-positive neurons remained visible around the lesion at 21 days but displayed an immature shape in discrete chains or clusters. Although unilateral ischemic damage was produced, results indicate successful regenerative changes in the CL hemisphere, allowing anatomical recovery.

  1. Fucoidan reduces inflammatory response in a rat model of hepatic ischemia-reperfusion injury.

    PubMed

    Li, Xiao-Jing; Ye, Qi-Fa

    2015-11-01

    Ischemia-reperfusion (I/R) injury after a liver transplant is a major cause of severe complications that lead to graft dysfunction. Fucoidan, a complex of sulfated polysaccharides derived from marine brown algae, demonstrated antiapoptotic as well as potential anti-inflammatory properties in previous studies. Fucoidan has also shown protective effects on I/R-injured kidney and heart. However, whether fucoidan can attenuate hepatic I/R injury has not been examined. To clarify the role of fucoidan in hepatic I/R injury, Sprague-Dawley rats were subjected to sham operation or ischemia followed by reperfusion with treatment of saline or fucoidan (50, 100, or 200 mg·(kg body mass)(-1)·d(-1)). The fucoidan-treated group showed decreased levels of alanine aminotransferase and aspartate aminotransferase compared with the control group. Myeloperoxidase and malondialdehyde activities and mRNA levels of CD11b in the fucoidan-treated group were significantly decreased. Hepatocellular swelling/necrosis, sinusoidal/vascular congestion, and inflammatory cell infiltration were also attenuated in the fucoidan group. The expression of TNF-α, IL-6, IL-1β, CXCL-10, VCAM-1, and ICAM-1 were markedly decreased in the samples from the fucoidan-treated group. Fucoidan largely prevented activation of the inflammatory signaling pathway, compared with the control group. In summary, fucoidan can protect the liver from I/R injury through suppressing activation of the inflammatory signaling pathway, as well as the expression of inflammatory mediators, and inflammatory cell infiltration.

  2. Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats

    PubMed Central

    Shevtsov, Maxim A; Nikolaev, Boris P; Yakovleva, Ludmila Y; Dobrodumov, Anatolii V; Dayneko, Anastasiy S; Shmonin, Alexey A; Vlasov, Timur D; Melnikova, Elena V; Vilisov, Alexander D; Guzhova, Irina V; Ischenko, Alexander M; Mikhrina, Anastasiya L; Galibin, Oleg V; Yakovenko, Igor V; Margulis, Boris A

    2014-01-01

    Recombinant 70 kDa heat shock protein (Hsp70) is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg). To assess Hsp70’s neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia). Rats were then kept alive for 72 hours. The ischemic region was analyzed using a high-field 11 T MRI scanner. Administration of the Hsp70 decreased the infarction zone in a dose-dependent manner with an optimal (threefold) therapeutic response at 5 mg/kg. Long-term treatment of the ischemic rats with Hsp70 formulated in alginate granules with retarded release of protein further reduced the infarct volume in the brain as well as apoptotic area (annexin V staining). Due to its high neurotherapeutic potential, prolonged delivery of Hsp70 could be useful in the management of acute ischemic stroke. PMID:24920887

  3. Inhibition of the NMDA receptor protects the rat sciatic nerve against ischemia/reperfusion injury

    PubMed Central

    KE, TIE; LI, RENBIN; CHEN, WENCHANG

    2016-01-01

    Inhibition of the N-methyl-D-aspartate (NMDA) receptor by MK-801 reduces ischemia/reperfusion (I/R) injury in the central nervous system. However, few previous studies have evaluated the neuroprotective effects of MK-801 against peripheral I/R injury. The present study aimed to investigate the protective effects of MK-801 pretreatment against I/R injury in the rat sciatic nerve (SN). Sprague-Dawley rats were subjected to a sham surgery (n=8) or to a 5-h ischemic insult by femoral artery clamping (I/R and I/R+MK-801 groups; n=48 per group). I/R+MK-801 rats were intraperitoneally injected with MK-801 (0.5 ml or 1 mg/kg) at 15 min prior to reperfusion. The rats were sacrificed at 0, 6, 12, 24, 72 h, or 7 days following reperfusion. Plasma malondialdehyde (MDA) and nitric oxide (NO) concentrations, and SN inducible NO synthase (iNOS) protein expression levels, were measured using colorimetry. In addition, the protein expression levels of tumor necrosis factor-α (TNF-α) were measured using immunohistochemistry, and histological analyses of the rat SN were conducted using light and electron microscopy. Alterations in the mRNA expression levels of TNF-α and TNF-α converting enzyme (TACE) in the rat SN were detected using reverse transcription-quantitative polymerase chain reaction. In the I/R group, plasma concentrations of NO (175.3±4.2 µmol/l) and MDA (16.2±1.9 mmol/l), and the levels of iNOS (2.5±0.3) in the SN, peaked at 24 h post-reperfusion. At 24 h, pretreatment with MK-801 significantly reduced plasma NO (107.3±3.6 µmol/l) and MDA (11.8±1.6 mmol/l), and SN iNOS (1.65±0.2) levels (all P<0.01). The mRNA expression levels of TNF-α and TACE in the SN were significantly reduced in the I/R+MK-801 group, as compared with the I/R group (P<0.05). Furthermore, MK-801 pretreatment was shown to have alleviated histological signs of I/R injury, including immune cell infiltration and axon demyelination. The results of the present study suggested that pretreatment

  4. Deficiency in the voltage-gated proton channel Hv1 increases M2 polarization of microglia and attenuates brain damage from photothrombotic ischemic stroke.

    PubMed

    Tian, Dai-Shi; Li, Chun-Yu; Qin, Chuan; Murugan, Madhuvika; Wu, Long-Jun; Liu, Jun-Li

    2016-10-01

    Microglia become activated during cerebral ischemia and exert pro-inflammatory or anti-inflammatory role dependent of microglial polarization. NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) production in microglia plays an important role in neuronal damage after ischemic stroke. Recently, NOX and ROS are consistently reported to participate in the microglial activation and polarization; NOX2 inhibition or suppression of ROS production are shown to shift the microglial polarization from M1 toward M2 state after stroke. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent ROS generation in the brain. However, the effect of Hv1 proton channel on microglial M1/M2 polarization state after cerebral ischemia remains unknown. In this study, we investigated the role of microglial Hv1 proton channel in modulating microglial M1/M2 polarization during the pathogenesis of ischemic cerebral injury using a mouse model of photothrombosis. Following photothrombotic ischemic stroke, wild-type mice presented obvious brain infarct, neuronal damage, and impaired motor coordination. However, mice lacking Hv1 (Hv1(-/-)) were partially protected from brain damage and motor deficits compared to wild-type mice. These rescued phenotypes in Hv1(-/-) mice in ischemic stroke is accompanied by reduced ROS production, shifted the microglial polarization from M1 to M2 state. Hv1 deficiency was also found to shift the M1/M2 polarization in primary cultured microglia. Our study suggests that the microglial Hv1 proton channel is a unique target for modulation of microglial M1/M2 polarization in the pathogenesis of ischemic stroke. The voltage-gated proton channel, Hv1, is selectively expressed in microglia and is required for NOX-dependent generation of reactive oxygen species (ROS) in the brain. ROS participate in microglial activation and polarization. However, the effect of Hv1 on microglial M1/M2 polarization state after

  5. Placental ischemia in pregnant rats impairs cerebral blood flow autoregulation and increases blood–brain barrier permeability

    PubMed Central

    Warrington, Junie P.; Fan, Fan; Murphy, Sydney R.; Roman, Richard J.; Drummond, Heather A.; Granger, Joey P.; Ryan, Michael J.

    2014-01-01

    Abstract Cerebrovascular events contribute to ~40% of preeclampsia/eclampsia‐related deaths, and neurological symptoms are common among preeclamptic patients. We previously reported that placental ischemia, induced by reducing utero‐placental perfusion pressure, leads to impaired myogenic reactivity and cerebral edema in the pregnant rat. Whether the impaired myogenic reactivity is associated with altered cerebral blood flow (CBF) autoregulation and the edema is due to altered blood–brain barrier (BBB) permeability remains unclear. Therefore, we tested the hypothesis that placental ischemia leads to impaired CBF autoregulation and a disruption of the BBB. CBF autoregulation, measured in vivo by laser Doppler flowmetry, was significantly impaired in placental ischemic rats. Brain water content was increased in the anterior cerebrum of placental ischemic rats and BBB permeability, assayed using the Evans blue extravasation method, was increased in the anterior cerebrum. The expression of the tight junction proteins: claudin‐1 was increased in the posterior cerebrum, while zonula occludens‐1, and occludin, were not significantly altered in either the anterior or posterior cerebrum. These results are consistent with the hypothesis that placental ischemia mediates anterior cerebral edema through impaired CBF autoregulation and associated increased transmission of pressure to small vessels that increases BBB permeability leading to cerebral edema. PMID:25168877

  6. Effects of dexmedetomidine on renal tissue after lower limb ischemia reperfusion injury in streptozotocin induced diabetic rats

    PubMed Central

    Erbatur, Meral Erdal; Sezen, Şaban Cem; Bayraktar, Aslıhan Cavunt; Arslan, Mustafa; Kavutçu, Mustafa; Aydın, Muhammed Enes

    2017-01-01

    ABSTRACT Aim: The aim of this study was to investigate whether dexmedetomidine – administered before ischemia – has protective effects against lower extremity ischemia reperfusion injury that induced by clamping and subsequent declamping of infra-renal abdominal aorta in streptozotocin-induced diabetic rats. Material and Methods: After obtaining ethical committee approval, four study groups each containing six rats were created (Control (Group C), diabetes-control (Group DM-C), diabetes I/R (Group DM-I/R), and diabetes-I/R-dexmedetomidine (Group DM-I/R-D). In diabetes groups, single-dose (55 mg/kg) streptozotocin was administered intraperitoneally. Rats with a blood glucose level above 250 mg/dl at the 72nd hour were accepted as diabetic. At the end of four weeks, laparotomy was performed in all rats. Nothing else was done in Group C and DM-C. In Group DM-I/R, ischemia reperfusion was produced via two-hour periods of clamping and subsequent declamping of infra-renal abdominal aorta. In Group DM-I/R-D, 100 μg/kg dexmedetomidine was administered intraperitoneally 30 minutes before ischemia period. At the end of reperfusion, period biochemical and histopathological evaluation of renal tissue specimen were performed. Results: Thiobarbituric acid reactive substance (TBARS), Superoxide dismutase (SOD), Nitric oxide synthase (NOS), Catalase (CAT) and Glutathion S transferase (GST) levels were found significantly higher in Group DM-I/R when compared with Group C and Group DM-C. In the dexmedetomidine-treated group, TBARS, NOS, CAT, and GST levels were significantly lower than those measured in the Group D-I/R. In histopathological evaluation, glomerular vacuolization (GV), tubular dilatation (TD), vascular vacuolization and hypertrophy (VVH), tubular cell degeneration and necrosis (TCDN), tubular hyaline cylinder (THC), leucocyte infiltration (LI), and tubular cell spillage (TCS) in Group DM-I/R were significantly increased when compared with the control group

  7. Protective effects of fentanyl preconditioning on cardiomyocyte apoptosis induced by ischemia-reperfusion in rats

    PubMed Central

    Xu, Q.; Li, Q.-G.; Fan, G.-R.; Liu, Q.-H.; Mi, F.-L.; Liu, B.

    2017-01-01

    We aimed to study the effect of fentanyl (Fen) preconditioning on cardiomyocyte apoptosis induced by ischemia-reperfusion (I/R) in rats. A total of 120 Sprague Dawley male rats (age: 3 months) were randomly divided into: sham operation group (S group), I/R group, normal saline I/R group (NS group), and fentanyl low, middle, and high dose groups (Fen1: 2 μg/kg; Fen2: 4 μg/kg; Fen3: 6 μg/kg). Heart rate (HR), mean arterial pressure (MAP), left ventricular developed pressure (LVDP), ±dp/dtmax, malondialdehyde (MDA), superoxide dismutase (SOD) activity, creatine phosphokinase-MB (CK-MB), and cardiac troponin-I (cTnI) were measured. Myocardial ischemic (MI) area, total apoptotic myocardial cells, and protein and mRNA expressions of B-cell lymphoma 2 (Bcl-2) and Bax were detected. HR and MAP were higher, while LVDP and ±dp/dtmax were close to the base value in the Fen groups compared to those in the I/R group. Decreased MDA concentration and CK-MB value and increased SOD activity were found in the Fen groups compared to the I/R group, while cTnI concentration was significantly lower in the Fen1 and Fen2 groups (all P<0.05). Myocardial damage was less in the Fen groups compared to the I/R group and the MI areas and apoptotic indexes were significantly lower in the Fen1 and Fen2 groups (all P<0.05). Furthermore, significantly increased protein and mRNA expressions of Bcl-2, and decreased protein and mRNA expressions of Bax were found in the Fen groups compared to the I/R group (all P<0.05). Fentanyl preconditioning may suppress cardiomyocyte apoptosis induced by I/R in rats by regulating Bcl-2 and Bax. PMID:28225864

  8. Partial Enteral Nutrition Mitigated Ischemia/Reperfusion-Induced Damage of Rat Small Intestinal Barrier

    PubMed Central

    Wu, Chao; Wang, Xinying; Jiang, Tingting; Li, Chaojun; Zhang, Li; Gao, Xuejin; Tian, Feng; Li, Ning; Li, Jieshou

    2016-01-01

    Background and Aims: This study was designed to investigate a relatively optimum dose of partial enteral nutrition (PEN) which effectively attenuates intestinal barrier dysfunction initiated by ischemia/reperfusion injury (IRI). Methods: In experiment 1, 60 male Sprague-Dawley (SD) rats were subjected to intestinal IRI and assigned to six groups according to the different proportion of EN administrations: namely total parenteral nutrition (TPN or 0%EN), 10%EN, 20%EN, 40%EN, 60%EN, and total enteral nutrition (TEN or 100%) groups, the deficits of intraluminal calorie were supplemented by PN. In experiment 2, 50 male SD rats were subjected to intestinal IRI and divided into five groups based on the results of experiment 1: TPN, TEN, 20%EN, TPN plus pretreatment with NF-κB antagonist 30 min before IRI (TPN+PDTC), and TPN plus pretreatment with HIF-1α antagonist 30 min before IRI (TPN+YC-1) groups. Results: In experiment 1, previous IRI combined with subsequent EN shortage disrupted the structure of intestinal epithelial cell and tight junctions (TJs). While 20% dose of EN had an obviously protective effect on these detrimental consequences. In experiment 2, compared with TPN only, 20%EN exerted a significant protection of barrier function of intestinal epithelium. Analogous results were observed when TPN combined with specific NF-κB/HIF-1α inhibitors (PDTC and YC-1). Meanwhile, the expression of NF-κB/HIF-1α had a similar trend among the groups. Conclusions: Our findings indicate that 20%EN is the minimally effective dosage of EN which promotes the recovery of intestinal barrier function after IRI in a rat model. Furthermore, we discreetly speculate that this benefit is, at least partly, related to NF-κB/HIF-1α pathway expression. PMID:27548209

  9. Vitamin D Deficiency Exacerbates Experimental Stroke Injury and Dysregulates Ischemia-Induced Inflammation in Adult Rats

    PubMed Central

    Balden, Robyn; Selvamani, Amutha

    2012-01-01

    Vitamin D deficiency (VDD) is widespread and considered a risk factor for cardiovascular disease and stroke. Low vitamin D levels are predictive for stroke and more fatal strokes in humans, whereas vitamin D supplements are associated with decreased risk of all-cause mortality. Because VDD occurs with other comorbid conditions that are also independent risk factors for stroke, this study examined the specific effect of VDD on stroke severity in rats. Adult female rats were fed control or VDD diet for 8 wk and were subject to middle cerebral artery occlusion thereafter. The VDD diet reduced circulating vitamin D levels to one fifth (22%) of that observed in rats fed control chow. Cortical and striatal infarct volumes in animals fed VDD diet were significantly larger, and sensorimotor behavioral testing indicated that VDD animals had more severe poststroke behavioral impairment than controls. VDD animals were also found to have significantly lower levels of the neuroprotective hormone IGF-I in plasma and the ischemic hemisphere. Cytokine analysis indicated that VDD significantly reduced IL-1α, IL-1β, IL-2, IL-4, IFN-γ, and IL-10 expression in ischemic brain tissue. However, ischemia-induced IL-6 up-regulation was significantly higher in VDD animals. In a separate experiment, the therapeutic potential of acute vitamin D treatments was evaluated, where animals received vitamin D injections 4 h after stroke and every 24 h thereafter. Acute vitamin D treatment did not improve infarct volume or behavioral performance. Our data indicate that VDD exacerbates stroke severity, involving both a dysregulation of the inflammatory response as well as suppression of known neuroprotectants such as IGF-I. PMID:22408173

  10. Antioxidant and anti-excitotoxicity effect of Gualou Guizhi decoction on cerebral ischemia/reperfusion injury in rats

    PubMed Central

    ZHANG, SHENGNSAN; ZHANG, YUQIN; LI, HUANG; XU, WEI; CHU, KEDAN; CHEN, LIDIAN; CHEN, XIANWEN

    2015-01-01

    Stroke is the leading cause of disability in adults and the second most common cause of mortality worldwide. There is currently intense interest in the use of natural products in the treatment of the condition. The aim of this study was to investigate the effect of Gualou Guizhi decoction (GLGZD) on rats subjected to cerebral ischemia/reperfusion injury and the possible mechanisms involved. Cerebral ischemia/reperfusion injury was induced by the middle cerebral artery occlusion method. Ischemic injury was assessed by estimating neurological function and measuring brain infarct volume, and the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method was employed to examine ischemia-induced apoptosis. The levels of the antioxidative enzyme superoxide dismutase (SOD) and the concentrations of the non-enzymatic scavenger glutathione (GSH) and malondialdehyde (MDA) were measured to investigate the antioxidant mechanisms. In addition, the levels of excitatory amino acids (EAAs) and glutamate receptor 1 (GluR1) were examined using an automatic amino acid analyzer and immunohistochemical analysis. The administration of GLGZD attenuated the cerebral ischemia/reperfusion injury-induced neural deficits and cerebral infarct volume, reduced the levels of MDA and EAAs (glutamate and aspartate), significantly increased the activity of the antioxidant GSH and notably elevated the activity of SOD. Consistently, GLGZD inhibited ischemia-induced apoptosis and downregulated the expression of GluR1. In conclusion, this study suggested that GLGZD exerts a neuroprotective effect on focal cerebral ischemia/reperfusion injury through the modulation of multiple antioxidant and anti-excitotoxicity pathways. PMID:26136945

  11. Neuroprotection in selective focal ischemia in rats by nitrates, an alternative redox manipulation on nitric oxide: experimental model.

    PubMed

    Ramos-Zúñiga, R; Velázquez-Santana, H; Mercado-Pimentel, R; Cerda-Camacho, F

    1998-09-01

    The recent advances in the histopathology of ischemia have set forth new proposals, particularly in regard to excitotoxicity by the glutamate receptor, NMDA. The participation of the nitric oxide (NO) in normal and pathological conditions and its relationship with toxicity in ischemia, suggest new alternatives for the modulation of the NMDA receptor REDOX site through its pharmacologic manipulation. This event would potentially limit the consequences of the activation-calcium flow and the production of peroxoinitrite during the ischemic phenomenon. The present work delivers two proposals: 1) A modified technique to the ones that have been described, of endovascular, without craniectomy, for experimental cerebral ischemia in Wistar rats, and with particular harmful effect upon the hippocampus. 2) It promotes the use of nitrates as an additional alternative to other elements, in order to restrict excitotoxicity in the described experimental cerebral ischemia, and paying attention to CA1-CA2 of the hippocampus. This area, specially sensitive to hypoxia-ischemia, offers an excellent study option for focal, experimental, cerebral ischemia associated with toxicity mediated by excitatory amino acids, since it stores an important concentration of NMDA receptors (R1/R2 A) as well as endothelial nitric oxide synthase. Our parameters are supported by quantitative-qualitative cell analysis, and not by the extension of the stroke which offers a more objective perspective upon the assessment of the focal ischemic event. By means of this technique, these results confirm the extent of the ischemic injury to the cell at the level of the hippocampus compared to a control/basal group, P = 0.0006. Furthermore, it suggests a neuroprotective effect of isosorbide dinitrate since it preserves the viable cells, and limits the appearance of hypoxic-ischemic cells at the hippocampus when the middle cerebral artery (MCA) is occluded endovascularly, as compared to the animals with no treatment

  12. The neuroprotective effects of preconditioning exercise on brain damage and neurotrophic factors after focal brain ischemia in rats.

    PubMed

    Otsuka, Shotaro; Sakakima, Harutoshi; Sumizono, Megumi; Takada, Seiya; Terashi, Takuto; Yoshida, Yoshihiro

    2016-04-15

    Preconditioning exercise can exert neuroprotective effects after stroke. However, the mechanism underlying these neuroprotective effects by preconditioning exercise remains unclear. We investigated the neuroprotective effects of preconditioning exercise on brain damage and the expression levels of the midkine (MK) and brain-derived neurotrophic factor (BDNF) after brain ischemia. Animals were assigned to one of 4 groups: exercise and ischemia (Ex), no exercise and ischemia (No-Ex), exercise and no ischemia (Ex-only), and no exercise and intact (Control). Rats ran on a treadmill for 30 min once a day at a speed of 25 m/min for 5 days a week for 3 weeks. After the exercise program, stroke was induced by a 60 min left middle cerebral artery occlusion using an intraluminal filament. The infarct volume, motor function, neurological deficits, and the cellular expressions levels of MK, BDNF, GFAP, PECAM-1, caspase 3, and nitrotyrosine (NT) were evaluated 48 h after the induction of ischemia. The infarct volume, neurological deficits and motor function in the Ex group were significantly improved compared to that of the No-Ex group. The expression levels of MK, BDNF, GFAP, and PECAM-1 were enhanced in the Ex group compared to the expression levels in the No-Ex group after brain ischemia, while the expression levels of activated caspase 3 and NT were reduced in the area surrounding the necrotic lesion. Our findings suggest that preconditioning exercise reduced the infract volume and ameliorated motor function, enhanced expression levels of MK and BDNF, increased astrocyte proliferation, increased angiogenesis, and reduced neuronal apoptosis and oxidative stress.

  13. Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion.

    PubMed Central

    González-Flecha, B; Cutrin, J C; Boveris, A

    1993-01-01

    The time course of oxidative stress and tissue damage in zonal liver ischemia-reperfusion in rat liver in vivo was evaluated. After 180 min of ischemia, surface chemiluminescence decreased to zero, state 3 mitochondrial respiration decreased by 70-80%, and xanthine oxidase activity increased by 26% without change in the water content and in the activities of superoxide dismutase, catalase, and glutathione peroxidase. After reperfusion, marked increases in oxyradical production and tissue damage were detected. Mitochondrial oxygen uptake in state 3 and respiratory control as well as the activities of superoxide dismutase, catalase, and glutathione peroxidase and the level of nonenzymatic antioxidants (evaluated by the hydroperoxide-initiated chemiluminescence) were decreased. The severity of the post-reperfusion changes correlated with the time of ischemia. Morphologically, hepatocytes appeared swollen with zonal cord disarrangement which ranged from mild to severe for the tissue reperfused after 60-180 min of ischemia. Neutrophil infiltration was observed after 180 min of ischemia and 30 min of reperfusion. Mitochondria appear as the major source of hydrogen peroxide in control and in reperfused liver, as indicated by the almost complete inhibition of hydrogen peroxide production exerted by the uncoupler carbonylcyanide p-(trifluoromethoxy) phenylhydrazone. Additionally, inhibition of mitochondrial electron transfer by antimycin in liver slices reproduced the inhibition of state 3 mitochondrial respiration and the increase in hydrogen peroxide steady-state concentration found in reperfused liver. Increased rates of oxyradical production by inhibited mitochondria appear as the initial cause of oxidative stress and liver damage during early reperfusion in rat liver. Images PMID:8432855

  14. The effect of thymoquinone on the renal functions following ischemia-reperfusion injury in the rat

    PubMed Central

    Hammad, Fayez T; Lubbad, Loay

    2016-01-01

    Introduction: The aim of this study was to investigate the effect of thymoquinone, an antioxidant phytochemical compound found in the plant Nigella sativa, on the alterations in renal functional parameters following warm renal ischemia-reperfusion injury (IRI) in the rat. Methods: Wistar rats underwent left renal ischemia for 35 minutes. Group-TQ (n=15) received thymoquinone 10 mg/kg/day (dissolved in a vehicle (corn oil) orally by gavage starting 4 days prior to IRI and continued 6 days thereafter when the hemodynamic and tubular renal functions of the right and left kidneys were measured using clearance techniques. Group-Vx (n=15) underwent similar protocol but received only the vehicle. Results: IRI affected all hemodynamic and tubular parameters in the affected kidney. Thymoquinone attenuated the IRI-related alteration in renal functions so when the left ischemic kidney in Group-TQ and Group-Vx were compared, the left RBF and GFR were significantly higher in Group-TQ (2.02±0.39 vs. 1.27±0.21, P=0.04 and 0.33±0.08 vs. 0.18±0.03, P=0.03, respectively). Thymoquinone also improved left renal FENa (1.59±0.28 vs. 2.40±0.35, P=0.04). In addition, it decreased the gene expressions of KIM-1, NGAL, TNF-α, TGF-β1 and PAI-1 (143±20 vs. 358±49, 16±3 vs. 34±6, (1.1±0.2 vs. 2.8±0.4, 1.6±0.1 vs. 2.8±0.1, and 2.4±0.3 vs. 5.8±1.0, P<0.05 for all). Conclusion: Thymoquinone ameliorated the IRI effect on the hemodynamic and tubular renal functional parameters as well as the expression of some kidney injury markers and pro-inflammatory and pro-fibrotic cytokines indicating a renoprotective effect of this agent on the IRI-induced renal dysfunction with potential clinical implications. PMID:28078054

  15. Total salvianolic acid improves ischemia-reperfusion-induced microcirculatory disturbance in rat mesentery

    PubMed Central

    Wang, Ming-Xia; Liu, Yu-Ying; Hu, Bai-He; Wei, Xiao-Hong; Chang, Xin; Sun, Kai; Fan, Jing-Yu; Liao, Fu-Long; Wang, Chuan-She; Zheng, Jun; Han, Jing-Yan

    2010-01-01

    AIM: To investigate the effect of total salvianolic acid (TSA) on ischemia-reperfusion (I/R)-induced rat mesenteric microcirculatory dysfunctions. METHODS: Male Wistar rats were randomly distributed into 5 groups (n = 6 each): Sham group and I/R group (infused with saline), TSA group, TSA + I/R group and I/R + TSA group (infused with TSA, 5 mg/kg per hour). Mesenteric I/R were conducted by a ligation of the mesenteric artery and vein (10 min) and subsequent release of the occlusion. TSA was continuously infused either starting from 10 min before the ischemia or 10 min after reperfusion. Changes in mesenteric microcirculatory variables, including diameter of venule, velocity of red blood cells in venule, leukocyte adhesion, free radicals released from venule, albumin leakage and mast cell degranulation, were observed through an inverted intravital microscope. Meanwhile, the expression of adhesion molecules CD11b/CD18 on neutrophils was evaluated by flow cytometry. Ultrastructural evidence of mesenteric venules damage was assessed after microcirculation observation. RESULTS: I/R led to multiple responses in mesenteric post-capillary venules, including a significant increase in the adhesion of leukocytes, production of oxygen radicals in the venular wall, albumin efflux and enhanced mast cell degranulation in vivo. All the I/R-induced manifestations were significantly reduced by pre- or post-treatment with TSA, with the exception that the I/R-induced increase in mast cell degranulation was inhibited only by pre-treatment with TSA. Moreover, pre- or post-treatment with TSA significantly attenuated the expression of CD11b/CD18 on neutrophils, reducing the increase in the number of caveolae in the endothelial cells of mesentery post-capillary venules induced by I/R. CONCLUSION: The results demonstrated that TSA protects from and ameliorates the microcirculation disturbance induced by I/R, which was associated with TSA inhibiting the production of oxygen-free radicals in

  16. The edaravone and 3-n-butylphthalide ring-opening derivative 10b effectively attenuates cerebral ischemia injury in rats

    PubMed Central

    Hua, Kai; Sheng, Xiao; Li, Ting-ting; Wang, Lin-na; Zhang, Yi-hua; Huang, Zhang-jian; Ji, Hui

    2015-01-01

    Aim: Compound 10b is a hybrid molecule of edaravone and a ring-opening derivative of 3-n-butylphthalide (NBP). The aim of this study was to examine the effects of compound 10b on brain damage in rats after focal cerebral ischemia. Methods: SD rats were subjected to 2-h-middle cerebral artery occlusion (MCAO). At the onset of reperfusion, the rats were orally treated with NBP (60 mg/kg), edaravone (3 mg/kg), NBP (60 mg/kg)+edaravone (3 mg/kg), or compound 10b (70, 140 mg/kg). The infarct volume, motor behavior deficits, brain water content, histopathological alterations, and activity of GSH, SOD, and MDA were analyzed 24 h after reperfusion. The levels of relevant proteins in the ipsilateral striatum were examined using immunoblotting. Results: Administration of compound 10b (70 or 140 mg/kg) significantly reduced the infarct volume and neurological deficits in MCAO rats. The neuroprotective effects of compound 10b were more pronounced compared to NBP, edaravone or NBP+edaravone. Furthermore, compound 10b significantly upregulated the protein levels of the cytoprotective molecules Bcl-2, HO-1, Nrf2, Trx, P-NF-κB p65, and IκB-α, while decreasing the expression of Bax, caspase 3, caspase 9, Txnip, NF-κB p65, and P-IκB-α. Conclusion: Oral administration of compound 10b effectively attenuates rat cerebral ischemia injury. PMID:26073328

  17. Exploratory Pharmacokinetics of Geniposide in Rat Model of Cerebral Ischemia Orally Administered with or without Baicalin and/or Berberine

    PubMed Central

    Wang, Wenzhe; Shi, Feiyan; Zhou, Jing; Zhang, Meng; Zhu, Huaxu; Zeng, Mingfei

    2013-01-01

    Huang-Lian-Jie-Du-Tang (HLJDT), a classical Chinese prescription, has been clinically employed to treat cerebral ischemia for thousands of years. Geniposide is the major active ingredient in HLJDT. The aim is to investigate the comparative evaluations on pharmacokinetics of geniposide in MCAO rats in pure geniposide, geniposide : berberine, and geniposide : berberine : baicalin. Obviously, the proportions of geniposide : berberine, geniposide : baicalin, and geniposide : berberine : baicalin were determined according to HLJDT. In our study, the cerebral ischemia model was reproduced by suture method in rats. The MCAO rats were randomly assigned to four therapy groups and orally administered with different prescription proportions of pure geniposide, geniposide : berberine, geniposide : baicalin, and geniposide : berberine : baicalin, respectively. The concentrations of geniposide in rat serum were determined using HPLC, and main pharmacokinetic parameters were investigated. The results indicated that the pharmacokinetics of geniposide in rat serum was nonlinear and there were significant differences between different groups. Berberine might hardly affect the absorption of geniposide, and baicalin could increase the absorption ability of geniposide. Meanwhile, berberine could decrease the absorption increase of baicalin on geniposide. PMID:24367386

  18. Neurological function following cerebral ischemia/reperfusion is improved by the Ruyi Zhenbao pill in a rats

    PubMed Central

    WANG, TIAN; DUAN, SIJIN; WANG, HAIPING; SUN, SHAN; HAN, BING; FU, FENGHUA

    2016-01-01

    The present study aimed to investigate the effect and underlying mechanisms of the Ruyi Zhenbao pill on neurological function following cerebral ischemia/reperfusion in rats. Male Sprague-Dawley rats underwent middle cerebral artery occlusion following reperfusion. The rats received intragastrically either sodium carboxymethyl cellulose (control and model groups) or Ruyi Zhenbao pill at doses of 0.2, 0.4 or 0.8 g/kg. Neurological function was assessed by cylinder, adhesive and beam-walking tests after 14-day Ruyi Zhenbao pill treatment. Neurogenesis and angiogenesis were detected using immunofluorescence staining. The expression levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) were determined by enzyme-linked immunosorbent assays. Treatment with 0.4 and 0.8 g/kg Ruyi Zhenbao for 14 days significantly improved neurological function, and increased the number of von Willebrand Factor- and neuronal nuclear antigen-positive cells in the ischemic hemisphere of rats. Ruyi Zhenbao pill treatment also significantly enhanced the expression levels of BDNF, NGF and VEGF in the ischemic hemisphere. The results demonstrated that the Ruyi Zhenbao pill improved neurological function following ischemia in rats. The mechanisms of the Ruyi Zhenbao pill are associated with increasing the expression levels of BDNF, NGF and VEGF, and subsequently promoting neurogenesis and angiogenesis in the ischemic zone. PMID:26893831

  19. Melatonin treatment protects liver of Zucker rats after ischemia/reperfusion by diminishing oxidative stress and apoptosis.

    PubMed

    Kireev, Roman; Bitoun, Samuel; Cuesta, Sara; Tejerina, Alejandro; Ibarrola, Carolina; Moreno, Enrique; Vara, Elena; Tresguerres, Jesus A F

    2013-02-15

    Fatty livers occur in up to 20% of potential liver donors and increase cellular injury during the ischemia/reperfusion phase, so any intervention that could enable a better outcome of grafts for liver transplantation would be very useful. The effect of melatonin on liver ischemia/reperfusion injury in a rat model of obesity and hepatic steatosis has been investigated. Forty fa/fa Zucker rats were divided in 4 groups. 3 groups were subjected to 35 min of warm hepatic ischemia and 36 h of reperfusion. One experimental group remained untreated and 2 were given 10mg/kg melatonin intraperitoneally or orally. Another group was sham-operated. Plasma ALT, AST and hepatic content of ATP, MDA, hydroxyalkenals, NOx metabolites, antioxidant enzyme activity, caspase-9 and DNA fragmentation were determined in the liver. The expression of iNOS, eNOS, Bcl2, Bax, Bad and AIF were determined by RT-PCR Melatonin was effective at decreasing liver injury by both ways as assessed by liver transaminases, markers of apoptosis, of oxidative stress and improved liver ATP content. Melatonin administration decreased the activities or levels of most of the parameters measured in a beneficial way, and our study identified also some of the mechanisms of protection. We conclude that administration of melatonin improved liver function, as well as markers of pro/antioxidant status and apoptosis following ischemia/reperfusion in obese rats with fatty liver. These data suggest that this substance could improve outcome in patients undergoing liver transplantation who receive a fatty liver implant and suggest the need of clinical trials with it in liver transplantation.

  20. Down-regulated Na+/K+-ATPase activity in ischemic penumbra after focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Huang, Hao; Chen, Yang-Mei; Zhu, Fei; Tang, Shi-Ting; Xiao, Ji-Dong; Li, Lv-Li; Lin, Xin-Jing

    2015-01-01

    This study was aimed to examine whether the Na+/K+ adenosine triphosphatase (Na+/K+-ATPase) activity in ischemic penumbra is associated with the pathogenesis of ischemia/reperfusion-induced brain injury. An experimental model of cerebral ischemia/reperfusion was made by transient middle cerebral artery occlusion (tMCAO) in rats and the changes of Na+/K+-ATPase activity in the ischemic penumbra was examined by Enzyme Assay Kit. Extensive infarction was observed in the frontal and parietal cortical and subcortical areas at 6 h, 24 h, 48 h, 3 d and 7 d after tMCAO. Enzyme Assay analyses revealed the activity of Na+/K+-ATPase was decreased in the ischemic penumbra of model rats after focal cerebral ischemia/reperfusion compared with sham-operated rats, and reduced to its minimum at 48 h, while the infarct volume was enlarged gradually. In addition, accompanied by increased brain water content, apoptosis-related bcl-2 and Bax proteins, apoptotic index and neurologic deficits Longa scores, but fluctuated the ratio of bcl-2/Bax. Correlation analysis showed that the infarct volume, apoptotic index, neurologic deficits Longa scores and brain water content were negatively related with Na+/K+-ATPase activity, while the ratio of bcl-2/Bax was positively related with Na+/K+-ATPase activity. Our results suggest that down-regulated Na+/K+-ATPase activity in ischemic penumbra might be involved in the pathogenesis of cerebral ischemia/reperfusion injury presumably through the imbalance ratio of bcl-2/Bax and neuronal apoptosis, and identify novel target for neuroprotective therapeutic intervention in cerebral ischemic disease. PMID:26722460

  1. Beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral ischemia-reperfusion injury in rats.

    PubMed

    Sun, Lingyan; Tian, Xia; Gou, Lingshan; Ling, Xin; Wang, Ling; Feng, Yan; Yin, Xiaoxing; Liu, Yi

    2013-07-01

    Theanine and caffeine, 2 naturally occurring components in tea, have repeatedly been shown to deliver unique cognitive benefits when consumed in combination. In this study, we assessed the beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral damage in rats. Theanine and caffeine had no effect on physiological variables, including pH, partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2), mean arterial blood pressure, plasma glucose, or regional cerebral blood flow. Treatment with theanine (1 mg/kg body mass, intraperitoneal injection) alone significantly reduced cerebral infarction induced by cerebral ischemia-reperfusion, but caffeine (10 mg/kg, intravenous administration) alone only had a marginal effect. However, the combination of theanine plus caffeine resulted in a significant reduction of cerebral infarction and brain edema compared with theanine monotherapy. Meanwhile, increased malondialdehyde levels as well as decreased superoxide dismutase activity, glutathione peroxidase activity, and glutathione levels observed in the cerebral cortex after cerebral ischemia-reperfusion were significantly ameliorated by the combination therapy. Furthermore, the elevated inflammatory response levels observed in the cortex after cerebral ischemia-reperfusion were markedly attenuated by the combined treatment. Thus, it is suggested that the neuroprotective potential of a combination therapy with theanine and caffeine against cerebral ischemia-reperfusion is partly ascribed to their antioxidant and anti-inflammatory properties.

  2. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  3. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia.

    PubMed

    Guo, Jiahua; Yong, Yonghong; Aa, Jiye; Cao, Bei; Sun, Runbin; Yu, Xiaoyi; Huang, Jingqiu; Yang, Na; Yan, Lulu; Li, Xinxin; Cao, Jing; Aa, Nan; Yang, Zhijian; Kong, Xiangqing; Wang, Liansheng; Zhu, Xuanxuan; Ma, Xiaohui; Guo, Zhixin; Zhou, Shuiping; Sun, He; Wang, Guangji

    2016-12-01

    The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic.

  4. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia

    PubMed Central

    Guo, Jiahua; Yong, Yonghong; Aa, Jiye; Cao, Bei; Sun, Runbin; Yu, Xiaoyi; Huang, Jingqiu; Yang, Na; Yan, Lulu; Li, Xinxin; Cao, Jing; Aa, Nan; Yang, Zhijian; Kong, Xiangqing; Wang, Liansheng; Zhu, Xuanxuan; Ma, Xiaohui; Guo, Zhixin; Zhou, Shuiping; Sun, He; Wang, Guangji

    2016-01-01

    The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic. PMID:27905409

  5. Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca{sup 2+}

    SciTech Connect

    Zhao Shidi; Chen Na; Yang Zhilai; Huang Li; Zhu Yan; Guan Sudong; Chen Qianfen; Wang Jinhui

    2008-02-08

    Ischemia-induced excitotoxicity at cerebellar Purkinje cells is presumably due to a persistent glutamate action. To the fact that they are more vulnerable to ischemia than other glutamate-innervated neurons, we studied whether additional mechanisms are present and whether cytoplasm Ca{sup 2+} plays a key role in their ischemic excitotoxicity. Ischemic changes in the excitability of Purkinje cells were measured by whole-cell recording in cerebellar slices of rats with less glutamate action. The role of cytoplasm Ca{sup 2+} was examined by two-photon cellular imaging and BAPTA infusion in Purkinje cells. Lowering perfusion rate to cerebellar slices deteriorated spike timing and raised spike capacity of Purkinje cells. These changes were associated with the reduction of spike refractory periods and threshold potentials, as well as the loss of their control to spike encoding. Ischemia-induced functional deterioration at Purkinje neurons was accompanied by cytoplasm Ca{sup 2+} rise and prevented by BAPTA infusion. Therefore, the ischemia destabilizes the spike encoding of Purkinje cells via raising cytoplasm Ca{sup 2+} without a need for glutamate, which subsequently causes their excitotoxic death.

  6. Procaspase-9 induces its cleavage by transnitrosylating XIAP via the Thioredoxin system during cerebral ischemia-reperfusion in rats

    PubMed Central

    Zhang, Dengyue; Zhao, Ningjun; Ma, Bin; Wang, Yan; Zhang, Gongliang; Yan, Xianliang; Hu, Shuqun; Xu, Tie

    2016-01-01

    Transnitrosylation is an important mechanism by which nitric oxide (NO) modulates cell signaling pathways. For instance, SNO-caspase-3 can transnitrosylate the X-linked inhibitor of apoptosis (XIAP) to enhance apoptosis. XIAP is a potent antagonist of caspase apoptotic activity. Decrease in XIAP activity via nitrosylation results in SNO-XIAP-mediated caspase activation. Considering the functional liaison of procaspase-9 and XIAP, we hypothesized that procaspase-9 nitrosylates XIAP directly. Our data confirmed that cerebral ischemia-reperfusion induced XIAP nitrosylation, procaspase-9 denitrosylation and cleavage. Interestingly, the time courses of the nitrosylation of procaspase-9 and XIAP were negatively correlated, which was more prominent after cerebral ischemia-reperfusion, suggesting a direct interaction. The nitrosylation of XIAP, as well as the denitrosylation and cleavage of procaspase-9, were inhibited by DNCB, TrxR1 AS-ODNs, or TAT-AVPY treatment. Meanwhile, DNCB, TrxR1 AS-ODNs, or TAT-AVPY also inhibited the decrease in hippocampal CA1 neurons induced by ischemia-reperfusion in rats. The denitrosylation and cleavage of procaspase-9 induced by OGD/reoxygenation in SH-SY5Y cells were inhibited when cells were co-transfected with wild-type procaspase-9 and XIAP mutant (C449G). These data suggest that cerebral ischemia-reperfusion induces a transnitrosylation from procaspase-9 to XIAP via the Trx system to consequently cause apoptosis. Additionally, Cys325 is a critical S-nitrosylation site of procaspase-9. PMID:27052476

  7. In vivo imaging of hepatic hemodynamics and light scattering property during ischemia-reperfusion in rats based on spectrocolorimetry

    PubMed Central

    Akter, Sharmin; Kawauchi, Satoko; Sato, Shunichi; Aosasa, Suefumi; Yamamoto, Junji; Nishidate, Izumi

    2017-01-01

    A red-green-blue camera-based imaging method is proposed for estimating spatial maps of concentrations of oxyhemoglobin (CHbO), deoxyhemoglobin (CHbR), total hemoglobin (CHbT), tissue oxygen saturation (StO2), and scattering power (b) in liver tissue. Hemodynamic responses to hepatic ischemia-reperfusion of in vivo rat liver tissues induced by portal triad occlusion were evaluated. Upon portal triad occlusion, this method yielded images of decreased CHbO, CHbT, StO2, and b, and increased CHbR followed by a progressive increase in CHbO and StO2 during reperfusion. Time courses of the changes in CHbO, CHbR, CHbT, and StO2 over different regions of interest (ROIs) revealed that ischemia results in an abrupt significant (P<0.05) reduction in CHbO, CHbT, and StO2 with a simultaneous increase in CHbR compared to the baseline level, indicative of the hemodynamic responses during hepatic ischemia-reperfusion. Upon reperfusion, there was a gradual increase in CHbO and StO2, and decrease in CHbR. The change in average scattering power b implies the presence of morphological alterations in the cellular and subcellular structures induced by ischemia or anoxia. This study shows the potential of monitoring spatiotemporal changes in hemodynamic parameters and morphological changes in studies of hepatic pathophysiology. PMID:28270997

  8. Protective effect of α-terpineol against impairment of hippocampal synaptic plasticity and spatial memory following transient cerebral ischemia in rats

    PubMed Central

    Moghimi, Mahsa; Parvardeh, Siavash; Zanjani, Taraneh Moini; Ghafghazi, Shiva

    2016-01-01

    Objective(s): Cerebral ischemia is often associated with cognitive impairment. Oxidative stress has a crucial role in the memory deficit following ischemia/reperfusion injury. α-Terpineol is a monoterpenoid with anti-inflammatory and antioxidant effects. This study was carried out to investigate the effect of α-terpineol against memory impairment following cerebral ischemia in rats. Materials and Methods: Cerebral ischemia was induced by transient bilateral common carotid artery occlusion in male Wistar rats. The rats were allocated to sham, ischemia, and α-terpineol-treated groups. α-Terpineol was given at doses of 50, 100, and 200 mg/kg, IP once daily for 7 days post ischemia. Morris water maze (MWM) test was used to assess spatial memory and in vivo extracellular recording of long-term potentiation (LTP) in the hippocampal dentate gyrus was carried out to evaluate synaptic plasticity. Malondialdehyde (MDA) was measured to assess the extent of lipid peroxidation in the hippocampus. Results: In MWM test, α-terpineol (100 mg/kg, IP) significantly decreased the escape latency during training trials (P<0.01). In addition, α-terpineol increased the number of crossings over the platform location and decreased average proximity to the target in probe trial (P<0.05). In electrophysiological recording, α-terpineol (100 mg/kg) facilitated the induction of LTP in the hippocampus which was persistent over 2 hr. α-Terpineol (100 and 200 mg/kg) also significantly lowered hippocampal MDA levels in rats subjected to cerebral ischemia. Conclusion: These findings indicate that α-terpineol improves cerebral ischemia-related memory impairment in rats through the facilitation of LTP and suppression of lipid peroxidation in the hippocampus. PMID:27803783

  9. A comparative investigation of biochemical and histopathological effects of thiamine and thiamine pyrophosphate on ischemia-reperfusion induced oxidative damage in rat ovarian tissue.

    PubMed

    Demiryilmaz, Ismail; Sener, Ebru; Cetin, Nihal; Altuner, Durdu; Akcay, Fatih; Suleyman, Halis

    2013-09-01

    In this study, the biochemical and histopathological effects of thiamine and thiamine pyrophosphate on ischemia-reperfusion induced oxidative damage in rat ovarian tissue were investigated. Animals were divided into four groups of six rat each, ovarian ischemia-reperfusion (IR), 25 mg/kg thiamine + ovarian ischemia-reperfusion (TIR), 25 mg/kg thiamine pyrophosphate + ovarian ischemia-reperfusion (TPIR) and Sham group (SG). The results of the biochemical experiments have shown that the rat ovarian tissue with thiamine treatment, the level of MDA, GSH and the 8-hydroxyguanine are almost the same as the IR group; while in the group with thiamine pyrophosphate treatment, the level of MDA, GSH and the 8-hydroxyguanine are almost the same as the SG. Ovarian tissue of rats in the IR group were congested and dilated vessels, edema, hemorrhage, necrotic and apoptotic cells. In this group, the migration and the adhesion of the polymorphonuclear leucocytes to the endothelium were observed. Both ovaries in TPIR group, there was no difference according to the SG. Histopathology of ovarian tissues in the TIR group was almost the same with the IR group. Our results indicate that thiamine pyrophosphate significantly prevents the ischemia-reperfusion induced oxidative damage in ovarian tissue, whereas thiamine has no effect. In conclusion, we have found that thiamine pyrophosphate prevents oxidative damage due to ischemia-reperfusion injury, whereas thiamine does not have this effect. Furthermore, we have confirmed that the results of our biochemical analyses are in concordance with the histopathological findings.

  10. Protective Effects of N-acetylcysteine and a Prostaglandin E1 Analog, Alprostadil, Against Hepatic Ischemia: Reperfusion Injury in Rats.

    PubMed

    Hsieh, Cheng-Chu; Hsieh, Shu-Chen; Chiu, Jen-Hwey; Wu, Ying-Ling

    2014-01-01

    Ischemia-reperfusion (I/R) injury has a complex pathophysiology resulting from a number of contributing factors. Therefore, it is difficult to achieve effective treatment or protection by individually targeting the mediators or mechanisms. Our aim was to analyze the individual and combined effects of N-acetylcysteine (NAC) and the prostaglandin E1 (PGE1) analog alprostadil on hepatic I/R injury in rats. Thirty male Sprague-Dawley rats were randomly divided into five groups (six rats per group) as follows: Control group, I/R group, I/R + NAC group, I/R + alprostadil group, and I/R + NAC + alprostadil group. The rats received injections of NAC (150 mg/kg) and/or alprostadil (0.05 μg/kg) over a period of 30 min prior to ischemia. These rats were then subjected to 60 min of hepatic ischemia followed by a 60-min reperfusion period. Hepatic superoxide dismutase (SOD), catalase, and glutathione levels were significantly decreased as a result of I/R injury, but they were increased in groups treated with NAC. Hepatic malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) activities were significantly increased after I/R injury, but they were decreased in the groups with NAC treatment. Alprostadil decreased NO production, but had no effect on MDA and MPO. Histological results showed that both NAC and alprostadil were effective in improving liver tissue morphology during I/R injury. Although NAC and alprostadil did not have a synergistic effect, our findings suggest that treatment with either NAC or alprostadil has benefits for ameliorating hepatic I/R injury.

  11. Abate Cytochrome C induced apoptosome to protect donor liver against ischemia reperfusion injury on rat liver transplantation model

    PubMed Central

    Zhuang, Zhuonan; Lian, Peilong; Wu, Xiaojuan; Shi, Baoxu; Zhuang, Maoyou; Zhou, Ruiling; Zhao, Rui; Zhao, Zhen; Guo, Sen; Ji, Zhipeng; Xu, Kesen

    2016-01-01

    Objective: Aim of this study is to protect donor liver against ischemia-reperfusion injury by abating Cytochrome C induced apoptosome on rat model. Methods: A total of 25 clean SD inbred male rats were used in this research. The rats in ischemia-reperfusion injury group (I/R group, n=5) were under liver transplantation operation; rats in dichloroacetate diisopropylamine group (DADA group, n=5) were treated DADA before liver transplantation; control group (Ctrl group, n=5); other 10 rats were used to offer donor livers. Results: In DADA therapy group, Cytochrome C expression in donor hepatocellular cytoplasm was detected lower than that in I/R group. And the Cytochrome C induced apoptosome was also decreased in according to the lower expressions of Apaf-1 and Caspase3. Low level of cleaved PARP expression revealed less apoptosis in liver tissue. The morphology of donor liver mitochondria in DADA group was observed to be slightly edema but less than I/R group after operation 12 h. The liver function indexes of ALT and AST in serum were tested, and the results in DADA group showed it is significantly lower than I/R group after operation 12 h. The inflammation indexes of IL-6 and TNF-α expressions in DADA group were significantly lower than that in I/R group after operation 24 h. Conclusion: The dichloroacetate diisopropylamine treatment could protect the hepatocellular mitochondria in case of the spillage of Cytochrome C induced apoptosome, and protect the liver against ischemia-reperfusion injury. Thus, it may be a method to promote the recovery of donor liver function after transplantation. PMID:27186297

  12. Tricarboxylic acid cycle metabolites during ischemia in isolated perfused rat heart.

    PubMed

    Peuhkurinen, K J; Takala, T E; Nuutinen, E M; Hassinen, I E

    1983-02-01

    Isolated rat hearts were, after a retrograde perfusion by the Langendorff procedure, rendered ischemic by lowering the aortic pressure to zero. The rate of proteolysis and temporal patterns of the changes in the concentrations of the metabolites of the tricarboxylic acid cycle, related amino acids, ammonia, and breakdown products of the adenine nucleotides were determined. The most significant change in the amino acid metabolism was a decrease of the proteolysis to one-tenth and a large accumulation of alanine, which was almost stoichiometric to the degradation of aspartate plus asparagine. The accumulation of malate and succinate was small compared with the metabolic net fluxes of aspartate and alanine. The metabolic balance sheet suggests that aspartate was converted to alanine. A prerequisite for this would be a feed in of carbon of aspartate to the tricarboxylic acid cycle as oxalacetate, reversal of the malate dehydrogenase, and production of pyruvate by the malic enzyme reaction. Alanine accumulating during ischemia is not glycolytic in origin but occurs through a concerted operation of anaplerotic reactions and tricarboxylic acid cycle metabolite disposal. The data also suggest that the potentially energy-yielding reduction of fumarate to succinate is not significant in the ischemic myocardium.

  13. Total flavonoid extract from Coreopsis tinctoria Nutt. protects rats against myocardial ischemia/reperfusion injury

    PubMed Central

    Zhang, Ya; Yuan, Changsheng; Fang, He; Li, Jia; Su, Shanshan; Chen, Wen

    2016-01-01

    Objective(s): This study aimed to evaluate the protective effects of total flavonoid extract from Coreopsis tinctoria Nutt. (CTF) against myocardial ischemia/reperfusion injury (MIRI) using an isolated Langendorff rat heart model. Materials and Methods: Left ventricular developed pressure (LVDP) and the maximum rate of rise and fall of LV pressure (±dp/dtmax) were recorded. Cardiac injury was assessed by analyzing lactate dehydrogenase (LDH) and creatine kinase (CK) released in the coronary effluent. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) levels were determined. Myocardial inflammation was assessed by monitoring tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), interleukin-8 (IL-8), and interleukin-6 (IL-6) levels. Myocardial infarct size was estimated. Cell morphology was assessed by 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin (HE) staining. Cardiomyocyte apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Results: Pretreatment with CTF significantly increased the heart rate and increased LVDP, as well as SOD and GSH-Px levels. In addition, CTF pretreatment decreased the TUNEL-positive cell ratio, infarct size, and levels of CK, LDH, MDA, TNF-α, CRP, IL-6, and IL-8. Conclusion: These results suggest that CTF exerts cardio-protective effects against MIRI via anti-oxidant, anti-inflammatory, and anti-apoptotic activities. PMID:27803790

  14. Molecular and Cellular Responses to Interleukin-4 Treatment in a Rat Model of Transient Ischemia

    PubMed Central

    Lively, Starlee; Hutchings, Sarah

    2016-01-01

    Within hours after stroke, potentially cytotoxic pro-inflammatory mediators are elevated within the brain; thus, one potential therapeutic strategy is to reduce them and skew the brain toward an anti-inflammatory state. Because interleukin-4 (IL-4) treatment induces an anti-inflammatory, “alternative-activation” state in microglia and macrophages in vitro, we tested the hypothesis that early supplementation of the brain with IL-4 can shift it toward an anti-inflammatory state and reduce damage after transient focal ischemia. Adult male rat striata were injected with endothelin-1, with or without co-injection of IL-4. Inflammation, glial responses and damage to neurons and white matter were quantified from 1 to 7 days later. At 1 day, IL-4 treatment increased striatal expression of several anti-inflammatory markers (ARG1, CCL22, CD163, PPARγ), increased phagocytic (Iba1-positive, CD68-positive) microglia/macrophages, and increased VEGF-A-positive infiltrating neutrophils in the infarcts. At 7 days, there was evidence of sustained, propagating responses. IL-4 increased CD206, CD200R1, IL-4Rα, STAT6, PPARγ, CD11b, and TLR2 expression and increased microglia/macrophages in the infarct and astrogliosis outside the infarct. Neurodegeneration and myelin damage were not reduced, however. The sustained immune and glial responses when resolution and repair processes have begun warrant further studies of IL-4 treatment regimens and long-term outcomes. PMID:27634961

  15. Hemidesmus indicus and Hibiscus rosa-sinensis Affect Ischemia Reperfusion Injury in Isolated Rat Hearts

    PubMed Central

    Khandelwal, Vinoth Kumar Megraj; Balaraman, R.; Pancza, Dezider; Ravingerová, Táňa

    2011-01-01

    Hemidesmus indicus (L.) R. Br. (HI) and Hibiscus rosa-sinensis L. (HRS) are widely used traditional medicine. We investigated cardioprotective effects of these plants applied for 15 min at concentrations of 90, 180, and 360 μg/mL in Langendorff-perfused rat hearts prior to 25-min global ischemia/120-min reperfusion (I/R). Functional recovery (left ventricular developed pressure—LVDP, and rate of development of pressure), reperfusion arrhythmias, and infarct size (TTC staining) served as the endpoints. A transient increase in LVDP (32%–75%) occurred at all concentrations of HI, while coronary flow (CF) was significantly increased after HI 180 and 360. Only a moderate increase in LVDP (21% and 55%) and a tendency to increase CF was observed at HRS 180 and 360. HI and HRS at 180 and 360 significantly improved postischemic recovery of LVDP. Both the drugs dose-dependently reduced the numbers of ectopic beats and duration of ventricular tachycardia. The size of infarction was significantly decreased by HI 360, while HRS significantly reduced the infarct size at all concentrations in a dose-dependent manner. Thus, it can be concluded that HI might cause vasodilation, positive inotropic effect, and cardioprotection, while HRS might cause these effects at higher concentrations. However, further study is needed to elucidate the exact mechanism of their actions. PMID:20953394

  16. Xenon treatment protects against cold ischemia associated delayed graft function and prolongs graft survival in rats.

    PubMed

    Zhao, H; Watts, H R; Chong, M; Huang, H; Tralau-Stewart, C; Maxwell, P H; Maze, M; George, A J T; Ma, D

    2013-08-01

    Prolonged hypothermic storage causes ischemia-reperfusion injury (IRI) in the renal graft, which is considered to contribute to the occurrence of the delayed graft function (DGF) and chronic graft failure. Strategies are required to protect the graft and to prolong renal graft survival. We demonstrated that xenon exposure to human proximal tubular cells (HK-2) led to activation of range of protective proteins. Xenon treatment prior to or after hypothermia-hypoxia challenge stabilized the HK-2 cellular structure, diminished cytoplasmic translocation of high-mobility group box (HMGB) 1 and suppressed NF-κB activation. In the syngeneic Lewis-to-Lewis rat model of kidney transplantation, xenon exposure to donors before graft retrieval or to recipients after engraftment decreased caspase-3 expression, localized HMGB-1 within nuclei and prevented TLR-4/NF-κB activation in tubular cells; serum pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced and renal function was preserved. Xenon treatment of graft donors or of recipients prolonged renal graft survival following IRI in both Lewis-to-Lewis isografts and Fischer-to-Lewis allografts. Xenon induced cell survival or graft functional recovery was abolished by HIF-1α siRNA. Our data suggest that xenon treatment attenuates DGF and enhances graft survival. This approach could be translated into clinical practice leading to a considerable improvement in long-term graft survival.

  17. The contrast of immunohistochemical studies of myocardial fibrinogen and myoglobin in early myocardial ischemia in rats.

    PubMed

    Xiaohong, Zhao; Xiaorui, Chen; Jun, Hu; Qisheng, Qin

    2002-03-01

    In this study, an animal model of early myocardial ischemia (EMI) was established by ligating the left anterior descending coronary artery of rats. The experimental animals were divided into five groups according to different intervals of MI (15, 30min, 1, 2, and 3h) and one control group. Tissues from the apex of the myocardium and the adjacent myocardium were taken for paraffin sections, followed by hematoxylin-eosin and streptavidin-biotin-peroxidase complex (SABC) staining. Results showed that the myoglobin (Mb) depletion and the fibrinogen (Fg) staining increase were detected in the 30min MI group. The wavy-like increasing extension of the size and the intensity of the Mb depletion and the Fg staining intensification from the subendocardial to the subepicardial cells were observed along with the prolongation of the ischemic period. Both changes had similar patterns and sensitivity, except Fg was less reliable than Mb as it is more easily contaminated by blood. After overcoming blood contamination, the SABC-Fg technique will provide a new method for the diagnosis of EMI.

  18. Protective effect of Urtica dioica L. on renal ischemia/reperfusion injury in rat.

    PubMed

    Sayhan, Mustafa Burak; Kanter, Mehmet; Oguz, Serhat; Erboga, Mustafa

    2012-12-01

    Renal ischemia-reperfusion (I/R) injury may occur after renal transplantation, thoracoabdominal aortic surgery, and renal artery interventions. This study was designed to investigate the effect of Urtica dioica L. (UD), in I/R induced renal injury. A total of 32 male Sprague-Dawley rats were divided into four groups: control, UD alone, I/R and I/R + UD; each group contain 8 animals. A rat model of renal I/R injury was induced by 45-min occlusion of the bilateral renal pedicles and 24-h reperfusion. In the UD group, 3 days before I/R, UD (2 ml/kg/day intraperitoneal) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and kidney tissues samples were obtained for histopathological investigation in all groups. To date, no more histopathological changes on intestinal I/R injury in rats by UD treatment have been reported. Renal I/R caused severe histopathological injury including tubular damage, atrophy dilatation, loss of brush border and hydropic epithelial cell degenerations, renal corpuscle atrophy, glomerular shrinkage, markedly focal mononuclear cell infiltrations in the kidney. UD treatment significantly attenuated the severity of intestinal I/R injury and significantly lowered tubulointerstitial damage score than the I/R group. The number of PCNA and TUNEL positive cells in the control and UD alone groups was negligible. When kidney sections were PCNA and TUNEL stained, there was a clear increase in the number of positive cells in the I/R group rats in the renal cortical tissues. However, there is a significant reduction in the activity of PCNA and TUNEL in kidney tissue of renal injury induced by renal I/R with UD therapy. Our results suggest that administration of UD attenuates renal I/R injury. These results suggest that UD treatment has a protective effect against renal damage induced by renal I/R. This protective effect is possibly due to its ability to inhibit I/R induced renal damage, apoptosis and cell proliferation.

  19. Protective effects of catalase on retinal ischemia/reperfusion injury in rats.

    PubMed

    Chen, Baihua; Tang, Luosheng

    2011-11-01

    Retinal ischemia/reperfusion (I/R) injury causes profound tissue damage, especially retinal ganglion cell (RGC) death. The aims of the study were to investigate whether catalase (CAT) has a neuroprotective effect on RGC after I/R injury in rats, and to determine the possible antioxidant mechanism. Wistar female rats were randonmized into four groups: normal control group (Control group), retinal I/R with vehicle group (I/R with vehicle group), retinal I/R with AAV-CAT group (I/R with AAV-CAT group), and normal retina with AAV-CAT group (normal with AAV-CAT group). One eye of each rat was pretreated with recombinant adeno-associated virus containing catalase gene (I/R with AAV-CAT group or normal with AAV-CAT group) and recombinant adeno-associated virus containing GFP gene (I/R with vehicle group) by intravitreal injection 21 days before initiation of I/R injury. Retinal I/R injury was induced by elevating intraocular pressure to 100mmHg for 1h. The number of RGC and inner plexiform layer (IPL) thickness were measured by fluorogold retrograde labeling and hematoxylin and eosin staining at 6h, 24h, 72 h and 5d after injury. Hydrogen peroxide (H(2)O(2)), the number of RGC, IPL thickness, malondialdehyde(MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), CAT activity and nitrotyrosine were measured by fluorescence staining, immunohistochemistry and enzyme-linked immunosorbent assay analysis at 5 days after injury. Electroretinographic (ERG) evaluation was also used. Pretreatment of AAV-CAT significantly decreased the levels of H(2)O(2), MDA, 8-OHdG and nitrotyrosine, increased the catalase activity, and prevented the reduction of a- and b- waves in the I/R with AAV-CAT group compare with the I/R with vehicle group (p<0.01). Catalase attenuated the I/R-induced damage of RGC and IPL and retinal function. Therefore, catalase can protect the rat retina from I/R-induced injury by enhancing the antioxidative ability and reducing oxidative stress, which suggests that catalase may be

  20. NFAT5 Is Activated by Hypoxia: Role in Ischemia and Reperfusion in the Rat Kidney

    PubMed Central

    Villanueva, Sandra; Suazo, Cristian; Santapau, Daniela; Pérez, Francisco; Quiroz, Mariana; Carreño, Juan E.; Illanes, Sebastián; Lavandero, Sergio; Michea, Luis; Irarrazabal, Carlos E.

    2012-01-01

    The current hypothesis postulates that NFAT5 activation in the kidney's inner medulla is due to hypertonicity, resulting in cell protection. Additionally, the renal medulla is hypoxic (10–18 mmHg); however there is no information about the effect of hypoxia on NFAT5. Using in vivo and in vitro models, we evaluated the effect of reducing the partial pressure of oxygen (PO2) on NFAT5 activity. We found that 1) Anoxia increased NFAT5 expression and nuclear translocation in primary cultures of IMCD cells from rat kidney. 2) Anoxia increased transcriptional activity and nuclear translocation of NFAT5 in HEK293 cells. 3) The dose-response curve demonstrated that HIF-1α peaked at 2.5% and NFAT5 at 1% of O2. 4) At 2.5% of O2, the time-course curve of hypoxia demonstrated earlier induction of HIF-1α gene expression than NFAT5. 5) siRNA knockdown of NFAT5 increased the hypoxia-induced cell death. 6) siRNA knockdown of HIF-1α did not affect the NFAT5 induction by hypoxia. Additionally, HIF-1α was still induced by hypoxia even when NFAT5 was knocked down. 7) NFAT5 and HIF-1α expression were increased in kidney (cortex and medulla) from rats subjected to an experimental model of ischemia and reperfusion (I/R). 7) Experimental I/R increased the NFAT5-target gene aldose reductase (AR). 8) NFAT5 activators (ATM and PI3K) were induced in vitro (HEK293 cells) and in vivo (I/R kidneys) with the same timing of NFAT5. 8) Wortmannin, which inhibits ATM and PI3K, reduces hypoxia-induced NFAT5 transcriptional activation in HEK293 cells. These results demonstrate for the first time that NFAT5 is induced by hypoxia and could be a protective factor against ischemic damage. PMID:22768306

  1. Effect of cold ischemia-warm reperfusion on the cirrhotic rat liver.

    PubMed

    Huet, Pierre-Michel; Giroux, Lise; Laurens, Marina; Crenesse, Dominique

    2008-04-01

    Cirrhosis is known to induce capillarization of the sinusoidal endothelial cells (SECs) and collagenization of the space of Disse, resulting in a reduced access of plasma and plasma-dissolved substances to hepatocytes due to their limited diffusion in the extravascular space. The aim of the present study was to use a well known effect of cold ischemia-warm reperfusion (CI-WR) on liver SECs, that is, their retraction and detachment, progressing to a denudation of the SEC lining. The disappearance of the capillarized SEC lining would improve the access of plasma and plasma-dissolved substances to the hepatocytes and consequently might improve the metabolic function of cirrhotic livers. This study was performed using the isolated perfused rat liver model subjected to 24-hour CI followed by a 60-minute WR in thioacetamide-induced cirrhosis. Liver microcirculation was evaluated using the multiple indicator dilution curve (MIDC) technique. Hepatocyte, SEC, and Kupffer cell functions were evaluated using specific elimination processes. As occurs in normal livers, CI-WR induced extensive SEC necrosis with a marked reduction of the hyaluronic acid elimination. By contrast, the hepatic microcirculation was not modified: vascular, extravascular, and the cellular spaces were similar before and following CI-WR. In addition, the hepatic metabolic functions, as evaluated by propranolol and taurocholate hepatic uptake, were neither improved nor decreased, as were Kupffer cell functions. The present data strongly suggest that capillarization of SECs plays a lesser role than collagenization of the space of Disse in the reduced exchange between sinusoids and hepatocytes in thioacetamide-induced cirrhotic rat livers, which appear to be quite resistant to CI-WR.

  2. Liraglutide attenuates partial warm ischemia-reperfusion injury in rat livers.

    PubMed

    Abdelsameea, Ahmed A; Abbas, Noha A T; Abdel Raouf, Samar M

    2017-03-01

    Ischemia-reperfusion (IR) injury constitutes the most important cause of primary dysfunction of liver grafts. In this study, we have addressed the possible hepatoprotective action of liraglutide against partial warm hepatic IR injury in male rats. Rats were randomly assigned into: sham, IR, and liraglutide-pretreated IR groups. Liraglutide was administered 50 μg/kg s.c. twice daily for 14 days, and then, hepatic IR was induced by clamping portal vein and hepatic artery to left and median lobes for 30 min followed by reperfusion for 24 h. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma glutamyl transferase (GGT) activities were determined. Malondialdehyde (MDA) level, reduced glutathione (GSH) content, tumor necrosis factor-α (TNF-α), phosphoralated Akt (p-Akt), and caspase-3 levels of the liver were determined. Hematoxylin and eosin (H&E) stained sections from liver were examined as well as immunohistochemical sections for detection of Bcl-2 expression. IR injury increased ALT, AST, and GGT while decreased GSH and p-Akt with increase in MDA, TNF-α, and caspase-3 levels in the liver with necrosis and inflammatory cellular infiltration with decreased Bcl-2 expression. Pretreatment with liraglutide decreased ALT, AST, and GGT activities while increased glutathione content and Akt activation with decrements in MDA, TNF-α, and caspase-3 levels with attenuation of necrosis and inflammation while enhanced Bcl-2 expression in the liver. Liraglutide protects against IR injury of the liver through antiinflammatory and antioxidant actions as well as inhibition of apoptosis.

  3. Lysophosphatidic Acid Pretreatment Attenuates Myocardial Ischemia/Reperfusion Injury in the Immature Hearts of Rats

    PubMed Central

    Chen, Haibo; Liu, Si; Liu, Xuewen; Yang, Jinjing; Wang, Fang; Cong, Xiangfeng; Chen, Xi

    2017-01-01

    The cardioprotection of the immature heart during cardiac surgery remains controversial due to the differences between the adult heart and the newborn heart. Lysophosphatidic acid (LPA) is a small bioactive molecule with diverse functions including cell proliferation and survival via its receptor: LPA1–LPA6. We previously reported that the expressions of LPA1 and LPA3 in rat hearts were much higher in immature hearts and then declined rapidly with age. In this study, we aimed to investigate whether LPA signaling plays a potential protective role in immature hearts which had experienced ischemia/reperfusion (I/R) injury. The results showed that in Langendorff-perfused immature rat hearts (2 weeks), compared to I/R group, LPA pretreatment significantly enhanced the cardiac function, attenuated myocardial infarct size and CK-MB release, decreased myocardial apoptosis and increased the expression of pro-survival signaling molecules. All these effects could be abolished by Ki16425, an antagonist to LPA1 and LPA3. Similarly, LPA pretreatment protected H9C2 from hypoxia-reoxygenation (H/R) induced apoptosis and necrosis in vitro. The mechanisms underlying the anti-apoptosis effects were related to activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinas B (AKT) signaling pathways as well as phosphorylation of the downstream effector of AKT, glycogen synthase kinase 3 beta (GSK3β), through LPA1 and/or LPA3. What's more, we found that LPA preconditioning increased glucose uptake of H9C2 subjected to H/R by the activation of AMP-Activated Protein Kinase (AMPK) but not the translocation of GLUT4. In conclusion, our study indicates that LPA is a potent survival factor for immature hearts against I/R injuries and has the potential therapeutic function as a cardioplegia additive for infantile cardiac surgery. PMID:28377726

  4. Enriched rehabilitation promotes motor recovery in rats exposed to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Jeffers, Matthew Strider; Antonescu, Sabina; Nguemeni, Carine; Gomez-Smith, Mariana; Pereira, Lenir Orlandi; Morshead, Cindi M; Corbett, Dale

    2016-05-01

    Despite continuous improvement in neonatology there is no clinically effective treatment for perinatal hypoxia ischemia (HI). Therefore, development of a new therapeutic intervention to minimize the resulting neurological consequences is urgently needed. The immature brain is highly responsive to environmental stimuli, such as environmental enrichment but a more effective paradigm is enriched rehabilitation (ER), which combines environmental enrichment with daily reach training. Another neurorestorative strategy to promote tissue repair and functional recovery is cyclosporine A (CsA). However, potential benefits of CsA after neonatal HI have yet to be investigated. The aim of this study was to investigate the effects of a combinational therapy of CsA and ER in attempts to promote cognitive and motor recovery in a rat model of perinatal hypoxic-ischemic injury. Seven-day old rats were submitted to the HI procedure and divided into 4 groups: CsA+Rehabilitation; CsA+NoRehabilitation; Vehicle+Rehabilitation; Vehicle+NoRehabilitation. Behavioural parameters were evaluated pre (experiment 1) and post 4 weeks of combinational therapy (experiment 2). Results of experiment 1 demonstrated reduced open field activity of HI animals and increased foot faults relative to shams in the ladder rung walking test. In experiment 2, we showed that ER facilitated acquisition of a staircase skilled-reaching task, increased number of zone crosses in open-field exploration and enhanced coordinated limb use during locomotion on the ladder rung task. There were no evident deficits in novel object recognition testing. Delayed administration of CsA, had no effect on functional recovery after neonatal HI. There was a significant reduction of cortical and hemispherical volume and hippocampal area, ipsilateral to arterial occlusion in HI animals; combinational therapy had no effect on these morphological measurements. In conclusion, the present study demonstrated that ER, but not CsA was the main

  5. Antioxidant and antiapoptotic effects of erdosteine in a rat model of ovarian ischemia-reperfusion injury

    PubMed Central

    Ugurel, Vedat; Cicek, Ahmet Cagatay; Cemek, Mustafa; Demirtas, Selim; Kocaman, A Tuba; Karaca, Turan

    2017-01-01

    Objective(s): To evaluate the protective effect of erdosteine, an antiapoptotic and antioxidant agent, on torsion–detorsion evoked histopathological changes in experimental ovarian ischemia-reperfusion (IR) injury. Materials and Methods: Eighteen female Wistar albino rats were used in control, IR, and IR+Edosteine (IR-E) groups, (n=6 in each). The IR-E group received the erdosteine for seven days before the induction of torsion/retorsion, (10 mg/kg/days). The IR and IR-E groups were exposed to right unilateral adnexal torsion for 3 hr. Three hours later, re-laparotomy was performed, and the right ovaries were surgically excised. Oxidant and antioxidants levels were determined in serum. The ovarian tissue samples were received and fixed with 10% neutral buffered formalin. The sections were stained with H&E, anti-PCNA, and TUNEL. Results: The IR group were showed severe acute inflammation, polynuclear leukocytes and macrophages, stromal oedema and haemorrhage. Treatment with erdosteine in rats significantly retained degenerative changes in the ovary PCNA (+) cell numbers were significantly decreased in the IR and IR-E groups unlike the control group. However, its numbers were significantly increased in the IR-E group unlike the IR group. TUNEL (+) cell numbers were significantly increased in the IR group unlike the control and the IR-E groups. In erdosteine treated group, TUNEL (+) cells were detected significantly less than the IR group (P<0.05). Conclusion: In conclusion, erdosteine maybe a protective agent for ovarian damage and decreasing lipid peroxidation products and leukocytes aggregation after adnexal torsion in animals. PMID:28133525

  6. Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia.

    PubMed

    Lin, Yuqing; Yu, Ping; Hao, Jie; Wang, Yuexiang; Ohsaka, Takeo; Mao, Lanqun

    2014-04-15

    Developing new tools and technologies to enable recording the dynamic changes of multiple neurochemicals is the essence of better understanding of the molecular basis of brain functions. This study demonstrates a microfluidic chip-based online electrochemical system (OECS) for in vivo continuous and simultaneous monitoring of glucose, lactate, and ascorbate in rat brain. To fabricate the microfluidic chip-based detecting system, a microfluidic chip with patterned channel is developed into an electrochemical flow cell by incorporating the chip with three surface-modified indium-tin oxide (ITO) electrodes as working electrodes, a Ag/AgCl wire as reference electrode, and a stainless steel tube as counter electrode. Selective detection of ascorbate is achieved by the use of single-walled carbon nanotubes (SWNTs) to largely facilitate the electrochemical oxidation of ascorbate, while a dehydrogenase-based biosensing mechanism with methylene green (MG) adsorbed onto SWNTs as an electrocatalyst for the oxidation of dihydronicotiamide adenine dinucleotide (NADH) is employed for biosensing of glucose and lactate. To avoid the crosstalk among three sensors, the sensor alignment is carefully designed with the SWNT-modified electrode in the upstream channel and paralleled glucose and lactate biosensors in the downstream channels. With the microfluidic chip-based electrochemical flow cell as the detector, an OECS is successfully established by directly integrating the microfluidic chip-based electrochemical flow cell with in vivo microdialysis. The OECS exhibits a good linear response toward glucose, lactate, and ascorbate with less crosstalk. This property, along with the high stability and selectivity, enables the OECS for continuously monitoring three species in rat brain following brain ischemia.

  7. The Anti-Inflammatory Effect of Erythropoietin and Melatonin on Renal Ischemia Reperfusion Injury in Male Rats

    PubMed Central

    Ahmadiasl, Nasser; Banaei, Shokofeh; Alihemmati, Alireza; Baradaran, Behzad; Azimian, Ehsan

    2014-01-01

    Purpose: Renal ischemia reperfusion (IR) is an important cause of renal dysfunction. It contributes to the development of acute renal failure (ARF). The purpose of this study was to investigate the anti-inflammatory effect of erythropoietin (EPO) and melatonin (MEL), which are known anti-inflammatory and antioxidant agents, in IR-induced renal injury in rats. Methods: Male Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10mg/kg, i.p) and EPO (5000U/kg, i.p) were administered prior to ischemia. After 24 h reperfusion, blood samples were collected for the determination of total antioxidant capacity (TAC), malondialdehyde (MDA) and serum creatinine levels. Also, renal samples were taken for Immunohistochemical evaluation of Bcl2 and TNF-α (tumor necrosis factor-α) expression. Results: Ischemia reperfusion increased creatinine, TAC, MDA levels and TNF-α expression, also, IR decreased Bcl2 expression. Treatment with EPO or MEL decreased creatinine, MDA levels, and increased TAC level. Also, MEL up-regulated Bcl2 expression and down-regulated TNF-α expression compared with EPO. Conclusion: Treatment with EPO and MEL had a curative effect on renal IR injury. These results may indicate that MEL protects against inflammation and apoptosis better than EPO in renal IR injury. PMID:24409409

  8. Carbon Monoxide Improves Neurologic Outcomes by Mitochondrial Biogenesis after Global Cerebral Ischemia Induced by Cardiac Arrest in Rats

    PubMed Central

    Wang, Peng; Yao, Lan; Zhou, Li-li; Liu, Yuan-shan; Chen, Ming-di; Wu, Hai-dong; Chang, Rui-ming; Li, Yi; Zhou, Ming-gen; Fang, Xiang-shao; Yu, Tao; Jiang, Long-yuan; Huang, Zi-tong

    2016-01-01

    Mitochondrial dysfunction contributes to brain injury following global cerebral ischemia after cardiac arrest. Carbon monoxide treatment has shown potent cytoprotective effects in ischemia/reperfusion injury. This study aimed to investigate the effects of carbon monoxide-releasing molecules on brain mitochondrial dysfunction and brain injury following resuscitation after cardiac arrest in rats. A rat model of cardiac arrest was established by asphyxia. The animals were randomly divided into the following 3 groups: cardiac arrest and resuscitation group, cardiac arrest and resuscitation plus carbon monoxide intervention group, and sham control group (no cardiac arrest). After the return of spontaneous circulation, neurologic deficit scores (NDS) and S-100B levels were significantly decreased at 24, 48, and 72 h, but carbon monoxide treatment improved the NDS and S-100B levels at 24 h and the 3-day survival rates of the rats. This treatment also decreased the number of damaged neurons in the hippocampus CA1 area and increased the brain mitochondrial activity. In addition, it increased mitochondrial biogenesis by increasing the expression of biogenesis factors including peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factor-1, nuclear respiratory factor-2 and mitochondrial transcription factor A. Thus, this study showed that carbon monoxide treatment alleviated brain injury after cardiac arrest in rats by increased brain mitochondrial biogenesis. PMID:27489503

  9. Impact of intracranial blood-flow redistribution on stroke size during ischemia-reperfusion in 7-day-old rats.

    PubMed

    Bonnin, Philippe; Leger, Pierre-Louis; Deroide, Nicolas; Fau, Sébastien; Baud, Olivier; Pocard, Marc; Charriaut-Marlangue, Christiane; Renolleau, Sylvain

    2011-05-15

    We evaluated color-coded pulsed Doppler ultrasound imaging for the assessment of intracranial blood flow in two models of cerebral ischemia in 7-day-old (P7) rats. Blood-flow velocities (BFVs) were measured in the internal carotid arteries and basilar trunk upstream from the circle of Willis, and in the posterior cerebral arteries downstream (1) before, (2) during left middle cerebral artery electrocoagulation and 50 min-transient either one (I/R-1) or both (I/R-2) common carotid (CCA) arteries occlusion, and (3) after release of CCA(s) occlusion. At 48 h after ischemia 41-48% (I/R-1 model) and 24% (I/R-2 model) of rats did not present a lesion. Those rats displayed increased mean BFV in both right internal carotid artery and basilar trunk in I/R-1 model, and increased mean BFV in the basilar trunk (BT) in I/R-2 model. In contrast, no significant changes in mean BFV were observed in lesioned rats. Furthermore, mean BFV in the BT was inversely correlated to the size of the lesion (r² = 0.75, p<0.0001) in the I/R-2 model. Thus, we demonstrated the protective role of collateral support in P7 rodents. Ultrasound imaging can evidence the establishment or not of the cerebral collateral recruitment, leading to the presence or absence of a lesion. This novel approach should greatly help preclinical studies to reduce animal variability.

  10. The preventive effects of diminazene aceturate in renal ischemia/reperfusion injury in male and female rats.

    PubMed

    Malek, Maryam; Nematbakhsh, Mehdi

    2014-01-01

    Background. Angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor (ACE2/Ang-1-7/MasR) appears to counteract most of the deleterious actions of angiotensin-converting enzyme/angiotensin II/angiotensin II receptor 1 (ACE/Ang II/AT1R) in renal ischemia/reperfusion (I/R) injury but ACE2 activity and its levels are sexually dimorphic in the kidney. This study was designed to evaluate the effects of activation endogenous ACE2 using the diminazene aceturate (DIZE) in renal I/R injury in male and female rats. Methods. 36 Wistar rats were divided into two groups of male and female and each group distinct to three subgroups (n = 6). I/R group was subjected to 45 min of bilateral ischemia and 24 h of reperfusion, while treatment group received DIZE (15 mg/kg/day) for three days before the induction of I/R. The other group was assigned as the sham-operated group. Results. DIZE treatment in male rats caused a significant decrease in blood urea nitrogen (BUN), creatinine, liver functional indices, serum malondialdehyde (MDA), and increase kidney nitrite levels (P < 0.05), and in female rats a significant increase in creatinine and decrease serum nitrite levels compared to the I/R group (P < 0.05). Conclusions. DIZE may protect the male kidney from renal I/RI through antioxidant activity and elevation of circulating nitrite level.

  11. The Preventive Effects of Diminazene Aceturate in Renal Ischemia/Reperfusion Injury in Male and Female Rats

    PubMed Central

    2014-01-01

    Background. Angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor (ACE2/Ang-1-7/MasR) appears to counteract most of the deleterious actions of angiotensin-converting enzyme/angiotensin II/angiotensin II receptor 1 (ACE/Ang II/AT1R) in renal ischemia/reperfusion (I/R) injury but ACE2 activity and its levels are sexually dimorphic in the kidney. This study was designed to evaluate the effects of activation endogenous ACE2 using the diminazene aceturate (DIZE) in renal I/R injury in male and female rats. Methods. 36 Wistar rats were divided into two groups of male and female and each group distinct to three subgroups (n = 6). I/R group was subjected to 45 min of bilateral ischemia and 24 h of reperfusion, while treatment group received DIZE (15 mg/kg/day) for three days before the induction of I/R. The other group was assigned as the sham-operated group. Results. DIZE treatment in male rats caused a significant decrease in blood urea nitrogen (BUN), creatinine, liver functional indices, serum malondialdehyde (MDA), and increase kidney nitrite levels (P < 0.05), and in female rats a significant increase in creatinine and decrease serum nitrite levels compared to the I/R group (P < 0.05). Conclusions. DIZE may protect the male kidney from renal I/RI through antioxidant activity and elevation of circulating nitrite level. PMID:25478235

  12. Influence of acidosis and hypoxia on liver ischemia and reperfusion injury in an in vivo rat model.

    PubMed

    Heijnen, Bob H M; Elkhaloufi, Yasser; Straatsburg, Irene H; Van Gulik, Thomas M

    2002-07-01

    The contribution of acidosis to the development of reperfusion injury is controversial. In this study, we examined the effects of respiratory acidosis and hypoxia in a frequently used in vivo liver ischemia and reperfusion (I/R) injury rat model. Rats were anesthetized with intraperitoneal anesthetics and subjected to partial liver ischemia (70%) for 60 min and subsequent reperfusion for 90 min under the following conditions: 1) no acidosis and normoxia, maintained by controlled ventilation; 2) acidosis and normoxia, maintained by passive supply with oxygen; 3) no acidosis and hypoxia, maintained by bicarbonate administration without respiratory support; and 4) acidosis and hypoxia, i.e., without respiratory support or pH correction. Changes in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured as parameters of hepatocellular injury, and bile secretion was monitored. AST and ALT levels were lowest in the ventilated rats and highest in the bicarbonate-treated rats. No differences in bile secretion were found between groups. Our results suggest that respiratory acidosis significantly enhanced liver I/R injury under normoxic conditions, whereas respiratory acidosis significantly reduced liver I/R injury under hypoxic conditions.

  13. [Differential effects of isoflurane and nitrous oxide on cerebral blood flow, metabolism and electrocorticogram after incomplete cerebral ischemia in the rat].

    PubMed

    Ishikawa, T; Maekawa, T; Shinohara, K; Sakabe, T; Takeshita, H

    1989-07-01

    Differential effects of isoflurane (ISOF) and N2O on cerebral blood flow, metabolism and electrocorticogram (ECoG) were examined in rats subjected to 15 min-incomplete cerebral ischemia. In the first study, regional cerebral blood flow (rCBF) and ECoG were measured during and after ischemia. In the second study, local cerebral blood flow (LCBF) and glucose utilization (LCGU) were determined at 60 min after reperfusion. In the N2O group, rCBF in both the cerebral cortex and hippocampus decreased significantly to less than 10% of the pre-ischemic value during ischemia, and it increased to 170% at 10 min after reperfusion. The ECoG became flat during ischemia and reappeared at 21 min after reperfusion. In the ISOF group, rCBF decreased significantly to 25% during ischemia and returned to the preischemic value after reperfusion. The ECoG became flat during ischemia and reappeared at 14 min. In the N2O group, LCBFs decreased significantly to 40-50% of the pre-ischemic values in the forebrain. LCGUs decreased significantly to 30-50% in all structures of the forebrain. In the ISOF group, LCBFs decreased significantly to 60-80% in the forebrain, but were not different in other structures. LCGUs did not differ from pre-ischemic values in all structures except for in the thalamus and habenula. These results may indicate cerebral protective effects of ISOF on incomplete cerebral ischemia in rats.

  14. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms.

    PubMed

    Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G

    2016-02-01

    Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain.

  15. Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia.

    PubMed Central

    Botchkina, G. I.; Meistrell, M. E.; Botchkina, I. L.; Tracey, K. J.

    1997-01-01

    Cerebral ischemia induces a rapid and dramatic up-regulation of tumor necrosis factor (TNF) protein and mRNA, but the cellular sources of TNF in the ischemic brain have not been defined. The diverse activities of TNF are mediated via ligand interaction with two distinct receptors, p55 and p75, which activate separate intracellular signal transduction pathways, leading to distinct biological effects. Since the effects of cerebral ischemia on TNF receptor (TNFR) expression are unknown, we examined the cellular localization and protein expression of TNF and its two receptors in the rat cerebral cortex in response to permanent middle cerebral artery (MCA) occlusion. The results indicate that focal. cerebral ischemia up-regulates expression of TNF and both TNFRs within the ischemic cortex. The most abundant type of TNF immunoreactivity (IR) was a punctate and filamentous pattern of transected cellular processes; however, cell bodies of neurons, astrocytes, and microglia, as well as infiltrating polymorphonuclear (PMN) leukocytes also showed TNF IR. Brain vasculature displayed TNF IR not only within endothelial cells but also in the perivascular space. MCA occlusion induced significant up-regulation of TNF receptors, with p55 IR appearing within 6 hr, significantly before the appearance of p75 IR at 24 hr after the onset of ischemia. Since p55 has been implicated in transducing cytotoxic signalling of TNF, these results support the proposed injurious role of excessive TNF produced during the acute response to cerebral ischemia. Images FIG. 7 FIG. 3 FIG. 1 FIG. 2 FIG. 4 FIG. 5 FIG. 6 FIG. 8 FIG. 9 PMID:9407552

  16. Ozone protects rat heart against ischemia-reperfusion injury: A role for oxidative preconditioning in attenuating mitochondrial injury.

    PubMed

    Meng, Weixin; Xu, Ying; Li, Dandan; Zhu, Erjun; Deng, Li; Liu, Zonghong; Zhang, Guowei; Liu, Hongyu

    2017-04-01

    Ischemia-reperfusion injury (IRI) is a major cause of cardiac dysfunction during cardiovascular surgery, heart transplantation and cardiopulmonary bypass procedures. The purpose of the present study was to explore, firstly, whether ozone induces oxidative preconditioning by activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and, secondly, whether ozone oxidative preconditioning (OzoneOP) can protect the heart against IRI by attenuating mitochondrial damage. Rats were subjected to 30min of cardiac ischemia followed by 2h of reperfusion, with or without prior OzoneOP (100μg/kg/day) for 5 days. Antioxidant capacity, myocardial apoptosis and mitochondrial damage were evaluated and compared at the end of reperfusion. OzoneOP was found to increase antioxidant capacity and to protect the myocardium against IRI by attenuating mitochondrial damage and myocardial apoptosis. The study suggests a potential role for OzoneOP in protecting the heart against IRI during cardiovascular surgery, cardiopulmonary bypass procedures or transplantation.

  17. Therapeutic effect of Korean red ginseng on inflammatory cytokines in rats with focal cerebral ischemia/reperfusion injury.

    PubMed

    Lee, Jong Seok; Choi, Han Sung; Kang, Sung Wook; Chung, Joo-Ho; Park, Hun Kuk; Ban, Ju Yeon; Kwon, Oh Young; Hong, Hoon Pyo; Ko, Young Gwan

    2011-01-01

    This study aims to identify the therapeutic effect of Korean red ginseng (KRG) on the expression of inflammatory cytokines in rats with focal cerebral ischemia/reperfusion injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (tMCAO) for two hours. They were fed KRG extract (100 mg/kg/day per orally) or saline after reperfusion. Tests for neurological deficits, using the modified neurologic severity score and the corner turn test, were performed before the ischemic event, and one, three, and seven days after tMCAO. Serum levels of cytokines were measured three and seven days after the operation, using enzyme-linked immunosorbent assays. The infarct volume was assessed after seven days by staining brain tissue with 2% 2, 3, 5-triphenyltetrazolium chloride. Oral administration of KRG significantly reduced the infarct volumes and rapidly improved neurological deficits. Serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6 were higher in tMCAO-operated rats than in the sham-operated rats. These changes were attenuated by daily KRG intake for seven days. Serum IL-10 levels were significantly increased in KRG-fed rats, as compared to sham-operated and saline-fed rats. Our results suggested that KRG provides neuroprotection for rats with focal cerebral ischemia/reperfusion injury. This neuroprotection may be due to raised IL-10 expression and a reduction in the serum levels of TNF-α, IL-1β, and IL-6.

  18. Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats#

    PubMed Central

    Thiyagarajan, Meenakshisundaram; Kaul, Chaman Lal; Sharma, Shyam Sundar

    2004-01-01

    Free radicals have been implicated in cerebral ischemia reperfusion (IR) injury. Massive production of nitric oxide and superoxide results in continuous formation of peroxynitrite even several hours after IR insult. This can produce DNA strand nicks, hydroxylation and/or nitration of cytosolic components of neuron, leading to neuronal death. Peroxynitrite decomposition catalysts 5,10,15,20-tetrakis(N-methyl-4′-pyridyl)porphyrinato iron (III) (FeTMPyP) and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III) (FeTPPS) have been demonstrated to protect neurons in in vitro cultures; however, their neuroprotective efficacy in cerebral IR injury has not been explored. In the present study, we investigated the efficacy and the therapeutic time window of FeTMPyP and FeTPPS in focal cerebral ischemia (FCI). FCI was induced according to the middle cerebral artery occlusion (MCAO) method. After 2 h of MCAO and 70 h of reperfusion, the extent of neurological deficits, infarct and edema volume were measured in Sprague–Dawley rats. FeTMPyP and FeTPPS were administered at different time points 2, 6, 9 and 12 h post MCAO. FeTMPyP and FeTPPS (3 mg kg−1, i.v.) treatment at 2 and 6 h post MCAO produced significant reduction in infarct volume, edema volume and neurological deficits. However, treatment at latter time points did not produce significant neuroprotection. Significant reduction of peroxynitrite in blood and nitrotyrosine in brain sections was observed on FeTMPyP and FeTPPS treatment. As delayed treatment of FeTMPyP and FeTPPS produced neuroprotection, we tested whether treatment had any influence over the apoptotic neuronal death. DNA fragmentation and in situ nick end-labeling assays showed that FeTMPyP and FeTPPS treatment reduced IR injury-induced DNA fragmentation. In conclusion, peroxynitrite decomposition catalysts (FeTMPyP and FeTPPS) produced prominent neuroprotection even if administered 6 h post MCAO and the neuroprotective effect is at least in

  19. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo

    PubMed Central

    1990-01-01

    Changes in intra- and extracellular free calcium concentration were evaluated with ion-selective microelectrodes during periods of anoxia and ischemia in three different regions of intact rat brain. Recordings stable for at least 2 min and in most cases for 4-6 min were chosen for analysis. Under normoxic conditions neuronal [Ca2+]i varied between less than 10(-8) and 10(-7) M from cell to cell but no systematic regional differences were observed. Elimination of O2 or interruption in blood flow caused, within 30-60 s, slight intracellular alkalinization followed by a small rise in [Ca2+]i, a mild degree of hyperpolarization, and disappearance of electrical activity in the cortex, in that order. It is postulated that a decline in cellular energy levels, as manifested by H+ uptake associated with creatine phosphate hydrolysis, leads to an increase in [Ca2+]i, which activates Ca2(+)-dependent K+ channels and consequently enhances gK. 2-4 min later there was a sudden, large rise in [K+]e, a fall in [Ca2+]e and a rapid elevation of [Ca2+]i. The magnitude of the latter was greatest in a high proportion of hippocampal neurons in area CA1 and some cortical cells, while it was smallest and relatively delayed in thalamic neurons. In the hippocampus area CA1 increases in [Ca2+]i to as much as 6-8 x 10(-4) were observed; some of these could be reversed when O2 or blood flow were restored to normal. Pretreatment of animals with ketamine and MK-801, antagonists of excitatory amino acid transmitters, markedly slowed and decreased the rises in [Ca2+]i. The effects of the two agents were most pronounced in the hippocampus. It is concluded that the receptor-operated channels are largely responsible for Ca2+ entry into certain cells during hypoxia/ischemia. This pathway may be of primary importance in parts of the hippocampus and cortex, regions of the brain that are particularly vulnerable to O2 deprivation and which receive high glutamatergic input and have an abundance of

  20. The effect of high intensity interval training on cardioprotection against ischemia-reperfusion injury in wistar rats

    PubMed Central

    Rahimi, Mostafa; Shekarforoush, Shahnaz; Asgari, Ali Reza; Khoshbaten, Ali; Rajabi, Hamid; Bazgir, Behzad; Mohammadi, Mohammad Taghi; Sobhani, Vahid; Shakibaee, Abolfazl

    2015-01-01

    The aims of the present study were to determine whether short term high intensity interval training (HIIT) could protect the heart against ischemia reperfusion (IR) injury; and if so, to evaluate how long the exercise-associated protection can be lasted. Sixty-three rats were randomly assigned into sedentary (n = 15), sham (n = 7), and exercise groups (n = 41). Rats in the exercise groups performed 5 consecutive days of HIIT on treadmill: 5 min warm up with 50 % VO2max, 6×2 min with 95-105 % VO2max (about 40 to 45 m/min), 5×2 min recovery with 65-75 % VO2max (about 28 to 32 m/min), and 3 min cool down with 50 % VO2max, all at 0 % grade. Animals exposed to an in vivo cardiac IR surgery, performed at days 1, 7, and 14 following the final exercise session. Ischemia-induced arrhythmias, myocardial infarct size (IS), plasma lactate dehydrogenase (LDH) and creatine kinase (CK) activities were measured in all animals. Compared to sedentary rats, exercised animals sustained less IR injury as evidenced by a lower size of infarction and lower levels of LDH and CK at day one and day 7 post exercise. In comparison of sedentary group, IS significantly decreased in EX-IR1 and EX-IR7 groups (50 and 35 %, respectively), but not in EX-IR14 group (19 %). The exercise-induced cardioprotection disappeared 14 days following exercise cessation. There were no significant changes in ischemia-induced arrhythmia between exercised and sedentary rats. The results clearly demonstrate that HIIT protects the heart against myocardial IR injury. This protective effect can be sustained for at least one week following the cessation of the training. PMID:26417361

  1. Impact of prenatal ischemia on behavior, cognitive abilities and neuroanatomy in adult rats with white matter damage.

    PubMed

    Delcour, Maxime; Russier, Michaël; Amin, Mamta; Baud, Olivier; Paban, Véronique; Barbe, Mary F; Coq, Jacques-Olivier

    2012-06-15

    Early brain damage, such as white matter damage (WMD), resulting from perinatal hypoxia-ischemia in preterm and low birth weight infants represents a high risk factor for mortality and chronic disabilities, including sensory, motor, behavioral and cognitive disorders. In previous studies, we developed a model of WMD based on prenatal ischemia (PI), induced by unilateral ligation of uterine artery at E17 in pregnant rats. We have shown that PI reproduced some of the main deficits observed in preterm infants, such as white and gray matter damage, myelination deficits, locomotor, sensorimotor, and short-term memory impairments, as well as related musculoskeletal and neuroanatomical histopathologies [1-3]. Here, we determined the deleterious impact of PI on several behavioral and cognitive abilities in adult rats, as well as on the neuroanatomical substratum in various related brain areas. Adult PI rats exhibited spontaneous exploratory and motor hyperactivity, deficits in information encoding, and deficits in short- and long-term object memory tasks, but no impairments in spatial learning or working memory in watermaze tasks. These results were in accordance with white matter injury and damage in the medial and lateral entorhinal cortices, as detected by axonal degeneration, astrogliosis and neuronal density. Although there was astrogliosis and axonal degeneration in the fornix, hippocampus and cingulate cortex, neuronal density in the hippocampus and cingulate cortex was not affected by PI. Levels of spontaneous hyperactivity, deficits in object memory tasks, neuronal density in the medial and lateral entorhinal cortices, and astrogliosis in the fornix correlated with birth weight in PI rats. Thus, this rodent model of WMD based on PI appears to recapitulate the main neurobehavioral and neuroanatomical human deficits often observed in preterm children with a perinatal history of ischemia.

  2. Low birth weight increases susceptibility to renal injury in a rat model of mild ischemia-reperfusion.

    PubMed

    Ojeda, Norma B

    2011-08-01

    Renal injury due to ischemia-reperfusion (I/R) is the major cause of acute kidney injury. Whether enhanced susceptibility to renal injury due to I/R can be programmed during fetal life is unknown. Epidemiological studies indicate that low birth weight (LBW) individuals are more susceptible to renal injury than normal birth weight (NBW) individuals. Thus, the aim of this study was to test the hypothesis that LBW is associated with an increased susceptibility to renal injury induced by mild renal I/R (15-min ischemia). Systemic and renal hemodynamic parameters were determined in NBW and LBW adult male rats after mild renal I/R; renal superoxide production and tubular injury were also assessed. A subgroup was pretreated with tempol, a superoxide dismutase mimetic, initiated 15 min before ischemia. Mild renal I/R did not alter renal hemodynamic parameters, induce tubular injury, or induce superoxide production in NBW rats. However, renal hemodynamic parameters declined, superoxide production increased, and histological indicators of tubular injury were present following mild renal I/R in LBW rats. Acute treatment with tempol prevented these alterations in LBW rats subjected to mild renal I/R. Thus, these findings suggest that adverse conditions during fetal life can compromise the renal response to subtle insults leading to an increased susceptibility to renal injury, suggesting that LBW individuals may be an "at risk" population for renal disease. Additionally, the outcome of tempol treatment proposes a possible mechanistic pathway involved in mediating enhanced susceptibility to renal injury programmed during fetal life.

  3. Long-term neuroprotection with 2-iminobiotin, an inhibitor of neuronal and inducible nitric oxide synthase, after cerebral hypoxia-ischemia in neonatal rats.

    PubMed

    van den Tweel, Evelyn R W; van Bel, Frank; Kavelaars, Annemieke; Peeters-Scholte, Cacha M P C D; Haumann, Johan; Nijboer, Cora H A; Heijnen, Cobi J; Groenendaal, Floris

    2005-01-01

    The short- and long-term neuroprotective effects of 2-iminobiotin, a selective inhibitor of neuronal and inducible nitric oxide synthase, were studied in 12-day-old rats following hypoxia-ischemia. Hypoxia-ischemia was induced by occlusion of the right carotid artery followed by 90 minutes of hypoxia (FiO2 0.08). Immediately on reoxygenation, 12 and 24 hours later the rats were treated with vehicle or 2-iminobiotin at a dose of 5.5, 10, 30, or 60 mg/kg per day. Histologic analysis of brain damage was performed at 6 weeks after hypoxia-ischemia. To assess early changes of cerebral tissue, levels of HSP70, nitrotyrosine, and cytochrome c were determined 24 hours after reoxygenation. Significant neuroprotection was obtained using a dose of 30 mg/kg per day of 2-iminobiotin. Levels of HSP70 were increased in the ipsilateral hemisphere in both groups (P<0.05), but the increase was significantly (P<0.05) less in the rats receiving the optimal dose of 2-iminobiotin (30 mg/kg per day). Hypoxia-ischemia did not lead to increased levels of nitrotyrosine, nor did 2-iminobiotin influence levels of nitrotyrosine. In contrast, hypoxia-ischemia induced an increase in cytochrome c level that was prevented by 2-iminobiotin. In conclusion, 2-iminobiotin administered after hypoxia-ischemia provides long-term neuroprotection. This neuroprotection is obtained by mechanisms other than a reduction of nitrotyrosine formation in proteins.

  4. Delayed administration IL-1β neutralizing antibody improves cognitive function after transient global ischemia in rats.

    PubMed

    Zhao, Bei; Zou, Chang-Jiang; Zhou, Ping

    2016-04-15

    In order to study the protective effects on motor and cognitive function by inhibiting IL-1β as delayed as 24h after global ischemia, we designed behavioral testing protocol and histology detection after 10 min transient global ischemia followed by IL-1β or its antibody intracerebroventricular injection. We found benefit of IL-1β antibody treatment 24h after ischemia in cognitive function recovery. But no obvious amelioration in motor function was found. Further we detected cell morphology and survival by histology staining and proved IL-1β antibody could reduce ischemia induced cell morphological changes and cell loss in hippocampus, which related with cognitive function. Present results indicate intervening IL-1β pathway could be helpful in cognitive function recovery even as late as 24h after ischemia happens.

  5. Neuroprotective effects of prior exposure to enriched environment on cerebral ischemia/reperfusion injury in rats: the possible molecular mechanism.

    PubMed

    Yu, Kewei; Wu, Yi; Hu, Yongshan; Zhang, Qi; Xie, Hongyu; Liu, Gang; Chen, Yao; Guo, Zhenzhen; Jia, Jie

    2013-11-13

    Increasing evidence shows that exposure to an enriched environment (EE) after cerebral ischemia/reperfusion injury is neuroprotective in animal models. Recent studies have demonstrated that animals housed in an enriched environment condition after an experimental stroke obtained a better functional outcome than those housed in a standard condition. However, little is known about the underlying mechanisms of neuroprotective effects of enriched environment exposure prior to injury. The current study examined the neuroprotective effects of prior enriched environment exposure after transient middle cerebral artery occlusion (MCAO) in rats. Male Sprague Dawley (SD) rats, weighing 55-65g at the beginning of the experiment, were randomly assigned to a pre-ischemic enriched environment (PIEE) or pre-ischemic standard condition (PISC) group for 1 month. They were weighed on days1, 7, 18, and 28, and their locomotor activity was tracked during the period between 9:00am and 3:00pm daily. After 1 month, ischemia was induced by occluding the middle cerebral artery for 90min, followed by reperfusion. After approximately 24h of the operation, functional outcomes were assessed using the beam-walking test and a neurological evaluation scale in all rats. We measured the expression of extracellular signal regulated protein kinases1/2 (ERK1/2) by western blotting and gene expression levels of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthasen (iNOS) by Real-Time PCR in the cortical area affected by ischemia. Finally, we measured the level of malondialdehyde (MDA) content, which is a biomarker of oxidative stress. The results showed that rats in the PIEE group had lighter weight than those in the PISC group. The functional outcomes of rats in the PIEE group were better than those in the PISC group, and substances associated with inflammation, such as MDA, nNOS, iNOS, and phospho-ERK1/2, were lower in the PIEE group compared with the PISC group. These results

  6. Erythropoietin Ameliorates Neonatal Hypoxia-Ischemia-Induced Neurobehavioral Deficits, Neuroinflammation, and Hippocampal Injury in the Juvenile Rat

    PubMed Central

    Lan, Kuo-Mao; Tien, Lu-Tai; Cai, Zhengwei; Lin, Shuying; Pang, Yi; Tanaka, Sachiko; Rhodes, Philip G.; Bhatt, Abhay J.; Savich, Renate D.; Fan, Lir-Wan

    2016-01-01

    The hematopoietic growth factor erythropoietin (EPO) has been shown to be neuroprotective against hypoxia-ischemia (HI) in Postnatal Day 7 (P7)–P10 or adult animal models. The current study was aimed to determine whether EPO also provides long-lasting neuroprotection against HI in P5 rats, which is relevant to immature human infants. Sprague-Dawley rats at P5 were subjected to right common carotid artery ligation followed by an exposure to 6% oxygen with balanced nitrogen for 1.5 h. Human recombinant EPO (rEPO, at a dose of 5 units/g) was administered intraperitoneally one hour before or immediately after insult, followed by additional injections at 24 and 48 h post-insult. The control rats were injected with normal saline following HI. Neurobehavioral tests were performed on P8 and P20, and brain injury was examined on P21. HI insult significantly impaired neurobehavioral performance including sensorimotor, locomotor activity and cognitive ability on the P8 and P20 rats. HI insult also resulted in brain inflammation (as indicated by microglia activation) and neuronal death (as indicated by Jade B positive staining) in the white matter, striatum, cortex, and hippocampal areas of the P21 rat. Both pre- and post-treatment with rEPO significantly improved neurobehavioral performance and protected against the HI-induced neuronal death, microglia activation (OX42+) as well as loss of mature oligodendrocytes (APC-CC1+) and hippocampal neurons (Nissl+). The long-lasting protective effects of rEPO in the neonatal rat HI model suggest that to exert neurotrophic activity in the brain might be an effective approach for therapeutic treatment of neonatal brain injury induced by hypoxia-ischemia. PMID:26927081

  7. The effects of 17beta estradiol, 17alpha estradiol and progesterone on oxidative stress biomarkers in ovariectomized female rat brain subjected to global cerebral ischemia.

    PubMed

    Ozacmak, V H; Sayan, H

    2009-01-01

    Neuroprotective effects of estrogens and progesterone have been widely studied in various experimental models. The present study was designed to compare possible neuroprotective effects of 17alpha-estradiol, 17beta-estradiol, and progesterone on oxidative stress in rats subjected to global cerebral ischemia. Global cerebral ischemia was induced in ovariectomized female rats by four vessel occlusion for 10 min. Following 72 h of reperfusion, levels of malondialdehyde (MDA, oxidative stress marker), and reduced glutathione (GSH, major endogenous antioxidant) were assessed in hippocampus, striatum and cortex of rats treated with either 17alpha-estradiol, 17beta-estradiol, progesterone or estradiol + progesterone beforehand. Steroid administration ameliorated ischemia-induced decrease in GSH and increase in MDA levels. Our data offers additional evidence that estrogens and progesterone or combination of two exert a remarkable neuroprotective effect reducing oxidative stress.

  8. Effect of propofol on brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus of aged rats with chronic cerebral ischemia.

    PubMed

    Chen, Gang; Fu, Qiang; Cao, Jiangbei; Mi, Weidong

    2012-07-25

    We intraperitoneally injected 10 and 50 mg/kg of propofol for 7 consecutive days to treat a rat model of chronic cerebral ischemia. A low-dose of propofol promoted the expression of brain-derived neurotrophic factor, tyrosine kinase receptor B, phosphorylated cAMP response element binding protein, and cAMP in the hippocampus of aged rats with chronic cerebral ischemia, but a high-dose of propofol inhibited their expression. Results indicated that the protective effect of propofol against cerebral ischemia in aged rats is related to changes in the expression of brain-derived neurotrophic factor and tyrosine kinase receptor B in the hippocampus, and that the cAMP-cAMP responsive element binding protein pathway is involved in the regulatory effect of propofol on brain-derived neurotrophic factor expression.

  9. Large-conductance Ca(2+)-activated K(+) channel involvement in suppression of cerebral ischemia/reperfusion injury after electroacupuncture at Shuigou (GV26) acupoint in rats.

    PubMed

    Wang, Yong; Shen, Yan; Lin, Hai-Ping; Li, Zhuo; Chen, Ying-Ying; Wang, Shu

    2016-06-01

    Excess activation and expression of large-conductance Ca(2+)-activated K(+) channels (BKCa channels) may be an important mechanism for delayed neuronal death after cerebral ischemia/reperfusion injury. Electroacupuncture can regulate BKCa channels after cerebral ischemia/reperfusion injury, but the precise mechanism remains unclear. In this study, we established a rat model of cerebral ischemia/reperfusion injury. Model rats received electroacupuncture of 1 mA and 2 Hz at Shuigou (GV26) for 10 minutes, once every 12 hours for a total of six times in 72 hours. We found that in cerebral ischemia/reperfusion injury rats, ischemic changes in the cerebral cortex were mitigated after electroacupuncture. Moreover, BKCa channel protein and mRNA expression were reduced in the cerebral cortex and neurological function noticeably improved. These changes did not occur after electroacupuncture at a non-acupoint (5 mm lateral to the left side of Shuigou). Thus, our findings indicate that electroacupuncture at Shuigou improves neurological function in rats following cerebral ischemia/reperfusion injury, and may be associated with down-regulation of BKCa channel protein and mRNA expression. Additionally, our results suggest that the Shuigou acupoint has functional specificity.

  10. Effect of cerebrolysin on oxidative stress-induced apoptosis in an experimental rat model of myocardial ischemia.

    PubMed

    Boshra, V; Atwa, A

    2016-09-01

    Apoptosis plays a role in the process of tissue damage after myocardial infarction (MI). This study was designed to investigate the possible effect of cerebrolysin against apoptosis triggered by oxidative cell stress in myocardial ischemia induced by isoproterenol in rat. Rats were pretreated with cerebrolysin 5 mL/kg intraperitoneally for 7 days and intoxicated with isoproterenol (ISO, 85 mg/kg, sc) on the last 2 days. Hearts were excised and stained to detect the infarction size. Serum levels of cardiotoxicity indices as creatine kinase isoenzyme (CK-MB) and troponin I (cTnI) as well as the cardiac oxidative stress parameters as thiobarbituric acid reactive substances and superoxide dismutase were estimated. The expression of prodeath gene p53 and antideath gene Bcl-2 was also assessed from the excised heart tissues. Leakage of cardiac enzymes, elevated oxidative stress markers, and apoptotic indices confirmed the MI occurring as a consequence of isoproterenol-induced ischemia. Cerebrolysin pretreatment caused significant attenuation of the oxidative stress-induced apoptosis in the ischemic myocardial tissue. These findings provided an evidence that cerebrolysin could protect rat myocardium against ischemic insult that was attributed to its antioxidant as well as its anti-apoptotic properties.

  11. Nanoliposome containing cyclosporine A reduced neuroinflammation responses and improved neurological activities in cerebral ischemia/reperfusion in rat.

    PubMed

    Partoazar, Alireza; Nasoohi, Sanaz; Rezayat, Sayed M; Gilani, Kambiz; Mehr, Shahram E; Amani, Amir; Rahimi, Nastaran; Dehpour, Ahmad R

    2017-04-01

    Cyclosporine A (CsA) is known as a neuroprotective agent against cerebral ischemia/reperfusion (I/R) in animal models. However, the significant therapeutic effects of CsA have been observed in high systemic doses or manipulating the blood-brain barrier, resulting in systemic side effects and toxicity. As the liposome nanocarriers have been developed for efficient delivery of peptide and proteins, liposomal CsA (Lipo-CsA) could improve cerebral (I/R) injuries. In this study, the liposomal CsA formulation (CsA at dose of 2.5 mg/kg) was prepared to assess the brain injury outcomes in 90 min middle cerebral artery occlusion (MCAO) stroke model followed by 48 h reperfusion in treating rats. Five minutes after induction of cerebral ischemia in rats, intravenous (iv) administration of Lipo-CsA significantly (P < 0.001) recovered the infarct size, the brain edema, and the neurological activities compared to corresponding control groups following 48 h I/R. In addition, after 48 h cerebral I/R, Lipo-CsA potentially (P < 0.001) inhibited the inflammation responses including MPO activity and tumor necrosis factor-alpha level in comparison to other groups. In conclusion, the results indicate that the low dose of CsA in liposomal formulation is more effective compared to higher dose of free form of CsA in treatment of ischemic brain in rats.

  12. The Effect of Sleep Deprivation on Cardiac Function and Tolerance to Ischemia-Reperfusion Injury in Male Rats

    PubMed Central

    Jeddi, Sajad; Asl, Amir Nezami; Asgari, Alireza; Ghasemi, Asghar

    2016-01-01

    Background Sleep deprivation (SD) is strongly associated with elevated risk for cardiovascular disease. Objective To determine the effect of SD on basal hemodynamic functions and tolerance to myocardial ischemia-reperfusion (IR) injury in male rats. Method SD was induced by using the flowerpot method for 4 days. Isolated hearts were perfused with Langendorff setup, and the following parameters were measured at baseline and after IR: left ventricular developed pressure (LVDP); heart rate (HR); and the maximum rate of increase and decrease of left ventricular pressure (±dp/dt). Heart NOx level, infarct size and coronary flow CK-MB and LDH were measured after IR. Systolic blood pressure (SBP) was measured at start and end of study. Results In the SD group, the baseline levels of LVDP (19%), +dp/dt (18%), and -dp/dt (21%) were significantly (p < 0.05) lower, and HR (32%) was significantly higher compared to the controls. After ischemia, hearts from SD group displayed a significant increase in HR together with a low hemodynamic function recovery compared to the controls. In the SD group, NOx level in heart, coronary flow CK-MB and LDH and infarct size significantly increased after IR; also SD rats had higher SBP after 4 days. Conclusion Hearts from SD rats had lower basal cardiac function and less tolerance to IR injury, which may be linked to an increase in NO production following IR. PMID:26559853

  13. Protective Effects of Co-Administration of Gallic Acid and Cyclosporine on Rat Myocardial Morphology Against Ischemia/Reperfusion

    PubMed Central

    Dianat, Mahin; Sadeghi, Najmeh; Badavi, Mohammad; Panahi, Marziyeh; Taheri Moghadam, Mahin

    2014-01-01

    Background: Irreversible myocardial ischemic injury begins 20 minutes after the onset of coronary occlusion. Then the infarcted cells show signs of necrosis and death. Objectives: This study investigated the effects of co-administration of Gallic acid (antioxidant) with cyclosporine (mitochondrial permeability transition pore [mPTP] inhibitor) on myocardial morphology of rats during ischemia and reperfusion. Materials and Methods: Fifty-four male Wistar rats (250-300 g), were randomly divided into 9 groups: sham, control (Ca received saline, 1 mL/kg, Cb: perfused with cyclosporine CsA 0.2 µM), 3 groups pretreated with Gallic acid in saline (G1a:7.5, G2a:15, and G3a: 30 mg/kg/day, and gavage daily for 10 days, n = 6), and the other three groups were pretreated with Gallic acid then perfused using CsA, (G1b:7.5, G2b:15, and G3b: 30 mg/kg/day) at the first 13 minutes of reperfusion period. After 10 days pretreatment, the rat hearts were isolated and transferred to Langendorff apparatus and exposed to 30 minutes ischemia following 60 minutes reperfusion. Afterward, the hearts were preserved in 10% formalin for histological studies at the end of the experiment. Finally, hematoxylin and eosin and Masson’s trichrome staining techniques were used for evaluating the changes in myocardial architecture, degradation of myofibers, and collagen integrity. The differences were analyzed using Pearson test. Results: Cell degenerative changes, pyknotic nuclei, contraction bands, edema, and loosening of collagen in between muscle fibers were observed during ischemia-reperfusion. Myocardial architecture and cellular morphology were recovered in co-administration groups, especially in (Gallic acid 15 mg/kg + CsA, P < 0.001). Conclusions: The results suggest the important role of the antioxidant system potentiation in the prevention of myocardial damage. PMID:25625048

  14. Effects of maternal separation on behavior and brain damage in adult rats exposed to neonatal hypoxia-ischemia.

    PubMed

    Tata, Despina A; Markostamou, Ioanna; Ioannidis, Anestis; Gkioka, Mara; Simeonidou, Constantina; Anogianakis, Georgios; Spandou, Evangelia

    2015-03-01

    Animal studies suggest that maternal separation, a widely used paradigm to study the effects of early life adversity, exerts a profound and life-long impact on both brain and behavior. The aim of the current study was to investigate whether adverse early life experiences interact with neonatal hypoxia-ischemia, affecting the outcome of this neurological insult at both functional and structural levels during adulthood. Rat pups were separated from their mothers during postnatal days 1-6, for either a short (15 min) or prolonged (180 min) period, while another group was left undisturbed. On postnatal day 7, a subgroup from each of the three postnatal manipulations was exposed to a hypoxic-ischemic episode. Behavioral examination took place approximately at three months of age and included tests of learning and memory (Morris water maze, novel object and novel place recognition), as well as motor coordination (rota-rod). We found that both prolonged maternal separation and neonatal hypoxia-ischemia impaired the animals' spatial learning and reference memory. Deficits in spatial but not visual recognition memory were detected only in hypoxic-ischemic rats. Interestingly, prolonged maternal separation prior to neonatal hypoxia-ischemia augmented the reference memory impairments. Histological analysis of infarct size, hippocampal area and thickness of corpus callosum did not reveal any exacerbation of damage in hypoxic-ischemic rats that were maternally separated for a prolonged period. These are the first data suggesting that an adverse postnatal environmental manipulation of just 6 days causes long-term effects on spatial learning and memory and may render the organism more vulnerable to a subsequent insult.

  15. Poppy seed oil protection of the hippocampus after cerebral ischemia and re-perfusion in rats.

    PubMed

    Cevik-Demirkan, A; Oztaşan, N; Oguzhan, E O; Cil, N; Coskun, S

    2012-11-01

    The brain is highly sensitive to hypoxia; this is true particularly of parts that are crucial for cognitive function. The effects of hypoxia are especially dramatic in the hippocampus. We evaluated the potential protective effects of poppy seed oil on the number of hippocampus cells and the serum antioxidant/oxidant status after cerebral ischemia and re-perfusion (CIR). Eighteen rats were divided into three equal groups. Group 1 served as the control group without CIR. Group 2 received poppy seed oil daily by oral gavage at a dose of 0.4 ml/kg, while group 3 was given 0.4 ml/kg saline solution by oral gavage per day; these treatments were continued for one month. Groups 2 and 3 were subjected to CIR induced by clamps on two points of both of the carotid arteries for 45 min followed by 45 min re-perfusion. There were significant decreases in the number of hippocampus cells between groups 1 and 2, and between groups 1 and 3. The mean cell number in group 2 was not significantly different from that of group 3. The serum nitric oxide levels in CIR groups were elevated significantly compared to controls, and were significantly higher in group 2 than in group 3. The glutathione levels were increased significantly in the poppy seed oil treated group compared to the saline CIR groups. The malondialdehyde levels were markedly increased in group 3 compared to both groups 1 and 2. Our study suggests that poppy seed oil can improve antioxidant defense capacity after CIR, although this treatment did not alter significantly the frequency of cell death.

  16. UNFEASIBLE EXPERIMENTAL MODEL OF NORMOTHERMIC HEPATIC ISCHEMIA AND REPERFUSION IN RATS USING THE PRINGLE MANEUVER

    PubMed Central

    GOMES, Helbert Minuncio Pereira; SERIGIOLLE, Leonardo Carvalho; RODRIGUES, Daren Athiê Boy; LOPES, Carolina Marques; STUDART, Sarah do Valle; LEME, Pedro Luiz Squilacci

    2014-01-01

    Background The negative result of a research does not always indicate failure, and when the data do not permit a proper conclusion, or are contrary to the initial project, should not simply be discarded and archived. Aim To report failure after performing experimental model of liver ischemia and reperfusion normothermic, continuous or intermittent, in small animals aiming at the study of biochemical and histological parameters after postoperative recovery. Methods Fifteen Wistar rats were divided into three groups of five animals each; all underwent surgery, the abdomen was sutured after the proposed procedures for each group and the animals were observed for 6 h or until they died, and then were reoperated. In Group 1, control (sham-operated): dissection of the hepatic hilum was performed; in Group 2: clamping of the hepatic hilum for 30 m; in Group 3: clamping of the hepatic hilum for 15 m, reperfusion for 5 m and another 15 m of clamping. Data from Groups 2 and 3 were compared with Student's t test. Results All animals of Group 1 survived for 6 h. Two animals in Group 2 died before the 6 h needed to validate the experiment; two did not recover from anesthesia and one survived until the end. In Group 3, four animals died before the 6 h established and one of them survived the required time. Only one animal in Group 2 and one in Group 3 survived and were able to accomplish the study. There was no statistical significance when the results of Groups 2 and 3 were compared (p>0.05). Conclusion The death of six animals before the necessary period of observation turned the initial proposal of the experiment unfeasible. PMID:25184771

  17. Early upregulation of matrix metalloproteinases following reperfusion triggers neuroinflammatory mediators in brain ischemia in rat.

    PubMed

    Amantea, Diana; Russo, Rossella; Gliozzi, Micaela; Fratto, Vincenza; Berliocchi, Laura; Bagetta, G; Bernardi, G; Corasaniti, M Tiziana

    2007-01-01

    Abnormal expression of matrix metalloproteinases (MMPs) has been implicated in the pathophysiology of neuroinflammatory processes that accompany most central nervous system disease. In particular, early upregulation of the gelatinases MMP-2 and MMP-9 has been shown to contribute to disruption of the blood-brain barrier and to death of neurons in ischemic stroke. In situ zymography reveals a significant increase in gelatinolytic MMPs activity in the ischemic brain hemisphere after 2-h middle cerebral artery occlusion (MCAo) followed by 2-h reperfusion in rat. Accordingly, gel zymography demonstrates that expression and activity of MMP-2 and MMP-9 are enhanced in cortex and striatum ipsilateral to the ischemic insult. The latter effect appears to be instrumental for development of delayed brain damage since administration of a broad spectrum, highly specific MMPs inhibitor, GM6001, but not by its negative control, results in a significant (50%) reduction in ischemic brain volume. Increased gelatinase activity in the ischemic cortex coincides with elevation (166% vs sham) of mature interleukin-1beta (IL-1beta) after 2-h reperfusion and this does not appear to implicate a caspase-1-dependent processing of pro(31kDa)-IL-1beta to yield mature (17kDa) IL-1beta. More importantly, when administered at a neuroprotective dose GM6001 abolishes the early IL-1beta increase in the ischemic cortex and reduces the cleavage of the cytokine proform supporting the deduction that MMPs may initiate IL-1beta processing. In conclusion, development of tissue damage that follows transient ischemia implicates a crucial interplay between MMPs and mediators of neuroinflammation (e.g., IL-1beta), and this further underscores the therapeutic potential of MMPs inhibitors in the treatment of stroke.

  18. Resveratrol ameliorates oxidative stress and inhibits aquaporin 4 expression following rat cerebral ischemia-reperfusion injury.

    PubMed

    Li, Weina; Tan, Changhong; Liu, Yi; Liu, Xi; Wang, Xin; Gui, Yuejiang; Qin, Lu; Deng, Fen; Yu, Zhen; Hu, Changlin; Chen, Lifen

    2015-11-01

    Cerebral ischemia-reperfusion (I/R) is associated with increased levels of reactive oxygen species (ROS) and brain edema, which lead to the deterioration of patient prognosis. Resveratrol serves a neuroprotective role in I/R injury, and this role may be associated with its anti‑oxidative effects. However, resveratrol's mechanism of action in cerebral I/R injury remains to be fully understood. In order to investigate the effect of resveratrol in cerebral I/R‑induced injury, male Sprague‑Dawley rats were randomly assigned to four groups: The sham‑operation group, the I/R group and the edaravone and resveratrol groups (I/R + E and I/R + R groups). Infarct volume was evaluated by 2,3,5‑tripenyltetrazolium chloride staining, brain edema was evaluated by the water content in the reperfused brain and malondialdehyde (MDA) was measured by the thiobarbituric acid method. Superoxide dismutase (SOD) levels were measured using the Total Superoxide Dismutase Assay kit. Inducible nitric oxide synthase (iNOS) levels in the hippocampus and cortex were measured by ELISA, and aquaporin 4 (AQP4) expression was measured by immunohistochemical staining and western blot analysis. The results demonstrated that resveratrol reduced the infarct volume and the incidence of brain edema and reduced neurological deficits. These outcomes were accompanied by reduced levels of MDA, iNOS and AQP4, and increased SOD levels in cerebral I/R injury. In conclusion, resveratrol protected against cerebral I/R injury by ameliorating oxidative stress and reducing AQP4 expression.

  19. Dexmedetomidine alleviates rat post-ischemia induced allodynia through GRK2 upregulation in superior cervical ganglia.

    PubMed

    Dong, Jing; Yang, Li; Tang, Jun; Zheng, Jijian

    2015-01-01

    A transient decrease in G protein-coupled receptor kinase 2 (GRK2) in nociceptors can produce long-lasting neuroplastic changes in nociceptor function, eventually enhancing and prolonging inflammatory hyperalgesia. Here, we investigated the effects of selective α2-adrenoceptor agonist dexmedetomidine (DMED) on GRK2 expression in superior cervical ganglion (SCG) in a rat model of complex regional pain syndrome type I (CRPS-I). The ipsilateral 50% paw withdrawal thresholds (PWTs) to mechanical stimuli decreased significantly starting from 24 h after ischemia-reperfusion (I/R) injury, and lasted for over 3 weeks; the ipsilateral cold allodynia scores, GRK2 protein and mRNA levels in SCGs all increased significantly. No significant differences were found in the contralateral side except GRK2 mRNA reduced significantly after 48 h I/R injury, but still higher than those in the ipsilateral side. Following daily injection of 10 μg/kg of DMED for a maximum of 7 days, the ipsilateral PWTs on days 1, 2, 7, 14, and 21 after DMED administration were significantly higher than those in control group; the GRK2 protein and mRNA expressions in the ipsilateral SCGs were also significantly upregulated; the ipsilateral cold allodynia scores were significantly reduced. No significant differences were found in the contralateral 50%PWTs, cold allodynia scores, and GRK2 protein level except GRK2 mRNA levels increased significantly on days 1 to 7 after DMED administration. Therefore, a transient decrease of GRK2 expression in SCG neurons might be involved in the development and maintenance of allodynia in CRPS-I and DMED might alleviate this allodynia through GRK2 upregulation in SCG neurons.

  20. Transplantation of mesenchymal stem cells exerts anti-apoptotic effects in adult rats after spinal cord ischemia-reperfusion injury.

    PubMed

    Yin, Fei; Guo, Li; Meng, Chun-yang; Liu, Ya-juan; Lu, Ri-feng; Li, Peng; Zhou, Yu-bo

    2014-05-02

    It is unknown whether transplantation of bone marrow mesenchymal stem cells (BM-MSCs) can repair spinal cord ischemia-reperfusion injury (SCII) in a rat model through an anti-apoptotic effect. Adult rats were divided into untreated or sham-operated controls, untreated models of SCII (uSCII) and BM-MSC-transplanted models of SCII (tSCII; labeled with CM-Dill transplanted at 1 h and 24 h after reperfusion). According to evaluation of hind-limb motor function, the motor functions of tSCII rats were significantly better than those of uSCII rats by the seventh day. H&E and TUNEL staining showed that the spinal cords of uSCII rats contained damaged neural cells with nuclear pyknosis and congestion of blood vessels, with a high percentage of apoptotic neural cells, while the spinal cords of tSCII rats were nearly normal with significantly fewer apoptotic neural cells. Immunohistochemistry and double immunofluorescence staining revealed that in tSCII rats CASP3 and neurofilament-H (NF-H) levels were 14.57% and 174% those of uSCII rats, respectively, and in tSCII rats the ratio of BAX to BCL2 was reduced by nearly 50%. The differentiation of transplanted CM-Dil-labeled BM-MSCs into neurons and astrocytes was observed in the spinal cords of the tSCII rats under laser scanning confocal microscopy. These results showed that transplantation of BM-MSCs improved functional recovery after SCII via anti-apoptosis.

  1. Differential expression of Bcl-2 and Bax during gastric ischemia-reperfusion of rats

    PubMed Central

    Qiao, Wei-Li; Wang, Guang-Ming; Shi, Yue; Wu, Jin-Xia; Qi, You-Jian; Zhang, Jian-Fu; Sun, Hong; Yan, Chang-Dong

    2011-01-01

    AIM: To investigate expression of Bcl-2 and Bax in gastric ischemia-reperfusion (GI-R) and involvement of extracellular signal-regulated kinase (ERK) 1/2 activation. METHODS: The GI-R model was established by ligature of the celiac artery for 30 min and reperfusion in Sprague-Dawley rats. Rats were assigned to groups in accordance with their evaluation period: control, 0, 0.5, 1, 3, 6, 24, 48, and 72 h. Expression and distribution of Bcl-2 and Bax proteins were analyzed by immunohistochemistry and western blotting in gastric tissue samples after sacrifice. RESULTS: Compared with controls, the percentage of positive cells and protein levels of Bcl-2 decreased in the early phases of reperfusion, reached its minimum at 1 h (P < 0.05); it then increased, reaching its peak at 24 h of reperfusion (P < 0.05). The pattern of Bax expression was opposite to that of Bcl-2. Bax expression increased after reperfusion, with its peak at 1 h of reperfusion (P < 0.05), and then it decreased gradually to a minimum at 24 h after reperfusion (P < 0.05). On the other hand, inhibition of activation of ERK1/2 induced by PD98059, a specific upstream MEK inhibitor, had significant effects on Bcl-2 and Bax in GI-R. Compared with GI-R treatment only at 3 h of reperfusion, PD98059 reduced the number of Bcl-2 positive cells (0.58% of R3h group, P < 0.05) and Bcl-2 protein level (74% of R3h group, P < 0.05) but increased the number of Bax-positive cells (1.33-fold vs R3h group, P < 0.05) and Bax protein level (1.35-fold of R3h group, P < 0.05). CONCLUSION: These results indicated that the Bcl-2 and Bax played a pivotal role in the gastric mucosal I-R injury and repair by activation of ERK1/2. PMID:21483632

  2. The effects of oxiracetam (CT-848) on local cerebral glucose utilization after focal cerebral ischemia in rats.

    PubMed

    Hokonohara, T; Sako, K; Shinoda, Y; Tomabechi, M; Yonemasu, Y

    1992-02-01

    The effects of oxiracetam on the reduction of brain metabolism induced by focal cerebral ischemia were investigated by measuring local cerebral glucose utilization (LCGU) in rats 24 hr after left middle cerebral artery occlusion. Focal cerebral ischemia reduced LCGU in the entire ipsilateral cortex, the greatest reduction being in the lateral parts of the frontoparietal cortex. LCGU was slightly reduced in the contralateral cortex; this reduction was considered to be caused by diaschisis. Oxiracetam was administered intraperitoneally for 3 days prior to middle cerebral artery occlusion. In the ipsilateral cortex, LCGU reduction was minimized in the ischemic center areas by oxiracetam at a dose of 400 mg/kg and in more extensive areas, by a dose of 800 mg/kg. Moreover, oxiracetam at a dose of 800 mg/kg enhanced metabolism impaired by diaschisis in the caudal areas of the contralateral cortex. These findings suggest that oxiracetam minimizes the reduction of brain function induced by ischemia and may therefore be useful in the treatment of cerebrovascular disease.

  3. Effects of Omega-3 Fatty Acids on Erectile Dysfunction in a Rat Model of Atherosclerosis-induced Chronic Pelvic Ischemia.

    PubMed

    Shim, Ji Sung; Kim, Dae Hee; Bae, Jae Hyun; Moon, Du Geon

    2016-04-01

    The aim of this study was to investigate whether the omega-3 fatty acids help to improve erectile function in an atherosclerosis-induced erectile dysfunction rat model. A total of 20 male Sprague-Dawley rats at age 8 weeks were divided into three groups: Control group (n = 6, untreated sham operated rats), Pathologic group (n = 7, untreated rats with chronic pelvic ischemia [CPI]), and Treatment group (n = 7, CPI rats treated with omega-3 fatty acids). For the in vivo study, electrical stimulation of the cavernosal nerve was performed and erectile function was measured in all groups. Immunohistochemical antibody staining was performed for transforming growth factor beta-1 (TGF-β1), endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor 1-alpha (HIF-1α). In vivo measurement of erectile function in the Pathologic group showed significantly lower values than those in the Control group, whereas the Treatment group showed significantly improved values in comparison with those in the Pathologic group. The results of western blot analysis revealed that systemically administered omega-3 fatty acids ameliorated the cavernosal molecular environment. Our study suggests that omega-3 fatty acids improve intracavernosal pressure and have a beneficial role against pathophysiological consequences such as fibrosis or hypoxic damage on a CPI rat model, which represents a structural erectile dysfunction model.

  4. Acute ischemia/reperfusion injury after isogeneic kidney transplantation is mitigated in a rat model of chronic renal failure.

    PubMed

    Vercauteren, Sven R; Ysebaert, Dirk K; Van Rompay, An R; De Greef, Kathleen E; De Broe, Marc E

    2003-05-01

    The influence of chronic renal failure on renal susceptibility to an acute ischemic insult was evaluated. Recipient Lewis rats were randomly assigned to undergo 5/6 nephrectomy (chronic renal failure, CRF) or sham operation (normal renal function, NRF). After 11 weeks, normal kidneys of Lewis donor rats were transplanted in the recipients. The outcome of the isografts was assessed. Filtration capacity of the isografts in the CRF rats was preserved to approximately one-quarter of its normal capacity on the 1st day post-transplantation, whereas it fell to 0 in the NRF rats. This was reflected by a significantly higher increase in serum creatinine in the latter group. The isografts in the CRF rats had a significantly lower degree of acute tubular necrosis and no increase in the number of macrophages and T lymphocytes in the first 24 h in contrast to the NRF rats. Epithelial regeneration and repair started earlier in the CRF group. In conclusion, the present study indicated that CRF blunted ischemia/reperfusion injury of a transplanted kidney, and that its regeneration capacity was certainly not hampered by the presence of chronic uremia. These results will be the basis for studies on modulation of early leukocyte-endothelial interactions resulting from immunological disturbances inherent to the uremic environment.

  5. Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats.

    PubMed

    Dahlqvist, P; Rönnbäck, A; Risedal, A; Nergårdh, R; Johansson, I-M; Seckl, J R; Johansson, B B; Olsson, T

    2003-01-01

    Housing rats in an enriched environment improves functional outcome after ischemic stroke, this may reflect neuronal plasticity in brain regions outside the lesion. Which components of the enriched environment that are of greatest importance for recovery after brain ischemia is uncertain. We have previously found that enriched environment and social interaction alone both improve functional recovery after focal cerebral ischemia, compared with isolated housing with voluntary wheel-running. In this study, the aim was to separate components of the enriched environment and investigate the effects on some potential mediators of improved functional recovery; such as the inducible transcription factors nerve growth factor-induced gene A (NGFI-A) and NGFI-B, and the glucocorticoid and serotonin systems. After permanent middle cerebral artery occlusion, rats were divided into four groups: individually housed with no equipment (deprived group), individually housed with free access to a running wheel (running group), housed together in a large cage with no equipment (social group) or in a large cage furnished with exchangeable bars, chains and other objects (enriched group). mRNA expression of inducible transcription factors, serotonin and glucocorticoid receptors was determined with in situ hybridisation 1 month after cerebral ischemia. Rats housed in enriched or social environments showed significantly higher mRNA expression of NGFI-A and NGFI-B in cortical regions outside the lesion and in the CA1 (cornu ammonis region of the hippocampus), compared with isolated rats with or without a running wheel. NGFI-A and NGFI-B mRNA expression in cortex and in CA1 was significantly correlated to functional outcome. 5-Hydroxytryptamine receptor 1A (5-HT(1A)) mRNA expression and binding, as well as 5-HT(2A) receptor mRNA expression were decreased in the hippocampus (CA4 region) of the running wheel rats. Mineralocorticoid receptor gene expression was increased in the dentate gyrus

  6. Effects of Acute Systemic Hypoxia and Hypercapnia on Brain Damage in a Rat Model of Hypoxia-Ischemia

    PubMed Central

    Zhang, Xuezhong; Wang, Nan; Tan, Jing; Fang, Xianhai; Wang, Qi; Tao, Tao; Li, Wenzhi

    2016-01-01

    Therapeutic hypercapnia has the potential for neuroprotection after global cerebral ischemia. Here we further investigated the effects of different degrees of acute systemic hypoxia in combination with hypercapnia on brain damage in a rat model of hypoxia and ischemia. Adult wistar rats underwent unilateral common carotid artery (CCA) ligation for 60 min followed by ventilation with normoxic or systemic hypoxic gas containing 11%O2,13%O2,15%O2 and 18%O2 (targeted to PaO2 30–39 mmHg, 40–49 mmHg, 50–59 mmHg, and 60–69 mmHg, respectively) or systemic hypoxic gas containing 8% carbon dioxide (targeted to PaCO2 60–80 mmHg) for 180 min. The mean artery pressure (MAP), blood gas, and cerebral blood flow (CBF) were evaluated. The cortical vascular permeability and brain edema were examined. The ipsilateral cortex damage and the percentage of hippocampal apoptotic neurons were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine 5′-triphosphate-biotin nick end labeling (TUNEL) assay as well as flow cytometry, respectively. Immunofluorescence and western blotting were performed to determine aquaporin-4 (AQP4) expression. In rats treated with severe hypoxia (PaO2 < 50 mmHg), hypercapnia augmented the decline of MAP with cortical CBF and damaged blood–brain barrier permeability (p < 0.05). In contrast, in rats treated with mild to moderate hypoxia (PaO2 > 50 mmHg), hypercapnia protected against these pathophysiological changes. Moreover, hypercapnia treatment significantly reduced brain damage in the ischemic ipsilateral cortex and decreased the percentage of apoptotic neurons in the hippocampus after the CCA ligated rats were exposed to mild or moderate hypoxemia (PaO2 > 50 mmHg); especially under mild hypoxemia (PaO2 > 60 mmHg), hypercapnia significantly attenuated the expression of AQP4 protein with brain edema (p < 0.05). Hypercapnia exerts beneficial effects under mild to moderate hypoxemia and augments detrimental

  7. The Effect of Activated Protein C on Attenuation of Ischemia-Reperfusion Injury in a Rat Muscle Flap Model.

    PubMed

    Zhang, Elizabeth W; Fang, Taolin; Arnold, Peter B; Songcharoen, Somjade Jay; Lineaweaver, William C; Zhang, Feng

    2015-10-01

    Ischemia-reperfusion injury is often the final and irreversible factor causing flap failure in microsurgery. The salvage of a microsurgical flap with an ischemia-reperfusion injury contributes to the success of microsurgical flap transfers. Activated protein C (APC), a serine protease with anticoagulant and anti-inflammatory activities, has been shown to improve ischemic flap survival. To date, APC has yet to be applied to models of free flap with ischemia-reperfusion injury. In this study, we aimed to investigate the effect of APC on gracilis flap ischemia-reperfusion injury induced by gracilis vessels clamping and reopening. Sixty male Sprague-Dawley rats were randomly divided into 2 groups. After 4 hours of clamping for ischemia, flaps were reperfused and recombinant human APC (25 μg/kg) or saline was injected in the flaps through pedicles. At 0, 1, 4, 18, and 24 hours after injection (n = 6 for each time point), the tissue samples were harvested. The muscle viability at 24 hours in saline group was 54.8% (15.1%), whereas the APC-treated group was 90.0% (4.3%) (P < 0.05). The induced nitric oxide synthase (iNOS) mRNA expression increased with the time after reperfusion, which were 0.93 (0.25) to 2.09 (0.22) in saline group, and 0.197 (0.15) to 0.711 (0.15) in the APC-treated group. iNOS mRNA expression in the APC-treated group was significantly higher than the saline group at 1, 18, and 24 hours (P < 0.05). Numerous inflammatory cells were observed infiltrating and invading the muscle fibers in the saline group more than the APC-treated group. Increased number of polymorphonuclear cells was also noted in the saline group compared with the APC-treated group (P < 0.05). In conclusion, APC treatment can significantly attenuate ischemia-reperfusion injury and increase the survival of the free flap through down-regulating iNOS mRNA expression and reducing the inflammatory cells. Further research is still needed to be done on various mechanisms in which APC is

  8. Oxygen resuscitation after hypoxia ischemia stimulates prostaglandin pathway in rat cortex

    PubMed Central

    Perez-Polo, J. Regino; Reilly, Conor B.; Rea, Harriet C.

    2011-01-01

    Exposure to hypoxia and hyperoxia in a rodent model of perinatal ischemia results in delayed cell death and and inflammation. Hyperoxia increases oxidative stress that can trigger inflammatory cascades, neutrophil activation, and brain microvascular injury. Here we show that 100% oxygen resuscitation in our rodent model of perinatal ischemia increases cortical COX-2 protein levels, S-nitrosylated COX-2cys526, PGE2, iNOS and 5-LOX, all components of the prostaglandin and leukotriene inflammatory pathway. PMID:21514373

  9. Protective Effects of Hydrocortisone, Vitamin C and E Alone or in Combination against Renal Ischemia-Reperfusion Injury in Rat

    PubMed Central

    Azari, Omid; Kheirandish, Reza; Azizi, Shahrzad; Farajli Abbasi, Mohammad; Ghahramani Gareh Chaman, Shahin; Bidi, Masoud

    2015-01-01

    Background: Renal ischemia reperfusion injury may occur in a variety of clinical situations, following a transient drop in total or regional blood flow to the kidney. This study was performed to investigate the protective effects of different antioxidants such as vitamin C, vitamin E, hydrocortisone and combination of these agents against experimental renal ischemia-reperfusion injury. Method: Thirty male rats were divided into six groups. Group Sham, Group I/R: (45 min of ischemia followed by 1h of reperfusion), Group I/R+Vit C: (50 mg/kg Vit C, IV, immediately after reperfusion), Group I/R+Vit E: (20 mg/kg Vit E, IM, 15 min before reperfusion), Group I/R+Hydrocortisone: (50 mg/kg, IV, immediately after reperfusion), and Group Combination: Ischemia-reperfusion plus combination of Vit C, E and hydrocortisone. After the experiments, the left kidney was removed and the tissues were processed for histopathological examination. Result: Severe injuries such as necrosis of tubules, atrophy of glomerulus, and hemorrhage were observed in group I/R. Histological scores indicating tissue injury significantly decreased in all treatment groups compared to the group I/R. The renal tissue in group treatment was preserved in comparison with the group I/R. Comparison between the treatment groups showed that group combination was more effective and group vit E was less effective in protecting of renal tissue against I/R injuries. Conclusion: The results demonstrated simultaneous administration of combination of Vit C, E and hydrocortisone before reperfusion of blood flow to the ischemic tissue could show a synergy against deleterious effects of I/R injuries in kidney. PMID:26351497

  10. Magnesium Sulfate Prevents Placental Ischemia-Induced Increases in Brain Water Content and Cerebrospinal Fluid Cytokines in Pregnant Rats

    PubMed Central

    Zhang, Linda W.; Warrington, Junie P.

    2016-01-01

    Magnesium sulfate (MgSO4) is the most widely used therapy in the clinic to prevent the progression of preeclampsia, a hypertensive disorder of pregnancy, to eclampsia. Eclampsia, manifested as unexplained seizures and/or coma during pregnancy or postpartum, accounts for ~13% of maternal deaths worldwide. While MgSO4 continues to be used in the clinic, the mechanisms by which it exerts its protective actions are not well understood. In this study, we tested the hypothesis that MgSO4 protects against placental ischemia-induced increases in brain water content and cerebrospinal fluid cytokines. To test this hypothesis, MgSO4 was administered via mini-osmotic pump (60 mg/day, i.p.) to pregnant and placental ischemic rats, induced by mechanical reduction of uterine perfusion pressure, from gestational day 14–19. This treatment regimen of MgSO4 led to therapeutic level of 2.8 ± 0.6 mmol/L Mg in plasma. MgSO4 had no effect on improving placental ischemia-induced changes in mean arterial pressure, number of live fetuses, or fetal and placental weight. Placental ischemia increased, while MgSO4 prevented the increase in water content in the anterior cerebrum. Cytokine and chemokine levels were measured in the cerebrospinal fluid using a multi-plex assay. Results demonstrate that cerebrospinal fluid, obtained via the cisterna magna, had reduced protein, albumin, interleukin (IL)-17A, IL-18, IL-2, eotaxin, fractalkine, interferon gamma, vascular endothelial growth factor (VEGF), and macrophage inflammatory protein (MIP)-2 following MgSO4 treatment. These data support the hypothesis that MgSO4 offers neuroprotection by preventing placental ischemia-induced cerebral edema and reducing levels of cytokines/chemokines in the cerebrospinal fluid. PMID:28008305

  11. Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats.

    PubMed

    Vakili, Abedin; Mojarrad, Somye; Akhavan, Maziar Mohammad; Rashidy-Pour, Ali

    2011-03-04

    Cerebral edema is the most common cause of neurological deterioration and mortality during acute ischemic stroke. Despite the clinical importance of cerebral ischemia, the underlying mechanisms remain poorly understood. Recent studies suggest a role for TNF-α in the brain edema formation. To further investigate whether TNF-α would play a role in brain edema formation, we examined the effects of pentoxifylline (PTX, an inhibitor of TNF-α synthesis) on the brain edema and TNF-α levels in a model of transient focal cerebral ischemia. The right middle cerebral artery (MCA) of rats was occluded for 60 min using the intraluminal filament method. The animals received PTX (60 mg/kg) immediately, 1, 3, or 6h post-ischemic induction. Twenty-four hours after induction of ischemic injury, permeability of the blood-brain barrier (BBB) and brain edema were determined by in situ brain perfusion of Evans Blue (EB) and wet-to-dry weight ratio, respectively. TNF-α protein levels in ischemic cortex were also measured at 1, 4, and 24h after the beginning of an ischemic stroke by using an enzyme-linked immunosorbent assay method. The administration of PTX up to 6h after occlusion of the MCA significantly reduced the brain edema. Moreover, PTX significantly reduced the concentration of TNF-α in ischemic brain cortex up to 4h post-transient focal stroke (P<0.002). Finally, treatment by PTX led to a significant decrease in EB extravasations (P<0.001). Our data demonstrate that PTX administration up to 6h after ischemia can reduce brain edema in a model of transient focal cerebral ischemia. The beneficial effects of PTX may be mediated, at least in part, through a decline in TNF-α production and BBB breakdown.

  12. Involvement of AQP 1 in the cardio-protective effect of remifentanil post-conditioning in ischemia/reperfusion rats

    PubMed Central

    Lin, Peng-Tao; Chen, Wen-Hua; Zheng, Hong; Lai, Zhong-Meng; Zhang, Liang-Cheng

    2015-01-01

    Background: our research aim to study the role of AQP1 in the cardioprotective effect of remifentanil post-conditioning for myocardial ischemia/reperfusion injury. Methods: Ninety Sprague-Dawley (SD) rats were divided into 6 groups: sham operation group (Sham group), myocardial ischemia and reperfusion group (I/R group), postconditioning of remifentanil group (R-post), postconditioning of remifentanil plus AQP1 inhibitor acetazolamide group (R-post +Ace), postconditioning of remifentanil plus opioid-receptor antagonist compounds (R-post +AC), postconditioning of remifentanil plus AQP1 enhancer arginine vasopressin (R-post +AV). All groups except the sham operation group were given 30 min ischemia in left anterior descending (LAD) coronary arteries. All groups were then given 120 min reperfusion to the LAD. Before reperfusion, the R-post, R-post +Ace, R-post +AC, R-post +AV groups were given 10 min remifentanil post-conditioning. Hemodynamic data were measured every 30 min after initiation of ischemia. The rats’ hearts were exercised for detecting infarct size and water content in the left ventricle, and AQP1 expression were also detected. Results: The R-post group showed a significant reduction of the infarct size compared to the I/R group. The effect of R-post for reducing infarct size was slightly enhanced by adding acetazolamide to R-post, so significant differences could still be found when compared R-post+Ace group to the I/R group. The effect of infarct size reduction brought by R-post was blocked by the opioid-receptor antagonist compounds. This effect was also blocked by the AQP1 enhancer. Similar outcomes were found considering the water content of the left ventricle and the AQP1 expression. Conclusion: Cardioprotective effect of remifentanil post-conditioning may initiate through inhibiting the function of AQP1. PMID:26550187

  13. Xanthine oxidase is one of the major sources of superoxide anion radicals in blood after reperfusion in rats with forebrain ischemia/reperfusion.

    PubMed

    Ono, Takeru; Tsuruta, Ryosuke; Fujita, Motoki; Aki, Hiromi Shinagawa; Kutsuna, Satoshi; Kawamura, Yoshikatsu; Wakatsuki, Jun; Aoki, Tetsuya; Kobayashi, Chihiro; Kasaoka, Shunji; Maruyama, Ikuro; Yuasa, Makoto; Maekawa, Tsuyoshi

    2009-12-11

    We recently reported that excessive superoxide anion radical (O(2)(-)) was generated in the jugular vein during reperfusion in rats with forebrain ischemia/reperfusion using a novel electrochemical sensor and excessive O(2)(-) generation was associated with oxidative stress, early inflammation, and endothelial injury. However, the source of O(2)(-) was still unclear. Therefore, we used allopurinol, a potent inhibitor of xanthine oxidase (XO), to clarify the source of O(2)(-) generated in rats with forebrain ischemia/reperfusion. The increased O(2)(-) current and the quantified partial value of electricity (Q), which was calculated by the integration of the current, were significantly attenuated after reperfusion by pretreatment with allopurinol. Malondialdehyde (MDA) in the brain and plasma, high-mobility group box 1 (HMGB1) in plasma, and intercellular adhesion molecule-1 (ICAM-1) in the brain and plasma were significantly attenuated in rats pretreated with allopurinol with dose-dependency in comparison to those in control rats. There were significant correlations between total Q and MDA, HMGB, or ICAM-1 in the brain and plasma. Allopurinol pretreatment suppressed O(2)(-) generation in the brain-perfused blood in the jugular vein, and oxidative stress, early inflammation, and endothelial injury in the acute phase of forebrain ischemia/reperfusion. Thus, XO is one of the major sources of O(2)(-)- in blood after reperfusion in rats with forebrain ischemia/reperfusion.

  14. The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury.

    PubMed

    Ray, P S; Maulik, G; Cordis, G A; Bertelli, A A; Bertelli, A; Das, D K

    1999-07-01

    The consumption of red wine has been reported to impart a greater benefit in the prevention of coronary heart disease than the consumption of other alcoholic beverages. This beneficial effect is increasingly being attributed to certain antioxidants comprising the polyphenol fraction of red wine such as transresveratrol. In the present study, we investigated the potential cardioprotective effects of resveratrol in the face of ischemia reperfusion (I/R) injury. Isolated perfused working rat hearts after stabilization were perfused with Krebs-Henseleit Bicarbonate buffer (KHB) either in the presence or absence of transresveratrol (RVT) at a concentration of 10 microM for 15 min prior to subjecting them to 30 min of global ischemia followed by 2 h of reperfusion. Left ventricular functions were monitored at various timepoints throughout the reperfusion period to assess the extent of postischemic recovery in comparison with baseline values. Coronary perfusate samples were also collected to determine malonaldehyde (MDA) levels. The results demonstrated that RVT exhibited significant myocardial protection. This was evidenced by improved recovery of post-ischemic ventricular function including developed pressure and aortic flow as compared to the control group (KHB). Values for developed pressure in the RVT-treated group were significantly higher than those in the control group throughout the reperfusion period (71.09+/-4.88 mm Hg vs. 58.47+/-3.88 mm Hg, 68.87+/-5.07 mm Hg vs. 49.74+/-2.65 mm Hg and 51.67+/-3.95 mm Hg vs. 30.50+/-4.80 mm Hg at reperfusion timepoints R-15, R-60, and R-120, respectively). From R-30 onwards, aortic flow was markedly higher in the RVT treated group as compared with the control group, the differences being most significant at R-90 (32.45+/-2.19 ml/min vs. 19.83+/-1.62 ml/min) and R-120 (27.15+/-2.27 ml/min vs. 14.10+/-1.69 ml/min). In contrast to the KHB treated group, the RVT-treated group displayed significant reduction in MDA formation

  15. Expression of CCL2 and CCR2 in the hippocampus and the interventional roles of propofol in rat cerebral ischemia/reperfusion

    PubMed Central

    GUO, YONG-QING; ZHENG, LI-NA; WEI, JIAN-FENG; HOU, XIAO-LAI; YU, SHU-ZHEN; ZHANG, WEI-WEI; JING, JIAN-MIN

    2014-01-01

    The aim of the present study was to determine the roles of the chemotactic factor, chemokine ligand 2 (CCL2), and its receptor, chemokine receptor type 2 (CCR2), in the hippocampus of rats with cerebral ischemia/reperfusion injury. In total, 24 Sprague-Dawley rats, weighting 250–300 g, were randomly divided into three groups (n=8): Sham-operated (C group), cerebral ischemia/reperfusion injury (I/R group) and propofol-intervention (P group) groups. The rats were sacrificed at 6 h after the ischemia/reperfusion surgery, and the brains were obtained to isolate the hippocampus. The mRNA expression levels of CCL2 and CCR2 in the hippocampus were analyzed by quantitative polymerase chain reaction, while the protein expression levels of CCL2 and CCR2 were determined by western blot analysis. The expression levels of CCL2 and CCR2 in the procerebrum were markedly elevated in the I/R and P groups at 6 h after the ischemia/reperfusion surgery when compared with the C group (P<0.05). In addition, the mRNA expression levels of CCL2 and CCR2 decreased significantly in the P group as compared with that in the I/R group (P<0.05). Therefore, CCL2 and CCR2 may be involved in the mechanisms underlying cerebral ischemia/reperfusion injury, and propofol may protect the brain through regulating the expression of CCL2 and CCR2. PMID:25009636

  16. Application of Mathematical Modelling as a Tool to Analyze the EEG Signals in Rat Model of Focal Cerebral Ischemia

    NASA Astrophysics Data System (ADS)

    Paul, S.; Bhattacharya, P.; Pandey, A. K.; Patnaik, R.

    2014-01-01

    The present paper envisages the application of mathematical modelling with the autoregressive (AR) model method as a tool to analyze electroencephalogram data in rat subjects of transient focal cerebral ischemia. This modelling method was used to determine the frequencies and characteristic changes in brain waveforms which occur as a result of disorders or fluctuating physiological states. This method of analysis was utilized to ensure actual correlation of the different mathematical paradigms. The EEG data was obtained from different regions of the rat brain and was modelled by AR method in a MATLAB platform. AR modelling was utilized to study the long-term functional outcomes of a stroke and also is preferable for EEG signal analysis because the signals consist of discrete frequency intervals. Modern spectral analysis, namely AR spectrum analysis, was used to correlate the conditional and prevalent changes in brain function in response to a stroke.

  17. The Hepatoprotective and MicroRNAs Downregulatory Effects of Crocin Following Hepatic Ischemia-Reperfusion Injury in Rats

    PubMed Central

    Dianat, Mahin; Mansouri, Esrafil

    2017-01-01

    Background. Liver ischemia-reperfusion (IR) injury is one of the chief etiologies of tissue damage during liver transplantation, hypovolemic shock, and so forth. This study aimed to evaluate hepatoprotective effect of crocin on IR injury and on microRNAs (miR-122 and miR-34a) expression. Materials and Methods. 32 rats were randomly divided into four groups: sham, IR, crocin pretreatment (Cr), and crocin pretreatment + IR (Cr + IR) groups. In sham and Cr groups, animals were given normal saline (N/S) and Cr (200 mg/Kg) for 7 consecutive days, respectively, and laparotomy without inducing IR was done. In IR and Cr + IR groups, N/S and Cr were given for 7 consecutive days and rats underwent a partial (70%) ischemia for 45 min/reperfusion for 60 min. Blood and tissue samples were taken for biochemical, molecular, and histopathological examinations. Results. The results showed decreased levels of antioxidants activity and increased levels of liver enzymes improved by crocin. The expression of miR-122, miR-34a, and p53 decreased, while Nrf2 increased by crocin. Crocin ameliorated histopathological changes. Conclusion. The results demonstrated that crocin protected the liver against IR injury through increasing the activity of antioxidant enzymes, improving serum levels of liver enzymes, downregulating miR-122, miR-34a, and p53, and upregulating Nrf2 expression. PMID:28367266

  18. Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats.

    PubMed

    Larsson, E; Nanobashvili, A; Kokaia, Z; Lindvall, O

    1999-11-01

    The levels of brain-derived neurotrophic factor (BDNF) vary between different forebrain areas and show region-specific changes after cerebral ischemia. The present study explores the possibility that the levels of endogenous BDNF determine the susceptibility to ischemic neuronal death. To block BDNF activity the authors used the TrkB-Fc fusion protein, which was infused intraventricularly in rats during 1 week before and 1 week after 5 or 30 minutes of global forebrain ischemia. Ischemic damage was quantified in the striatum and hippocampal formation after 1 week of reperfusion using immunocytochemistry and stereological procedures. After the 30-minute insult, there was a significantly lower number of surviving CA4 pyramidal neurons, neuropeptide Y-immunoreactive dentate hilar neurons, and choline acetyltransferase- and TrkA-positive, cholinergic striatal interneurons in the TrkB-Fc-infused rats as compared to controls. In contrast, the TrkB-Fc treatment did not influence survival of CA1 or CA3 pyramidal neurons or striatal projection neurons. Also, after the mild ischemic insult (5 minutes), neuronal death in the CA1 region was similar in the TrkB-Fc-treated and control groups. These results indicate that endogenous BDNF can protect certain neuronal populations against ischemic damage. It is conceivable, though, that efficient neuroprotection after brain insults is dependent not only on this factor but on the concerted action of a large number of neurotrophic molecules.

  19. In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat.

    PubMed Central

    Suzuki, K; Sawa, Y; Kaneda, Y; Ichikawa, H; Shirakura, R; Matsuda, H

    1997-01-01

    Heat shock protein 70 (HSP70) has been reported to be involved in the myocardial self-preservation system. To obtain the evidence that HSP70 plays a direct role in the protection from myocardial ischemia-reperfusion injury, rat hearts were transfected with human HSP70 gene by intracoronary infusion of hemagglutinating virus of Japan (HVJ)-liposome containing human HSP70 gene. The control hearts were infused with HVJ-liposome without the HSP70 gene. The hearts from whole-body heat-stressed or nontreated rats were also examined. Western blot and immunohistochemical analysis showed that apparent overexpression of HSP70 occurred in the gene transfected hearts and that gene transfection might be more effective for HSP70 induction than heat stress. In Langendorff perfusion, better functional recovery as well as less creatine phosphokinase leakage after ischemia were obtained in the gene transfected hearts with HSP70 than in the control or nontreated hearts. Furthermore, the gene transfected hearts showed better functional recovery than the heat-stressed hearts. These results indicated that overexpressed HSP70 plays a protective role in myocardial injury, suggesting the possibility that gene transfection with HSP70 may become a novel method for myocardial protection through enforcing the self-preservation systems. PMID:9120008

  20. Effects of RS-8359 on reduced local cerebral glucose utilization in the rat subjected to transient forebrain ischemia.

    PubMed

    Kozuka, M; Kobayashi, K; Iwata, N

    1994-04-01

    Changes in local cerebral glucose utilization (LCGU) of the postischemic rat brain were investigated using the rat four-vessel occlusion model. Following 20 or 30 min of ischemia, LCGUs of the cerebral cortices, striatum and hippocampus were decreased at 1 and 3 days postischemia, but were recovered at 7 days postischemia. Effects of repeated administration of RS-8359, (+-)-4-(4-cyanoanilino)-7-hydroxycyclopenta(3,2-e)pyrimidin e, (30 mg/kg x 2/day, p.o., 4 days) were examined at 3 days postischemia following 20 min of ischemia. Compared with the sham-operated group, the LCGUs of 22 out of 34 structures examined in the ischemic-control group were significantly reduced. In the RS-8359-treated group, however, significant reduction was observed in only 9 structures. Compared with the ischemic-control group, RS-8359 significantly ameliorated the reduction of LCGU in 12 structures. These results suggest that RS-8359 has beneficial effects on reduced glucose metabolism in the postischemic brain.

  1. Antioxidant Action of Mangrove Polyphenols against Gastric Damage Induced by Absolute Ethanol and Ischemia-Reperfusion in the Rat

    PubMed Central

    de-Faria, Felipe Meira; Almeida, Ana Cristina Alves; Luiz-Ferreira, Anderson; Takayama, Christiane; Dunder, Ricardo José; da Silva, Marcelo Aparecido; Salvador, Marcos José; Abdelnur, Patrícia Verardi; Eberlin, Marcos Nogueira; Vilegas, Wagner; Toma, Walber; Souza-Brito, Alba Regina Monteiro

    2012-01-01

    Rhizophora mangle, the red mangrove, has long been known as a traditional medicine. Its bark has been used as astringent, antiseptic, hemostatic, with antifungic and antiulcerogenic properties. In this paper, we aimed to evaluate the antioxidant properties of a buthanolic fraction of the R. mangle bark extract (RM) against experimental gastric ulcer in rats. Unib-Wh rats received pretreatment of R. mangle after the induction of gastric injury with absolute ethanol and ischemia-reperfusion. Gastric tissues from both methods were prepared to the enzymatic assays, the levels of sulfhydril compounds (GSH), lipid peroxides (LPO), and the activities of glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD) and myeloperoxidase (MPO) were measured. The RM protected the gastric mucosa in both methods used, ethanol-induced gastric ulcer and ischemia-reperfusion, probably, by modulating the activities of the enzymes SOD, GPx, and GR and increasing or maintaining the levels of GSH; in adittion, LPO levels were reduced. The results suggest that the RM antioxidant activity leads to tissue protection; thus one of the antiulcer mechanisms present on the pharmacological effects of R. mangle is the antioxidant property. PMID:22654592

  2. Ginkgo Biloba Ameliorates Subfertility Induced by Testicular Ischemia/Reperfusion Injury in Adult Wistar Rats: A Possible New Mitochondrial Mechanism

    PubMed Central

    Ahmed, Asmaa Ibrahim; El-Zawahry, Khaled Mohamed

    2016-01-01

    Testicular torsion, a surgical emergency, could affect the endocrine and exocrine testicular functions. This study demonstrates histopathological and physiological effects of testicular ischemia/perfusion (I/R) injury and the possible protective effects of Ginkgo biloba treatment. Fifty adult male Wistar rats, 180–200 gm, were randomly divided into sham-operated, Gingko biloba supplemented, ischemia only, I/R, and Gingko biloba treated I/R groups. Overnight fasted rats were anaesthetized by Pentobarbital; I/R was performed by left testis 720° rotation in I/R and treated I/R groups. Orchiectomy was performed for histopathological studies and detection of mitochondrial NAD+. Determination of free testosterone, FSH, TNF-α, and IL1-β in plasma was performed. Plasma-free testosterone was significantly decreased, while plasma FSH, TNF-α, IL-1β, and testicular mitochondrial NAD+ were significantly increased in I/R group compared to control group. These parameters were reversed in Gingko biloba treated I/R group compared to I/R group. I/R caused marked testicular damage and increased APAF-1 in the apoptotic cells which were reversed by Ginkgo biloba treatment. It could be concluded that I/R caused subfertility induced by apoptosis and oxidative stress manifested by the elevated testicular mitochondrial NAD+, which is considered a new possible mechanism. Also, testicular injury could be reduced by Gingko biloba administration alone. PMID:28101298

  3. Effect of Physical and Social Components of Enriched Environment on Astrocytes Proliferation in Rats After Cerebral Ischemia/Reperfusion Injury.

    PubMed

    Chen, Xiuping; Zhang, Xin; Liao, Weijing; Wan, Qi

    2017-01-12

    Treatment of enriched environment (EE) exerts neuroprotective effect in cerebral ischemia/reperfusion (I/R) injury. However, how the component of EE contributes to the functional recovery after brain ischemia remains unclear. Here we examined the effect of physical and social components of EE on poststroke astrocytes proliferation using an animal model of middle cerebral artery occlusion (MCAO) followed by reperfusion. Rats were divided into five groups: physical enrichment group (PE), social enrichment group (SE), physical and social enrichment group (PSE), ischemia + standard group (IS) and sham-operated + standard group (SS). In a set of behavioral tests, we demonstrated that animals in the enriched groups exhibited improved functional outcomes compared with those in standard group. Reduced infarct volume was only observed in PSE and PE groups. Double immunofluorescent labeling and western blot analysis revealed that rats in PSE and PE groups showed significantly more proliferated astrocytes and higher expression levels of brain-derived neurotrophic factor (BDNF) in the periinfarct cortex, compared with those in SE group. Astrocytes proliferation and BDNF expression were significantly correlated with functional outcomes. Collectively, this study suggests that physical activity is a more important component of EE regarding the effect on astrocytes proliferation and BDNF expression, which may contribute to the improved neurological function of stroke animals.

  4. A novel vitamin E derivative (TMG) protects against gastric mucosal damage induced by ischemia and reperfusion in rats.

    PubMed

    Ichikawa, Hiroshi; Yoshida, Norimasa; Takano, Hiroshisa; Ishikawa, Takeshi; Handa, Osamu; Takagi, Tomohisa; Naito, Yuji; Murase, Hironobu; Yoshikawa, Toshikazu

    2003-01-01

    The aim of the present study was to investigate the antioxidative effects of water-soluble vitamin E derivative, 2-(alpha-D-glucopyranosyl)methyl-2,5,7,8-tetramethylchroman-6-ol (TMG), on ischemia-reperfusion (I/R) -induced gastric mucosal injury in rats. Gastric ischemia was induced by applying a small clamp to the celiac artery and reoxygenation was produced by removal of the clamp. The area of gastric mucosal erosion, the concentration of thiobarbituric acid-reactive substances, and the myeloperoxidase activity in gastric mucosa significantly increased in I/R groups compared with those of sham-operated groups. These increases were significantly inhibited by pretreatment with TMG. The contents of both mucosal TNF-alpha and CINC-2beta in I/R groups were also increased compared with the levels of those in sham-operated groups. These increases of the inflammatory cytokines were significantly inhibited by the treatment with TMG. It is concluded that TMG inhibited lipid peroxidation and reduced development of the gastric mucosal inflammation induced by I/R in rats.

  5. Elevation of jugular venous superoxide anion radical is associated with early inflammation, oxidative stress, and endothelial injury in forebrain ischemia-reperfusion rats.

    PubMed

    Aki, Hiromi Shinagawa; Fujita, Motoki; Yamashita, Susumu; Fujimoto, Kenji; Kumagai, Kazumi; Tsuruta, Ryosuke; Kasaoka, Shunji; Aoki, Tetsuya; Nanba, Masahiro; Murata, Hidenori; Yuasa, Makoto; Maruyama, Ikuro; Maekawa, Tsuyoshi

    2009-10-06

    A novel electrochemical sensor was used in this study to determine the correlations between jugular venous O(2)(-) and HMGB1, malondialdehyde (MDA), and intercellular adhesion molecule-1 (ICAM-1) in rats with forebrain ischemia/reperfusion (FBI/R). Twenty-one male rats were divided into a Sham group, a hemorrhagic shock/reperfusion (HS/R) group, and a forebrain ischemia/reperfusion (FBI/R) group. The O(2)(-) sensor in the jugular vein detected the current derived from O(2)(-) generation (abbreviated as "O(2)(-) current"), which was integrated as the partial value of quantified electricity during ischemia (Q(I)) and after reperfusion (Q(R)). The plasma O(2)(-) current showed a gradual increase during forebrain ischemia in the HS/R and the FBI/R groups. The current showed a marked increase immediately after reperfusion and continued for more than 60 min in the FBI/R group. In the HS/R group, the current was gradually attenuated to the baseline level. Brain and plasma HMGB1 increased significantly in the FBI/R group compared with those in the Sham and the HS/R groups, and both brain and plasma HMGB1 correlated significantly with the sum of Q(I) and Q(R) (total Q). Brain and plasma MDA and plasma soluble ICAM-1 also correlated significantly with total Q. Here, we report the correlation between O(2)(-) and HMGB1, MDA, and sICAM-1 in rats with cerebral ischemia-reperfusion, using a novel electrochemical sensor. These data indicated that excessive production of O(2)(-) after ischemia-reperfusion was associated with early inflammation, oxidative stress, and endothelial activation in the brain and plasma, which might enhance the ischemia-reperfusion injury.

  6. Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia.

    PubMed

    Schuch, Clarissa Pedrini; Diaz, Ramiro; Deckmann, Iohanna; Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Pereira, Lenir Orlandi

    2016-03-23

    Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans.

  7. Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model.

    PubMed

    Kang, Pin-Fang; Wu, Wen-Juan; Tang, Yang; Xuan, Ling; Guan, Su-Dong; Tang, Bi; Zhang, Heng; Gao, Qin; Wang, Hong-Ju

    2016-01-01

    The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening.

  8. Activation of ALDH2 with Low Concentration of Ethanol Attenuates Myocardial Ischemia/Reperfusion Injury in Diabetes Rat Model

    PubMed Central

    Kang, Pin-Fang; Wu, Wen-Juan; Tang, Yang; Xuan, Ling; Guan, Su-Dong; Tang, Bi; Zhang, Heng

    2016-01-01

    The aim of this paper is to observe the change of mitochondrial aldehyde dehydrogenase 2 (ALDH2) when diabetes mellitus (DM) rat heart was subjected to ischemia/reperfusion (I/R) intervention and analyze its underlying mechanisms. DM rat hearts were subjected to 30 min regional ischemia and 120 min reperfusion in vitro and pretreated with ALDH2 activator ethanol (EtOH); cardiomyocyte in high glucose (HG) condition was pretreated with ALDH2 activator Alda-1. In control I/R group, myocardial tissue structure collapse appeared. Compared with control I/R group, left ventricular parameters, SOD activity, the level of Bcl-2/Bax mRNA, ALDH2 mRNA, and protein expressions were decreased and LDH and MDA contents were increased, meanwhile the aggravation of myocardial structure injury in DM I/R group. When DM I/R rats were pretreated with EtOH, left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 expression were increased; LDH, MDA, and myocardial structure injury were attenuated. Compared with DM + EtOH I/R group, cyanamide (ALDH2 nonspecific blocker), atractyloside (mitoPTP opener), and wortmannin (PI3K inhibitor) groups all decreased left ventricular parameters, SOD, Bcl-2/Bax, and ALDH2 and increased LDH, MDA, and myocardial injury. When cardiomyocyte was under HG condition, CCK-8 activity and ALDH2 protein expression were decreased. Alda-1 increased CCK-8 and ALDH2. Our findings suggested enhanced ALDH2 expression in diabetic I/R rats played the cardioprotective role, maybe through activating PI3K and inhibiting mitoPTP opening. PMID:27829984

  9. Lactulose ameliorates cerebral ischemia-reperfusion injury in rats by inducing hydrogen by activating Nrf2 expression.

    PubMed

    Zhai, Xiao; Chen, Xiao; Shi, Jiazi; Shi, Duo; Ye, Zhouheng; Liu, Wenwu; Li, Ming; Wang, Qijin; Kang, Zhimin; Bi, Hongda; Sun, Xuejun

    2013-12-01

    Molecular hydrogen has been proven effective in ameliorating cerebral ischemia/reperfusion (I/R) injury by selectively neutralizing reactive oxygen species. Lactulose can produce a considerable amount of hydrogen through fermentation by the bacteria in the gastrointestinal tract. To determine the neuroprotective effects of lactulose against cerebral I/R injury in rats and explore the probable mechanisms, we carried out this study. The stroke model was produced in Sprague-Dawley rats through middle cerebral artery occlusion. Intragastric administration of lactulose substantially increased breath hydrogen concentration. Behavioral and histopathological verifications matched biochemical findings. Behaviorally, rats in the lactulose administration group won higher neurological scores and showed shorter escape latency time in the Morris test. Morphologically, 2,3,5-triphenyltetrazolium chloride showed smaller infarction volume; Nissl staining manifested relatively clear and intact neurons and TUNEL staining showed fewer apoptotic neurons. Biochemically, lactulose decreased brain malondialdehyde content, caspase-3 activity, and 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine concentration and increased superoxide dismutase activity. The effects of lactulose were superior to those of edaravone. Lactulose orally administered activated the expression of NF-E2-related factor 2 (Nrf2) in the brain as verified by RT-PCR and Western blot. The antibiotics suppressed the neuroprotective effects of lactulose by reducing hydrogen production. Our study for the first time demonstrates a novel therapeutic effect of lactulose on cerebral ischemia/reperfusion injury and the probable underlying mechanisms. Lactulose intragastrically administered possessed neuroprotective effects on cerebral I/R injury in rats, which could be attributed to hydrogen production by the fermentation of lactulose through intestinal bacteria and Nrf2 activation.

  10. Expression of brain-derived neurotrophic factor immunoreactivity and mRNA in the hippocampal CA1 and cortical areas after chronic ischemia in rats.

    PubMed

    Lee, Tsong-Hai; Yang, Jen-Tsung; Kato, Hiroyuki; Wu, June Hsieh; Chen, Sien-Tsong

    2004-06-01

    We studied the expression of brain-derived neurotrophic factor (BDNF) immunoreactivity and mRNA in the ischemia-vulnerable cerebral hippocampal CA1 and cortical areas after permanent occlusion of bilateral internal carotid arteries. Four groups of rats were studied, including 1) young normotensive Wistar-Kyoto (WKY) rats, 2) aged normotensive WKY rats, 3) young spontaneous hypertensive rats (SHR), and 4) aged SHR. Each group contained rats from sham operation and 1 week, 4 weeks, and 8 weeks after cerebral ischemia (n = 3-5 at each time point). Hematoxylin and eosin staining and in situ apoptosis detection showed no neuronal damage from 1 week to 8 weeks in all the ischemic rats. Immunohistochemistry and Western blot showed that BDNF immunoreactivity increased only at 1 week in the CA1 area of young WKY rats (P < .001) and SHR (P = .002) and decreased only at 8 weeks in the cortical area of aged WKY rats (P = .02). In situ hybridization and TaqMan real-time RT-PCR showed that BDNF mRNA decreased consistently from 1 week to 8 weeks in both CA1 and cortical areas in young SHR (P < .05 and P < .01, respectively) and in aged WKY rats (P < .01 and P < .05, respectively) but was not changed in young WKY rats or aged SHR (P > .05) compared with the sham-operated rats. Our study demonstrates an expression disparity of BDNF immunoreactivity and mRNA in the hippocampal CA1 and cortical areas, especially in the young SHR and aged WKY rats after mild cerebral ischemia. Our study suggests that, under permanent occlusion of bilateral internal carotid arteries, aging and the level of blood pressure may have influence on the expression of BDNF.

  11. [The effect of semax and its C-end peptide PGP on Vegfa gene expression in the rat brain during incomplete global ischemia].

    PubMed

    Stavchanskiĭ, V V; Tvorogova, T V; Botsina, A Iu; Limborskaia, S A; Skvortsova, V I; Miasoedov, N F; Dergunova, L V

    2013-01-01

    Vascular endothelial growth factor (VEGFA) is a hypoxia-inducible signal glycoprotein. VEGFA causes vascular endothelial cell growth and proliferation, that leads to the regeneration of vascular network in brain regions damaged by ischemia. However, this protein is involved in processes of inflammation and edema in early stages of ischemia. Synthetic peptide semax shows neuroprotective and anti-inflammatory properties and is actively used in the treatment of ischemia.We have previously shown that semax reduces vascular injury and activates the mRNA synthesis of neurotrophins and their receptors under global cerebral ischemia in rats. Here we have analyzed the effects of semax and its C-terminal Pro-Gly-Pro tripeptide upon Vegfa mRNA expression in different rat brain regions after common carotid artery occlusion. The animals were decapitated 30 min, 1, 2, 4, 8, 12, 24 h after the operation. It was shown that ischemia increases levels of Vegfa mRNA in the rat brain of animals (4 h after the occlusion--in the cerebellum, cerebral cortex and hippocampus, 8 h--in the cortex and hippocampus, and 24 h in the cortex). Semax treatment reduces Vegfa mRNA levels in the frontal cortex (4, 8 and 12 h after the occlusion) and hippocampus of ischemic rats (2 and 4 h). Effect of PGP on the Vegfa gene expression was almost negligible. Our results showed that semax prevents activating effect ofhypoxia on the Vegfa gene expression in early stages of global ischemia. Furthermore, increase in the level of mRNA Vegfa in the hippocampus (24 h after occlusion) perhaps reflects neuroprotective properties of this drug.

  12. Stereological assessment of vulnerability of immunocytochemically identified striatal and hippocampal neurons after global cerebral ischemia in rats.

    PubMed

    Larsson, E; Lindvall, O; Kokaia, Z

    2001-09-21

    Detailed quantitative analysis of the vulnerability of different hippocampal and striatal neurons to global forebrain ischemia has not previously been performed. Here we have studied the survival of immunocytochemically identified neurons using an unbiased stereological method in rats subjected to global forebrain ischemia for 30 min and sacrificed 48 h, 1 week or 4 weeks thereafter. Within the hippocampal formation, there was extensive, progressive loss of CA1 pyramidal neurons and dentate hilar neuropeptide Y (NPY)-positive interneurons. In contrast, no reduction of the number of CA3 and CA4 pyramidal neurons or hilar parvalbumin-positive interneurons was detected. In the dorsolateral striatum, the insult caused a major loss of projection neurons immunoreactive to dopamine- and adenosine 3':5'-monophosphate-regulated phosphoprotein with a molecular weight of 32 kilodalton (DARPP-32). The number of parvalbumin-positive striatal interneurons was significantly reduced, while NPY-positive interneurons were resistant. All striatal cholinergic interneurons survived the ischemic insult. At 48 h following the ischemia, the cholinergic interneurons within the lesioned striatum transiently expressed the p75 neurotrophin receptor (p75(NTR)), as shown by double-label immunocytochemistry. Furthermore, there was a significant increase in the number of choline acetyltransferase (ChAT)- and TrkA-immunoreactive interneurons at 4 weeks after the insult. Injections with the cell mitotic division marker BrdU provided no evidence that the elevated cholinergic cell number was due to neurogenesis. Probably, the higher number of ChAT- and TrkA-positive interneurons reflected increased intracellular levels of the corresponding proteins leading to more cells detectable with immunocytochemistry. This study gives the first quantitative description of the vulnerability of defined hippocampal and striatal neurons after global forebrain ischemia. The ischemia-induced increases of p75(NTR), Trk

  13. The protective effect of L-arginine, tadalafil, and their combination in rat testes after ischemia and reperfusion injury

    PubMed Central

    Ozmerdiven, Gokhun; Coskun, Burhan; Kaygisiz, Onur; Vuruskan, Berna Aytac; Asiltas, Burak; Kilicarslan, Hakan

    2017-01-01

    Introduction: Nitric oxide (NO) plays an important role in the ischemia and reperfusion process. In this study, we aimed to examine the effect of L-arginine, tadalafil, and their combination for prevention of the ischemia reperfusion injury after testis torsion in rats. Methods: A total of 40 adult, male Sprague-Dawley rats were allocated into five groups. Three hours of left testicular torsion was performed in each group, excluding the control group. While the ischemia reperfusion (I/R) group had no treatment, I/R + Arg group received L-arginine, I/R + Td group received tadalafil and I/R + Arg + Td group received tadalafil and L-arginine 30 minutes before the detorsion. Then the left testis was untwisted for four hours of reperfusion. After bilateral orchiectomy, lipid peroxidation (LPx) and glutathione (GSH) activities were examined in testicular tissue. Spermatogenesis was evaluated with Johnsen’s score. Results: LPx levels of the I/R group were found to be significantly higher than for groups that received drugs for both testes (p<0.001). GSH levels of the combination group were higher than I/R group in ipsilateral testis (p<0.01) and it was significantly higher than other groups for contralateral testis (p<0.001 for I/R group, p<0.01 for I/R + Arg, p<0.05 for I/R + Td). Mean Johnsen’s score of the I/R group was found to be significantly lower than treatment groups in ipsilateral testis (p<0.001 for I/R + Arg + Td group, p<0.01 for other treatment goups) and contralateral testis (p<0.001). The mean Johnsen score of the combination group was significantly higher than that of other treatment groups in ipsilateral testis (p<0.05) and it was significantly higher than in the I/R + Td group in the contralateral testis (p<0.05). Conclusions: L-arginine, tadalafil, and combination of these two molecules showed protective effect against ischemia/reperfusion injury for both testes after unilateral testis torsion. PMID:28163808

  14. Brain-derived neurotrophic factor blood levels in two models of transient brain ischemia in rats.

    PubMed

    Gottlieb, Miroslav; Bonova, Petra; Danielisova, Viera; Nemethova, Miroslava; Burda, Jozef; Cizkova, Dasa

    2013-03-01

    We monitored possible influence of transient focal and global brain ischemia on BDNF blood level. In both models noticeable fluctuation of BDNF concentration mainly in reperfusion was observed. During the first 90 min, BDNF in total blood and in blood cells continuously decreased in both models but plasma BDNF raised at 40 min and peaked at 90 min of reperfusion. Our data confirm the impact of transient brain ischemia on BDNF levels in the circulatory system, suggest blood cells as a possible source of BDNF and demonstrate the interdependence of blood compartments and physiological state of an affected organism.

  15. Sulforaphane Improves Ischemia-Induced Detrusor Overactivity by Downregulating the Enhancement of Associated Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Rat Bladder

    PubMed Central

    Tai, Huai-Ching; Chung, Shiu-Dong; Chien, Chiang-Ting; Yu, Hong-Jeng

    2016-01-01

    Atherosclerosis-associated pelvic ischemia has been reported to be a risk factor for bladder dysfunction and subsequent lower urinary tract symptoms (LUTS) in the elderly population. However, the molecular mechanisms of this association remain unclear. We hypothesized that stress-induced cellular responses might play a role in the pathogenesis of ischemia-induced bladder dysfunction. In the present study, the animal model of bladder ischemia was induced by bilateral partial arterial occlusion (BPAO) in rats. We found that BPAO significantly induced the presence of detrusor overactivity (DO) and upregulated the expression of several molecular reactions, including biomarkers in endoplasmic reticulum stress (78 kDa glucose-regulated protein, GRP78 and C/EBP-homologous protein, CHOP), autophagy (Beclin-1, p62 and LC3 II) and apoptosis (caspase 3). BPAO also disturbed the Kelch-like ECH-associated protein 1–nuclear factor erythroid-2-related factor 2 (Keap1–Nrf2) pathways. These responses might collectively alter muscarinic and purinergic signaling and contribute to the presence of DO in the ischemic bladder. Therapeutically, treatment with neither a muscarinic nor purinergic receptor antagonist restored bladder function. Interestingly, sulforaphane effectively attenuated ischemia-enhanced endoplasmic reticulum stress, autophagy and apoptosis in the bladder, subsequently ameliorated ischemia-induced bladder dysfunction and might emerge as a novel strategy to protect the bladder against ischemia-induced oxidative damage. PMID:27824068

  16. Neuroprotective Effects of Acetyl-L-Carnitine on Neonatal Hypoxia Ischemia-Induced Brain Injury in Rats.

    PubMed

    Tang, Shiyu; Xu, Su; Lu, Xin; Gullapalli, Rao P; McKenna, Mary C; Waddell, Jaylyn

    2016-01-01

    Perinatal hypoxia ischemia (HI) is a significant cause of brain injury in surviving infants. Although hypothermia improves outcomes in some infants, additional therapies are needed since about 40% of infants still have a poor outcome. Acetyl-L-carnitine (ALCAR), an acetylated derivative of L-carnitine, protected against early changes in brain metabolites and mitochondrial function after HI on postnatal day (PND) 7 in a rat pup model of near-term HI injury. However, its efficacy in long-term structural and functional outcomes remains unexplored. We determined the efficacy of ALCAR therapy administered to rat pups after HI at PND 7, using both longitudinal in vivo magnetic resonance imaging and behavioral tests, in male and female rats. HI led to sex-specific behavioral impairment, with males exhibiting more global functional deficits than females. Interestingly, HI reduced the volume of the contralateral hemisphere in males only, suggesting that the brain injury is more diffuse in males than in females. Treatment with ALCAR improved both morphological and functional outcomes in both male and female rats. These results suggest that ALCAR may be a potential therapy for clinical use since the treatment attenuated the moderate injury produced under the experimental conditions used and improved the functional outcome in preclinical studies.

  17. Paraplegia increased cardiac NGF content, sympathetic tonus, and the susceptibility to ischemia-induced ventricular tachycardia in conscious rats

    PubMed Central

    Lujan, Heidi L.; Chen, Ying; DiCarlo, Stephen E.

    2009-01-01

    Midthoracic spinal cord injury is associated with ventricular arrhythmias that are mediated, in part, by enhanced cardiac sympathetic activity. Furthermore, it is well known that sympathetic neurons have a lifelong requirement for nerve growth factor (NGF). NGF is a neurotrophin that supports the survival and differentiation of sympathetic neurons and enhances target innervation. Therefore, we tested the hypothesis that paraplegia is associated with an increased cardiac NGF content, sympathetic tonus, and susceptibility to ischemia-induced ventricular tachyarrhythmias. Intact and paraplegic (6–9 wk posttransection, T5 spinal cord transection) rats were instrumented with a radiotelemetry device for recording arterial pressure, temperature, and ECG, and a snare was placed around the left main coronary artery. Following recovery, the susceptibility to ventricular arrhythmias (coronary artery occlusion) was determined in intact and paraplegic rats. In additional groups of matched intact and paraplegic rats, cardiac nerve growth factor content (ELISA) and cardiac sympathetic tonus were determined. Paraplegia, compared with intact, increased cardiac nerve growth factor content (2,146 ± 286 vs. 180 ± 36 pg/ml, P < 0.05) and cardiac sympathetic tonus (154 ± 4 vs. 68 ± 4 beats/min, P < 0.05) and decreased the ventricular arrhythmia threshold (3.6 ± 0.2 vs. 4.9 ± 0.2 min, P < 0.05). Thus altered autonomic behavior increases the susceptibility to ventricular arrhythmias in paraplegic rats. PMID:19286942

  18. Expression Pattern of Peroxisome Proliferator-Activated Receptors in Rat Hippocampus following Cerebral Ischemia and Reperfusion Injury

    PubMed Central

    Wang, Hong; Jiang, Rong; He, Qin; Zhang, Yunmei; Zhang, Yanli; Li, Yong; Zhuang, Ruichun; Luo, Ying; Li, Yu; Wan, Jinyuan; Tang, Yong; Yu, Huarong; Jiang, Qingsong; Yang, Junqing

    2012-01-01

    The present study was designed to investigate the pattern of time-dependent expression of peroxisome proliferator-activated receptors (PPARα, β, and γ) after global cerebral ischemia and reperfusion (I/R) damage in the rat hippocampus. Male Sprague Dawley (SD) rats were subjected to global cerebral I/R. The rat hippocampi were isolated to detect the expression of PPARs mRNA and protein levels at 30 min–30 d after I/R by RT-PCR and Western blot analysis, respectively. The expression levels of PPARs mRNA and protein in the rat hippocampus significantly increased and peaked at 24 h for PPARα and γ (at 48 h for PPARβ) after I/R, then gradually decreased, and finally approached control levels on d 30. The present results suggest that global cerebral I/R can cause obvious increases of hippocampal PPARs mRNA and protein expression within 15 d after I/R. These findings may help to guide the experimental and clinical therapeutic use of PPARs agonists against brain injury. PMID:23304113

  19. Methane Attenuates Hepatic Ischemia/Reperfusion Injury in Rats Through Antiapoptotic, Anti-Inflammatory, and Antioxidative Actions.

    PubMed

    Ye, Zhouheng; Chen, Ouyang; Zhang, Rongjia; Nakao, Atsunori; Fan, Danfeng; Zhang, Ting; Gu, Zhengyong; Tao, Hengyi; Sun, Xuejun

    2015-08-01

    Hepatic ischemia/reperfusion (I/R) injury, which occurs in various diseases, introduces severe tissue damage and liver dysfunction. However, no promising therapies for such a significant condition currently exist. Methane has been suggested to exert a protective effect against intestinal I/R injury. In this study, we introduced methane to treat hepatic I/R injury to show its promising protective effect. Also, intraperitoneal injection with methane-rich saline, which could have potential clinical applications, was applied as a new method. Partial liver warm ischemia was applied in Sprague-Dawley rats for 60 min followed by succedent reperfusion. In the test for effective dosage, methane-rich saline was administrated intraperitoneally to the rats at doses of 1, 5, 20, or 40 mL/kg at onset of reperfusion. In the test for protective effect, rats received methane-rich saline intraperitoneally at a dose of 10 mL/kg before the initiation of reperfusion. We found that methane-rich saline significantly decreased serum alanine aminotransferase, aspartate aminotransferase activity, and the occurrence of necrosis. Moreover, methane-rich saline reduced the amount of caspase-3 and the number of apoptotic cells. In addition, methane-rich saline increased the level of superoxide dismutase and decreased the level of malondialdehyde and 8-hydroxyguanosine. Furthermore, research indicated that methane-rich saline markedly decreased gene expression and content of tumor necrosis factor-α and interleukin-6. Also, reduced CD68-positive cells showed decreased inflammatory cells in the liver. Our results suggest that methane protects the liver against I/R injury through antiapoptotic, antioxidative, and anti-inflammatory actions.

  20. Chronic electrical stimulation of the contralesional lateral cerebellar nucleus enhances recovery of motor function after cerebral ischemia in rats

    PubMed Central

    Machado, Andre G.; Baker, Kenneth B.; Schuster, Daniel; Butler, Robert S.; Rezai, Ali

    2009-01-01

    Novel neurorehabilitative strategies are needed to improve motor outcomes following stroke. Based on the disynaptic excitatory projections of the dentatothalamocortical pathway to the motor cortex as well as anterior and posterior cortical areas, we hypothesize that chronic electrical stimulation of the contralesional dentate (lateral cerebellar) nucleus output can enhance motor recovery after ischemia via augmentation of perilesional cortical excitability. Seventy five Wistar rats were pre-trained in the Montoya staircase task and subsequently suffered left cerebral ischemia with the 3-vessel occlusion model. All survivors underwent stereotactic right lateral cerebellar nucleus (LCN) implantation of bipolar electrodes. Rats were then randomized to 4 groups: LCN stimulation at 10 pps, 20 pps, 50 pps or sham stimulation, which was delivered for a period of six weeks. Performance on the Montoya task was re-assessed over the last four weeks of the stimulation period. On the right (contralesional) side, motor performance of the groups undergoing sham, 10 pps, 20 pps and 50 pps stimulation was, respectively, 2.5± 2.7; 2.1 ± 2.5; 6.0 ± 3.9 (p<0.01) and 4.5 ± 3.5 pellets. There was no difference on the left (ipsilesional) side motor performance among the sham or stimulation groups, varying from 15.9 ± 6.7 to 17.2 ± 2.1 pellets. We conclude that contralesional chronic electrical stimulation of the lateral cerebellar nucleus at 20 pps but not at 10 or 50 pps improves motor recovery in rats following ischemic strokes. This effect is likely to be mediated by increased perilesional cortical excitability via chronic activation of the dentatothalamocortical pathway. PMID:19445910

  1. An investigation on cardioprotective potential of Marrubium vulgare aqueous fraction against ischemia-reperfusion injury in isolated rat heart.

    PubMed

    Garjani, Alireza; Tila, Dena; Hamedeyazdan, Sanaz; Vaez, Haleh; Rameshrad, Maryam; Pashaii, Mahdiyeh; Fathiazad, Fatemeh

    2017-02-15

    The aim of this study was to evaluate the cardioprotective effects of aqueous fraction of M. vulgare hydroalcoholic extract on cardiac parameters in ischemic-reperfused isolated rat hearts. The aerial parts of the plant were extracted with methanol 70% by maceration. The water-soluble portion of the total hydroalcoholic extract was prepared with liquid-liquid extraction (LLE). Afterwards, the antioxidant activity, total phenolic and flavonoids content of the aqueous fraction were determined. In order to evaluate the effects of the aqueous fraction on cardiac parameters and I/R injury, the Langendroff method was used on Male Wistar rats. Harvested hearts were cannulated immediately to the langendroff apparatus and subjected into 30 min regional ischemia and 2 hrs reperfusion, either by a modified Krebs-Henseleit Buffer Solution (KHBS) or enriched KHBS with plant extract (10, 20, 40 µg/mL). The aqueous fraction was found to be a scavenger of DPPH radical with RC50 value of 47µg/mL. The total phenolic and flavonoids content of the fraction was 6.05g gallic acid equivalent and 36.13mg quercetin equivalent per 100g of dry plant material. In addition, 40 µg/mL of M. vulgare aqueous fraction significantly decreased infarct size in comparison to control group. All doses considerably reduced the total ventricular ectopic beats (VEBs) during 30 min of ischemia. The extract at dose of 40 µg/mL noticeably decreased the arrhythmias during the first 30 min of reperfusion. The results of the study indicated aqueous fraction of M. vulgare possesses a protective effect against I/R injuries in isolated rat hearts.

  2. Seabuckthorn Pulp Oil Protects against Myocardial Ischemia-Reperfusion Injury in Rats through Activation of Akt/eNOS.

    PubMed

    Suchal, Kapil; Bhatia, Jagriti; Malik, Salma; Malhotra, Rajiv Kumar; Gamad, Nanda; Goyal, Sameer; Nag, Tapas C; Arya, Dharamvir S; Ojha, Shreesh

    2016-01-01

    Seabuckthorn (SBT) pulp oil obtained from the fruits of seabuckthorn [Hippophae rhamnoides L. (Elaeagnaceae)] has been used traditionally for its medicinal and nutritional properties. However, its role in ischemia-reperfusion (IR) injury of myocardium in rats has not been elucidated so far. The present study reports the cardioprotective effect of SBT pulp oil in IR-induced model of myocardial infarction in rats and underlying mechanism mediating activation of Akt/eNOS signaling pathway. Male albino Wistar rats were orally administered SBT pulp oil (5, 10, and 20 ml/kg/day) or saline for 30 days. On the day 31, ischemia was induced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. SBT pulp oil pretreatment at the dose of 20 ml/kg observed to stabilize cardiac function and myocardial antioxidants such as glutathione, superoxide dismutase, catalase, and inhibited lipid peroxidation evidenced by reduced malondialdehyde levels as compared to IR-control group. SBT pulp oil also improved hemodynamic and contractile function and decreased tumor necrosis factor and activities of myocyte injury marker enzymes; lactate dehydrogenase and creatine kinase-MB. Additionally, a remarkable rise in expression of pAkt-eNOS, Bcl-2 and decline in expression of IKKβ/NF-κB and Bax was observed in the myocardium. The histopathological and ultrastructural salvage of cardiomyocytes further supports the cardioprotective effect of SBT pulp oil. Based on findings, it can be concluded that SBT pulp oil protects against myocardial IR injury mediating favorable modulation of Akt-eNOS and IKKβ/NF-κB expression.

  3. Postconditioning with inhaled hydrogen promotes survival of retinal ganglion cells in a rat model of retinal ischemia/reperfusion injury.

    PubMed

    Wang, Ruobing; Wu, Jiangchun; Chen, Zeli; Xia, Fangzhou; Sun, Qinglei; Liu, Lin

    2016-02-01

    Retinal ischemia/reperfusion (I/R) injury plays a crucial role in the pathophysiology of various ocular diseases. Intraperitoneal injection or ocular instillation with hydrogen (H2)-rich saline was recently shown to be neuroprotective in the retina due to its anti-oxidative and anti-inflammatory effects. Our study aims to explore whether postconditioning with inhaled H2 can protect retinal ganglion cells (RGCs) in a rat model of retinal I/R injury. Retinal I/R injury was performed on the right eyes of rats and was followed by inhalation of 67% H2 mixed with 33% oxygen immediately after ischemia for 1h daily for one week. RGC density was counted using haematoxylin and eosin (HE) staining and retrograde labeling with cholera toxin beta (CTB). Visual function was assessed using flash visual evoked potentials (FVEP) and pupillary light reflex (PLR). Potential biomarkers of retinal oxidative stress and inflammatory responses were measured, including the expression of 4-Hydroxynonenalv (4-HNE), interleukin-1 beta (IL1-β) and tumor necrosis factor alpha (TNF-α). HE and CTB tracing showed that the survival rate of RGCs in the H2-treated group was significantly higher than the rate in the I/R group. Rats with H2 inhalation showed better visual function in assessments of FVEP and PLR. Moreover, H2 treatment significantly decreased the number of 4-HNE-stained cells in the ganglion cell layer and inhibited the retinal overexpression of IL1-β and TNF-α that was induced by retinal I/R injury. Our results demonstrate that postconditioning with inhaled high-dose H2 appears to confer neuroprotection against retinal I/R injury via anti-oxidative, anti-inflammatory and anti-apoptosis pathways.

  4. Inhalation anesthesia of rats: influence of the fraction of inspired oxygen on limb ischemia/reperfusion injury.

    PubMed

    Zhang, S; Duehrkop, C; Plock, J A; Rieben, R

    2016-06-01

    Inhalation anesthesia with isoflurane is a well-established and safe method used in small laboratory animals. In most cases oxygen is used as a carrier gas for isoflurane, but room air or mixtures of oxygen with air or nitrous oxide are also being used. Anesthesia is therefore administered using different fractions of inspired oxygen (FiO2), and this may have consequences for the outcome of experiments. The aim of the present study was to investigate the influence of FiO2 on rat hind limb ischemia/reperfusion injury and to refine the used inhalation anesthesia. Male Wistar rats were subjected to 3.5 h of ischemia and 2 h of reperfusion, and divided into three groups according to FiO2 in the O2/air/isoflurane anesthesia gas mixture: 40%, 60%, and 100% O2 Normal, healthy rats were used as controls. Muscle edema and creatine kinase MM, a marker for myocyte necrosis, were significantly increased with 40% FiO2 as compared with 100% FiO2 (P < 0.05). Partial pressure of oxygen, oxygen saturation, and oxyhemoglobin were significantly higher in the 100% O2 group as compared with 40% O2 No significant differences were detected for other parameters, such as the oxidative stress markers malondialdehyde and superoxide dismutase. We conclude that a refined inhalation anesthesia setting using 40% FiO2, reflecting more or less the clinical situation, leads to a more severe and more physiologically relevant reperfusion injury than higher FiO2. Oxidative stress did not correlate with FiO2 and seemed to have no influence on reperfusion injury.

  5. G-Protein βγ Subunit Dimers Modulate Kidney Repair after Ischemia-Reperfusion Injury in Rats

    PubMed Central

    White, Sarah M.; North, Lauren M.; Haines, Emily; Goldberg, Megan; Sullivan, Lydia M.; Pressly, Jeffrey D.; Weber, David S.

    2014-01-01

    Heterotrimeric G-proteins play a crucial role in the control of renal epithelial cell function during homeostasis and in response to injury. In this report, G-protein βγ subunit (Gβγ) dimer activity was evaluated during the process of tubular repair after renal ischemia-reperfusion injury (IRI) in male Sprague Dawley rats. Rats were treated with a small molecule inhibitor of Gβγ activity, gallein (30 or 100 mg/kg), 1 hour after reperfusion and every 24 hours for 3 additional days. After IRI, renal dysfunction was prolonged after the high-dose gallein treatment in comparison with vehicle treatment during the 7-day recovery period. Renal tubular repair in the outer medulla 7 days after IRI was significantly (P < 0.001) attenuated after treatment with high-dose gallein (100 mg/kg) in comparison with low-dose gallein (30 mg/kg), or the vehicle and fluorescein control groups. Gallein treatment significantly reduced (P < 0.05) the number of proliferating cell nuclear antigen–positive tubular epithelial cells at 24 hours after the ischemia-reperfusion phase in vivo. In vitro application of gallein on normal rat kidney (NRK-52E) proximal tubule cells significantly reduced (P < 0.05) S-phase cell cycle entry compared with vehicle-treated cells as determined by 5′-bromo-2′-deoxyuridine incorporation. Taken together, these data suggest that Gβγ signaling contributes to the maintenance and repair of renal tubular epithelium and may be a novel therapeutic target for the development of drugs to treat acute kidney injury. PMID:25028481

  6. Marginal Copper Deficiency Increases Liver Neutrophil Accumulation After Ischemia/Reperfusion in Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper deficiency can lead to an augmented inflammatory response through effects on both neutrophils and the microvascular endothelium. In the present study, we evaluated the effect of marginal copper deficiency on the inflammatory injury response to hepatic ischemia/reperfusion injury. Male weanlin...

  7. Nepeta Dschuparensis Bornm Extract Moderates COX-2 and IL-1β Proteins in a Rat Model of Cerebral Ischemia

    PubMed Central

    Nia, Alireza Mousavi; Kalantaripour, Taj Pari; Basiri, Mohsen; Vafaee, Farzaneh; Asadi-Shekaari, Majid; Eslami, Azam; Zadeh, Fatemeh Darvish

    2017-01-01

    Background: Nepeta dschuparensis Bornm (NP) is used as a medicinal herb in Iran. In traditional medicine, this herb is extensively employed for curing ailments such as cardiovascular diseases. NP has antioxidant and anti-inflammatory properties. This project examined the effects of the NP extract on cyclooxygenase-2 (COX-2) and interleukin-1β (IL-1β) protein levels and its efficacy in neuroprotection in a cerebral ischemia-reperfusion model. Methods: Twenty-six male rats were randomly divided into 3 groups: 1) sham (n=6): no middle cerebral artery occlusion (MCAO) procedure, 2) control (n=10): MCAO procedure and treatment with normal saline, and 3) NP extract (n=10): MCAO procedure and treatment with the NP extract (20 mg/kg, i.p.) at the beginning of reperfusion. To examine the injury caused by cerebral ischemia, we measured motor coordination and the infarct area using the rotarod test and triphenyl tetrazolium chloride staining, respectively. IL-1β and COX-2 protein levels, as inflammatory markers, were measured by immunoblotting assay. The statistical analyses were performed using SPSS, version 16, and the data are expressed as means±SEMs. Statistical difference was evaluated using the one-way ANOVA, followed by the post hoc LSD test (P<0.01). Results: Treatment with the NP extract significantly diminished the infarct volume and alleviated the motor coordination disorder induced by cerebral ischemia. The NP extract administration significantly attenuated the increase in IL-1β and COX-2 protein levels too (P<0.01). Conclusion: The beneficial effects of the NP extract are related to its ability to decrease the levels of IL-1β and COX-2. PMID:28360444

  8. Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats.

    PubMed

    Kim, Seok-Joo; Eum, Hyun-Ae; Billiar, Timothy R; Lee, Sun-Mee

    2013-04-01

    Hepatocellular apoptosis commonly occurs in ischemia/reperfusion (I/R) injury. The binding of tumor necrosis factor (TNF) to TNF receptor 1 (TNFR1) leads to the formation of a death-inducing signaling complex (DISC), which subsequently initiates a caspase cascade resulting in apoptosis. Heme oxygenase 1 (HO-1) confers cytoprotection against cell death in I/R injury and inhibits stress-induced apoptotic pathways in vitro. This study investigated the role of HO-1 in modulating TNF/TNFR1-mediated cell death pathways in hepatic I/R injury. Rats were pretreated with hemin, an HO-1 inducer, and zinc protoporphyrin (ZnPP), an HO-1 inhibitor, before undergoing hepatic I/R. Heme oxygenase 1 activity increased after reperfusion. Ischemia/reperfusion-induced hepatocellular apoptosis was attenuated by hemin, as determined by the caspase-3 and -8 activity assays and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling). Zinc protoporphyrin eliminated the cytoprotective effect of hemin. Hepatic TNFR1 protein expression was unchanged among the experimental groups, whereas mitochondrial TNFR1 protein increased after I/R. Ischemia/reperfusion increased the quantity of DISC components, including TRADD (TNFR1-associated death domain), FADD (Fas-associated death domain), and caspase-8, as well as the assembly of DISCs within the liver. In the mitochondrial fraction, TNFR1-associated caspase-8 was increased after I/R. These increases were attenuated by hemin; zinc protoporphyrin eliminated this effect. Our findings suggest that the cytoprotective effects of HO-1 are mediated by suppression of TNF/TNFR1-mediated apoptotic signaling, specifically by modulating apoptotic DISC formation and mitochondrial TNFR1 translocation during hepatic I/R.

  9. N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia.

    PubMed Central

    Folbergrová, J; Zhao, Q; Katsura, K; Siesjö, B K

    1995-01-01

    Recent results have demonstrated that the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) reduces infarct size due to middle cerebral artery occlusion (MCAO), even when given after ischemia. The objective of the present study was to explore whether PBN influences recovery of energy metabolism. MCAO of 2-hr duration was induced in rats by an intraluminal filament technique. Brains were frozen in situ at the end of ischemia and after 1, 2, and 4 hr of recirculation. PBN was given 1 hr after recirculation. Neocortical focal and perifocal ("penumbra") areas were sampled for analyses of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glycogen, glucose, and lactate. The penumbra showed a moderate-to-marked decrease and the focus showed a marked decrease in PCr and ATP concentrations, a decline in the sum of adenine nucleotides, near-depletion of glycogen, and an increase in lactate concentration after 2 hr of ischemia. Recirculation for 1 hr led to only a partial recovery of energy state, with little further improvement after 2 hr and signs of secondary deterioration after 4 hr, particularly in the focus. After 4 hr of recirculation, PBN-treated animals showed pronounced recovery of energy state, with ATP and lactate contents in both focus and penumbra approaching normal values. Although an effect of PBN on mitochondria cannot be excluded, the results suggest that PBN acts by preventing a gradual compromise of microcirculation. The results justify a reevaluation of current views on the pathophysiology of focal ischemic damage and suggest that a therapeutic window of many hours exists in stroke. PMID:7761448

  10. Protective Effect of Antenatal Antioxidant on Nicotine-Induced Heart Ischemia-Sensitive Phenotype in Rat Offspring.

    PubMed

    Xiao, DaLiao; Wang, Lei; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Zhang, Lubo

    2016-01-01

    Fetal nicotine exposure increased risk of developing cardiovascular disease later in life. The present study tested the hypothesis that perinatal nicotine-induced programming of heart ischemia-sensitive phenotype is mediated by enhanced reactive oxygen species (ROS) in offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth, in the absence or presence of a ROS inhibitor, N-acetyl-cysteine (NAC) in drinking water. Experiments were conducted in 8 month old age male offspring. Isolated hearts were perfused in a Langendorff preparation. Perinatal nicotine treatment significantly increased ischemia and reperfusion-induced left ventricular injury, and decreased post-ischemic recovery of left ventricular function and coronary flow rate. In addition, nicotine enhanced cardiac ROS production and significantly attenuated protein kinase Cε (PKCε) protein abundance in the heart. Although nicotine had no effect on total cardiac glycogen synthase kinase-3β (GSK3β) protein expression, it significantly increased the phosphorylation of GSK3β at serine 9 residue in the heart. NAC inhibited nicotine-mediated increase in ROS production, recovered PKCε gene expression and abrogated increased phosphorylation of GSK3β. Of importance, NAC blocked perinatal nicotine-induced increase in ischemia and reperfusion injury in the heart. These findings provide novel evidence that increased oxidative stress plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the heart, and suggest potential therapeutic targets of anti-oxidative stress in the treatment of ischemic heart disease.

  11. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning.

    PubMed

    Ren, C; Gao, X; Steinberg, G K; Zhao, H

    2008-02-19

    Remote ischemic preconditioning is an emerging concept for stroke treatment, but its protection against focal stroke has not been established. We tested whether remote preconditioning, performed in the ipsilateral hind limb, protects against focal stroke and explored its protective parameters. Stroke was generated by a permanent occlusion of the left distal middle cerebral artery (MCA) combined with a 30 min occlusion of the bilateral common carotid arteries (CCA) in male rats. Limb preconditioning was generated by 5 or 15 min occlusion followed with the same period of reperfusion of the left hind femoral artery, and repeated for two or three cycles. Infarct was measured 2 days later. The results showed that rapid preconditioning with three cycles of 15 min performed immediately before stroke reduced infarct size from 47.7+/-7.6% of control ischemia to 9.8+/-8.6%; at two cycles of 15 min, infarct was reduced to 24.7+/-7.3%; at two cycles of 5 min, infarct was not reduced. Delayed preconditioning with three cycles of 15 min conducted 2 days before stroke also reduced infarct to 23.0+/-10.9%, but with two cycles of 15 min it offered no protection. The protective effects at these two therapeutic time windows of remote preconditioning are consistent with those of conventional preconditioning, in which the preconditioning ischemia is induced in the brain itself. Unexpectedly, intermediate preconditioning with three cycles of 15 min performed 12 h before stroke also reduced infarct to 24.7+/-4.7%, which contradicts the current dogma for therapeutic time windows for the conventional preconditioning that has no protection at this time point. In conclusion, remote preconditioning performed in one limb protected against ischemic damage after focal cerebral ischemia.

  12. An ultrastructural study of cell death in the CA1 pyramidal field of the hippocapmus in rats submitted to transient global ischemia followed by reperfusion

    PubMed Central

    de Souza Pagnussat, Aline; Faccioni-Heuser, Maria Cristina; Netto, Carlos Alexandre; Achaval, Matilde

    2007-01-01

    In the course of ischemia and reperfusion a disruption of release and uptake of excitatory neurotransmitters occurs. This excitotoxicity triggers delayed cell death, a process closely related to mitochondrial physiology and one that shows both apoptotic and necrotic features. The aim of the present study was to use electron microscopy to characterize the cell death of pyramidal cells from the CA1 field of the hippocampus after 10 min of transient global ischemia followed by short reperfusion periods. For this study 25 adult male Wistar rats were used, divided into six groups: 10 min of ischemia, 3, 6, 12 and 24 h of reperfusion and an untouched group. Transient forebrain ischemia was produced using the 4-vessel occlusion method. The pyramidal cells of the CA1 field from rat hippocampus submitted to ischemia exhibited intracellular alterations consistent with a process of degeneration, with varied intensities according to the reperfusion period and bearing both apoptotic and necrotic features. Gradual neuronal and glial modifications allowed for the classification of the degenerative process into three stages: initial, intermediate and final were found. With 3 and 6 h of reperfusion, slight and moderate morphological alterations were seen, such as organelle and cytoplasm edema. Within 12 h of reperfusion, there was an apparent recovery and more ‘intact’ cells could be identified, while 24 h after the event neuronal damage was more severe and cells with disrupted membranes and cell debris were identified. Necrotic-like neurons were found together with some apoptotic bodies with 24 h of reperfusion. Present results support the view that cell death in the CA1 field of rat hippocampus submitted to 10 min of global transient ischemia and early reperfusion times includes both apoptotic and necrotic features, a process referred to as parapoptosis. PMID:17784936

  13. Simvastatin nanoparticles attenuated intestinal ischemia/reperfusion injury by downregulating BMP4/COX-2 pathway in rats

    PubMed Central

    Tong, Fei; Dong, Bo; Chai, Rongkui; Tong, Ke; Wang, Yini; Chen, Shipiao; Zhou, Xinmei; Liu, Daojun

    2017-01-01

    The purpose of the research was to explore the therapeutic action of simvastatin-loaded poly(ethylene glycol)-b-poly(gamma-benzyl l-glutamate) (PEG-b-PBLG50) on intestinal ischemia/reperfusion injury (II/RI) through downregulating bone morphogenetic protein 4 (BMP4)/cyclooxygenase-2 (COX-2) pathway as compared to free simvastatin (Sim). Sprague Dawley rats were preconditioned with 20 mg/kg Sim or simvastatin/PEG-b-PBLG50 (Sim/P) compounds, and then subjected to 45 min of ischemia and 1 h of reperfusion. The blood and small intestines were collected, serum levels of interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-α, and nitric oxide (NO) were checked, and the dry/wet intestine ratios, superoxide dismutase activity, myeloperoxidase content, reactive oxygen species, endothelial nitric oxide synthase, protein 47 kDa phagocyte oxidase (p47phox), BMP4, COX-2, and p38 mitogen-activated protein kinase (p38MAPK) expressions were measured in intestinal tissues. Both Sim and Sim/P pretreatment reduced intestinal oxidative damnification, restricted inflammatory harm, and downregulated the BMP4 and COX-2 expressions as compared to II/RI groups, while Sim/P remarkably improved this effect.

  14. Effects of warm ischemia and reperfusion on the liver microcirculatory phenotype of rats: underlying mechanisms and pharmacological therapy

    PubMed Central

    Hide, Diana; Ortega-Ribera, Martí; Garcia-Pagan, Juan-Carlos; Peralta, Carmen; Bosch, Jaime; Gracia-Sancho, Jordi

    2016-01-01

    Warm ischemia and reperfusion (WIR) causes hepatic damage and may lead to liver failure, however the mechanisms involved are largely unknown. Here we have characterized the microcirculatory status and endothelial phenotype of livers undergoing WIR, and evaluated the use of simvastatin in WIR injury prevention. Male Wistar rats received simvastatin, or vehicle, 30 min before undergoing 60 min of partial warm ischemia (70%) followed by 2 h or 24 h of reperfusion. Hepatic and systemic hemodynamics, liver injury (AST, ALT, LDH), endothelial function (vasodilatation in response to acetylcholine), KLF2 and nitric oxide pathways, oxidative stress, inflammation (neutrophil and macrophage infiltration) and cell death were evaluated. Profound microcirculatory dysfunction occurred rapidly following WIR. This was evidenced by down-regulation of the KLF2 vasoprotective pathway, impaired vasodilatory capability and endothelial activation, altogether leading to increased hepatic vascular resistance and liver inflammation, with significant leukocyte infiltration, oxidative stress and cell death. Simvastatin preserved the hepatic endothelial phenotype, and blunted the detrimental effects of WIR on liver hemodynamics and organ integrity. In conclusion, WIR-induced injury to liver sinusoidal endothelial cells is mitigated by pre-treatment with Simvastatin probably through a KLF2-dependent mechanism. PMID:26905693

  15. Extract of grapefruit-seed reduces acute pancreatitis induced by ischemia/reperfusion in rats: possible implication of tissue antioxidants.

    PubMed

    Dembinski, A; Warzecha, Z; Konturek, S J; Ceranowicz, P; Dembinski, M; Pawlik, W W; Kusnierz-Cabala, B; Naskalski, J W

    2004-12-01

    Grapefruit seed extract (GSE) has been shown to exert antibacterial, antifungal and antioxidant activity possibly due to the presence of naringenin, the flavonoid with cytoprotective action on the gastric mucosa. No study so far has been undertaken to determine whether this GSE is also capable of preventing acute pancreatic damage induced by ischemia/reperfusion (I/R), which is known to result from reduction of anti-oxidative capability of pancreatic tissue, and whether its possible preventive effect involves an antioxidative action of this biocomponent. In this study carried out on rats with acute hemorrhagic pancreatitis induced by 30 min partial pancreatic ischemia followed by 6 h of reperfusion, the GSE or vehicle (vegetable glycerin) was applied intragastrically in gradually increasing amounts (50-500 microl) 30 min before I/R. Pretreatment with GSE decreased the extent of pancreatitis with maximal protective effect of GSE at the dose 250 microl. GSE reduced the pancreatitis-evoked increase in serum lipase and poly-C specific ribonuclease activity, and attenuated the marked fall in pancreatic blood flow and pancreatic DNA synthesis. GSE administered alone increased significantly pancreatic tissue content of lipid peroxidation products, malondialdehyde and 4-hydroxyalkens, and when administered before I/R, GSE reduced the pancreatitis-induced lipid peroxidation. We conclude that GSE exerts protective activity against I/R-induced pancreatitis probably due to the activation of antioxidative mechanisms in the pancreas and the improvement of pancreatic blood flow.

  16. Effects of melatonin on liver function and lipid peroxidation in a rat model of hepatic ischemia/reperfusion injury

    PubMed Central

    DENG, WEN-SHENG; XU, QING; LIU, YE; JIANG, CHUN-HUI; ZHOU, HONG; GU, LEI

    2016-01-01

    The present study aimed to investigate the effects of melatonin (MT) on liver function and lipid peroxidation following hepatic ischemia-reperfusion injury (IRI). A total of 66 male Sprague-Dawley rats were randomly assigned into three groups: Normal control (N) group, ischemia-reperfusion (IR) group and the MT-treated group. A hepatic IRI model was developed by blocking the first porta hepatis, and subsequently restoring hepatic blood inflow after 35 min. Following reperfusion, changes in the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) were detected by a chemical method at various time points. In the MT group, the MDA levels were significantly reduced (P<0.05) at all time points, as compared with the IR group. Furthermore, SOD activity was significantly increased (P<0.05) in the MT group, as compared with the IR group at all time points; and the levels of GSH in the MT group were significantly higher (P<0.05) than those of the IR group at 2, 4, and 8 h post-reperfusion. The levels of ALT, AST and LDH were significantly reduced in the MT group at each time point, as compared with that of the IR group (P<0.05). In conclusion, MT exhibits potent antioxidant properties that may create favorable conditions for the recovery of liver function following IRI. PMID:27168834

  17. Protective effect of Crocus sativus L. (Saffron) extract on spinal cord ischemia-reperfusion injury in rats

    PubMed Central

    Farjah, Gholam Hossein; Salehi, Shadi; Ansari, Mohammad Hasan; Pourheidar, Bagher

    2017-01-01

    Objective(s): Ischemia/reperfusion (I/R) injury of spinal cord is leading to the paraplegia observed. In this study, we investigated the protective effect of the saffron extract on spinal cord I/R injury. Materials and Methods: Thirty five male Sprague-Dawley rats were divided into 5 groups: intact, sham surgery, normal saline (NS), low dose saffron aqua extract, high dose saffron aqua extract. Results: The mean motor deficit index (MDI) scores were significantly lower in the saffron extract groups than in the NS group at 48 hr after spinal cord ischemia (P<0.001). Saffron extract groups significantly decreased plasma level of malondialdehyde than in the NS Group (P<0.05). The number of motor normal neurons was significantly greater in the high saffron extract group than in the NS and low saffron group (P<0.05). Conclusion: These data suggest that a saffron extract may protect spinal cord neurons from I/R injury. PMID:28392907

  18. Antioxidant Activity and Cardioprotective Effect of a Nonalcoholic Extract of Vaccinium meridionale Swartz during Ischemia-Reperfusion in Rats

    PubMed Central

    Lopera, Yasmin E.; Fantinelli, Juliana; González Arbeláez, Luisa F.; Rojano, Benjamín; Ríos, José Luis; Schinella, Guillermo; Mosca, Susana

    2013-01-01

    Our objective was to assess the antioxidant properties and the effects against the reperfusion injury of a nonalcoholic extract obtained by fermentation from the Colombian blueberry, mortiño (Vaccinium meridionale Swartz, Ericaceae). Antioxidant properties were assessed by in vitro systems. To examine the postischemic myocardial function, isolated rat hearts were treated 10 min before ischemia and during the first 10 min of reperfusion with the extract. To analyze the participation of nitric oxide (NO), other experiments were performed in the presence of nitric oxide synthase (NOS) inhibition with NG-nitro-L-arginine methyl ester (L-NAME). In cardiac tissue thiobarbituric acid reactive substances (TBARS) concentration, reduced glutathione (GSH) content, endothelial NOS (eNOS), and Akt expression were also measured. The blueberry extract showed higher total phenols and anthocyanins contents, scavenging activity of superoxide radical and systolic and diastolic function was improved, TBARS diminished, GSH was partially preserved, and both NOS and Akt expression increased in hearts treated with the extract. These beneficial effects were lost when eNOS was inhibited. In resume, these data show that the increase of eNOS expression via Akt and the scavenging activity contribute to the cardioprotection afforded by acute treatment with Colombian blueberry extract against ischemia and reperfusion injury. PMID:23476693

  19. The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney.

    PubMed

    Plotnikov, E Y; Kazachenko, A V; Vyssokikh, M Y; Vasileva, A K; Tcvirkun, D V; Isaev, N K; Kirpatovsky, V I; Zorov, D B

    2007-12-01

    Reoxygenation following ischemia causes tissue oxidative stress. We studied the role of oxidative stress caused by kidney ischemia/reperfusion (I/R) on the mitochondria of renal tissue slices. I/R caused the mitochondria to be swollen, fragmented, and have lower membrane potential. The mitochondria generated more reactive oxygen species (ROS) and nitric oxide (NO) in situ as measured by fluorescence of ROS- and NO-sensitive probes. Infusion of lithium ion, an inhibitor of glycogen kinase synthase-3, caused phosphorylation of its Ser-9 and restored the membrane potential and decreased ROS production of the mitochondrial fraction. Ischemic kidney and hypoxic rat preconditioning improved mitochondrial membrane potential and lowered ROS production caused by subsequent I/R similar to lithium ion infusion. Preconditioning normalized NO production in mitochondria as well. The drop in the mitochondrial membrane potential was prevented by NO synthase inhibition, demonstrating a strong contribution of NO to changes in mitochondrial energy metabolism during the I/R transition. Mitochondria in the I/R-stressed kidney contained less cytochrome c and more pro-apoptotic Bax, consistent with apoptotic degradation.

  20. The relationship between sudden severe hypoxia and ischemia-associated spreading depolarization in adult rat brainstem in vivo.

    PubMed

    Richter, Frank; Bauer, Reinhard; Lehmenkühler, Alfred; Schaible, Hans-Georg

    2010-07-01

    Severe ischemia can induce spreading depolarization (SD) in the cerebral cortex, which is thought to contribute significantly to cerebral dysfunction. Whether the mature brainstem shows SD upon reduced oxygen supply has not been investigated although SDs may significantly influence brainstem functions. In anesthetized adult rats, we induced severe short-lasting hypoxia (SSH) by stopping artificial respiration for about 1 min or by ventilation with pure nitrogen for 1, 2 or 3 min, and milder hypoxia by ventilation with 6% O(2) in N(2) for 10 min. We measured DC potentials in the brainstem and cerebral cortex, systemic arterial blood pressure, heart rate and local blood flow at the brainstem or cerebral cortex surface. SSH lasting up to 1 min did not induce DC shifts in native brainstem but reduced heart rate, systemic blood pressure and blood flow in cortex and brainstem. Longer lasting SSH protocols both reduced systemic blood pressure and induced SD in the brainstem, but the magnitude of the cardiovascular response was not influenced by the simultaneous occurrence of SD. When neuronal excitability in the brainstem was artificially enhanced, SSH of 1 min evoked SD but again the magnitude of cardiovascular changes during SSH was not increased. SSH lasting 3 min evoked non-reversible sustained depolarization. SSH did not render the brainstem more excitable for classical SD evoked by local KCl application. Thus, sudden severe hypoxia/ischemia evokes SDs in the brainstem, but the occurrence of the so-elicited SD does not influence the immediate cardiovascular response to SSH.

  1. Adrenomedullin expression is up-regulated by ischemia-reperfusion in the cerebral cortex of the adult rat.

    PubMed

    Serrano, J; Alonso, D; Encinas, J M; Lopez, J C; Fernandez, A P; Castro-Blanco, S; Fernández-Vizarra, P; Richart, A; Bentura, M L; Santacana, M; Uttenthal, L O; Cuttitta, F; Rodrigo, J; Martinez, A

    2002-01-01

    Changes in the pattern of adrenomedullin expression in the rat cerebral cortex after ischemia-reperfusion were studied by light and electron microscopic immunohistochemistry using a specific antibody against human adrenomedullin (22-52). Animals were subjected to 30 min of oxygen and glucose deprivation in a perfusion model simulating global cerebral ischemia, and the cerebral cortex was studied after 0, 2, 4, 6, 8, 10 or 12 h of reperfusion. Adrenomedullin immunoreactivity was elevated in certain neuronal structures after 6-12 h of reperfusion as compared with controls. Under these conditions, numerous large pyramidal neurons and some small neurons were intensely stained in all cortical layers. The number of immunoreactive pre- and post-synaptic structures increased with the reperfusion time. Neurons immunoreactive for adrenomedullin presented a normal morphology whereas non-immunoreactive neurons were clearly damaged, suggesting a potential cell-specific protective role for adrenomedullin. The number and intensity of immunoreactive endothelial cells were also progressively elevated as the reperfusion time increased. In addition, the perivascular processes of glial cells and/or pericytes followed a similar pattern, suggesting that adrenomedullin may act as a vasodilator in the cerebrocortical circulation. In summary, adrenomedullin expression is elevated after the ischemic insult and seems to be part of CNS response mechanism to hypoxic injury.

  2. Catuaba (Trichilia catigua) prevents against oxidative damage induced by in vitro ischemia-reperfusion in rat hippocampal slices.

    PubMed

    Kamdem, Jean Paul; Waczuk, Emily Pansera; Kade, Ige Joseph; Wagner, Caroline; Boligon, Aline Augusti; Athayde, Margareth Linde; Souza, Diogo Onofre; Rocha, João Batista Teixeira

    2012-12-01

    Oxidative stress is implicated in brain damage associated with ischemia-reperfusion. Natural antioxidants found in some plants used in folk medicine have been indicated as potential neuroprotective agents. Here we investigated whether Trichilia catigua, a traditional Brazilian herbal medicine alleged to exhibit a variety of neuropharmacological properties (antidepressant, anti-neurasthenic, anti-inflammatory etc.), could have neuroprotective properties in rat hippocampal slices subjected to 2 h oxygen and glucose deprivation (OGD) followed by 1 h reperfusion. Ischemia-reperfusion (I/R) significantly decreased mitochondrial viability, increased dichlorofluorescein oxidation above control both in the incubation medium and slices homogenates, increased lactate dehydrogenase into the incubation medium and decreased non-protein thiols. T. catigua (40-100 μg/mL) protected slices from the deleterious effects of OGD when present before OGD and during the reperfusion periods. Oxidative stress in the medium was also determined under different conditions and the results demonstrated that T. catigua could not protect slices from I/R when it was added to the medium after ischemic insult. Although the translation to a real in vivo situation of I/R is difficult to be done, the results indicated that T. catigua should be used as preventive and not as a curative agent against brain damage.

  3. Electrical stimulation of cerebellar fastigial nucleus promotes the expression of growth arrest and DNA damage inducible gene β and motor function recovery in cerebral ischemia/reperfusion rats.

    PubMed

    Liu, Bin; Li, Jianrui; Li, Longling; Yu, Lehua; Li, Changqing

    2012-06-27

    This study focused on the effects of electrical stimulation of cerebellar fastigial nucleus on the expression of growth arrest and DNA damage inducible gene β (Gadd45β) and on motor function recovery after focal cerebral ischemia/reperfusion (I/R) in rats. Sprague-Dawley (SD) rats were randomly divided into 4 groups: sham I/R (control group), I/R (I/R group), I/R with sham stimulation and I/R with electrical stimulation at 6h, 12h, 24h, 2d and 3d after I/R. Cerebral ischemia and reperfusion was established by nylon monofilament occlusion method. Fastigial nucleus (FN) electrical stimulation was applied at 2h after ischemia for 1h. The changes in the expression of Gadd45β were analyzed by immunohistochemistry, real-time polymerase chain reaction (PCR) and Western-blot respectively. Another group of rats were divided into the same 4 groups. Montoya staircase test score was used to test the motor function of affected forelimb. The levels of Gadd45β were significantly elevated after I/R injury. FN electrical stimulation treatment elevated the expression of Gadd45β further and improved motor function recovery. These results suggest that FN electrical stimulation can promote the expression of Gadd45β and motor function recovery after focal cerebral ischemia.

  4. Neuroprotective Effect of TAT-14-3-3ε Fusion Protein against Cerebral Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Liu, Xiaoyan; Hu, Wenhui; Wang, Yinye

    2014-01-01

    Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB) due to its large size. A protein transduction domain (PTD) of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R) model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP), which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA) inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic activation. PMID

  5. Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia.

    PubMed

    Hsu, M; Buzsáki, G

    1993-09-01

    Much of the work on forebrain ischemia in the hippocampus has focused on the phenomenon of delayed neuronal death in CA1. It is established that dentate granule cells and CA3 pyramidal cells are resistant to ischemia. However, much less is known about interneuronal involvement in CA3 or ischemic injury in the dentate hilus other than the fact that somatostatin neurons in the latter lose their immunoreactivity. We combined two sensitive methods--heat-shock protein (HSP72) immunocytochemistry and a newly developed Gallyas silver stain for demonstrating impaired cytoskeletal elements--to investigate the extent of ischemic damage to CA3 and the dentate hilus using the four-vessel-occlusion model for inducing forebrain ischemia. HSP72-like immunoreactivity was induced in neuronal populations previously shown to be vulnerable to ischemia. In addition, a distinct subset of interneurons in CA3 was also extremely sensitive to ischemia, even more so than the CA1 pyramidal cells. These neurons are located in the stratum lucidum of CA3 and possess a very high density of dendritic spines. In silver preparations, they were among the first to be impregnated as "dark" neurons, before CA1 pyramidal cells; microglial reaction was also initiated first in the stratum lucidum of CA3. Whereas CA1 damage was most prominent in the septal half of the hippocampus, hilar and CA3 interneuronal damage had a more extensive dorsoventral distribution. Our results also show a far greater extent of damage in hilar neurons than previously reported. At least four hilar cell types were consistently compromised: mossy cells, spiny fusiform cells, sparsely spiny fusiform cells, and long-spined multipolar cells. A common denominator of the injured neurons in CA3 and the hilus was the presence of spines on their dendrites, which in large part accounted for the far greater number of mossy fiber terminals they receive than their non-spiny neighbors. We suggest that the differential vulnerability of neuronal

  6. Antioxidant activity of a novel extract from bamboo grass (AHSS) against ischemia-reperfusion injury in rat small intestine.

    PubMed

    Kurokawa, Toshimitsu; Itagaki, Shirou; Yamaji, Toshihiko; Nakata, Chie; Noda, Toshihiro; Hirano, Takeshi; Iseki, Ken

    2006-11-01

    Production of free radical species in cells and body tissues is known to cause many pathological disorders. Therefore, free radical scavengers play an important role in the prevention of various human diseases. Bamboo grass, Sasa senanensis, is a native Japanese plant. Sasa has been used for medicine in Japan for many centuries. In this study, we investigated the antioxidative activity of Absolutely Hemicellulose Senanensis (AHSS), a novel extract from Sasa. In the first part of this study, we found that AHSS has antioxidant activities by the assay using superoxide anion-2-methyl-6-methoxyphenylethynylimidazopyrazynone (MPEC) reaction kit. We then confirmed its antioxidative activity using a rat ischemia and subsequent reperfusion (I/R) injury model. Breakdown of the intestinal wall caused by intestinal I/R was attenuated by pretreatment with AHSS. Moreover, AHSS inhibited the production of lipid peroxide by intestinal I/R. AHSS could be an important source of ingredients for use in functional foods and other applications.

  7. Early 72-kDa heat shock protein induction in microglial cells following focal ischemia in the rat brain.

    PubMed

    Soriano, M A; Planas, A M; Rodríguez-Farré, E; Ferrer, I

    1994-12-05

    Focal cerebral ischemia in the adult rat produces induction of 72-kDa heat shock protein (HSP-72) in neurons, glia and endothelial cells. Double antigen immunocytochemistry was carried out to find out whether microglial cells express HSP-72 following 1-h middle cerebral artery (MCA) occlusion. A monoclonal antibody against the CR3 complement receptor (OX-42) specific for microglia was used followed by a monoclonal antibody against HSP-72. Co-localization of these antibodies was seen in cells of the ipsilateral corpus callosum and striatum at 3 h following 1-h MCA occlusion, and in the ipsilateral striatal penumbra, corpus callosum and cortex at 8 h. Results demonstrate that stellate microglial cells show an early response to 1-h MCA occlusion by expressing inducible HSP-72, thus suggesting that microglial cells are sensitive to the ischemic insult.

  8. Dexmedetomidine Protects against Transient Global Cerebral Ischemia/Reperfusion Induced Oxidative Stress and Inflammation in Diabetic Rats

    PubMed Central

    Xing, Xichun; Wang, Qi; Li, Wenzhi

    2016-01-01

    Background Transient global cerebral ischemia/reperfusion (I/R) is a major perioperative complication, and diabetes increases the response of oxidative stress and inflammation induced by I/R. The objective of this study was to determine the protective effect of dexmedetomidine against transient global cerebral ischemia/reperfusion induced oxidative stress and inflammation in diabetic rats. Methods Sixty-four rats were assigned into four experimental groups: normoglycemia, normoglycemia + dexmedetomidine, hyperglycemia, and hyperglycemia + dexmedetomidine and all subsequent neurological examinations were evaluated by a blinded observer. Damage to the brain was histologically assessed using the TUNEL staining method while western blotting was used to investigate changes in the expression levels of apoptosis-related proteins as well as the microglia marker, ionized calcium-binding adapter molecule 1 (Iba1). Water content in the brain was also analyzed. In addition, hippocampal concentrations of malondialdehyde (MDA) and Nox2 (a member of the Nox family of NADPH oxidases), and the activity of superoxide dismutase and catalase were analyzed. Finally, changes in serum concentrations of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 were detected. Results Results showed that diabetes increased brain water content, the number of apoptotic neurons, early neurological deficit scores, oxidative stress (MDA and Nox2) and inflammation (pro-inflammatory cytokines including TNF-α and IL-6) levels following transient global I/R injury, but that these symptoms were attenuated following administration of dexmedetomidine. Conclusions These findings suggest that dexmedetomidine can significantly alleviate damage resulting from I/R, and this mechanism may be related to a reduction in both oxidative stress and inflammation which is normally associated with I/R. PMID:26982373

  9. Pretreatment of cromolyn sodium prior to reperfusion attenuates early reperfusion injury after the small intestine ischemia in rats

    PubMed Central

    Hei, Zi-Qing; Gan, Xiao-Liang; Luo, Gang-Jian; Li, Shang-Rong; Cai, Jun

    2007-01-01

    AIM: To investigate the effects of Cromolyn Sodium (CS) pretreated prior to reperfusion on the activity of intestinal mucosal mast cells (IMMC) and mucous membrane of the small intestine in ischemia-reperfusion (IR) injury of rats. METHODS: Thirty-two Sprague-Dawley (SD) rats were randomly divided into four groups: sham group (group S), model group (group M), high and low dosage of CS groups, (treated with CS 50 mg/kg or 25 mg/kg, group C1 and C2). Intestinal IR damage was induced by clamping the superior mesenteric artery for 45 min followed by reperfusion for 60 min. CS was intravenouly administrated 15 min before reperfusion. Ultrastructure and counts of IMMC, intestinal structure, the expression of tryptase, levels of malondisldehyde (MDA), TNF-α, histamine and superoxide dismutase (SOD) activity of the small intestine were detected at the end of experiment. RESULTS: The degranulation of IMMC was seen in group M and was attenuated by CS treatment. Chiu’s score of group M was higher than the other groups. CS could attenuate the up-regulation of the Chiu’s score, the levels of MDA, TNF-α, and expression of tryptase and the down-regulation of SOD activity and histamine concentration. The Chiu’s score and MDA content were negatively correlated, while SOD activity was positively correlated to the histamine concentration respectively in the IR groups. CONCLUSION: Pretreated of CS prior to reperfusion protects the small intestine mucous from ischemia-reperfusion damage, the mechanism is inhibited IMMC from degranulation. PMID:17876882

  10. Protective effects of the nuclear factor kappa B inhibitor pyrrolidine dithiocarbamate in bladder ischemia-reperfusion injury in rats.

    PubMed

    Yucel, Mehmet; Kucuk, Aysegul; Bayraktar, Aslihan Cavunt; Tosun, Murat; Yalcinkaya, Soner; Hatipoglu, Namik Kemal; Erkasap, Nilufer; Kavutcu, Mustafa

    2013-10-01

    The aim of the present study was to evaluate the protective effects of the NF-кB inhibition with pyrrolidine-dithiocarbamate (PDTC) in ischemia-reperfusion (I/R) injury in the rat bladder. Twenty-four Sprague-Dawley male rats were divided into three groups. Group I; (n = 8) control, group II; (n = 8) I/R group; group III (n = 8) I/R and PDTC treatment. Superoxide dismutase (SOD), catalase (CAT), and gluatathione-S-transferase (GST) enzymes was studied in bladder tissue. Lipid peroxidation (as TBARS) levels in tissue homogenate were measured with thiobarbituric acid reaction. All the slides were stained with NF-кB, p53 and HSP60 immunohistochemistry for detection genome destruction and tissue stress, respectively. Our results show that the mean TBARS levels were significantly higher in group II (p < 0.05). The TBARS levels were significantly decreased in group III compared with the group II (p < 0.05). CAT, SOD and GST activities were decreased in group II, but these enzymes levels were significantly increased in group III according to the group II (p < 0.05). Under microscopic evaluation NF-кB expression increased significantly in group II compared to the group I (p < 0.05) and then decreased in group III (p < 0.05). HSP60 and p53 expression in group II was increased significantly compared with group I. Under microscopic evaluation we detected that HSP60 and p53 expression was increased significantly in group II compared with group I. In group III PDTC administration was decreased the HSP60 and p53 expression, this difference was statistically significant (p < 0.05). The results of the present study have demonstrated that NF-кB inhibition with PDTC protects and provides beneficial effects on ischemia/reperfusion stress related bladder tissue destruction.

  11. Electric stimulation of the ears ameliorated learning and memory impairment in rats with cerebral ischemia-reperfusion injury

    PubMed Central

    Kuo, Ching-Tung; Lin, Yi-Wen; Tang, Nou-Ying; Cheng, Chin-Yi; Hsieh, Ching-Liang

    2016-01-01

    Ear acupuncture enhances the secretion of acetylcholine, which has anti-inflammatory effects. Here we want to investigate the effect of electric stimulation (ES) of the ears on learning and memory impairment in rats with cerebral ischemia-reperfusion injury. At 24 h after reperfusion, 2-Hz ES was applied to the ears for 20 min/day (10 min for each ear) for 7 days continuously. The step-through time of the passive avoidance test was greater in the ES group than in the control group (300.0 ± 0.0 s vs 45.0 ± 26.7 s, p < 0.05). Our results showed that neither neurological deficit score nor motor functions were improved after 2-Hz ES (4.0 ± 0 vs 4.5 ± 0.8, p > 0.05). The numbers of nicotinic acetylcholine receptor α4 positively stained cells in the CA2 and dentate gyrus of the hippocampus were 19.0 ± 11.5 and 269.2 ± 79.3, respectively, in the ES group, which were greater than those in the control group (7.0 ± 5.9 and 165.5 ± 30.8, respectively) (both p < 0.05). These results suggested that 2-Hz ES of the ears ameliorated learning and memory impairment in rats with ischemia-reperfusion injury. ES of the ears has neuroprotective effects, which are related to acetylcholine release. PMID:26847826

  12. Electric stimulation of the ears ameliorated learning and memory impairment in rats with cerebral ischemia-reperfusion injury.

    PubMed

    Kuo, Ching-Tung; Lin, Yi-Wen; Tang, Nou-Ying; Cheng, Chin-Yi; Hsieh, Ching-Liang

    2016-02-05

    Ear acupuncture enhances the secretion of acetylcholine, which has anti-inflammatory effects. Here we want to investigate the effect of electric stimulation (ES) of the ears on learning and memory impairment in rats with cerebral ischemia-reperfusion injury. At 24 h after reperfusion, 2-Hz ES was applied to the ears for 20 min/day (10 min for each ear) for 7 days continuously. The step-through time of the passive avoidance test was greater in the ES group than in the control group (300.0 ± 0.0 s vs 45.0 ± 26.7 s, p < 0.05). Our results showed that neither neurological deficit score nor motor functions were improved after 2-Hz ES (4.0 ± 0 vs 4.5 ± 0.8, p > 0.05). The numbers of nicotinic acetylcholine receptor α4 positively stained cells in the CA2 and dentate gyrus of the hippocampus were 19.0 ± 11.5 and 269.2 ± 79.3, respectively, in the ES group, which were greater than those in the control group (7.0 ± 5.9 and 165.5 ± 30.8, respectively) (both p < 0.05). These results suggested that 2-Hz ES of the ears ameliorated learning and memory impairment in rats with ischemia-reperfusion injury. ES of the ears has neuroprotective effects, which are related to acetylcholine release.

  13. Effects of citicoline used alone and in combination with mild hypothermia on apoptosis induced by focal cerebral ischemia in rats.

    PubMed

    Sahin, S; Alkan, T; Temel, S G; Tureyen, K; Tolunay, S; Korfali, E

    2010-02-01

    The effects of citicoline used either alone or in combination with hypothermia on the suppression of apoptotic processes after transient focal cerebral ischemia were investigated. Middle cerebral artery occlusion (MCAo) was performed for 2 hours on Sprague-Dawley (SD) rats using intraluminal thread insertion. The treatment groups were as follows: Group 1, sham-operated; Group 2, saline; Group 3, citicoline (400mg/kg intraperitoneal.); Group 4, hypothermia (34+/-1 degrees C); Group 5, citicoline+hypothermia. All rats were reperfused for 24 hours, and after sacrifice and transcardiac perfusion, immunohistochemical studies were performed for markers of apoptosis. In Group 2, the Bcl-2 immunostaining score (mean+/-standard deviation, 0.71+/-0.75) was lower compared to Groups 3, 4 and 5 (2.33+/-0.81; 3.00+/-0.00; 2.20+/-0.83; p<0.05). There was higher expression of caspase-3 proteins in Group 2 (2.28+/-0.95) compared to Group 5 (1.50+/-0.83; p<0.05). Bax proteins were also increased in Group 2 (1.85+/-1.06) compared to Group 5 (0.40+/-0.54) and in Group 4 (2.00+/-0.00) compared to Group 5 (0.40+/-0.54; p<0.05). Significant differences in caspase-9 immunostaining scores were found in Group 2 (2.29+/-0.96) compared to Group 5 (0.20+/-0.44) (p<0.05); Group 3 (1.00+/-0.70) compared to Group 5 (0.20+/-0.44; p<0.05); and Group 4 (3.00+/-0.00; p<0.05) compared to Group 5 (0.40+/-0.54; p<0.05). Thus by suppressing apoptotic processes citicoline with hypothermia is more effective than either used alone in ameliorating cerebral damage after transient focal ischemia.

  14. Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat.

    PubMed

    Chen, H; Chopp, M; Zhang, R L; Bodzin, G; Chen, Q; Rusche, J R; Todd, R F

    1994-04-01

    We investigated the effect of an anti-CD11b monoclonal antibody (1B6c) on ischemic cell damage after transient middle cerebral artery occlusion. We divided animals into three groups: MAb 1 group (n = 5)--rats were subjected to 2 hours of transient occlusion and 1B6c (1 mg/kg) was administered intravenously at 0 and 22 hours of reperfusion; MAb 2 group (n = 5)--same experimental protocol as MAb 1 group, except that the initial dose of 1B6c was increased to 2 mg/kg; and control group (n = 5)--same experimental protocol as MAb 2 group, except that an isotype-matched control antibody was administered. Animals were weighed and tested for neurological function before and after occlusion of the middle cerebral artery. Forty-six hours after reperfusion, brain sections were stained with hematoxylin and eosin for histology evaluation. We observed a significant reduction of weight loss and improvement in neurological function after ischemia in the MAb 2 animals compared to MAb 1 and vehicle-treated animals (p < 0.05). The lesion volume was significantly smaller in the MAb 2 group (19.5 +/- 1.9%) compared to MAb 1 (29.9 +/- 2.6%) and vehicle-treated (34.2 +/- 5.4%) groups (p < 0.01). Tissue polymorphonuclear cell numbers were reduced in both 1B6c-administered groups. Our data demonstrate that administration of anti-CD11b antibody results in a dose-dependent, significant functional improvement and reduction of ischemic cell damage after transient focal cerebral ischemia in the rat.

  15. Preconditioning with Triiodothyronine Improves the Clinical Signs and Acute Tubular Necrosis Induced by Ischemia/Reperfusion in Rats

    PubMed Central

    Ferreyra, Carla; Vargas, Félix; Rodríguez-Gómez, Isabel; Pérez-Abud, Rocío; O'Valle, Francisco; Osuna, Antonio

    2013-01-01

    Background Renal ischemia/reperfusion (I/R) injury is manifested by acute renal failure (ARF) and acute tubular necrosis (ATN). The aim of this study was to evaluate the effectiveness of preconditioning with 3, 3, 5 triiodothyronine (T3) to prevent I/R renal injury. Methodology/Principal Findings The rats were divided into four groups: sham-operated, placebo-treated (SO-P), sham-operated T3- treated (SO- T3), I/R-injured placebo-treated (IR-P), and I/R-injured T3-treated (IR- T3) groups. At 24 h before ischemia, the animals received a single dose of T3 (100 μg/kg). Renal function and plasma, urinary, and tissue variables were studied at 4, 24, and 48 h of reperfusion, including biochemical, oxidative stress, and inflammation variables, PARP-1 immunohistochemical expression, and ATN morphology. In comparison to the SO groups, the IR-P groups had higher plasma urea and creatinine levels and greater proteinuria (at all reperfusion times) and also showed: increased oxidative stress-related plasma, urinary, and tissue variables; higher plasma levels of IL6 (proinflammatory cytokine); increased glomerular and tubular nuclear PARP-1 expression; and a greater degree of ATN. The IR-T3 group showed a marked reduction in all of these variables, especially at 48 h of reperfusion. No significant differences were observed between SO-P and SO-T3 groups. Conclusions This study demonstrates that preconditioning rats with a single dose of T3 improves the clinical signs and ATN of renal I/R injury. These beneficial effects are accompanied by reductions in oxidative stress, inflammation, and renal PARP-1 expression, indicating that this sequence of factors plays an important role in the ATN induced by I/R injury. PMID:24086411

  16. Increased Expression of Slit2 and its Robo Receptors During Astroglial Scar Formation After Transient Focal Cerebral Ischemia in Rats.

    PubMed

    Jin, Xuyan; Shin, Yoo-Jin; Riew, Tae-Ryong; Choi, Jeong-Heon; Lee, Mun-Yong

    2016-12-01

    Slit2, a secreted glycoprotein, has recently been implicated in the post-ischemic astroglial reaction. The objective of this study was to investigate the temporal changes and cellular localization of Slit2 and its receptors, Robo1, Robo2, and Robo4, in a rat transient focal ischemia model induced by middle cerebral artery occlusion. We used double- and triple-immunolabeling to determine the cell-specific changes in Slit2 and its receptors during a 10-week post-ischemia period. The expression profiles of Slit2 and the Robo receptors shared overlapping expression patterns in sham-operated and ischemic striatum. Constitutive expression of Slit2 and Robo receptors was observed in striatal neurons with weak intensity, whereas in rats reperfused after ischemic insults, these immunoreactivities were increased in reactive astrocytes. Astroglial induction of Slit2 and Robo in the peri-infarct region was distinct on days 7-14 after reperfusion and thereafter increased progressively throughout the 10-week experimental period. Slit2 and Robo were prominently expressed in the perinuclear cytoplasm and main processes of reactive astrocytes forming the astroglial scar. This observation was confirmed by quantification of the mean fluorescence intensity of Slit2 and Robo receptors over reactive astrocytes localized at the edge of the infarct area. However, activated microglia/macrophages in the peri-infarct area were devoid of any specific labeling for Slit2 and Robo. Thus, our data revealed a selective and sustained induction of Slit2 and Robo in astrocytes localized throughout the astroglial scar after ischemic stroke, suggesting that Slit2/Robo signaling participates in glial scar formation and brain remodeling following ischemic injury.

  17. Tandem insults of prenatal ischemia plus postnatal raised intrathoracic pressure in a novel rat model of encephalopathy of prematurity

    PubMed Central

    Koltz, Michael T.; Tosun, Cigdem; Kurland, David B.; Coksaygan, Turhan; Castellani, Rudolph J.; Ivanova, Svetlana; Gerzanich, Volodymyr; Simard, J. Marc

    2012-01-01

    Object Encephalopathy of prematurity (EP) is common in preterm, low birth weight infants who require postnatal mechanical ventilation. The worst types of EP are the hemorrhagic forms, including choroid plexus, germinal matrix, periventricular, and intraventricular hemorrhages. Survivors exhibit life-long cognitive, behavioral, and motor abnormalities. Available preclinical models do not fully recapitulate the salient features of hemorrhagic EP encountered in humans. In this study, the authors evaluated a novel model using rats that featured tandem insults of transient prenatal intrauterine ischemia (IUI) plus transient postnatal raised intrathoracic pressure (RIP). Methods Timed-pregnant Wistar rats were anesthetized and underwent laparotomy on embryonic Day 19. Intrauterine ischemia was induced by clamping the uterine and ovarian vasculature for 20 minutes. Natural birth occurred on embryonic Day 22. Six hours after birth, the pups were subjected to an episode of RIP, induced by injecting glycerol (50%, 13 µl/g intraperitoneally). Control groups included naive, sham surgery, and IUI alone. Pathological, histological, and behavioral analyses were performed on pups up to postnatal Day 52. Results Compared with controls, pups subjected to IUI+RIP exhibited significant increases in postnatal mortality and hemorrhages in the choroid plexus, germinal matrix, and periventricular tissues as well as intraventricularly. On postnatal Days 35–52, they exhibited significant abnormalities involving complex vestibulomotor function and rapid spatial learning. On postnatal Day 52, the brain and body mass were significantly reduced. Conclusions Tandem insults of IUI plus postnatal RIP recapitulate many features of the hemorrhagic forms of EP found in humans, suggesting that these insults in combination may play important roles in pathogenesis. PMID:22132923

  18. Neuropeptide Cycloprolylglycine Exhibits Neuroprotective Activity after Systemic Administration to Rats with Modeled Incomplete Global Ischemia and in In Vitro Modeled Glutamate Neurotoxicity.

    PubMed

    Povarnina, P Yu; Kolyasnikova, K N; Nikolaev, S V; Antipova, T A; Gudasheva, T A

    2016-03-01

    We studied cerebroprotective properties of neuropeptide cycloprolylglycine (1 mg/kg) administered intraperitoneally to rats with modeled incomplete global ischemia rats and neuroprotective properties for HT-22 cells under conditions of glutamate toxicity. It was shown that the neuropeptide administered during the postischemic period restored the neurological status of rats by preventing sensorimotor impairments in the limb-placing test and suppression of locomotor activity in the open field test. In in vitro experiments, cycloprolylglycine in concentrations of 10(-5)-10(-8) M exhibited pronounced dose-dependent neuroprotective activity. The results attest to high cerebro- and neuroprotective potential of endogenous peptide cycloprolylglycine.

  19. Ischemia/reperfusion mediated oxygen free radical production in rat brain endothelium

    SciTech Connect

    Grammas, P.; Wood, K. ); Liu, G.J.; Floyd, R.A. ); Wood, K. Oklahoma Medical Research Foundation, Oklahoma City )

    1991-03-11

    Oxygen free radicals have been increasingly implicated in ischemia/reperfusion mediated injury to tissue. Recent methods of assessing tissue oxygen free radical flux including spin trapping, salicylate hydroxylation, protein oxidation and specific enzymatic activity loss have clearly shown that ischemia/reperfusion mediates oxidative damage in brain. Vascular endothelia cells are increasingly implicated in inactivating oxidative damage. The authors have used salicylate to assess hydroxyl free radical flux during an anoxia-reoxygenation insult in isolated brain microvessels. Brain microvessels that were subjected to a 20 min anoxia period and then reoxygenated for 20 min hydroxylated salicylate to form tissue localized 2,3-dihydroxybenzoic acid (2,3-DHBA) whereas microvessels that remained oxygenated throughout contained very little 2,3-DHBA. The data suggest that anoxia/reoxygenation of microvessels produces tissue localized hydroxyl free radical flux.

  20. Long-term inhibition of Rho-kinase restores the LTP impaired in chronic forebrain ischemia rats by regulating GABAA and GABAB receptors.

    PubMed

    Huang, L; Zhao, L B; Yu, Z Y; He, X J; Ma, L P; Li, N; Guo, L J; Feng, W Y

    2014-09-26

    We previously demonstrated that inactivation of Rho-kinase by hydroxyfasudil could impact N-methyl-d-aspartate (NMDA) excitatory interneurons in the hippocampus and attenuate the spatial learning and memory dysfunction of rats caused by chronic forebrain hypoperfusion ischemia. Complementary interactions between the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter GABA form the molecular basis of synaptic plasticity and cognitive performance. However, whether the GABAergic inhibitory interneurons are involved in the mechanisms underlying these processes remains unclear. Here, we further examined the role of GABAergic interneurons in the neuroprotective effect of the Rho-kinase inhibitor. Chronic forebrain ischemia was induced in Wistar rats by bilateral common carotid artery occlusion (BCAO). The general synaptic transmission and long-term potentiation (LTP) of hippocampal CA3 neurons were evaluated at 30 days after sham surgery or BCAO. Real-time PCR and Western blot analyses were conducted to determine the effect of the Rho-kinase inhibitor hydroxyfasudil on GABAergic inhibitory interneuron expression and function after ischemia. Hydroxyfasudil showed no significant effect on general synaptic transmission, but it could abolish the inhibition of LTP induced by chronic forebrain ischemia. Moreover, the mRNA and protein levels of GABAA and GABAB in three brain regions after ischemia were markedly decreased, and hydroxyfasudil could up-regulate all mRNA and protein expression levels in these areas except for GABAA mRNA in the cerebral cortex and striatum. Using phosphorylation antibodies against specific sites on the GABAA and GABAB receptors, we further demonstrated that hydroxyfasudil could inhibit GABAergic interneuron phosphorylation triggered by the theta burst stimulation. In summary, our results indicated that the inactivation of Rho-kinase could enhance GABAA and GABAB expressions by different mechanisms to guarantee the induction of

  1. Effect of propofol post-treatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats.

    PubMed

    Lee, Jae Hoon; Cui, Hui Song; Shin, Seo Kyung; Kim, Jeong Min; Kim, So Yeon; Lee, Jong Eun; Koo, Bon-Nyeo

    2013-11-01

    Although propofol has been reported to offer neuroprotection against cerebral ischemia injury, its impact on cerebral edema following ischemia is not clear. The objective of this investigation is to evaluate the effects of propofol post-treatment on blood-brain barrier (BBB) integrity and cerebral edema after transient cerebral ischemia and its mechanism of action, focusing on modulation of aquaporins (AQPs), matrix metalloproteinases (MMPs), and hypoxia inducible factor (HIF)-1α. Cerebral ischemia was induced in male Sprague-Dawley rats (n = 78) by occlusion of the right middle cerebral artery for 1 h. For post-treatment with propofol, 1 mg kg(-1) min(-1) of propofol was administered for 1 h from the start of reperfusion. Nineteen rats undergoing sham surgery were also included in the investigation. Edema and BBB integrity were assessed by quantification of cerebral water content and extravasation of Evans blue, respectively, following 24 h of reperfusion. In addition, the expression of AQP-1, AQP-4, MMP-2, and MMP-9 was determined 24 h after reperfusion and the expression of HIF-1α was determined 8 h after reperfusion. Propofol post-treatment significantly reduced cerebral edema (P < 0.05) and BBB disruption (P < 0.05) compared with the saline-treated control. The expression of AQP-1, AQP-4, MMP-2, and MMP-9 at 24 h and of HIF-1α at 8 h following ischemia/reperfusion was significantly suppressed in the propofol post-treatment group (P < 0.05). Propofol post-treatment attenuated cerebral edema after transient cerebral ischemia, in association with reduced expression of AQP-1, AQP-4, MMP-2, and MMP-9. The decreased expression of AQPs and MMPs after propofol post-treatment might result from suppression of HIF-1α expression.

  2. Cardioprotective activity of urocortin by preventing caspase-independent, non-apoptotic death in cultured neonatal rat cardiomyocytes exposed to ischemia

    SciTech Connect

    Takatani-Nakase, Tomoka; Takahashi, Koichi

    2010-11-12

    Research highlights: {yields} Ischemia induces high level of iPLA{sub 2} resulting in caspase-independent myocyte death. {yields} Urocortin causes iPLA{sub 2} down-regulation leading to avoidance of non-apoptotic death. {yields} The survival-promoting effect of urocortin is abrogated by CRH receptor antagonist. -- Abstract: Caspase-independent, non-apoptotic cell death in ischemic heart disease is considered to be one of the important therapeutic targets, however, the detailed mechanisms of this cell death process are not clear. In this study, we investigated the mechanisms of non-apoptotic cell death in cultured neonatal rat cardiomyocytes during ischemia, and the cardioprotection by preventing the mechanisms. We found that ischemia caused elevation of the phospholipase A{sub 2} (iPLA{sub 2}) expression in the myocytes, leading to distinctive non-apoptotic nuclear shrinkage, and cell death. Moreover, we investigated whether the potent cardioprotective corticotropin-releasing hormone (CRH), urocortin, which had been less focused on non-apoptotic cell death, inhibits the ischemic myocyte death. Ischemia-augmented nuclear shrinkage of the myocytes was suppressed by the pretreatment of {approx}10 nM urocortin before the cells were exposed to ischemia. Urocortin could significantly suppress the expression and activity of iPLA{sub 2}, resulting in preventing the ischemia-induced cell death. The survival-promoting effect of urocortin was abrogated by the CRH receptor antagonist astressin. These findings provide the first evidence linking the targets of the urocortin-mediated cardioprotection to the suppression of the caspase-independent, non-apoptotic death in cardiac myocytes exposed to ischemia.

  3. The intra-arterial injection of microglia protects hippocampal CA1 neurons against global ischemia-induced functional deficits in rats.

    PubMed

    Hayashi, Y; Tomimatsu, Y; Suzuki, H; Yamada, J; Wu, Z; Yao, H; Kagamiishi, Y; Tateishi, N; Sawada, M; Nakanishi, H

    2006-09-29

    In the present study, we have attempted to elucidate the effects of the intra-arterial injection of microglia on the global ischemia-induced functional and morphological deficits of hippocampal CA1 neurons. When PKH26-labeled immortalized microglial cells, GMIR1, were injected into the subclavian artery, these exogenous microglia were found to accumulate in the hippocampus at 24 h after ischemia. In hippocampal slices prepared from medium-injected rats subjected to ischemia 48 h earlier, synaptic dysfunctions including a significant reduction of synaptic responses and a marked reduction of long-term potentiation (LTP) of the CA3-CA1 Schaffer collateral synapses were observed. At this stage, however, neither significant neuronal degeneration nor gliosis was observed in the hippocampus. At 96 h after ischemia, there was a total loss of the synaptic activity and a marked neuronal death in the CA1 subfield. In contrast, the basal synaptic transmission and LTP of the CA3-CA1 synapses were well preserved after ischemia in the slices prepared from the microglia-injected animals. We also found the microglial-conditioned medium (MCM) to significantly increase the frequency of the spontaneous postsynaptic currents of CA1 neurons without affecting the amplitude, thus indicating that MCM increased the provability of the neurotransmitter release. The protective effect of the intra-arterial injected microglia against the ischemia-induced neuronal degeneration in the hippocampus was substantiated by immunohistochemical and immunoblot analyses. Furthermore, the arterial-injected microglia prevented the ischemia-induced decline of the brain-derived neurotrophic factor (BDNF) levels in CA1 neurons. These observations strongly suggest that the arterial-injection of microglia protected CA1 neurons against the ischemia-induced neuronal degeneration. The restoration of the ischemia-induced synaptic deficits and the resultant reduction of the BDNF levels in CA1 neurons, possibly by the

  4. Myocardial ischemia-reperfusion enhances transcriptional expression of endothelin-1 and vasoconstrictor ETB receptors via the protein kinase MEK-ERK1/2 signaling pathway in rat

    PubMed Central

    Kruse, Lars Schack; Berchtold, Lukas Adrian; Grell, Anne-Sofie; Warfvinge, Karin; Edvinsson, Lars

    2017-01-01

    Background Coronary artery remodelling and vasospasm is a complication of acute myocardial ischemia and reperfusion. The underlying mechanisms are complex, but the vasoconstrictor peptide endothelin-1 is suggested to have an important role. This study aimed to determine whether the expression of endothelin-1 and its receptors are regulated in the myocardium and in coronary arteries after experimental ischemia-reperfusion. Furthermore, we evaluated whether treatment with a specific MEK1/2 inhibitor, U0126, modified the expression and function of these proteins. Methods and findings Sprague-Dawley rats were randomly divided into three groups: sham-operated, ischemia-reperfusion with vehicle treatment and ischemia-reperfusion with U0126 treatment. Ischemia was induced by ligating the left anterior descending coronary artery for 30 minutes followed by reperfusion. U0126 was administered before ischemia and repeated 6 hours after start of reperfusion. The contractile properties of isolated coronary arteries to endothelin-1 and sarafotoxin 6c were evaluated using wire-myography. The gene expression of endothelin-1 and endothelin receptors were measured using qPCR. Distribution and localization of proteins (pERK1/2, prepro-endothelin-1, endothelin-1, and endothelin ETA and ETB receptors) were analysed by Western blot and immunohistochemistry. We found that pERK1/2 was significantly augmented in the ischemic area 3 hours after ischemia-reperfusion; this correlated with increased ETB receptor and ET-1 gene expressions in ischemic myocardium and in coronary arteries. ETB receptor-mediated vasoconstriction was observed to be increased in coronary arteries 24 hours after ischemia-reperfusion. Treatment with U0126 reduced pERK1/2, expression of ET-1 and ETB receptor, and ETB receptor-mediated vasoconstriction. Conclusions These findings suggest that the MEK-ERK1/2 signaling pathway is important for regulating endothelin-1 and ETB receptors in myocardium and coronary arteries

  5. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging.

    PubMed

    Jiang, Chun-Juan; Wang, Zhong-Juan; Zhao, Yan-Jun; Zhang, Zhui-Yang; Tao, Jing-Jing; Ma, Jian-Yong

    2016-09-01

    Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury.

  6. Erythropoietin reduces apoptosis of brain tissue cells in rats after cerebral ischemia/reperfusion injury: a characteristic analysis using magnetic resonance imaging

    PubMed Central

    Jiang, Chun-juan; Wang, Zhong-juan; Zhao, Yan-jun; Zhang, Zhui-yang; Tao, Jing-jing; Ma, Jian-yong

    2016-01-01

    Some in vitro experiments have shown that erythropoietin (EPO) increases resistance to apoptosis and facilitates neuronal survival following cerebral ischemia. However, results from in vivo studies are rarely reported. Perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) have been applied successfully to distinguish acute cerebral ischemic necrosis and penumbra in living animals; therefore, we hypothesized that PWI and DWI could be used to provide imaging evidence in vivo for the conclusion that EPO could reduce apoptosis in brain areas injured by cerebral ischemia/reperfusion. To validate this hypothesis, we established a rat model of focal cerebral ischemia/reperfusion injury, and treated with intra-cerebroventricular injection of EPO (5,000 U/kg) 20 minutes before injury. Brain tissue in the ischemic injury zone was sampled using MRI-guided localization. The relative area of abnormal tissue, changes in PWI and DWI in the ischemic injury zone, and the number of apoptotic cells based on TdT-mediated dUTP-biotin nick end-labeling (TUNEL) were assessed. Our findings demonstrate that EPO reduces the relative area of abnormally high signal in PWI and DWI, increases cerebral blood volume, and decreases the number of apoptotic cells positive for TUNEL in the area injured by cerebral ischemia/reperfusion. The experiment provides imaging evidence in vivo for EPO treating cerebral ischemia/reperfusion injury. PMID:27857749

  7. PET imaging of serotoninergic neurotransmission with [11C]DASB and [18F]altanserin after focal cerebral ischemia in rats

    PubMed Central

    Martín, Abraham; Szczupak, Boguslaw; Gómez-Vallejo, Vanessa; Plaza, Sandra; Padró, Daniel; Cano, Ainhoa; Llop, Jordi

    2013-01-01

    The use of selective serotonin reuptake inhibitors has shown functional improvement after stroke. Despite this, the role of serotoninergic neurotransmission after cerebral ischemia evolution and its involvement in functional recovery processes are still largely unknown. For this purpose, we performed in parallel in vivo magnetic resonance imaging and positron emission tomography (PET) with [11C]DASB and [18F]altanserin at 1, 3, 7, 14, 21, and 28 days after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with [11C]DASB and [18F]altanserin showed a dramatic decline in serotonin transporter (SERT) and 5-HT2A binding potential in the cortex and striatum after cerebral ischemia. Interestingly, a slight increase in [11C]DASB binding was observed from days 7 to 21 followed by the uppermost binding at day 28 in the ipsilateral midbrain. In contrast, no changes were observed in the contralateral hemisphere by using both radiotracers. Likewise, both functional and behavior testing showed major impaired outcome at day 1 after ischemia onset followed by a recovery of the sensorimotor function and dexterity from day 21 to day 28 after cerebral ischemia. Taken together, these results might evidence that SERT changes in the midbrain could have a key role in the functional recovery process after cerebral ischemia. PMID:23982048

  8. Dynamics of nitric oxide and peroxynitrite during global brain ischemia/reperfusion in rat hippocampus: NO-sensor measurement and modeling study.

    PubMed

    Yang, Yong; Ke-Zhou, Liu; Ning, Gan-ming; Wang, Min-lai; Zheng, Xiao-Xiang

    2008-01-01

    The dynamics of nitric oxide (NO) and peroxynitrite concentration changes during brain ischemia/reperfusion are poorly understood. In this paper, a NO-selective sensor was used to measure NO concentration changes in the rat brain hippocampus during global brain ischemia/reperfusion. Four-vessel occlusion model of transient global brain ischemia was used. Global cerebral ischemia was induced by occluding both common carotid arteries with artery nips (for 20 min) and reperfusion was induced by loosening the artery nips. Results showed that the changes of NO concentration during global brain ischemia/reperfusion could be divided into different stages. Together with the effects of O2 tension changes and NO synthase (NOS) on nitric oxide levels, we determined five stages in the NO concentration profile: (1) acute O2-limited decrease stage; (2) O2-limited steady stage; (3) neuronal NOS activation stage; (4) acute O2-recovery elevation stage; and (5) O2-recovery steady stage. In addition, a chemical reaction network model was constructed to simulate the dynamics of peroxynitrite during the reperfusion stage, and the effects of a change in the NO formation rate on the dynamics of peroxynitrite were investigated specifically. Results show the rate of NO formation has a great influence on peroxynitrite dynamics.

  9. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation

    PubMed Central

    Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua

    2017-01-01

    Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway. PMID:27922691

  10. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation.

    PubMed

    Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua

    2017-01-01

    Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway.

  11. Inhalation of water electrolysis-derived hydrogen ameliorates cerebral ischemia-reperfusion injury in rats - A possible new hydrogen resource for clinical use.

    PubMed

    Cui, Jin; Chen, Xiao; Zhai, Xiao; Shi, Dongchen; Zhang, Rongjia; Zhi, Xin; Li, Xiaoqun; Gu, Zhengrong; Cao, Liehu; Weng, Weizong; Zhang, Jun; Wang, Liping; Sun, Xuejun; Ji, Fang; Hou, Jiong; Su, Jiacan

    2016-10-29

    Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically.

  12. Calcitonin gene-related peptide protects rats from cerebral ischemia/reperfusion injury via a mechanism of action in the MAPK pathway

    PubMed Central

    YANG, SI; YUAN, YONGJIE; JIAO, SHAN; LUO, QI; YU, JINLU

    2016-01-01

    The aim of the present study was to investigate the protective function and underlying mechanism of calcitonin gene-related peptide (CGRP) on cerebral ischemia/reperfusion damage in rats. Adult male Wistar rats were selected for the establishment of an ischemia/reperfusion injury model through the application of a middle cerebral artery occlusion. Animals were randomly divided into 6 groups of 24 animals. Drugs were administered according to the design of each group; animals were administered CGRP, CGRP8–37, PD98059 and SB20358. The neurobehavioral scores of the rat cerebral ischemia model in each group were calculated. The infarction range of the rat brain tissues was observed by 2,3,5-triphenyltetrazolium chloride staining. The expression levels of three proteins, phosphorylated c-Jun N-terminal kinase (JNK)/JNK, phosphorylated extracellular signal-regulated protein kinase (ERK)/ERK and p-p38/p38, in the mitogen-activated protein kinase (MAPK) pathway in the brain tissues was detected by western blotting. The results showed that CGRP could improve the neurobehavioral function of the ischemic rats and reduce the infarction range. Western blotting results confirmed that the function of the CGRP was mediated mainly through the reduction of the JNK and p38 phosphorylation and the promotion of ERK phosphorylation. Therefore, the present study confirmed that an increase in the exogenous CRGP could effectively improve ischemia/reperfusion injury of the brain tissue. The mechanisms of action were achieved through a reduction in JNK and p38 phosphorylation and an increase in ERL phosphorylation in the MAPK pathway. These mechanisms were interdependent. PMID:27284409

  13. The Specific Protein Kinase R (PKR) Inhibitor C16 Protects Neonatal Hypoxia-Ischemia Brain Damages by Inhibiting Neuroinflammation in a Neonatal Rat Model

    PubMed Central

    Xiao, Jinglei; Tan, Yongchang; Li, Yinjiao; Luo, Yan

    2016-01-01

    Background Brain injuries induced by hypoxia-ischemia in neonates contribute to increased mortality and lifelong neurological dysfunction. The specific PKR inhibitor C16 has been previously demonstrated to exert a neuroprotective role in adult brain injuries. However, there is no recent study available concerning its protective role in hypoxia-ischemia-induced immature brain damage. Therefore, we investigated whether C16 protects against neonatal hypoxia-ischemia injuries in a neonatal rat model. Material/Methods Postnatal day 7 (P7) rats were used to establish classical hypoxia-ischemia animal models, and C16 postconditioning with 100 ug/kg was performed immediately after hypoxia. Western blot analysis was performed to quantify the phosphorylation of the PKR at 0 h, 3 h, 6 h, 12 h, 24 h, and phosphorylation of NF-κB 24h after hypoxia exposure. The TTC stain for infarction area and TUNEL stain for apoptotic cells were assayed 24 h after the brain hypoxia. Gene expression of IL-1β, IL-6, and TNF-α was performed at 3 h, 6 h, 12 h, and 24 h. Results The level of PKR autophosphorylation was increased dramatically, especially at 3 h (C16 group vs. HI group, P<0.01). Intraperitoneal C16 administration reduced the infarct volume and apoptosis ratio after this insult (C16 group vs. HI group<0.01), and C16 reduced proinflammatory cytokines mRNA expression, partly through inhibiting NF-κB activation (C16 group vs. HI group<0.05). Conclusions C16 can protect immature rats against hypoxia-ischemia-induced brain damage by modulating neuroinflammation. PMID:28008894

  14. Moderate hypothermia suppresses jugular venous superoxide anion radical, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats.

    PubMed

    Koda, Yoichi; Tsuruta, Ryosuke; Fujita, Motoki; Miyauchi, Takashi; Kaneda, Kotaro; Todani, Masaki; Aoki, Tetsuya; Shitara, Masaki; Izumi, Tomonori; Kasaoka, Shunji; Yuasa, Makoto; Maekawa, Tsuyoshi

    2010-01-22

    The aim of this study was to assess the effect of moderate hypothermia (MH) on generation of jugular venous superoxide radical (O2-.), oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion (FBI/R) rats. Twenty-one Wistar rats were allocated to a control group (n=7, 37 degrees C), a pre-MH group (n=7, 32 degrees C before ischemia), and a post-MH group (n=7, 32 degrees C after reperfusion). MH was induced before induction of ischemia in the pre-MH group and just after reperfusion in the post-MH group. Forebrain ischemia was induced by occlusion of bilateral common carotid arteries with hemorrhagic hypotension for 10 min, followed by reperfusion. O(2)(-)(.) in the jugular vein was measured from the produced current using a novel O2-. sensor. The O2-. current showed a gradual increase during forebrain ischemia in the control and post-MH groups but was attenuated in the pre-MH group. Following reperfusion, the current showed a marked increase in the control group but was strongly attenuated in the pre- and post-MH groups. Concentrations of malondialdehyde, high-mobility group box 1 (HMGB1) protein, and intercellular adhesion molecule-1 (ICAM-1) in the brain and plasma 120 min after reperfusion in the pre- and post-MH groups were significantly lower than those in the control group, except for plasma HMGB1 in the post-MH group. In conclusion, MH suppressed O2-. measured in the jugular vein, oxidative stress, early inflammation, and endothelial injury in FBI/R rats.

  15. Selective inhibition of nuclear factor-kappaB activation after hypoxia/ischemia in neonatal rats is not neuroprotective.

    PubMed

    van den Tweel, Evelyn R W; Kavelaars, Annemieke; Lombardi, Maria S; Groenendaal, Floris; May, Michael; Heijnen, Cobi J; van Bel, Frank

    2006-02-01

    Activated nuclear factor-kappaB (NFkappaB) has been shown to increase transcription of several genes that could potentially contribute to neuronal damage, such as proinflammatory cytokines, chemokines, and inducible nitric oxide synthase. The aim of our study was to investigate whether inhibition of NFkappaB activation could prevent hypoxia/ischemia (HI)-induced cerebral damage in neonatal rats. We used a cell permeable peptide (NEMO binding domain [NBD] peptide) that is known to prevent the association of the regulatory protein NEMO with IKK, the kinase that activates NFkappaB. Via this mechanism, the NBD peptide can specifically block the activation of NFkappaB, without inhibiting basal NFkappaB activity. Cerebral HI was induced in neonatal rats by occlusion of the right carotid artery followed by 90 min of hypoxia (Fio(2) = 0.08). Immediately upon reoxygenation, as well as 6 and 12 h later, rats were treated with vehicle or NBD peptide (20 mg/kg i.p.). Histologic analysis of brain damage was performed at 6 wk after HI. To assess NFkappaB activation, electromobility shift assays (EMSAs) were performed on brain nuclear extracts obtained 6 h after reoxygenation. Increased NFkappaB activity could be shown at 6 h after HI in both hemispheres. Peripheral administration of NBD peptide prevented this HI-induced increase in NFkappaB activity in both hemispheres. Histologic analysis of long-term cerebral damage revealed that inhibition of NFkappaB activation by administration of NBD peptide at 0, 6, and 12 h after HI resulted in an increment of neuronal damage. In conclusion, our data suggest that inhibition of NFkappaB activation using NBD peptide early after HI increases brain damage in neonatal rats.

  16. Role of Opioid Receptors Signaling in Remote Electrostimulation - Induced Protection against Ischemia/Reperfusion Injury in Rat Hearts

    PubMed Central

    Tsai, Hsin-Ju; Huang, Shiang-Suo; Tsou, Meng-Ting; Wang, Hsiao-Ting; Chiu, Jen-Hwey

    2015-01-01

    Aims Our previous studies demonstrated that remote electro-stimulation (RES) increased myocardial GSK3 phosphorylation and attenuated ischemia/ reperfusion (I/R) injury in rat hearts. However, the role of various opioid receptors (OR) subtypes in preconditioned RES-induced myocardial protection remains unknown. We investigated the role of OR subtype signaling in RES-induced cardioprotection against I/R injury of the rat heart. Methods & Results Male Spraque-Dawley rats were used. RES was performed on median nerves area with/without pretreatment with various receptors antagonists such as opioid receptor (OR) subtype receptors (KOR, DOR, and MOR). The expressions of Akt, GSK3, and PKCε expression were analyzed by Western blotting. When RES was preconditioned before the I/R model, the rat's hemodynamic index, infarction size, mortality and serum CK-MB were evaluated. Our results showed that Akt, GSK3 and PKCε expression levels were significantly increased in the RES group compared to the sham group, which were blocked by pretreatment with specific antagonists targeting KOR and DOR, but not MOR subtype. Using the I/R model, the duration of arrhythmia and infarct size were both significantly attenuated in RES group. The mortality rates of the sham RES group, the RES group, RES group + KOR antagonist, RES group + DOR/MOR antagonists (KOR left), RES group + DOR antagonist, and RES group + KOR/MOR antagonists (DOR left) were 50%, 20%, 67%, 13%, 50% and 55%, respectively. Conclusion The mechanism of RES-induced myocardial protection against I/R injury seems to involve multiple target pathways such as Akt, KOR and/or DOR signaling. PMID:26430750

  17. Compound 49b Restores Retinal Thickness and Reduces Degenerate Capillaries in the Rat Retina following Ischemia/Reperfusion.

    PubMed

    Liu, Li; Jiang, Youde; Steinle, Jena J

    2016-01-01

    We have recently reported that Compound 49b, a novel β-adrenergic receptor agonist, can significantly reduce VEGF levels in retinal endothelial cells (REC) grown in diabetic-like conditions. In this study, we investigated whether Compound 49b could protect the retina under hypoxic conditions using the ischemia-reperfusion (I/R)-induced model in rats, as well REC cultured in hypoxic conditions. Some rats received 1mM topical Compound 49b for the 2 (5 rats each group) or 10 (4 rats in each group) days post-I/R. Analyses for retinal thickness and cell loss in the ganglion cell layer was done at 2 days post-I/R, while numbers of degenerate capillaries and pericyte ghosts were measured at 10 days post-I/R. Additionally, REC were cultured in normal oxygen or hypoxia (5% O2) only or treated with 50 nM Compound 49b for 12 hours. Twelve hours after Compound 49b exposure, cells were collected and analyzed for protein levels of insulin-like growth factor binding protein 3 (IGFBP-3), vascular endothelial cell growth factor (VEGF) and its receptor (KDR), angiopoietin 1 and its receptor Tie2 for Western blotting. Data indicate that exposure to I/R significantly decreased retinal thickness, with increasing numbers of degenerate capillaries and pericyte ghosts. Compound 49b treatment inhibited these retinal changes. In REC cultured in hypoxia, levels of IGFBP-3 were reduced, which were significantly increased by Compound 49b. Hypoxia significantly increased protein levels of VEGF, KDR, Angiopoiein 1, and Tie2, which were reduced following Compound 49b treatment. These data strongly suggested that Compound 49b protected the retina against I/R-induced injury. This provides additional support for a role of β-adrenergic receptor actions in the retina.

  18. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat.

    PubMed

    Sivarajah, A; McDonald, M C; Thiemermann, C

    2006-08-01

    We investigated whether (endogenous) hydrogen sulfide (H2S) protects the heart against myocardial ischemia and reperfusion injury. Furthermore, we investigated whether endogenous H2S is involved in the protection afforded by (1) ischemic preconditioning and (2) the second window of protection caused by endotoxin. The involvement of one of the potential (end) effectors of the cardioprotection afforded by H2S was investigated using the mitochondrial KATP channel blocker, 5-hydroxydecanoate (5-HD; 5 mg/kg). Animals were subjected to 25 min regional myocardial ischemia followed by reperfusion (2 h) and were pretreated with the H2S donor, sodium hydrosulfide (3 mg/kg i.v.). Animals were also subjected to shorter periods of myocardial ischemia (15 min) and reperfusion (2 h) and pretreated with an irreversible inhibitor of cystathionine-gamma-lyase, dl-propargylglycine (PAG; 50 mg/kg i.v.). Animals were also pretreated with PAG (50 mg/kg) and subjected to either (1) ischemic preconditioning or (2) endotoxin (1 mg/kg i.p.) 16 h before myocardial ischemia. Myocardial infarct size was determined by p-nitroblue tetrazolium staining. Administration of sodium hydrosulfide significantly reduced myocardial infarct size, and this effect was abolished by 5-HD. Administration of PAG (50 mg/kg) or 5-HD significantly increased infarct size caused by 15 min of myocardial ischemia. The delayed cardioprotection afforded by endotoxin was abolished by 5-HD or PAG. In contrast, PAG (50 mg/kg) did not affect the cardioprotective effects of ischemic preconditioning. These findings suggest that (1) endogenous H2S is produced by myocardial ischemia in sufficient amounts to limit myocardial injury and (2) the synthesis or formation of H2S by cystathionine-gamma-lyase may contribute to the second window of protection caused by endotoxin.

  19. Schisandrin B protects myocardial ischemia-reperfusion injury partly by inducing Hsp25 and Hsp70 expression in rats.

    PubMed

    Chiu, Po Yee; Ko, Kam Ming

    2004-11-01

    Schisandrin B (Sch B) is a hepato- and cardioprotective ingredient isolated from the fruit of Schisandra chinensis, a traditional Chinese herb clinically used to treat viral and chemical hepatitis. In order to investigate whether the induction of heat shock protein (Hsp)25 and Hsp70 expression plays a role in the cardioprotection afforded by Sch B pre-treatment against ischemia-reperfusion (I-R) injury, the time-course of myocardial Hsp25 and Hsp70 expression was examined in Sch B-pre-treated rats. Sch B pre-treatment (1.2 mmol/kg) produced time-dependent increases in Hsp25 and Hsp70 expression in rat hearts, with the maximum enhancement observable at 48 and 72 h post-dosing, respectively. Buthionine sulfoximine/phorone treatment, while abolishing the beneficial effect of Sch B on mitochondrial glutathione redox status, did not completely abrogate the cardioprotection against I-R injury. Heat shock treatment could increase myocardial Hsp25 and Hsp70 expression and protect against I-R injury under the present experimental conditions. The results indicate that the induction of Hsp25 and Hsp70 expression contributes at least partly to the cardioprotection afforded by Sch B pre-treatment against I-R injury.

  20. Delayed administration of the GLP-1 receptor agonist liraglutide improves metabolic and functional recovery after cerebral ischemia in rats.

    PubMed

    Dong, Wenbin; Miao, Yunping; Chen, Aiying; Cheng, Min; Ye, Xiaodi; Song, Fahuan; Zheng, Gaoli

    2017-02-22

    Glucagon-like peptide 1 receptor (GLP-1R) agonists administered before or immediately after induction of experimental stroke have been shown to provide acute neuroprotection. Here, we determined whether delayed treatment with a GLP-1R agonist could improve metabolic and functional recovery after stroke. Rats were subjected to middle cerebral artery occlusion (MCAO) and given the well-established GLP-1R agonist liraglutide (50, 100, or 200μg/kg) or normal saline (NS) daily for 4 weeks, starting 1 day after MCAO. Cerebral glucose metabolism and neurological deficits were evaluated using (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) imaging and modified neurological severity score (mNSS) test. Levels of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), von Willebrand factor (vWF), and GLP-1R were assessed by immunohistochemical staining and Western blot analysis. PET imaging showed that animals treated with liraglutide had significantly higher (18)F-FDG accumulation in the cerebral infarction compared with animals treated with NS. Liraglutide significantly reduced the mNSS score. It also greatly increased the expression of NeuN, GFAP, vWF, and GLP-1R in the cerebral ischemic area at postoperative week 4. These results demonstrated metabolic and functional recovery after delayed treatment with liraglutide in a rat model of cerebral ischemia.

  1. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury.

    PubMed Central

    Mestril, R; Chi, S H; Sayen, M R; O'Reilly, K; Dillmann, W H

    1994-01-01

    Myocardial ischemia markedly increases the expression of several members of the stress/heat shock protein (HSP) family, especially the inducible HSP70 isoforms. Increased expression of HSP70 has been shown to exert a protective effect against a lethal heat shock. We have examined the possibility of using this resistance to a lethal heat shock as a protective effect against an ischemic-like stress in vitro using a rat embryonic heart-derived cell line H9c2 (2-1). Myogenic cells in which the heat shock proteins have been induced by a previous heat shock are found to become resistant to a subsequent simulated ischemic stress. In addition, to address the question of how much does the presence of the HSP70 contribute to this protective effect, we have generated stably transfected cell lines overexpressing the human-inducible HSP70. Embryonal rat heart-derived H9c2(2-1) cells were used for this purpose. This stably transfected cell line was found to be significantly more resistant to an ischemic-like stress than control myogenic cells only expressing the selectable marker (neomycin) or the parental cell line H9c2(2-1). This finding implicates the inducible HSP70 protein as playing a major role in protecting cardiac cells against ischemic injury. Images PMID:8113409

  2. Induction of cyclooxygenase-2 mRNA and protein following transient focal ischemia in the rat brain.

    PubMed

    Planas, A M; Soriano, M A; Rodríguez-Farré, E; Ferrer, I

    1995-11-24

    Expression of cyclooxygenase-2 (cox-2) mRNA and inducible heat-shock protein-70 (hsp-70) mRNA was studied with in situ hybridization techniques at 30 min and 4 h following 1 h transient middle cerebral artery (MCA) occlusion in the rat brain. In addition, immunoreactivity for cox-2 was studied after 8 h of reperfusion. Induction of hsp-70 and cox-2 mRNA was found in the brain side ipsilateral to MCA occlusion. Hsp-70 mRNA was induced in the parietal cortex and striatum within the territory of the occluded MCA. Induction of cox-2 mRNA was particularly seen in cortical layer II in the brain side ipsilateral to MCA occlusion. At 30 min of reperfusion, areas showing cox-2 mRNA induction included the cingulate and frontal cortices located perifocally to the areas showing hsp-70 mRNA induction, and the piriform cortex. At 4 h of reperfusion, induction of cox-2 mRNA was seen within the parietal cortex. At 8 h of reperfusion, immunoreactivity for cox-2 was mainly seen in the ipsilateral cortex. These results demonstrate that transient focal ischemia induces the expression of cox-2 mRNA and protein in discrete areas of the rat brain during reperfusion, which might lead to local increases of arachidonic acid metabolism.

  3. Schisandrin B enhances cerebral mitochondrial antioxidant status and structural integrity, and protects against cerebral ischemia/reperfusion injury in rats.

    PubMed

    Chen, Na; Chiu, Po Yee; Ko, Kam Ming

    2008-07-01

    Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to enhance mitochondrial antioxidant status in liver, heart and brain tissues in rodents. Whether or not long-term Sch B treatment can protect against oxidative stress-induced cerebral damage remains unclear. In the present study, the effect of long-term Sch B treatment (1-30 mg/kg/dx15) on cerebral ischemia/reperfusion (I/R) injury was examined in rats. Sch B treatment protected against I/R-induced cerebral damage, as evidenced by the significant increase in the percentage of 2,3,5-triphenyl tetrazolium chloride (TTC)-stained tissues in representative brain slices, when compared with the Sch B-untreated and I/R control. The cerebroprotection was associated with an enhancement in cerebral mitochondrial antioxidant status, as assessed by the level/activity of reduced glutathione, alpha-tocopherol and Mn-superoxide dismutase, as well as the improvement/preservation of mitochondrial structural integrity, as assessed by the extents of malondialdehyde production, Ca(2+) loading and cytochrome c release, as well as the sensitivity to Ca(2+)-induced permeability transition, in control and I/R-challenged rats. In conclusion, long-term Sch B treatment could enhance cerebral mitochondrial antioxidant status as well as improve mitochondrial structural integrity, thereby protecting against I/R injury.

  4. Protective effects of terminal ileostomy against bacterial translocation in a rat model of intestinal ischemia/reperfusion injury

    PubMed Central

    Lin, Zhi-Liang; Yu, Wen-Kui; Tan, Shan-Jun; Duan, Kai-Peng; Dong, Yi; Bai, Xiao-Wu; Xu, Lin; Li, Ning

    2014-01-01

    AIM: To investigate the effects of terminal ileostomy on bacterial translocation (BT) and systemic inflammation after intestinal ischemia/reperfusion (I/R) injury in rats. METHODS: Thirty-two rats were assigned to either the sham-operated group, I/R group, I/R + resection and anastomosis group, or the I/R + ileostomy group. The superior mesenteric artery was occluded for 60 min. After 4 h, tissue samples were collected for analysis. BT was assessed by bacteriologic cultures, intestinal permeability and serum levels of endotoxin; systemic inflammation was assessed by serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10, as well as by the activity of myeloperoxidase (MPO) and by intestinal histopathology. RESULTS: Intestinal I/R injury not only caused morphologic damage to ileal mucosa, but also induced BT, increased MPO activity and promoted the release of TNF-α, IL-6, and IL-10 in serum. BT and ileal mucosa injuries were significantly improved and levels of TNF-α and IL-6 in serum were decreased in the I/R + ileostomy group compared with the I/R + resection and anastomosis group. CONCLUSION: Terminal ileostomy can prevent the detrimental effects of intestinal I/R injury on BT, intestinal tissue, and inflammation. PMID:25548488

  5. Docosahexaenoic Acid Reduces Cerebral Damage and Ameliorates Long-Term Cognitive Impairments Caused by Neonatal Hypoxia-Ischemia in Rats.

    PubMed

    Arteaga, Olatz; Revuelta, M; Urigüen, L; Martínez-Millán, L; Hilario, E; Álvarez, A

    2016-10-29

    As the interest in the neuroprotective possibilities of docosahexaenoic acid (DHA) for brain injury has grown in the recent years, we aimed to investigate the long-term effects of this fatty acid in an experimental model of perinatal hypoxia-ischemia in rats. To this end, motor activity, aspects of learning, and memory function and anxiety, as well as corticofugal connections visualized by using tracer injections, were evaluated at adulthood. We found that in the hours immediately following the insult, DHA maintained mitochondrial inner membrane integrity and transmembrane potential, as well as the integrity of synaptic processes. Seven days later, morphological damage at the level of the middle hippocampus was reduced, since neurons and myelin were preserved and the astroglial reactive response and microglial activation were seen to be diminished. At adulthood, the behavioral tests revealed that treated animals presented better long-term working memory and less anxiety than non-treated hypoxic-ischemic animals, while no difference was found in the spontaneous locomotor activity. Interestingly, hypoxic-ischemic injury caused alterations in the anterograde corticofugal neuronal connections which were not so evident in rats treated with DHA. Thus, our results indicate that DHA treatment can lead to long-lasting neuroprotective effects in this experimental model of neonatal hypoxia-ischemic brain injury, not only by mitigating axonal changes but also by enhancing cognitive performance at adulthood.

  6. Combined Salvianolic Acid B and Ginsenoside Rg1 Exerts Cardioprotection against Ischemia/Reperfusion Injury in Rats.

    PubMed

    Deng, Yanping; Yang, Min; Xu, Feng; Zhang, Qian; Zhao, Qun; Yu, Haitao; Li, Defang; Zhang, Ge; Lu, Aiping; Cho, Kenka; Teng, Fukang; Wu, Peng; Wang, Linlin; Wu, Wanying; Liu, Xuan; Guo, De-An; Jiang, Baohong

    2015-01-01

    Lack of pharmacological strategies in clinics restricts the patient prognosis with myocardial ischemia/reperfusion (I/R) injury. The aim of this study was to evaluate the cardioprotection of combined salvianolic acid B (SalB) and ginsenoside Rg1 (Rg1) against myocardial I/R injury and further investigate the underlying mechanism. I/R injury was induced by coronary artery ligation for Wistar male rats and hypoxia/reoxygenation injury was induced on H9c2 cells. Firstly, the best ratio between SalB and Rg1was set as 2:5 based on their effects on heart function detected by hemodynamic measurement. Then SalB-Rg1 (2:5) was found to maintain mitochondrial membrane potential and resist apoptosis and necrosis in H9c2 cell with hypoxia/reoxygenation injury. Companying with same dose of SalB or Rg1 only, SalB-Rg1 showed more significant effects on down-regulation of myocardial infarct size, maintenance of myocardium structure, improvement on cardiac function, decrease of cytokine secretion including TNF-α, IL-1β, RANTES and sVCAM-1. Finally, the SalB-Rg1 improved the viability of cardiac myocytes other than cardiac fibroblasts in rats with I/R injury using flow cytometry. Our results revealed that SalB-Rg1 was a promising strategy to prevent myocardial I/R injury.

  7. Combined Salvianolic Acid B and Ginsenoside Rg1 Exerts Cardioprotection against Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Deng, Yanping; Yang, Min; Xu, Feng; Zhang, Qian; Zhao, Qun; Yu, Haitao; Li, Defang; Zhang, Ge; Lu, Aiping; Cho, Kenka; Teng, Fukang; Wu, Peng; Wang, Linlin; Wu, Wanying; Liu, Xuan; Guo, De-an; Jiang, Baohong

    2015-01-01

    Lack of pharmacological strategies in clinics restricts the patient prognosis with myocardial ischemia/reperfusion (I/R) injury. The aim of this study was to evaluate the cardioprotection of combined salvianolic acid B (SalB) and ginsenoside Rg1 (Rg1) against myocardial I/R injury and further investigate the underlying mechanism. I/R injury was induced by coronary artery ligation for Wistar male rats and hypoxia/reoxygenation injury was induced on H9c2 cells. Firstly, the best ratio between SalB and Rg1was set as 2:5 based on their effects on heart function detected by hemodynamic measurement. Then SalB-Rg1 (2:5) was found to maintain mitochondrial membrane potential and resist apoptosis and necrosis in H9c2 cell with hypoxia/reoxygenation injury. Companying with same dose of SalB or Rg1 only, SalB-Rg1 showed more significant effects on down-regulation of myocardial infarct size, maintenance of myocardium structure, improvement on cardiac function, decrease of cytokine secretion including TNF-α, IL-1β, RANTES and sVCAM-1. Finally, the SalB-Rg1 improved the viability of cardiac myocytes other than cardiac fibroblasts in rats with I/R injury using flow cytometry. Our results revealed that SalB-Rg1 was a promising strategy to prevent myocardial I/R injury. PMID:26280455

  8. Ischemic Postconditioning Alleviates Brain Edema After Focal Cerebral Ischemia Reperfusion in Rats Through Down-Regulation of Aquaporin-4.

    PubMed

    Han, Dong; Sun, Miao; He, Ping-Ping; Wen, Lu-Lu; Zhang, Hong; Feng, Juan

    2015-07-01

    Cerebral edema is a serious complication associated with cerebral ischemia/reperfusion (I/R). Aquaporin-4 (AQP4) plays a role in generating postischemic edema after reperfusion. Recently, ischemic postconditioning (Postcond) has been shown to produce neuroprotective effects and reduce brain edema in rats after cerebral I/R. It is unclear if ischemic Postcond alleviates brain edema injury through regulation of AQP4. In this study, middle cerebral artery occlusion (MCAO) was induced in rats by filament insertion for 2 h following 24-h reperfusion: ischemic Postcond treatment was performed before reperfusion in the experimental group. We used the wet-dry weight ratio and transmission electron microscopy to evaluate brain edema after 24 h of reperfusion. We used immunohistochemistry and Western blot analyses to evaluate the distribution and expression of AQP4. Ischemic Postcond significantly reduced the water content of the brain tissue and swelling of the astrocytic foot processes. AQP4 expression increased in the I/R and Postcond groups compared to the sham group, but it decreased in the Postcond group compared to the I/R group. The results of our study suggest that ischemic Postcond effectively reduces brain edema after reperfusion by inhibiting AQP4 expression. The data in this study support the use of ischemic Postcond for alleviating brain edema after cerebral I/R.

  9. L-carnitine pretreatment protects slow-twitch skeletal muscles in a rat model of ischemia-reperfusion injury.

    PubMed

    Demirel, Mert; Kaya, Burak; Cerkez, Cem; Ertunc, Mert; Sara, Yildirim

    2013-10-01

    Ischemia-reperfusion (I/R) injury negatively affects the outcome of surgical interventions for amputated or severely traumatized extremities. This study aimed to evaluate the protective role of l-carnitine on the contractile properties of fast-twitch (extensor digitorum longus [EDL]) and slow-twitch (soleus [SOL]) skeletal muscles following I/R-induced injury in a rat model. Rats were divided into 4 groups (1) saline pretreatment, (2) l-carnitine pretreatment, (3) saline pretreatment and I/R, and (4) l-carnitine pretreatment and I/R. Twitch and tetanic contractions in the EDL and SOL muscles in each group were recorded. Additionally, a fatigue protocol was performed in these muscles. Twitch and tetanic contraction amplitudes were lower in the EDL and SOL muscles in which I/R was induced (P < .01). l-Carnitine pretreatment significantly increased tetanic contraction amplitude in the SOL muscles following I/R (P < .01) but not in the EDL muscles. l-Carnitine pretreatment did not alter the fatigue response in any of the muscles.

  10. [Electrone probe microanalysis of rubidium retention in myocell of rat heart during acute ischemia].

    PubMed