Sample records for rat spinal dorsal

  1. Neonatal Colonic Inflammation Increases Spinal Transmission and Cystathionine β-Synthetase Expression in Spinal Dorsal Horn of Rats with Visceral Hypersensitivity

    PubMed Central

    Zhao, Liting; Xiao, Ying; Weng, Rui-Xia; Liu, Xuelian; Zhang, Ping-An; Hu, Chuang-Ying; Yu, Shan P.; Xu, Guang-Yin

    2017-01-01

    Irritable bowel syndrome (IBS) is a common gastrointestinal disorder characterized by chronic abdominal pain and alteration of bowel movements. The pathogenesis of visceral hypersensitivity in IBS patients remains largely unknown. Hydrogen sulfide (H2S) is reported to play an important role in development of visceral hyperalgesia. However, the role of H2S at spinal dorsal horn level remains elusive in visceral hypersensitivity. The aim of this study is designed to investigate how H2S takes part in visceral hypersensitivity of adult rats with neonatal colonic inflammation (NCI). Visceral hypersensitivity was induced by neonatal colonic injection of diluted acetic acid. Expression of an endogenous H2S synthesizing enzyme cystathionine β-synthetase (CBS) was determined by Western blot. Excitability and synaptic transmission of neurons in the substantia gelatinosa (SG) of spinal cord was recorded by patch clamping. Here, we showed that expression of CBS in the spinal dorsal horn was significantly upregulated in NCI rats. The frequency of glutamatergic synaptic activities in SG was markedly enhanced in NCI rats when compared with control rats. Application of NaHS increased the frequency of both spontaneous and miniature excitatory post-synaptic currents of SG neurons in control rats through a presynaptic mechanism. In contrast, application of AOAA, an inhibitor of CBS, dramatically suppressed the frequency of glutamatergic synaptic activities of SG neurons of NCI rats. Importantly, intrathecal injection of AOAA remarkably attenuated visceral hypersensitivity of NCI rats. These results suggest that H2S modulates pain signaling likely through a presynaptic mechanism in SG of spinal dorsal horn, thus providing a potential therapeutic strategy for treatment for chronic visceral pain in patients with IBS. PMID:29046639

  2. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    PubMed Central

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  3. [Effect of electroacupuncture on phosphorylation of NR2B at Tyr 1742 site in the spinal dorsal horn of CFA rats].

    PubMed

    Liang, Yi; Fang, Jian-Qiao; Fang, Jun-Fan; Du, Jun-Ying; Qiu, Yu-Jie; Liu, Jin

    2013-10-01

    To observe the effect of electroacupuncture (EA) on phosphorylation of spinal NR2B at Tyr 1742 site in complete Freund's adjuvant (CFA) induced inflammatory pain rats. METHods Forty male Sprague Dawley rats were randomly divided into normal group (N group, n = 10), the model group (CFA group, n = 15), and the EA group (n = 15). The inflammatory pain model was established by subcutaneous injecting CFA (0.1 mL per rat) into the right hind paw. Paw withdrawal thresholds (PWTs) were measured before CFA injection (as the base), as well as at 24 h, 25 h, 3rd day, and 7th day after CFA injection. Phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn at the 3rd day post-injection were detected using immunohistochemical assay. PWTs in the CFA group were significantly lower than those of the N group at every detective time point post-injection (P < 0.01). PWTs were obviously lower in the EA group than in the N group at 24 h post-injection (P < 0.01). It showed increasing tendency, markedly higher than those of the CFA group at 25 h and 3rd day post-injection (P < 0.01). Compared with the N group, the ratio of p-NR2B positive cells in the ispilateral spinal dorsal horn of rats in the CFA group was up-regulated. Compared with the CFA group, the ratio of p-NR2B positive cells in the ispilateral spinal dorsal horn of rats showed a decreasing tendency in the EA group. EA might effectively inhibit CFA-induced inflammatory pain possibly associated with down-regulating phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn.

  4. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    PubMed Central

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  5. Actions of (-)-baclofen on rat dorsal horn neurons.

    PubMed

    Kangrga, I; Jiang, M C; Randić, M

    1991-10-25

    The actions of a gamma-aminobutyric acid B (GABAB) agonist, (-)-baclofen, on the electrophysiological properties of neurons and synaptic transmission in the spinal dorsal horn (laminae I-IV) were examined by using intracellular recordings in spinal cord slice from young rats. In addition, the effects of baclofen on the dorsal root stimulation-evoked outflow of glutamate and aspartate from the spinal dorsal horn were examined by using high performance liquid chromatography (HPLC) with flourimetric detection. Superfusion of baclofen (5 nM to 10 microM) hyperpolarized, in a stereoselective and bicuculline-insensitive manner, the majority (86%) of tested neurons. The hyperpolarization was associated with a decrease in membrane resistance and persisted in a nominally zero-Ca2+, 10 mM Mg(2+)- or a TTX-containing solution. Our findings indicate that the hyperpolarizing effect of baclofen is probably due to an increase in conductance to potassium ions. Baclofen decreased the direct excitability of dorsal horn neurons, enhanced accommodation of spike discharge, and reduced the duration of Ca(2+)-dependent action potentials. Baclofen depressed, or blocked, excitatory postsynaptic potentials evoked by electrical stimulation of the dorsal roots. Spontaneously occurring synaptic potentials were also reversibly depressed by baclofen. Whereas baclofen did not produce any consistent change in the rate of the basal outflow of glutamate and aspartate, the stimulation-evoked release of the amino acids was blocked. The present results suggest that baclofen, by activating GABAB receptors, may modulate spinal afferent processing in the superficial dorsal horn by at least two mechanisms: (1) baclofen depresses excitatory synaptic transmission primarily by a presynaptic mechanism involving a decrease in the release of excitatory amino acids, and (2) at higher concentrations, the hyperpolarization and increased membrane conductance may contribute to the depressant effect of baclofen on

  6. [Curcumin down-regulates CX3CR1 expression in spinal cord dorsal horn and DRG in neuropathic pain rats].

    PubMed

    Zheng, Jinwei; Zheng, Changjian; Cao, Hong; Li, Jun; Lian, Qingquan

    2011-09-01

    To investigate the effects of curcumin on the behavior of chronic constrictive injury (CCI) rats and the CX3CR1 expression in spinal cord dorsal horn and dorsal root ganglia (DRG). Seventy-two male SD rats were randomly divided into 4 groups: 1) Sham operation group (Sham); 2) Chronic constrictive injury group (CCI); 3) Curcumin treated group (Cur), administrated with curcumin 100 mg x kg(-1) x d(-1) ip for 14 days after CCI; 4) Solvent contrast group (SC), administrated with an equal volume of solvent for 14 days after CCI. Paw thermal withdrawal (PTWL) and paw mechanical withdrawal threshold (PMWT) were measured on 2 pre-operative and 1, 3, 5, 7, 10, 14 post-operative days respectively. The lumbar segments L4-5 of the spinal cord and the L4, L5 DRG were removed at 3, 7, 14 days after surgery. The expression of CX3CR1 was determined by immunohistochemical staining. Compared with Sham group, PTWL and PMWT in CCI group were significantly lower on each post-operative day (P<0.01), which reached a nadir on the 3rd day after CCI (PTWL was 6.5 +/- 1.1, PMWT was 22.6 +/- 5.1), and the expression of CX3CR1 were markedly increased in spinal cord dorsal horn and DRG. In Cur group, PTWL were higher than in CCI group on 7, 10, 14 post-operative day (P<0.05), and PMWT were higher than those in CCI group on 10 and 14 post-operative day (P<0.05). The administration of curcumin could significantly attenuate the activation of CX3CR1 induced by CCI. The study suggests that curcumin ameliorates the CCI-induced neuropathic pain, probably by attenuating the expression of CX3CR1 in spinal cord dorsal horn and dorsal root ganglia.

  7. [Effects of small needle knife on the substance P in the dorsal root ganglion and spinal cord of rats].

    PubMed

    Wang, Jin-Rong; Wang, Yong-Zhi; Dong, Fu-Hui; Zhong, Hong-Gang; Wang, De-Long; Wang, Xuan

    2010-09-01

    To study the mechanism of synthesis of substance P (SP) in the dorsal root ganglion (DRG) and the release of it in the dorsal horn of the spinal cord of rats after compression of skeletal muscle, and to observe the influence of small needle knife. Sustained pressure of 70 kPa was applied to rats, muscular tissues for 2 hours. The rats were divided into three groups: normal, control and experiment group respectively. In all rats except the six normal ones, the lower legs were compressed once one day. The left leg was considered as the control group, the right left was experiment group, which were divided into the 1st day, the 2nd day and the 3rd day within the two groups. Experiment group was treated with small needle knife after the muscular tissue was compressed. After completing the stimulation, the DRG related to the muscle and part of spinal cord were removed for the qualification of SP-like immunoreactivity using immunohistochemistry. The dark brown stains on the DRG and on the REXed laminae I and II in the dorsal horn of the spinal cord were counted by Image-Pro Plus software. SP-like immunoreactivity in the side treated by the small needle knife was enhanced comparing with the counterpart in DRG in normal group (P < 0.01). The integrated optical density of SP like immunoreactivity of the DRG in the experiment group were significantly reduced compared with the control group (P < 0.05). However, the release of SP from spinal cord in experiment group was lower than that in the control group at the 1st day and the 3rd day (P < 0.01), with the opposite result of the 2nd day. Based on the fact that SP is a nociceptive neurotransmitter, the present study suggests that tension relaxation by small needle knife reduces expression of SP in the DRG, and shows no effects on the release of SP from the spinal cord in short-term (3 days).

  8. [Effect of spontaneous firing of injured dorsal root ganglion neuron on excitability of wide dynamic range neuron in rat spinal dorsal horn].

    PubMed

    Song, Ying; Zhang, Yong-Mei; Xu, Jie; Wu, Jing-Ru; Qin, Xia; Hua, Rong

    2013-10-25

    The aim of the paper is to study the effect of spontaneous firing of injured dorsal root ganglion (DRG) neuron in chronic compression of DRG (CCD) model on excitability of wide dynamic range (WDR) neuron in rat spinal dorsal horn. In vivo intracellular recording was done in DRG neurons and in vivo extracellular recording was done in spinal WDR neurons. After CCD, incidence of spontaneous discharge and firing frequency enhanced to 59.46% and (4.30 ± 0.69) Hz respectively from 22.81% and (0.60 ± 0.08) Hz in normal control group (P < 0.05). Local administration of 50 nmol/L tetrodotoxin (TTX) on DRG neuron in CCD rats decreased the spontaneous activities of WDR neurons from (191.97 ± 45.20)/min to (92.50 ± 30.32)/min (P < 0.05). On the other side, local administration of 100 mmol/L KCl on DRG neuron evoked spontaneous firing in a reversible way (n = 5) in silent WDR neurons of normal rats. There was 36.36% (12/33) WDR neuron showing after-discharge in response to innocuous mechanical stimuli on cutaneous receptive field in CCD rats, while after-discharge was not seen in control rats. Local administration of TTX on DRG with a concentration of 50 nmol/L attenuated innocuous electric stimuli-evoked after-discharge of WDR neurons in CCD rats in a reversible manner, and the frequency was decreased from (263 ± 56.5) Hz to (117 ± 30) Hz (P < 0.05). The study suggests that the excitability of WDR neurons is influenced by spontaneous firings of DRG neurons after CCD.

  9. Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

    PubMed Central

    2010-01-01

    Background The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory synaptic transmission in the superficial dorsal horn of the spinal cord using in vitro patch-clamp recordings from rat spinal cord slices. We further evaluated the effects of xenon on innocuous and noxious stimuli using in vivo patch-clamp method. Results In vitro, xenon decreased the amplitude and area under the curve of currents induced by exogenous NMDA and AMPA and inhibited dorsal root stimulation-evoked excitatory postsynaptic currents. Xenon decreased the amplitude, but not the frequency, of miniature excitatory postsynaptic currents. There was no discernible effect on miniature or evoked inhibitory postsynaptic currents or on the current induced by inhibitory neurotransmitters. In vivo, xenon inhibited responses to tactile and painful stimuli even in the presence of NMDA receptor antagonist. Conclusions Xenon inhibits glutamatergic excitatory transmission in the superficial dorsal horn via a postsynaptic mechanism. There is no substantial effect on inhibitory synaptic transmission at the concentration we used. The blunting of excitation in the dorsal horn lamina II neurons could underlie the analgesic effect of xenon. PMID:20444263

  10. Dynamic regulation of glycinergic input to spinal dorsal horn neurones by muscarinic receptor subtypes in rats.

    PubMed

    Wang, Xiu-Li; Zhang, Hong-Mei; Li, De-Pei; Chen, Shao-Rui; Pan, Hui-Lin

    2006-03-01

    Activation of spinal muscarinic acetylcholine receptors (mAChRs) inhibits nociception. However, the cellular mechanisms of this action are not fully known. In this study, we determined the role of mAChR subtypes in regulation of synaptic glycine release in the spinal cord. Whole-cell voltage-clamp recordings were performed on lamina II neurones in the rat spinal cord slices. The mAChR agonist oxotremorine-M significantly increased the frequency of glycinergic sIPSCs but not mIPSCs. Surprisingly, the effect of oxotremorine-M on sIPSCs was largely attenuated at a higher concentration. On the other hand, 1-10 microm oxotremorine-M dose-dependently increased the frequency of sIPSCs in rats pretreated with intrathecal pertussis toxin. Furthermore, oxotremorine-M also dose-dependently increased the frequency of sIPSCs in the presence of himbacine (an M2/M4 mAChR antagonist) or AF-DX116 (an M2 mAChR antagonist). The M3 mAChR antagonist 4-DAMP abolished the stimulatory effect of oxotremorine-M on sIPSCs. Interestingly, the GABA(B) receptor antagonist CGP55845 potentiated the stimulatory effect of oxotremorine-M on sIPSCs. In the presence of CGP55845, both himbacine and AF-DX116 similarly reduced the potentiating effect of oxotremorine-M on sIPSCs. Collectively, these data suggest that the M3 subtype is present on the somatodendritic site of glycinergic neurones and is mainly responsible for muscarinic potentiation of glycinergic input to spinal dorsal horn neurones. Concurrent stimulation of mAChRs on adjacent GABAergic interneurones attenuates synaptic glycine release through presynaptic GABA(B) receptors on glycinergic interneurones. This study illustrates a complex dynamic interaction between GABAergic and glycinergic synapses in the spinal cord dorsal horn.

  11. The inhibition of nitric oxide-activated poly(ADP-ribose) synthetase attenuates transsynaptic alteration of spinal cord dorsal horn neurons and neuropathic pain in the rat.

    PubMed

    Mao, J; Price, D D; Zhu, J; Lu, J; Mayer, D J

    1997-09-01

    Transsynaptic alteration of spinal cord dorsal horn neurons characterized by hyperchromatosis of cytoplasm and nucleoplasm (so-called 'dark' neurons) occurs in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the common sciatic nerve. The incidence of dark neurons in CCI rats has been proposed to be mediated by glutamate-induced neurotoxicity. In the present study, we examined whether the inhibition of the nitric oxide (NO)-activated poly(ADP-ribose) synthetase (PARS), a nuclear enzyme critical to glutamate-induced neurotoxicity, would both reduce the incidence of dark neurons and attenuate behavioral manifestations of neuropathic pain in CCI rats. Dark neurons were observed bilaterally (with ipsilateral predominance) within the spinal cord dorsal horn, particularly in laminae I-II, of rats 8 days after unilateral sciatic nerve ligation as compared to sham operated rats. The number of dark neurons in the dorsal horn was dose-dependently reduced in CCI rats receiving once daily intrathecal (i.t.) treatment with the PARS inhibitor benzamide (200 or 400 nmol, but not 100 nmol benzamide or saline) for 7 days. Consistent with the histological improvement, thermal hyperalgesia, mechanical hyperalgesia, and low threshold mechano-allodynia also were reliably reduced in CCI rats treated with either 200 or 400 nmol benzamide. Neither dark neurons nor neuropathic pain behaviors were reliably affected by i.t. administration of either 800 nmol novobiocin (a mono(ADP-ribose) synthetase) or 800 nmol benzoic acid (the backbone structure of benzamide), indicating a selective effect of benzamide. Intrathecal treatment with an NO synthase inhibitor NG-nitro-L-arginine methyl ester (40 nmol, but not its inactive D-isomer) utilizing the same benzamide treatment regimen resulted in similar reductions of both dark neurons and neuropathic pain behaviors in CCI rats. These results provide, for the first time, in vivo evidence indicating that benzamide is

  12. Dexmedetomidine attenuates persistent postsurgical pain by upregulating K+-Cl- cotransporter-2 in the spinal dorsal horn in rats.

    PubMed

    Dai, Shuhong; Qi, Yu; Fu, Jie; Li, Na; Zhang, Xu; Zhang, Juan; Zhang, Wei; Xu, Haijun; Zhou, Hai; Ma, Zhengliang

    2018-01-01

    Dexmedetomidine (DEX) could have an analgesic effect on pain transmission through the modulation of brain-derived neurotrophic factor (BDNF). In addition, KCC2-induced shift in neuronal Cl- homeostasis is crucial for postsynaptic inhibition mediated by GABAA receptors. Accumulating evidence shows that nerve injury, peripheral inflammation and stress activate the spinal BDNF/TrkB signal, which results in the downregulation of KCC2 transport and expression, eventually leads to GAGAergic disinhibition and hyperalgesia. The aim of this experiment was to explore the interaction between DEX and KCC2 at a molecular level in rats in the persistent postsurgical pain (PPSP). PPSP in rats was evoked by the skin/muscle incision and retraction (SMIR). Mechanical hypersensitivity was assessed with the Dynamic Plantar Aesthesiometer. Western blot and immunofluorescence assay were used to assess the expressions of related proteins. In the first part of our experiment, the results revealed that the BDNF/TrkB-KCC2 signal plays a critical role in the development of SMIR-evoked PPSP; the second part showed that intraperitoneal administrations of 40 µg/kg DEX at 15 min presurgery and 1 to 3 days post-surgery significantly attenuated SMIR-evoked PPSP. Simultaneously, SMIR-induced KCC2 downregulation was partly reversed, which coincided with the inhibition of the BDNF/TrkB signal in the spinal dorsal horn. Moreover, intrathecal administrations of KCC2 inhibitor VU0240551 significantly reduced the analgesic effect of DEX on SMIR-evoked PPSP. The results of our study indicated that DEX attenuated PPSP by restoring KCC2 function through reducing BDNF/TrkB signal in the spinal dorsal horn in rats, which provides a new insight into the treatment of chronic pain in clinical postsurgical pain management.

  13. Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat

    PubMed Central

    Asante, Curtis O.; Dickenson, Anthony H.

    2010-01-01

    We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persistent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs) originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is known be important in maintaining these pain-like states. To determine if spinal rapamycin-sensitive pathways are activated by a descending serotonergic drive, we investigated the effects of spinally administered rapamycin on responses of deep dorsal horn neurons that had been pre-treated with the selective 5-HT3R antagonist ondansetron. We also investigated the effects of spinally administered cell cycle inhibitor (CCI)-779 (a rapamycin ester analogue) on deep dorsal horn neurons from rats with carrageenan-induced inflammation of the hind paw. Unlike some other models of persistent pain, this model does not involve an altered 5-HT3R-mediated descending serotonergic drive. We found that the inhibitory effects of rapamycin were significantly reduced for neuronal responses to mechanical and thermal stimuli when the spinal cord was pre-treated with ondansetron. Furthermore, CCI-779 was found to be ineffective in attenuating spinal neuronal responses to peripheral stimuli in carrageenan-treated rats. Therefore, we conclude that 5-HT3R-mediated descending facilitation is one requirement for activation of rapamycin-sensitive pathways that contribute to persistent pain-like states. PMID:20709148

  14. Radiotherapy Suppresses Bone Cancer Pain through Inhibiting Activation of cAMP Signaling in Rat Dorsal Root Ganglion and Spinal Cord.

    PubMed

    Zhu, Guiqin; Dong, Yanbin; He, Xueming; Zhao, Ping; Yang, Aixing; Zhou, Rubing; Ma, Jianhua; Xie, Zhong; Song, Xue-Jun

    2016-01-01

    Radiotherapy is one of the major clinical approaches for treatment of bone cancer pain. Activation of cAMP-PKA signaling pathway plays important roles in bone cancer pain. Here, we examined the effects of radiotherapy on bone cancer pain and accompanying abnormal activation of cAMP-PKA signaling. Female Sprague-Dawley rats were used and received tumor cell implantation (TCI) in rat tibia (TCI cancer pain model). Some of the rats that previously received TCI treatment were treated with X-ray radiation (radiotherapy). Thermal hyperalgesia and mechanical allodynia were measured and used for evaluating level of pain caused by TCI treatment. PKA mRNA expression in dorsal root ganglion (DRG) was detected by RT-PCR. Concentrations of cAMP, IL-1β, and TNF-α as well as PKA activity in DRG and the spinal cord were measured by ELISA. The results showed that radiotherapy significantly suppressed TCI-induced thermal hyperalgesia and mechanical allodynia. The level of PKA mRNA in DRG, cAMP concentration and PKA activity in DRG and in the spinal cord, and concentrations of IL-1β and TNF-α in the spinal cord were significantly reduced by radiotherapy. In addition, radiotherapy also reduced TCI-induced bone loss. These findings suggest that radiotherapy may suppress bone cancer pain through inhibition of activation of cAMP-PKA signaling pathway in DRG and the spinal cord.

  15. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    PubMed

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. [Expressions of neuropathic pain-related proteins in the spinal cord dorsal horn in rats with bilateral chronic constriction injury].

    PubMed

    Shen, Le; Li, Xu; Wang, Hai-tang; Yu, Xue-rong; Huang, Yu-guang

    2013-12-01

    To evaluate the pain-related behavioral changes in rats with bilateral chronic constriction injury(bCCI)and identify the expressions of neuropathic pain-related proteins. The bCCI models were established by ligating the sciatic nerves in female Sprague Dawley rats. Both mechanical hyperalgesia and cold hyperalgesia were evaluated through electronic von Frey and acetone method. Liquid chromatography-mass spectrometry/mass spectrometry was applied to characterize the differentially expressed proteins. Both mechanical withdrawal threshold and cold hyperalgesia threshold decreased significantly on the postoperative day 7 and 14, when compared with na ve or sham rats(P <0.05). Twenty five differentially expressed proteins associated with bilateral CCI were discovered, with eighteen of them were upregulated and seven of them downregulated. The bCCT rats have remarkably decreased mechanical and cold hyperalgesia thresholds. Twenty five neuropathic pain-related proteins are found in the spinal cord dorsal horn.

  17. Responses of dorsal spinal cord blood flow to noxious mechanical stimulation of the skin in anesthetized rats.

    PubMed

    Toda, Hiroko; Maruyama, Hitoshi; Budgell, Brian; Kurosawa, Mieko

    2008-08-01

    In urethane-anesthetized, artificially ventilated rats, alterations in dorsal spinal cord blood flow (SCBF) at the L4-6 level were measured with laser Doppler flowmetry in response to noxious mechanical cutaneous stimulation (pinching) of either a forepaw or a hindpaw. The stimulation was delivered ipsilaterally or contralaterally to the site of blood flow measurement. Pinching of the forepaw or the hindpaw on either side increased mean arterial pressure (MAP) to the same degree. However, the SCBF response to pinching of the ipsilateral hindpaw was significantly greater than that to other stimulations. These responses were not influenced by denervation of the baroreceptors. The responses of SCBF to pinching of the ipsilateral hindpaw persisted both after treatment with phenoxybenzamine and after spinalization at the C1-2 level, whereas the responses to pinching at other sites disappeared. The responses of MAP to stimulation at all four sites became negligible after treatment with phenoxybenzamine and after spinalization at the C1-2 level. These results indicate that noxious mechanical stimulation of the skin produces increases in SCBF via two mechanisms: one is via an elevation of systemic arterial pressure; the other is via a localized spinal mechanism evoked by ipsilateral, segmental inputs.

  18. Kappa opioid receptors in rat spinal cord vary across the estrous cycle.

    PubMed

    Chang, P C; Aicher, S A; Drake, C T

    2000-04-07

    Kappa opioid receptors (KORs) were immunocytochemically localized in the lumbosacral spinal cord of female rats in different stages of the estrous cycle to examine the influence of hormonal status on receptor density. KOR labeling was primarily in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that rats in diestrus had significantly lower KOR densities than those in proestrus or estrus. This suggests that female reproductive hormones regulate spinal KOR levels, which may contribute to variations in analgesic effectiveness of KOR agonists across the estrous cycle.

  19. Enhanced inhibitory synaptic transmission in the spinal dorsal horn mediates antinociceptive effects of TC-2559

    PubMed Central

    2011-01-01

    Background TC-2559 is a selective α4β2 subtype of nicotinic acetylcholine receptor (nAChR) partial agonist and α4β2 nAChR activation has been related to antinociception. The aim of this study is to investigate the analgesic effect of TC-2559 and its underlying spinal mechanisms. Results 1) In vivo bioavailability study: TC-2559 (3 mg/kg) had high absorption rate in rats with maximal total brain concentration reached over 4.6 μM within first 15 min after administration and eliminated rapidly with brain half life of about 20 min after injection. 2) In vivo behavioral experiments: TC-2559 exerts dose dependent antinociceptive effects in both formalin test in mice and chronic constriction injury (CCI) model in rats by activation of α4β2 nAChRs; 3) Whole-cell patch-clamp studies in the superficial dorsal horn neurons of the spinal cord slices: perfusion of TC-2559 (2 μM) significantly increased the frequency, but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). The enhancement of sIPSCs was blocked by pre-application of DHβE (2 μM), a selective α4β2 nicotinic receptor antagonist. Neither the frequency nor the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) of spinal dorsal horn neurons were affected by TC-2559. Conclusions Enhancement of inhibitory synaptic transmission in the spinal dorsal horn via activation of α4β2 nAChRs may be one of the mechanisms of the antinociceptive effects of TC-2559 on pathological pain models. It provides further evidence to support the notion that selective α4β2 subtype nAChR agonist may be developed as new analgesic drug for the treatment of neuropathic pain. PMID:21816108

  20. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats

    PubMed Central

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang

    2018-01-01

    BACKGROUND: Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. METHODS: Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1–7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. RESULTS: Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1–4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression

  1. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats.

    PubMed

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang; Shu, Haihua

    2018-01-01

    Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1-7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1-4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression of IL-1β, IL-6, and TNF-α in the

  2. Spinal cord stimulation modulates intraspinal colorectal visceroreceptive transmission in rats

    PubMed Central

    Qin, C.; Lehew, R.T.; Khan, K.A.; Wienecke, G.M.; Foreman, R.D.

    2007-01-01

    Previous studies have shown that spinal cord stimulation (SCS) of upper lumbar segments decreases visceromotor responses to mechanical stimuli in a sensitized rat colon and reduces symptoms of irritable bowel syndrome in patients. SCS applied to the upper cervical spinal dorsal column reduces pain of chronic refractory angina. Further, chemical stimulation of C1-C2 propriospinal neurons in rats modulates the responses of lumbosacral spinal neurons to colorectal distension. The present study was designed to compare the effects of upper cervical and lumbar SCS on activity of lumbosacral neurons receiving noxious colorectal input. Extracellular potentials of L6-S2 spinal neurons were recorded in pentobarbital anesthetized, paralyzed and ventilated male rats. SCS (50 Hz, 0.2 ms) at low intensity (90% of motor threshold) was applied to the dorsal column of upper cervical (C1-C2) or upper lumbar (L2-L3) ipsilateral spinal segments. Colorectal distension (CRD, 20, 40, 60 mmHg, 20 s) was produced by air inflation of a latex balloon. Results showed that SCS applied to L2-L3 and C1-C2 segments significantly reduced the excitatory responses to noxious CRD from 417.6±68.0 imp to 296.3±53.6 imp (P<0.05, n=24) and from 336.2±64.5 imp to 225.0±73.3 imp (P<0.05, n= 18), respectively. Effects of L2-L3 and C1-C2 SCS lasted 10.2±1.9 min and 8.0±0.9 min after offset of CRD. Effects of SCS were observed on spinal neurons with either high or low threshold excitatory responses to CRD. However, L2-L3 or C1-C2 SCS did not significantly affect inhibitory neuronal responses to CRD. C1-C2 SCS-induced effects were abolished by cutting the C7-C8 dorsal column but not by spinal transection at cervicomedullary junction. These data demonstrated that upper cervical or lumbar SCS modulated responses of lumbosacral spinal neurons to noxious mechanical stimulation of the colon, thereby, proved two loci for a potential therapeutic effect of SCS in patients with irritable bowel syndrome and other

  3. Central glucocorticoid receptors regulate the upregulation of spinal cannabinoid-1 receptors after peripheral nerve injury in rats.

    PubMed

    Wang, Shuxing; Lim, Grewo; Mao, Ji; Sung, Backil; Yang, Liling; Mao, Jianren

    2007-09-01

    Previous studies have shown that peripheral nerve injury upregulated both glucocorticoid receptors (GR) and cannabinoid-1 receptors (CB1R) within the spinal cord dorsal horn in rats. However, the relationship between the expression of spinal GR and CB1R after nerve injury remains unclear. Here, we examined the hypothesis that the upregulation of spinal CB1R induced by chronic constriction nerve injury (CCI) in rats would be regulated by spinal GR. CCI induced the upregulation of spinal CB1R primarily within the ipsilateral spinal cord dorsal horn as revealed by Western blot and immunohistochemistry. The expression of CB1R in CCI rats was substantially attenuated by intrathecal treatment with either the GR antagonist RU38486 or a GR antisense oligonucleotide given twice daily for postoperative day 1-6, whereas the expression of spinal CB1R was enhanced following intrathecal administration of a GR sense oligonucleotide twice daily for postoperative day 1-6. Furthermore, the upregulation of spinal CB1R after nerve injury was prevented in adrenalectomized rats, which was at least partially restored with the intrathecal administration of an exogenous GR agonist dexamethasone, indicating that corticosteroids (endogenous GR agonists) were critical to spinal GR actions. Since the development of neuropathic pain behaviors in CCI rats was attenuated by either RU38486 or a GR antisense oligonucleotide, these results suggest that CB1R is a downstream target for spinal GR actions contributory to the mechanisms of neuropathic pain.

  4. Select spinal lesions reveal multiple ascending pathways in the rat conveying input from the male genitalia

    PubMed Central

    Hubscher, C H; Reed, W R; Kaddumi, E G; Armstrong, J E; Johnson, R D

    2010-01-01

    The specific white matter location of all the spinal pathways conveying penile input to the rostral medulla is not known. Our previous studies using rats demonstrated the loss of low but not high threshold penile inputs to medullary reticular formation (MRF) neurons after acute and chronic dorsal column (DC) lesions of the T8 spinal cord and loss of all penile inputs after lesioning the dorsal three-fifths of the cord. In the present study, select T8 lesions were made and terminal electrophysiological recordings were performed 45–60 days later in a limited portion of the nucleus reticularis gigantocellularis (Gi) and Gi pars alpha. Lesions included subtotal dorsal hemisections that spared only the lateral half of the dorsal portion of the lateral funiculus on one side, dorsal and over-dorsal hemisections, and subtotal transections that spared predominantly just the ventromedial white matter. Electrophysiological data for 448 single unit recordings obtained from 32 urethane-anaesthetized rats, when analysed in groups based upon histological lesion reconstructions, revealed (1) ascending bilateral projections in the dorsal, dorsolateral and ventrolateral white matter of the spinal cord conveying information from the male external genitalia to MRF, and (2) ascending bilateral projections in the ventrolateral white matter conveying information from the pelvic visceral organs (bladder, descending colon, urethra) to MRF. Multiple spinal pathways from the penis to the MRF may correspond to different functions, including those processing affective/pleasure/motivational, nociception, and mating-specific (such as for erection and ejaculation) inputs. PMID:20142271

  5. Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats.

    PubMed

    Kurachi, M; Aihara, H

    1984-09-01

    The effects of chlorphenesin carbamate (CPC) and mephenesin on spinal neurons were investigated in spinal rats. CPC (50 mg/kg i.v.) inhibited the mono-(MSR) and poly-synaptic reflex (PSR), the latter being more susceptible than the former to CPC depression. Mephenesin also inhibited MSR and PSR, though the effects were short in duration. CPC had no effect on the dorsal root potential evoked by the stimulation of the dorsal root, while mephenesin reduced the dorsal root-dorsal root reflex. The excitability of motoneuron was reduced by the administration of CPC or mephenesin. The excitability of primary afferent terminal was unchanged by CPC, while it was inhibited by mephenesin. Neither CPC nor mephenesin influenced the field potential evoked by the dorsal root stimulation. Both CPC and mephenesin had no effect on the synaptic recovery. These results suggest that both CPC and mephenesin inhibit the firing of motoneurons by stabilizing the neuronal membrane, while mephenesin additionally suppresses the dorsal root reflex and the excitability of the primary afferent terminal. These inhibitory actions of CPC on spinal activities may contribute, at least partly, to its muscle relaxing action.

  6. Dense TRPV2 immunoreactivity defines a subset of motoneurons in the dorsal lateral nucleus of the spinal cord, the nucleus ambiguus and the trigeminal motor nucleus in rat

    PubMed Central

    LeWinter, Robin D.; Scherrer, Grégory; Basbaum, Allan I.

    2008-01-01

    The transient receptor potential cation channel TRPV2 is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52°C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined. PMID:18063314

  7. Development of putative inhibitory neurons in the embryonic and postnatal mouse superficial spinal dorsal horn.

    PubMed

    Balázs, Anita; Mészár, Zoltán; Hegedűs, Krisztina; Kenyeres, Annamária; Hegyi, Zoltán; Dócs, Klaudia; Antal, Miklós

    2017-07-01

    The superficial spinal dorsal horn is the first relay station of pain processing. It is also widely accepted that spinal synaptic processing to control the modality and intensity of pain signals transmitted to higher brain centers is primarily defined by inhibitory neurons in the superficial spinal dorsal horn. Earlier studies suggest that the construction of pain processing spinal neural circuits including the GABAergic components should be completed by birth, although major chemical refinements may occur postnatally. Because of their utmost importance in pain processing, we intended to provide a detailed knowledge concerning the development of GABAergic neurons in the superficial spinal dorsal horn, which is now missing from the literature. Thus, we studied the developmental changes in the distribution of neurons expressing GABAergic markers like Pax2, GAD65 and GAD67 in the superficial spinal dorsal horn of wild type as well as GAD65-GFP and GAD67-GFP transgenic mice from embryonic day 11.5 (E11.5) till postnatal day 14 (P14). We found that GABAergic neurons populate the superficial spinal dorsal horn from the beginning of its delineation at E14.5. We also showed that the numbers of GABAergic neurons in the superficial spinal dorsal horn continuously increase till E17.5, but there is a prominent decline in their numbers during the first two postnatal weeks. Our results indicate that the developmental process leading to the delineation of the inhibitory and excitatory cellular assemblies of pain processing neural circuits in the superficial spinal dorsal horn of mice is not completed by birth, but it continues postnatally.

  8. Cholera toxin B subunit labeling in lamina II of spinal cord dorsal horn following chronic inflammation in rats.

    PubMed

    Ma, Qing Ping; Tian, Li

    2002-07-26

    We have investigated the effect of inflammation on the labeling pattern of cholera toxin B subunit (CTB)-conjugated horseradish peroxidase, an A-fiber marker, by an intra-sciatic nerve injection of the tracer. Following chronic inflammation in one hind paw in rats, there was substantial CTB labeling in lamina II of the spinal dorsal horn, which is normally absent. However, there was no change in the labeling pattern of wheat germ agglutinin or fluoride resistant acid phosphatase/thiamine monophosphatase, two C-fiber markers. The CTB labeling in lamina II after peripheral nerve injury has been interpreted as central sprouting of A-fibers or uptake of the tracer by injured C-fibers. Our results suggest that chronic inflammation and nerve injury may share some common mechanisms in generating allodynia and hyperalgesia.

  9. Acetaminophen Metabolite N-Acylphenolamine Induces Analgesia via Transient Receptor Potential Vanilloid 1 Receptors Expressed on the Primary Afferent Terminals of C-fibers in the Spinal Dorsal Horn.

    PubMed

    Ohashi, Nobuko; Uta, Daisuke; Sasaki, Mika; Ohashi, Masayuki; Kamiya, Yoshinori; Kohno, Tatsuro

    2017-08-01

    The widely used analgesic acetaminophen is metabolized to N-acylphenolamine, which induces analgesia by acting directly on transient receptor potential vanilloid 1 or cannabinoid 1 receptors in the brain. Although these receptors are also abundant in the spinal cord, no previous studies have reported analgesic effects of acetaminophen or N-acylphenolamine mediated by the spinal cord dorsal horn. We hypothesized that clinical doses of acetaminophen induce analgesia via these spinal mechanisms. We assessed our hypothesis in a rat model using behavioral measures. We also used in vivo and in vitro whole cell patch-clamp recordings of dorsal horn neurons to assess excitatory synaptic transmission. Intravenous acetaminophen decreased peripheral pinch-induced excitatory responses in the dorsal horn (53.1 ± 20.7% of control; n = 10; P < 0.01), while direct application of acetaminophen to the dorsal horn did not reduce these responses. Direct application of N-acylphenolamine decreased the amplitudes of monosynaptic excitatory postsynaptic currents evoked by C-fiber stimulation (control, 462.5 ± 197.5 pA; N-acylphenolamine, 272.5 ± 134.5 pA; n = 10; P = 0.022) but not those evoked by stimulation of Aδ-fibers. These phenomena were mediated by transient receptor potential vanilloid 1 receptors, but not cannabinoid 1 receptors. The analgesic effects of acetaminophen and N-acylphenolamine were stronger in rats experiencing an inflammatory pain model compared to naïve rats. Our results suggest that the acetaminophen metabolite N-acylphenolamine induces analgesia directly via transient receptor potential vanilloid 1 receptors expressed on central terminals of C-fibers in the spinal dorsal horn and leads to conduction block, shunt currents, and desensitization of these fibers.

  10. Noradrenergic innervation of the rat spinal cord caudal to a complete spinal cord transection: effects of olfactory ensheathing glia.

    PubMed

    Takeoka, Aya; Kubasak, Marc D; Zhong, Hui; Kaplan, Jennifer; Roy, Roland R; Phelps, Patricia E

    2010-03-01

    Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons. Copyright 2009 Elsevier Inc. All rights reserved.

  11. NORADRENERGIC INNERVATION OF THE RAT SPINAL CORD CAUDAL TO A COMPLETE SPINAL CORD TRANSECTION: EFFECTS OF OLFACTORY ENSHEATHING GLIA

    PubMed Central

    Takeoka, Aya; Kubasak, Marc D.; Zhong, Hui; Kaplan, Jennifer; Roy, Roland R.; Phelps, Patricia E.

    2010-01-01

    Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons. PMID:20025875

  12. Phosphorylation of spinal signaling-regulated kinases by acute uterine cervical distension in rats.

    PubMed

    Wang, L Z; Liu, X; Wu, W X; Chai, R K; Chang, X Y

    2010-01-01

    Spinal extracellular signaling-regulated kinase 1 and 2 (ERK 1/2) have been found to contribute to nociceptive processing, but the role of spinal ERK 1/2 in visceral pain related to the uterine cervix, the source of pain during the first stage of labor, is unknown. The aim of this study was to investigate ERK activation (phosphorylation) in spinal dorsal horn neurons after acute uterine cervical distension. Under intraperitoneal anesthesia using chloral hydrate 300 mg/kg, female Sprague-Dawley rats were exposed to a 10-s uterine cervical distension of 25, 50, 75, and 100g or no distension (sham). The electromyographic response in the rectus abdominis muscle and mean arterial blood pressure and heart rate changes to uterine cervical distension were determined. The numbers of phosphorylated-ERK 1/2- immunoreactive (pERK 1/2-IR) dorsal horn neurons in cervical (C5-8), thoracic (T5-8), thoracolumbar (T12-L2) and lumbosacral (L(6)-S(1)) segments were counted using immunohistochemistry. Compared with the non-distended sham rats, uterine cervical distension resulted in a stimulus-dependent increase in electromyographic activity and the number of pERK-IR neurons that selectively located to the thoracolumbar segment, mostly in the deep dorsal and the central canal regions. The time course study demonstrated that spinal ERK activation peaked at 60 min with a slow decline for 120 min after uterine cervical distension stimulation. This study suggests that activation of spinal ERK might be involved in acute visceral pain arising from the uterine cervix. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Spinally projecting neurons of the dorsal column nucleus in a reptile: locus of origin and trajectory of termination.

    PubMed

    Pritz, M B

    1996-01-01

    Interconnections between the dorsal column nucleus and the spinal cord were investigated in a reptile, Caiman crocodilus. After placement of an anterograde tracer into the dorsal column nucleus, descending fibers are seen to leave this nucleus to enter the dorsal funiculus where they course ventrally to terminate in lamina V of the spinal cord as far caudally as C2. Placement of a retrograde tracer into cut fibers of the cervical spinal cord identified the relay cells of the dorsal column nucleus that project to the spinal cord. These neurons were mainly clustered in a caudal and ventral part of this nucleus. The soma of these spinally projecting cells were small and were generally round or oval in shape. A number of these neurons had the long axis of their soma oriented dorsoventrally, with a primary dendrite extending dorsally. Fibers in the dorsal funiculus that originated from the spinal cord enter the caudal part of the dorsal column nucleus and turn ventral. In the dorsal column nucleus, these axons run parallel to the vertically oriented dendrites of these spinally projecting cells before termination in close relation to the cell bodies of these neurons. Quantitative observations (mean +/- standard error) were made on well labeled neurons and included several measurements: area, perimeter, and degree of eccentricity (greatest width/greatest length) in both the transverse as well as the sagittal plane. These spinally projecting neurons in Caiman are located in the dorsal column nucleus in a position similar to that of spinally projecting cells in cats.

  14. Downregulation of spinal glutamate transporter EAAC1 following nerve injury is regulated by central glucocorticoid receptors in rats.

    PubMed

    Wang, Shuxing; Lim, Grewo; Yang, Liling; Sung, Backil; Mao, Jianren

    2006-01-01

    Previous studies have shown that glucocorticoid receptors (GR) were upregulated, whereas glutamate transporters were downregulated, within the spinal cord dorsal horn after peripheral nerve injury. However, the relationship between the expression of spinal GR and glutamate transporter after nerve injury remains unknown. In the present study, we examined the hypothesis that central GR would regulate the expression of spinal glutamate transporter EAAC1 following chronic constriction nerve injury (CCI) in rats. CCI induced a significant downregulation of EAAC1 expression primarily within the ipsilateral spinal cord dorsal horn when examined on postoperative day 7 using both Western blot and immunohistochemistry. The downregulation of EAAC1 was significantly diminished after either the GR antagonist RU38486 (4 > 2 = 0.5 microg = vehicle) or a GR antisense oligonucleotide was administered intrathecally twice daily for postoperative day 1-6. Moreover, CCI induced a significant downregulation of nuclear factor kappaB (NF-kappaB) within the ipsilateral spinal cord dorsal horn, which also was attenuated by either RU38486 (4 > 2 = 0.5 microg = vehicle) or a GR antisense oligonucleotide. The immunohistochemical data indicated a pattern of colocalization between GR and EAAC1 as well as GR and NF-kappaB within the spinal cord dorsal horn. Since, NF-kappaB has been shown to regulate the expression of those cellular elements linked to inflammation and tissue injury and its activity can be negatively regulated by GR activation, these results suggest that spinal GR through NF-kappaB may play a significant role in the regulation of EAAC1 expression after peripheral nerve injury, a cellular pathway that may contribute to the development of neuropathic pain behaviors in rats.

  15. Selective ablation of dorsal horn NK1 expressing cells reveals a modulation of spinal alpha2-adrenergic inhibition of dorsal horn neurones.

    PubMed

    Rahman, Wahida; Suzuki, Rie; Hunt, Stephen P; Dickenson, Anthony H

    2008-06-01

    Activity in descending systems from the brainstem modulates nociceptive transmission through the dorsal horn. Intrathecal injection of the neurotoxin saporin conjugated to SP (SP-SAP) into the lumbar spinal cord results in the selective ablation of NK(1) receptor expressing (NK(1)+ve) neurones in the superficial dorsal horn (lamina I/III). Loss of these NK(1)+ve neurones attenuates excitability of deep dorsal horn neurones due to a disruption of both intrinsic spinal circuits and a spino-bulbo-spinal loop, which activates a descending excitatory drive, mediated through spinal 5HT(3) receptors. Descending inhibitory pathways also modulate spinal activity and hence control the level of nociceptive transmission relayed to higher centres. To ascertain the spinal origins of the major descending noradrenergic inhibitory pathway we studied the effects of a selective alpha2-adrenoceptor antagonist, atipamezole, on neuronal activity in animals pre-treated with SP-SAP. Intrathecal application of atipamezole dose dependently facilitated the mechanically evoked neuronal responses of deep dorsal horn neurones to low intensity von Frey hairs (5-15 g) and noxious thermal (45-50 degrees C) evoked responses in SAP control animals indicating a physiological alpha2-adrenoceptor control. This facilitatory effect of atipamezole was lost in the SP-SAP treated group. These data suggest that activity within noradrenergic pathways have a dependence on dorsal horn NK(1)+ve cells. Further, noradrenergic descending inhibition may in part be driven by lamina I/III (NK(1)+ve) cells, and mediated via spinal alpha2-adrenoceptor activation. Since the same neuronal population drives descending facilitation and inhibition, the reduced excitability of lamina V/VI WDR neurones seen after loss of these NK(1)+ve neurones indicates a dominant role of descending facilitation.

  16. Spinal SIRPα1-SHP2 interaction regulates spinal nerve ligation-induced neuropathic pain via PSD-95-dependent NR2B activation in rats.

    PubMed

    Peng, Hsien-Yu; Chen, Gin-Den; Lai, Cheng-Yuang; Hsieh, Ming-Chun; Lin, Tzer-Bin

    2012-05-01

    The fact that neuropathic pain mechanisms are not well understood is a major impediment in the development of effective clinical treatments. We examined whether the interaction between signal regulatory protein alpha 1 (SIRPα1) and Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2), and the downstream spinal SHP2/postsynaptic density 95 (PSD-95)/N-methyl-d-aspartate receptor NR2B subunit signaling cascade play a role in neuropathic pain. Following spinal nerve ligation (L5), we assessed tactile allodynia using the von Frey filament test and analyzed dorsal horn samples (L4-5) by Western blotting, reverse transcription polymerase chain reaction, coimmunoprecipitation, and immunofluorescence. Nerve ligation induced allodynia, SIRPα1, SHP2, phosphorylated SHP2 (pSHP2), and phosphorylated NR2B (pNR2B) expression, and SHP2-PSD-95, pSHP2-PSD-95, PSD-95-NR2B, and PSD-95-pNR2B coimmunoprecipitation in the ipsilateral dorsal horn. In allodynic rats, injury-induced SHP2 immunoreactivity was localized in the ipsilateral dorsal horn neurons and coincident with PSD-95 and NR2B immunoreactivity. SIRPα1 silencing using small interfering RNA (siRNA; 1, 3, or 5μg/rat for 7days) prevented injury-induced allodynia and the associated changes in protein expression, phosphorylation, and coimmunoprecipitation. Intrathecal administration of NSC-87877 (an SHP2 antagonist; 1, 10, or 100μM/rat) and SIRPα1-neutralizing antibodies (1, 10, or 30μg/rat) suppressed spinal nerve ligation-induced allodynia, spinal SHP2 and NR2B phosphorylation, and SHP2/phosphorylated SHP2-PSD-95 and PSD-95-NR2B/phosphorylated NR2B coprecipitation. SHP2 siRNA led to similar effects as the NSC-87877 and SIRPα1 antibody treatments, except it prevented the allodynia-associated spinal SHP2 expression. In conclusion, our results suggest that a spinal SIRPα1-SHP2 interaction exists that subsequently triggers SHP2/PSD-95/NR2B signaling, thereby playing a role in neuropathic pain development

  17. Paclitaxel-induced peripheral neuropathy increases substance P release in rat spinal cord.

    PubMed

    Chiba, Terumasa; Oka, Yusuke; Kambe, Toshie; Koizumi, Naoya; Abe, Kenji; Kawakami, Kazuyoshi; Utsunomiya, Iku; Taguchi, Kyoji

    2016-01-05

    Peripheral neuropathy is a common adverse effect of paclitaxel treatment. The major dose-limiting side effect of paclitaxel is peripheral sensory neuropathy, which is characterized by painful paresthesia of the hands and feet. To analyze the contribution of substance P to the development of paclitaxel-induced mechanical hyperalgesia, substance P expression in the superficial layers of the rat spinal dorsal horn was analyzed after paclitaxel treatment. Behavioral assessment using the von Frey test and the paw thermal test showed that intraperitoneal administration of 2 and 4mg/kg paclitaxel induced mechanical allodynia/hyperalgesia and thermal hyperalgesia 7 and 14 days after treatment. Immunohistochemistry showed that paclitaxel (4mg/kg) treatment significantly increased substance P expression (37.6±3.7% on day 7, 43.6±4.6% on day 14) in the superficial layers of the spinal dorsal horn, whereas calcitonin gene-related peptide (CGRP) expression was unchanged. Moreover, paclitaxel (2 and 4mg/kg) treatment significantly increased substance P release in the spinal cord on day 14. These results suggest that paclitaxel treatment increases release of substance P, but not CGRP in the superficial layers of the spinal dorsal horn and may contribute to paclitaxel-induced painful peripheral neuropathy. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Antinociception induced by intravenous dipyrone (metamizol) upon dorsal horn neurons: involvement of endogenous opioids at the periaqueductal gray matter, the nucleus raphe magnus, and the spinal cord in rats.

    PubMed

    Vazquez, Enrique; Hernandez, Norma; Escobar, William; Vanegas, Horacio

    2005-06-28

    Microinjection of dipyrone (metamizol) into the periaqueductal gray matter (PAG) in rats causes antinociception. This is mediated by endogenous opioidergic circuits located in the PAG itself, in the nucleus raphe magnus and adjacent structures, and in the spinal cord. The clinical relevance of these findings, however, is unclear. Therefore, in the present study, dipyrone was administered intravenously, and the involvement of endogenous opioidergic circuits in the so-induced antinociception was investigated. In rats, responses of dorsal spinal wide-dynamic range neurons to mechanical noxious stimulation of a hindpaw were strongly inhibited by intravenous dipyrone (200 mg/kg). This effect was abolished by microinjection of naloxone (0.5 microg/0.5 microl) into the ventrolateral and lateral PAG or into the nucleus raphe magnus or by direct application of naloxone (50 microg/50 microl) onto the spinal cord surface above the recorded neuron. These results show that dipyrone, a non-opioid analgesic with widespread use in Europe and Latin America, when administered in a clinically relevant fashion causes antinociception by activating endogenous opioidergic circuits along the descending pain control system.

  19. Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord.

    PubMed

    Junge, Harald J; Yung, Andrea R; Goodrich, Lisa V; Chen, Zhe

    2016-10-26

    Newborn neurons often migrate before undergoing final differentiation, extending neurites, and forming synaptic connections. Therefore, neuronal migration is crucial for establishing neural circuitry during development. In the developing spinal cord, neuroprogenitors first undergo radial migration within the ventricular zone. Differentiated neurons continue to migrate tangentially before reaching the final positions. The molecular pathways that regulate these migration processes remain largely unknown. Our previous study suggests that the DCC receptor is important for the migration of the dorsal spinal cord progenitors and interneurons. In this study, we determined the involvement of the Netrin1 ligand and the ROBO3 coreceptor in the migration. By pulse labeling neuroprogenitors with electroporation, we examined their radial migration in Netrin1 (Ntn1), Dcc, and Robo3 knockout mice. We found that all three mutants exhibit delayed migration. Furthermore, using immunohistochemistry of the BARHL2 interneuron marker, we found that the mediolateral and dorsoventral migration of differentiated dorsal interneurons is also delayed. Together, our results suggest that Netrin1/DCC signaling induce neuronal migration in the dorsal spinal cord. Netrin1, DCC, and ROBO3 have been extensively studied for their functions in regulating axon guidance in the spinal commissural interneurons. We reveal that during earlier development of dorsal interneurons including commissural neurons, these molecules play an important role in promoting cell migration.

  20. [Effect of M8046 on expression of COX-2/PGE2 in spinal cord and DRG in rats with neuropathic pain].

    PubMed

    Ou, Guo-Kun; Wang, Rui-Xian; Li, Jia-Jia; Cao, Hong; Lian, Qing-Quan; Li, Jun

    2013-03-01

    To investigate the effects of glucocorticoid receptor antagonist-M8046 on the behavior and the cyclooxygenase-2/prostaglandin E2( COX-2/PGE2) expression in spinal cord dorsal horn and dorsal root ganglia (DRG) in chronic constrictive injury (CCI) rats. One hundred and forty-four male SD rats were randomly divided into 4 groups, 36 rats in each group: Sham operation group (Sham), chronic constrictive group (CCI), M8046 treated group (M8046) and solvent controlled group (Sc). M8046 3 mg/(kg x d) intraperitoneal injection was given after operation in group M8046. Paw thennal withdrawal (PTWL) and paw mechanical withdrawal threshold (PMWT) of rats were measured on 2 pre-operative and 1, 3, 7, 10, 14 post-operative days. The spinal cord and L15 DRG of the operated side was removed at 3, 7, 14 days after surgery. The change of COX-2 and PGE2 expression was determined by immunohistochemical staining and ELISA separately. PTWL and PMWT in CCI group were significantly lower than those in Sham group on every post-operative day (P < 0.05). PTWL and PMWT in M8046 group were significantly higher than those in CCI group on 7, 10, 14 post-operative day (P < 0.05). In spinal dorsal horn, the level of COX-2 and PGE2 expression in CCI group was significantly higher than that in Sham group (P < 0.05). M8046 could significantly attenuate the activation of COX-2 and PGE2 induced by CCI (P < 0.05). The expression of COX-2 and PGE2 in DRG was similar to that in spinal dorsal horn. The effects of M8046 ameliorate the CCI-induced neuropathic pain may be related to attenuate the expression of COX-2 and PGE2 in spinal cord and DRG.

  1. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia.

    PubMed

    Rutter, A Richard; Ma, Qing-Ping; Leveridge, Mathew; Bonnert, Timothy P

    2005-11-07

    Coassociation of the vanilloid transient receptor potential (Trp) ion channels, TrpV1 and TrpV2, was investigated by immunoprecipitation and immunofluorescence in transfected mammalian cell lines, rat dorsal root ganglia and spinal cord. TrpV1/TrpV2 heteromeric complexes were coimmunoprecipitated from human embryonic kidney cells and F-11 dorsal root ganglion hybridoma cells following their transient coexpression. Immunofluorescent labelling of transfected F-11 cells revealed colocalization of TrpV1 and TrpV2 at the cell surface. Immunoprecipitation from rat dorsal root ganglion lysates identified a minor population of receptor complexes composed of TrpV1/TrpV2 heteromers, consistent with a small proportion of cells double-labelled with TrpV1 and TrpV2 antibodies in rat dorsal root ganglion sections. TrpV1/TrpV2 receptor complexes may represent a functionally distinct ion channel complex that may increase the diversity observed within the Trp ion channel family.

  2. Secretagogin is expressed in sensory CGRP neurons and in spinal cord of mouse and complements other calcium-binding proteins, with a note on rat and human

    PubMed Central

    2012-01-01

    Background Secretagogin (Scgn), a member of the EF-hand calcium-binding protein (CaBP) superfamily, has recently been found in subsets of developing and adult neurons. Here, we have analyzed the expression of Scgn in dorsal root ganglia (DRGs) and trigeminal ganglia (TGs), and in spinal cord of mouse at the mRNA and protein levels, and in comparison to the well-known CaBPs, calbindin D-28k, parvalbumin and calretinin. Rat DRGs, TGs and spinal cord, as well as human DRGs and spinal cord were used to reveal phylogenetic variations. Results We found Scgn mRNA expressed in mouse and human DRGs and in mouse ventral spinal cord. Our immunohistochemical data showed a complementary distribution of Scgn and the three CaBPs in mouse DRG neurons and spinal cord. Scgn was expressed in ~7% of all mouse DRG neuron profiles, mainly small ones and almost exclusively co-localized with calcitonin gene-related peptide (CGRP). This co-localization was also seen in human, but not in rat DRGs. Scgn could be detected in the mouse sciatic nerve and accumulated proximal to its constriction. In mouse spinal cord, Scgn-positive neuronal cell bodies and fibers were found in gray matter, especially in the dorsal horn, with particularly high concentrations of fibers in the superficial laminae, as well as in cell bodies in inner lamina II and in some other laminae. A dense Scgn-positive fiber network and some small cell bodies were also found in the superficial dorsal horn of humans. In the ventral horn, a small number of neurons were Scgn-positive in mouse but not rat, confirming mRNA distribution. Both in mouse and rat, a subset of TG neurons contained Scgn. Dorsal rhizotomy strongly reduced Scgn fiber staining in the dorsal horn. Peripheral axotomy did not clearly affect Scgn expression in DRGs, dorsal horn or ventral horn neurons in mouse. Conclusions Scgn is a CaBP expressed in a subpopulation of nociceptive DRG neurons and their processes in the dorsal horn of mouse, human and rat, the

  3. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury

    PubMed Central

    Hou, Shaoping; Carson, David M.; Wu, Di; Klaw, Michelle C.; Houlé, John D.; Tom, Veronica J.

    2016-01-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)+ neurons in the autonomic nuclei and superficial dorsal horn in L6–S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)− and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH+ neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH+ neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH+ cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH+ neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. PMID:26655672

  4. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury.

    PubMed

    Hou, Shaoping; Carson, David M; Wu, Di; Klaw, Michelle C; Houlé, John D; Tom, Veronica J

    2016-11-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH) + neurons in the autonomic nuclei and superficial dorsal horn in L6-S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH) - and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH + neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D 2 -like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH + neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH + cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH + neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. Published by Elsevier Inc.

  5. A population of large neurons in laminae III and IV of the rat spinal cord that have long dorsal dendrites and lack the neurokinin 1 receptor

    PubMed Central

    Polgár, Erika; Thomson, Suzanne; Maxwell, David J; Al-Khater, Khulood; Todd, Andrew J

    2007-01-01

    The dorsal horn of the rat spinal cord contains a population of large neurons with cell bodies in laminae III or IV, that express the neurokinin 1 receptor (NK1r) and have long dorsal dendrites that branch extensively within the superficial laminae. In this study, we have identified a separate population of neurons that have similar dendritic morphology, but lack the NK1r. These cells also differ from the NK1r-expressing neurons in that they have significantly fewer contacts from substance P-containing axons and are not retrogradely labelled following injection of tracer into the caudal ventrolateral medulla. We also provide evidence that these cells do not belong to the postsynaptic dorsal column pathway or the spinothalamic tract. It is therefore likely that these cells do not have supraspinal projections. They may provide a route through which information transmitted by C fibres that lack neuropeptides is conveyed to deeper laminae. The present findings demonstrate the need for caution when attempting to classify neurons solely on the basis of somatodendritic morphology. PMID:17880393

  6. [The changes of monocarboxylate transporter-2 in spinal cord horn in a rat model of chronic inflammatory pain].

    PubMed

    He, Jian-hua; Xu, Li; Shen, Yu; Kong, Ming-jian; Shi, Lin-yu; Ma, Zheng-liang

    2015-01-01

    To investigate the changes in the levels of monocarboxylate transporter-2 in spinal cord horn in a rat model of chronic inflammatory pain. Male SD rats weighting 180 - 220 g were randomly divided into two groups(n = 48): normal saline group (NS group), complete Freund's adjuvant group (CFA group). Rats were given injections of CFA 100 µl in left hind paw in group CFA, and an equal volume of saline was given injection in group NS. Mechanical withdraw threshold(MWT) and thermal withdraw latency(TWL) were measured at before injection(T0 and 3 h, 1 d, 3 d, 7 d, 14 d, and 21 d after injection(T1-7). Four rats were chosen from each group at T0-7 and sacrificed, and L4-5 segments of the spinal cord horn were removed for measurement of the expression of monocarboxylate transporter-2 by Western blot analysis. In CFA group, mechanical hyperalgesia and allodynia appeared on the 3 h after CFA injection, then until the day 14. The expression of monocarboxylate transporter-2 in the spinal dorsal horn of rats in CFA group was significantly higher than that in normal control group at T1-6(P <0.05). The protein level of monocarboxylate transporter-2 was apparently correlated with MWT and TWL(P <0.01 and P <0.05) in CFA group. The level of monocarboxylate transporter-2 in spinal dorsal horn is significantly increased in a rat model of chronic inflammatory pain and the change may involve in the formation and maintenance of central sensitization in spinal cord of chronic inflammatory uain.

  7. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    PubMed

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  8. SPINAL TRANSLOCATOR PROTEIN (TSPO) MODULATES PAIN BEHAVIOR IN RATS WITH CFA-INDUCED MONOARTHRITIS

    PubMed Central

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-01-01

    Translocator protein 18kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund’s Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on day 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral lamina I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Day 7 and 14. Moreover, TSPO was co-localized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain. PMID:19555675

  9. Identification of spinal 5-HT sub 3 receptors and their role in the modulation of nociceptive responses in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaum, S.R.

    1988-01-01

    The project consisted of two related studies: (1) the characterization of serotonin binding sites in crude and purified synaptic membranes prepared from the rat spinal cord, and (2) the association of serotonin binding sites with functional 5-HT receptor responses in the modulation of nociceptive information at the level of the spinal cord. The first series of experiments involved the preparation of membranes from the dorsal and ventral halves of the rat spinal cord and the demonstration of specific ({sup 3}H)serotonin binding to these membranes. High affinity binding sites which conformed to the 5-HT{sub 3} subtype were identified in dorsal, butmore » not ventral spinal cord synaptic membranes. These experiments also confirmed the presence of high affinity ({sup 3}H)5-HT binding sites in dorsal spinal cord synaptic membranes of the 5-HT{sub 1} subtype. The second group of studies demonstrated the ability of selective 5-HT{sub 3} antagonists to inhibit the antinociceptive response to intrathecally administered 5-HT, as measured by a change in tail flick and hot plate latencies. Intrathecal pretreatment with the selective 5-HT{sub 3} antagonists ICS 205-930 or MDL 72222 abolished the antinociceptive effects of 5-HT. Furthermore, the selective 5-HT{sub 3} agonist 2-methyl-5-HT mimicked the antinociceptive effects of 5-HT.« less

  10. Effect of the spider toxin Tx3-3 on spinal processing of sensory information in naive and neuropathic rats: an in vivo electrophysiological study.

    PubMed

    Dalmolin, Gerusa D; Bannister, Kirsty; Gonçalves, Leonor; Sikandar, Shafaq; Patel, Ryan; Cordeiro, Marta do Nascimento; Gomez, Marcus Vinícius; Ferreira, Juliano; Dickenson, Anthony H

    2017-07-01

    Drugs that counteract nociceptive transmission in the spinal dorsal horn preferentially after nerve injury are being pursued as possible neuropathic pain treatments. In a previous behavioural study, the peptide toxin Tx3-3, which blocks P/Q- and R-type voltage-gated calcium channels, was effective in neuropathic pain models. In the present study, we aimed to investigate the effect of Tx3-3 on dorsal horn neuronal responses in rats under physiological conditions and neuropathic pain condition induced by spinal nerve ligation (SNL). In vivo electrophysiological recordings of dorsal horn neuronal response to electrical and natural (mechanical and thermal) stimuli were made in rats under normal physiological state (naive rats) or after the SNL model of neuropathic pain. Tx3-3 (0.3-100 pmol/site) exhibited greater inhibitory effect on electrical-evoked neuronal response of SNL rats than naive rats, inhibiting nociceptive C-fibre and Aδ-fibre responses only in SNL rats. The wind-up of neurones, a measurement of spinal cord hyperexcitability, was also more susceptible to a dose-related inhibition by Tx3-3 after nerve injury. Moreover, Tx3-3 exhibited higher potency to inhibit mechanical- and thermal-evoked neuronal response in conditions of neuropathy. Tx3-3 mediated differential inhibitory effect under physiological and neuropathic conditions, exhibiting greater potency in conditions of neuropathic pain.

  11. Changes in VGLUT1 and VGLUT2 expression in rat dorsal root ganglia and spinal cord following spared nerve injury.

    PubMed

    Wang, Hong-Sheng; Yu, Gang; Wang, Zhi-Tong; Yi, Shou-Pu; Su, Rui-Bin; Gong, Ze-Hui

    2016-10-01

    Disturbance of glutamate homeostasis is a well-characterized mechanism of neuropathic pain. Vesicular glutamate transporters (VGLUTs) determine glutamate accumulation in synaptic vesicles and their roles in neuropathic pain have been suggested by gene-knockout studies. Here, we investigated the spatio-temporal changes in VGLUT expression during the development of neuropathic pain in wild-type rats. Spared nerve injury (SNI) induced mechanical allodynia from postoperative day 1 to at least day 14. Expression of VGLUT1 and VGLUT2 in dorsal root ganglia and spinal cord was examined by western blot analyses on different postoperative days. We observed that VGLUT2 were selectively upregulated in crude vesicle fractions from the ipsilateral lumbar enlargement on postoperative days 7 and 14, while VGLUT1 was transiently downregulated in ipsilateral DRG (day 4) and contralateral lumbar enlargement (day 1). Upregulation of VGLUT2 was not accompanied by alterations in vesicular expression of synaptotagmin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Thus, VGLUTs expression, especially VGLUT2, is regulated following peripheral nerve injury. Temporal regulation of VGLUT2 expression in spinal cord may represent a novel presynaptic mechanism contributing to injury-induced glutamate imbalance and associated neuropathic pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Electrophysiological characterization of activation state-dependent Ca(v)2 channel antagonist TROX-1 in spinal nerve injured rats.

    PubMed

    Patel, R; Rutten, K; Valdor, M; Schiene, K; Wigge, S; Schunk, S; Damann, N; Christoph, T; Dickenson, A H

    2015-06-25

    Prialt, a synthetic version of Ca(v)2.2 antagonist ω-conotoxin MVIIA derived from Conus magus, is the first clinically approved voltage-gated calcium channel blocker for refractory chronic pain. However, due to the narrow therapeutic window and considerable side effects associated with systemic dosing, Prialt is only administered intrathecally. N-triazole oxindole (TROX-1) is a novel use-dependent and activation state-selective small-molecule inhibitor of Ca(v)2.1, 2.2 and 2.3 calcium channels designed to overcome the limitations of Prialt. We have examined the neurophysiological and behavioral effects of blocking calcium channels with TROX-1. In vitro, TROX-1, in contrast to state-independent antagonist Prialt, preferentially inhibits Ca(v)2.2 currents in rat dorsal root ganglia (DRG) neurons under depolarized conditions. In vivo electrophysiology was performed to record from deep dorsal horn lamina V/VI wide dynamic range neurons in non-sentient spinal nerve-ligated (SNL) and sham-operated rats. In SNL rats, spinal neurons exhibited reduced responses to innocuous and noxious punctate mechanical stimulation of the receptive field following subcutaneous administration of TROX-1, an effect that was absent in sham-operated animals. No effect was observed on neuronal responses evoked by dynamic brushing, heat or cold stimulation in SNL or sham rats. The wind-up response of spinal neurons following repeated electrical stimulation of the receptive field was also unaffected. Spinally applied TROX-1 dose dependently inhibited mechanically evoked neuronal responses in SNL but not sham-operated rats, consistent with behavioral observations. This study confirms the pathological state-dependent actions of TROX-1 through a likely spinal mechanism and reveals a modality selective change in calcium channel function following nerve injury. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Dense transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) immunoreactivity defines a subset of motoneurons in the dorsal lateral nucleus of the spinal cord, the nucleus ambiguus and the trigeminal motor nucleus in rat.

    PubMed

    Lewinter, R D; Scherrer, G; Basbaum, A I

    2008-01-02

    The transient receptor potential cation channel, vanilloid family, type 2 (TRPV2) is a member of the TRPV family of proteins and is a homologue of the capsaicin/vanilloid receptor (transient receptor potential cation channel, vanilloid family, type 1, TRPV1). Like TRPV1, TRPV2 is expressed in a subset of dorsal root ganglia (DRG) neurons that project to superficial laminae of the spinal cord dorsal horn. Because noxious heat (>52 degrees C) activates TRPV2 in transfected cells this channel has been implicated in the processing of high intensity thermal pain messages in vivo. In contrast to TRPV1, however, which is restricted to small diameter DRG neurons, there is significant TRPV2 immunoreactivity in a variety of CNS regions. The present report focuses on a subset of neurons in the brainstem and spinal cord of the rat including the dorsal lateral nucleus (DLN) of the spinal cord, the nucleus ambiguus, and the motor trigeminal nucleus. Double label immunocytochemistry with markers of motoneurons, combined with retrograde labeling, established that these cells are, in fact, motoneurons. With the exception of their smaller diameter, these cells did not differ from other motoneurons, which are only lightly TRPV2-immunoreactive. As for the majority of DLN neurons, the densely-labeled populations co-express androgen receptor and follow normal DLN ontogeny. The functional significance of the very intense TRPV2 expression in these three distinct spinal cord and brainstem motoneurons groups remains to be determined.

  14. Activation of the cAMP-PKA signaling pathway in rat dorsal root ganglion and spinal cord contributes toward induction and maintenance of bone cancer pain.

    PubMed

    Zhu, Gui-Qin; Liu, Su; He, Duan-Duan; Liu, Yue-Peng; Song, Xue-Jun

    2014-08-01

    The objective of this study was to explore the role of cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signaling in the development of bone cancer pain in rats. Female Sprague-Dawley rats (N=48) were divided randomly into four groups: sham (n=8), tumor cell implantation (TCI) (n=16), TCI+saline (n=8), and TCI+PKA inhibitor (n=16). Bone cancer-induced pain behaviors - thermal hyperalgesia and mechanical allodynia - were tested at postoperative days -3, -1, 1, 3, 5, 7, 10, and 14. A PKA inhibitor, Rp-cAMPS (1 mmol/l/20 μl), was injected intrathecally on postoperative days 3, 4, and 5 (early phase) or 7, 8, and 9 postoperative days (late phase). The expression of PKA mRNA in dorsal root ganglia (DRG) was detected by reverse transcription-PCR. The concentration of cAMP and activity of PKA in DRG and spinal cord were measured by enzyme-linked immunosorbent assay. TCI treatment induced significant pain behaviors, manifested as thermal hyperalgesia and mechanical allodynia. Spinal administration of the PKA inhibitor Rp-cAMPS during the early phase and late phase significantly delayed or reversed, respectively, TCI-induced thermal hyperalgesia and mechanical allodynia. TCI treatment also led to obvious tumor growth and bone destruction. The level of PKA mRNA in the DRG, as well as the concentration of cAMP and the activity of PKA, in both the DRG and spinal cord were significantly increased after TCI treatment (P<0.01). We conclude that the inhibition of the cAMP-PKA signaling pathway may reduce bone cancer pain.

  15. Spinal Interneurons and Forelimb Plasticity after Incomplete Cervical Spinal Cord Injury in Adult Rats

    PubMed Central

    Rombola, Angela M.; Rousseau, Celeste A.; Mercier, Lynne M.; Fitzpatrick, Garrett M.; Reier, Paul J.; Fuller, David D.; Lane, Michael A.

    2015-01-01

    Abstract Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer – pseudorabies virus – was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration. PMID:25625912

  16. Laminar distribution of GABAA- and glycine-receptor mediated tonic inhibition in the dorsal horn of the rat lumbar spinal cord: effects of picrotoxin and strychnine on expression of Fos-like immunoreactivity.

    PubMed

    Cronin, John N; Bradbury, Elizabeth J; Lidierth, Malcolm

    2004-11-01

    Inhibitory mechanisms are essential in suppressing the development of allodynia and hyperalgesia in the normal animal and there is evidence that loss of inhibition can lead to the development of neuropathic pain. We used Fos expression to map the distribution of tonically inhibited cells in the healthy rat lumbar spinal cord. In a control group, Fos-like immunoreactive (Fos-LI) cells were rare, averaging 7.5+/-2.2 cells (mean+/-SEM; N=13 sections) per 20 microm thick section of dorsal horn. This rose to 103+/-11 (mean+/-SEM; N=20) in picrotoxin-treated rats and to 88+/-11 (mean+/-SEM; N=18) in strychnine-treated rats. These changes were significant (ANOVA; P<0.001). There were marked regional variations in the distribution of Fos-LI cells between picrotoxin- and strychnine-treated animals. Picrotoxin induced a significant increase in the number of Fos-LI cells throughout the dorsal horn (lamina I-VI) while strychnine significantly elevated Fos-like immunoreactivity only in deep laminae (III-VI). For both picrotoxin and strychnine, the increase in Fos-like immunoreactivity peaked in lamina V (at 3579+/-319 and 3649+/-375% of control, respectively; mean+/-SEM) but for picrotoxin an additional peak was observed in the outer part of lamina II (1959+/-196%). Intrathecal administration of both GABAA and glycine receptor antagonists has been shown elsewhere to induce tactile allodynia. The present data suggest that this allodynia could arise due to blockade of tonic GABAA and glycine-receptor mediated inhibition in the deep dorsal horn. GABAA antagonists also induce hypersensitivity to noxious inputs. The blockade of tonic inhibition in the superficial dorsal horn shown here may underlie this hyperalgesia.

  17. Different populations of parvalbumin- and calbindin-D28k-immunoreactive neurons contain GABA and accumulate 3H-D-aspartate in the dorsal horn of the rat spinal cord.

    PubMed

    Antal, M; Polgár, E; Chalmers, J; Minson, J B; Llewellyn-Smith, I; Heizmann, C W; Somogyi, P

    1991-12-01

    The colocalization of parvalbumin (PV), calbindin-D28k (CaBP), GABA immunoreactivities, and the ability to accumulate 3H-D-aspartate selectively were investigated in neurons of laminae I-IV of the dorsal horn of the rat spinal cord. Following injection of 3H-D-aspartate into the basal dorsal horn (laminae IV-VI), perikarya selectively accumulating 3H-D-aspartate were detected in araldite embedded semithin sections by autoradiography, and consecutive semithin sections were treated to reveal PV, CaBP and GABA by postembedding immunocytochemistry. Perikarya accumulating 3H-D-aspartate were found exclusively in laminae I-III, and no labelled somata were found in deeper layers or in the intermediolateral column although the labelled amino acid clearly spread to these regions. More than half of the labelled cells were localized in lamina II. In this layer, 16.4% of 3H-D-aspartate-labelled perikarya were also stained for CaBP. In contrast to CaBP, PV or GABA was never detected in neurons accumulating 3H-D-aspartate. A high proportion of PV-immunoreactive perikarya were also stained for GABA in laminae II and III (70.0% and 61.2% respectively). However, the majority of CaBP-immunoreactive perikarya were GABA-negative. GABA-immunoreactivity was found in less than 2% of the total population of cells stained for CaBP in laminae I-IV. A significant proportion of the GABA-negative but PV-immunoreactive neurons also showed CaBP-immunoreactivity in laminae II and IV. These results show that out of the two calcium-binding proteins, CaBP is a characteristic protein of a small subpopulation of neurons using excitatory amino acids and PV is a characteristic protein of a subpopulation of neurons utilizing GABA as a transmitter. However, both proteins are present in additional subgroups of neurons, and neuronal populations using inhibitory or excitatory amino acid transmitters are heterogeneous with regard to their content of calcium-binding proteins in the dorsal horn of the rat

  18. Effects of general anesthetics on substance P release and c-Fos expression in the spinal dorsal horn

    PubMed Central

    Takasusuki, Toshifumi; Yamaguchi, Shigeki; Hamaguchi, Shinsuke; Yaksh, Tony L.

    2013-01-01

    Background We examined in vivo the effects of general anesthetics on evoked substance P release (primary afferent excitability) and c-Fos expression (neuronal activation) in superficial dorsal horn. Methods Rats received saline, propofol (100mg/kg), pentobarbital (50mg/kg), isoflurane (2 minimum alveolar concentration), nitrous oxide (66%) or fentanyl (30μg/kg). During anesthesia, rats received intraplantar 5% formalin (50μl) to left hindpaw. Ten min later, rats underwent transcardial perfusion with 4% paraformaldehyde. Substance P release from small primary afferents was assessed by incidence of Neurokinin 1 receptor (NK1r) internalization in the superficial dorsal horn. In separate studies, rats were sacrificed after 2 hrs and c-Fos expression measured. Results Intraplantar formalin induced robust NK1r internalization in ipsilateral dorsal horn (ipsilateral: 54±6% [mean±SEM], contralateral: 12±2%, P<0.05, n=4). Fentanyl, but not propofol, pentobarbital, isoflurane nor nitrous oxide alone inhibited NK1r internalization. However, 2 minimum alveolar concentration isoflurane + nitrous oxide reduced NK1r internalization (27±3%, P<0.05, n=5). All agents reduced c-Fos expression (control: 34±4, fentanyl: 8±2, isoflurane: 12±3, nitrous oxide: 11±2, isoflurane + nitrous oxide: 12±1, pentobarbital: 11±2, propofol: 13±3, P<0.05, n=3). Conclusion General anesthetics at anesthetic concentrations block spinal neuron activation through a mechanism which is independent of an effect upon small primary afferent peptide release. The effect of fentanyl alone and the synergistic effect of isoflurane and nitrous oxide on substance P release suggests a correlative rationale for the therapeutic use of these anesthetic protocol by blocking nociceptive afferent transmitter release and preventing the initiation of cascade which are immediately postsynaptic to the primary afferent. PMID:23708866

  19. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  20. Effects of combined electrical stimulation of the dorsal column and dorsal roots on wide-dynamic range neuronal activity in nerve-injured rats

    PubMed Central

    Yang, Fei; Zhang, Tong; Tiwari, Vinod; Shu, Bin; Zhang, Chen; Wang, Yun; Vera-Portocarrero, Louis P.; Raja, Srinivasa N.; Guan, Yun

    2015-01-01

    Objectives Electrical stimulation at the dorsal column (DC) and dorsal root (DR) may inhibit spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. The objective of this study was to determine if applying electrical conditioning stimulation (CS) at both sites provides additive or synergistic benefits. Materials and Methods By conducting in vivo extracellular recordings of WDR neurons in rats that had undergone L5 spinal nerve ligation, we tested whether combining 50 Hz CS at the two sites in either a concurrent (2.5 minutes) or alternate (5 minutes) pattern inhibits WDR neuronal activity better than CS at DC alone (5 minutes). The intensities of CS were determined by recording antidromic compound action potentials to graded stimulation at the DC and DR. We measured the current thresholds that resulted in the first detectable Aα/β waveform (Ab0) and the peak Aα/β waveform (Ab1) to select CS intensity at each site. The same number of electrical pulses and amount of current were delivered in different patterns to allow comparison. Results At a moderate intensity of 50%(Ab0+Ab1), different patterns of CS all attenuated the C-component of WDR neurons in response to graded intracutaneous electrical stimuli (0.1-10 mA, 2 ms), and inhibited windup in response to repetitive noxious stimuli (0.5 Hz). However, the inhibitory effects did not differ significantly between different patterns. At the lower intensity (Ab0), no CS inhibited WDR neurons. Conclusions These findings suggest that combined stimulation of DC and DR may not be superior to DC stimulation alone for inhibition of WDR neurons. PMID:26307526

  1. Bilateral Cervical Contusion Spinal Cord Injury in Rats

    PubMed Central

    Anderson, Kim D.; Sharp, Kelli G.; Steward, Oswald

    2009-01-01

    There is increasing motivation to develop clinically relevant experimental models for cervical SCI in rodents and techniques to assess deficits in forelimb function. Here we describe a bilateral cervical contusion model in rats. Female Sprague-Dawley rats received mild or moderate cervical contusion injuries (using the Infinite Horizons device) at C5, C6, or C7/8. Forelimb motor function was assessed using a Grip Strength Meter (GSM); sensory function was assessed by the von Frey hair test; the integrity of the corticospinal tract (CST) was assessed by biotinylated dextran amine (BDA) tract tracing. Mild contusions caused primarily dorsal column (DC) and gray matter (GM) damage while moderate contusions produced additional damage to lateral and ventral tissue. Forelimb and hindlimb function was severely impaired immediately post-injury, but all rats regained the ability to use their hindlimbs for locomotion. Gripping ability was abolished immediately after injury but recovered partially, depending upon the spinal level and severity of the injury. Rats exhibited a loss of sensation in both fore- and hindlimbs that partially recovered, and did not exhibit allodynia. Tract tracing revealed that the main contingent of CST axons in the DC was completely interrupted in all but one animal whereas the dorsolateral CST (dlCST) was partially spared, and dlCST axons gave rise to axons that arborized in the GM caudal to the injury. Our data demonstrate that rats can survive significant bilateral cervical contusion injuries at or below C5 and that forepaw gripping function recovers after mild injuries even when the main component of CST axons in the dorsal column is completely interrupted. PMID:19559699

  2. Electrical peripheral nerve stimulation relieves bone cancer pain by inducing Arc protein expression in the spinal cord dorsal horn

    PubMed Central

    Sun, Ke-fu; Feng, Wan-wen; Liu, Yue-peng; Dong, Yan-bin; Gao, Li; Yang, Hui-lin

    2018-01-01

    Objective The analgesic effect on chronic pain of peripheral nerve stimulation (PNS) has been proven, but its underlying mechanism remains unknown. Therefore, this study aimed to assess the analgesic effect of PNS on bone cancer pain in a rat model and to explore the underlying mechanism. Materials and methods PNS on sciatic nerves with bipolar electrode was performed in both naïve and bone cancer pain model rats. Then, the protein levels of activity-regulated cytoskeleton-associated protein (Arc), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type glutamate receptor 1 (GluA1), and phosphate N-methyl-d-aspartic acid-type glutamate receptor subunit 2B (pGluNR2B) in spinal cord were evaluated by immunohistochemistry and Western blotting. Thermal paw withdraw latency and mechanical paw withdraw threshold were used to estimate the analgesic effect of PNS on bone cancer pain. Intrathecal administration of Arc shRNA was used to inhibit Arc expression in the spinal cord. Results PNS at 60 and 120 Hz for 20 min overtly induced Arc expression in the spinal cord, increased thermal pain thresholds in naïve rats, and relieved bone cancer pain; meanwhile, 10 Hz PNS did not achieve those results. In addition, PNS at 60 and 120 Hz also reduced the expression of GluA1, but not pGluNR2B, in the spinal cord. Finally, the anti-nociceptive effect and GluA1 downregulation induced by PNS were inhibited by intrathecal administration of Arc shRNA. Conclusion PNS (60 Hz, 0.3 mA) can relieve bone-cancer-induced allodynia and hyperalgesia by upregulating Arc protein expression and then by decreasing GluA1 transcription in the spinal cord dorsal horn. PMID:29606887

  3. Polyethylene glycol-induced motor recovery after total spinal transection in rats.

    PubMed

    Ren, Shuai; Liu, Ze-Han; Wu, Qiong; Fu, Kuang; Wu, Jun; Hou, Li-Ting; Li, Ming; Zhao, Xin; Miao, Qing; Zhao, Yun-Long; Wang, Sheng-Yu; Xue, Yan; Xue, Zhen; Guo, Ya-Shan; Canavero, Sergio; Ren, Xiao-Ping

    2017-08-01

    Despite more than a century of research, spinal paralysis remains untreatable via biological means. A new understanding of spinal cord physiology and the introduction of membrane fusogens have provided new hope that a biological cure may soon become available. However, proof is needed from adequately powered animal studies. Two groups of rats (n=9, study group, n=6 controls) were submitted to complete transection of the dorsal cord at T10. The animals were randomized to receive either saline or polyethylene glycol (PEG) in situ. After 4 weeks, the treated group had recovered ambulation vs none in the control group (BBB scores; P=.0145). One control died. All animals were studied with somatosensory-evoked potentials (SSEP) and diffusion tensor imaging (DTI). SSEP recovered postoperatively only in PEG-treated rats. At study end, DTI showed disappearance of the transection gap in the treated animals vs an enduring gap in controls (fractional anisotropy/FA at level: P=.0008). We show for the first time in an adequately powered study that the paralysis attendant to a complete transection of the spinal cord can be reversed. This opens the path to a severance-reapposition cure of spinal paralysis, in which the injured segment is excised and the two stumps approximated after vertebrectomy/diskectomies. © 2017 John Wiley & Sons Ltd.

  4. Electrophysiological evidence for the antinociceptive effect of transcutaneous electrical stimulation on mechanically evoked responsiveness of dorsal horn neurons in neuropathic rats.

    PubMed

    Leem, J W; Park, E S; Paik, K S

    1995-06-16

    Using a rat model of peripheral neuropathy induced by a tight ligation of L5-6 spinal nerves, the effects of transcutaneous electrical stimulation on the mechanical responses of wide dynamic range (WDR) dorsal horn neurons were investigated. The responses of the WDR neurons to both the brush and pinch stimuli were found to be enhanced in the neuropathic rats compared to those in the normal rats. These enhanced responses were depressed by low-frequency and high-intensity transcutaneous electrical stimulation (2 Hz, 4-5 mA) applied to the somatic receptive field. The durations of the depressive effects on the brush responses ranged between 30 and 45 min and those on the pinch responses were 60-90 min. These results imply that the transcutaneous electrical stimulation used here produces an antinociceptive effect via a depressive action on the enhanced mechanical responsiveness of the spinal neurons in this rat model of peripheral neuropathy.

  5. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats.

    PubMed

    Hamlin, Marvin; Traughber, Terence; Reinkensmeyer, David J; de Leon, Ray D

    2015-05-15

    Providing weight support facilitates locomotion in spinal cord injured animals. To control weight support, robotic systems have been developed for treadmill stepping and more recently for overground walking. We developed a novel device, the body weight supported ambulatory rodent trainer (i.e. BART). It has a small pneumatic cylinder that moves along a linear track above the rat. When air is supplied to the cylinder, the rats are lifted as they perform overground walking. We tested the BART device in rats that received a moderate spinal cord contusion injury and in normal rats. Locomotor training with the BART device was not performed. All of the rats learned to walk in the BART device. In the contused rats, significantly greater paw dragging and dorsal stepping occurred in the hindlimbs compared to normal. Providing weight support significantly raised hip position and significantly reduced locomotor deficits. Hindlimb stepping was tightly coupled to forelimb stepping but only when the contused rats stepped without weight support. Three weeks after the contused rats received a complete spinal cord transection, significantly fewer hindlimb steps were performed. Relative to rodent robotic systems, the BART device is a simpler system for studying overground locomotion. The BART device lacks sophisticated control and sensing capability, but it can be assembled relatively easily and cheaply. These findings suggest that the BART device is a useful tool for assessing quadrupedal, overground locomotion which is a more natural form of locomotion relative to treadmill locomotion. Published by Elsevier B.V.

  6. Critical evaluation of the expression of gastrin-releasing peptide in dorsal root ganglia and spinal cord

    PubMed Central

    Barry, Devin M; Li, Hui; Liu, Xian-Yu; Shen, Kai-Feng; Liu, Xue-Ting; Wu, Zhen-Yu; Munanairi, Admire; Chen, Xiao-Jun; Yin, Jun; Sun, Yan-Gang; Li, Yun-Qing

    2016-01-01

    There are substantial disagreements about the expression of gastrin-releasing peptide (GRP) in sensory neurons and whether GRP antibody cross-reacts with substance P (SP). These concerns necessitate a critical revaluation of GRP expression using additional approaches. Here, we show that a widely used GRP antibody specifically recognizes GRP but not SP. In the spinal cord of mice lacking SP (Tac1 KO), the expression of not only GRP but also other peptides, notably neuropeptide Y (NPY), is significantly diminished. We detected Grp mRNA in dorsal root ganglias using reverse transcription polymerase chain reaction, in situ hybridization and RNA-seq. We demonstrated that Grp mRNA and protein are upregulated in dorsal root ganglias, but not in the spinal cord, of mice with chronic itch. Few GRP+ immunostaining signals were detected in spinal sections following dorsal rhizotomy and GRP+ cell bodies were not detected in dissociated dorsal horn neurons. Ultrastructural analysis further shows that substantially more GRPergic fibers form synaptic contacts with gastrin releasing peptide receptor-positive (GRPR+) neurons than SPergic fibers. Our comprehensive study demonstrates that a majority of GRPergic fibers are of primary afferent origin. A number of factors such as low copy number of Grp transcripts, small percentage of cells expressing Grp, and the use of an eGFP GENSAT transgenic as a surrogate for GRP protein have contributed to the controversy. Optimization of experimental procedures facilitates the specific detection of GRP expression in dorsal root ganglia neurons. PMID:27068287

  7. Endomorphin-2 Inhibition of Substance P Signaling within Lamina I of the Spinal Cord Is Impaired in Diabetic Neuropathic Pain Rats

    PubMed Central

    Wan, Fa-Ping; Bai, Yang; Kou, Zhen-Zhen; Zhang, Ting; Li, Hui; Wang, Ya-Yun; Li, Yun-Qing

    2017-01-01

    Opiate analgesia in the spinal cord is impaired in diabetic neuropathic pain (DNP), but until now the reason is unknown. We hypothesized that it resulted from a decreased inhibition of substance P (SP) signaling within the dorsal horn of the spinal cord. To investigate this possibility, we evaluated the effects of endomorphin-2 (EM2), an endogenous ligand of the μ-opioid receptor (MOR), on SP release within lamina I of the spinal dorsal horn (SDH) in rats with DNP. We established the DNP rat model and compared the analgesic efficacy of EM2 between inflammation pain and DNP rat models. Behavioral results suggested that the analgesic efficacy of EM2 was compromised in the condition of painful diabetic neuropathy. Then, we measured presynaptic SP release induced by different stimulating modalities via neurokinin-1 receptor (NK1R) internalization. Although there was no significant change in basal and evoked SP release between control and DNP rats, EM2 failed to inhibit SP release by noxious mechanical and thermal stimuli in DNP but not in control and inflammation pain model. We also observed that EM2 decreased the number of FOS-positive neurons within lamina I of the SDH but did not change the amount of FOS/NK1R double-labeled neurons. Finally, we identified a remarkable decrease in MORs within the primary afferent fibers and dorsal root ganglion (DRG) neurons by Western blot (WB) and immunohistochemistry (IHC). Taken together, these data suggest that reduced presynaptic MOR expression might account for the loss of the inhibitory effect of EM2 on SP signaling, which might be one of the neurobiological foundations for decreased opioid efficacy in the treatment of DNP. PMID:28119567

  8. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats

    PubMed Central

    Hamlin, Marvin; Traughber, Terrance; Reinkensmeyer, David J.; de Leon, Ray D.

    2015-01-01

    Background Providing weight support facilitates locomotion in spinal cord injured animals. To control weight support, robotic systems have been developed for treadmill stepping and more recently for overground walking. New Method We developed a novel device, the body weight supported ambulatory rodent trainer (i.e. BART). It has a small pneumatic cylinder that moves along a linear track above the rat. When air is supplied to the cylinder, the rats are lifted as they perform overground walking. We tested the BART device in rats that received a moderate spinal cord contusion injury and in normal rats. Locomotor training with the BART device was not performed. Results All of the rats learned to walk in the BART device. In the contused rats, significantly greater paw dragging and dorsal stepping occurred in the hindlimbs compared to normal. Providing weight support significantly raised hip position and significantly reduced locomotor deficits. Hindlimb stepping was tightly coupled to forelimb stepping but only when the contused rats stepped without weight support. Three weeks after the contused rats received a complete spinal cord transection, significantly fewer hindlimb steps were performed. Comparison with Existing Methods Relative to rodent robotic systems, the BART device is a simpler system for studying overground locomotion. The BART device lacks sophisticated control and sensing capability, but it can be assembled relatively easily and cheaply. Conclusions These findings suggest that the BART device is a useful tool for assessing quadrupedal, overground locomotion which is a more natural form of locomotion relative to treadmill locomotion. PMID:25794460

  9. [Expression of hemokinin-1 in rat spinal cord after peripheral inflammation].

    PubMed

    Ando, Yuko

    2009-06-01

    Hemokinin-1 (HK-1) is a novel peptide described as a member of the tachykinin family. Substance P (SP), a representative member of the tachykinin family, has been well characterized and is thought to play a part in inflammation and pain. While several studies indicate that HK-1 is involved in inflammation and pain, the biological functions of HK-1 are not fully understood. In the present study we investigated the expression of HK-1 mRNA (TAC4) and SP mRNA (TAC1) in the dorsal spinal cord of rat after inducing peripheral inflammation by administering complete Freund's adjuvant (CFA) into the hind paw, using real-time RT-PCR. In the behavioral studies, the thresholds of withdrawal response of the hind paw to thermal stimulation significantly decreased on the ipsilateral side, but not on the contralateral side, 6 hours after CFA injection and thermal hyperalgesia persisted until 4 days after CFA injection. The level of HK-1 mRNA expression significantly increased on the bilateral sides of the dorsal spinal cord 6 hours after CFA injection and returned to the base level 1 day after injection. On the other hand, the level of SP mRNA expression did not change in the spinal cord 6 hours and 1 day after CFA injection. These results indicate that HK-1 may contribute to inflammatory pain, in the early phase, in a different manner from SP.

  10. Distribution of glycinergic neuronal somata in the rat spinal cord.

    PubMed

    Hossaini, Mehdi; French, Pim J; Holstege, Jan C

    2007-04-20

    Glycine transporter 2 (GlyT2) mRNA is exclusively expressed in glycinergic neurons, and is presently considered a reliable marker for glycinergic neuronal somata. In this study, we have performed non-radioactive in situ hybridization to localize GlyT2 mRNA in fixed free-floating sections of cervical (C2 and C6), thoracic (T5), lumbar (L2 and L5) and sacral (S1) segments of the rat spinal cord. The results showed that in all segments the majority of the GlyT2 mRNA labeled (glycinergic) neuronal somata was present in the deep dorsal horn and the intermediate zone (laminae III-VIII), with around 50% (range 43.7-70.9%) in laminae VII&VIII. In contrast, the superficial dorsal horn, the motoneuronal cell groups and the area around the central canal contained only few glycinergic neuronal somata. The density (number of glycinergic neuronal somata per mm(2)) was also low in these areas, while the highest densities were found in laminae V to VIII. The lateral spinal nucleus and the lateral cervical nucleus also contained a limited number of glycinergic neurons. Our findings showed that the distribution pattern of the glycinergic neuronal somata is similar in all the examined segments. The few differences that were found in the relative laminar distribution between some of the segments, are most likely due to technical reasons. We therefore conclude that the observed distribution pattern of glycinergic neuronal somata is present throughout the spinal cord. Our findings further showed that the non-radioactive in situ hybridization technique for identifying GlyT2 mRNA in fixed free-floating sections is a highly efficient tool for identifying glycinergic neurons in the spinal cord.

  11. Hyperexcitability of bladder afferent neurons associated with reduction of Kv1.4 α-subunit in rats with spinal cord injury.

    PubMed

    Takahashi, Ryosuke; Yoshizawa, Tsuyoshi; Yunoki, Takakazu; Tyagi, Pradeep; Naito, Seiji; de Groat, William C; Yoshimura, Naoki

    2013-12-01

    To clarify the functional and molecular mechanisms inducing hyperexcitability of C-fiber bladder afferent pathways after spinal cord injury we examined changes in the electrophysiological properties of bladder afferent neurons, focusing especially on voltage-gated K channels. Freshly dissociated L6-S1 dorsal root ganglion neurons were prepared from female spinal intact and spinal transected (T9-T10 transection) Sprague Dawley® rats. Whole cell patch clamp recordings were performed on individual bladder afferent neurons. Kv1.2 and Kv1.4 α-subunit expression levels were also evaluated by immunohistochemical and real-time polymerase chain reaction methods. Capsaicin sensitive bladder afferent neurons from spinal transected rats showed increased cell excitability, as evidenced by lower spike activation thresholds and a tonic firing pattern. The peak density of transient A-type K+ currents in capsaicin sensitive bladder afferent neurons from spinal transected rats was significantly less than that from spinal intact rats. Also, the KA current inactivation curve was displaced to more hyperpolarized levels after spinal transection. The protein and mRNA expression of Kv1.4 α-subunits, which can form transient A-type K+ channels, was decreased in bladder afferent neurons after spinal transection. Results indicate that the excitability of capsaicin sensitive C-fiber bladder afferent neurons is increased in association with reductions in transient A-type K+ current density and Kv1.4 α-subunit expression in injured rats. Thus, the Kv1.4 α-subunit could be a molecular target for treating overactive bladder due to neurogenic detrusor overactivity. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries.

    PubMed

    Hamers, F P; Lankhorst, A J; van Laar, T J; Veldhuis, W B; Gispen, W H

    2001-02-01

    Analysis of locomotion is an important tool in the study of peripheral and central nervous system damage. Most locomotor scoring systems in rodents are based either upon open field locomotion assessment, for example, the BBB score or upon foot print analysis. The former yields a semiquantitative description of locomotion as a whole, whereas the latter generates quantitative data on several selected gait parameters. In this paper, we describe the use of a newly developed gait analysis method that allows easy quantitation of a large number of locomotion parameters during walkway crossing. We were able to extract data on interlimb coordination, swing duration, paw print areas (total over stance, and at 20-msec time resolution), stride length, and base of support: Similar data can not be gathered by any single previously described method. We compare changes in gait parameters induced by two different models of spinal cord injury in rats, transection of the dorsal half of the spinal cord and spinal cord contusion injury induced by the NYU or MASCIS device. Although we applied this method to rats with spinal cord injury, the usefulness of this method is not limited to rats or to the investigation of spinal cord injuries alone.

  13. Squamous cell carcinoma causing dorsal atlantoaxial spinal cord compression in a dog

    PubMed Central

    Miyazaki, Yuta; Aikawa, Takeshi; Nishimura, Masaaki; Iwata, Munetaka; Kagawa, Yumiko

    2016-01-01

    A 12-year-old Chihuahua dog was presented for cervical pain and progressive tetraparesis. Magnetic resonance imaging revealed spinal cord compression due to a mass in the dorsal atlantoaxial region. Surgical treatment was performed. The mass was histopathologically diagnosed as a squamous cell carcinoma. The dog recovered to normal neurologic status after surgery. PMID:27708441

  14. The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn.

    PubMed

    Todd, A J; Hughes, D I; Polgár, E; Nagy, G G; Mackie, M; Ottersen, O P; Maxwell, D J

    2003-01-01

    Two vesicular glutamate transporters, VGLUT1 and VGLUT2, have recently been identified, and it has been reported that they are expressed by largely nonoverlapping populations of glutamatergic neurons in the brain. We have used immunocytochemistry with antibodies against both transporters, together with markers for various populations of spinal neurons, in an attempt to identify glutamatergic interneurons in the dorsal horn of the mid-lumbar spinal cord of the rat. The great majority (94-100%) of nonprimary axonal boutons that contained somatostatin, substance P or neurotensin, as well as 85% of those that contained enkephalin, were VGLUT2-immunoreactive, which suggests that most dorsal horn neurons that synthesize these peptides are glutamatergic. In support of this, we found that most somatostatin- and enkephalin-containing boutons (including somatostatin-immunoreactive boutons that lacked calcitonin gene-related peptide and were therefore probably derived from local interneurons) formed synapses at which AMPA receptors were present. We also investigated VGLUT expression in central terminals of primary afferents. Myelinated afferents were identified with cholera toxin B subunit; most of those in lamina I were VGLUT2-immunoreactive, whereas all those in deeper laminae were VGLUT1-immunoreactive, and some (in laminae III-VI) appeared to contain both transporters. However, peptidergic primary afferents that contained substance P or somatostatin (most of which are unmyelinated), as well as nonpeptidergic C fibres (identified with Bandeiraea simplicifolia isolectin B4) showed low levels of VGLUT2-immunoreactivity, or were not immunoreactive with either VGLUT antibody. As all primary afferents are thought to be glutamatergic, this raises the possibility that unmyelinated afferents, most of which are nociceptors, express a different vesicular glutamate transporter.

  15. Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain

    PubMed Central

    Imlach, Wendy L.; Bhola, Rebecca F.; Mohammadi, Sarasa A.; Christie, Macdonald J.

    2016-01-01

    The development of neuropathic pain involves persistent changes in signalling within pain pathways. Reduced inhibitory signalling in the spinal cord following nerve-injury has been used to explain sensory signs of neuropathic pain but specific circuits that lose inhibitory input have not been identified. This study shows a specific population of spinal cord interneurons, radial neurons, lose glycinergic inhibitory input in a rat partial sciatic nerve ligation (PNL) model of neuropathic pain. Radial neurons are excitatory neurons located in lamina II of the dorsal horn, and are readily identified by their morphology. The amplitude of electrically-evoked glycinergic inhibitory post-synaptic currents (eIPSCs) was greatly reduced in radial neurons following nerve-injury associated with increased paired-pulse ratio. There was also a reduction in frequency of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSC) in radial neurons without significantly affecting mIPSC amplitude. A subtype selective receptor antagonist and western blots established reversion to expression of the immature glycine receptor subunit GlyRα2 in radial neurons after PNL, consistent with slowed decay times of IPSCs. This study has important implications as it identifies a glycinergic synaptic connection in a specific population of dorsal horn neurons where loss of inhibitory signalling may contribute to signs of neuropathic pain. PMID:27841371

  16. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    PubMed

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  17. Organization of projections from the spinal trigeminal subnucleus oralis to the spinal cord in the rat: a neuroanatomical substrate for reciprocal orofacial-cervical interactions.

    PubMed

    Devoize, Laurent; Doméjean, Sophie; Melin, Céline; Raboisson, Patrick; Artola, Alain; Dallel, Radhouane

    2010-07-09

    The organization of efferent projections from the spinal trigeminal nucleus oralis (Sp5O) to the spinal cord in the rat was studied using the anterograde tracer Phaseolus vulgaris leucoagglutinin. Sp5O projections to the spinal cord are restricted to the cervical cord. No labeled terminal can be detected in the thoracic and lumbar cord. The organization of these projections happens to critically depend on the dorso-ventral location of the injection site. On the one hand, the dorsal part of the Sp5O projects to the medial part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the ipsilateral one. Ipsilateral labeled terminals are distributed throughout laminae VII to IX but tend to cluster around the dorso-medial motor nuclei, especially at C3-C5 levels. Within the contralateral ventral horn, label terminals are found particularly in the region of the ventro-medial motor nucleus. This projection extends as far caudally as C3 or C4 level. On the other hand, the ventral part of the Sp5O projects to the lateral part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the contralateral one. Contralateral labeled terminals are distributed within the region of the dorso- and ventro-medial motor nuclei at C1-C4 levels whereas they are restricted to the dorso-medial motor nucleus at C5-C8 levels. These findings suggest that Sp5O is involved in the coordination of neck movements and in the modulation of incoming sensory information at the cervical spinal cord. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Transcutaneous electrical nerve stimulation attenuates postsurgical allodynia and suppresses spinal substance P and proinflammatory cytokine release in rats.

    PubMed

    Chen, Yu-Wen; Tzeng, Jann-Inn; Lin, Min-Fei; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-01-01

    Transcutaneous electrical nerve stimulation (TENS) is often used for management of chronic pain. The purpose of this study was to investigate whether TENS altered postincisional allodynia, substance P, and proinflammatory cytokines in a rat model of skin-muscle incision and retraction (SMIR). This was an experimental study. High-frequency (100-Hz) TENS therapy began on postoperative day 3 and was administered for 20 minutes daily to SMIR-operated rats by self-adhesive electrodes delivered to skin innervated via the ipsilateral dorsal rami of lumbar spinal nerves L1-L6 for the next 27 days. The expressions of substance P, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1beta (IL-1β) in the spinal cord and mechanical sensitivity to von Frey stimuli (4g and 10g) were evaluated. The SMIR-operated rats displayed a marked hypersensitivity to von Frey stimuli on postoperative day 3. In contrast to the SMIR-operated rats, SMIR-operated rats after TENS administration showed a quick recovery of mechanical hypersensitivity. On postoperative days 3, 16, and 30, SMIR-operated rats exhibited an upregulation of substance P and cytokines (TNF-α, IL-6, and IL-1β) in the spinal cord, whereas SMIR-operated rats after TENS therapy inhibited that upregulation. By contrast, the placebo TENS following SMIR surgery did not alter mechanical hypersensitivity and the levels of spinal substance P, TNF-α, IL-6, and IL-1β. The experimental data are limited to animal models and cannot be generalized to postoperative pain in humans. The results revealed that TENS attenuates prolonged postoperative allodynia following SMIR surgery. Increased levels of spinal substance P and proinflammatory cytokines, activated after SMIR surgery, are important in the processing of persistent postsurgical allodynia. The protective effect of TENS may be related to the suppression of spinal substance P and proinflammatory cytokines in SMIR-operated rats. © 2015 American Physical

  19. Crosstalk between Activated Microglia and Neurons in the Spinal Dorsal Horn Contributes to Stress-induced Hyperalgesia

    PubMed Central

    Qi, Jian; Chen, Chen; Meng, Qing-Xi; Wu, Yan; Wu, Haitao; Zhao, Ting-Bao

    2016-01-01

    Stress has been shown to enhance pain sensitivity resulting in stress-induced hyperalgesia. However, the underlying mechanisms have yet to be elucidated. Using single-prolonged stress combined with Complete Freund’s Adjuvant injection model, we explored the reciprocal regulatory relationship between neurons and microglia, which is critical for the maintenance of posttraumatic stress disorder (PTSD)-induced hyperalgesia. In our assay, significant mechanical allodynia was observed. Additionally, activated neurons in spinal dorsal horn were observed by analysis of Fos expression. And, microglia were also significantly activated with the presence of increased Iba-1 expression. Intrathecal administration of c-fos antisense oligodeoxynucleotides (ASO) or minocycline (a specific microglia inhibitor) attenuated mechanical allodynia. Moreover, intrathecal administration of c-fos ASO significantly suppressed the activation of neurons and microglia. Interestingly, inhibition of microglia activation by minocycline significantly suppressed the activation of both neurons and microglia in spinal dorsal horn. P38 inhibitor SB203580 suppressed IL-6 production, and inhibition of IL-6 receptor (IL-6R) activation by tocilizumab suppressed Fos expression. Together, our data suggest that the presence of a “crosstalk” between activated microglia and neurons in the spinal dorsal horn, which might contribute to the stress-induced hyperactivated state, leading to an increased pain sensitivity. PMID:27995982

  20. Bladder volume-dependent excitatory and inhibitory influence of lumbosacral dorsal and ventral roots on bladder activity in rats

    PubMed Central

    Sugaya, Kimio; de Groat, William C.

    2011-01-01

    This study was undertaken to examine the role of the afferent and efferent pathways of the lumbosacral spinal nerve roots in the tonic control of bladder activity. Changes of isovolumetric bladder activity were recorded in 21 sympathectomized female rats under urethane anesthesia following transection of the dorsal (DRT) and ventral (VRT) lumbosacral spinal roots, and after intraperitoneal administration of hexamethonium. DRT altered the baseline intravesical pressure in a bladder volume-dependent manner in each animal. The percent change of baseline pressure after VRT following DRT was also dependent upon bladder volume. The percent change of baseline pressure after VRT alone was similarly dependent on bladder volume, but not after VRT followed by DRT. The percent change of baseline intravesical pressure (y)(−9 to +8 cm H2O, −56 to +46%) after DRT and VRT depended upon bladder volume (x)(y = 44.7 x −40.4) in all rats. Hexamethonium increased the amplitude of small myogenic bladder contractions after DRT and VRT. In conclusion, the bladder is tonically excited or inhibited by a local reflex pathway and by a parasympathetic reflex pathway that depends on connections with the lumbosacral spinal cord and the pelvic nerves. Both reflex mechanisms are influenced by bladder volume. PMID:17878597

  1. Decoding intravesical pressure from local field potentials in rat lumbosacral spinal cord

    NASA Astrophysics Data System (ADS)

    Im, Changkyun; Park, Hae Yong; Koh, Chin Su; Ryu, Sang Baek; Seo, In Seok; Kim, Yong Jung; Kim, Kyung Hwan; Shin, Hyung-Cheul

    2016-10-01

    Chronic monitoring of intravesical pressure is required to detect the onset of intravesical hypertension and the progression of a more severe condition. Recent reports demonstrate the bladder state can be monitored from the spiking activity of the dorsal root ganglia or lumbosacral spinal cord. However, one of the most serious challenges for these methods is the difficulty of sustained spike signal acquisition due to the high-electrode-location-sensitivity of spikes or neuro-degeneration. Alternatively, it has been demonstrated that local field potential recordings are less affected by encapsulation reactions or electrode location changes. Here, we hypothesized that local field potential (LFP) from the lumbosacral dorsal horn may provide information concerning the intravesical pressure. LFP and spike activities were simultaneously recorded from the lumbosacral spinal cord of anesthetized rats during bladder filling. The results show that the LFP activities carry significant information about intravesical pressure along with spiking activities. Importantly, the intravesical pressure is decoded from the power in high-frequency bands (83.9-256 Hz) with a substantial performance similar to that of the spike train decoding. These findings demonstrate that high-frequency LFP activity can be an alternative intravesical pressure monitoring signal, which could lead to a proper closed loop system for urinary control.

  2. Label-free imaging of rat spinal cords based on multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Chenxi; Wang, Zhenyu; Zhou, Linquan; Zhu, Xiaoqin; Liu, Wenge; Chen, Jianxin

    2016-10-01

    As an integral part of the central nervous system, the spinal cord is a communication cable between the body and the brain. It mainly contains neurons, glial cells, nerve fibers and fiber tracts. The recent development of the optical imaging technique allows high-resolution imaging of biological tissues with the great potential for non-invasively looking inside the body. In this work, we evaluate the imaging capacity of multiphoton microscopy (MPM) based on second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) for the cells and extracellular matrix in the spinal cord at molecular level. Rat spinal cord tissues were sectioned and imaged by MPM to demonstrate that MPM is able to show the microstructure including white matter, gray matter, ventral horns, dorsal horns, and axons based on the distinct intrinsic sources in each region of spinal cord. In the high-resolution and high-contrast MPM images, the cell profile can be clearly identified as dark shadows caused by nuclei and encircled by cytoplasm. The nerve fibers in white matter region emitted both SHG and TPEF signals. The multiphoton microscopic imaging technique proves to be a fast and effective tool for label-free imaging spinal cord tissues, based on endogenous signals in biological tissue. It has the potential to extend this optical technique to clinical study, where the rapid and damage-free imaging is needed.

  3. Cannabinoid CB1 receptor facilitation of substance P release in the rat spinal cord, measured as neurokinin 1 receptor internalization

    PubMed Central

    Zhang, Guohua; Chen, Wenling; Lao, Lijun; Marvizón, Juan Carlos G.

    2010-01-01

    The contribution of CB1 receptors in the spinal cord to cannabinoid analgesia is still unclear. The objective of this study was to investigate the effect of CB1 receptors on substance P release from primary afferent terminals in the spinal cord. Substance P release was measured as NK1 receptor internalization in lamina I neurons. It was induced in spinal cord slices by dorsal root stimulation and in live rats by a noxious stimulus. In spinal cord slices, the CB1 receptor antagonists AM251, AM281 and rimonabant partially but potently inhibited NK1 receptor internalization induced by electrical stimulation of the dorsal root. This was due to an inhibition of substance P release and not of NK1 receptor internalization itself, because AM251 and AM281 did not inhibit NK1 receptor internalization induced by exogenous substance P. The CB1 receptor agonist ACEA increased NK1 receptor internalization evoked by dorsal root stimulation. The effects of AM251 and ACEA cancelled each other. In vivo, AM251 injected intrathecally decreased NK1 receptor internalization in spinal segments L5 and L6 induced by noxious hind paw clamp. Intrathecal AM251 also produced analgesia to radiant heat stimulation of the paw. The inhibition by AM251 of NK1 receptor internalization was reversed by antagonists of μ-opioid and GABAB receptors. This indicates that CB1 receptors facilitate substance P release by inhibiting the release of GABA and opioids next to primary afferent terminals, producing disinhibition. This results in a pronociceptive effect of CB1 receptors in the spinal cord. PMID:20074214

  4. The changing balance of brainstem–spinal cord modulation of pain processing over the first weeks of rat postnatal life

    PubMed Central

    Hathway, G J; Koch, S; Low, L; Fitzgerald, M

    2009-01-01

    Brainstem–spinal cord connections play an essential role in adult pain processing, and the modulation of spinal pain network excitability by brainstem nuclei is known to contribute to hyperalgesia and chronic pain. Less well understood is the role of descending brainstem pathways in young animals when pain networks are more excitable and exposure to injury and stress can lead to permanent modulation of pain processing. Here we show that up to postnatal day 21 (P21) in the rat, the rostroventral medulla of the brainstem (RVM) exclusively facilitates spinal pain transmission but that after this age (P28 to adult), the influence of the RVM shifts to biphasic facilitation and inhibition. Graded electrical microstimulation of the RVM at different postnatal ages revealed a robust shift in the balance of descending control of both spinal nociceptive flexion reflex EMG activity and individual dorsal horn neuron firing properties, from excitation to inhibition, beginning after P21. The shift in polarity of descending control was also observed following excitotoxic lesions of the RVM in adult and P21 rats. In adults, RVM lesions decreased behavioural mechanical sensory reflex thresholds, whereas the same lesion in P21 rats increased thresholds. These data demonstrate, for the first time, the changing postnatal influence of the RVM in spinal nociception and highlight the central role of descending brainstem control in the maturation of pain processing. PMID:19403624

  5. Cortical presynaptic control of dorsal horn C-afferents in the rat.

    PubMed

    Moreno-López, Yunuen; Pérez-Sánchez, Jimena; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C-fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C-fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C-fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C-fibers by means of GABAergic inhibitory interneurons.

  6. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  7. Spinal Activation of Tropomyosin Receptor Kinase-B Recovers the Impaired Endogenous Analgesia in Neuropathic Pain Rats.

    PubMed

    Kato, Daiki; Suto, Takashi; Obata, Hideaki; Saito, Shigeru

    2018-06-20

    Although endogenous analgesia plays an important role in controlling pain states, chronic pain patients exhibit decreased endogenous analgesia compared to healthy individuals. In rats, noxious stimulus-induced analgesia (NSIA), which is an indicator of endogenous analgesia, diminished 6 weeks after spinal nerve ligation (SNL6W). A recent study in rats with deleted noradrenergic fibers demonstrated that the noradrenergic fibers were essential to NSIA. It has also been reported that brain-derived neurotrophic factor increased spinal noradrenergic fibers. Therefore, this study examined the effect of TrkB activation, which is the receptor for brain-derived neurotrophic factor, on impaired NSIA in SNL6W rats. In addition, we also examined the effect of endogenous analgesia on acute incisional pain. After 5 daily intraperitoneal injections of 7,8-dihydroxyflavone (7,8-DHF, TrkB agonist, 5 mg/kg), NSIA was examined by measuring the withdrawal threshold increment in the left (contralateral to nerve ligation) hindpaw at 30 minutes after capsaicin injection (250 μg) in the forepaw. K252a (TrkB antagonist, 2 μg) was administrated intrathecally for 5 days. Idazoxan (α2 adrenoceptor antagonist, 30 μg), atropine (muscarinic antagonist, 30 μg), and propranolol (nonselective β adrenoceptor antagonist, 30 μg) were administered intrathecally for 15 minutes before capsaicin injection. Microdialysis and immunohistochemistry were performed to examine the noradrenergic plasticity in the spinal dorsal horn. A hindpaw incision was performed on the left (contralateral to nerve ligation) hindpaw. Data were analyzed by 1-way analyses of variance or 2-way repeated-measures 1-way analysis of variance followed by a Student t test with Bonferroni correction. Five daily intraperitoneal injections of 7,8-DHF restored the attenuated NSIA in SNL6W rats (n = 7, P = .002; estimated treatment effect [95% CI]: 62.9 [27.0-98.7] g), with this effect blocked by 5 daily intrathecal coadministrations

  8. Coregulation of endoplasmic reticulum stress and oxidative stress in neuropathic pain and disinhibition of the spinal nociceptive circuitry.

    PubMed

    Ge, Yanhu; Jiao, Yingfu; Li, Peiying; Xiang, Zhenghua; Li, Zhi; Wang, Long; Li, Wenqian; Gao, Hao; Shao, Jiayun; Wen, Daxiang; Yu, Weifeng

    2018-05-01

    The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen leads to ER stress, which is related to cellular reactive oxygen species production. Neuropathic pain may result from spinal dorsal horn (SDH) ER stress. In this study, we examined the cause-effect relationship between ER stress and neuropathic pain using the spinal nerve ligation (SNL) rat model. We showed that ER stress was mutually promotive with oxidative stress during the process. We also tested the hypothesis that spinal sensitization arose from reduced activities of GABA-ergic interneurons and that spinal sensitization was mediated by SDH ER stress. Other important findings in this study including the following: (1) nociceptive behavior was alleviated in SNL rat as long as tauroursodeoxycholic acid injections were repeated to inhibit ER stress; (2) inducing SDH ER stress in healthy rat resulted in mechanical hyperalgesia; (3) blocking protein disulfide isomerase pharmacologically reduced ER stress and nociceptive behavior in SNL rat; (4) cells in the dorsal horn with elevated ER stress were mainly neurons; and (5) whole-cell recordings made in slide preparations revealed significant inhibition of GABA-ergic interneuron activity in the dorsal horn with ER stress vs in the healthy dorsal horn. Taken together, results of the current study demonstrate that coregulation of ER stress and oxidative stress played an important role in neuropathic pain process. Inhibiting SDH ER stress could be a potential novel strategy to manage neuropathic pain.

  9. GDNF and NGF family members and receptors in human fetal and adult spinal cord and dorsal root ganglia.

    PubMed

    Josephson, A; Widenfalk, J; Trifunovski, A; Widmer, H R; Olson, L; Spenger, C

    2001-11-12

    We describe the expression of mRNA encoding ligands and receptors of members of the GDNF family and members of the neurotrophin family in the adult human spinal cord and dorsal root ganglia (DRG). Fetal human spinal cord and ganglia were investigated for the presence of ligands and receptors of the neurotrophin family. Tissues were collected from human organ donors and after routine elective abortions. Messenger RNA was found encoding RET, GFR alpha-1, BDNF, trkB, and trkC in the adult human spinal cord and BDNF, NT-3, p75, trkB, and trkC in the fetal human spinal cord. The percentage of adult human DRG cells expressing p75, trkA, trkB, or trkC was 57, 46, 29, and 24%, respectively, and that of DRG cells expressing RET, GFR alpha-1, GFR alpha-2, or GFR alpha-3 was 79, 20, 51, and 32%, respectively. GFR alpha-2 was expressed selectively in small, GFR alpha-3 principally in small and GFR alpha-1 and RET in both large and small adult human DRG neurons. p75 and trkB were expressed by a wide range of DRG neurons while trkA was expressed in most small diameter and trkC primarily in large DRG neurons. Fetal DRG cells were positive for the same probes as adult DRG cells except for NT-3, which was only found in fetal DRG cells. Messenger RNA species only expressed at detectable levels in fetal but not adult spinal cord tissues included GDNF, GFR alpha-2, NT-3, and p75. Notably, GFR alpha-2, which is expressed in the adult rat spinal cord, was not found in the adult human spinal cord. Copyright 2001 Wiley-Liss, Inc.

  10. Expression of vesicular glutamate transporters, VGluT1 and VGluT2, in axon terminals of nociceptive primary afferent fibers in the superficial layers of the medullary and spinal dorsal horns of the rat.

    PubMed

    Li, Jin-Lian; Fujiyama, Fumino; Kaneko, Takeshi; Mizuno, Noboru

    2003-03-10

    We examined immunohistochemically whether the vesicular glutamate transporters (VGluTs), VGluT1 and VGluT2, might be expressed in synaptic terminals of nociceptive primary afferent fibers within laminae I and II of the medullary and spinal dorsal horns of the rat. VGluT1 immunoreactivity (IR) was intense in the inner part of lamina II but weak in lamina I and the outer part of lamina II. VGluT2-IR was most intense in lamina I and the outer part of lamina II. Expression of VGluTs in synaptic terminals was confirmed by dual immunofluorescence histochemistry for VGluTs and synaptophysin. Expression of VGluTs in axon terminals of primary afferent fibers terminating in laminae I and II was also confirmed immunohistochemically after unilateral dorsal rhizotomy. The dual immunofluorescence histochemistry indicated expression of VGluTs in substance P (SP)-containing axon terminals in lamina I and the outer part of lamina II. Electron microscopy confirmed the coexpression of VGluTs and SP in axon terminals within laminae I and II; VGluTs was associated with round synaptic vesicles at the asymmetric synapses. It was further observed that isolectin IB4, a marker for unmyelinated axons, often bound with VGluT2-immunopositive structures but rarely with VGluT1-immunopositive structures in lamina II. Thus, the results indicated in laminae I and II of the medullary and spinal dorsal horns that both VGluT1 and VGluT2 were expressed in axon terminals of primary afferent fibers, including SP-containing nociceptive fibers and that VGluT in unmyelinated primary afferent fibers terminating in lamina II was primarily VGluT2. Copyright 2003 Wiley-Liss, Inc.

  11. Receptor activated bladder and spinal ATP release in neurally intact and chronic spinal cord injured rats

    PubMed Central

    Salas, Nilson A.; Somogyi, George T.; Gangitano, David A.; Boone, Timothy B.; Smith, Christopher P.

    2009-01-01

    Neurally intact (NI) rats and chronic spinal cord injured (SCI) rats were studied to determine how activation of mechanosensory or cholinergic receptors in the bladder urothelium evokes ATP release from afferent terminals in the bladder as well as in the spinal cord. Spinal cord transection was performed at the T9-T10 level 2–3 weeks prior to the experiment and a microdialysis fiber was inserted in the L6-S1 lumbosacral spinal cord. Mechanically evoked (i.e. 10cm/w bladder pressure) ATP release into the bladder lumen was approximately 6.5 fold higher in SCI compared to NI rats (p<0.05). Intravesical carbachol (CCh) induced a significantly greater release of ATP in the bladder from SCI as compared to NI rats (3424.32 ± 1255.57 vs. 613.74 ± 470.44 pmol/ml, respectively, p<0.05). However, ATP release in NI or SCI rats to intravesical CCh was not affected by the muscarinic antagonist atropine (Atr). Spinal release of ATP to bladder stimulation with 10cm/w pressure was 5-fold higher in SCI compared to NI rats (p<0.05). CCh also induced a significantly greater release of spinal ATP in SCI rats compared to controls (4.3 ± 0.9 vs. 0.90 ± 0.15 pmol, p < 0.05). Surprisingly, the percent inhibitory effect of Atr on CCh-induced ATP release was significantly less in SCI as compared to NI rats (49% vs. 89%, respectively). SCI induces a dramatic increase in intravesical pressure and cholinergic receptor evoked bladder and spinal ATP release. Muscarinic receptors do not mediate intravesical CCh induced ATP release into the bladder lumen in NI or SCI rats. In NI rats sensory muscarinic receptors are the predominant mechanism by which CCh induces ATP release from primary afferents within the lumbosacral spinal cord. Following SCI, however, nicotinic or purinergic receptor mechanisms become active, as evidenced by the fact that Atr was only partially effective in inhibiting CCh-induced spinal ATP release. PMID:17067723

  12. Injury-Dependent and Disability-Specific Lumbar Spinal Gene Regulation following Sciatic Nerve Injury in the Rat.

    PubMed

    Austin, Paul J; Bembrick, Alison L; Denyer, Gareth S; Keay, Kevin A

    2015-01-01

    Allodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI) disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four 'disability-specific' genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular structure

  13. [The influence of partial dorsal root rhizotomy on IGF-I expression in spared root ganglion and spinal cord].

    PubMed

    Wang, Wei-min; Guan, Yu-guang; Liu, Fen; Wang, Ting-hua; Xu, Xin-yun; Ke, Qing; Lu, Yong-chao; Yuan, Yuan

    2005-01-01

    To explore the temporospatial changes of IGF-I expression in the spared dorsal root ganglia (DRG, L6) on the operated side and un-operated side, in the spinal lamina II (L3, L5, L6) and Clarke's nucleus (L3) of the adult cats that have undergone partial dorsal rhizotomy, and compare them against those of the normal adult cats so as to unveil the relation between IGF-I and the plasticity of spinal cord. Fifteen male adult cats were divided into three groups. The cats of two groups were subjected to unilateral partial dorsal root rhizotomy (L1-L5, L7-S2 DRG were sectioned, but L6 was spared) and were sacrificed at 7 days and 14 days after operation. The bilateral L6 dorsal root ganglia and L3, L5, L6 spinal cord of all groups were made into frozen sections 20 microm thick. Then, the sections were stained by the immunohistochemistry ABC method using IGF-I (1:200, Santa Cruz) antibody. The distribution and the number of IGF-I positive neurons in bilateral spared DRG (L6) on the operated/un-operated side, in spinal lamina I (L3, L5, L6) and in Clarke' nucleus (L3) of each animal were observed and counted. All data were analyzed by one-way ANOVA, SNK-q test and paired-t test. (1) Seven days after partial dorsal root rhizotomy, the number of IGF-I positive neurons in spared DRG on the operated side declined as compared with that of normal group (P<0.05), but it was not significantly different from that of L6 spared DRG on the un-operated side (P>0.05). On the 14th day, the IGF-I expression in neurons of L6 DRG on the operated side was significantly lower than that of normal group and that of L6 spared DRG on the unoperated side (P<0.01), but it was not significantly different from that of the 7th day group (P>0.05). (2) There was no difference in number of IGF-I positive neuron in L3, L5, L6 spinal lamina II between normal group, 7th day post-operation group and 14th day post-operation group (P>0.05). After operation, IGF-I expression in Clarke's nucleus declined on the 7

  14. Inhibitory effects of eugenol on putative nociceptive response in spinal cord preparation isolated from neonatal rats.

    PubMed

    Yagura, Saki; Onimaru, Hiroshi; Kanzaki, Koji; Izumizaki, Masahiko

    2018-06-01

    Eugenol is contained in several plants including clove and is thought to exert an analgesic effect. It has been suggested that the slow ventral root potential induced by ipsilateral dorsal root stimulation in the isolated (typically lumbar) spinal cord of newborn rats reflects the nociceptive response, and this in vitro experimental model is useful to assess the actions of analgesics. To further elucidate neuronal mechanisms of eugenol-induced analgesia, we examined the effects of extracellularly applied eugenol on the nociceptive spinal reflex response. To evaluate the effects of eugenol on putative nociceptive responses, the ipsilateral fifth lumbar (L5) dorsal root was stimulated using a glass suction electrode, and the induced reflex responses were recorded from the L5 and twelfth thoracic (Th12) ventral roots in spinal cord preparations (Th10-L5) from newborn rats (postnatal day 0-3). We found that eugenol (0.25-1.0 mM) caused dose-dependent attenuation of the reflex response and also depressed spontaneous ventral root activity. We also found that the slow ventral root potential was further divided into two components: initial and late components. A lower concentration of eugenol selectively depressed the late component. The inhibitory effects by 1.0 mM eugenol were not reversed by 10 µM capsazepine (TRPV1 antagonist) or 40 µM HC-030031 (TRPA1 antagonist). The depressive effect of eugenol on the reflex response was also confirmed by optical recordings using voltage-sensitive dye. Our report provides additional evidence on the basic neuronal mechanisms of eugenol to support its clinical use as a potential analgesic treatment.

  15. Interactions between superficial and deep dorsal horn spinal cord neurons in the processing of nociceptive information.

    PubMed

    Petitjean, Hugues; Rodeau, Jean-Luc; Schlichter, Rémy

    2012-12-01

    In acute rat spinal cord slices, the application of capsaicin (5 μm, 90 s), an agonist of transient receptor potential vanilloid 1 receptors expressed by a subset of nociceptors that project to laminae I-II of the spinal cord dorsal horn, induced an increase in the frequency of spontaneous excitatory and spontaneous inhibitory postsynaptic currents in about half of the neurons in laminae II, III-IV and V. In the presence of tetrodotoxin, which blocks action potential generation and polysynaptic transmission, capsaicin increased the frequency of miniature excitatory postsynaptic currents in only 30% of lamina II neurons and had no effect on the frequency of miniature excitatory postsynaptic currents in laminae III-V or on the frequency of miniature inhibitory postsynaptic currents in laminae II-V. When the communication between lamina V and more superficial laminae was interrupted by performing a mechanical section between laminae IV and V, capsaicin induced an increase in spontaneous excitatory postsynaptic current frequency in laminae II-IV and an increase in spontaneous inhibitory postsynaptic current frequency in lamina II that were similar to those observed in intact slices. However, in laminae III-IV of transected slices, the increase in spontaneous inhibitory postsynaptic current frequency was virtually abolished. Our results indicate that nociceptive information conveyed by transient receptor potential vanilloid 1-expressing nociceptors is transmitted from lamina II to deeper laminae essentially by an excitatory pathway and that deep laminae exert a 'feedback' control over neurons in laminae III-IV by increasing inhibitory synaptic transmission in these laminae. Moreover, we provide evidence that laminae III-IV might play an important role in the processing of nociceptive information in the dorsal horn. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. The Postnatal Development of Spinal Sensory Processing

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Maria; Jennings, Ernest

    1999-07-01

    The mechanisms by which infants and children process pain should be viewed within the context of a developing sensory nervous system. The study of the neurophysiological properties and connectivity of sensory neurons in the developing spinal cord dorsal horn of the intact postnatal rat has shed light on the way in which the newborn central nervous system analyzes cutaneous innocuous and noxious stimuli. The receptive field properties and evoked activity of newborn dorsal horn cells to single repetitive and persistent innocuous and noxious inputs are developmentally regulated and reflect the maturation of excitatory transmission within the spinal cord. These changes will have an important influence on pain processing in the postnatal period.

  17. Noxious mechanical heterotopic stimulation induces inhibition of the spinal dorsal horn neuronal network: analysis of spinal somatosensory-evoked potentials.

    PubMed

    Meléndez-Gallardo, J; Eblen-Zajjur, A

    2016-09-01

    Most of the endogenous pain modulation (EPM) involves the spinal dorsal horn (SDH). EPM including diffuse noxious inhibitory controls have been extensively described in oligoneuronal electrophysiological recordings but less attention had been paid to responses of the SDH neuronal population to heterotopic noxious stimulation (HNS). Spinal somatosensory-evoked potentials (SEP) offer the possibility to evaluate the neuronal network behavior, reflecting the incoming afferent volleys along the entry root, SDH interneuron activities and the primary afferent depolarization. SEP from de lumbar cord dorsum were evaluated during mechanical heterotopic noxious stimuli. Sprague-Dawley rats (n = 12) were Laminectomized (T10-L3). The sural nerve of the left hind paw was electrically stimulated (5 mA, 0.5 ms, 0.05 Hz) to induce lumbar SEP. The HNS (mechanic clamp) was applied sequentially to the tail, right hind paw, right forepaw, muzzle and left forepaw during sural stimulation. N wave amplitude decreases (-16.6 %) compared to control conditions when HNS was applied to all areas of stimulation. This effect was more intense for muzzle stimulation (-23.5 %). N wave duration also decreased by -23.6 %. HNS did not change neither the amplitude nor the duration of the P wave but dramatically increases the dispersion of these two parameters. The results of the present study strongly suggest that a HNS applied to different parts of the body is able to reduce the integrated electrical response of the SDH, suggesting that not only wide dynamic range neurons but many others in the SDH are modulated by the EPM.

  18. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection

    PubMed Central

    Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang

    2016-01-01

    Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450

  19. Release of neuropeptide FF (FLFQPQRF-NH2) from rat spinal cord.

    PubMed

    Zhu, J; Jhamandas, K; Yang, H Y

    1992-10-02

    Neuropeptide FF (FLFQPQRF-NH2), originally isolated from bovine brain, is an FMRF-NH2-like peptide with morphine-modulating activity. Neuropeptide FF (NPFF) is highly localized in the dorsal spinal cords where there are also specific NPFF binding sites. Furthermore, there have been studies indicating that NPFF may participate in the regulation of pain threshold in the spinal cord. However, whether NPFF can be released from the spinal cord is not known. The present experiments, using an in vitro superfusion of an isolated whole rat spinal cord, demonstrated that high concentrations of KCl or substance P caused a release of NPFF immunoreactive material (IR) from the spinal cord into the perfusion medium in a calcium-dependent manner. Substance P (1-11) also produced a detectable release of NPFF-IR in vivo although the response was quite variable. The released NPFF-IR was analyzed by an HPLC study and found to consist of NPFF and other minor immunoreactive peptides. Further studies with substance P-related peptides showed that the in vitro release of NPFF-IR could also be induced by substance P (1-7) but not by [pGlu5,Me-Phe8,Sar9]-substance P (5-11) or substance K. These results suggest that the specific substance P receptor (SP-N), which is recognized by both substance P (1-11) and substance P (1-7) rather than the tachykinin receptor, is involved in NPFF secretion from the spinal cord. In view of the role of substance P (1-11) and substance P (1-7) in sensory transmission, the results of this study further support the role of NPFF in the modulation of antinociception in the spinal cord.

  20. Spinal intracellular metabotropic glutamate receptor 5 (mGluR5) contributes to pain and c-fos expression in a rat model of inflammatory pain.

    PubMed

    Vincent, Kathleen; Wang, Shu Fan; Laferrière, André; Kumar, Naresh; Coderre, Terence J

    2017-04-01

    Metabotropic glutamate receptor 5 (mGluR5) is an excitatory G-protein-coupled receptor (GPCR) present in the spinal cord dorsal horn (SCDH) where it has a well-established role in pain. In addition to its traditional location on the cytoplasmic membrane, recent evidence shows that these receptors are present intracellularly on the nuclear membrane in the spinal cord dorsal horn and are implicated in neuropathic pain. Nuclear mGluR5 is a functional receptor that binds glutamate entering the cell through the neuronal glutamate transporter (GT) EAAT3 and activates transcription factor c-fos, whereas plasma membrane mGluR5 is responsible for c-jun activation. Here, we extend these findings to a model of inflammatory pain using complete Freund's adjuvant (CFA) and show that nuclear mGluR5 is also upregulated in the spinal cord dorsal horn following inflammation. We also show that pretreatment with an excitatory amino acid transporter (EAAT) inhibitor attenuates pain and decreases Fos, but not Jun, expression in complete Freund's adjuvant rats. In contrast, selective glial glutamate transporter inhibitors are pronociceptive and increase spinal glutamate concentrations. Additionally, we found that permeable mGluR5 antagonists are more effective at attenuating pain and Fos expression than nonpermeable group I mGluR antagonists. Taken together, these results suggest that under inflammatory conditions, intracellular mGluR5 is actively involved in the relay of nociceptive information in the spinal cord.

  1. α5GABAA Receptors Mediate Tonic Inhibition in the Spinal Cord Dorsal Horn and Contribute to the Resolution Of Hyperalgesia.

    PubMed

    Perez-Sanchez, Jimena; Lorenzo, Louis-Etienne; Lecker, Irene; Zurek, Agnieszka A; Labrakakis, Charalampos; Bridgwater, Erica M; Orser, Beverley A; De Koninck, Yves; Bonin, Robert P

    2017-06-01

    Neuronal inhibition mediated by GABA A receptors constrains nociceptive processing in the spinal cord, and loss of GABAergic inhibition can produce allodynia and hyperalgesia. Extrasynaptic α5 subunit-containing GABA A receptors (α5GABA A Rs) generate a tonic conductance that inhibits neuronal activity and constrains learning and memory; however, it is unclear whether α5GABA A Rs similarly generate a tonic conductance in the spinal cord dorsal horn to constrain nociception. We assessed the distribution of α5GABA A Rs in the spinal cord dorsal horn by immunohistochemical analysis, and the activity and function of α5GABA A Rs in neurons of the superficial dorsal horn using electrophysiological and behavioral approaches in male, null-mutant mice lacking the GABA A R α5 subunit (Gabra5-/-) and wild-type mice (WT). The expression of α5GABA A Rs in the superficial dorsal horn followed a laminar pattern of distribution, with a higher expression in lamina II than lamina I. Similarly, the tonic GABA A current in lamina II neurons had a larger contribution from α5GABA A Rs than in lamina I, with no significant contribution of these receptors to synaptic GABA A current. In behavioural tests, WT and Gabra5-/- mice exhibited similar acute thermal and mechanical nociception, and similar mechanical sensitization immediately following intraplantar capsaicin or Complete Freund's Adjuvant (CFA). However, Gabra5-/- mice showed prolonged recovery from sensitization in these models, and increased responses in the late phase of the formalin test. Overall, our data suggest that tonically-active α5GABA A Rs in the spinal cord dorsal horn accelerate the resolution of hyperalgesia and may therefore serve as a novel therapeutic target to promote recovery from pathological pain. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Hypocretin-2 (orexin-B) modulation of superficial dorsal horn activity in rat

    PubMed Central

    Grudt, Timothy J; van den Pol, Anthony N; Perl, Edward R

    2002-01-01

    The hypothalamic peptides hypocretin-1 (orexin A) and hypocretin-2 (Hcrt-2; orexin B) are important in modulating behaviours demanding arousal, including sleep and appetite. Fibres containing hypocretin project from the hypothalamus to the superficial dorsal horn (SDH) of the spinal cord (laminae I and II); however, the effects produced by hypocretins on SDH neurones are unknown. To study the action of Hcrt-2 on individual SDH neurones, tight-seal, whole-cell recordings were made with biocytin-filled electrodes from rat lumbar spinal cord slices. In 19 of 63 neurones, Hcrt-2 (30 nm to 1 μm) evoked an inward (excitatory) current accompanied by an increase in baseline noise. The inward current and noise were unaffected by TTX but were blocked by the P2X purinergic receptor antagonist suramin (300–500 μm). Hcrt-2 (30 nm to 1 μm) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in the majority of neurones. The sIPSC increase was blocked by strychnine (1 μm) and by TTX (1 μm), suggesting that the increased sIPSC frequency was glycine and action potential dependent. Hcrt-2 increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in a few neurones but had no effect on dorsal root-evoked EPSCs in these or in other neurones. Neurones located in outer lamina II, particularly radial and vertical cells, were most likely to respond to Hcrt-2. We conclude that Hcrt-2 has excitatory effects on certain SDH neurones, some of which exert inhibitory influences on other cells of the region, consistent with the perspective that hypocretin has a role in orchestrating reactions related to arousal, including nociception, pain and temperature sense. PMID:11790816

  3. Superficial NK1 expressing spinal dorsal horn neurones modulate inhibitory neurotransmission mediated by spinal GABA(A) receptors.

    PubMed

    Rahman, Wahida; Sikandar, Shafaq; Sikander, Shafaq; Suzuki, Rie; Hunt, Stephen P; Dickenson, Anthony H

    2007-06-04

    Lamina 1 projection neurones which express the NK1 receptor (NK1R+) drive a descending serotonergic pathway from the brainstem that enhances spinal dorsal horn neuronal activity via the facilitatory spinal 5-HT3 receptor. Selective destruction of these cells via lumbar injection of substance P-saporin (SP-SAP) attenuates pain behaviours, including mechanical and thermal hypersensitivity, which are mirrored by deficits in the evoked responses of lamina V-VI wide dynamic range (WDR) neurones to noxious stimuli. To assess whether removing the origin of this facilitatory spino-bulbo-spinal loop results in alterations in GABAergic spinal inhibitory systems, the effects of spinal bicuculline, a selective GABA(A) receptor antagonist, on the evoked neuronal responses to electrical (Abeta-, Adelta-, C-fibre, post-discharge and Input) and mechanical (brush, prod and von Frey (vF) 8 and 26 g) stimuli were measured in SAP and SP-SAP groups. In the SAP control group, bicuculline produced a significant dose related facilitation of the electrically evoked Adelta-, C-fibre, post-discharge and input neuronal responses. The evoked mechanical (prod, vF8 g and 26 g) responses were also significantly increased. Brush evoked neuronal responses in these animals were enhanced but did not reach significance. This facilitatory effect of bicuculline, however, was lost in the SP-SAP treated group. The generation of intrinsic GABAergic transmission in the spinal cord appears dependent on NK1 bearing neurons, yet despite the loss of GABAergic inhibitory controls after SP-SAP treatment, the net effect is a decrease in spinal cord excitability. Thus activation of these cells predominantly drives facilitation.

  4. The distribution and origin of a novel brain peptide, neuropeptide Y, in the spinal cord of several mammals.

    PubMed

    Gibson, S J; Polak, J M; Allen, J M; Adrian, T E; Kelly, J S; Bloom, S R

    1984-07-20

    The distribution of neuropeptide Y [NPY]-immunoreactive material was examined in the spinal cord and dorsal root ganglia of rat, guinea-pig, cat, marmoset, and horse. Considerable concentrations of NPY and similar distribution patterns of immunoreactive nerve fibres were found in the spinal cord of all species investigated. The dorsal root ganglia of the cat and the horse contained numerous immunoreactive nerve fibres, but in these species, as in the other three studied [rat, guinea-pig, marmoset], no positively stained cell bodies were found. Neuropeptide Y-immunoreactive nerves were observed at all levels of the spinal cord, being most concentrated in the dorsal horn. In the rat, guinea-pig, and marmoset, there was a marked increase of NPY-immunoreactive fibres in the lumbosacral regions of the spinal cord, and this was reflected by a considerable increase of extractable NPY. Estimations of NPY-immunoreactive material in the various regions of the rat spinal cord were as follows: cervical, 13.8 +/- 1.0; thoracic, 21.1 +/- 2.5; lumbar, 16.3 +/- 2.9; sacral, 92.4 +/- 8.5 pmol/gm wet weight of tissue +/- SEM. In the ventral portion of the guinea-pig spinal cord they were as follows: cervical, 7.1 +/- 1.2; thoracic, 8.2 +/- 3.6; lumbar, 22.6 +/- 7.0; sacral, 36.7 +/- 9.5 pmol/gm wet weight of tissue +/- SEM. Analysis of spinal cord extracts by reverse phase high performance liquid chromatography [HPLC] demonstrated that NPY-immunoreactive material elutes in the position of pure NPY standard. No changes in the concentration and distribution of the NPY-like material in the rat spinal cord were observed following a variety of surgical and pharmacological manipulations, including cervical rhizotomy, sciatic nerve section and ligation, and local application of capsaicin [50 mM] to one sciatic nerve. It is therefore suggested that most of the NPY-immunoreactive material in the spinal cord is derived either from intrinsic nerve cell bodies or from supraspinal tracts.

  5. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat.

    PubMed

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.

  6. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni.

    PubMed

    Partata, W A; Krepsky, A M; Marques, M; Achaval, M

    1999-04-01

    Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.

  7. Intrathecal treatment with MK-801 suppresses thermal nociceptive responses and prevents c-fos immunoreactivity induced in rat lumbar spinal cord neurons.

    PubMed

    Huang, W; Simpson, R K

    1999-09-01

    Sensitization of the second order neurons in the spinal dorsal horn after somatic noxious stimuli is partly mediated by the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor. These neurons also express c-Fos immunoreactivity in response to the somatic noxious stimuli. The present study assessed the influence of intrathecal pre-treatment with MK-801, a non-competitive antagonist of NMDA receptor, on thermal sensitization following peripheral noxious heat stimulation. In addition, the influence of MK-801 on c-Fos immunoreactivity in the rat lumbar spinal cord neurons after the peripheral noxious heat was examined. Sprague-Dawley rats were subject to intrathecal catheterization and administration of MK-801 or saline before and after noxious heat (52 degrees C) stimulation of rat hindpaws. Thermal sensitization was tested after MK-801 (0.1 mumol 10 microliters-1). Fos-like immunoreactivity was evaluated 2 h after noxious stimulation in a separate group of animals. MK-801 significantly increased the thermal withdrawal threshold by 60% following noxious heat stimulation and reduced c-Fos immunoreactivity in the second order neurons by 70% in the dorsal horn. The study suggests that glutamate plays a pivotal role in the thermal nociceptive pathway and indicates that the NMDA receptor is necessary to maintain normal thermal sensitization, possibly by regulating c-fos gene expression in second order neurons.

  8. Spinal cord projections of the rat main forelimb nerves, studied by transganglionic transport of WGA-HRP and by the disappearance of acid phosphatase.

    PubMed

    Castro-Lopes, J M; Coimbra, A

    1991-03-01

    The spinal cord projections of the 3 main forelimb nerves-median, radial and ulnar, were studied in the rat dorsal horn with transganglionic transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP), or using the disappearance of fluoride resistant acid phosphatase (FRAP) after nerve section. The projection patterns in lamina II were similar following the two procedures. The median and the radial nerve fibers projected to the medial and the intermediate thirds, respectively, of the dorsal horn lamina II in spinal cord segments C4-C8. The ulnar nerve projected to segments C6-C8 between the areas occupied by the other two nerves. The FRAP method also showed that the lateral part of lamina II, which was not filled by radial nerve fibers, received the projections from the dorsal cutaneous branches of cervical spinal nerves. In addition, FRAP disappeared from the medial end of segment T1 after skin incisions extending from the medial brachium to the axilla, which seemed due to severance of the cutaneous branchlets of the lateral anterior thoracic nerve. The FRAP procedure is thus sensitive enough to detect fibers in lamina II arising from small peripheral nerves, and may be used as an alternative to the anterograde tracing methods whenever there are no overlapping projections.

  9. Ablating spinal NK1-bearing neurons eliminates the development of pain & reduces spinal neuronal hyperexcitability & inflammation from mechanical joint injury in the rat

    PubMed Central

    Weisshaar, Christine L.; Winkelstein, Beth A.

    2014-01-01

    The facet joint is a common source of pain especially from mechanical injury. Although chronic pain is associated with altered spinal glial and neuronal responses, the contribution of specific spinal cells to joint pain are not understood. This study used the neurotoxin [Sar9,Met(O2)11]-substance P-saporin (SSP-SAP) to selectively eliminate spinal cells expressing neurokinin-1 receptor (NK1R) in a rat model of painful facet joint injury to determine the role of those spinal neurons in pain from facet injury. Following spinal administration of SSP-SAP or its control (blank-SAP), a cervical facet injury was imposed and behavioral sensitivity assessed. Spinal extracellular recordings were made on day 7 to classify neurons and quantify evoked firing. Spinal glial activation and IL1α expression also were evaluated. SSP-SAP prevented the development of mechanical hyperalgesia that is induced by joint injury and reduced NK1R expression and mechanically-evoked neuronal firing in the dorsal horn. SSP-SAP also prevented a shift toward wide dynamic range neurons that is seen after injury. Spinal astrocytic activation and IL1α expression were reduced to sham levels with SSP-SAP treatment. These results suggest that spinal NK1R-bearing cells are critical in initiating spinal nociception and inflammation associated with a painful mechanical joint injury. Perspective Results demonstrate that cells expressing NK1R in the spinal cord are critical for the development of joint pain and spinal neuroplasticity and inflammation after trauma to the joint. These findings have utility for understanding mechanisms of joint pain and developing potential targets to treat pain. PMID:24389017

  10. [The metabolic profilings study of serum and spinal cord from acute spinal cord injury rats ¹H NMR spectroscopy].

    PubMed

    Hu, Hua-Hui; Huang, Xiao-Long; Quan, Ren-Fu; Yang, Zong-Bao; Xu, Jing-Jing

    2017-02-25

    To establish the rat model of acute spinal cord injury, followed by aprimary study on this model with ¹H NMR based on metabonomics and to explore the metabonomics and biomarkers of spinal cord injury rat. Twenty eight-week-old adult male SD rats of clean grade, with body weight of (200±10) g, were divided into sham operation group and model group in accordance with the law of random numbers, and every group had 10 rats. The rats of sham operation group were operated without damaging the spinal cord, and rats of model group were made an animal model of spinal cord incomplete injury according to the modified Allen's method. According to BBB score to observate the motor function of rats on the 1th, 5th, and 7th days after surgery. Postoperative spinal cord tissue was collected in order to pathologic observation at the 7th day, and the metabolic profilings of serum and spinal cord from spinal cord injury rats were studied by ¹H NMR spectroscopy. The hindlimb motion of rats did not obviously change in sham operation group, there was no significant difference at each time point;and rats of model group occurred flaccid paralysis of both lower extremities, there was a significant difference at each time; there was significant differences between two groups at each time. Pathological results showed the spinal cord structure was normal with uniform innervation in shame group, while in model group, the spinal cord structure was mussy, and the neurons were decreased, with inflammatory cells and necrotic tissue. Analysis of metabonomics showed that concentration of very low density fat protein (VLDL), low density fat protein (LDL), glutamine, citric acid, dimethylglycine (DMG) in the serum and glutathione, 3-OH-butyrate, N-Acetyl-L-aspartic acid (NAA), glycerophosphocholine (GPC), glutamic acid, and ascorbate in spinal cord had significant changes( P <0.05). There are significant differences in metabolic profile from serum and spinal cord sample between model group and sham

  11. Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord.

    PubMed

    Lee, Younglim; Pai, Madhavi; Brederson, Jill-Desiree; Wilcox, Denise; Hsieh, Gin; Jarvis, Michael F; Bitner, Robert S

    2011-05-20

    Intra-articular injection of monosodium iodoacetate (MIA) in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA) pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs) is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal dorsal horn MAPK activation, specifically ERK and p38 phosphorylation, was assessed in the MIA-OA model. Behaviorally, MIA-injected rats displayed reduced hind limb grip force 1, 2, and 3 weeks post-MIA treatment. In the same animals, activation of phospho ERK1/2 was gradually increased, reaching a significant level at post injection week 3. Conversely, phosphorylation of p38 MAPK was enhanced maximally at post injection week 1 and decreased, but remained elevated, thereafter. Double labeling from 3-wk MIA rats demonstrated spinal pERK1/2 expression in neurons, but not glia. In contrast, p-p38 was expressed by microglia and a subpopulation of neurons, but not astrocytes. Additionally, there was increased ipsilateral expression of microglia, but not astrocytes, in 3-wk MIA-OA rats. Consistent with increased MAPK immunoreactivity in the contralateral dorsal horn, mechanical allodynia to the contralateral hind-limb was observed 3-wk following MIA. Finally, intrathecal injection of the MEK1 inhibitor PD98059 blocked both reduced hind-limb grip force and pERK1/2 induction in MIA-OA rats. Results of these studies support the role of MAPK activation in the progression and maintenance of central sensitization in the MIA-OA experimental pain model.

  12. Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with ddC-related neuropathic pain in rats.

    PubMed

    Iida, Takafumi; Yi, Hyun; Liu, Shue; Huang, Wan; Kanda, Hirotsugu; Lubarsky, David A; Hao, Shuanglin

    2016-07-01

    Human immunodeficiency virus (HIV) patients treated with nucleoside reverse transcriptase inhibitors (NRTIs), have been known to develop neuropathic pain. While there has been a major shift away from some neurotoxic NRTIs in current antiretroviral therapy, a large number of HIV patients alive today have previously received them, and many have developed painful peripheral neuropathy. The exact mechanisms by which HIV with NRTIs contribute to the development of neuropathic pain are not known. Previous studies suggest that cytoplasmic polyadenylation element-binding protein (CPEB), reactive oxygen species (ROS), and cAMP-response element-binding protein (CREB)-binding protein (CBP), are involved in the neuroimmunological diseases including inflammatory/neuropathic pain. In this study, we investigated the role of CPEB, mitochondrial ROS (mtROS), or CBP in neuropathic pain induced by HIV envelope protein gp120 combined with antiretroviral drug. The application of recombinant gp120 into the sciatic nerve plus systemic ddC (one of NRTIs) induced mechanical allodynia. Knockdown of CPEB or CBP using intrathecal antisense oligodeoxynucleotide (AS-ODN) reduced mechanical allodynia. Intrathecal mitochondrial superoxide scavenger mito-tempol (Mito-T) increased mechanical withdrawal threshold. Knockdown of CPEB using intrathecal AS-ODN, reduced the up-regulated mitochondrial superoxide in the spinal dorsal horn in rats with gp120 combined with ddC. Intrathecal Mito-T lowered the increased expression of CBP in the spinal dorsal horn. Immunostaining studies showed that neuronal CPEB positive cells were co-localized with MitoSox positive profiles, and that MitoSox positive profiles were co-localized with neuronal CBP. Our studies suggest that neuronal CPEB-mtROS-CBP pathway in the spinal dorsal horn, plays an important role in the gp120/ddC-induced neuropathic pain in rats. Copyright © 2016. Published by Elsevier Inc.

  13. Functional relationship between brainstem putative pain-facilitating neurons and spinal nociceptfive neurons during development of inflammation in rats.

    PubMed

    Salas, Rafael; Ramirez, Karla; Tortorici, Victor; Vanegas, Horacio; Vazquez, Enrique

    2018-05-01

    The so-called on- and off-cells of the rostral ventromedial medulla (RVM) send their axons to the spinal dorsal horn. Activation of on-cells precedes and coincides with a facilitation, and activation of off-cells coincides with an inhibition, of withdrawal reflexes elicited by noxious agents. Considerable evidence supports the notion that on- and off-cells modulate nocifensive reflexes during opioid and non-opioid action and also during normal circumstances and during peripheral neuropathy and inflammation. Yet it is unclear whether on- and off-cells act upon sensory spinal circuits that might lead to ascending projections and the experience of pain. Here, in deeply anesthetized rats we recorded single unit discharges from pairs of one on-like or off-like cell in RVM and a nociceptive neuron in the spinal dorsal horn with input from a hind paw. Both ongoing activity and responses to a calibrated noxious stimulus applied to the paw were documented during basal conditions and during development of paw inflammation. Probably due to the strong barbiturate anesthesia, off-like cells were depressed and did not yield interpretable results. However, we showed for the first time that during the increase in neuronal activity that results from paw inflammation the activity of spinal nociceptive neurons reflects the activity of their partner on-like cells in a highly correlated manner. This implies a tight relationship between spinal sensory and RVM modulatory functions that may underlie inflammation-induced hyperreflexia and clinically relevant hyperalgesia. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Lentiviral-mediated Targeted NF-κB Blockade in Dorsal Spinal Cord Glia Attenuates Sciatic Nerve Injury-induced Neuropathic Pain in the Rat.

    PubMed

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor κB (NF-κB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-κB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-κB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-κB super- repressor IκBα resulted in an inhibition of the NF-κB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IκBα overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-κB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-κB pathway in the development of neuropathic pain after peripheral nerve injury. Copyright © 2007 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.

  15. Profile of neuronal excitation following selective activation of the neurokinin-1 receptor in rat deep dorsal horn in vitro.

    PubMed

    King, A E; Ackley, M A; Slack, J R

    1997-08-29

    The excitatory actions of the selective neurokinin-1 receptor (NK1R) agonist [Sar9,Met(O2)11]substance P (SP) were tested on a sample (n = 50) of deep dorsal horn neurones in the isolated and hemisected young rat spinal cord. Superfusion of the NK1R agonist (2 microM) elicited a prolonged membrane depolarisation (6.6 +/- 0.5 mV) and an increase in action potential firing in 41/50 (82%) neurones. These [Sar9,Met(O2)11]SP-induced depolarisations were attenuated by the selective NK1R antagonist GR82334 (1 microM). An increased neuronal excitability after [Sar9,Met(O2)11]SP application was indicated by an augmented spike frequency generated in response to long duration, step depolarisations. In order to assess whether a direct excitatory action existed, [Sar9,Met(O2)11]SP was re-tested on a sample of TTX-treated neurones (n = 14). The majority (9/14) retained agonist sensitivity although the amplitude of the depolarisation was reduced to 48% of the control value. A sample of neurones (n = 7) that responded to the NK1R agonist were morphologically characterised after filling with the intracellular dye, biocytin. Dorsal dendrites that clearly penetrated lamina II and that could receive a direct C-afferent input, were identified in only 2/7 neurones. These electrophysiological and neuroanatomical data demonstrate that deep dorsal horn neurones possess functional NK1Rs. The implications of the existence of these NK1Rs in the context of spinal somatosensory systems and SP is considered.

  16. Electrical stimulation of dorsal root entry zone attenuates wide-dynamic range neuronal activity in rats

    PubMed Central

    Yang, Fei; Zhang, Chen; Xu, Qian; Tiwari, Vinod; He, Shao-Qiu; Wang, Yun; Dong, Xinzhong; Vera-Portocarrero, Louis P.; Wacnik, Paul W.; Raja, Srinivasa N.; Guan, Yun

    2014-01-01

    Objectives Recent clinical studies suggest that neurostimulation at the dorsal root entry zone (DREZ) may alleviate neuropathic pain. However, the mechanisms of action for this therapeutic effect are unclear. Here, we examined whether DREZ stimulation inhibits spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. Materials and Methods We conducted in vivo extracellular single-unit recordings of WDR neurons in rats after an L5 spinal nerve ligation (SNL) or sham surgery. We set bipolar electrical stimulation (50 Hz, 0.2 ms, 5 min) of the DREZ at the intensity that activated only Aα/β-fibers by measuring the lowest current at which DREZ stimulation evoked a peak antidromic sciatic Aα/β-compound action potential without inducing an Aδ/C-compound action potential (i.e., Ab1). Results The elevated spontaneous activity rate of WDR neurons in SNL rats [n=25; data combined from day 14–16 (n = 15) and day 45–75 post-SNL groups (n=10)] was significantly decreased from the pre-stimulation level (p<0.01) at 0–15 min and 30–45 min post-stimulation. In both sham-operated (n=8) and nerve-injured rats, DREZ stimulation attenuated the C-component, but not A-component, of the WDR neuronal response to graded intracutaneous electrical stimuli (0.1–10 mA, 2 ms) applied to the skin receptive field. Further, DREZ stimulation blocked windup (a short form of neuronal sensitization) to repetitive noxious stimuli (0.5 Hz) at 0–15 min in all groups (p<0.05). Conclusions Attenuation of WDR neuronal activity may contribute to DREZ stimulation-induced analgesia. This finding supports the notion that DREZ may be a useful target for neuromodulatory control of pain. PMID:25308522

  17. Upregulation of adrenomedullin in the spinal cord and dorsal root ganglia in the early phase of CFA-induced inflammation in rats.

    PubMed

    Hong, Yanguo; Liu, Yushan; Chabot, Jean-Guy; Fournier, Alain; Quirion, Rémi

    2009-11-01

    Adrenomedullin (AM), a member of calcitonin gene-related peptide (CGRP) family, has been demonstrated to be a pronociceptive mediator [28]. This study was undertaken to investigate the role of AM in a model of complete Freund's adjuvant (CFA)-induced inflammatory pain. Injection of CFA, but not of saline, in the unilateral hindpaw produced an increase in the expression of AM-like immunoreactivity (AM-IR) in laminae I-II of the spinal cord as well as in small- and medium-sized dorsal root ganglion (DRG) neurons at 48 h. The content of AM in DRG on the side ipsilateral to CFA injection started to increase at 4 h and remained at high levels at 24 and 48 h. The selective antagonist of AM receptors, AM(22-52), administered intrathecally (i.t.) 24 h after CFA injection inhibited inflammation-associated hyperalgesia in a dose-dependent manner (2, 5 and 10 nmol). Impressively, this anti-hyperalgesic effect lasted for at least 24 h. I.t. administration of AM(22-52) (10 nmol) also reversed CFA-induced increase in AM-IR in the spinal dorsal horn and DRG. Furthermore, blockade of AM receptors abolished CFA-induced changes in the expression and content of CGRP-like immunoreactivity in these regions. Taken together, our results suggest that the upregulation of AM in DRG neurons contributes to the development of inflammatory pain, and this effect is mediated, at least in part, by enhancing the expression and release of CGRP. Blocking AM receptor downstream signaling effects using antagonists has the potential of relieving pain following the induction of inflammation.

  18. Peripheral inflammation increased the synaptic expression of NMDA receptors in spinal dorsal horn.

    PubMed

    Yang, Xian; Yang, Hong-Bin; Xie, Qin-Jian; Liu, Xiao-Hua; Hu, Xiao-Dong

    2009-07-01

    Considerable evidence has indicated that the aberrant, sustained enhancement of spinal NMDA receptors (NMDARs) function is closely associated with behavioral sensitization during inflammatory pain. However, the molecular mechanisms underlying inflammation-induced NMDARs hyperfunction remain poorly understood. The present study performed immunoblotting analysis to evaluate the possible changes in the protein expression of spinal NMDARs after injection of complete Freund's adjuvant (CFA) in mice. We found that CFA did not affect the total protein level of NMDARs subunit NR1 in spinal dorsal horn. However, NR1 immunoreactivity at synapses significantly increased after CFA injection, which was correlated in the time course with the development of mechanical allodynia. Inhibition of spinal NMDARs with D-APV completely eliminated the CFA-induced increase in NR1 immunoreactive density at synapses, and direct application of NMDA onto the spinal cord of naïve mice mimicked the effects of CFA, suggesting the importance of NMDARs activity in regulating the synaptic content of NR1 during inflammatory pain. Moreover, cAMP-dependent protein kinase (PKA) downstream to NMDARs was also required for NR1 synaptic expression because inhibition of PKA activity abolished the enhancement of synaptic NR1 immunoreactivity evoked by either CFA or NMDA. Thus, our data suggested that NMDARs- and PKA-dependent increase in NR1 synaptic expression represented an important mechanism for the hyperfunction of spinal NMDARs following peripheral inflammation.

  19. Spinal Disinhibition in Experimental and Clinical Painful Diabetic Neuropathy

    PubMed Central

    Marshall, Andrew G.; Lee-Kubli, Corinne; Azmi, Shazli; Zhang, Michael; Ferdousi, Maryam; Mixcoatl-Zecuatl, Teresa; Petropoulos, Ioannis N.; Ponirakis, Georgios; Fineman, Mark S.; Fadavi, Hassan; Frizzi, Katie; Tavakoli, Mitra; Jolivalt, Corinne G.; Boulton, Andrew J.M.; Efron, Nathan; Calcutt, Nigel A.

    2017-01-01

    Impaired rate-dependent depression (RDD) of the Hoffman reflex is associated with reduced dorsal spinal cord potassium chloride cotransporter expression and impaired spinal γ-aminobutyric acid type A receptor function, indicative of spinal inhibitory dysfunction. We have investigated the pathogenesis of impaired RDD in diabetic rodents exhibiting features of painful neuropathy and the translational potential of this marker of spinal inhibitory dysfunction in human painful diabetic neuropathy. Impaired RDD and allodynia were present in type 1 and type 2 diabetic rats but not in rats with type 1 diabetes receiving insulin supplementation that did not restore normoglycemia. Impaired RDD in diabetic rats was rapidly normalized by spinal delivery of duloxetine acting via 5-hydroxytryptamine type 2A receptors and temporally coincident with the alleviation of allodynia. Deficits in RDD and corneal nerve density were demonstrated in patients with painful diabetic neuropathy compared with healthy control subjects and patients with painless diabetic neuropathy. Spinal inhibitory dysfunction and peripheral small fiber pathology may contribute to the clinical phenotype in painful diabetic neuropathy. Deficits in RDD may help identify patients with spinally mediated painful diabetic neuropathy who may respond optimally to therapies such as duloxetine. PMID:28202580

  20. Endogenous neurotrophin-3 promotes neuronal sprouting from dorsal root ganglia.

    PubMed

    Wang, Xu-Yang; Gu, Pei-Yuan; Chen, Shi-Wen; Gao, Wen-Wei; Tian, Heng-Li; Lu, Xiang-He; Zheng, Wei-Ming; Zhuge, Qi-Chuan; Hu, Wei-Xing

    2015-11-01

    In the present study, we investigated the role of endogenous neurotrophin-3 in nerve terminal sprouting 2 months after spinal cord dorsal root rhizotomy. The left L1-5 and L7-S2 dorsal root ganglia in adult cats were exposed and removed, preserving the L6 dorsal root ganglia. Neurotrophin-3 was mainly expressed in large neurons in the dorsal root ganglia and in some neurons in spinal lamina II. Two months after rhizotomy, the number of neurotrophin-3-positive neurons in the spared dorsal root ganglia and the density of neurite sprouts emerging from these ganglia were increased. Intraperitoneal injection of an antibody against neurotrophin-3 decreased the density of neurite sprouts. These findings suggest that endogenous neurotrophin-3 is involved in spinal cord plasticity and regeneration, and that it promotes axonal sprouting from the dorsal root ganglia after spinal cord dorsal root rhizotomy.

  1. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    PubMed Central

    Groth, Michael; Helbig, Tanja; Grau, Veronika; Kummer, Wolfgang; Haberberger, Rainer V

    2006-01-01

    Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1) and ASIC3 (acid sensing ion channel-3) respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons), and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative) were significantly more frequent among pleural (35%) than pulmonary afferents (20%). TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung) and 48% (pleura) of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive). Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli. PMID:16813657

  2. Changes in Dorsal Root Ganglion Gene Expression in Response to Spinal Cord Stimulation.

    PubMed

    Tilley, Dana M; Cedeño, David L; Kelley, Courtney A; DeMaegd, Margaret; Benyamin, Ramsin; Vallejo, Ricardo

    Spinal cord stimulation (SCS) has been shown to influence pain-related genes in the spinal cord directly under the stimulating electrodes. There is limited information regarding changes occurring at the dorsal root ganglion (DRG). This study evaluates gene expression in the DRG in response to SCS therapy. Rats were randomized into experimental or control groups (n = 6 per group). Experimental animals underwent spared-nerve injury, implantation of lead, and continuous SCS (72 hours). Behavioral assessment for mechanical hyperalgesia was conducted to compare responses after injury and treatment. Ipsilateral DRG tissue was collected, and gene expression quantified for interleukin 1b (IL-1b), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), GABA B receptor 1 (GABAbr1), substance P (subP), Integrin alpha M (ITGAM), sodium/potassium ATP-ase (Na/K ATPase), fos proto-oncogene (cFOS), serotonin receptor 3A (5HT3r), galanin (Gal), vasoactive intestinal peptide (VIP), neuropeptide Y (NpY), glial fibrillary acidic protein (GFAP), and brain derived neurotropic factor (BDNF) via quantitative polymerase chain reaction. Statistical significance was established using analysis of variance (ANOVA), independent t tests, and Pearson correlation tests. Expression of IL-1b and IL-6 was reversed following SCS therapy relative to the increase caused by the injury model. Both GABAbr1 and Na/K ATPase were significantly up-regulated upon implantation of the lead, and SCS therapy reversed their expression to within control levels. Pearson correlation analyses reveal that GABAbr1 and Na/K ATPase expression was dependent on the stimulating current intensity. Spinal cord stimulation modulates expression of key pain-related genes in the DRG. Specifically, SCS led to reversal of IL-1b and IL-6 expression induced by injury. Interleukin 6 expression was still significantly larger than in sham animals, which may correlate to residual sensitivity following continuous SCS treatment. In addition

  3. Injury-Dependent and Disability-Specific Lumbar Spinal Gene Regulation following Sciatic Nerve Injury in the Rat

    PubMed Central

    Denyer, Gareth S.; Keay, Kevin A.

    2015-01-01

    Allodynia, hyperalgesia and spontaneous pain are cardinal sensory signs of neuropathic pain. Clinically, many neuropathic pain patients experience affective-motivational state changes, including reduced familial and social interactions, decreased motivation, anhedonia and depression which are severely debilitating. In earlier studies we have shown that sciatic nerve chronic constriction injury (CCI) disrupts social interactions, sleep-wake-cycle and endocrine function in one third of rats, a subgroup reliably identified six days after injury. CCI consistently produces allodynia and hyperalgesia, the intensity of which was unrelated either to the altered social interactions, sleep-wake-cycle or endocrine changes. This decoupling of the sensory consequences of nerve injury from the affective-motivational changes is reported in both animal experiments and human clinical data. The sensory changes triggered by CCI are mediated primarily by functional changes in the lumbar dorsal horn, however, whether lumbar spinal changes may drive different affective-motivational states has never been considered. In these studies, we used microarrays to identify the unique transcriptomes of rats with altered social behaviours following sciatic CCI to determine whether specific patterns of lumbar spinal adaptations characterised this subgroup. Rats underwent CCI and on the basis of reductions in dominance behaviour in resident-intruder social interactions were categorised as having Pain & Disability, Pain & Transient Disability or Pain alone. We examined the lumbar spinal transcriptomes two and six days after CCI. Fifty-four ‘disability-specific’ genes were identified. Sixty-five percent were unique to Pain & Disability rats, two-thirds of which were associated with neurotransmission, inflammation and/or cellular stress. In contrast, 40% of genes differentially regulated in rats without disabilities were involved with more general homeostatic processes (cellular structure

  4. The thalidomide analgesic effect is associated with differential TNF-α receptor expression in the dorsal horn of the spinal cord as studied in a rat model of neuropathic pain.

    PubMed

    Andrade, Pablo; Visser-Vandewalle, Veerle; Del Rosario, John S; Daemen, Marc A; Buurman, Wim A; Steinbusch, Harry W; Hoogland, Govert

    2012-04-23

    The proinflammatory cytokine tumor necrosis factor-α (TNF-α) is well recognized as a key player in nociceptive signaling. Yet, therapeutic capitalization of this knowledge requires a better understanding of how TNF receptors (TNFR) contribute to pain. To address this question, we studied TNFR expression in the chronic sciatic nerve constriction (CCI) model of neuropathic pain. CCI and sham operated rats received two subcutaneous injections (one immediately after surgery, the other on postoperative day 5) containing either saline, GABA-reuptake inhibitor (NO-711), insulin-like growth factor-1 (IGF-1), ZVAD or thalidomide. Mechanical (using von Frey filaments) and thermal hypersensitivity (Hargreaves test) were assessed preoperatively and weekly during the first four postoperative weeks. Spinal cord dorsal horn samples were collected from animals that were sacrificed at 2 weeks and 4 weeks after surgery, and analyzed for TNFR1 and TNFR2 mRNA levels by qPCR and protein levels by Western blot. Compared to saline, all applied drug treatments resulted in a faster recovery from mechanical and thermal hypersensitivity, yet in a potency order of thalidomide>ZVAD=IGF-1>NO-711. CCI resulted in increased TNFR1 and TNFR2 mRNA and protein levels in the ipsilateral dorsal horn. Thalidomide was the only treatment that attenuated these increases. Finally, animals that showed a poor behavioral recovery were characterized by a significantly higher TNFR1/TNFR2 mRNA ratio. These data show that differential expression of TNFR in the dorsal horn is associated with recovery from pain in this model and suggest that the analgesic effects of thalidomide may act via this mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A role for protein kinase intracellular messengers in substance P- and nociceptor afferent-mediated excitation and expression of the transcription factor Fos in rat dorsal horn neurons in vitro.

    PubMed

    Badie-Mahdavi, H; Worsley, M A; Ackley, M A; Asghar, A U; Slack, J R; King, A E

    2001-08-01

    Expression of the inducible transcription factor Fos in the spinal dorsal horn in vivo is associated with nociceptive afferent activation, but the underlying stimulation-transcription pathway is less clear. This in vitro spinal cord study concerns the role of protein kinase A and C second messengers in substance P receptor (NK1R)-mediated or nociceptive afferent-evoked neuronal excitation and Fos expression. Nociceptive afferent (dorsal root) stimulation of isolated spinal cords (10-14 day old rats) evoked a 'prolonged' excitatory polysynaptic potential (DR-EPSP) that was attenuated (P < 0.05) by: the protein kinase A inhibitor, Rp-cAMP; the protein kinase C inhibitor, bisindolymaleimide I; and the selective NK1R antagonist, GR82334. Neuronal excitations induced by the NK1R agonist [Sar9,Met(O2)11]-SP were attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. Effects of the protein kinase A and C inhibitors on the DR-EPSP or the [Sar9,Met(O2)11]-SP-induced depolarization were nonadditive, suggesting convergence of these intracellular signalling pathways onto a common final target. Nociceptor afferent-induced Fos, detected by immunohistochemistry in superficial and deep dorsal horn laminae, was attenuated by Rp-cAMP, bisindolymaleimide I and GR82334. In spinal cords pretreated with TTX to eliminate indirect neuronal activation, [Sar9,Met(O2)11]-SP (1-20 microM) elicited a dose-related expression of Fos that was reduced by Rp-cAMP, bisindolymaleimide I and GR82334. The effects of these inhibitors were most pronounced in the deep laminae. These data support a causal relationship between protein kinase A- or C-dependent signal transduction, nociceptive afferent- or NK1R-induced neuronal excitation and Fos expression in dorsal horn. Implications for short- versus long-term modulation of nociceptive circuitry are discussed.

  6. Inhibitory effects of aspirin-triggered resolvin D1 on spinal nociceptive processing in rat pain models.

    PubMed

    Meesawatsom, Pongsatorn; Burston, James; Hathway, Gareth; Bennett, Andrew; Chapman, Victoria

    2016-09-02

    Harnessing the actions of the resolvin pathways has the potential for the treatment of a wide range of conditions associated with overt inflammatory signalling. Aspirin-triggered resolvin D1 (AT-RvD1) has robust analgesic effects in behavioural models of pain; however, the potential underlying spinal neurophysiological mechanisms contributing to these inhibitory effects in vivo are yet to be determined. This study investigated the acute effects of spinal AT-RvD1 on evoked responses of spinal neurones in vivo in a model of acute inflammatory pain and chronic osteoarthritic (OA) pain and the relevance of alterations in spinal gene expression to these neurophysiological effects. Pain behaviour was assessed in rats with established carrageenan-induced inflammatory or monosodium iodoacetate (MIA)-induced OA pain, and changes in spinal gene expression of resolvin receptors and relevant enzymatic pathways were examined. At timepoints of established pain behaviour, responses of deep dorsal horn wide dynamic range (WDR) neurones to transcutaneous electrical stimulation of the hind paw were recorded pre- and post direct spinal administration of AT-RvD1 (15 and 150 ng/50 μl). AT-RvD1 (15 ng/50 μl) significantly inhibited WDR neurone responses to electrical stimuli at C- (29 % inhibition) and Aδ-fibre (27 % inhibition) intensities. Both wind-up (53 %) and post-discharge (46 %) responses of WDR neurones in carrageenan-treated animals were significantly inhibited by AT-RvD1, compared to pre-drug response (p < 0.05). These effects were abolished by spinal pre-administration of a formyl peptide receptor 2 (FPR2/ALX) antagonist, butoxy carbonyl-Phe-Leu-Phe-Leu-Phe (BOC-2) (50 μg/50 μl). AT-RvD1 did not alter evoked WDR neurone responses in non-inflamed or MIA-treated rats. Electrophysiological effects in carrageenan-inflamed rats were accompanied by a significant increase in messenger RNA (mRNA) for chemerin (ChemR23) receptor and 5-lipoxygenase

  7. The distribution of excitatory amino acid receptors on acutely dissociated dorsal horn neurons from postnatal rats.

    PubMed

    Arancio, O; Yoshimura, M; Murase, K; MacDermott, A B

    1993-01-01

    Excitatory amino acid receptor distribution was mapped on acutely dissociated neurons from postnatal rat spinal cord dorsal horn. N-methyl D-aspartate, quisqualate and kainate were applied to multiple locations along the somal and dendritic surfaces of voltage-clamped neurons by means of a pressure application system. To partially compensate for the decrement of response amplitude due to current loss between the site of activation on the dendrite and the recording electrode at the soma, a solution containing 0.15 M KCl was applied on the cell bodies and dendrites of some cells to estimate an empirical length constant. In the majority of the cells tested, the dendritic membrane had regions of higher sensitivity to excitatory amino acid agonists than the somatic membrane, with dendritic response amplitudes reaching more than seven times those at the cell body. A comparison of the relative changes in sensitivity between each combination of two of the three excitatory amino acid agonists along the same dendrite showed different patterns of agonist sensitivity along the dendrite in the majority of the cells. These data were obtained from dorsal horn neurons that had developed and formed synaptic connections in vivo. They demonstrate that in contrast to observations made on ventral horn neurons, receptor density for all the excitatory amino acid receptors on dorsal horn neurons, including the N-methyl-D-aspartate receptor, are generally higher on the dendrites than on the soma. Further, these results are similar to those obtained from dorsal horn neurons grown in culture.

  8. Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain

    PubMed Central

    Rondón, L J; Privat, A M; Daulhac, L; Davin, N; Mazur, A; Fialip, J; Eschalier, A; Courteix, C

    2010-01-01

    Neuropathic pain is a common diabetic complication affecting 8–16% of diabetic patients. It is characterized by aberrant symptoms of spontaneous and stimulus-evoked pain including hyperalgesia and allodynia. Magnesium (Mg) deficiency has been proposed as a factor in the pathogenesis of diabetes-related complications, including neuropathy. In the central nervous system, Mg is also a voltage-dependant blocker of the N-methyl-d-aspartate receptor channels involved in abnormal processing of sensory information. We hypothesized that Mg deficiency might contribute to the development of neuropathic pain and the worsening of clinical and biological signs of diabetes and consequently, that Mg administration could prevent or improve its complications. We examined the effects of oral Mg supplementation (296 mg l−1 in drinking water for 3 weeks) on the development of neuropathic pain and on biological and clinical parameters of diabetes in streptozocin (STZ)-induced diabetic rats. STZ administration induced typical symptoms of type 1 diabetes. The diabetic rats also displayed mechanical hypersensitivity and tactile and thermal allodynia. The level of phosphorylated NMDA receptor NR1 subunit (pNR1) was higher in the spinal dorsal horn of diabetic hyperalgesic/allodynic rats. Magnesium supplementation failed to reduce hyperglycaemia, polyphagia and hypermagnesiuria, or to restore intracellular Mg levels and body growth, but increased insulinaemia and reduced polydipsia. Moreover, it abolished thermal and tactile allodynia, delayed the development of mechanical hypersensitivity, and prevented the increase in spinal cord dorsal horn pNR1. Thus, neuropathic pain symptoms can be attenuated by targeting the Mg-mediated blockade of NMDA receptors, offering new therapeutic opportunities for the management of chronic neuropathic pain. PMID:20837644

  9. Cutaneous texture discrimination following transection of the dorsal spinal column in monkeys.

    PubMed

    Vierck, C J; Cooper, B Y

    1998-01-01

    Transection of the dorsal spinal column in monkeys has been shown to impair discrimination of the frequency or duration of repetitive tactile stimulation, without recovery over extended periods of postoperative testing. These deficits would be likely to prevent discrimination between textures presented passively and in sequence, if repetitive temporal sequences were distinguishing features of the textures. However, previous investigations of texture discrimination after dorsal column section did not obtain a deficit on tests involving active palpation of sandpaper surfaces. In the present study, rows of raised dots were stroked across the glabrous skin of one foot so that temporal entrainment of neural activity would constitute a prominent cue. The rows were oriented mediolaterally, and the textures moved proximodistally across the skin surface (varying the spacing between the rows). Four monkeys were trained to release a lever when the rougher of two textures was in contact with the skin, and the rough texture was preceded by one to three passes of a smooth texture. Stable levels of preoperative performance ranged from 78.6 to 85.7% correct responses. After interruption of the ipsilateral dorsal column, each monkey was impaired over at least 2 months of testing. One animal did not show evidence of recovery; two recovered partially from the initial deficit; and one returned to preoperative levels of performance after extensive retraining. These results are interpreted in terms of aberrant inhibitory influences which result from repetitive stimulation after a dorsal column lesion.

  10. Sympatho-excitatory response to pulmonary chemosensitive spinal afferent activation in anesthetized, vagotomized rats.

    PubMed

    Shanks, Julia; Xia, Zhiqiu; Lisco, Steven J; Rozanski, George J; Schultz, Harold D; Zucker, Irving H; Wang, Han-Jun

    2018-06-01

    The sensory innervation of the lung is well known to be innervated by nerve fibers of both vagal and sympathetic origin. Although the vagal afferent innervation of the lung has been well characterized, less is known about physiological effects mediated by spinal sympathetic afferent fibers. We hypothesized that activation of sympathetic spinal afferent nerve fibers of the lung would result in an excitatory pressor reflex, similar to that previously characterized in the heart. In this study, we evaluated changes in renal sympathetic nerve activity (RSNA) and hemodynamics in response to activation of TRPV1-sensitive pulmonary spinal sensory fibers by agonist application to the visceral pleura of the lung and by administration into the primary bronchus in anesthetized, bilaterally vagotomized, adult Sprague-Dawley rats. Application of bradykinin (BK) to the visceral pleura of the lung produced an increase in mean arterial pressure (MAP), heart rate (HR), and RSNA. This response was significantly greater when BK was applied to the ventral surface of the left lung compared to the dorsal surface. Conversely, topical application of capsaicin (Cap) onto the visceral pleura of the lung, produced a biphasic reflex change in MAP, coupled with increases in HR and RSNA which was very similar to the hemodynamic response to epicardial application of Cap. This reflex was also evoked in animals with intact pulmonary vagal innervation and when BK was applied to the distal airways of the lung via the left primary bronchus. In order to further confirm the origin of this reflex, epidural application of a selective afferent neurotoxin (resiniferatoxin, RTX) was used to chronically ablate thoracic TRPV1-expressing afferent soma at the level of T1-T4 dorsal root ganglia pleura. This treatment abolished all sympatho-excitatory responses to both cardiac and pulmonary application of BK and Cap in vagotomized rats 9-10 weeks post-RTX. These data suggest the presence of an excitatory

  11. Segmental neuropathic pain does not develop in male rats with complete spinal transections.

    PubMed

    Hubscher, Charles H; Kaddumi, Ezidin G; Johnson, Richard D

    2008-10-01

    In a previous study using male rats, a correlation was found between the development of "at-level" allodynia in T6-7 dermatomes following severe T8 spinal contusion injury and the sparing of some myelinated axons within the core of the lesion epicenter. To further test our hypothesis that this sparing is important for the expression of allodynia and the supraspinal plasticity that ensues, an injury that severs all axons (i.e., a complete spinal cord transection) was made in 15 male rats. Behavioral assessments were done at level throughout the 30-day recovery period followed by terminal electrophysiological recordings (urethane anesthesia) from single medullary reticular formation (MRF) neurons receiving convergent nociceptive inputs from receptive fields above, at, and below the lesion level. None of the rats developed signs of at-level allodynia (versus 18 of 26 male rats following severe contusion). However, the terminal recording (206 MRF neurons) data resembled those obtained previously post-contusion. That is, there was evidence of neuronal hyper-excitability (relative to previous data from intact controls) to high- and low-threshold mechanical stimulation for "at-level" (dorsal trunk) and "above-level" (eyelids and face) cutaneous territories. These results, when combined with prior data on intact controls and severe/moderate contusions, indicate that (1) an anatomically incomplete injury (some lesion epicenter axonal sparing) following severe contusion is likely important for the development of allodynia and (2) the neuronal hyper-excitability at the level of the medulla is likely involved in nociceptive processes that are not directly related to the conscious expression of pain-like avoidance behaviors that are being used as evidence of allodynia.

  12. Dorsal arachnoid web.

    PubMed

    McCormick, Paul C

    2014-09-01

    Dorsal thoracic arachnoid web is a rare but often overlooked cause of progressive myelopathy. Syringomyelia, either above or below the compressive arachnoid band, may also be present. Dorsal arachnoid cyst and ventral spinal cord herniation may be mistaken for this condition. This video demonstrates the microsurgical identification and techniques of resection of a dorsal arachnoid band producing a progressive myelopathy in a 63-year-old man. The video can be found here: http://youtu.be/KDNTqiyW6yo.

  13. The role of dorsal root ganglia activation and brain-derived neurotrophic factor in multiple sclerosis

    PubMed Central

    Zhu, Wenjun; Frost, Emma E; Begum, Farhana; Vora, Parvez; Au, Kelvin; Gong, Yuewen; MacNeil, Brian; Pillai, Prakash; Namaka, Mike

    2012-01-01

    Abstract Multiple sclerosis (MS) is characterized by focal destruction of the white matter of the brain and spinal cord. The exact mechanisms underlying the pathophysiology of the disease are unknown. Many studies have shown that MS is predominantly an autoimmune disease with an inflammatory phase followed by a demyelinating phase. Recent studies alongside current treatment strategies, including glatiramer acetate, have revealed a potential role for brain-derived neurotrophic factor (BDNF) in MS. However, the exact role of BDNF is not fully understood. We used the experimental autoimmune encephalomyelitis (EAE) model of MS in adolescent female Lewis rats to identify the role of BDNF in disease progression. Dorsal root ganglia (DRG) and spinal cords were harvested for protein and gene expression analysis every 3 days post-disease induction (pdi) up to 15 days. We show significant increases in BDNF protein and gene expression in the DRG of EAE animals at 12 dpi, which correlates with peak neurological disability. BDNF protein expression in the spinal cord was significantly increased at 12 dpi, and maintained at 15 dpi. However, there was no significant change in mRNA levels. We show evidence for the anterograde transport of BDNF protein from the DRG to the dorsal horn of the spinal cord via the dorsal roots. Increased levels of BDNF within the DRG and spinal cord in EAE may facilitate myelin repair and neuroprotection in the CNS. The anterograde transport of DRG-derived BDNF to the spinal cord may have potential implications in facilitating central myelin repair and neuroprotection. PMID:22050733

  14. Characterization of a cerebral palsy-like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas.

    PubMed

    Dos Santos, Adriana Souza; de Almeida, Wellington; Popik, Bruno; Sbardelotto, Bruno Marques; Torrejais, Márcia Miranda; de Souza, Marcelo Alves; Centenaro, Lígia Aline

    2017-08-01

    In an attempt to propose an animal model that reproduces in rats the phenotype of cerebral palsy, this study evaluated the effects of maternal exposure to bacterial endotoxin associated with perinatal asphyxia and sensorimotor restriction on gait pattern, brain and spinal cord morphology. Two experimental groups were used: Control Group (CTG) - offspring of rats injected with saline during pregnancy and Cerebral Palsy Group (CPG) - offspring of rats injected with lipopolysaccharide during pregnancy, submitted to perinatal asphyxia and sensorimotor restriction for 30days. At 29days of age, the CPG exhibited coordination between limbs, weight-supported dorsal steps or weight-supported plantar steps with paw rotation. At 45days of age, CPG exhibited plantar stepping with the paw rotated in the balance phase. An increase in the number of glial cells in the primary somatosensory cortex and dorsal striatum were observed in the CPG, but the corpus callosum thickness and cross-sectional area of lateral ventricle were similar between studied groups. No changes were found in the number of motoneurons, glial cells and soma area of the motoneurons in the ventral horn of spinal cord. The combination of insults in the pre, peri and postnatal periods produced changes in hindlimbs gait pattern of animals similar to those observed in diplegic patients, but motor impairments were attenuated over time. Besides, the greater number of glial cells observed seems to be related to the formation of a glial scar in important sensorimotor brain areas. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  15. Intrathecal injection of carbenoxolone, a gap junction decoupler, attenuates the induction of below-level neuropathic pain after spinal cord injury in rats.

    PubMed

    Roh, Dae-Hyun; Yoon, Seo-Yeon; Seo, Hyoung-Sig; Kang, Suk-Yun; Han, Ho-Jae; Beitz, Alvin J; Lee, Jang-Hern

    2010-07-01

    The most common type of chronic pain following spinal cord injury (SCI) is central neuropathic pain and SCI patients typically experience mechanical allodynia and thermal hyperalgesia. The present study was designed to examine the potential role of astrocyte gap junction connectivity in the induction and maintenance of "below-level" neuropathic pain in SCI rats. We examined the effect of intrathecal treatment with carbenoxolone (CARB), a gap junction decoupler, on SCI-induced bilateral thermal hyperalgesia and mechanical allodynia during the induction phase (postoperative days 0 to 5) and the maintenance phase (days 15 to 20) following T13 spinal cord hemisection. Immunohistochemistry was performed to determine potential SCI-induced changes in spinal astrocyte activation and phosphorylation of the NMDA receptor NR1 subunit (pNR1). CARB administered during the induction period dose-dependently attenuated the development of bilateral thermal hyperalgesia and mechanical allodynia. Intrathecal CARB also significantly reduced the bilateral SCI-induced increase in GFAP-immunoreactive (ir) staining and the number of pNR1-ir cell profiles in the spinal cord dorsal horn compared to vehicle-treated rats. In contrast, CARB treatment during the maintenance phase had no effect on the established thermal hyperalgesia and mechanical allodynia nor on spinal GFAP expression or the number of pNR1-ir cell profiles. These results indicate that gap junctions play a critical role in the activation of astrocytes distant from the site of SCI and in the subsequent phosphorylation of NMDA receptors in the lumbar spinal cord. Both of these processes appear to contribute to the induction of bilateral below-level pain in SCI rats. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models.

    PubMed

    Abdullahi, Dauda; Annuar, Azlina Ahmad; Mohamad, Masro; Aziz, Izzuddin; Sanusi, Junedah

    2017-01-01

    It has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.

  17. Time Course of Substance P Expression in Dorsal Root Ganglia Following Complete Spinal Nerve Transection

    PubMed Central

    Weissner, Wendy; Winterson, Barbara J.; Stuart-Tilley, Alan; Devor, Marshall; Bove, Geoffrey M.

    2008-01-01

    Recent evidence suggests that substance P (SP) is upregulated in primary sensory neurons following axotomy, and that this change occurs in larger neurons that do not usually produce SP. If so, this upregulation may allow normally neighboring, uninjured, and non-nociceptive dorsal root ganglion (DRG) neurons to become effective in activating pain pathways. Using immunohistochemistry, we performed a unilateral L5 spinal nerve transection upon male Wistar rats, and measured SP expression in ipsilateral L4 and L5 DRGs and contralateral L5 DRGs, at 1 to 14 days postoperatively (dpo), and in control and sham operated rats. In normal and sham operated DRGs, SP was detectable almost exclusively in small neurons (≤ 800 μm2). Following surgery, the mean size of SP-positive neurons from the axotomized L5 ganglia was greater at 2, 4, 7 and 14 dpo. Among large neurons (> 800 μm2) from the axotomized L5, the percentage of SP-positive neurons increased at 2, 4, 7, and 14 dpo. Among small neurons from the axotomized L5, the percentage of SP-positive neurons was increased at 1 and 3 dpo, but was decreased at 7 and 14 dpo. Thus, SP expression is affected by axonal damage, and the time course of the expression is different between large and small DRG neurons. These data support a role of SP-producing, large DRG neurons in persistent sensory changes due to nerve injury. PMID:16680762

  18. Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.

    PubMed

    Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R

    2017-08-23

    When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory

  19. Peripheral Inflammation Undermines the Plasticity of the Isolated Spinal Cord

    PubMed Central

    Huie, John R.; Grau, James W.

    2009-01-01

    Peripheral capsaicin treatment induces molecular changes that sensitize the responses of nociceptive neurons in the spinal dorsal horn. The current studies demonstrate that capsaicin also undermines the adaptive plasticity of the spinal cord, rendering the system incapable of learning a simple instrumental task. In these studies, male rats are transected at the second thoracic vertebra and are tested 24 to 48 hours later. During testing, subjects receive shock to one hindleg when it is extended (controllable stimulation). Rats quickly learn to maintain the leg in a flexed position. Rats that have been injected with capsaicin (1% or 3%) in the hindpaw fail to learn, even when tested on the leg contralateral to the injection. This learning deficit lasts at least 24 hours. Interestingly, training with controllable electrical stimulation prior to capsaicin administration protects the spinal cord against the maladaptive effects. Rats pretrained with controllable stimulation do not display a learning deficit or tactile allodynia. Moreover, controllable stimulation, combined with naltrexone, reverses the capsaicin-induced deficit. These data suggest that peripheral inflammation, accompanying spinal cord injuries, might have an adverse effect on recovery. PMID:18298266

  20. Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn

    PubMed Central

    2011-01-01

    Background The opioid peptide dynorphin is expressed by certain neurons in the superficial dorsal horn of the spinal cord, but little is known about the types of cell that contain dynorphin. In this study, we have used an antibody against the dynorphin precursor preprodynorphin (PPD), to reveal the cell bodies and axons of dynorphin-expressing neurons in the rat spinal cord. The main aims were to estimate the proportion of neurons in each of laminae I-III that express dynorphin and to determine whether they are excitatory or inhibitory neurons. Results PPD-immunoreactive cells were concentrated in lamina I and the outer part of lamina II (IIo), where they constituted 17% and 8%, respectively, of all neurons. Around half of those in lamina I and 80% of those in lamina II were GABA-immunoreactive. We have previously identified four non-overlapping neurochemical populations of inhibitory interneurons in this region, defined by the presence of neuropeptide Y, galanin, parvalbumin and neuronal nitric oxide synthase. PPD co-localised extensively with galanin in both cell bodies and axons, but rarely or not at all with the other three markers. PPD was present in around 4% of GABAergic boutons (identified by the presence of the vesicular GABA transporter) in laminae I-II. Conclusions These results show that most dynorphin-expressing cells in the superficial dorsal horn are inhibitory interneurons, and that they largely correspond to the population that is defined by the presence of galanin. We estimate that dynorphin is present in ~32% of inhibitory interneurons in lamina I and 11% of those in lamina II. Since the proportion of GABAergic boutons that contain PPD in these laminae was considerably lower than this, our findings suggest that these neurons may generate relatively small axonal arborisations. PMID:21958458

  1. Distribution of vesicular glutamate transporters 1 and 2 in the rat spinal cord, with a note on the spinocervical tract.

    PubMed

    Persson, Stefan; Boulland, Jean-Luc; Aspling, Marie; Larsson, Max; Fremeau, Robert T; Edwards, Robert H; Storm-Mathisen, Jon; Chaudhry, Farrukh A; Broman, Jonas

    2006-08-10

    To evaluate whether the organization of glutamatergic fibers systems in the lumbar cord is also evident at other spinal levels, we examined the immunocytochemical distribution of vesicle glutamate transporters 1 and 2 (VGLUT1, VGLUT2) at several different levels of the rat spinal cord. We also examined the expression of VGLUTs in an ascending sensory pathway, the spinocervical tract, and colocalization of VGLUT1 and VGLUT2. Mainly small VGLUT2-immunoreactive varicosities occurred at relatively high densities in most areas, with the highest density in laminae I-II. VGLUT1 immunolabeling, including small and medium-sized to large varicosities, was more differentiated, with the highest density in the deep dorsal horn and in certain nuclei such as the internal basilar nucleus, the central cervical nucleus, and the column of Clarke. Lamina I and IIo displayed a moderate density of small VGLUT1 varicosities at all spinal levels, although in the spinal enlargements a uniform density of such varicosities was evident throughout laminae I-II in the medial half of the dorsal horn. Corticospinal tract axons displayed VGLUT1, indicating that the corticospinal tract is an important source of small VGLUT1 varicosities. VGLUT1 and VGLUT2 were cocontained in small numbers of varicosities in laminae III-IV and IX. Anterogradely labeled spinocervical tract terminals in the lateral cervical nucleus were VGLUT2 immunoreactive. In conclusion, the principal distribution patterns of VGLUT1 and VGLUT2 are essentially similar throughout the rostrocaudal extension of the spinal cord. The mediolateral differences in VGLUT1 distribution in laminae I-II suggest dual origins of VGLUT1-immunoreactive varicosities in this region.

  2. Brain protection by methylprednisolone in rats with spinal cord injury.

    PubMed

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  3. Intrathecal Infusion of Hydrogen-Rich Normal Saline Attenuates Neuropathic Pain via Inhibition of Activation of Spinal Astrocytes and Microglia in Rats

    PubMed Central

    Sun, Xuejun; Xiang, Zhenghua; Yang, Liqun; Huang, Shengdong; Lu, Zhijie; Sun, Yuming; Yu, Wei-Feng

    2014-01-01

    Background Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia. Methodology/Principal findings In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord. Conclusion/Significance Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite. PMID:24857932

  4. Vitamin A Deficiency Induces Congenital Spinal Deformities in Rats

    PubMed Central

    Li, Zheng; Shen, Jianxiong; Wu, William Ka Kei; Wang, Xiaojuan; Liang, Jinqian; Qiu, Guixing; Liu, Jiaming

    2012-01-01

    Most cases of congenital spinal deformities were sporadic and without strong evidence of heritability. The etiology of congenital spinal deformities is still elusive and assumed to be multi-factorial. The current study seeks to elucidate the effect of maternal vitamin A deficiency and the production of congenital spinal deformities in the offsping. Thirty two female rats were randomized into two groups: control group, which was fed a normal diet; vitamin A deficient group, which were given vitamin A-deficient diet from at least 2 weeks before mating till delivery. Three random neonatal rats from each group were killed the next day of parturition. Female rats were fed an AIN-93G diet sufficient in vitamin A to feed the rest of neonates for two weeks until euthanasia. Serum levels of vitamin A were assessed in the adult and filial rats. Anteroposterior (AP) spine radiographs were obtained at week 2 after delivery to evaluate the presence of the skeletal abnormalities especially of spinal deformities. Liver and vertebral body expression of retinaldehyde dehydrogenase (RALDHs) and RARs mRNA was assessed by reverse transcription-real time PCR. VAD neonates displayed many skeletal malformations in the cervical, thoracic, the pelvic and sacral and limbs regions. The incidence of congenital scoliosis was 13.79% (8/58) in the filial rats of vitamin A deficiency group and 0% in the control group. Furthermore, vitamin A deficiency negatively regulate the liver and verterbral body mRNA levels of RALDH1, RALDH2, RALDH3, RAR-α, RAR-β and RAR-γ. Vitamin A deficiency in pregnancy may induce congenital spinal deformities in the postnatal rats. The decreases of RALDHs and RARs mRNA expression induced by vitamin A deprivation suggest that vertebral birth defects may be caused by a defect in RA signaling pathway during somitogenesis. PMID:23071590

  5. Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat.

    PubMed

    Rojas-Piloni, Gerardo; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rodríguez-Jiménez, Javier

    2010-09-10

    Clinically, the stimulation of motor cortical areas has been used to alleviate certain pain conditions. However, the attempts to understand the mechanisms of cortical nociceptive modulation at the spinal cord level have yielded controversial results. The objectives of the present work were to: 1) determine the effects of activating and suppressing the activity of sensorimotor cortical neurons on the nociceptive electrophysiological responses of the segmental C-fibers, and 2) evaluate the contribution of direct and indirect corticospinal projections in segmental nociceptive modulation. By means of a bipolar matrix of stimulation electrodes we mapped the stimulation of cortical areas that modulate C-fiber evoked field potentials in the dorsal horn. In addition, suppressing the cortical activity by means of cortical spreading depression, we observed that the C-fiber evoked field potentials in the dorsal horn are facilitated when cortical activity is suppressed specifically in sensorimotor cortex. Moreover, the C-fiber evoked field potentials were inhibited during spontaneous activation of cortical projecting neurons. Furthermore, after a lesion of the pyramidal tract contralateral to the spinal cord recording sites, the cortical action was suppressed. Our results show that corticospinal tract fibers arising from the sensorimotor cortex modulate directly the nociceptive C-fiber evoked responses of the dorsal horn. 2010. Published by Elsevier B.V.

  6. [Effect of Medicated-catgut Embedding at "Changqiang" (GV 1) on Mechanical Pain Threshold and P 38 MAPK Expression in Spinal Cord Tissue in Anus Incisional Pain Rats].

    PubMed

    Shu, Tao; Zhang, Shi-Ti; Yan, Feng; Ke, Yu-Pei; Wang, Jun

    2017-10-25

    To observe the effect of medicated-catgut embedding at "Changqiang"(GV 1) on regional pain reaction and expression of p 38 MAPK in the dorsal horn of spinal cord in anus incisional pain rats, so as to explore its analgesic mechanism. Forty male SD rats were randomly divided into control, model, GV 1-embedding and sham acupoint embedding groups ( n =10 rats in each group). The anus incisional pain model was established by making a radial incision (about 10 mm length) at the left lithotomy position of the anus with a surgical knife, and the mechanical pain threshold (PT) was measured by using a Von Frey before and 4, 8, 12, 24 h after operation. The medicated-catgut (about 12.5 mm length/kg body weight) was implanted in the subcutaneous tissue of GV 1 region. The immunoactivity of p 38 MAPK was determined by immunohistochemistry. Compared with the control group, the mechanical PTs were significantly decreased 4, 8, 12 and 24 h after operation both at the site of incision and about 15 mm proximal to the site of incision in the model group ( P <0.05), and the immunoactivity of phosphorylated (p)-p 38 MAPK in the superficial layer of dorsal horns of lumbar spinal cord was significantly increased(24 h)after operation( P <0.05). Compared with the model group, the PTs were significantly increased 8, 12 and 24 h after operation at the site of incision, and 12 h and 24 h at the site about 15 mm proximal to the incision region ( P <0.05), and the immunoactivity level of p-p 38 MAPK was significantly down-regulated in the GV 1-embedding group ( P <0.05). No significant changes were found in the PT and p-p 38 MAPK immunoactivity levels in the sham acupoint embedding group ( P <0.05). Medicated-catgut embedding at "Changqiang"(GV 1) has an analgesic effect in anus incisional pain model rats, which may be related to its effect in down-regulating the expression of p 38 MAPK in the dorsal horn of lumbar spinal cord.

  7. Increased Release of Serotonin in the Spinal Cord During Low, But Not High, Frequency Transcutaneous Electric Nerve Stimulation in Rats With Joint Inflammation

    PubMed Central

    Sluka, Kathleen A.; Lisi, Tammy L.; Westlund, Karin N.

    2009-01-01

    Objective To determine the release pattern of serotonin and noradrenaline in the spinal cord in response to transcutaneous electric nerve stimulation (TENS) delivered at low or high frequency. Design Prospective randomized allocation of 3 treatments. Setting Research laboratory. Animals Male Sprague-Dawley rats (weight range, 250–350g). Intervention Knee joints of rats were inflamed with a mixture of 3% carrageenan and 3% kaolin for 24 hours prior to placement of push-pull cannulae into the dorsal horn of the spinal cord. Push-pull samples were collected in 10-minute intervals before, during, and after treatment with low-frequency TENS (4Hz), high-frequency TENS (100Hz), or sham TENS. TENS was applied to the inflamed knee joint for 20 minutes at sensory intensity and 100-μs pulse duration. Push-pull samples were analyzed for serotonin and noradrenaline by high performance liquid chromatography with coulemetric detection. Main Outcome Measures Spinal concentrations of serotonin and noradrenaline. Results Low-frequency TENS significantly increased serotonin concentrations during and immediately after treatment. There was no change in serotonin with high-frequency TENS, nor was there a change in noradrenaline with low- or high-frequency TENS. Conclusions Low-frequency TENS releases serotonin in the spinal cord to produce antihyperalgesia by activation of serotonin receptors. PMID:16876561

  8. Differentiation of idiopathic spinal cord herniation from dorsal arachnoid webs on MRI and CT myelography.

    PubMed

    Schultz, Randall; Steven, Andrew; Wessell, Aaron; Fischbein, Nancy; Sansur, Charles A; Gandhi, Dheeraj; Ibrahimi, David; Raghavan, Prashant

    2017-06-01

    OBJECTIVE Dorsal arachnoid webs (DAWs) and spinal cord herniation (SCH) are uncommon abnormalities affecting the thoracic spinal cord that can result in syringomyelia and significant neurological morbidity if left untreated. Differentiating these 2 entities on the basis of clinical presentation and radiological findings remains challenging but is of vital importance in planning a surgical approach. The authors examined the differences between DAWs and idiopathic SCH on MRI and CT myelography to improve diagnostic confidence prior to surgery. METHODS Review of the picture archiving and communication system (PACS) database between 2005 and 2015 identified 6 patients with DAW and 5 with SCH. Clinical data including demographic information, presenting symptoms and neurological signs, and surgical reports were collected from the electronic medical records. Ten of the 11 patients underwent MRI. CT myelography was performed in 3 patients with DAW and in 1 patient with SCH. Imaging studies were analyzed by 2 board-certified neuroradiologists for the following features: 1) location of the deformity; 2) presence or absence of cord signal abnormality or syringomyelia; 3) visible arachnoid web; 4) presence of a dural defect; 5) nature of dorsal cord indentation (abrupt "scalpel sign" vs "C"-shaped); 6) focal ventral cord kink; 7) presence of the nuclear trail sign (endplate irregularity, sclerosis, and/or disc-space calcification that could suggest a migratory path of a herniated disc); and 8) visualization of a complete plane of CSF ventral to the deformity. RESULTS The scalpel sign was positive in all patients with DAW. The dorsal indentation was C-shaped in 5 of 6 patients with SCH. The ventral subarachnoid space was preserved in all patients with DAW and interrupted in cases of SCH. In no patient was a web or a dural defect identified. CONCLUSIONS DAW and SCH can be reliably distinguished on imaging by scrutinizing the nature of the dorsal indentation and the integrity of

  9. Opposing functions of spinal M2, M3, and M4 receptor subtypes in regulation of GABAergic inputs to dorsal horn neurons revealed by muscarinic receptor knockout mice.

    PubMed

    Zhang, Hong-Mei; Chen, Shao-Rui; Matsui, Minoru; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin

    2006-03-01

    Spinal muscarinic acetylcholine receptors (mAChRs) play an important role in the regulation of nociception. To determine the role of individual mAChR subtypes in control of synaptic GABA release, spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) were recorded in lamina II neurons using whole-cell recordings in spinal cord slices of wild-type and mAChR subtype knockout (KO) mice. The mAChR agonist oxotremorine-M (3-10 microM) dose-dependently decreased the frequency of GABAergic sIPSCs and mIPSCs in wild-type mice. However, in the presence of the M2 and M4 subtype-preferring antagonist himbacine, oxotremorine-M caused a large increase in the sIPSC frequency. In M3 KO and M1/M3 double-KO mice, oxotremorine-M produced a consistent decrease in the frequency of sIPSCs, and this effect was abolished by himbacine. We were surprised to find that in M2/M4 double-KO mice, oxotremorine-M consistently increased the frequency of sIPSCs and mIPSCs in all neurons tested, and this effect was completely abolished by 4-diphenylacetoxy-N-methylpiperidine methiodide, an M3 subtype-preferring antagonist. In M2 or M4 single-KO mice, oxotremorine-M produced a variable effect on sIPSCs; it increased the frequency of sIPSCs in some cells but decreased the sIPSC frequency in other neurons. Taken together, these data strongly suggest that activation of the M3 subtype increases synaptic GABA release in the spinal dorsal horn of mice. In contrast, stimulation of presynaptic M2 and M4 subtypes predominantly attenuates GABAergic inputs to dorsal horn neurons in mice, an action that is opposite to the role of M2 and M4 subtypes in the spinal cord of rats.

  10. Ionotropic Glutamate Receptors and Voltage-Gated Ca2+ Channels in Long-Term Potentiation of Spinal Dorsal Horn Synapses and Pain Hypersensitivity

    PubMed Central

    Youn, Dong-ho; Gerber, Gábor; Sather, William A.

    2013-01-01

    Over the last twenty years of research on cellular mechanisms of pain hypersensitivity, long-term potentiation (LTP) of synaptic transmission in the spinal cord dorsal horn (DH) has emerged as an important contributor to pain pathology. Mechanisms that underlie LTP of spinal DH neurons include changes in the numbers, activity, and properties of ionotropic glutamate receptors (AMPA and NMDA receptors) and of voltage-gated Ca2+ channels. Here, we review the roles and mechanisms of these channels in the induction and expression of spinal DH LTP, and we present this within the framework of the anatomical organization and synaptic circuitry of the spinal DH. Moreover, we compare synaptic plasticity in the spinal DH with classical LTP described for hippocampal synapses. PMID:24224102

  11. Purification and culture of adult rat dorsal root ganglia neurons.

    PubMed

    Delree, P; Leprince, P; Schoenen, J; Moonen, G

    1989-06-01

    To study the trophic requirements of adult rat dorsal root ganglia neurons (DRG) in vitro, we developed a purification procedure that yields highly enriched neuronal cultures. Forty to fifty ganglia are dissected from the spinal column of an adult rat. After enzymatic and mechanical dissociation of the ganglia, myelin debris are eliminated by centrifugation on a Percoll gradient. The resulting cell suspension is layered onto a nylon mesh with a pore size of 10 microns. Most of the neurons, the diameter of which ranged from 17 microns to greater than 100 microns, are retained on the upper surface of the sieve; most of the non-neuronal cells with a caliber of less than 10 microns after trypsinization go through it. Recovery of neurons is achieved by reversing the mesh onto a Petri dish containing culture medium. Neurons to non-neurons ratio is 1 to 10 in the initial cell suspension and 1 to 1 after separation. When these purified neurons are seeded at a density of 3,000 neurons/cm2 in 6 mm polyornithine-laminin (PORN-LAM) coated wells, neuronal survival (assessed by the ability to extend neurites), measured after 48 hr of culture, is very low (from 0 to 16%). Addition of nerve growth factor (NGF) does not improve neuronal survival. However, when neurons are cultured in the presence of medium conditioned (CM) by astrocytes or Schwann cells, 60-80% of the seeded, dye-excluding neurons survive. So, purified adult DRG neurons require for their short-term survival and regeneration in culture, a trophic support that is present in conditioned medium from PNS or CNS glia.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. CHARACTERIZATION OF UPPER THORACIC SPINAL NEURONS RESPONDING TO ESOPHAGEAL DISTENSION IN DIABETIC RATS

    PubMed Central

    Qin, Chao; Ghorbani, Marie L. M.; Wu, Mingyuan; Farber, Jay P.; Ma, Jianxin; Foreman, Robert D.

    2009-01-01

    The aim of this study was to examine spinal neuronal processing of innocuous and noxious mechanical inputs from the esophagus in diabetic rats. Streptozotocin (50 mg/kg, ip) was used to induce diabetes in 15 male Sprague-Dawley rats, and vehicle (10 mM citrate buffer) was injected into 15 rats as control. Four to eleven weeks after injections, extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated rats. Esophageal distensions (ED, 0.2, 0.4 ml, 20s) were produced by water inflation of a latex balloon in the thoracic esophagus. Noxious ED (0.4 ml, 20 s) altered activity of 44% (55/126) and 38% (50/132) of spinal neurons in diabetic and control rats, respectively. The short-lasting excitatory responses to ED were encountered more frequently in diabetic rats (27/42 vs 15/41, P<0.05). Spinal neurons with low threshold for excitatory responses to ED were more frequently encountered in diabetic rats (33/42 vs 23/41, P<0.05). However, mean excitatory responses and duration of responses to noxious ED were significantly reduced for high-threshold neurons in diabetic rats (7.4±1.1 vs 13.9±3.3 imp/s; 19.0±2.3 vs 31.2±5.5 s; P<0.05). In addition, more large size somatic receptive fields were found for spinal neurons with esophageal input in diabetic rats than in control rats (28/42 vs 19/45, P<0.05). These results suggested that diabetes influenced response characteristics of thoracic spinal neurons receiving mechanical esophageal input, which might indicate an altered spinal visceroceptive processing underlying diabetic esophageal neuropathy. PMID:19027368

  13. Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush

    PubMed Central

    Wu, Di; Klaw, Michelle C.; Kholodilov, Nikolai; Burke, Robert E.; Detloff, Megan R.; Côté, Marie-Pascale; Tom, Veronica J.

    2016-01-01

    While the peripheral branch of dorsal root ganglion neurons (DRG) can successfully regenerate after injury, lesioned central branch axons fail to regrow across the dorsal root entry zone (DREZ), the interface between the dorsal root and the spinal cord. This lack of regeneration is due to the limited regenerative capacity of adult sensory axons and the growth-inhibitory environment at the DREZ, which is similar to that found in the glial scar after a central nervous system (CNS) injury. We hypothesized that transduction of adult DRG neurons using adeno-associated virus (AAV) to express a constitutively-active form of the GTPase Rheb (caRheb) will increase their intrinsic growth potential after a dorsal root crush. Additionally, we posited that if we combined that approach with digestion of upregulated chondroitin sulfate proteoglycans (CSPG) at the DREZ with chondroitinase ABC (ChABC), we would promote regeneration of sensory axons across the DREZ into the spinal cord. We first assessed if this strategy promotes neuritic growth in an in vitro model of the glial scar containing CSPG. ChABC allowed for some regeneration across the once potently inhibitory substrate. Combining ChABC treatment with expression of caRheb in DRG significantly improved this growth. We then determined if this combination strategy also enhanced regeneration through the DREZ after dorsal root crush in adult rats in vivo. After unilaterally crushing C4-T1 dorsal roots, we injected AAV5-caRheb or AAV5-GFP into the ipsilateral C5-C8 DRGs. ChABC or PBS was injected into the ipsilateral dorsal horn at C5-C8 to digest CSPG, for a total of four animal groups (caRheb + ChABC, caRheb + PBS, GFP + ChABC, GFP + PBS). Regeneration was rarely observed in PBS-treated animals, whereas short-distance regrowth across the DREZ was observed in ChABC-treated animals. No difference in axon number or length between the ChABC groups was observed, which may be related to intraganglionic inflammation induced by the

  14. Control of glycinergic input to spinal dorsal horn neurons by distinct muscarinic receptor subtypes revealed using knockout mice.

    PubMed

    Zhang, Hong-Mei; Zhou, Hong-Yi; Chen, Shao-Rui; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin

    2007-12-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the tonic regulation of nociceptive transmission in the spinal cord. However, how mAChR subtypes contribute to the regulation of synaptic glycine release is unknown. To determine their role, glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in lamina II neurons by using whole-cell recordings in spinal cord slices of wild-type (WT) and mAChR subtype knockout (KO) mice. In WT mice, the mAChR agonist oxotremorine-M dose-dependently decreased the frequency of sIPSCs in most neurons, but it had variable effects in other neurons. In contrast, in M3-KO mice, oxotremorine-M consistently decreased the glycinergic sIPSC frequency in all neurons tested, and in M2/M4 double-KO mice, it always increased the sIPSC frequency. In M2/M4 double-KO mice, the potentiating effect of oxotremorine-M was attenuated by higher concentrations in some neurons through activation of GABA(B) receptors. In pertussis toxin-treated WT mice, oxotremorine-M also consistently increased the sIPSC frequency. In M2-KO and M4-KO mice, the effect of oxotremorine-M on sIPSCs was divergent because of the opposing functions of the M3 subtype and the M2 and M4 subtypes. This study demonstrates that stimulation of the M2 and M4 subtypes inhibits glycinergic inputs to spinal dorsal horn neurons of mice, whereas stimulation of the M3 subtype potentiates synaptic glycine release. Furthermore, GABA(B) receptors are involved in the feedback regulation of glycinergic synaptic transmission in the spinal cord. This study revealed distinct functions of mAChR subtypes in controlling glycinergic input to spinal dorsal horn neurons.

  15. A cellular spinal cord scaffold seeded with rat adipose-derived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats

    PubMed Central

    Yin, Hong; Jiang, Tao; Deng, Xi; Yu, Miao; Xing, Hui; Ren, Xianjun

    2018-01-01

    Spinal cord injury (SCI), usually resulting in severe sensory and motor deficits, is a major public health concern. Adipose-derived stem cells (ADSCs), one type of adult stem cell, are free from ethical restriction, easily isolated and enriched. Therefore, ADSCs may provide a feasible cell source for cell-based therapies in treatment of SCI. The present study successfully isolated rat ADSCs (rADSCs) from Sprague-Dawley male rats and co-cultured them with acellular spinal cord scaffolds (ASCs). Then, a rat spinal cord hemisection model was built and rats were randomly divided into 3 groups: SCI only, ASC only, and ASC + ADSCs. Furthermore, behavioral tests were conducted to evaluate functional recovery. Hematoxylin & Eosin staining and immunofluorence were carried out to assess histopathological remodeling. In addition, biotinylated dextran amines anterograde tracing was employed to visualize axon regeneration. The data demonstrated that harvested cells, which were positive for cell surface antigen cluster of differentiation (CD) 29, CD44 and CD90 and negative for CD4, detected by flow cytometry analysis, held the potential to differentiate into osteocytes and adipocytes. Rats that received transplantation of ASCs seeded with rADSCs benefited greatly in functional recovery through facilitation of histopathological rehabilitation, axon regeneration and reduction of reactive gliosis. rADSCs co-cultured with ASCs may survive and integrate into the host spinal cord on day 14 post-SCI. PMID:29257299

  16. Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract

    PubMed Central

    Stecina, Katinka; Fedirchuk, Brent; Hultborn, Hans

    2013-01-01

    The main objective of this review is to re-examine the type of information transmitted by the dorsal and ventral spinocerebellar tracts (DSCT and VSCT respectively) during rhythmic motor actions such as locomotion. Based on experiments in the 1960s and 1970s, the DSCT was viewed as a relay of peripheral sensory input to the cerebellum in general, and during rhythmic movements such as locomotion and scratch. In contrast, the VSCT was seen as conveying a copy of the output of spinal neuronal circuitry, including those circuits generating rhythmic motor activity (the spinal central pattern generator, CPG). Emerging anatomical and electrophysiological information on the putative subpopulations of DSCT and VSCT neurons suggest differentiated functions for some of the subpopulations. Multiple lines of evidence support the notion that sensory input is not the only source driving DSCT neurons and, overall, there is a greater similarity between DSCT and VSCT activity than previously acknowledged. Indeed the majority of DSCT cells can be driven by spinal CPGs for locomotion and scratch without phasic sensory input. It thus seems natural to propose the possibility that CPG input to some of these neurons may contribute to distinguishing sensory inputs that are a consequence of the active locomotion from those resulting from perturbations in the external world. PMID:23613538

  17. Adult neurogenesis is reduced in the dorsal hippocampus of rats displaying learned helplessness behavior.

    PubMed

    Ho, Y C; Wang, S

    2010-11-24

    Clinical and preclinical studies suggest that the hippocampus has a role in the pathophysiology of major depression. In the learned helplessness (LH) animal model of depression after inescapable shocks (ISs) animals that display LH behavior have reduced cell proliferation in the hippocampus; this effect can be reversed by antidepressant treatment. Using this model, we compared rats that displayed LH behavior and rats that did not show LH behavior (NoLH) after ISs to determine whether reduced hippocampal cell proliferation is associated with the manifestation of LH behavior or is a general response to stress. Specifically, we examined cell proliferation, neurogenesis, and synaptic function in dorsal and ventral hippocampus of LH and NoLH animals and control rats that were not shocked. The LH rats had showed reduced cell proliferation, neurogenesis, and synaptic transmission in the dorsal hippocampus, whereas no changes were seen in the ventral hippocampus. These changes were not observed in the NoLH animals. In a group of NoLH rats that received the same amount of electrical shock as the LH rats to control for the unequal shocks received in these two groups, we observed changes in Ki-67(+) cells associated with acute stress. We conclude that reduced hippocampal cell proliferation and neurogenesis are associated with the manifestation of LH behavior and that the dorsal hippocampus is the most affected area. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Electroacupuncture attenuates mechanical allodynia by suppressing the spinal JNK1/2 pathway in a rat model of inflammatory pain.

    PubMed

    Du, Jun-Ying; Fang, Jian-Qiao; Liang, Yi; Fang, Jun-Fan

    2014-09-01

    Electroacupuncture (EA) has a substantial analgesic effect on inflammatory pain induced by complete Freund's adjuvant (CFA). The activation of the c-Jun N-terminal kinase 1/2 (JNK1/2) signal transduction pathway in the spinal cord is associated with inflammatory pain. However, the relationship between EA's analgesic effect and the JNK1/2 signal transduction pathway in the inflammatory pain remain unclear. In the present study, we used the established rat model of CFA-induced inflammatory pain to investigate the role of the spinal JNK1/2 pathway in EA-mediated analgesia. We observed a decrease in paw withdrawal thresholds and an increase in paw edema at 1 and 3 days after injecting CFA into the right hindpaw. CFA, 3 days after injection, upregulated expression of phospho-c-Jun N-terminal kinase1/2 (p-JNK1/2) protein and its downstream targets, the transcriptional regulators p-c-Jun and activator protein-1 (AP-1), as well as cyclooxygenase-2 (COX-2) and the transient receptor potential vanilloid 1 (TRPV1). EA significantly alleviated CFA-induced inflammatory pain. In addition, EA reduced p-JNK1/2 protein levels and COX-2 mRNA expressions, a degree of down-regulated p-c-Jun protein level and AP-1 DNA binding activity in the spinal dorsal horn of CFA-administered animals, but it had no effect on TRPV1 mRNA expression. Furthermore, EA and the JNK inhibitor SP600125 synergistically inhibited CFA-induced hyperalgesia and suppressed the COX-2 mRNA expression in the spinal dorsal horn. Our findings indicate that EA alleviates inflammatory pain behavior, at least in part, by reducing COX-2 expression in the spinal cord via the JNK1/2 signaling pathway. Inactivation of the spinal JNK1/2 signal transduction pathway maybe the potential mechanism of EA's antinociception in the inflammatory pain model. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets.

    PubMed

    Sass, Lucas R; Khani, Mohammadreza; Natividad, Gabryel Connely; Tubbs, R Shane; Baledent, Olivier; Martin, Bryn A

    2017-12-19

    The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in vitro and numerical models of cerebrospinal fluid (CSF) dynamics that can be used to inform and optimize CSF-based therapeutics. A subject-specific 3D model of the SSS was constructed based on high-resolution anatomic MRI. An expert operator completed manual segmentation of the CSF space with detailed consideration of the anatomy. 31 pairs of semi-idealized dorsal and ventral nerve rootlets (NR) were added to the model based on anatomic reference to the magnetic resonance (MR) imaging and cadaveric measurements in the literature. Key design criteria for each NR pair included the radicular line, descending angle, number of NR, attachment location along the spinal cord and exit through the dura mater. Model simplification and smoothing was performed to produce a final model with minimum vertices while maintaining minimum error between the original segmentation and final design. Final model geometry and hydrodynamics were characterized in terms of axial distribution of Reynolds number, Womersley number, hydraulic diameter, cross-sectional area and perimeter. The final model had a total of 139,901 vertices with a total CSF volume within the SSS of 97.3 cm 3 . Volume of the dura mater, spinal cord and NR was 123.1, 19.9 and 5.8 cm 3 . Surface area of these features was 318.52, 112.2 and 232.1 cm 2 respectively. Maximum Reynolds number was 174.9 and average Womersley number was 9.6, likely indicating presence of a laminar inertia-dominated oscillatory CSF flow field. This study details an anatomically realistic anthropomorphic 3D model of the SSS based on high-resolution MR imaging of a healthy human adult female. The model is provided for re-use under the Creative Commons

  20. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection.

    PubMed

    Zhang, Qiang; Shao, Yang; Zhao, Changsong; Cai, Juan; Sun, Sheng

    2014-12-01

    Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection.

  1. N-methyl-D-aspartate receptor antagonist MK-801 prevents apoptosis in rats that have undergone fetal spinal cord transplantation following spinal hemisection

    PubMed Central

    ZHANG, QIANG; SHAO, YANG; ZHAO, CHANGSONG; CAI, JUAN; SUN, SHENG

    2014-01-01

    Spinal cord injury is the main cause of paraplegia, but effective therapies for it are lacking. Embryonic spinal cord transplantation is able to repair spinal cord injury, albeit with a large amount of neuronal apoptosis remaining in the spinal cord. MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, is able to reduce cell death by decreasing the concentration of excitatory amino acids and preventing extracellular calcium ion influx. In this study, the effect of MK-801 on the apoptosis of spinal cord neurons in rats that have received a fetal spinal cord (FSC) transplant following spinal hemisection was investigated. Wistar rats were divided into three groups: Spinal cord hemisection injury with a combination of FSC transplantation and MK-801 treatment (group A); spinal cord hemisection injury with FSC transplantation (group B); and spinal cord injury with insertion of a Gelfoam pledget (group C). The rats were sacrificed 1, 3, 7 and 14 days after the surgery. Apoptosis in spinal slices from the injured spinal cord was examined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling reaction, and the expression of B-cell lymphoma-2 (Bcl-2) was measured by immunohistochemistry. The positive cells were quantitatively analyzed using a computer image analysis system. The rate of apoptosis and the positive expression of Bcl-2 protein in the spinal cord neurons in the three groups decreased in the following order: C>B>A (P<0.05) and A>B>C (P<0.05), respectively. This indicates that treatment with the NMDA receptor antagonist MK-801 prevents apoptosis in the spinal cord neurons of rats that have undergone FSC transplantation following spinal hemisection. PMID:25371724

  2. Spinal Anesthesia in Infant Rats: Development of a Model and Assessment of Neurological Outcomes

    PubMed Central

    Yahalom, Barak; Athiraman, Umeshkumar; Soriano, Sulpicio G.; Zurakowski, David; Carpino, Elizabeth; Corfas, Gabriel; Berde, Charles B.

    2012-01-01

    Background Previous studies in infant rats and case-control studies of human infants undergoing surgery have raised concerns about potential neurodevelopmental toxicities of general anesthesia. Spinal anesthesia is an alternative to general anesthesia for some infant surgeries. To test for potential toxicity, we developed a spinal anesthesia model in infant rats. Methods Rats of postnatal ages 7, 14, and 21 days were assigned to: no treatment; 1% isoflurane for either 1 h or 6 h, or lumbar spinal injection of saline or bupivacaine, at doses of 3.75 mg/kg (low dose) or 7.5 mg/kg (high dose). Subgroups of animals underwent neurobehavioral testing and blood gas analysis. Brain and lumbar spinal cord sections were examined for apoptosis using cleaved caspase-3 immunostaining. Lumbar spinal cord was examined histologically. Rats exposed to spinal or general anesthesia as infants underwent Rotarod testing of motor performance as adults. Data were analyzed using analysis of variance (ANOVA) using general linear models, Friedman Tests, and Mann–Whitney U tests, as appropriate. Results Bupivacaine 3.75 mg/kg was effective for spinal anesthesia in all age groups, and produced sensory and motor function recovered in 40 to 60 min. Blood gases were similar among groups. Brain and spinal cord apoptosis increased in rats receiving 6 h of 1% isoflurane, but not among the other treatments. All groups showed intact motor performance at adulthood. Conclusions Spinal anesthesia is technically feasible in infant rats, and appears benign in terms of neuroapoptotic and neuromotor sequelae. PMID:21555934

  3. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.

    PubMed

    Sukiasyan, N; Hultborn, H; Zhang, M

    2009-03-03

    The function of local networks in the CNS depends upon both the connectivity between neurons and their intrinsic properties. An intrinsic property of spinal motoneurons is the presence of persistent inward currents (PICs), which are mediated by non-inactivating calcium (mainly Ca(V)1.3) and/or sodium channels and serve to amplify neuronal input signals. It is of fundamental importance for the prediction of network function to determine the distribution of neurons possessing the ion channels that produce PICs. Although the distribution pattern of Ca(V)1.3 immunoreactivity (Ca(V)1.3-IR) has been studied in some specific central nervous regions in some species, so far no systematic investigations have been performed in both the rat spinal cord and brain stem. In the present study this issue was investigated by immunohistochemistry. The results indicated that the Ca(V)1.3-IR neurons were widely distributed across different parts of the spinal cord and the brain stem although with variable labeling intensities. In the spinal gray matter large neurons in the ventral horn (presumably motoneurons) tended to display higher levels of immunoreactivity than smaller neurons in the dorsal horn. In the white matter, a subset of glial cells labeled by an oligodendrocyte marker was also Ca(V)1.3-positive. In the brain stem, neurons in the motor nuclei appeared to have higher levels of immunoreactivity than those in the sensory nuclei. Moreover, a number of nuclei containing monoaminergic cells, for example the locus coeruleus, were also strongly immunoreactive. Ca(V)1.3-IR was consistently detected in the neuronal perikarya regardless of the neuronal type. However, in the large neurons in the spinal ventral horn and the cranial motor nuclei the Ca(V)1.3-IR was clearly detectable in first and second order dendrites. These results indicate that in the rat spinal cord and brain stem Ca(V)1.3 is probably a common calcium channel used by many kinds of neurons to facilitate the neuronal

  4. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    PubMed Central

    Nguyen, David; Deng, Ping; Matthews, Elizabeth A; Kim, Doo-Sik; Feng, Guoping; Dickenson, Anthony H; Xu, Zao C; Luo, Z David

    2009-01-01

    Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia) similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR) neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal horn neurons to innocuous

  5. Spinal versus brain microglial and macrophage activation traits determine the differential neuroinflammatory responses and analgesic effect of minocycline in chronic neuropathic pain.

    PubMed

    Li, Zhilin; Wei, Hong; Piirainen, Sami; Chen, Zuyue; Kalso, Eija; Pertovaara, Antti; Tian, Li

    2016-11-01

    Substantial evidence indicates involvement of microglia/macrophages in chronic neuropathic pain. However, the temporal-spatial features of microglial/macrophage activation and their pain-bound roles remain elusive. Here, we evaluated microglia/macrophages and the subtypes in the lumbar spinal cord (SC) and prefrontal cortex (PFC), and analgesic-anxiolytic effect of minocycline at different stages following spared nerve injury (SNI) in rats. While SNI enhanced the number of spinal microglia/macrophages since post-operative day (POD)3, pro-inflammatory MHCII + spinal microglia/macrophages were unexpectedly less abundant in SNI rats than shams on POD21. By contrast, less abundant anti-inflammatory CD172a (SIRPα) + microglia/macrophages were found in the PFC of SNI rats. Interestingly in naïve rats, microglial/macrophage expression of CD11b/c, MHCII and MHCII + /CD172a + ratio were higher in the SC than the cortex. Consistently, multiple immune genes involved in anti-inflammation, phagocytosis, complement activation and M2 microglial/macrophage polarization were upregulated in the spinal dorsal horn and dorsal root ganglia but downregulated in the PFC of SNI rats. Furthermore, daily intrathecal minocycline treatment starting from POD0 for two weeks alleviated mechanical allodynia most robustly before POD3 and attenuated anxiety on POD9. Although minocycline dampened spinal MHCII + microglia/macrophages until POD13, it failed to do so on cortical microglia/macrophages, indicating that dampening only spinal inflammation may not be enough to alleviate centralized pain at the chronic stage. Taken together, our data provide the first evidence that basal microglial/macrophage traits underlie differential region-specific responses to SNI and minocycline treatment, and suggest that drug treatment efficiently targeting not only spinal but also brain inflammation may be more effective in treating chronic neuropathic pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder

    PubMed Central

    2012-01-01

    Introduction Post-traumatic stress disorder (PTSD) is an anxiety disorder that develops after exposure to a life-threatening traumatic experience. Meta-analyses of the brainstem showed that midsagittal area of the pons was significantly reduced in patients with PTSD, suggesting a potential apoptosis in dorsal raphe nucleus after single-prolonged stress (SPS). The aim of this study is to investigate whether SPS induces apoptosis in dorsal raphe nucleus in PTSD rats, which may be a possible mechanism of reduced volume of pons and density of gray matter. Methods In this study, rats were randomly divided into 1d, 7d and 14d groups after SPS along with the control group. The apoptosis rate was determined using annexin V-FITC/PI double-labeled flow cytometry (FCM). Levels of Cytochrome c (Cyt-C) was examined by Western blotting. Expression of Cyt-C on mitochondria in the dorsal raphe nucleus neuron was determined by enzymohistochemistry under transmission electron microscopy (TEM). The change of thiamine monophosphatase (TMP) levels was assessed by enzymohistochemistry under light microscope and TEM. Morphological changes of the ultrastructure of the dorsal raphe nucleus neuron were determined by TEM. Results Apoptotic morphological alterations were observed in dorsal raphe nucleus neuron for all SPS-stimulate groups of rats. The apoptosis rates were significantly increased in dorsal raphe nucleus neuron of SPS rats, along with increased release of cytochrome c from the mitochondria into the cytoplasm, increased expression of Cyt-C and TMP levels in the cytoplasm, which reached to the peak of increase 7 days of SPS. Conclusions The results indicate that SPS induced Cyt-C released from mitochondria into cytosol and apoptosis in dorsal raphe nucleus neuron of rats. Increased TMP in cytoplasm facilitated the clearance of apoptotic cells. We propose that this presents one of the mechanisms that lead to reduced volume of pons and gray matter associated with PTSD. PMID

  7. Blockade of Nogo Receptor Ligands Promotes Functional Regeneration of Sensory Axons After Dorsal Root Crush

    PubMed Central

    Harvey, Pamela A.; Lee, Daniel H.S.; Qian, Fang; Weinreb, Paul H.; Frank, Eric

    2010-01-01

    A major impediment for regeneration of axons within the central nervous system is the presence of multiple inhibitory factors associated with myelin. Three of these factors bind to the Nogo receptor, NgR, which is expressed on axons. Administration of exogenous blockers of NgR or NgR ligands promotes the regeneration of descending axonal projections after spinal cord hemisection. A more detailed analysis of CNS regeneration can be made by examining the growth of specific classes of sensory axons into the spinal cord after dorsal root crush injury . In this study, we assessed whether administration of a soluble peptide fragment of the NgR that binds to and blocks all three NgR ligands can promote regeneration after brachial dorsal root crush in adult rats. Intraventricular infusion of sNgR for one month results in extensive regrowth of myelinated sensory axons into the white and gray matter of the dorsal spinal cord, but unmyelinated sensory afferents do not regenerate. In concert with the anatomical growth of sensory axons into the cord, there is a gradual restoration of synaptic function in the denervated region, as revealed by extracellular microelectrode recordings from the spinal gray matter in response to stimulation of peripheral nerves. These positive synaptic responses are correlated with substantial improvements in use of the forelimb, as assessed by paw preference, paw withdrawal to tactile stimuli and the ability to grasp. These results suggest that sNgR may be a potential therapy for restoring sensory function following injuries to sensory roots. PMID:19439606

  8. Suprapubic Bladder Catheterization of Male Spinal-Cord–Injured Sprague–Dawley Rats

    PubMed Central

    Robinson, Mary A; Herron, Alan J; Goodwin, Bradford S; Grill, Raymond J

    2012-01-01

    The rat spinal-cord–injury (SCI) model is widely used to study the pathologic mechanisms that contribute to sensory and motor dysfunction in humans. This model is thought to mimic many of the negative outcomes experienced by humans after spinal contusion injury. We theorized that manual bladder expression contributed to the kidney and bladder lesions reported in previous studies using the rat SCI model. In the present study, rats were surgically implanted with bladder catheters after spinal contusion injury to provide continuous drainage of urine. After 72 h, the rats were euthanized and their kidneys and bladders examined histologically. BUN, serum creatinine, and urine protein were compared at 0 and 72 h after surgery. Kidney and bladder lesions were similar in SCI rats with and without implanted bladder catheters. BUN at 72 h was higher than baseline values in both groups, whereas serum creatinine was higher at 72 h compared with baseline values only in the catheterized rats. These findings indicate that suprapubic bladder catheterization does not reduce hydronephrosis in SCI rats and that the standard of care for bladder evacuation should continue to be manual expression of urine. PMID:22330872

  9. [APPLICATION OF THREE DIMENSIONAL PRINTING ON MANUFACTURING BIONIC SCAFFOLDS OF SPINAL CORD IN RATS].

    PubMed

    Chen, Yisheng; Wang, Jingjing; Chen, Xuyi; Chen, Chong; Tu, Yue; Zhang, Sai; Li, Xiaohong

    2015-03-01

    To fabricate the bionic scaffolds of rat spinal cord by combining three dimensional (3D) printer and 3D software, so as to lay the foundation of theory and technology for the manufacture of scaffolds by using biomaterials. Three female Sprague Dawley rats were scanned by 7.0T MRI to obtain the shape and position data of the cross section and gray matter of T8 to T10 spinal cord. Combined with data of position and shape of nerve conduction beam, the relevant data were obtained via Getdata software. Then the 3D graphics were made and converted to stereolithography (STL) format by using SolidWorks software. Photosensitive resin was used as the materials of spinal cord scaffolds. The bionic scaffolds were fabricated by 3D printer. MRI showed that the section shape of T8 to T10 segments of the spinal cord were approximately oval with a relatively long sagittal diameter of (2.20 ± 0.52) mm and short transverse diameter of (2.05 ± 0.24) mm, and the data of nerve conduction bundle were featured in the STL format. The spinal cord bionic scaffolds of the target segments made by 3D printer were similar to the spinal cord of rat in the morphology and size, and the position of pores simulated normal nerve conduction of rat spinal cord. Spinal cord scaffolds produced by 3D printer which have similar shape and size of normal rat spinal cord are more bionic, and the procedure is simple. This technology combined with biomaterials is also promising in spinal cord repairing after spinal cord injury.

  10. Spinal and pontine relay pathways mediating respiratory rhythm entrainment by limb proprioceptive inputs in the neonatal rat.

    PubMed

    Giraudin, Aurore; Le Bon-Jégo, Morgane; Cabirol, Marie-Jeanne; Simmers, John; Morin, Didier

    2012-08-22

    The coordination of locomotion and respiration is widespread among mammals, although the underlying neural mechanisms are still only partially understood. It was previously found in neonatal rat that cyclic electrical stimulation of spinal cervical and lumbar dorsal roots (DRs) can fully entrain (1:1 coupling) spontaneous respiratory activity expressed by the isolated brainstem/spinal cord. Here, we used a variety of preparations to determine the type of spinal sensory inputs responsible for this respiratory rhythm entrainment, and to establish the extent to which limb movement-activated feedback influences the medullary respiratory networks via direct or relayed ascending pathways. During in vivo overground locomotion, respiratory rhythm slowed and became coupled 1:1 with locomotion. In hindlimb-attached semi-isolated preparations, passive flexion-extension movements applied to a single hindlimb led to entrainment of fictive respiratory rhythmicity recorded in phrenic motoneurons, indicating that the recruitment of limb proprioceptive afferents could participate in the locomotor-respiratory coupling. Furthermore, in correspondence with the regionalization of spinal locomotor rhythm-generating circuitry, the stimulation of DRs at different segmental levels in isolated preparations revealed that cervical and lumbosacral proprioceptive inputs are more effective in this entraining influence than thoracic afferent pathways. Finally, blocking spinal synaptic transmission and using a combination of electrophysiology, calcium imaging and specific brainstem lesioning indicated that the ascending entraining signals from the cervical or lumbar limb afferents are transmitted across first-order synapses, probably monosynaptic, in the spinal cord. They are then conveyed to the brainstem respiratory centers via a brainstem pontine relay located in the parabrachial/Kölliker-Fuse nuclear complex.

  11. Spontaneous firing and evoked responses of spinal nociceptive neurons are attenuated by blockade of P2X3 and P2X2/3 receptors in inflamed rats.

    PubMed

    Xu, Jun; Chu, Katharine L; Brederson, Jill-Desiree; Jarvis, Michael F; McGaraughty, Steve

    2012-08-01

    P2X3 and P2X2/3 receptors are selectively expressed on primary afferent nociceptors and have been implicated in modulating nociception in different models of pathological pain, including inflammatory pain. In an effort to delineate further the role of P2X3 receptors (homomeric and heteromeric) in the modulation of nociceptive transmission after a chronic inflammation injury, A-317491, a potent and selective P2X3-P2X2/3 antagonist, was administered to CFA-inflamed rats in order to examine its effects on responses of spinal dorsal horn neurons to mechanical and thermal stimulation. Systemic injection of A-317491 (30 μmol/kg, i.v.) reduced the responses of wide-dynamic-range (WDR) and nociceptive specific (NS) neurons to both high-intensity mechanical (pinch) and heat (49°C) stimulation. A-317491 also decreased low-intensity (10 g von Frey hair) mechanically evoked activity of WDR neurons but did not alter WDR neuronal responses to cold stimulation (5°C). Spontaneous firing of WDR neurons in CFA-inflamed rats was also significantly attenuated by A-317491 injection. By using immunohistochemistry, P2X3 receptors were demonstrated to be enhanced in lamina II of the spinal dorsal horn after inflammation. In summary, blockade of P2X3 and P2X2/3 receptors dampens mechanical- and heat-related signaling, as well as nonevoked activity of key classes of spinal nociceptive neurons in inflamed animals. These data suggest that P2X3 and/or P2X2/3 receptors have a broad contribution to somatosensory/nociceptive transmission in rats with a chronic inflammatory injury and are consistent with previous behavioral data demonstrating antiallodynic and antihyperalgesic effects of receptor antagonists. Copyright © 2012 Wiley Periodicals, Inc.

  12. The effect of exercise frequency on neuropathic pain and pain-related cellular reactions in the spinal cord and midbrain in a rat sciatic nerve injury model

    PubMed Central

    Sumizono, Megumi; Otsuka, Shotaro; Terashi, Takuto; Nakanishi, Kazuki; Ueda, Koki; Takada, Seiya; Kikuchi, Kiyoshi

    2018-01-01

    Background Exercise regimens are established methods that can relieve neuropathic pain. However, the relationship between frequency and intensity of exercise and multiple cellular responses of exercise-induced alleviation of neuropathic pain is still unclear. We examined the influence of exercise frequency on neuropathic pain and the intracellular responses in a sciatic nerve chronic constriction injury (CCI) model. Materials and methods Rats were assigned to four groups as follows: CCI and high-frequency exercise (HFE group), CCI and low-frequency exercise (LFE group), CCI and no exercise (No-Ex group), and naive animals (control group). Rats ran on a treadmill, at a speed of 20 m/min, for 30 min, for 5 (HFE) or 3 (LFE) days a week, for a total of 5 weeks. The 50% withdrawal threshold was evaluated for mechanical sensitivity. The activation of glial cells (microglia and astrocytes), expression of brain-derived neurotrophic factor (BDNF) and μ-opioid receptor in the spinal dorsal horn and endogenous opioid in the midbrain were examined using immunohistochemistry. Opioid receptor antagonists (naloxone) were administered using intraperitoneal injection. Results The development of neuropathic pain was related to the activation of glial cells, increased BDNF expression, and downregulation of the μ-opioid receptor in the ipsilateral spinal dorsal horn. In the No-Ex group, neuropathic pain showed the highest level of mechanical hypersensitivity at 2 weeks, which improved slightly until 5 weeks after CCI. In both exercise groups, the alleviation of neuropathic pain was accelerated through the regulation of glial activation, BDNF expression, and the endogenous opioid system. The expression of BDNF and endogenous opioid in relation to exercise-induced alleviation of neuropathic pain differed in the HFE and LFE groups. The effects of exercise-induced alleviation of mechanical hypersensitivity were reversed by the administration of naloxone. Conclusion The LFE and HFE

  13. Music exposure improves spatial cognition by enhancing the BDNF level of dorsal hippocampal subregions in the developing rats.

    PubMed

    Xing, Yingshou; Chen, Wenxi; Wang, Yanran; Jing, Wei; Gao, Shan; Guo, Daqing; Xia, Yang; Yao, Dezhong

    2016-03-01

    Previous research has shown that dorsal hippocampus plays an important role in spatial memory process. Music exposure can enhance brain-derived neurotrophic factor (BDNF) expression level in dorsal hippocampus (DH) and thus enhance spatial cognition ability. But whether music experience may affect different subregions of DH in the same degree remains unclear. Here, we studied the effects of exposure to Mozart K.448 on learning behavior in developing rats using the classical Morris water maze task. The results showed that early music exposure could enhance significantly learning performance of the rats in the water maze test. Meanwhile, the BDNF/TrkB level of dorsal hippocampus CA3 (dCA3) and dentate gyrus (dDG) was significantly enhanced in rats exposed to Mozart music as compared to those without music exposure. In contrast, the BDNF/TrkB level of dorsal hippocampus CA1 (dCA1) was not affected. The results suggest that the spatial memory improvement by music exposure in rats may be associated with the enhanced BDNF/TrkB level of dCA3 and dDG. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Pregnancy suppresses neuropathic pain induced by chronic constriction injury in rats through the inhibition of TNF-α

    PubMed Central

    Onodera, Yoshiko; Kanao-Kanda, Megumi; Kanda, Hirotsugu; Sasakawa, Tomoki; Iwasaki, Hiroshi; Kunisawa, Takayuki

    2017-01-01

    Purpose Pregnancy-induced analgesia develops during late pregnancy, but it is unclear whether this analgesia is effective against neuropathic pain. The detailed molecular mechanisms underlying pregnancy-induced analgesia have not been investigated. We examined the antinociceptive effect of pregnancy-induced analgesia in a neuropathic pain model and the expression of tumor necrosis factor (TNF)-α, glial fibrillary acidic protein (GFAP), Iba-1, and c-Fos in the spinal dorsal horn just before parturition. Materials and methods Female Sprague Dawley rats (200–250 g) were randomly assigned to one of four groups (pregnant + chronic constriction injury [CCI]; pregnant + sham injury; not pregnant + CCI; and not pregnant + sham injury). Separate groups were used for the behavioral and tissue analyses. CCI of the left sciatic nerve was surgically induced 3 days after confirming pregnancy in the pregnancy group or on day 3 in the not pregnant group. The spinal cord was extracted 18 days after CCI. TNF-α, GFAP, Iba-1, and c-Fos expression levels in the spinal dorsal horn were measured by Western blot analysis. Mechanical threshold was tested using von Frey filaments. Results The lowered mechanical threshold induced by CCI was significantly attenuated within 1 day before parturition and decreased after delivery. TNF-α expression in CCI rats was decreased within 1 day before parturition. Further, GFAP, Iba-1, and c-Fos expression in the spinal dorsal horn was reduced in the pregnant rats. Serum TNF-α in all groups was below measurable limits. Conclusion Our findings indicate that pregnancy-induced analgesia suppresses neuropathic pain through reducing spinal levels of TNF-α, GFAP, Iba-1, and c-Fos in a rat model of CCI. PMID:28331359

  15. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia

    PubMed Central

    Ardell, Jeffrey L.; Cardinal, René; Vermeulen, Michel; Armour, J. Andrew

    2009-01-01

    Populations of intrathoracic extracardiac neurons transduce myocardial ischemia, thereby contributing to sympathetic control of regional cardiac indices during such pathology. Our objective was to determine whether electrical neuromodulation using spinal cord stimulation (SCS) modulates such local reflex control. In 10 anesthetized canines, middle cervical ganglion neurons were identified that transduce the ventricular milieu. Their capacity to transduce a global (rapid ventricular pacing) vs. regional (transient regional ischemia) ventricular stress was tested before and during SCS (50 Hz, 0.2 ms duration at 90% MT) applied to the dorsal aspect of the T1 to T4 spinal cord. Rapid ventricular pacing and transient myocardial ischemia both activated cardiac-related middle cervical ganglion neurons. SCS obtunded their capacity to reflexly respond to the regional ventricular ischemia, but not rapid ventricular pacing. In conclusion, spinal cord inputs to the intrathoracic extracardiac nervous system obtund the latter's capacity to transduce regional ventricular ischemia, but not global cardiac stress. Given the substantial body of literature indicating the adverse consequences of excessive adrenergic neuronal excitation on cardiac function, these data delineate the intrathoracic extracardiac nervous system as a potential target for neuromodulation therapy in minimizing such effects. PMID:19515981

  16. Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level.

    PubMed

    Nacka-Aleksić, Mirjana; Djikić, Jasmina; Pilipović, Ivan; Stojić-Vukanić, Zorica; Kosec, Duško; Bufan, Biljana; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2015-10-01

    Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms

  17. Serotonergic Innervation of the Caudal Spinal Stump in Rats After Complete Spinal Transection: Effect of Olfactory Ensheathing Glia

    PubMed Central

    Takeoka, Aya; Kubasak, Marc D.; Zhong, Hui; Roy, Roland R.; Phelps, Patricia E.

    2010-01-01

    Spinal cord injury studies use the presence of serotonin (5-HT)-immunoreactive axons caudal to the injury site as evidence of axonal regeneration. As olfactory ensheathing glia (OEG) transplantation improves hindlimb locomotion in adult rats with complete spinal cord transection, we hypothesized that more 5-HT-positive axons would be found in the caudal stump of OEG- than media-injected rats. Previously we found 5-HT-immunolabeled axons that spanned the transection site only in OEG-injected rats but detected labeled axons just caudal to the lesion in both media- and OEG-injected rats. Now we report that many 5-HT-labeled axons are present throughout the caudal stump of both media- and OEG-injected rats. We found occasional 5-HT-positive interneurons that are one likely source of 5-HT-labeled axons. These results imply that the presence of 5-HT-labeled fibers in the caudal stump is not a reliable indicator of regeneration. We then asked if 5-HT-positive axons appose cholinergic neurons associated with motor functions: central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more 5-HT-positive varicosities in lamina X adjacent to central canal cluster cells in lumbar and sacral segments of OEG- than media-injected rats. SMNs and partition cells are less frequently apposed. As nonsynaptic release of 5-HT is common in the spinal cord, an increase in 5-HT-positive varicosities along motor-associated cholinergic neurons may contribute to the locomotor improvement observed in OEG-injected spinal rats. Furthermore, serotonin located within the caudal stump may activate lumbosacral locomotor networks. J. Comp. Neurol. 515: 664–676, 2009. PMID:19496067

  18. Serotonergic innervation of the caudal spinal stump in rats after complete spinal transection: effect of olfactory ensheathing glia.

    PubMed

    Takeoka, Aya; Kubasak, Marc D; Zhong, Hui; Roy, Roland R; Phelps, Patricia E

    2009-08-20

    Spinal cord injury studies use the presence of serotonin (5-HT)-immunoreactive axons caudal to the injury site as evidence of axonal regeneration. As olfactory ensheathing glia (OEG) transplantation improves hindlimb locomotion in adult rats with complete spinal cord transection, we hypothesized that more 5-HT-positive axons would be found in the caudal stump of OEG- than media-injected rats. Previously we found 5-HT-immunolabeled axons that spanned the transection site only in OEG-injected rats but detected labeled axons just caudal to the lesion in both media- and OEG-injected rats. Now we report that many 5-HT-labeled axons are present throughout the caudal stump of both media- and OEG-injected rats. We found occasional 5-HT-positive interneurons that are one likely source of 5-HT-labeled axons. These results imply that the presence of 5-HT-labeled fibers in the caudal stump is not a reliable indicator of regeneration. We then asked if 5-HT-positive axons appose cholinergic neurons associated with motor functions: central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more 5-HT-positive varicosities in lamina X adjacent to central canal cluster cells in lumbar and sacral segments of OEG- than media-injected rats. SMNs and partition cells are less frequently apposed. As nonsynaptic release of 5-HT is common in the spinal cord, an increase in 5-HT-positive varicosities along motor-associated cholinergic neurons may contribute to the locomotor improvement observed in OEG-injected spinal rats. Furthermore, serotonin located within the caudal stump may activate lumbosacral locomotor networks. (c) 2009 Wiley-Liss, Inc.

  19. Tramadol and propentofylline coadministration exerted synergistic effects on rat spinal nerve ligation-induced neuropathic pain.

    PubMed

    Zhang, Jin; Wu, Dan; Xie, Cheng; Wang, Huan; Wang, Wei; Zhang, Hui; Liu, Rui; Xu, Li-Xian; Mei, Xiao-Peng

    2013-01-01

    Neuropathic pain is an intractable clinical problem. Drug treatments such as tramadol have been reported to effectively decrease neuropathic pain by inhibiting the activity of nociceptive neurons. It has also been reported that modulating glial activation could also prevent or reverse neuropathic pain via the administration of a glial modulator or inhibitor, such as propentofylline. Thus far, there has been no clinical strategy incorporating both neuronal and glial participation for treating neuropathic pain. Therefore, the present research study was designed to assess whether coadministration of tramadol and propentofylline, as neuronal and glial activation inhibitors, respectively, would exert a synergistic effect on the reduction of rat spinal nerve ligation (SNL)-induced neuropathic pain. Rats underwent SNL surgery to induce neuropathic pain. Pain behavioral tests were conducted to ascertain the effect of drugs on SNL-induced mechanical allodynia with von-Frey hairs. Proinflammatory factor interleukin-1β (IL-1β) expression was also detected by Real-time RT-PCR. Intrathecal tramadol and propentofylline administered alone relieved SNL-induced mechanical allodynia in a dose-dependent manner. Tramadol and propentofylline coadministration exerted a more potent effect in a synergistic and dose dependent manner than the intrathecal administration of either drug alone. Real-time RT-PCR demonstrated IL-1β up-expression in the ipsilateral spinal dorsal horn after the lesion, which was significantly decreased by tramadol and propentofylline coadministration. Inhibiting proinflammatory factor IL-1β contributed to the synergistic effects of tramadol and propentofylline coadministration on rat peripheral nerve injury-induced neuropathic pain. Thus, our study provided a rationale for utilizing a novel strategy for treating neuropathic pain by blocking the proinflammatory factor related pathways in the central nervous system.

  20. Tramadol and Propentofylline Coadministration Exerted Synergistic Effects on Rat Spinal Nerve Ligation-Induced Neuropathic Pain

    PubMed Central

    Wang, Huan; Wang, Wei; Zhang, Hui; Liu, Rui; Xu, Li-Xian; Mei, Xiao-Peng

    2013-01-01

    Neuropathic pain is an intractable clinical problem. Drug treatments such as tramadol have been reported to effectively decrease neuropathic pain by inhibiting the activity of nociceptive neurons. It has also been reported that modulating glial activation could also prevent or reverse neuropathic pain via the administration of a glial modulator or inhibitor, such as propentofylline. Thus far, there has been no clinical strategy incorporating both neuronal and glial participation for treating neuropathic pain. Therefore, the present research study was designed to assess whether coadministration of tramadol and propentofylline, as neuronal and glial activation inhibitors, respectively, would exert a synergistic effect on the reduction of rat spinal nerve ligation (SNL)-induced neuropathic pain. Rats underwent SNL surgery to induce neuropathic pain. Pain behavioral tests were conducted to ascertain the effect of drugs on SNL-induced mechanical allodynia with von-Frey hairs. Proinflammatory factor interleukin-1β (IL-1β) expression was also detected by Real-time RT-PCR. Intrathecal tramadol and propentofylline administered alone relieved SNL-induced mechanical allodynia in a dose-dependent manner. Tramadol and propentofylline coadministration exerted a more potent effect in a synergistic and dose dependent manner than the intrathecal administration of either drug alone. Real-time RT-PCR demonstrated IL-1β up-expression in the ipsilateral spinal dorsal horn after the lesion, which was significantly decreased by tramadol and propentofylline coadministration. Inhibiting proinflammatory factor IL-1β contributed to the synergistic effects of tramadol and propentofylline coadministration on rat peripheral nerve injury-induced neuropathic pain. Thus, our study provided a rationale for utilizing a novel strategy for treating neuropathic pain by blocking the proinflammatory factor related pathways in the central nervous system. PMID:24009718

  1. Nanomolar Oxytocin Synergizes with Weak Electrical Afferent Stimulation to Activate the Locomotor CPG of the Rat Spinal Cord In Vitro

    PubMed Central

    Dose, Francesco; Zanon, Patrizia; Coslovich, Tamara; Taccola, Giuliano

    2014-01-01

    Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM–1 μM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other

  2. Differential contribution of electrically evoked dorsal root reflexes to peripheral vasodilatation and plasma extravasation

    PubMed Central

    2011-01-01

    Background Dorsal root reflexes (DRRs) are antidromic activities traveling along the primary afferent fibers, which can be generated by peripheral stimulation or central stimulation. DRRs are thought to be involved in the generation of neurogenic inflammation, as indicated by plasma extravasation and vasodilatation. The hypothesis of this study was that electrical stimulation of the central stump of a cut dorsal root would lead to generation of DRRs, resulting in plasma extravasation and vasodilatation. Methods Sprague-Dawley rats were prepared to expose spinal cord and L4-L6 dorsal roots under pentobarbital general anesthesia. Electrical stimulation of either intact, proximal or distal, cut dorsal roots was applied while plasma extravasation or blood perfusion of the hindpaw was recorded. Results While stimulation of the peripheral stump of a dorsal root elicited plasma extravasation, electrical stimulation of the central stump of a cut dorsal root generated significant DRRs, but failed to induce plasma extravasation. However, stimulation of the central stump induced a significant increase in blood perfusion. Conclusions It is suggested that DRRs are involved in vasodilatation but not plasma extravasation in neurogenic inflammation in normal animals. PMID:21356101

  3. Spinal cord injury below-level neuropathic pain relief with dorsal root entry zone microcoagulation performed caudal to level of complete spinal cord transection.

    PubMed

    Falci, Scott; Indeck, Charlotte; Barnkow, Dave

    2018-06-01

    OBJECTIVE Surgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically been performed at and cephalad to, but not below, the level of SCI. This study was initiated to investigate the validity of 3 proposed concepts regarding the DREZ in SCI central pain: 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through sympathetic nervous system (SNS) pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain-generators. METHODS Three unique patients with both intractable SCI below-level central pain and complete spinal cord transection at the level of SCI were identified. All 3 patients had previously undergone surgical intervention to their spinal cords-only cephalad to the level of spinal cord transection-with either DREZ microcoagulation or cyst shunting, in failed attempts to relieve their SCI below-level central pain. Subsequent to these surgeries, DREZ lesioning of the spinal cord solely caudal to the level of complete spinal cord transection was performed using electrical intramedullary guidance. The follow-up period ranged from 1 1/2 to 11 years. RESULTS All 3 patients in this study had complete or near-complete relief of all below-level neuropathic pain. The analyzed electrical data confirmed and enhanced a previously proposed somatotopic map of SCI below-level DREZ pain generators. CONCLUSIONS The results of this study support the following hypotheses. 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through SNS pathways. 3) Perceived SCI below-level central pain follows a unique

  4. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats.

    PubMed

    Schumacher, Anett; de Vasconcelos, Anne Pereira; Lecourtier, Lucas; Moser, Andreas; Cassel, Jean-Christophe

    2011-09-23

    Electrical high frequency stimulation (HFS) has been used to treat various neurological and psychiatric diseases. The striatal area contributes to response learning and procedural memory. Therefore, we investigated the effect of striatal HFS application on procedural/declarative-like memory in rats. All rats were trained in a flooded Double-H maze for three days (4 trials/day) to swim to an escape platform hidden at a constant location. The starting place was the same for all trials. After each training session, HFS of the left dorsal striatum was performed over 4h in alternating 20 min periods (during rest time, 10a.m. to 3p.m.). Nineteen hours after the last HFS and right after a probe trial assessing the rats' strategy (procedural vs. declarative-like memory-based choice), animals were sacrificed and the dorsal striatum was quickly removed. Neurotransmitter levels were measured by HPLC. Stimulated rats did not differ from sham-operated and control rats in acquisition performance, but exhibited altered behavior during the probe trial (procedural memory responses being less frequent than in controls). In stimulated rats, GABA levels were significantly increased in the dorsal striatum on both sides. We suggest that HFS of the dorsal striatum does not alter learning behavior in rats but influences the strategy by which the rats solve the task. Given that the HFS-induced increase of GABA levels was found 19 h after stimulation, it can be assumed that HFS has consequences lasting for several hours and which are functionally significant at a behavioral level, at least under our stimulation (frequency, timing, location, side and strength of stimulation) and testing conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Bone mesenchymal stem cells attenuate radicular pain by inhibiting microglial activation in a rat noncompressive disk herniation model.

    PubMed

    Huang, Xiaodong; Wang, Weiheng; Liu, Xilin; Xi, Yanhai; Yu, Jiangming; Yang, Xiangqun; Ye, Xiaojian

    2018-06-01

    Spinal disk herniation can induce radicular pain through chemical irritation caused by proinflammatory and immune responses. Bone marrow mesenchymal stem cells (BMSCs) are a unique type of adult stem cell with the functions of suppressing inflammation and modulating immune responses. This study was undertaken to observe the effect of intrathecal BMSCs on the treatment of mechanical allodynia and the suppression of microglial activation in a rat noncompressive disk herniation model. The model was induced by the application of nucleus pulposus (NP) to the L5 dorsal root ganglion (DRG). The study found that the use of NP in the DRG can induce abnormal mechanical pain, increase the contents of the proinflammatory factors TNF-α and IL-1β, decrease the content of the anti-inflammatory cytokine TGF-β1 and activate microglia in the spinal dorsal horns (L5) (P < 0.05). BMSC administration could increase the mechanical withdrawal thresholds dramatically, decrease the contents of IL-1β and TNF-α, increase the content of TGF-β1 significantly (P < 0.05) and inhibit microglial activation in the bilateral spinal dorsal horn. Our results indicate that BMSC administration can reduce mechanical allodynia and downregulate the expression of proinflammatory cytokines by inhibiting microglial activation in the spinal dorsal horn in a rat noncompressive disk herniation model.

  6. Rostral ventromedial medulla control of spinal sensory processing in normal and pathophysiological states.

    PubMed

    Bee, L A; Dickenson, A H

    2007-07-13

    Complex networks of pathways project from various structures in the brain to modulate spinal processing of sensory input in a top-down fashion. The rostral ventromedial medulla (RVM) in the brainstem is one major final common output of this endogenous modulatory system and is involved in the relay of sensory information between the spinal cord and brain. The net output of descending neurons that exert inhibitory and facilitatory effects will determine whether neuronal activity in the spinal cord is increased or decreased. By pharmacologically blocking RVM activity with the local anesthetic lignocaine, and then measuring evoked responses of dorsal horn neurons to a range of applied peripheral stimuli, our aim was to determine the prevailing descending influence operating in normal anesthetized animals and animals with experimental neuropathic pain. The injection of 0.8 microl 2% lignocaine into the RVM caused a reduction in deep dorsal horn neuronal responses to electrical and natural stimuli in 64% of normal animals and in 81% of spinal-nerve-ligated (SNL) animals. In normal animals, responses to noxious input were predominantly reduced, while in SNL animals, reductions in spinal cord activity induced by intra-RVM lignocaine further included responses to non-noxious stimuli. This suggests that in terms of activity at least, if not number, descending facilitations are the predominant RVM influence that impacts the spinal cord in normal animals. Moreover, the increase in the proportion of neurons showing a post-lignocaine reduction in dorsal horn activity in SNL rats suggests that the strength of these facilitatory influences increases after neuropathy. This predominant inhibitory spinal effect following the injection of lignocaine into the RVM may be due to blockade of facilitatory On cells.

  7. Depressing effect of electroacupuncture on the spinal non-painful sensory input of the rat.

    PubMed

    Quiroz-González, Salvador; Segura-Alegría, Bertha; Jiménez-Estrada, Ismael

    2014-09-01

    The aim of this study was to explore the effect of electroacupuncture (EA) applied in the Zusanli (ST36) and Sanyinjiao (SP6) points on the N1 component of the cord dorsum potential (CDP) evoked by electrical stimulation of the sural nerve (SU) in the rat. The experiments were performed in 44 Wistar rats (250-300 g) anesthetized with ketamine (100 mg/kg) and xylazine (2 mg/kg). A bilateral laminectomy was performed to expose the L3 to S2 segments of the spinal cord. The SU nerve was exposed and placed on pairs of hook electrodes for electrical stimulation. The N1-CDPs were recorded with three silver-ball electrodes located on the dorsal surface of the L5 to S1 segments. Ipsilateral high and low EA stimulation (100, 2 Hz, 6 mA, 30 min) induced a considerable reduction in the amplitude (45 ± 5.6, 41 ± 6.2%) of the N1-CDP recorded at the L6 segmental level. Recovery of the N1-CDP amplitude occurred approximately 1-3 s after EA. Sectioning of the saphenous and superficial peroneal nerves reduced the depressing effect provoked by the EA stimulation (18.7 ± 1.3, 27 ± 3.8%). Similarly, sectioning of the posterior and anterior tibial, deep peroneal and gastrocnemius nerves partially reduced the effect provoked by EA (11 ± 1.5, 9.8 ± 1.1, 12.6 ± 1.9%). Intravenous picrotoxin (1 mg/kg) also reduced the action of low and high EA (23 ± 4.8, 27 ± 5.2%). It is suggested that EA stimulation depresses non-painful sensory pathways through the activation of specific inhibitory pathways that receive modulatory actions from other sensory and muscle afferent inputs in the rat spinal cord.

  8. Dimethylarginine dimethylaminohydrolase 1 is involved in spinal nociceptive plasticity.

    PubMed

    DʼMello, Richard; Sand, Claire A; Pezet, Sophie; Leiper, James M; Gaurilcikaite, Egle; McMahon, Stephen B; Dickenson, Anthony H; Nandi, Manasi

    2015-10-01

    Activation of neuronal nitric oxide synthase, and consequent production of nitric oxide (NO), contributes to spinal hyperexcitability and enhanced pain sensation. All NOS isoforms are inhibited endogenously by asymmetric dimethylarginine, which itself is metabolised by dimethylarginine dimethylaminohydrolase (DDAH). Inhibition of DDAH can indirectly attenuate NO production by elevating asymmetric dimethylarginine concentrations. Here, we show that the DDAH-1 isoform is constitutively active in the nervous system, specifically in the spinal dorsal horn. DDAH-1 was found to be expressed in sensory neurons within both the dorsal root ganglia and spinal dorsal horn; L-291 (NG-[2-Methoxyethyl]-L-arginine methyl ester), a DDAH-1 inhibitor, reduced NO synthesis in cultured dorsal root ganglia neurons. Spinal application of L-291 decreased N-methyl-D-aspartate-dependent postdischarge and windup of dorsal horn sensory neurons--2 measures of spinal hyperexcitability. Finally, spinal application of L-291 reduced both neuronal and behavioral measures of formalin-induced central sensitization. Thus, DDAH-1 may be a potential therapeutic target in neuronal disorders, such as chronic pain, where elevated NO is a contributing factor.

  9. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    PubMed

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  10. Dorsal Root Ganglion Stimulation for Complex Regional Pain Syndrome (CRPS) Recurrence after Amputation for CRPS, and Failure of Conventional Spinal Cord Stimulation.

    PubMed

    Goebel, Andreas; Lewis, Sarah; Phillip, Rhodri; Sharma, Manohar

    2018-01-01

    Limb amputation is sometimes being performed in long-standing complex regional pain syndrome (CRPS), although little evidence is available guiding management decisions, including how CRPS recurrence should be managed. This report details the management of a young soldier with CRPS recurrence 2 years after midtibial amputation for CRPS. Conventional spinal cord stimulation did not achieve paraesthetic coverage, or pain relief in the stump, whereas L4 dorsal root ganglion stimulation achieved both coverage and initially modest pain relief, and over time, substantial pain relief. Current evidence does not support the use of amputation to improve either pain or function in CRPS. Before a decision is made, in exceptional cases, about referral for amputation, dorsal root ganglion stimulation should be considered as a potentially effective treatment, even where conventional spinal cord stimulator treatment has failed to achieve reliable paraesthetic cover. Furthermore, this treatment may provide pain relief in those patients with CRPS recurrence in the stump after amputation. © 2017 World Institute of Pain.

  11. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats.

    PubMed

    Sabino, Luzzi; Maria, Crovace Alberto; Luca, Lacitignola; Valerio, Valentini; Edda, Francioso; Giacomo, Rossi; Gloria, Invernici; Juan, Galzio Renato; Antonio, Crovace

    2018-01-01

    Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso-Beattie-Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions ( P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery.

  12. The rat corticospinal system is functionally and anatomically segregated.

    PubMed

    Olivares-Moreno, Rafael; Moreno-Lopez, Yunuen; Concha, Luis; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Cordero-Erausquin, Matilde; Rojas-Piloni, Gerardo

    2017-12-01

    The descending corticospinal (CS) projection has been considered a key element for motor control, which results from direct and indirect modulation of spinal cord pre-motor interneurons in the intermediate gray matter of the spinal cord, which, in turn, influences motoneurons in the ventral horn. The CS tract (CST) is also involved in a selective and complex modulation of sensory information in the dorsal horn. However, little is known about the spinal network engaged by the CST and the organization of CS projections that may encode different cortical outputs to the spinal cord. This study addresses the issue of whether the CS system exerts parallel control on different spinal networks, which together participate in sensorimotor integration. Here, we show that in the adult rat, two different and partially intermingled CS neurons in the sensorimotor cortex activate, with different time latencies, distinct spinal cord neurons located in the dorsal horn and intermediate zone of the same segment. The fact that different populations of CS neurons project in a segregated manner suggests that CST is composed of subsystems controlling different spinal cord circuits that modulate motor outputs and sensory inputs in a coordinated manner.

  13. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats

    PubMed Central

    Zhang, Yu-Ting; Jin, Hui; Wang, Jun-Hua; Wen, Lan-Yu; Yang, Yang; Ruan, Jing-Wen; Zhang, Shu-Xin; Ling, Eng-Ang

    2017-01-01

    Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy. PMID:28744378

  14. Brn3a/Pou4f1 Regulates Dorsal Root Ganglion Sensory Neuron Specification and Axonal Projection into the Spinal Cord

    PubMed Central

    Zou, Min; Li, Shengguo; Klein, William H.; Xiang, Mengqing

    2012-01-01

    The sensory neurons of the dorsal root ganglia (DRG) must project accurately to their central targets to convey proprioceptive, nociceptive and mechanoreceptive information to the spinal cord. How these different sensory modalities and central connectivities are specified and coordinated still remains unclear. Given the expression of the POU homeodomain transcription factors Brn3a/Pou4f1 and Brn3b/Pou4f2 in DRG and spinal cord sensory neurons, we determined the subtype specification of DRG and spinal cord sensory neurons as well as DRG central projections in Brn3a and Brn3b single and double mutant mice. Inactivation of either or both genes causes no gross abnormalities in early spinal cord neurogenesis; however, in Brn3a single and Brn3a;Brn3b double mutant mice, sensory afferent axons from the DRG fail to form normal trajectories in the spinal cord. The TrkA+ afferents remain outside the dorsal horn and fail to extend into the spinal cord, while the projections of TrkC+ proprioceptive afferents into the ventral horn are also impaired. Moreover, Brn3a mutant DRGs are defective in sensory neuron specification, as marked by the excessive generation of TrkB+ and TrkC+ neurons as well as TrkA+/TrkB+ and TrkA+/TrkC+ double positive cells at early embryonic stages. At later stages in the mutant, TrkB+, TrkC+ and parvalbumin+ neurons diminish while there is a significant increase of CGRP+ and c-ret+ neurons. In addition, Brn3a mutant DRGs display a dramatic down-regulation of Runx1 expression, suggesting that the regulation of DRG sensory neuron specification by Brn3a is mediated in part by Runx1. Our results together demonstrate a critical role for Brn3a in generating DRG sensory neuron diversity and regulating sensory afferent projections to the central targets. PMID:22326227

  15. Spinal glucocorticoid receptor‑regulated chronic morphine tolerance may be through extracellular signal‑regulated kinase 1/2.

    PubMed

    Zhai, Mei-Li; Chen, Yi; Liu, Chong; Wang, Jian-Bo; Yu, Yong-Hao

    2018-05-23

    Opioid use has been limited in the treatment of chronic pain due to their side effects, including analgesic tolerance. Previous studies demonstrated that glucocorticoid receptors (GRs) may be involved in the development of chronic morphine tolerance; however, the mechanism remains unknown. It was hypothesized that the expression of spinal phosphorylated mitogen‑activated protein kinase [MAPK; phosphorylated extracellular signal‑regulated kinase (ERK)] is regulated through the spinal GRs, following chronic treatment with morphine. In the first experiment, the experimental rats were randomly divided into four groups: Control, morphine, morphine+GR antagonist mifepristone (RU38486) and morphine+GR agonist dexamethasone (Dex). Each group was treated with continuous intrathecal (IT) injection of the drugs for 6 days. The expression of GRs and MAPK 3/1 (p‑ERK 1/2) in the spinal dorsal horn was detected by western blot analysis and immunofluorescence staining. In the second experiment, the MAPK inhibitor PD98059 was added and the rats were randomly divided into four groups: Control, morphine, PD98059+morphine and PD98059+morphine+Dex. The continuous IT injection lasted for 7 days in each group. For all experiments, the tail flick test was conducted 30 min following administration every day to assess the thermal hyperalgesia of the rats. The experimental results demonstrated that there was a co‑existence of GRs and p‑ERK 1/2 in the spinal cord dorsal horn by double immunofluorescence staining. The GR antagonist RU38486 attenuated the morphine analgesia tolerance by inhibiting the expression of GR and increasing the expression of p‑ERK. The MAPK inhibitor PD98059 increased the effect of morphine tolerance and prolonged the duration of morphine tolerance. The present results suggest that spinal GRs may serve an important role in the development of morphine tolerance through the ERK signaling pathway.

  16. Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats.

    PubMed

    Fang, Jun-Fan; Liang, Yi; Du, Jun-Ying; Fang, Jian-Qiao

    2013-06-15

    Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacologic treatment for pain relief. In previous animal studies, TENS effectively alleviated Complete Freund's Adjuvant (CFA)- or carrageenan-induced inflammatory pain. Although TENS is known to produce analgesia via opioid activation in the brain and at the spinal level, few reports have investigated the signal transduction pathways mediated by TENS. Prior studies have verified the importance of the activation of extracellular signal-regulated kinase (ERK) signal transduction pathway in the spinal cord dorsal horn (SCDH) in acute and persistent inflammatory pains. Here, by using CFA rat model, we tested the efficacy of TENS on inhibiting the expressions of p-ERK1/2 and of its downstream cyclooxygenase-2 (COX-2) and the level of prostaglandin E2 (PGE2) at spinal level. Rats were randomly divided into control, model and TENS groups, and injected subcutaneously with 100 μl CFA or saline in the plantar surface of right hind paw. Rats in the TENS group were treated with TENS (constant aquare wave, 2 Hz and 100 Hz alternating frequencies, intensities ranging from 1 to 2 mA, lasting for 30 min each time) at 5 h and 24 h after injection. Paw withdrawal thresholds (PWTs) were measured with dynamic plantar aesthesiometer at 3d before modeling and 5 h, 6 h, and 25 h after CFA injection. The ipsilateral sides of the lumbar spinal cord dosral horns were harvested for detecting the expressions of p-ERK1/2 and COX-2 by western blot analysis and qPCR, and PGE2 by ELISA. CFA-induced periphery inflammation decreased PWTs and increased paw volume of rats. TENS treatment significantly alleviated mechanical hyperalgesia caused by CFA. However, no anti-inflammatory effect of TENS was observed. Expression of p-ERK1/2 protein and COX-2 mRNA was significantly up-regualted at 5 h and 6 h after CFA injection, while COX-2 and PGE2 protein level only increased at 6 h after modeling. Furthermore, the high expression of p-ERK1

  17. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.

    PubMed

    Bennett, D J; Sanelli, L; Cooke, C L; Harvey, P J; Gorassini, M A

    2004-05-01

    Following chronic sacral spinal cord transection in rats the affected tail muscles exhibit marked spasticity, with characteristic long-lasting tail spasms evoked by mild stimulation. The purpose of the present paper was to characterize the long-lasting reflex seen in tail muscles in response to electrical stimulation of the tail nerves in the awake spastic rat, including its development with time and relation to spasticity. Before and after sacral spinal transection, surface electrodes were placed on the tail for electrical stimulation of the caudal nerve trunk (mixed nerve) and for recording EMG from segmental tail muscles. In normal and acute spinal rats caudal nerve trunk stimulation evoked little or no EMG reflex. By 2 wk after injury, the same stimulation evoked long-lasting reflexes that were 1) very low threshold, 2) evoked from rest without prior EMG activity, 3) of polysynaptic latency with >6 ms central delay, 4) about 2 s long, and 5) enhanced by repeated stimulation (windup). These reflexes produced powerful whole tail contractions (spasms) and developed gradually over the weeks after the injury (< or =52 wk tested), in close parallel to the development of spasticity. Pure low-threshold cutaneous stimulation, from electrical stimulation of the tip of the tail, also evoked long-lasting spastic reflexes, not seen in acute spinal or normal rats. In acute spinal rats a strong C-fiber stimulation of the tip of the tail (20 x T) could evoke a weak EMG response lasting about 1 s. Interestingly, when this C-fiber stimulation was used as a conditioning stimulation to depolarize the motoneuron pool in acute spinal rats, a subsequent low-threshold stimulation of the caudal nerve trunk evoked a 300-500 ms long reflex, similar to the onset of the long-lasting reflex in chronic spinal rats. A similar conditioned reflex was not seen in normal rats. Thus there is an unusually long low-threshold polysynaptic input to the motoneurons (pEPSP) that is normally inhibited by

  18. Neuroprotection of locomotor networks after experimental injury to the neonatal rat spinal cord in vitro.

    PubMed

    Margaryan, G; Mattioli, C; Mladinic, M; Nistri, A

    2010-02-03

    Treatment to block the pathophysiological processes triggered by acute spinal injury remains unsatisfactory as the underlying mechanisms are incompletely understood. Using as a model the in vitro spinal cord of the neonatal rat, we investigated the feasibility of neuroprotection of lumbar locomotor networks by the glutamate antagonists 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and aminophosphonovalerate (APV) against acute lesions induced by either a toxic solution (pathological medium (PM) to mimic the spinal injury hypoxic-dysmetabolic perturbation) or excitotoxicity with kainate. The study outcome was presence of fictive locomotion 24 h after the insult and its correlation with network histology. Inhibition of fictive locomotion by PM was contrasted by simultaneous and even delayed (1 h later) co-application of CNQX and APV with increased survival of ventral horn premotoneurons and lateral column white matter. Neither CNQX nor APV alone provided neuroprotection. Kainate-mediated excitotoxicity always led to loss of fictive locomotion and extensive neuronal damage. CNQX and APV co-applied with kainate protected one-third of preparations with improved motoneuron and dorsal horn neuronal counts, although they failed with delayed application. Our data suggest that locomotor network neuroprotection was possible when introduced very early during the pathological process of spinal injury, but also showed how the borderline between presence or loss of locomotor activity was a very narrow one that depended on the survival of a certain number of neurons or white matter elements. The present report provides a model not only for preclinical testing of novel neuroprotective agents, but also for estimating the minimal network membership compatible with functional locomotor output. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Pulsed radiofrequency reduced complete Freund's adjuvant-induced mechanical hyperalgesia via the spinal c-Jun N-terminal kinase pathway.

    PubMed

    Chen, Kuan-Hung; Yang, Chien-Hui; Juang, Sin-Ei; Huang, Hui-Wen; Cheng, Jen-Kun; Sheen-Chen, Shyr-Ming; Cheng, Jiin-Tsuey; Lin, Chung-Ren

    2014-03-01

    Pulsed radiofrequency (PRF) treatment involves the pulsed application of a radiofrequency electric field to a nerve. The technology offers pain relief for patients suffering from chronic pain who do not respond well to conventional treatments. We tested whether PRF treatment attenuated complete Freund's adjuvant (CFA) induced inflammatory pain. The profile of spinal c-Jun N-terminal kinases (JNKs) phosphorylation was evaluated to elucidate the potential mechanism. Injection of CFA into the unilateral hind paw of rats induced mechanical hyperalgesia in both the ipsilateral and contralateral hind paws. We administered 500-kHz PRF treatment in 20-ms pulses, at a rate of 2 Hz (2 pulses per second) either to the sciatic nerve in the mid-thigh, or to the L4 anterior primary ramus just distal to the intervertebral foramen in both the CFA group and no-PRF group rats. Tissue samples were examined at 1, 3, 7, and 14 days following PRF treatments. Behavioral studies showed that PRF applied close to the dorsal root ganglion (DRG) significantly attenuated CFA-induced mechanical hyperalgesia compared to no-PRF group (P < .05). And western blotting revealed significant attenuation of the activation of JNK in the spinal dorsal horn compared to no-PRF group animals (P < .05). Application of PRF close to DRG provides an effective treatment for CFA-induced persistent mechanical hyperalgesia by attenuating JNK activation in the spinal dorsal horn.

  20. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats

    PubMed Central

    Sabino, Luzzi; Maria, Crovace Alberto; Luca, Lacitignola; Valerio, Valentini; Edda, Francioso; Giacomo, Rossi; Gloria, Invernici; Juan, Galzio Renato; Antonio, Crovace

    2018-01-01

    Background: Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Methods: Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso–Beattie–Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Results: Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions (P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Conclusions: Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery. PMID:29497572

  1. Dorsal hippocampal opioidergic system modulates anxiety-like behaviors in adult male Wistar rats.

    PubMed

    Solati, Jalal; Zarrindast, Mohammad-Reza; Salari, Ali-Akbar

    2010-12-01

    In the present study, we investigated the possible influence of the opioidergic system of the dorsal hippocampus on anxiety-like behaviors. Elevated plus-maze, which is one of the methods used for testing anxiety, was used in the present study. Rats were anesthetized with ketamine and xylazine and special cannulas were inserted stereotaxically into the CA1 region of the dorsal hippocampus. After 1 week of recovery, the effects of intra-CA1 administration of morphine (0.25, 0.5, 1 and 2 µg/rat; 1 µl/rat; 0.5 µl/in each side), naloxone (2, 4, 6 and 8 µg/rat), enkephalin (1, 2, 5 and 10 µg/rat) and naltrindole (0.25, 0.5, 1 and 2 µg/rat) on percentage open arm time (%OAT) and percentage open arm entries (%OAE) were determined. Bilateral administration of morphine into CA1 decreases %OAT and %OAE, indicating an anxiogenic-like effect. Intra-CA1 injection of naloxone, an opioid receptor antagonist, increased both %OAT and %OAE, parameters of anxiolytic-like behavior. Bilateral administration of δ-opioid receptor agonist, [D-Pen(2,5) ]-enkephalin acetate hydrate into the CA1, induced an anxiolytic-like effect. Furthermore, intra-CA1 injection of δ-opioid receptor antagonist, naltrindole hydrochloride, increased anxiety-related behaviors. The results of the present study demonstrate that activation of μ-opioid receptors in this area produce an anxiogenic response while activation of δ-opioid receptors produces an anxiolytic response. © 2010 The Authors. Psychiatry and Clinical Neurosciences © 2010 Japanese Society of Psychiatry and Neurology.

  2. Formalin-induced behavioural hypersensitivity and neuronal hyperexcitability are mediated by rapid protein synthesis at the spinal level

    PubMed Central

    Asante, Curtis O; Wallace, Victoria C; Dickenson, Anthony H

    2009-01-01

    Background The mammalian target of rapamycin (mTOR) is a key regulator of mRNA translation whose action can be inhibited by the drug rapamycin. Forms of long-term plasticity require protein synthesis and evidence indicates that mRNA in dendrites, axon terminals and cell bodies is essential for long-term synaptic plasticity. Specific to pain, shifts in pain thresholds and responsiveness are an expression of neuronal plasticity and this likely contributes to persistent pain. We investigated this by inhibiting the activity of mTOR with rapamycin at the spinal level, of rats that were subjected to the formalin test, using both behavioural and electrophysiological techniques. Results For in vivo electrophysiology, Sprague Dawley rats were fully anaesthetised and single-unit extracellular recordings were obtained from lamina V wide dynamic range (WDR) dorsal horn spinal neurones at the region where input is received from the hind paw. Neuronal responses from naive rats showed that rapamycin-sensitive pathways were important in nociceptive-specific C-fibre mediated transmission onto WDR neurones as well mechanically-evoked responses since rapamycin was effective in attenuating these measures. Formalin solution was injected into the hind paw prior to which, rapamycin or vehicle was applied directly onto the exposed spinal cord. When rapamycin was applied to the spinal cord prior to hind paw formalin injection, there was a significant attenuation of the prolonged second phase of the formalin test, which comprises continuing afferent input to the spinal cord, neuronal hyperexcitability and an activated descending facilitatory drive from the brainstem acting on spinal neurones. In accordance with electrophysiological data, behavioural studies showed that rapamycin attenuated behavioural hypersensitivity elicited by formalin injection into the hind paw. Conclusion We conclude that mTOR has a role in maintaining persistent pain states via mRNA translation and thus protein

  3. Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats

    PubMed Central

    Streeter, K. A.

    2014-01-01

    Reduced spinal synaptic inputs to phrenic motor neurons elicit a unique form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). iPMF requires tumor necrosis factor-α (TNF-α) and atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize early, transient increases in phrenic burst amplitude into long-lasting iPMF. Here we tested the hypothesis that spinal N-methyl-d-aspartate receptor (NMDAR) activation constrains long-lasting iPMF in some rat substrains. Phrenic motor output was recorded in anesthetized, ventilated Harlan (HSD) and Charles River (CRSD) Sprague-Dawley rats exposed to a 30-min central neural apnea. HSD rats expressed a robust, long-lasting (>60 min) increase in phrenic burst amplitude (i.e., long-lasting iPMF) when respiratory neural activity was restored. By contrast, CRSD rats expressed an attenuated, transient (∼15 min) iPMF. Spinal NMDAR inhibition with DL-2-amino-5-phosphonopentanoic acid (APV) before neural apnea or shortly (4 min) prior to the resumption of respiratory neural activity revealed long-lasting iPMF in CRSD rats that was phenotypically similar to that in HSD rats. By contrast, APV did not alter iPMF expression in HSD rats. Spinal TNF-α or aPKC inhibition impaired long-lasting iPMF enabled by NMDAR inhibition in CRSD rats, suggesting that similar mechanisms give rise to long-lasting iPMF in CRSD rats with NMDAR inhibition as those giving rise to long-lasting iPMF in HSD rats. These results suggest that NMDAR activation can impose constraints on TNF-α-induced aPKC activation after neural apnea, impairing stabilization of transient iPMF into long-lasting iPMF. These data may have important implications for understanding differential responses to reduced respiratory neural activity in a heterogeneous human population. PMID:25103979

  4. Synaptic plasticity and sensory-motor improvement following fibrin sealant dorsal root reimplantation and mononuclear cell therapy

    PubMed Central

    Benitez, Suzana U.; Barbizan, Roberta; Spejo, Aline B.; Ferreira, Rui S.; Barraviera, Benedito; Góes, Alfredo M.; de Oliveira, Alexandre L. R.

    2014-01-01

    Root lesions may affect both dorsal and ventral roots. However, due to the possibility of generating further inflammation and neuropathic pain, surgical procedures do not prioritize the repair of the afferent component. The loss of such sensorial input directly disturbs the spinal circuits thus affecting the functionality of the injuried limb. The present study evaluated the motor and sensory improvement following dorsal root reimplantation with fibrin sealant (FS) plus bone marrow mononuclear cells (MC) after dorsal rhizotomy. MC were used to enhance the repair process. We also analyzed changes in the glial response and synaptic circuits within the spinal cord. Female Lewis rats (6–8 weeks old) were divided in three groups: rhizotomy (RZ group), rhizotomy repaired with FS (RZ+FS group) and rhizotomy repaired with FS and MC (RZ+FS+MC group). The behavioral tests electronic von-Frey and Walking track test were carried out. For immunohistochemistry we used markers to detect different synapse profiles as well as glial reaction. The behavioral results showed a significant decrease in sensory and motor function after lesion. The reimplantation decreased glial reaction and improved synaptic plasticity of afferent inputs. Cell therapy further enhanced the rewiring process. In addition, both reimplanted groups presented twice as much motor control compared to the non-treated group. In conclusion, the reimplantation with FS and MC is efficient and may be considered an approach to improve sensory-motor recovery following dorsal rhizotomy. PMID:25249946

  5. Upregulated TLR3 Promotes Neuropathic Pain by Regulating Autophagy in Rat With L5 Spinal Nerve Ligation Model.

    PubMed

    Chen, Weijia; Lu, Zhijun

    2017-02-01

    Microglia, rapidly activated following peripheral nerve injury (PNI), accumulate within the spinal cord and adopt inflammation that contributes to development and maintenance of neuropathic pain. Microglia express functional Toll-like receptors (TLRs), which play pivotal roles in regulating inflammatory processes. However, little is known about the role of TLR3 in regulating neuropathic pain after PNI. Here TLR3 expression and autophagy activation was assayed in dorsal root ganglions and in microglia following PNI by using realtime PCR, western blot and immunohistochemistry. The role of TLR3/autophagy signaling in regulating tactile allodynia was evaluated by assaying paw mechanical withdrawal threshold and cold allodynia after intrathecal administration of Poly (I:C) and 3-methyladenine (3-MA). We found that L5 spinal nerve ligation (SNL) induces the expression of TLR3 in dorsal root ganglions and in primary rat microglia at the mRNA and protein level. Meanwhile, L5 SNL results in an increased activation of autophagy, which contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of Poly (I:C), a TLR3 agonist, significantly increases the activation of microglial autophagy, whereas TLR3 knockdown markedly inhibits L5 SNL-induced microglial autophagy. Poly (I:C) treatment promotes the expression of proinflammatory mediators, whereas 3-MA (a specific inhibitor of autophagy) suppresses Poly (I:C)-induced secretion of proinflammatory cytokines. Autophagy inhibition further inhibits TLR3-mediated mechanical and cold hypersensitivity following SNL. These results suggest that inhibition of TLR3/autophagy signaling contributes to alleviate neurophathic pain triggered by SNL.

  6. Differential Histopathological and Behavioral Outcomes Eight Weeks after Rat Spinal Cord Injury by Contusion, Dislocation, and Distraction Mechanisms

    PubMed Central

    Chen, Kinon; Liu, Jie; Assinck, Peggy; Bhatnagar, Tim; Streijger, Femke; Zhu, Qingan; Dvorak, Marcel F.; Kwon, Brian K.; Tetzlaff, Wolfram

    2016-01-01

    Abstract The objective of this study was to compare the long-term histological and behavioral outcomes after spinal cord injury (SCI) induced by one of three distinct biomechanical mechanisms: dislocation, contusion, and distraction. Thirty male Sprague-Dawley rats were randomized to incur a traumatic cervical SCI by one of these three clinically relevant mechanisms. The injured cervical spines were surgically stabilized, and motor function was assessed for the following 8 weeks. The spinal cords were then harvested for histologic analysis. Quantification of white matter sparing using Luxol fast blue staining revealed that dislocation injury caused the greatest overall loss of white matter, both laterally and along the rostrocaudal axis of the injured cord. Distraction caused enlarged extracellular spaces and structural alteration in the white matter but spared the most myelinated axons overall. Contusion caused the most severe loss of myelinated axons in the dorsal white matter. Immunohistochemistry for the neuronal marker NeuN combined with Fluoro Nissl revealed that the dislocation mechanism resulted in the greatest neuronal cell losses in both the ventral and dorsal horns. After the distraction injury mechanism, animals displayed no recovery of grip strength over time, in contrast to the animals subjected to contusion or dislocation injuries. After the dislocation injury mechanism, animals displayed no improvement in the grooming test, in contrast to the animals subjected to contusion or distraction injuries. These data indicate that different SCI mechanisms result in distinct patterns of histopathology and behavioral recovery. Understanding this heterogeneity may be important for the future development of therapeutic interventions that target specific neuropathology after SCI. PMID:26671448

  7. Effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain.

    PubMed

    Lv, Jing; Li, Zhenci; She, Shouzhang; Xu, Lixin; Ying, Yanlu

    2015-08-01

    To evaluate the effects of intrathecal injection of rapamycin on pain threshold and spinal cord glial activation in rats with neuropathic pain. Healthy 30 male Sprague Dawley (SD) rats were randomly divided into six groups (n = 5 in each group): (1) control group without any treatments; (2) chronic constriction injury (CCI) group; (3) Early-rapamycin group with intrathecal injection of rapamycin 4 hours after CCI days; (4) Early-vehicle group with intrathecal injection of DMSO; (5) Late-rapamycin group with intrathecal injection of rapamycin 7 days after CCI; (6) Late-vehicle group with intrathecal injection of DMSO 7 days after CCI. Rapamycin or DMSO was injected for 3 consecutive days. Mechanical and thermal threshold were tested before and after the CCI operation. Lumbar segment of spinal cords was tested for glial fibrillary acidic protein (GFAP) by immunohistochemistry on 14th day after operation. Mechanical and thermal hyperalgesia emerged on fourth day were maintained till fourteenth day after operation. After intrathecal injection of rapamycin 4 hours or 7 days after CCI, mechanical and thermal threshold significantly increased compared to injection of DMSO. The area of GFAP positive and the mean density of GFAP positive area in the dorsal horn of the ipsilateral side greatly increased in rapamycin-treated groups. Intrathecal injection of rapamycin may attenuate CCI-induced hyperalgesia and inhibit the activation of astrocyte.

  8. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.

    PubMed

    Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X

    2015-04-16

    Injury potential, which refers to a direct current voltage between intact and injured nerve ends, is mainly caused by injury-induced Ca2+ influx. Our previous studies revealed that injury potential increased with the onset and severity of spinal cord injury (SCI), and an application of applied electric field stimulation (EFS) with the cathode distal to the lesion could delay and attenuate injury potential formation. As Ca2+ influx is also considered as a major trigger for secondary injury after SCI, we hypothesize that EFS would protect an injured spinal cord from secondary injury and consequently improve functional and pathological outcomes. In this study, rats were divided into three groups: (1) sham group, laminectomy only; (2) control group, subjected to SCI only; and (3) EFS group, received EFS immediately post-injury with the injury potential modulated to 0±0.5 mV by EFS. Functional recovery of the hind limbs was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results revealed that EFS-treated rats exhibited significantly better locomotor function recovery. Luxol fast blue staining was performed to assess the spared myelin area. Immunofluorescence was used to observe the number of myelinated nerve fibers. Ultrastructural analysis was performed to evaluate the size of myelinated nerve fibers. Findings showed that the EFS group rats exhibited significantly less myelin loss and had larger and more myelinated nerve fibers than the control group rats in dorsal corticospinal tract (dCST) 8 weeks after SCI. Furthermore, we found that EFS inhibited the activation of calpain and caspase-3, as well as the expression of Bax, as detected by Western blot analysis. Moreover, EFS decreased cellular apoptosis, as measured by TUNEL, within 4 weeks post-injury. Results suggest that early EFS could significantly reduce spinal cord degeneration and improve functional and historical recovery. Furthermore, these neuroprotective effects may be related to

  9. Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries

    PubMed Central

    Chen, Nan-Fu; Sung, Chun-Sung; Wen, Zhi-Hong; Chen, Chun-Hong; Feng, Chien-Wei; Hung, Han-Chun; Yang, San-Nan; Tsui, Kuan-Hao; Chen, Wu-Fu

    2018-01-01

    Platelet-rich plasma (PRP) is prepared by centrifuging fresh blood in an anticoagulant state, and harvesting the platelet-rich portion or condensing platelets. Studies have consistently demonstrated that PRP concentrates are an abundant source of growth factors, such as platelet-derived growth factor (PDGF), transforming growth factor β (TGF-β), insulin-like growth factor 1 (IGF-1), and epithelial growth factor (EGF). The complex mechanisms underlying spinal cord injury (SCI) diminish intrinsic repair and neuronal regeneration. Several studies have suggested that growth factor-promoted axonal regeneration can occur for an extended period after injury. More importantly, the delivery of exogenous growth factors contained in PRP, such as EGF, IGF-1, and TGF-β, has neurotrophic effects on central nervous system (CNS) injuries and neurodegenerative diseases. However, only a few studies have investigated the effects of PRP on CNS injuries or neurodegenerative diseases. According to our review of relevant literature, no study has investigated the effect of intrathecal (i.t.) PRP injection into the injured spinal cord and activation of intrinsic mechanisms. In the present study, we directly injected i.t. PRP into rat spinal cords and examined the effects of PRP on normal and injured spinal cords. In rats with normal spinal cords, PRP induced microglia and astrocyte activation and PDGF-B and ICAM-1 expression. In rats with SCIs, i.t. PRP enhanced the locomotor recovery and spared white matter, promoted angiogenesis and neuronal regeneration, and modulated blood vessel size. Furthermore, a sustained treatment (a bolus of PRP followed by a 1/3 dose of initial PRP concentration) exerted more favorable therapeutic effects than a single dose of PRP. Our findings suggest by i.t. PRP stimulate angiogenesis, enhancing neuronal regeneration after SCI in rats. Although PRP induces minor inflammation in normal and injured spinal cords, it has many advantages. It is an autologous

  10. The up-regulation of IL-6 in DRG and spinal dorsal horn contributes to neuropathic pain following L5 ventral root transection.

    PubMed

    Wei, Xu-Hong; Na, Xiao-Dong; Liao, Guang-Jie; Chen, Qiu-Ying; Cui, Yu; Chen, Feng-Ying; Li, Yong-Yong; Zang, Ying; Liu, Xian-Guo

    2013-03-01

    Our previous works have shown that pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) plays an important role in neuropathic pain produced by lumber 5 ventral root transection (L5-VRT). In the present work we evaluate the role of interleukin-6 (IL-6), another key inflammatory cytokine, in the L5-VRT model. We found that IL-6 was up-regulated in the ipsilateral L4 and L5 dorsal root ganglian (DRG) neurons and in bilateral lumbar spinal cord following L5-VRT. Double immunofluorescence stainings revealed that in DRGs the increased immunoreactivity (IR) of IL-6 was almost restricted in neuronal cells, while in the spinal dorsal horn IL-6-IR up-regulated in both glial cells (astrocyte and microglia) and neurons. Intrathecal administration of IL-6 neutralizing antibody significantly delayed the induction of mechanical allodynia in bilateral hindpaws after L5-VRT. Furthermore, inhibition of TNF-α synthesis by intraperitoneal thalidomide prevented both mechanical allodynia and the up-regulation of IL-6 in DRGs following L5-VRT. These data suggested that the increased IL-6 in afferent neurons and spinal cord contribute to the development of neuropathic pain following motor fiber injury, and that TNF-α is responsible for the up-regulation of IL-6. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    PubMed

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

  12. Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury.

    PubMed

    Brumovsky, P; Watanabe, M; Hökfelt, T

    2007-06-29

    The expression of two vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, was studied with immunohistochemistry in lumbar dorsal root ganglia (DRGs), the lumbar spinal cord and the skin of the adult mouse. About 12% and 65% of the total number of DRG neuron profiles (NPs) expressed VGLUT1 and VGLUT2, respectively. VGLUT1-immunoreactive (IR) NPs were usually medium- to large-sized, in contrast to a majority of small- or medium-sized VGLUT2-IR NPs. Most VGLUT1-IR NPs did not coexpress calcitonin gene-related peptide (CGRP) or bound isolectin B4 (IB4). In contrast, approximately 31% and approximately 42% of the VGLUT2-IR DRG NPs were also CGRP-IR or bound IB4, respectively. Conversely, virtually all CGRP-IR and IB4-binding NPs coexpressed VGLUT2. Moderate colocalization between VGLUT1 and VGLUT2 was also observed. Sciatic nerve transection induced a decrease in the overall number of VGLUT1- and VGLUT2-IR NPs (both ipsi- and contralaterally) and, in addition, a parallel, unilateral increase of VGLUT2-like immunoreactivity (LI) in a subpopulation of mostly small NPs. In the dorsal horn of the spinal cord, strong VGLUT1-LI was detected, particularly in deep dorsal horn layers and in the ventral horns. VGLUT2-LI was abundant throughout the gray spinal matter, 'radiating' into/from the white matter. A unilateral dorsal rhizotomy reduced VGLUT1-LI, while apparently leaving unaffected the VGLUT2-LI. Transport through axons for both VGLUTs was confirmed by their accumulation after compression of the sciatic nerve or dorsal roots. In the hind paw skin, abundant VGLUT2-IR nerve fibers were observed, sometimes associated with Merkel cells. Lower numbers of VGLUT1-IR fibers were also detected in the skin. Some VGLUT1-IR and VGLUT2-IR fibers were associated with hair follicles. Based on these data and those by Morris et al. [Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and

  13. Combination of edaravone and neural stem cell transplantation repairs injured spinal cord in rats.

    PubMed

    Song, Y Y; Peng, C G; Ye, X B

    2015-12-29

    This study sought to observe the effect of the combination of edaravone and neural stem cell (NSC) transplantation on the repair of complete spinal cord transection in rats. Eighty adult female Sprague-Dawley (SD) rats were used to establish the injury model of complete spinal cord transection at T9. Animals were divided randomly into four groups (N = 20 each): control, edaravone, transplantation, and edaravone + transplantation. The recovery of spinal function was evaluated with the Basso, Beattie, Bresnahan (BBB) rating scale on days 1, 3, and 7 each week after the surgery. After 8 weeks, the BBB scores of the control, edaravone, transplantation, and combination groups were 4.21 ± 0.11, 8.46 ± 0.1, 8.54 ± 0.13, and 11.21 ± 0.14, respectively. At 8 weeks after surgery, the spinal cord was collected; the survival and transportation of transplanted cells were observed with PKH-26 labeling, and the regeneration and distribution of spinal nerve fibers with fluorescent-gold (FG) retrograde tracing. Five rats died due to the injury. PKH-26-labeled NSCs had migrated into the spinal cord. A few intact nerve fibers and pyramidal neurons passed the injured area in the transplantation and combination groups. The numbers of PKH-26-labeled cells and FG-labeled nerve fibers were in the order: combination group > edaravone group and transplantation group > control group (P < 0.05 for each). Thus, edaravone can enhance the survival and differentiation of NSCs in injured areas; edaravone with NSC transplantation can improve the effectiveness of spinal cord injury repair in rats.

  14. Subcutaneous, intrathecal and periaqueductal grey administration of asimadoline and ICI-204448 reduces tactile allodynia in the rat.

    PubMed

    Caram-Salas, Nadia L; Reyes-García, Gerardo; Bartoszyk, Gerd D; Araiza-Saldaña, Claudia I; Ambriz-Tututi, Mónica; Rocha-González, Héctor I; Arreola-Espino, Rosaura; Cruz, Silvia L; Granados-Soto, Vinicio

    2007-11-14

    The purpose of this study was to assess the possible antiallodynic effect of asimadoline ([N-methyl-N-[1S)-1-phenyl)-2-(13S))-3-hydroxypyrrolidine-1-yl)-ethyl]-2,2-diphenylacetamide HCl]) and ICI-20448 ([2-[3-(1-(3,4-Dichlorophenyl-N-methylacetamido)-2-pyrrolidinoethyl)-phenoxy]acetic acid HCl]), two peripheral selective kappa opioid receptor agonists, after subcutaneous, spinal and periaqueductal grey administration to neuropathic rats. Twelve days after spinal nerve ligation tactile allodynia was observed, along with an increase in kappa opioid receptor mRNA expression in dorsal root ganglion and dorsal horn spinal cord. A non-significant increase in periaqueductal grey was also seen. Subcutaneous (s.c.) administration of asimadoline and ICI-204448 (1-30 mg/kg) dose-dependently reduced tactile allodynia. This effect was partially blocked by s.c., but not intrathecal, naloxone. Moreover, intrathecal administration of asimadoline or ICI-204448 (1-30 mug) reduced tactile allodynia in a dose-dependent manner and this effect was completely blocked by intrathecal naloxone. Microinjection of both kappa opioid receptor agonists (3-30 mug) into periaqueductal grey also produced a naloxone-sensitive antiallodynic effect in rats. Our results indicate that systemic, intrathecal and periaqueductal grey administration of asimadoline and ICI-204448 reduces tactile allodynia. This effect may be a consequence of an increase in kappa opioid receptor mRNA expression in dorsal root ganglion, dorsal horn spinal cord and, to some extent, in periaqueductal grey. Finally, our data suggest that these drugs could be useful to treat neuropathic pain in human beings.

  15. Preventive Effect of Intrathecal Paracetamol on Spinal Cord Injury in Rats

    PubMed Central

    Sahin, Murat; Sayar, Ilyas; Peker, Kemal; Gullu, Huriye; Yildiz, Huseyin

    2014-01-01

    Background: Ischemic injury of the spinal cord during the surgical repair of thoracoabdominal aortic aneurysms might lead to paraplegia. Although a number of different mechanisms have been proposed, the exact cause of paraplegia has remained unknown, hampering the development of effective pharmacologic or other strategies for prevention of this condition. A number of studies suggested that cyclooxygenases (COX) contribute to neural breakdown; thus, COX inhibitors might reduce injury. Objectives: We aimed to assess the preventive effect of intrathecal (IT) pretreatment with paracetamol on spinal cord injury in a rat model. Materials and Methods: This experimental study was performed in Ataturk University Animal Research Laboratory Center, Erzurum, Turkey. Adult male Wistar rats were randomly allocated to three experimental groups (n = 6) to receive IT physiologic saline (controls), 50 µg of paracetamol, or 100 µg paracetamol one hour before induction of spinal cord ischemia. Six other rats were considered as the sham group. For the assessment of ischemic injury, motor functions of the hind limbs and histopathologic changes of the lumbar spinal cord were evaluated. Additional 20 rats were divided into two equal groups for the second part of the study where the survival rates were recorded in controls and in animals receiving 100 µg of paracetamol during the 28-day observation period. Results: Pretreatment with 100 µg of paracetamol resulted in a significant improvement in motor functions and histopathologic findings (P < 0.05). Despite a higher rate of survival in 100 µg of paracetamol group (70%) at day 28, the difference was not statistically significant in comparison with controls. Conclusions: Our results suggest a protective effect of pretreatment with IT paracetamol on ischemic spinal cord injury during thoracolumbar aortic aneurysm surgery. PMID:25763224

  16. Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury.

    PubMed

    Kwiatkoski, Marcelo; Guimarães, Francisco Silveira; Del-Bel, Elaine

    2012-04-01

    Cannabidiol (CBD), a non-psychoactive constituent of cannabis, has been reported to induce neuroprotective effects in several experimental models of brain injury. We aimed at investigating whether this drug could also improve locomotor recovery of rats submitted to spinal cord cryoinjury. Rats were distributed into five experimental groups. Animals were submitted to laminectomy in vertebral segment T10 followed or not by application of liquid nitrogen for 5 s into the spinal cord at the same level to cause cryoinjury. The animals received injections of vehicle or CBD (20 mg/kg) immediately before, 3 h after and daily for 6 days after surgery. The Basso, Beattie, and Bresnahan motor evaluation test was used to assess motor function post-lesion one day before surgery and on the first, third, and seventh postoperative days. The extent of injury was evaluated by hematoxylin-eosin histology and FosB expression. Cryogenic lesion of the spinal cord resulted in a significant motor deficit. Cannabidiol-treated rats exhibited a higher Basso, Beattie, and Bresnahan locomotor score at the end of the first week after spinal cord injury: lesion + vehicle, day 1: zero, day 7: four, and lesion + Cannabidiol 20 mg/kg, day 1: zero, day 7: seven. Moreover, at this moment there was a significant reduction in the extent of tissue injury and FosB expression in the ventral horn of the spinal cord. The present study confirmed that application of liquid nitrogen to the spinal cord induces reproducible and quantifiable spinal cord injury associated with locomotor function impairments. Cannabidiol improved locomotor functional recovery and reduced injury extent, suggesting that it could be useful in the treatment of spinal cord lesions.

  17. Alleviation of chronic pain following rat spinal cord compression injury with multimodal actions of huperzine A

    PubMed Central

    Yu, Dou; Thakor, Devang K.; Han, Inbo; Ropper, Alexander E.; Haragopal, Hariprakash; Sidman, Richard L.; Zafonte, Ross; Schachter, Steven C.; Teng, Yang D.

    2013-01-01

    Diverse mechanisms including activation of NMDA receptors, microglial activation, reactive astrogliosis, loss of descending inhibition, and spasticity are responsible for ∼40% of cases of intractable neuropathic pain after spinal cord injury (SCI). Because conventional treatments blocking individual mechanisms elicit only short-term effectiveness, a multimodal approach with simultaneous actions against major pain-related pathways may have value for clinical management of chronic pain. We hypothesize that [-]-huperzine A (HUP-A), an alkaloid isolated from the club moss Huperzia serrata, that is a potent reversible inhibitor of acetylcholinesterase and NMDA receptors, could mitigate pain without invoking drug tolerance or dependence by stimulating cholinergic interneurons to impede pain signaling, inhibiting inflammation via microglial cholinergic activation, and blocking NMDA-mediated central hypersensitization. We tested our hypothesis by administering HUP-A i.p. or intrathecally to female Sprague–Dawley rats (200–235 g body weight) after moderate static compression (35 g for 5 min) of T10 spinal cord. Compared with controls, HUP-A treatment demonstrates significant analgesic effects in both regimens. SCI rats manifested no drug tolerance following repeated bolus i.p. or chronic intrathecal HUP-A dosing. The pain-ameliorating effect of HUP-A is cholinergic dependent. Relative to vehicle treatment, HUP-A administration also reduced neural inflammation, retained higher numbers of calcium-impermeable GluR2-containing AMPA receptors, and prevented Homer1a up-regulation in dorsal horn sensory neurons. Therefore, HUP-A may provide safe and effective management for chronic postneurotrauma pain by reestablishing homeostasis of sensory circuits. PMID:23386718

  18. Alleviation of chronic pain following rat spinal cord compression injury with multimodal actions of huperzine A.

    PubMed

    Yu, Dou; Thakor, Devang K; Han, Inbo; Ropper, Alexander E; Haragopal, Hariprakash; Sidman, Richard L; Zafonte, Ross; Schachter, Steven C; Teng, Yang D

    2013-02-19

    Diverse mechanisms including activation of NMDA receptors, microglial activation, reactive astrogliosis, loss of descending inhibition, and spasticity are responsible for ∼40% of cases of intractable neuropathic pain after spinal cord injury (SCI). Because conventional treatments blocking individual mechanisms elicit only short-term effectiveness, a multimodal approach with simultaneous actions against major pain-related pathways may have value for clinical management of chronic pain. We hypothesize that [-]-huperzine A (HUP-A), an alkaloid isolated from the club moss Huperzia serrata, that is a potent reversible inhibitor of acetylcholinesterase and NMDA receptors, could mitigate pain without invoking drug tolerance or dependence by stimulating cholinergic interneurons to impede pain signaling, inhibiting inflammation via microglial cholinergic activation, and blocking NMDA-mediated central hypersensitization. We tested our hypothesis by administering HUP-A i.p. or intrathecally to female Sprague-Dawley rats (200-235 g body weight) after moderate static compression (35 g for 5 min) of T10 spinal cord. Compared with controls, HUP-A treatment demonstrates significant analgesic effects in both regimens. SCI rats manifested no drug tolerance following repeated bolus i.p. or chronic intrathecal HUP-A dosing. The pain-ameliorating effect of HUP-A is cholinergic dependent. Relative to vehicle treatment, HUP-A administration also reduced neural inflammation, retained higher numbers of calcium-impermeable GluR2-containing AMPA receptors, and prevented Homer1a up-regulation in dorsal horn sensory neurons. Therefore, HUP-A may provide safe and effective management for chronic postneurotrauma pain by reestablishing homeostasis of sensory circuits.

  19. Comparison of dorsal root ganglion gene expression in rat models of traumatic and HIV-associated neuropathic pain

    PubMed Central

    Maratou, Klio; Wallace, Victoria C.J.; Hasnie, Fauzia S.; Okuse, Kenji; Hosseini, Ramine; Jina, Nipurna; Blackbeard, Julie; Pheby, Timothy; Orengo, Christine; Dickenson, Anthony H.; McMahon, Stephen B.; Rice, Andrew S.C.

    2009-01-01

    To elucidate the mechanisms underlying peripheral neuropathic pain in the context of HIV infection and antiretroviral therapy, we measured gene expression in dorsal root ganglia (DRG) of rats subjected to systemic treatment with the anti-retroviral agent, ddC (Zalcitabine) and concomitant delivery of HIV-gp120 to the rat sciatic nerve. L4 and L5 DRGs were collected at day 14 (time of peak behavioural change) and changes in gene expression were measured using Affymetrix whole genome rat arrays. Conventional analysis of this data set and Gene Set Enrichment Analysis (GSEA) was performed to discover biological processes altered in this model. Transcripts associated with G protein coupled receptor signalling and cell adhesion were enriched in the treated animals, while ribosomal proteins and proteasome pathways were associated with gene down-regulation. To identify genes that are directly relevant to neuropathic mechanical hypersensitivity, as opposed to epiphenomena associated with other aspects of the response to a sciatic nerve lesion, we compared the gp120 + ddC-evoked gene expression with that observed in a model of traumatic neuropathic pain (L5 spinal nerve transection), where hypersensitivity to a static mechanical stimulus is also observed. We identified 39 genes/expressed sequence tags that are differentially expressed in the same direction in both models. Most of these have not previously been implicated in mechanical hypersensitivity and may represent novel targets for therapeutic intervention. As an external control, the RNA expression of three genes was examined by RT-PCR, while the protein levels of two were studied using western blot analysis. PMID:18606552

  20. Forced treadmill running suppresses postincisional pain and inhibits upregulation of substance P and cytokines in rat dorsal root ganglion.

    PubMed

    Chen, Yu-Wen; Tzeng, Jann-Inn; Lin, Min-Fei; Hung, Ching-Hsia; Wang, Jhi-Joung

    2014-08-01

    Exercise causes a variety of psychophysical effects (eg, alterations in pain sensation). Tissue injury induces mediator releases in the spinal cord resulting in pain hypersensitivity; however, the contribution of the dorsal root ganglion (DRG) is poorly understood. In this study, we tested if forced treadmill running can attenuate postoperative pain and alter substance P (SP) or proinflammatory cytokine level in the DRG by using a rat model of skin/muscle incision and retraction (SMIR). We evaluated mechanical sensitivity to von Frey stimuli (6 and 15 g) and expression of SP, interleukin-1β, and interleukin-6 in the DRG of sham-operated sedentary rats, SMIR sedentary rats, sham-operated rats with forced treadmill running, and SMIR rats with forced treadmill running. At postoperative day 8, trained rats ran for 5 days per week for 4 weeks on a treadmill 70 minutes/d with an intensity of 18 m/min. On postoperative day 6, SMIR sedentary rats displayed a significant mechanical hypersensitivity that persisted until postoperative day 35. By comparison, SMIR-operated rats, which received forced treadmill running, exhibited a quick recovery from mechanical hypersensitivity. SMIR sedentary rats showed an upregulation of SP, interleukin-1β, and interleukin-6 in the DRG at postoperative days 14 and 28, whereas SMIR-operated rats receiving forced treadmill running reversed this upregulation at postoperative day 28. We concluded that forced treadmill running alleviated persistent postincisional pain caused by SMIR surgery. This appears to be protective against postoperative pain, which probably relates to the downturn in excess SP, interleukin-1β, and interleukin-6 in the DRG. Controlling the expression of SP, interleukin-6, and interleukin-1β in the DRG can help manage postoperative pain. This finding could potentially help clinicians and physical therapists who seek to examine how exercise may attenuate postsurgical pain and its mechanism. Copyright © 2014 American Pain

  1. Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord injured rats

    PubMed Central

    Miyazato, Minoru; Sugaya, Kimio; Goins, William F.; Goss, James R.; Chancellor, Michael B.; de Groat, William C.; Glorioso, Joseph C.; Yoshimura, Naoki

    2010-01-01

    We examined whether replication-defective herpes simplex virus (HSV) vectors encoding the 67 Kd form of the glutamic acid decarboxylase (GAD67) gene product, the gamma-aminobutyric acid (GABA) synthesis enzyme, can suppress detrusor overactivity (DO) in spinal cord injury (SCI) rats. One week after spinalization, HSV vectors expressing GAD and green fluorescent protein (GFP) (HSV-GAD) were injected into the bladder wall. SCI rats without HSV injection (HSV-untreated) and those injected with lacZ-encoding reporter gene HSV vectors (HSV-LacZ) were used as controls. Three weeks after viral injection, continuous cystometry was performed under awake conditions in all three groups. In the HSV-GAD group, the number and amplitude of non-voiding contractions (NVCs) were significantly decreased (40–45% and 38–40%, respectively) along with an increase in voiding efficiency, compared with HSV-untreated and HSV-LacZ groups, but micturition pressure was not different among the three groups. Intrathecal application of bicuculline partly reversed the decreased number and amplitude of NVCs, and decreased voiding efficiency in the HSV-GAD group. In the HSV-GAD group, GAD67 mRNA and protein levels were significantly increased in L6-S1 dorsal root ganglia (DRG) compared with the HSV-LacZ group while 57% of DRG cells were GFP-positive, and these neurons showed increased GAD67-like immunoreactivity compared with the HSV-LacZ group. These results indicate that GAD gene therapy effectively suppresses DO following SCI predominantly via activation of spinal GABAA receptors. Thus, HSV-based GAD gene transfer to bladder afferent pathways may represent a novel approach for the treatment of neurogenic DO. PMID:19225548

  2. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression.

    PubMed

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Fujii, Shiori; Miyauchi, Kazuki; Nakamura, Yoki; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-06-15

    Peripheral nerve injury upregulates tumor necrosis factor (TNF) expression. In turn, connexin 43 (Cx43) expression in spinal astrocytes is downregulated by TNF. Therefore, restoration of spinal astrocyte Cx43 expression to normal level could lead to the reduction of nerve injury-induced pain. While the non-provitaminic carotenoid lycopene reverses thermal hyperalgesia in mice with painful diabetic neuropathy, the antinociceptive mechanism is not entirely clear. The current study evaluated whether the antinociceptive effect of lycopene is mediated through the modulation of Cx43 expression in spinal astrocytes. The effect of lycopene on Cx43 expression was examined in cultured rat spinal astrocytes. The effect of intrathecal lycopene on Cx43 expression and neuropathic pain were evaluated in mice with partial sciatic nerve ligation (PSNL). Treatment of cultured rat spinal astrocytes with lycopene reversed TNF-induced downregulation of Cx43 protein expression through a transcription-independent mechanism. By contrast, treatment of cultured spinal astrocytes with either pro-vitamin A carotenoid β-carotene or antioxidant N-acetyl cysteine had no effect on TNF-induced downregulation of Cx43 protein expression. In addition, repeated, but not single, intrathecal treatment with lycopene of mice with a partial sciatic nerve ligation significantly prevented not only the downregulation of Cx43 expression in spinal dorsal horn but mechanical hypersensitivity as well. The current findings suggest a significant spinal mechanism that mediates the analgesic effect of lycopene, through the restoration of normal spinal Cx43 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. [Expression and significance of p75NTR in dorsal root ganglia in different injury models].

    PubMed

    Li, Fang; Cai, Yan; Zhang, Jian-Yi

    2008-12-01

    To determine the expression and significance of p75NTR in the neuron and glia of dorsal root ganglia (DRG) in different injury models. The models of sciatic nerve injury, spinal cord injury, and combined injury (sciatic nerve injury one week prior to spinal cord injury) were established. The rats were randomly divided into a normal group,a sciatic nerve injury group,a spinal cord injury group, and a combined injury group. The sensory neurons in the DRG were labeled by fast blue (FB) injected in the dorsal column of spinal cord 0.5mm rostral to the transection site. The expression of p75NTR in the neurons and glia of the DRG was examined with immunofluorescence histochemistry after different kinds of injury and its expression in the FB positive neurons was further observed with immunofluorescence histochemistry combined with FB retrograde labeling. The expression of p75NTR was increased in the glia, but was downregulated in sensory neurons in the sciatic nerve injury group compared with the normal group. p75NTR immunoreactive products were downregulated in the glia in the spinal cord injury group compared with the sciatic nerve injury group or the combined injury group. In the combined lesion animals, the expression of p75NTR was similar to that of the sciatic nerve injury group. Its expression in the sensory neurons of DRG was downregulated,but was upregulated in the glia. The majority of sensory neurons labeled by FB in the combined injury group were p75NTR-negative, but surrounded by p75NTR-positive glia. p75NTR immunoreactive products in the glia and neurons of DRG have significant discrepancy after injury. The glial p75NTR in the DRG may play a role in the enhanced regeneration of acsending tract in the injured spinal cord after combined injury.

  4. Neuroprotective effect of propofol against excitotoxic injury to locomotor networks of the rat spinal cord in vitro.

    PubMed

    Kaur, Jaspreet; Flores Gutiérrez, Javier; Nistri, Andrea

    2016-10-01

    Although neuroprotection to contain the initial damage of spinal cord injury (SCI) is difficult, multicentre studies show that early neurosurgery under general anaesthesia confers positive benefits. An interesting hypothesis is that the general anaesthetic itself might largely contribute to neuroprotection, although in vivo clinical settings hamper studying this possibility directly. To further test neuroprotective effects of a widely used general anaesthetic, we studied if propofol could change the outcome of a rat isolated spinal cord SCI model involving excitotoxicity evoked by 1 h application of kainate with delayed consequences on neurons and locomotor network activity. Propofol (5 μm; 4-8 h) enhanced responses to GABA and depressed those to NMDA together with decrease in polysynaptic reflexes that partly recovered after 1 day washout. Fictive locomotion induced by dorsal root stimuli or NMDA and serotonin was weaker the day after propofol application. Kainate elicited a significant loss of spinal neurons, especially motoneurons, whose number was halved. When propofol was applied for 4-8 h after kainate washout, strong neuroprotection was observed in all spinal areas, including attenuation of motoneuron loss. Although propofol had minimal impact on recovery of electrophysiological characteristics 24 h later, it did not further depress network activity. A significant improvement in disinhibited burst periodicity suggested potential to ameliorate neuronal excitability in analogy to histological data. Functional recovery of locomotor networks perhaps required longer time due to the combined action of excitotoxicity and anaesthetic depression at 24 h. These results suggest propofol could confer good neuroprotection to spinal circuits during experimental SCI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Differential effects of left and right neuropathy on opioid gene expression in lumbar spinal cord.

    PubMed

    Kononenko, Olga; Mityakina, Irina; Galatenko, Vladimir; Watanabe, Hiroyuki; Bazov, Igor; Gerashchenko, Anna; Sarkisyan, Daniil; Iatsyshyna, Anna; Yakovleva, Tatiana; Tonevitsky, Alex; Marklund, Niklas; Ossipov, Michael H; Bakalkin, Georgy

    2018-05-28

    The endogenous opioid system (EOS) controls the processing of nociceptive stimuli and is a pharmacological target for opioids. Alterations in expression of the EOS genes under neuropathic pain condition may account for low efficacy of opioid drugs. We here examined whether EOS expression patterns are altered in the lumbar spinal cord of the rats with spinal nerve ligation (SNL) as a neuropathic pain model. Effects of the left- and right-side SNL on expression of EOS genes in the ipsi- and contralateral spinal domains were analysed. The SNL-induced changes were complex and different between the genes; between the dorsal and ventral spinal domains; and between the left and right sides of the spinal cord. Prodynorphin (Pdyn) expression was upregulated in the ipsilateral dorsal domains by each the left and right-side SNL, while changes in expression of μ-opioid receptor (Oprm1) and proenkephalin (Penk) genes were dependent on the SNL side. Changes in expression of the Pdyn and κ-opioid receptor (Oprk1) genes were coordinated between the ipsi- and contralateral sides. Withdrawal response thresholds, indicators of mechanical allodynia correlated negatively with Pdyn expression in the right ventral domain after right side SNL. These findings suggest multiple roles of the EOS gene products in spinal sensitization and changes in motor reflexes, which may differ between the left and right sides. Copyright © 2018. Published by Elsevier B.V.

  6. Lectin Ulex europaeus agglutinin I specifically labels a subset of primary afferent fibers which project selectively to the superficial dorsal horn of the spinal cord.

    PubMed

    Mori, K

    1986-02-19

    To examine differential carbohydrate expression among different subsets of primary afferent fibers, several fluorescein-isothiocyanate conjugated lectins were used in a histochemical study of the dorsal root ganglion (DRG) and spinal cord of the rabbit. The lectin Ulex europaeus agglutinin I specifically labeled a subset of DRG cells and primary afferent fibers which projected to the superficial laminae of the dorsal horn. These results suggest that specific carbohydrates containing L-fucosyl residue is expressed selectively in small diameter primary afferent fibers which subserve nociception or thermoception.

  7. Expression of neuronal antigens and related ventral and dorsal proteins in the normal spinal cord and a surgically induced open neural tube defect of the spine in chick embryos: an immunohistochemical study.

    PubMed

    Lee, Do-Hun; Phi, Ji Hoon; Chung, You-Nam; Lee, Yun-Jin; Kim, Seung-Ki; Cho, Byung-Kyu; Kim, Dong Won; Park, Moon-Sik; Wang, Kyu-Chang

    2010-05-01

    The aims of this study were to elucidate the processes of neuronal differentiation and ventrodorsal patterning in the spinal cord of the chick embryo from embryonic day (E) 3 to E17 and to study the effect of a prenatal spinal open neural tube defect (ONTD) on these processes. Expression patterns of neuronal antigens (neuronal nuclear antigen, neurofilament-associated protein (NAP), and synaptophysin) and related ventral markers [sonic hedgehog, paired box gene (PAX)6, and islet-1], and dorsal markers (bone morphogenetic protein, Notch homolog 1, and PAX7) were investigated in the normal spinal cord and in a surgically induced spinal ONTD in chick embryos. Four normal and ONTD chick embryos were used for each antigen group. There were no differences in the expression of neuronal and ventrodorsal markers between the control and ONTD groups. NAP and synaptophysin were useful for identifying dorsal structures in the distorted anatomy of the ONTD chicks.

  8. Antibacterial effect of royal jelly for preservation of implant-related spinal infection in rat.

    PubMed

    Gunaldi, Omur; Daglioglu, Yusuf Kenan; Tugcu, Bekir; Kizilyildirim, Suna; Postalci, Lutfi; Ofluoglu, Ender; Koksal, Fatih

    2014-01-01

    Implant-related infections are still a significant problem in spinal surgical procedures. Many drugs and methods have been tried to prevent implant-related infections. Our objective in this study was to evaluate whether royal jelly, which was found to hinder the growth of MRSA, has any preventive role in the prognosis of an infection in rats in an implant-related infection model. Rats were divided into 3 groups of eight rats. Group-1 consisted of rats that underwent only a spinal implant, group-2 included those rats that were inoculated bacteria together with a spinal implant and group-3 was administered royal jelly in addition to a spinal implant and infection. The amount of bacteria that grew in vertebral columns and implants was more in Group-2 than in Group-3, which meant that the number of bacteria colonies that grew was more quantitatively. This difference was found to be statistically significant in vertebral columns, but not in implants. Royal jelly could not fully prevent the MRSA infection in this model, but decreased the severity of infection noticeably. More objective and promising results may be obtained if royal jelly can be used at regular intervals in a different model to be designed with respect to implant-related infections.

  9. Effects of hemorrhagic hypotension on tyrosine concentrations in rat spinal cord and plasma

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Maher, T. J.; Roberts, C. H.; Wurtman, R. J.

    1988-01-01

    Tyrosine is the precursor for catecholamine neurotransmitters. When catecholamine-containing neurons are physiologically active (as sympathoadrenal cells are in hypotension), tyrosine administration increases catecholamine synthesis and release. Since hypotension can alter plasma amino acid composition, the effects of an acute hypotensive insult on tyrosine concentrations in plasma and spinal cord were examined. Rats were cannulated and bled until the systolic blood pressure was 50 mmHg, or were kept normotensive for 1 h. Tyrosine and other large neutral amino acids (LNAA) known to compete with tyrosine for brain uptake were assayed in plasma and spinal cord. The rate at which intra-arterial (H-3)tyrosine disappeared from the plasma was also estimated in hemorrhaged and control rats. In plasma of hemorrhaged animals, both the tyrosine concentration and the tyrosine/LNAA ratio was elevated; moreover, the disappearance of (H-3)tyrosine was slowed. Tyrosine concentrations also increased in spinal cords of hemorrhaged-hypotensive rats when compared to normotensive controls. Changes in plasma amino acid patterns may thus influence spinal cord concentrations of amino acid precursors for neurotransmitters during the stress of hemorrhagic shock.

  10. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord

    PubMed Central

    Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J

    2012-01-01

    The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity. PMID:22371473

  11. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord.

    PubMed

    Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J

    2012-04-01

    The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity.

  12. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats.

    PubMed

    Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan

    2013-03-22

    Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.

  13. Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn.

    PubMed

    Peng, H-Z; Ma, L-X; Lv, M-H; Hu, T; Liu, T

    2016-04-05

    Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmission, which also plays a key role in modulating pain signaling. To examine the effect of minocycline on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch-clamp recording at a holding potential of 0 mV. Bath application of minocycline significantly increased the frequency but not the amplitude of sIPSCs in a reversible and concentration-dependent manner with an EC50 of 85. The enhancement of inhibitory synaptic transmission produced by minocycline was not affected by the glutamate receptor antagonists CNQX and D-APV or by the voltage-gated sodium channel blocker tetrodotoxin (TTX). Moreover, the potency of minocycline for facilitating sIPSC frequency was the same in both glycinergic and GABAergic sIPSCs without changing their decay phases. However, the facilitatory effect of minocycline on sIPSCs was eliminated in a Ca(2+)-free Krebs solution or by co-administration with calcium channel blockers. In summary, our data demonstrate that baseline inhibitory synaptic transmission in SG neurons is markedly enhanced by minocycline. This may function to decrease the excitability of SG neurons, thus leading to a modulation of nociceptive transmission. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. [Neurotoxic effects of levobupivacaine and fentanyl on rat spinal cord].

    PubMed

    Abut, Yesim Cokay; Turkmen, Asli Zengin; Midi, Ahmet; Eren, Burak; Yener, Nese; Nurten, Asiye

    2015-01-01

    The purpose of the study was to compare the neurotoxic effects of intrathecally administered levobupivacaine, fentanyl and their mixture on rat spinal cord. In experiment, there were four groups with medication and a control group. Rats were injected 15μL saline or fentanyl 0.0005μg/15μL, levobupivacaine 0.25%/15μL and fentanyl 0.0005μg+levobupivacaine 0.25%/15μL intrathecally for four days. Hot plate test was performed to assess neurologic function after each injection at 5th, 30th and 60th min. Five days after last lumbal injection, spinal cord sections between the T5 and T6 vertebral levels were obtained for histologic analysis. A score based on subjective assessment of number of eosinophilic neurons - Red neuron - which means irreversible neuronal degeneration. They reflect the approximate number of degenerating neurons present in the affected neuroanatomic areas as follows: 1, none; 2, 1-20%; 3, 21-40%; 4, 41-60%; and 5, 61-100% dead neurons. An overall neuropathologic score was calculated for each rat by summating the pathologic scores for all spinal cord areas examined. In the results of HPT, comparing the control group, analgesic latency statistically prolonged for all four groups. In neuropathologic investment, the fentanyl and fentanyl+levobupivacaine groups have statistically significant high degenerative neuron counts than control and saline groups. These results suggest that, when administered intrathecally in rats, fentanyl and levobupivacaine behave similar for analgesic action, but fentanyl may be neurotoxic for spinal cord. There was no significant degeneration with levobupivacaine, but fentanyl group has had significant degeneration. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  15. Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus.

    PubMed

    Cruce, W L; Newman, D B

    1981-05-10

    In order to study brainstem origins of spinal projections, ten Tegu lizards (Tupinambis nigropunctatus) received complete or partial hemisections of the spinal cord at the first or second cervical segment. Their brains were processed for conventional Nissl staining. The sections were surveyed for the presence or absence of retrograde chromatolysis. Based on analysis and comparison of results from lesions in the various spinal cord funiculi, the following conclusions were reached: The interstitial nucleus projects ipsilaterally to the spinal cord via the medial longitudinal fasciculus, as does the middle reticular field of the metencephalon. The red nucleus and dorsal vagal motor nucleus both project contralaterally to the spinal cord via the dorsal part of the lateral funiculus. The superior reticular field in the rostral metencephalon and the ventrolateral vestibular nucleus project ipsilaterally to the spinal cord via the ventral funiculus. The dorsolateral metencephalic nucleus and the ventral part of the inferior reticular nucleus of the myelencephalon both project ipsilaterally to the spinal cord via the dorsal part of the lateral funiculus. Several brainstem nuclei in Tupinambis project bilaterally to the spinal cord. The ventrolateral metencephalic nucleus, for example, projects ipsilaterally to the cord via the medial longitudinal fasciculus and contralaterally via the dorsal part of the lateral funiculus. The dorsal part of the inferior reticular nucleus projects bilaterally to the spinal cord via the dorsal part of the lateral funiculus. The nucleus solitarius complex projects contralaterally via the dorsal part of the lateral funiculus but ipsilaterally via the middle of the lateral funiculus. The inferior raphe nucleus projects bilaterally to the spinal cord via the middle part of the lateral funiculus. These data suggest that supraspinal projections in reptiles, especially reticulospinal systems, are more highly differentiated than previously thought

  16. DORSAL LAMINECTOMY TO RELIEVE SPINAL CORD COMPRESSION IN A CAPTIVE SYRIAN BEAR (URSUS ARCTOS SYRIACUS).

    PubMed

    Büeler, Ariela Rosenzweig; Merbl, Yael; Kushnir, Yishai; Chai, Orit; Aizenberg, Itzhak; Horowitz, Igal; Matalon, Einat; Tam, Doron; Shamir, Merav H

    2016-12-01

    A 19-yr-old captive male Syrian bear ( Ursus arctos syriacus) presented with a right hind limb lameness that progressed to nonambulatory paraparesis over the course of 2 wk. When night enclosure confinement and a short course of glucocorticoids and antibiotics did not lead to improvement, radiographs were performed, followed by cerebrospinal fluid analysis and myelography, revealing a dynamic spinal cord compression at the level of T2-T3. Dorsal laminectomy of both T2 and T3 was performed to allow decompression. The bear recovered uneventfully with first sign of neurological improvement apparent at 10 days postoperatively. Following 6 mo of rehabilitation the bear was walking and using his hind limbs normally.

  17. Enzymatic inactivation of tachykinin neurotransmitters in the isolated spinal cord of the newborn rat.

    PubMed

    Yanagisawa, M; Yoshioka, K; Kurihara, T; Saito, K; Seno, N; Suzuki, H; Hosoki, R; Otsuka, M

    1992-12-01

    A mixture of peptidase inhibitors increased the magnitude of the saphenous nerve-evoked slow depolarization of a lumbar ventral root and prolonged the similarly evoked inhibition of monosynaptic reflex (MSR) in the isolated spinal cord of the newborn rat in the presence of naloxone. The saphenous nerve-evoked MSR inhibition was curtailed by a tachykinin antagonist, GR71251, and after the treatment with GR71251, the peptidase inhibitor mixture no more prolonged the MSR inhibition. The present results suggest that enzymatic degradation plays a role in the termination of action of tachykinins released from primary afferents in the newborn rat spinal cord. The results provide a further support for the notion that tachykinins serve as neurotransmitters in the spinal cord of the newborn rat.

  18. Low-intensity treadmill exercise promotes rat dorsal wound healing.

    PubMed

    Zhou, Wu; Liu, Guo-hui; Yang, Shu-hua; Mi, Bo-bin; Ye, Shu-nan

    2016-02-01

    In order to investigate the promoting effect of low-intensity treadmill exercise on rat dorsal wound healing and the mechanism, 20 Sprague-Dawley rats were randomly divided into two groups: exercise group (Ex) and non-exercise group (non-ex). The rats in Ex group were given treadmill exercise for one month, and those in non-ex group raised on the same conditions without treadmill exercise. Both groups received dorsal wound operation with free access to food and water. By two-week continuous observation and recording of the wound area, the healing rate was analyzed. The blood sample was collected at day 14 post-operation via cardiac puncture for determination of the number of endothelial progenitor cells (EPCs) by flow cytometry, and the concentrations of relevant cytokines such as basic fibroblast growth factor (bFGF), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) were measured by ELISA. The skin tissue around the wound was dissected to observe the vascular density under the microscope after HE staining, to detect the mRNA level of VEGFR2 and angiopoietin-1 (Ang-1) receptor using RT-qPCR, and protein expression of a-smooth muscle actin (αSMA) and type III collagen (ColIII) using Western blotting. It was found that the wound area in Ex group was smaller at the same time point than in non-ex group. The number of circulating EPCs was greater and the concentrations of vasoactive factors such as VEGF, eNOS and bFGF were higher in Ex group than in non-ex group. HE staining displayed a higher vessel density in Ex group than in non-ex group. Moreover, the mRNA expression of VEGFR2 and Ang-1 detected in the wound tissue in Ex group was higher than in non-ex group. Meanwhile, the protein expression of αSMA and ColIII was more abundant in Ex group than in non-ex group. Conclusively, the above results demonstrate Ex rats had a higher wound healing rate, suggesting low-intensity treadmill exercise accelerates wound healing. The present

  19. [Prostatic inflammation-induced chronic pelvic pain: Roles of substance P and c-fos in the spinal cord].

    PubMed

    Liu, Ying-jia; Song, Guo-hong; Zhang, Chen

    2015-08-01

    To explore the possible pain mechanism of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). The models of CP/CPPS were established in male Wistar rats by the autoimmune method. The paw withdrawal threshold (PWT) was detected using Von Frey filament. The expressions of the substance P and c-fos in the prostate and spinal L5-S2 segments were determined by immunohistochemistry followed by analysis of their correlation with CP/CPPS. Compared with the control rats, the CP/CPPS models showed significantly decreased PWT (P < 0.05), remarkable prostatic inflammation, enlarged scope of lesions, and obvious interstitial lymphocytic infiltration (P < 0.05). Both the expressions of substance P and c-fos were markedly elevated in the prostate and spinal dorsal horn (L5-S2) of the rat models (P < 0.05), but the expression of substance P in the prostate exhibited no correlation with that in the spinal cord (r = 0.099, P = 0.338), nor did that of c-fos (r = 0.027, P = 0.454). The upregulated expressions of substance P and c-fos in the spinal cord L5-S2 sections may be associated with the pain mechanism of CP/CPPS.

  20. Efficacy of chitosan and sodium alginate scaffolds for repair of spinal cord injury in rats

    PubMed Central

    Yao, Zi-ang; Chen, Feng-jia; Cui, Hong-li; Lin, Tong; Guo, Na; Wu, Hai-ge

    2018-01-01

    Spinal cord injury results in the loss of motor and sensory pathways and spontaneous regeneration of adult mammalian spinal cord neurons is limited. Chitosan and sodium alginate have good biocompatibility, biodegradability, and are suitable to assist the recovery of damaged tissues, such as skin, bone and nerve. Chitosan scaffolds, sodium alginate scaffolds and chitosan-sodium alginate scaffolds were separately transplanted into rats with spinal cord hemisection. Basso-Beattie-Bresnahan locomotor rating scale scores and electrophysiological results showed that chitosan scaffolds promoted recovery of locomotor capacity and nerve transduction of the experimental rats. Sixty days after surgery, chitosan scaffolds retained the original shape of the spinal cord. Compared with sodium alginate scaffolds- and chitosan-sodium alginate scaffolds-transplanted rats, more neurofilament-H-immunoreactive cells (regenerating nerve fibers) and less glial fibrillary acidic protein-immunoreactive cells (astrocytic scar tissue) were observed at the injury site of experimental rats in chitosan scaffold-transplanted rats. Due to the fast degradation rate of sodium alginate, sodium alginate scaffolds and composite material scaffolds did not have a supporting and bridging effect on the damaged tissue. Above all, compared with sodium alginate and composite material scaffolds, chitosan had better biocompatibility, could promote the regeneration of nerve fibers and prevent the formation of scar tissue, and as such, is more suitable to help the repair of spinal cord injury. PMID:29623937

  1. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  2. Acute electroacupuncture inhibits nitric oxide synthase expression in the spinal cord of neuropathic rats.

    PubMed

    Cha, Myeoung Hoon; Bai, Sun Joon; Lee, Kyung Hee; Cho, Zang Hee; Kim, Young-Bo; Lee, Hye-Jung; Lee, Bae Hwan

    2010-02-01

    To examine the effects of electroacupuncture stimulation on behavioral changes and neuronal nitric oxide synthase expression in the rat spinal cord after nerve injury. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to neuropathic surgery by tightly ligating and cutting the left tibial and sural nerves. Behavioral responses to mechanical stimulation were tested for 2 weeks post-operatively. At the end of behavioral testing, electroacupuncture stimulation was applied to ST36 (Choksamni) and SP9 (Eumleungcheon) acupoints. Immunocytochemical staining was performed to investigate changes in the expression of neuronal nitric oxide synthase-immunoreactive neurons in the L4-5 spinal cord. Mechanical allodynia was observed by nerve injury. The mechanical allodynia was decreased after electroacupuncture stimulation. Neuronal nitric oxide synthase expression was also decreased in L4-5 spinal cord by electroacupuncture treatment. These results suggest that electroacupuncture relieves mechanical allodynia in the neuropathic rats possibly by the inhibition of neuronal nitric oxide synthase expression in the spinal cord.

  3. Expression of an Activated Integrin Promotes Long-Distance Sensory Axon Regeneration in the Spinal Cord

    PubMed Central

    Cheah, Menghon; Chew, Daniel J.; Moloney, Elizabeth B.; Verhaagen, Joost; Fässler, Reinhard

    2016-01-01

    After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9β1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a β1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6–C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory–motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient. PMID:27383601

  4. Harmane inhibits serotonergic dorsal raphe neurons in the rat.

    PubMed

    Touiki, Khalid; Rat, Pascal; Molimard, Robert; Chait, Abderrahman; de Beaurepaire, Renaud

    2005-11-01

    Harmane and norharmane (two beta-carbolines) are tobacco components or products. The effects of harmane and norharmane on serotonergic raphe neurons remain unknown. Harmane and norharmane are inhibitors of the monoamine oxidases A (MAO-A) and B (MAO-B), respectively. To study the effects of harmane, norharmane, befloxatone (MAOI-A), and selegiline (MAOI-B) on the firing of serotonergic neurons. To compare the effects of these compounds to those of nicotine (whose inhibitory action on serotonergic neurons has been previously described). The effects of cotinine, a metabolite of nicotine known to interact with serotonergic systems, are also tested. In vivo electrophysiological recordings of serotonergic dorsal raphe neurons in the anaesthetized rat. Nicotine, harmane, and befloxatone inhibited serotonergic dorsal raphe neurons. The other compounds had no effects. The inhibitory effect of harmane (rapid and long-lasting inhibition) differed from that of nicotine (short and rapidly reversed inhibition) and from that of befloxatone (slow, progressive, and long-lasting inhibition). The inhibitory effects of harmane and befloxatone were reversed by the 5-HT1A antagonist WAY 100 635. Pretreatment of animals with p-chlorophenylalanine abolished the inhibitory effect of befloxatone, but not that of harmane. Nicotine, harmane, and befloxatone inhibit the activity of raphe serotonergic neurons. Therefore, at least two tobacco compounds, nicotine and harmane, inhibit the activity of serotonergic neurons. The mechanism by which harmane inhibits serotonergic dorsal raphe neurons is likely unrelated to a MAO-A inhibitory effect.

  5. Electrical field distribution within the injured cat spinal cord: injury potentials and field distribution.

    PubMed

    Khan, T; Myklebust, J; Swiontek, T; Sayers, S; Dauzvardis, M

    1994-12-01

    This study investigated the spontaneous injury potentials measured after contusion or transection injury to the cat spinal cord. In addition, the distribution of electrical field potentials on the surface and within the spinal cord were measured following applied electrical fields after transection and contusion injuries. After transection of the spinal cord, the injury potentials were -19.8 +/- 2.6 mV; after contusion of the spinal cord, the injury potentials were -9.5 +/- 2.2 mV. These potentials returned to control values within 2.5-4h after injury. The electrical field distribution measured on the dorsal surface, as well as within the spinal cord, after the application of a 10 microA current, showed little difference between contusion and transection injuries. Scalar potential fields were measured using two configurations of stimulating electrodes: dorsal to dorsal (D-D), in which both electrodes were placed epidurally on the dorsal surface of the spinal cord, and ventral to dorsal (V-D), in which one electrode was placed dorsally and one ventrally. As reported in normal uninjured cats, the total current in the midsagittal plane for the D-D configuration was largely confined to the dorsal portion of the spinal cord; with the V-D configuration, the current distribution was uniform throughout the spinal cord. In the injured spinal cord, the equipotential lines midway between the stimulating electrodes have a wider separation than in the uninjured spinal cord. Because the magnitude of the electrical field E is equal to the current density J multiplied by the resistivity r, this suggests that either the current density is reduced or that the resistivity is reduced.

  6. Effective robotic assistive pattern of treadmill training for spinal cord injury in a rat model

    PubMed Central

    Zhao, Bo-Lun; Li, Wen-Tao; Zhou, Xiao-Hua; Wu, Su-Qian; Cao, Hong-Shi; Bao, Zhu-Ren; An, Li-Bin

    2018-01-01

    The purpose of the present study was to establish an effective robotic assistive stepping pattern of body-weight-supported treadmill training based on a rat spinal cord injury (SCI) model and assess the effect by comparing this with another frequently used assistive stepping pattern. The recorded stepping patterns of both hind limbs of trained intact rats were edited to establish a 30-sec playback normal rat stepping pattern (NRSP). Step features (step length, step height, step number and swing duration), BBB scores, latencies, and amplitudes of the transcranial electrical motor-evoked potentials (tceMEPs) and neurofilament 200 (NF200) expression in the spinal cord lesion area during and after 3 weeks of body-weight-supported treadmill training (BWSTT) were compared in rats with spinal contusion receiving NRSP assistance (NRSPA) and those that received manual assistance (MA). Hind limb stepping performance among rats receiving NRSPA during BWSTT was greater than that among rats receiving MA in terms of longer step length, taller step height, and longer swing duration. Furthermore a higher BBB score was also indicated. The rats in the NRSPA group achieved superior results in the tceMEPs assessment and greater NF200 expression in the spinal cord lesion area compared with the rats in the MA group. These findings suggest NRSPA was an effective assistive pattern of treadmill training compared with MA based on the rat SCI model and this approach could be used as a new platform for animal experiments for better understanding the mechanisms of SCI rehabilitation. PMID:29545846

  7. Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats

    PubMed Central

    2013-01-01

    Background Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacologic treatment for pain relief. In previous animal studies, TENS effectively alleviated Complete Freund’s Adjuvant (CFA)- or carrageenan-induced inflammatory pain. Although TENS is known to produce analgesia via opioid activation in the brain and at the spinal level, few reports have investigated the signal transduction pathways mediated by TENS. Prior studies have verified the importance of the activation of extracellular signal-regulated kinase (ERK) signal transduction pathway in the spinal cord dorsal horn (SCDH) in acute and persistent inflammatory pains. Here, by using CFA rat model, we tested the efficacy of TENS on inhibiting the expressions of p-ERK1/2 and of its downstream cyclooxygenase-2 (COX-2) and the level of prostaglandin E2 (PGE2) at spinal level. Methods Rats were randomly divided into control, model and TENS groups, and injected subcutaneously with 100 μl CFA or saline in the plantar surface of right hind paw. Rats in the TENS group were treated with TENS (constant aquare wave, 2 Hz and 100 Hz alternating frequencies, intensities ranging from 1 to 2 mA, lasting for 30 min each time) at 5 h and 24 h after injection. Paw withdrawal thresholds (PWTs) were measured with dynamic plantar aesthesiometer at 3d before modeling and 5 h, 6 h, and 25 h after CFA injection. The ipsilateral sides of the lumbar spinal cord dosral horns were harvested for detecting the expressions of p-ERK1/2 and COX-2 by western blot analysis and qPCR, and PGE2 by ELISA. Results CFA-induced periphery inflammation decreased PWTs and increased paw volume of rats. TENS treatment significantly alleviated mechanical hyperalgesia caused by CFA. However, no anti-inflammatory effect of TENS was observed. Expression of p-ERK1/2 protein and COX-2 mRNA was significantly up-regualted at 5 h and 6 h after CFA injection, while COX-2 and PGE2 protein level only increased at 6 h after modeling

  8. The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord.

    PubMed

    Saruhashi, Yasuo; Matsusue, Yoshitaka; Fujimiya, Mineko

    2009-09-01

    Experimental spinal cord injury. To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury. We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0-14 point scale open field test. Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 +/- 2.0 (mean +/- standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1-3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level. We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.

  9. Different types of spinal afferent nerve endings in stomach and esophagus identified by anterograde tracing from dorsal root ganglia.

    PubMed

    Spencer, Nick J; Kyloh, Melinda; Beckett, Elizabeth A; Brookes, Simon; Hibberd, Tim

    2016-10-15

    In visceral organs of mammals, most noxious (painful) stimuli as well as innocuous stimuli are detected by spinal afferent neurons, whose cell bodies lie in dorsal root ganglia (DRGs). One of the major unresolved questions is the location, morphology, and neurochemistry of the nerve endings of spinal afferents that actually detect these stimuli in the viscera. In the upper gastrointestinal (GI) tract, there have been many anterograde tracing studies of vagal afferent endings, but none on spinal afferent endings. Recently, we developed a technique that now provides selective labeling of only spinal afferents. We used this approach to identify spinal afferent nerve endings in the upper GI tract of mice. Animals were anesthetized, and injections of dextran-amine were made into thoracic DRGs (T8-T12). Seven days post surgery, mice were euthanized, and the stomach and esophagus were removed, fixed, and stained for calcitonin gene-related peptide (CGRP). Spinal afferent axons were identified that ramified extensively through many rows of myenteric ganglia and formed nerve endings in discrete anatomical layers. Most commonly, intraganglionic varicose endings (IGVEs) were identified in myenteric ganglia of the stomach and varicose simple-type endings in the circular muscle and mucosa. Less commonly, nerve endings were identified in internodal strands, blood vessels, submucosal ganglia, and longitudinal muscle. In the esophagus, only IGVEs were identified in myenteric ganglia. No intraganglionic lamellar endings (IGLEs) were identified in the stomach or esophagus. We present the first identification of spinal afferent endings in the upper GI tract. Eight distinct types of spinal afferent endings were identified in the stomach, and most of them were CGRP immunoreactive. J. Comp. Neurol. 524:3064-3083, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Gene Transfer of Glutamic Acid Decarboxylase 67 by Herpes Simplex Virus Vectors Suppresses Neuropathic Pain Induced by Human Immunodeficiency Virus gp120 Combined with ddC in Rats.

    PubMed

    Kanao, Megumi; Kanda, Hirotsugu; Huang, Wan; Liu, Shue; Yi, Hyun; Candiotti, Keith A; Lubarsky, David A; Levitt, Roy C; Hao, Shuanglin

    2015-06-01

    Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the

  11. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study.

    PubMed

    Kakinohana, O; Hefferan, M P; Nakamura, S; Kakinohana, M; Galik, J; Tomori, Z; Marsala, J; Yaksh, T L; Marsala, M

    2006-09-01

    resistance but had no effect on increased amplitudes of motor evoked potentials. Confocal analysis of spinal cord sections at 8 weeks-12 months after ischemia revealed a continuing presence of ChAT positive alpha-motoneurons, Ia afferents and VGLUT2 and VGLUT1-positive terminals but a selective loss of small presumably inhibitory interneurons between laminae V-VII. These data demonstrate that brief transient spinal cord ischemia in rat leads to a consistent development of spasticity and rigidity. The lack of significant suppressive effect of dorsal L2-L5 rhizotomy on motor evoked potentials response indicates that descending motor input into alpha-motoneurons is independent on Ia afferent couplings and can independently contribute to increased alpha-motoneuronal excitability. The pharmacology of this effect emphasizes the potent role of GABAergic type B receptors in regulating both the spasticity and rigidity.

  12. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain.

    PubMed

    Deng, Bo; Jia, Liqun; Pan, Lin; Song, Aiping; Wang, Yuanyuan; Tan, Huangying; Xiang, Qing; Yu, Lili; Ke, Dandan

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats.

  13. Effects of polarization in low-level laser therapy of spinal cord injury in rats

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru

    2012-03-01

    Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.

  14. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes

    PubMed Central

    Song, Zhen-peng; Xiong, Bing-rui; Guan, Xue-hai; Cao, Fei; Manyande, Anne; Zhou, Ya-qun; Zheng, Hua; Tian, Yu-ke

    2016-01-01

    Aim: To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. Methods: A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. Results: BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Conclusion: Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes. PMID:27157092

  15. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes.

    PubMed

    Song, Zhen-Peng; Xiong, Bing-Rui; Guan, Xue-Hai; Cao, Fei; Manyande, Anne; Zhou, Ya-Qun; Zheng, Hua; Tian, Yu-Ke

    2016-06-01

    To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes.

  16. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  17. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  18. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    PubMed Central

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  19. Intrathecal oxybuprocaine and proxymetacaine produced potent and long-lasting spinal anesthesia in rats.

    PubMed

    Hung, Ching-Hsia; Wang, Jhi-Joung; Chen, Yu-Chung; Chu, Chin-Chen; Chen, Yu-Wen

    2009-05-01

    Proxymetacaine and oxybuprocaine were clinically used for topical ocular anesthesia but never for spinal anesthesia, and therefore spinal anesthetic effects of proxymetacaine and oxybuprocaine were performed and compared with bupivacaine and lidocaine. After rats were injected intrathecally with proxymetacaine, oxybuprocaine, bupivacaine, and lidocane, dose-response curves were constructed. We evaluated the potencies (ED(50)) and durations (time to full recovery) of proxymetacaine and oxybuprocaine on spinal blockades of motor function, proprioception, and nociception and compared with bupivacaine and lidocaine in rats. We found that proxymetacaine and oxybuprocaine acted like bupivacaine or lidocaine and produced dose-related spinal blockades of motor function, proprioception and nociception. On the ED(50) basis, the ranks of potencies in motor, proprioception, and nociception were proxymetacaine>oxybuprocaine>bupivacaine>lidocaine (P<0.01 for the differences). On an equipotent basis (ED(20), ED(50), ED(80)), oxybuprocaine and bupivacaine produced similarly longer spinal blockades than did proxymetacaine or lidocaine (P<0.05 for the differences). Intrathecal proxymetacaine, oxybuprocaine, and bupivacaine also produced longer sensory blockade than motor blockade. These data demonstrated that oxybuprocaine and proxymetacaine produced more potent spinal blockades, when compared with bupivacaine or lidocaine. Oxybuprocaine and bupivacaine with a more sensory-selective action over motor blockade produced longer spinal blockade than did proxymetacaine or lidocaine.

  20. Duodenal afferent input converges onto T9-T10 spinal neurons responding to gastric distension in rats.

    PubMed

    Qin, Chao; Chen, Jiande D Z; Zhang, Jing; Foreman, Robert D

    2007-12-01

    Clinically, the overlap of gastroduodenal symptoms, such as visceral pain or hypersensitivity, is often observed in functional gastrointestinal disorders. The underlying mechanism may be related to intraspinal neuronal processing of noxious convergent inputs from the stomach and the intestine. The purpose of this study was to examine whether single low thoracic (T9-T10) spinal neurons responded to both gastric and duodenal mechanical stimulation. Extracellular potentials of single T9-T10 spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. Graded gastric distensions (GD, 20, 40, 60 mm Hg, 20 s) were induced by air inflation of a latex balloon surgically placed in the stomach. Graded duodenal distensions (DD, 0.2, 0.4, 0.6 ml, 20 s) were produced by water inflation of a latex balloon placed into the duodenum. Of 70 deeper (depth from dorsal surface of spinal cord: 0.3-1.2 mm) spinal neurons responsive to noxious GD (> or =40 mm Hg), 44(63%) also responded to noxious DD (> or =0.4 ml). Similarly, 13/17 (76%) superficial neurons (depth <0.3 mm) responded to both GD and DD. Of 57 gastroduodenal convergent neurons, 41 (72%) had excitatory and 6 had inhibitory responses to both GD and DD; the remaining neurons exhibited multiple patterns of excitation and inhibition. 43/57 (75%) gastroduodenal convergent neurons had low-threshold (< or =20 mm Hg) responses to GD, whereas 42/57 (74%) of these neurons had high-threshold (> or =0.4 ml) responses to DD. In addition, 34/40 (85%) gastroduodenal convergent neurons had somatic receptive fields on the back, flank, and medial/lateral abdominal areas. These results suggested that superficial and deeper T9-T10 spinal neurons received innocuous and/or noxious convergent inputs from mechanical stimulation of the stomach and duodenum. Gastroduodenal convergent spinal neurons might contribute to intraspinal sensory transmission for cross-organ afferent-afferent communication between the

  1. [Partial dorsal root rhizotomy increases the anterograde transportation of neunotrophic factors in primary sensory neuron].

    PubMed

    Long, Shuang-lian; Li, Yong-mei; Yuan, Yuan; Wang, Ting-hua; Wu, Lin-yan

    2005-05-01

    To investigate whether partial dorsal root rhizotomy promotes the anterograde Five adult cats were transportation of BDNF, NT-3 and GDNF in the primary sensory neuron. Subjected to unilateral spared root rhizotomy (the DRGs of L1-L5 and L7-S2 were removed, but L6 DRG was spared) and bilateral dorsal roots of L6 were ligated at the same time. Three days after operation, dorsal roots were taken out and made into frozen sections 20 microm in thickness. The sections were stained using specific BDNF, NT-3, GDNF antibody (1:1500) by ABC method. The immunoreactive density was observed in a site near DRG and a site near spinal cord. In the control group (with spared L6 DRG), there were no marked differences in NT-3 and GDNF immunoreactivity between the site near DRG and the site near spinal cord, while BDNF immunoreactivity was more intense in the site near DRG than that in the site near spinal cord. In the operation group, the immunoreactivity of each neurotrophin in the site near DRG was stronger than that in the site near spinal cord, and the immunoreactivities of BDNF, NT-3, GDNF in the site near DRG of the operation were stronger than those of the control group respectively. The increasing of immunoreactivities of neurotrophins near DRG following partial dorsal root rhizotomy suggests that partial dorsal root rhizotomy can promote their anterograde transportation from spared DRG to the spinal cord.

  2. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats

    PubMed Central

    2013-01-01

    Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. Results EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat’s paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. Conclusions The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats. PMID:23517865

  3. Astrocytic Ca2+ responses in the spinal dorsal horn by noxious stimuli to the skin.

    PubMed

    Yoshihara, Kohei; Matsuda, Tsuyoshi; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2018-05-03

    The role of astrocytes in the spinal dorsal horn (SDH) for sensory information processing under normal conditions is poorly understood. In this study, we investigated whether SDH astrocytes respond to noxious and innocuous stimuli to the skin of normal mice using in vivo two-photon Ca 2+ imaging under anesthesia. We found that noxious stimulation evoked by intraplantar formalin injection provoked an elevation in intracellular Ca 2+ levels in SDH astrocytes. By contrast, neither instantaneous noxious pinching nor innocuous stimuli (cooling or brushing) to the hindpaw elicited astrocytic Ca 2+ responses. Thus, SDH astrocytes could respond preferentially to a strong and/or sustained noxious stimulus. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats.

    PubMed

    Gad, Parag; Choe, Jaehoon; Nandra, Mandheerej Singh; Zhong, Hui; Roy, Roland R; Tai, Yu-Chong; Edgerton, V Reggie

    2013-01-21

    Stimulation of the spinal cord has been shown to have great potential for improving function after motor deficits caused by injury or pathological conditions. Using a wide range of animal models, many studies have shown that stimulation applied to the neural networks intrinsic to the spinal cord can result in a dramatic improvement of motor ability, even allowing an animal to step and stand after a complete spinal cord transection. Clinical use of this technology, however, has been slow to develop due to the invasive nature of the implantation procedures, the lack of versatility in conventional stimulation technology, and the difficulty of ascertaining specific sites of stimulation that would provide optimal amelioration of the motor deficits. Moreover, the development of tools available to control precise stimulation chronically via biocompatible electrodes has been limited. In this paper, we outline the development of this technology and its use in the spinal rat model, demonstrating the ability to identify and stimulate specific sites of the spinal cord to produce discrete motor behaviors in spinal rats using this array. We have designed a chronically implantable, rapidly switchable, high-density platinum based multi-electrode array that can be used to stimulate at 1-100 Hz and 1-10 V in both monopolar and bipolar configurations to examine the electrophysiological and behavioral effects of spinal cord epidural stimulation in complete spinal cord transected rats. In this paper, we have demonstrated the effectiveness of using high-resolution stimulation parameters in the context of improving motor recovery after a spinal cord injury. We observed that rats whose hindlimbs were paralyzed can stand and step when specific sets of electrodes of the array are stimulated tonically (40 Hz). Distinct patterns of stepping and standing were produced by stimulation of different combinations of electrodes on the array located at specific spinal cord levels and by specific

  5. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat

    PubMed Central

    Kao, T; Shumsky, JS; Murray, M; Moxon, KA

    2009-01-01

    Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/day, 5days/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI, but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923

  6. Spinal Endocannabinoids and CB1 Receptors Mediate C-Fiber-Induced Heterosynaptic Pain Plasticity

    PubMed Central

    Pernía-Andrade, Alejandro J.; Kato, Ako; Witschi, Robert; Nyilas, Rita; Katona, István; Freund, Tamás F.; Watanabe, Masahiko; Filitz, Jörg; Koppert, Wolfgang; Schüttler, Jürgen; Ji, Guangchen; Neugebauer, Volker; Marsicano, Giovanni; Lutz, Beat; Vanegas, Horacio; Zeilhofer, Hanns Ulrich

    2010-01-01

    Diminished synaptic inhibition in the spinal dorsal horn is a major contributor to chronic pain. Pathways, which reduce synaptic inhibition in inflammatory and neuropathic pain states, have been identified, but central hyperalgesia and diminished dorsal horn synaptic inhibition also occur in the absence of inflammation or neuropathy, solely triggered by intense nociceptive (C–fiber) input to the spinal dorsal horn. We found that endocannabinoids produced upon strong nociceptive stimulation activated CB1 receptors on inhibitory dorsal horn neurons to reduce the synaptic release of GABA and glycine and thus rendered nociceptive neurons excitable by non-painful stimuli. Spinal endocannabinoids and CB1 receptors on inhibitory dorsal horn interneurons act as mediators of heterosynaptic pain sensitization and play an unexpected role in dorsal horn pain controlling circuits. PMID:19661434

  7. NMDA Receptor Activation Underlies the Loss of Spinal Dorsal Horn Neurons and the Transition to Persistent Pain after Peripheral Nerve Injury.

    PubMed

    Inquimbert, Perrine; Moll, Martin; Latremoliere, Alban; Tong, Chi-Kun; Whang, John; Sheehan, Gregory F; Smith, Brendan M; Korb, Erica; Athié, Maria C P; Babaniyi, Olusegun; Ghasemlou, Nader; Yanagawa, Yuchio; Allis, C David; Hof, Patrick R; Scholz, Joachim

    2018-05-29

    Peripheral nerve lesions provoke apoptosis in the dorsal horn of the spinal cord. The cause of cell death, the involvement of neurons, and the relevance for the processing of somatosensory information are controversial. Here, we demonstrate in a mouse model of sciatic nerve injury that glutamate-induced neurodegeneration and loss of γ-aminobutyric acid (GABA)ergic interneurons in the superficial dorsal horn promote the transition from acute to chronic neuropathic pain. Conditional deletion of Grin1, the essential subunit of N-methyl-d-aspartate-type glutamate receptors (NMDARs), protects dorsal horn neurons from excitotoxicity and preserves GABAergic inhibition. Mice deficient in functional NMDARs exhibit normal nociceptive responses and acute pain after nerve injury, but this initial increase in pain sensitivity is reversible. Eliminating NMDARs fully prevents persistent pain-like behavior. Reduced pain in mice lacking proapoptotic Bax confirmed the significance of neurodegeneration. We conclude that NMDAR-mediated neuron death contributes to the development of chronic neuropathic pain. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Effects of dorsal hippocampus catecholamine depletion on paired-associates learning and place learning in rats.

    PubMed

    Roschlau, Corinna; Hauber, Wolfgang

    2017-04-14

    Growing evidence suggests that the catecholamine (CA) neurotransmitters dopamine and noradrenaline support hippocampus-mediated learning and memory. However, little is known to date about which forms of hippocampus-mediated spatial learning are modulated by CA signaling in the hippocampus. Therefore, in the current study we examined the effects of 6-hydroxydopamine-induced CA depletion in the dorsal hippocampus on two prominent forms of hippocampus-based spatial learning, that is learning of object-location associations (paired-associates learning) as well as learning and choosing actions based on a representation of the context (place learning). Results show that rats with CA depletion of the dorsal hippocampus were able to learn object-location associations in an automated touch screen paired-associates learning (PAL) task. One possibility to explain this negative result is that object-location learning as tested in the touchscreen PAL task seems to require relatively little hippocampal processing. Results further show that in rats with CA depletion of the dorsal hippocampus the use of a response strategy was facilitated in a T-maze spatial learning task. We suspect that impaired hippocampus CA signaling may attenuate hippocampus-based place learning and favor dorsolateral striatum-based response learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Altered spinal arachidonic acid turnover after peripheral nerve injury regulates regional glutamate concentration and neuropathic pain behaviors in rats.

    PubMed

    Sung, Backil; Wang, Shuxing; Zhou, Bei; Lim, Grewo; Yang, Liling; Zeng, Qing; Lim, Jeong-Ae; Wang, Jing Dong; Kang, Jing X; Mao, Jianren

    2007-09-01

    Spinal glutamate transporters (GT) have been implicated in the mechanisms of neuropathic pain; however, how spinal GT uptake activity is regulated remains unclear. Here we show that alteration of spinal arachidonic acid (AA) turnover after peripheral nerve injury regulated regional GT uptake activity and glutamate homeostasis. Chronic constriction nerve injury (CCI) in rats significantly reduced spinal GT uptake activity ((3)H-glutamate uptake) with an associated increase in extracellular AA and glutamate concentration from spinal microdialysates on postoperative day 8. AACOCF3 (a cytosolic phospholipase A2 inhibitor, 30mug) given intrathecally twice a day for postoperative day 1-7 reversed this CCI-induced spinal AA production, prevented the reduced spinal GT uptake activity and increased extracellular glutamate concentration. Conversely, alteration of spinal AA metabolism by diclofenac (a cyclooxygenase 1/2 inhibitor, 200mug) further reduced spinal GT uptake activity and increased extracellular glutamate concentration in CCI rats. GT uptake activity was also attenuated when AA (10 or 100nM) was directly added into spinal samples of naïve rats in an in vitro(3)H-glutamate uptake assay, indicating a direct inhibitory effect of AA on GT uptake activity. Consistent with these findings, AACOCF3 reduced the development of both thermal hyperalgesia and mechanical allodynia, whereas diclofenac exacerbated thermal hyperalgesia, in CCI rats. Thus, spinal AA turnover may serve as a regulator in CCI-induced changes in regional GT uptake activity, glutamate homeostasis, and neuropathic pain behaviors. These data suggest that regulating spinal AA turnover may be a useful approach to improving the clinical management of neuropathic pain.

  10. Electrical stimulation modulates injury potentials in rats after spinal cord injury

    PubMed Central

    Zhang, Guanghao; Huo, Xiaolin; Wang, Aihua; Wu, Changzhe; Zhang, Cheng; Bai, Jinzhu

    2013-01-01

    An injury potential is the direct current potential difference between the site of spinal cord injury and the healthy nerves. Its initial amplitude is a significant indicator of the severity of spinal cord injury, and many cations, such as sodium and calcium, account for the major portion of injury potentials. This injury potential, as well as injury current, can be modulated by direct current field stimulation; however, the appropriate parameters of the electrical field are hard to define. In this paper, injury potential is used as a parameter to adjust the intensity of electrical stimulation. Injury potential could be modulated to slightly above 0 mV (as the anode-centered group) by placing the anodes at the site of the injured spinal cord and the cathodes at the rostral and caudal sections, or around –70 mV, which is resting membrane potential (as the cathode-centered group) by reversing the polarity of electrodes in the anode-centered group. In addition, rats receiving no electrical stimulation were used as the control group. Results showed that the absolute value of the injury potentials acquired after 30 minutes of electrical stimulation was higher than the control group rats and much lower than the initial absolute value, whether the anodes or the cathodes were placed at the site of injury. This phenomenon illustrates that by changing the polarity of the electrical field, electrical stimulation can effectively modulate the injury potentials in rats after spinal cord injury. This is also beneficial for the spontaneous repair of the cell membrane and the reduction of cation influx. PMID:25206563

  11. Mondia whitei (Periplocaceae) prevents and Guibourtia tessmannii (Caesalpiniaceae) facilitates fictive ejaculation in spinal male rats

    PubMed Central

    2013-01-01

    Background Mondia whitei and Guibourtia tessmannii are used in Cameroon traditional medicine as aphrodisiacs. The present study was undertaken to evaluate the pro-ejaculatory effects of the aqueous and organic solvent extracts of these plants in spinal male rats. Methods In spinal cord transected and urethane-anesthetized rats, two electrodes where inserted into the bulbospongiosus muscles and the ejaculatory motor pattern was recorded on a polygraph after urethral and penile stimulations, intravenous injection of saline (0.1 ml/100 g), dopamine (0.1 μM/kg), aqueous and organic solvent plant extracts (20 mg/kg). Results In all spinal rats, urethral and penile stimulations always induced the ejaculatory motor pattern. Aqueous or hexane extract of Mondia whitei (20 mg/kg) prevented the expression of the ejaculatory motor pattern. The pro-ejaculatory effects of dopamine (0.1 μM/kg) were not abolished in spinal rats pre-treated with Mondia whitei extracts. Aqueous and methanolic stem bark extracts of Guibourtia tessmannii (20 mg/kg) induced fictive ejaculation characterized by rhythmic contractions of the bulbospongiosus muscles followed sometimes with expulsion of seminal plugs. In rats pre-treated with haloperidol (0.26 μM/kg), no ejaculatory motor pattern was recorded after intravenous injection of Guibourtia tessmannii extracts (20 mg/kg). Conclusion These results show that Mondia whitei possesses preventive effects on the expression of fictive ejaculation in spinal male rats, which is not mediated through dopaminergic pathway; on the contrary, the pro-ejaculatory activities of Guibourtia tessmannii require the integrity of dopaminergic system to exert its effects. The present findings further justify the ethno-medicinal claims of Mondia whitei and Guibourtia tessmannii. PMID:23295154

  12. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses

    PubMed Central

    Mishra, Asht M.; Pal, Ajay; Gupta, Disha

    2017-01-01

    Key points Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord.The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone.Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal.Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Abstract Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional

  13. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.

    PubMed

    Mishra, Asht M; Pal, Ajay; Gupta, Disha; Carmel, Jason B

    2017-11-15

    Pairing motor cortex stimulation and spinal cord epidural stimulation produced large augmentation in motor cortex evoked potentials if they were timed to converge in the spinal cord. The modulation of cortical evoked potentials by spinal cord stimulation was largest when the spinal electrodes were placed over the dorsal root entry zone. Repeated pairing of motor cortex and spinal cord stimulation caused lasting increases in evoked potentials from both sites, but only if the time between the stimuli was optimal. Both immediate and lasting effects of paired stimulation are likely mediated by convergence of descending motor circuits and large diameter afferents onto common interneurons in the cervical spinal cord. Convergent activity in neural circuits can generate changes at their intersection. The rules of paired electrical stimulation are best understood for protocols that stimulate input circuits and their targets. We took a different approach by targeting the interaction of descending motor pathways and large diameter afferents in the spinal cord. We hypothesized that pairing stimulation of motor cortex and cervical spinal cord would strengthen motor responses through their convergence. We placed epidural electrodes over motor cortex and the dorsal cervical spinal cord in rats; motor evoked potentials (MEPs) were measured from biceps. MEPs evoked from motor cortex were robustly augmented with spinal epidural stimulation delivered at an intensity below the threshold for provoking an MEP. Augmentation was critically dependent on the timing and position of spinal stimulation. When the spinal stimulation was timed to coincide with the descending volley from motor cortex stimulation, MEPs were more than doubled. We then tested the effect of repeated pairing of motor cortex and spinal stimulation. Repetitive pairing caused strong augmentation of cortical MEPs and spinal excitability that lasted up to an hour after just 5 min of pairing. Additional physiology

  14. COGNITIVE IMPAIRMENT AND MORPHOLOGICAL CHANGES IN THE DORSAL HIPPOCAMPUS OF VERY OLD FEMALE RATS

    PubMed Central

    Morel, Gustavo R.; Andersen, Tomás; Pardo, Joaquín; Zuccolilli, Gustavo O.; Cambiaggi, Vanina L.; Hereñú, Claudia B.; Goya, Rodolfo G.

    2015-01-01

    The hippocampus, a medial temporal lobe structure necessary for the formation of spatial memory, is particularly affected by both normal and pathologic aging. In previous studies, we observed a significant age-related increase in dopaminergic neuron loss in the hypothalamus and the substantia nigra of female rats, which becomes more conspicuous at extreme ages. Here, we extend our studies by assessing spatial memory 4–6 months old (young), 26 months old (old) and 29–32 months old (senile) Sprague–Dawley female rats as well as the age-related histopathological changes in their dorsal hippocampus. Age changes in spatial memory performance were assessed with a modified version of the Barnes maze test. We employed two probe trials (PT), one and five days after training, respectively, in order to evaluate learning ability as well as short-term and longer-term spatial memory retention. A set of relevant hippocampal cell markers was also quantitated in the animals by means of an unbiased stereological approach. The results revealed that old rats perform better than senile rats in acquisition trials and young rats perform better than both aging groups. However, during short-term PT both aging groups showed a preserved spatial memory while in longer-term PT, spatial memory showed deterioration in both aged groups. Morphological analysis showed a marked decrease (94–97%) in doublecortin neuron number in the dentate gyrus in both aged groups and a reduction in glial fibrillary acidic protein-positive cell number in the stratum radiatum of aging rats. Astroglial process length and branching complexity decreased in the aged rats. We conclude that while target-seeking activity and learning ability decrease in aged females, spatial memory only declines in the longer-term tests. The reduction in neuroblast number and astroglial arborescence complexity in the dorsal hippocampus are likely to play a role in the cognitive deficits of aging rats. PMID:26141841

  15. Effects of Strontium Ranelate on Spinal Interbody Fusion Surgery in an Osteoporotic Rat Model

    PubMed Central

    Tsai, Tsung-Ting; Ho, Natalie Yi-Ju; Lai, Po-Liang; Fu, Tsai-Sheng; Niu, Chi-Chien; Chen, Lih-Huei; Chen, Wen-Jer

    2017-01-01

    Osteoporosis is a bone disease that afflicts millions of people around the world, and a variety of spinal integrity issues, such as degenerative spinal stenosis and spondylolisthesis, are frequently concomitant with osteoporosis and are sometimes treated with spinal interbody fusion surgery. Previous studies have demonstrated the efficacy of strontium ranelate (SrR) treatment of osteoporosis in improving bone strength, promoting bone remodeling, and reducing the risk of fractures, but its effects on interbody fusion surgery have not been adequately investigated. SrR-treated rats subjected to interbody fusion surgery exhibited significantly higher lumbar vertebral bone mineral density after 12 weeks of treatment than rats subjected to the same surgery but not treated with SrR. Furthermore, histological and radiographic assessments showed that a greater amount of newly formed bone tissue was present and that better fusion union occurred in the SrR-treated rats than in the untreated rats. Taken together, these results show significant differences in bone mineral density, PINP level, histological score, SrR content and mechanical testing, which demonstrate a relatively moderate effect of SrR treatment on bone strength and remodeling in the specific context of recovery after an interbody fusion surgery, and suggest the potential of SrR treatment as an effective adjunct to spinal interbody fusion surgery for human patients. PMID:28052066

  16. Transdermal monosialoganglioside with laser in the treatment of spinal cord lesion in rats

    PubMed Central

    de Souza, Fabiano Inácio; Cristante, Alexandre Fogaça; Marcon, Raphael Martus; Ferreira, Ricardo; dos Santos, Gustavo Bispo; de Barros, Tarcísio Eloy Pessoa

    2013-01-01

    OBJECTIVES: To evaluate the effects of monosialoganglioside (GM1) administered transdermally with laser in the recovery of spinal cord injury in rats. METHODS: Forty male Wistar rats underwent spinal cord contusion using the NYU Impactor. In Group 1, the rats received 0,2 ml of saline intraperitoneally daily; in Group 2, GM1 was administered intraperitoneally at a concentration of 30 mg/kg per day; in Group 3, rats were treated daily with laser at low temperature on the skin, and in Group 4, the daily laser session also contained GM1. All the groups were treated for 42 days. The animals were evaluated by the Basso, Baettie and Bresnahan (BBB) functional scale on days 7, 14, 21, 28, 35 and 42 after the injury, and by histopathology and motor evoked potential after 42 days of injury. RESULTS: The animals in Group 4 had higher BBB scores compared with the other groups. There were no differences between the groups, or in the comparisons over time. Histological evaluation showed no differences, and no differences were found in the motor evoked potential tests either. CONCLUSION: GM1 associated with the use of low-temperature laser shows no superior functional, neurological or histological results in the treatment of spinal cord lesions in rats. Evidence Level I, Experimental, Controlled, Animal Study. PMID:24453649

  17. Changes in rat spinal cord gene expression after inflammatory hyperalgesia of the joint and manual therapy.

    PubMed

    Ruhlen, Rachel L; Singh, Vineet K; Pazdernik, Vanessa K; Towns, Lex C; Snider, Eric J; Sargentini, Neil J; Degenhardt, Brian F

    2014-10-01

    Mobilization of a joint affects local tissue directly but may also have other effects that are mediated through the central nervous system. To identify differential gene expression in the spinal cords of rats with or without inflammatory joint injury after manual therapy or no treatment. Rats were randomly assigned to 1 of 4 treatment groups: no injury and no touch (NI/NT), injury and no touch (I/NT), no injury and manual therapy (NI/MT), and injury and manual therapy (I/MT). We induced acute inflammatory joint injury in the rats by injecting carrageenan into an ankle. Rats in the no-injury groups did not receive carrageenan injection. One day after injury, rats received manual therapy to the knee of the injured limb. Rats in the no-touch groups were anesthetized without receiving manual therapy. Spinal cords were harvested 30 minutes after therapy or no touch, and spinal cord gene expression was analyzed by microarray for 3 comparisons: NI/NT vs I/NT, I/MT vs I/NT, and NI/NT vs NI/MT. Three rats were assigned to each group. Of 38,875 expressed sequence tags, 755 were differentially expressed in the NI/NT vs I/NT comparison. For the other comparisons, no expressed sequence tags were differentially expressed. Cluster analysis revealed that the differentially expressed sequence tags were over-represented in several categories, including ion homeostasis (enrichment score, 2.29), transmembrane (enrichment score, 1.55), and disulfide bond (enrichment score, 2.04). An inflammatory injury to the ankle of rats caused differential expression of genes in the spinal cord. Consistent with other studies, genes involved in ion transport were among those affected. However, manual therapy to the knees of injured limbs or to rats without injury did not alter gene expression in the spinal cord. Thus, evidence for central nervous system mediation of manual therapy was not observed. © 2014 The American Osteopathic Association.

  18. Inhibitory control of plateau properties in dorsal horn neurones in the turtle spinal cord in vitro

    PubMed Central

    Russo, Raúl E; Nagy, Frédéric; Hounsgaard, Jørn

    1998-01-01

    The role of inhibition in control of plateau-generating neurones in the dorsal horn was studied in an in vitro preparation of the spinal cord of the turtle. Ionotropic and metabotropic inhibition was found to condition the expression of plateau potentials. Blockade of γ-aminobutyric acid (GABAA) and glycine receptors by their selective antagonists bicuculline (10-50 μM) and strychnine (5-20 μM) enhanced the excitatory response to stimulation of the dorsal root and facilitated the expression of plateau potentials. Bicuculline and strychnine also facilitated the generation of plateau potentials in response to depolarizing current pulses, suggesting the presence of tonic ionotropic inhibitory mechanisms in turtle spinal cord slices. Activation of GABAB receptors also inhibited plateau-generating neurones. The selective agonist baclofen (5-50 μM) inhibited wind-up of the response to repeated depolarizations induced synaptically or by intracellular current pulses. Baclofen reduced afferent synaptic input. This effect was not affected by bicuculline or strychnine and was blocked by the selective GABAB receptor antagonist 2-hydroxysaclofen (2-OH-saclofen, 100-400 μM). Postsynaptically, baclofen inhibited plateau properties. Activation of GABAB receptors produced a hyperpolarization (7.0 ± 0.5 mV, mean ± s.e.m., n= 29) with an associated decrease in input resistance (22.7 ± 3.1 %, n= 24). These effects were blocked by extracellular Ba2+ (1-2 mM). When the baclofen-induced hyperpolarization and shunt were compensated for by adjusting the bias current and the strength of the stimulus, baclofen still inhibited generation of plateau potentials. Wind-up and after-discharges were also inhibited by baclofen. These effects remained in the presence of tetrodotoxin (1 μM) and were antagonized by 2-OH-saclofen. The inhibition of plateau properties was observed even when the baclofen-induced hyperpolarization and shunt were blocked by Ba2+ and when potassium channels were

  19. Intramedullary pressure changes in rats after spinal cord injury.

    PubMed

    Dong, X; Yang, D; Li, J; Liu, C; Yang, M; Du, L; Gu, R; Hu, A; Zhang, H

    2016-11-01

    The objectives of this study were to explore the change of intramedullary pressure over time in rats after different degrees of spinal cord contusion injury and to verify the hypothesis that the more serious the injury, the higher the intramedullary pressure. The control group rats underwent laminectomy only, whereas the rats in the three experimental groups were subjected to mild, moderate or severe 10th thoracic cord (T10) contusion injury after laminectomy. In addition, an intramedullary pressure of T10 was measured by a Millar Mikro-Tip pressure catheter (Millar Incorporated Company, Houston, TX, USA) immediately in the control group or at different time points after injury in the experimental groups. The average intramedullary pressure of the rats in the control group was 6.88±1.67 mm Hg, whereas that of the rats in any injury group was significantly higher (P=0.000). There was statistical difference among the different time points in the mild or moderate injury group (P=0.007/0.017), but no in the severe (P=0.374). The curves of intramedullary pressure over time in the mild and moderate injury group were bimodal, peaking at 1 and 48 h after the injury. The intramedullary pressure after injury was positively correlated with the injury degree (r=0.438, P=0.000). The intramedullary pressure of the rats increased after traumatic spinal cord injury. If the injury was not serious, the intramedullary pressure fluctuated with time and peaked at 1 and 48 h after injury. If the injury was serious, the intramedullary pressure remained high. The more serious the injury, the higher the intramedullary pressure.

  20. The effect of extracorporeal shock wave lithotripsy on the rat spinal cord.

    PubMed

    Karatas, A; Dosoglu, M; Zeyrek, T; Kayikci, A; Erol, A; Can, B

    2008-09-01

    Experimental study. To determine the effects of extracorporeal shock wave lithotripsy (ESWL) on the rat spinal cord. Animals were randomly divided into three groups. Groups 1 and 2 consisted of five rats each that underwent ESWL (2000 impulses at 15 kV and 2000 impulses at 18 kV, respectively) and group 3 contained five control rats (no shock wave treatment). ESWL-treated and control rats were compared with regard to light and electron microscopic findings of the adjacent spinal cord. Gross neurological outcomes were normal in all groups. Light microscopic examination of group 1 showed extensive extravasation of red blood cells over all the interstitial spaces. Group 2 also had haemorrhagic areas and an irregular organization of axons in the white matter. Transmission electron microscopic examination of group 1 indicated extravasated red blood cells through the endothelium and swollen axoplasm, degenerated mitochondria, destruction of myelin sheaths and a slight increase in the number of lysosomes. Extravasated red blood cells were also seen in group 2. The axoplasmic mitochondria were enlarged, but no sign of mitochondrial degeneration was observed. Lamellar degeneration of myelin sheaths and abundant lysosomes were more predominant in group 2 than in group 1. Extracorporeal shock wave lithotripsy caused not only haemorrhage but also damage to neuronal structures except the nucleus. Our findings showed that higher-energy ESWL caused more myelin degeneration in the spinal cord.

  1. Benefits of Spine Stabilization with Biodegradable Scaffolds in Spinal Cord Injured Rats

    PubMed Central

    Silva, Nuno A.; Sousa, Rui A.; Fraga, Joana S.; Fontes, Marco; Leite-Almeida, Hugo; Cerqueira, Rui; Almeida, Armando; Sousa, Nuno; Reis, Rui L.

    2013-01-01

    Spine stabilization upon spinal cord injury (SCI) is a standard procedure in clinical practice, but rarely employed in experimental models. Moreover, the application of biodegradable biomaterials for this would come as an advantage as it would eliminate the presence of a nondegradable prosthesis within the vertebral bone. Therefore, in the present work, we propose the use of a new biodegradable device specifically developed for spine stabilization in a rat model of SCI. A 3D scaffold based on a blend of starch with polycaprolactone was implanted, replacing delaminated vertebra, in male Wistar rats with a T8-T9 spinal hemisection. The impact of spinal stabilization on the locomotor behavior was then evaluated for a period of 12 weeks. Locomotor evaluation—assessed by Basso, Beatie, and Bresnahan test; rotarod; and open field analysis—revealed that injured rats subjected to spine stabilization significantly improved their motor performance, including higher coordination and rearing activity when compared with SCI rats without stabilization. Histological analysis further revealed that the presence of the scaffolds not only stabilized the area, but also simultaneously prevented the infiltration of the injury site by connective tissue. Overall, these results reveal that SCI stabilization using a biodegradable scaffold at the vertebral bone level leads to an improvement of the motor deficits and is a relevant element for the successful treatment of SCI. PMID:22779715

  2. Electroacupuncture improves gait locomotion, H-reflex and ventral root potentials of spinal compression injured rats.

    PubMed

    Escobar-Corona, Carlos; Torres-Castillo, Sergio; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Jiménez-Estrada, Ismael; Quiroz-González, Salvador

    2017-05-01

    This study explored the effect of electroacupuncture stimulation (EA) on alterations in the Hoffman reflex (H-reflex) response and gait locomotion provoked by spinal cord injury (SCI) in the rat. A compression lesion of the spinal cord was evoked by insufflating a Fogarty balloon located in the epidural space at the T8-9 spinal level of adult Wistar male rats (200-250 gr; n=60). In different groups of SCI rats, EA (frequencies: 2, 50 and 100Hz) was applied simultaneously to Huantiao (GB30), Yinmen (BL37), Jizhong (GV6) and Zhiyang (GV9) acupoints from the third post-injury day until the experimental session. At 1, 2, 3 and 4 post-injury weeks, the BBB scores of the SCI group of rats treated with EA at 50Hz showed a gradual but greater enhancement of locomotor activity than the other groups of rats. Unrestrained gait kinematic analysis of SCI rats treated with EA-50Hz stimulation showed a significant improvement in stride duration, length and speed (p<0.05), whereas a discrete recovery of gait locomotion was observed in the other groups of animals. After four post-injury weeks, the H-reflex amplitude and H-reflex/M wave amplitude ratio obtained in SCI rats had a noticeable enhancement (217%) compared to sham rats (n=10). Meanwhile, SCI rats treated with EA at 50Hz manifested a decreased facilitation of the H-reflex amplitude and H/M amplitude ratio (154%) and a reduced frequency-dependent amplitude depression of the H-reflex (66%). In addition, 50 Hz-EA treatment induced a recovery of the presynaptic depression of the Gs-VRP evoked by PBSt conditioning stimulation in the SCI rat (63.2±8.1%; n=9). In concordance with the latter, it could be suggested that 50 Hz-EA stimulation reduced the hyper-excitability of motoneurons and provokes a partial improvement of the locomotive performance and H reflex responses by a possible recovery of presynaptic mechanisms in the spinal cord of experimentally injured rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats.

    PubMed

    Solís, Karina H; Méndez, Laura I; García-López, Guadalupe; Díaz, Néstor F; Portillo, Wendy; De Nova-Ocampo, Mónica; Molina-Hernández, Anayansi

    2017-01-01

    Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H 1 receptor (H 1 R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H 1 R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H 1 R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H 1 R expression by qRT-PCR and Western blot and, finally, we tested H 1 R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H 1 R have an important role in the increased neurogenesis within the dorsal telencephalon of

  4. Raman spectroscopic investigation of spinal cord injury in a rat model

    NASA Astrophysics Data System (ADS)

    Saxena, Tarun; Deng, Bin; Stelzner, Dennis; Hasenwinkel, Julie; Chaiken, Joseph

    2011-02-01

    Raman spectroscopy was used to study temporal molecular changes associated with spinal cord injury (SCI) in a rat model. Raman spectra of saline-perfused, injured, and healthy rat spinal cords were obtained and compared. Two injury models, a lateral hemisection and a moderate contusion were investigated. The net fluorescence and the Raman spectra showed clear differences between the injured and healthy spinal cords. Based on extensive histological and biochemical characterization of SCI available in the literature, these differences were hypothesized to be due to cell death, demyelination, and changes in the extracellular matrix composition, such as increased expression of proteoglycans and hyaluronic acid, at the site of injury where the glial scar forms. Further, analysis of difference spectra indicated the presence of carbonyl containing compounds, hypothesized to be products of lipid peroxidation and acid catalyzed hydrolysis of glycosaminoglycan moieties. These results compared well with in vitro experiments conducted on chondroitin sulfate sugars. Since the glial scar is thought to be a potent biochemical barrier to nerve regeneration, this observation suggests the possibility of using near infrared Raman spectroscopy to study injury progression and explore potential treatments ex vivo, and ultimately monitor potential remedial treatments within the spinal cord in vivo.

  5. Two chronic motor training paradigms differentially influe nce acute instrume ntal learning in spinally transected rats

    PubMed Central

    Bigbee, Allison J.; Crown, Eric D.; Ferguson, Adam R.; Roy, Roland R.; Tillakaratne, Niranjala J.K.; Grau, James W.; Edgerton, V. Reggie

    2008-01-01

    The effect of two chronic motor training paradigms on the ability of the lumbar spinal cord to perform an acute instrumental learning task was examined in neonatally (postnatal day 5; P5) spinal cord transected (i.e., spinal) rats. At ∼P30, rats began either unipedal hindlimb stand training (Stand-Tr; 20-25 min/day, 5 days/wk), or bipedal hindlimb step training (Step-Tr; 20 min/day; 5 days/wk) for 7 wks. Non-trained spinal rats (Non-Tr) served as controls. After 7 wks all groups were tested on the flexor-biased instrumental learning paradigm. We hypothesized that 1) Step-Tr rats would exhibit an increased capacity to learn the flexor-biased task relative to Non-Tr subjects, as locomotion involves repetitive training of the tibialis anterior (TA), the ankle flexor whose activation is important for successful instrumental learning, and 2) Stand-Tr rats would exhibit a deficit in acute motor learning, as unipedal training activates the ipsilateral ankle extensors, but not flexors. Results showed no differences in acute learning potential between Non-Tr and Step-Tr rats, while the Stand-Tr group showed a reduced capacity to learn the acute task. Further investigation of the Stand-Tr group showed that, while both the ipsilateral and contralateral hindlimbs were significantly impaired in their acute learning potential, the contralateral, untrained hindlimbs exhibited significantly greater learning deficits. These results suggest that different types of chronic peripheral input may have a significant impact on the ability to learn a novel motor task, and demonstrate the potential for experience-dependent plasticity in the spinal cord in the absence of supraspinal connectivity. PMID:17434606

  6. Mesenchymal Stem Cell-Based Therapy Improves Lower Limb Movement After Spinal Cord Ischemia in Rats.

    PubMed

    Takahashi, Shinya; Nakagawa, Kei; Tomiyasu, Mayumi; Nakashima, Ayumu; Katayama, Keijiro; Imura, Takeshi; Herlambang, Bagus; Okubo, Tomoe; Arihiro, Koji; Kawahara, Yumi; Yuge, Louis; Sueda, Taijiro

    2018-05-01

    Spinal cord ischemia is a devastating complication after thoracic and thoracoabdominal aortic operations. In this study, we aimed to investigate the effects of mesenchymal stem cells (MSCs), which have regenerative capability and exert paracrine actions on damaged tissues, injected into rat models of spinal cord ischemia-reperfusion injury. Forty-five Sprague-Dawley rats were divided into sham, phosphate-buffered saline (PBS), and MSC groups. Spinal cord ischemia was induced in the latter two groups by balloon occlusion of the thoracic aorta. MSCs and PBS were then immediately injected into the left carotid artery of the MSC and PBS groups, respectively. Hindlimb motor function was evaluated at 6 and 24 hours. The spinal cord was removed at 24 hours after ischemia-reperfusion injury, and histologic and immunohistochemical analyses and real-time polymerase chain reaction assessments were performed. Rats in the MSC and PBS groups showed flaccid paraparesis/paraplegia postoperatively. Hindlimb function was significantly better at 6 and 24 hours after ischemia-reperfusion injury in the MSC group than in the PBS group (p < 0.05). The number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive neuron cells in the spinal cord and the ratio of Bax to Bcl2 were significantly larger (p < 0.05) in the PBS group than in the MSC group. The injected MSCs were observed in the spinal cord 24 hours after ischemia-reperfusion injury. The MSC therapy by transarterial injection immediately after spinal cord ischemia-reperfusion injury may improve lower limb function by preventing apoptosis of neuron cells in the spinal cord. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Pregabalin Suppresses Spinal Neuronal Hyperexcitability and Visceral Hypersensitivity in the Absence of Peripheral Pathophysiology

    PubMed Central

    Bannister, Kirsty; Sikandar, Shafaq; Bauer, Claudia S.; Dolphin, Annette C.; Porreca, Frank; Dickenson, Anthony H.

    2011-01-01

    Background Opioid induced hyperalgesia is recognised in the laboratory and the clinic, generating central hyperexcitability in the absence of peripheral pathology. We investigated pregabalin, indicated for neuropathic pain, and ondansetron, a drug that disrupts descending serotonergic processing in the central nervous system, on spinal neuronal hyperexcitability and visceral hypersensitivity in a rat model of opioid induced hyperalgesia. Methods Sprague-Dawley rats (180-200 g) were implanted with morphine (90μg · μl−1 · hr−1) or saline (0.9% w/v) filled osmotic mini-pumps. On days 7-10 in isoflurane anaesthetized animals we evaluated the effects of (a) systemic pregabalin on spinal neuronal and visceromotor responses and (b) spinal ondansetron on dorsal horn neuronal responses. The messenger RNA levels of α2δ-1, 5HT3A and mu-opioid receptor in the dorsal root ganglia of all animals were analysed. Results In morphine-treated animals the evoked spinal neuronal responses were enhanced to a sub-set of thermal and mechanical stimuli. This activity was attenuated by pregabalin (by at least 71%) and ondansetron (37%), and the visceromotor response to a sub-set of colorectal distension pressures was attenuated by pregabalin (52.8%) (n = 8 for all measures, P < 0.05). Messenger RNA levels were unchanged. Conclusions The inhibitory action of pregabalin in opioid induced hyperalgesia animals is not neuropathy-dependent nor reliant on up-regulation of the α2δ-1 subunit of voltage gated calcium channels, mechanisms proposed essential for pregabalin’s efficacy in neuropathy. In opioid induced hyperalgesia, which extends to colonic distension, a serotonergic facilitatory system may be upregulated creating an environment that’s permissive for pregabalin-mediated analgesia without peripheral pathology. PMID:21602662

  8. Topiramate as a neuroprotective agent in a rat model of spinal cord injury.

    PubMed

    Narin, Firat; Hanalioglu, Sahin; Ustun, Huseyin; Kilinc, Kamer; Bilginer, Burcak

    2017-12-01

    Topiramate (TPM) is a widely used antiepileptic and antimigraine agent which has been shown to exert neuroprotective effects in various experimental traumatic brain injury and stroke models. However, its utility in spinal cord injury has not been studied extensively. Thus, we evaluated effects of TPM on secondary cellular injury mechanisms in an experimental rat model of traumatic spinal cord injury (SCI). After rat models of thoracic contusive SCI were established by free weight-drop method, TPM (40 mg/kg) was given at 12-hour intervals for four times orally. Post TPM treatment, malondialdehyde and protein carbonyl levels were significantly reduced and reduced glutathione levels were increased, while immunoreactivity for endothelial nitric oxide synthase, inducible nitric oxide synthase, and apoptotic peptidase activating factor 1 was diminished in SCI rats. In addition, TPM treatment improved the functional recovery of SCI rats. This study suggests that administration of TPM exerts neuroprotective effects on SCI.

  9. Involvement of melatonin metabolites in the long-term inhibitory effect of the hormone on rat spinal nociceptive transmission.

    PubMed

    Mondaca, Mauricio; Hernández, Alejandro; Valladares, Luis; Sierralta, Walter; Noseda, Rodrigo; Soto-Moyano, Rubén

    2004-02-01

    There is evidence that melatonin and its metabolites could bind to nuclear sites in neurones, suggesting that this hormone is able to exert long-term functional effects in the central nervous system via genomic mechanisms. This study was designed to investigate (i) whether systemically administered melatonin can exert long-term effects on spinal cord windup activity, and (ii) whether blockade of melatonin degradation with eserine could prevent this effect. Rats receiving melatonin (10 mg/kg ip), the same dose of melatonin plus eserine (0.5 mg/kg ip), or saline were studied. Seven days after administration of the drugs or saline, spinal windup of rats was assessed in a C-fiber reflex response paradigm. Results show that rats receiving melatonin exhibited a reduction in spinal windup activity. This was not observed in the animals receiving melatonin plus eserine or saline, suggesting a role for melatonin metabolites in long-term changes of nociceptive transmission in the rat spinal cord.

  10. Mechanisms of spinal motoneurons survival in rats under simulated hypogravity on earth

    NASA Astrophysics Data System (ADS)

    Islamov, R. R.; Mishagina, E. A.; Tyapkina, O. V.; Shajmardanova, G. F.; Eremeev, A. A.; Kozlovskaya, I. B.; Nikolskij, E. E.; Grigorjev, A. I.

    2011-05-01

    It was previously shown that different cell types in vivo and in vitro may die via apoptosis under weightlessness conditions in space as well as in simulated hypogravity on the Earth. We assessed survivability of spinal motoneurons of rats after 35-day antiorthostatic hind limb suspension. Following weight bearing, unloading the total protein content in lumbar spinal cord is dropped by 21%. The electrophysiological studies of m. gastrocnemius revealed an elevated motoneurons' reflex excitability and conduction disturbances in the sciatic nerve axons. The number of myelinated fibers in the ventral root of experimental animals was insignificantly increased by 35-day of antiorthostatic hind limb suspension, although the retrograde axonal transport was significantly decreased during the first week of simulated hypogravity. The results of the immunohistochemical assay with antibodies against proapoptotic protein caspase 9 and cytotoxicity marker neuron specific nitric oxide synthase (nNOS) and the TUNEL staining did not reveal any signs of apoptosis in motoneurons of suspended and control animals. To examine the possible adaptation mechanisms activated in motoneurons in response to simulated hypogravity we investigated immunoexpression of Hsp25 and Hsp70 in lumbar spinal cord of the rats after 35-day antiorthostatic hind limb suspension. Comparative analysis of the immunohistochemical reaction with anti-Hsp25 antibodies revealed differential staining of motoneurons in intact and experimental animals. The density of immunoprecipitate with anti-Hsp25 antibodies was substantially higher in motoneurons of the 35-day suspended than control rats and the more intensive precipitate in this reaction was observed in motoneuron neuritis. Quantitative analysis of Hsp25 expression demonstrated an increase in the Hsp25 level by 95% in experimental rats compared to the control. The immunoexpression of Hsp70 found no qualitative and quantitative differences in control and experimental

  11. Decoupling Actions from Consequences: Dorsal Hippocampal Lesions Facilitate Instrumental Performance, but Impair Behavioral Flexibility in Rats

    PubMed Central

    Busse, Sebastian; Schwarting, Rainer K. W.

    2016-01-01

    The present study is part of a series of experiments, where we analyze why and how damage of the rat’s dorsal hippocampus (dHC) can enhance performance in a sequential reaction time task (SRTT). In this task, sequences of distinct visual stimulus presentations are food-rewarded in a fixed-ratio-13-schedule. Our previous study (Busse and Schwarting, 2016) had shown that rats with lesions of the dHC show substantially shorter session times and post-reinforcement pauses (PRPs) than controls, which allows for more practice when daily training is kept constant. Since sequential behavior is based on instrumental performance, a sequential benefit might be secondary to that. In order to test this hypothesis in the present study, we performed two experiments, where pseudorandom rather than sequential stimulus presentation was used in rats with excitotoxic dorsal hippocampal lesions. Again, we found enhanced performance in the lesion-group in terms of shorter session times and PRPs. During the sessions we found that the lesion-group spent less time with non-instrumental behavior (i.e., grooming, sniffing, and rearing) after prolonged instrumental training. Also, such rats showed moderate evidence for an extinction impairment under devalued food reward conditions and significant deficits in a response-outcome (R-O)-discrimination task in comparison to a control-group. These findings suggest that facilitatory effects on instrumental performance after dorsal hippocampal lesions may be primarily a result of complex behavioral changes, i.e., reductions of behavioral flexibility and/or alterations in motivation, which then result in enhanced instrumental learning. PMID:27375453

  12. Involvement of peripheral and spinal tumor necrosis factor α in spinal cord hyperexcitability during knee joint inflammation in rats.

    PubMed

    König, Christian; Zharsky, Maxim; Möller, Christian; Schaible, Hans-Georg; Ebersberger, Andrea

    2014-03-01

    Tumor necrosis factor α (TNFα) is produced not only in peripheral tissues, but also in the spinal cord. The purpose of this study was to address the potential of peripheral and spinal TNFα to induce and maintain spinal hyperexcitability, which is a hallmark of pain states in the joints during rheumatoid arthritis and osteoarthritis. In vivo recordings of the responses of spinal cord neurons to nociceptive knee input under normal conditions and in the presence of experimental knee joint inflammation were obtained in anesthetized rats. TNFα, etanercept, or antibodies to TNF receptors were applied to either the knee joint or the spinal cord surface. Injection of TNFα into the knee joint cavity increased the responses of spinal cord neurons to mechanical joint stimulation, and injection of etanercept into the knee joint reduced the inflammation-evoked spinal activity. These spinal effects closely mirrored the induction and reduction of peripheral sensitization. Responses to joint stimulation were also enhanced by spinal application of TNFα, and spinal application of either etanercept or anti-TNF receptor type I significantly attenuated the generation of inflammation-evoked spinal hyperexcitability, which is characterized by widespread pain sensitization beyond the inflamed joint. Spinally applied etanercept did not reduce established hyperexcitability in the acute kaolin/carrageenan model. In antigen-induced arthritis, etanercept decreased spinal responses on day 1, but not on day 3. While peripheral TNFα increases spinal responses to joint stimulation, spinal TNFα supports the generation of the full pattern of spinal hyperexcitability. However, established spinal hyperexcitability may be maintained by downstream mechanisms that are independent of spinal TNFα. Copyright © 2014 by the American College of Rheumatology.

  13. Analgesic effect of Minocycline in rat model of inflammation-induced visceral pain

    PubMed Central

    Kannampalli, Pradeep; Pochiraju, Soumya; Bruckert, Mitchell; Shaker, Reza; Banerjee, Banani; Sengupta, Jyoti N.

    2014-01-01

    The present study investigates the analgesic effect of minocycline, a semi-synthetic tetracycline antibiotic, in a rat model of inflammation-induced visceral pain. Inflammation was induced in male rats by intracolonic administration of tri-nitrobenzenesulphonic acid (TNBS). Visceral hyperalgesia was assessed by comparing the viscero-motor response (VMR) to graded colorectal distension (CRD) prior and post 7 days after TNBS treatment. Electrophysiology recordings from CRD-sensitive pelvic nerve afferents (PNA) and lumbo-sacral (LS) spinal neurons were performed in naïve and inflamed rats. Colonic inflammation produced visceral hyperalgesia characterized by increase in the VMRs to CRD accompanied with simultaneous activation of microglia in the spinal cord and satellite glial cells (SGCs) in the dorsal root ganglions (DRGs). Selectively inhibiting the glial activation following inflammation by araC (Arabinofuranosyl Cytidine) prevented the development of visceral hyperalgesia. Intrathecal minocycline significantly attenuated the VMR to CRD in inflamed rats, whereas systemic minocycline produced a delayed effect. In electrophysiology experiments, minocycline significantly attenuated the mechanotransduction of CRD-sensitive PNAs and the responses of CRD-sensitive LS spinal neurons in TNBS-treated rats. While the spinal effect of minocycline was observed within 5 min of administration, systemic injection of the drug produced a delayed effect (60 min) in inflamed rats. Interestingly, minocycline did not exhibit analgesic effect in naïve, non-inflamed rats. The results demonstrate that intrathecal injection of minocycline can effectively attenuate inflammation-induced visceral hyperalgesia. Minocycline might as well act on neuronal targets in the spinal cord of inflamed rats, in addition to the widely reported glial inhibitory action to produce analgesia. PMID:24485889

  14. Activation of spinal and supraspinal cannabinoid-1 receptors lead to antinociception in a rat model of neuropathic spinal cord injury pain

    PubMed Central

    Hama, Aldric; Sagen, Jacqueline

    2011-01-01

    Activation of CNS cannabinoid subtype-1 (CB1) receptors has been shown to mediate the antinociceptive and other effects of systemically administered CB receptor agonists. The endogenous peptide CB receptor ligand hemopressin (HE) has previously demonstrated an antinociceptive effect in rats with a hind paw inflammation, without exhibiting characteristic CB1 receptor-mediated side-effects. The current study evaluated the effect of intrathecal (i.t.) and intracerebroventricular (i.c.v.) injection of HE in a rat model of neuropathic spinal cord injury (SCI) pain. The non-subtype selective CB receptor agonist WIN 55,212-2 was also centrally administered in SCI rats as a comparator. Four weeks following an acute compression of the mid-thoracic spinal cord, rats displayed markedly decreased hind paw withdrawal thresholds, indicative of below-level neuropathic pain. Central administration of WIN 55,212-2 significantly increased withdrawal thresholds, whereas HE did not. Hemopressin has been reported to block CB1 receptors in vitro, similar to the CB1 receptor antagonist rimonabant. Pretreatment with rimonabant completely blocked the antinociceptive effect of centrally administered WIN 55,212-2, but pretreatment with HE did not. While the data confirm that activation of either supraspinal or spinal CB1 receptors leads to significant antinociception in SCI rats, the current data do not support an antinociceptive effect from an acute blockade of central CB1 receptors, HE’s putative antinociceptive mechanism, in neuropathic SCI rats. Although such a mechanism could be useful in other models of pain with a significant inflammatory component, the current data indicate that activation of CB1 receptors is needed to ameliorate neuropathic SCI pain. PMID:21813113

  15. Cycling exercise and fetal spinal cord transplantation act synergistically on atrophied muscle following chronic spinal cord injury in rats.

    PubMed

    Peterson, C A; Murphy, R J; Dupont-Versteegden, E E; Houlé, J D

    2000-01-01

    The potential of two interventions, alone or in combination, to restore chronic spinal cord transection-induced changes in skeletal muscles of adult Sprague-Dawley rats was studied. Hind limb skeletal muscles were examined in the following groups of animals: rats with a complete spinal cord transection (Tx) for 8 weeks; Tx with a 4-week delay before initiation of a 4-week motor-assisted cycling exercise (Ex) program; Tx with a 4-week delay before transplantation (Tp) of fetal spinal cord tissue into the lesion cavity; Tx with a 4-week delay before Tp and Ex; and uninjured control animals. Muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas were significantly reduced 8 weeks after transection. Whereas transplantation of fetal spinal cord tissue did not reverse this atrophy and exercise alone had only a modest effect in restoring lost muscle mass, the combination of exercise and transplantation significantly increased muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas in both soleus and plantaris muscles. Spinal cord injury (SCI) also caused changes in myosin heavy chain (MyHC) expression toward faster isoforms in both soleus and plantaris and increased soleus myofiber succinate dehydrogenase (SDH) activity. Combined exercise and transplantation led to a change in the expression of the fastest MyHC isoform in soleus but had no effect in the plantaris. Exercise alone and in combination with transplantation reduced SDH activity to control levels in the soleus. These results suggest a synergistic action of exercise and transplantation of fetal spinal cord tissue on skeletal muscle properties following SCI, even after an extended post-injury period before intervention.

  16. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence

    PubMed Central

    Udoekwere, Ubong I.; Oza, Chintan S.

    2016-01-01

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with “poor” and “high weight support” groupings. A total of 35% of rats initially classified as “poor” were able to increase their weight-supported step measures to a level considered “high weight support” after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. SIGNIFICANCE STATEMENT Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal

  17. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

    PubMed

    Udoekwere, Ubong I; Oza, Chintan S; Giszter, Simon F

    2016-08-10

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes

  18. [Effect of jingui shenqi pill on morphology of injured spinal cell apoptosis in rats caused by brachytherapy].

    PubMed

    Xiao, Lu-wei; Shen, Jin-wen; Wu, Cheng-liang

    2006-07-01

    To study the effect of Jingui Shenqi Pill (JSP) on morphology of spinal cell apoptosis in rats injured by 192Ir irradiation. One hundred and twenty rats were randomly divided into four groups: the model group, the JSP group, the prednisone group and the normal group. Corresponding pharmaceutics were given to rats once a day for 14 days respectively. Then except rats in the normal group, the others received 192Ir interstitial irradiation with the dosage of 22 Gy using back-fixing technology. The injured segments of spinal cord were taken out for HE staining, TUNEL examination and observation with electron microscope 8 hrs, 24 hrs and 4 weeks after irradiation. HE staining examination showed no obvious histological change in rats 8 and 24 hrs after irradiation, but pathological changes, as tissue rarefaction and hemorrhage did found in white matter of spinal cord shown by TUNEL 4 weeks later. Electron microscopic examination and TUNEL staining showed that as compared with the model group, the apoptotic index in the JSP and predinisone treated groups was significantly lower (P < 0.01) 8 hrs after radiation, but it showed insignificant difference between groups at the time points of 24 hrs and 4 weeks after radiation (P > 0.05). JSP could act against apoptosis of gliocyte in spinal cord of rats in early stage after brachytherapy, indicating that JSP possessing a prednisone-like action.

  19. Spinal microglia are required for long-term maintenance of neuropathic pain.

    PubMed

    Echeverry, Stefania; Shi, Xiang Qun; Yang, Mu; Huang, Hao; Wu, YiChen; Lorenzo, Louis-Etienne; Perez-Sanchez, Jimena; Bonin, Robert P; De Koninck, Yves; Zhang, Ji

    2017-09-01

    While spinal microglia play a role in early stages of neuropathic pain etiology, whether they are useful targets to reverse chronic pain at late stages remains unknown. Here, we show that microglia activation in the spinal cord persists for >3 months following nerve injury in rodents, beyond involvement of proinflammatory cytokine and chemokine signalling. In this chronic phase, selective depletion of spinal microglia in male rats with the targeted immunotoxin Mac1-saporin and blockade of brain-derived neurotrophic factor-TrkB signalling with intrathecal TrkB Fc chimera, but not cytokine inhibition, almost completely reversed pain hypersensitivity. By contrast, local spinal administration of Mac1-saporin did not affect nociceptive withdrawal threshold in control animals nor did it affect the strength of afferent-evoked synaptic activity in the spinal dorsal horn in normal conditions. These findings show that the long-term, chronic phase of nerve injury-induced pain hypersensitivity is maintained by microglia-neuron interactions. The findings also effectively separate the central signalling pathways underlying the maintenance phase of the pathology from the early and peripheral inflammatory reactions to injury, pointing to different targets for the treatment of acute vs chronic injury-induced pain.

  20. Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord.

    PubMed

    McCarthy, Carly J; Tomasella, Eugenia; Malet, Mariana; Seroogy, Kim B; Hökfelt, Tomas; Villar, Marcelo J; Gebhart, G F; Brumovsky, Pablo R

    2016-05-01

    Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity.

  1. The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the medulla oblongata, spinal cord, cranial and spinal nerves of frog, Microhyla ornata.

    PubMed

    Jadhao, Arun G; Biswas, Saikat P; Bhoyar, Rahul C; Pinelli, Claudia

    2017-04-01

    Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) enzymatic activity has been reported in few amphibian species. In this study, we report its unusual localization in the medulla oblongata, spinal cord, cranial nerves, spinal nerves, and ganglions of the frog, Microhyla ornata. In the rhombencephalon, at the level of facial and vagus nerves, the NADPH-d labeling was noted in the nucleus of the abducent and facial nerves, dorsal nucleus of the vestibulocochlear nerve, the nucleus of hypoglossus nerve, dorsal and lateral column nucleus, the nucleus of the solitary tract, the dorsal field of spinal grey, the lateral and medial motor fields of spinal grey and radix ventralis and dorsalis (2-10). Many ependymal cells around the lining of the fourth ventricle, both facial and vagus nerves and dorsal root ganglion, were intensely labeled with NADPH-d. Most strikingly the NADPH-d activity was seen in small and large sized motoneurons in both medial and lateral motor neuron columns on the right and left sides of the brain. This is the largest stained group observed from the caudal rhombencephalon up to the level of radix dorsalis 10 in the spinal cord. The neurons were either oval or elongated in shape with long processes and showed significant variation in the nuclear and cellular diameter. A massive NADPH-d activity in the medulla oblongata, spinal cord, and spinal nerves implied an important role of this enzyme in the neuronal signaling as well as in the modulation of motor functions in the peripheral nervous systems of the amphibians. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Intrathecal P/Q- and R-type calcium channel blockades on spinal substance P release and c-Fos expression

    PubMed Central

    Terashima, Tetsuji; Xu, Qinghao; Yamaguchi, Shigeki; Yaksh, Tony L.

    2013-01-01

    Intrathecal (IT) studies have shown that several voltage sensitive calcium channels (VSCCs), such as the L-, N- and T-type may play roles in nociception and that of these only the N-type regulates primary afferent substance P (SP) release. However, the actions of other VSCCs at the spinal level are not well known. We investigated the roles of spinal P/Q- and R-type VSCCs, by IT administration of R-type (SNX-482) and P/Q-type (ω-agatoxin IVA) VSCC blockers on intraplantar formalin-evoked flinching, SP release from primary afferents and c-Fos expression in spinal dorsal horn. Intraplantar injection of formalin (2.5%, 50 µL) produced an intense, characteristic biphasic paw flinching response. In rats with IT catheters, IT SNX-482 (0.5 µg) reduced formalin-evoked paw flinching in both phase 1 and 2 compared with vehicle. Intraplantar formalin caused robust neurokinin 1 receptor (NK1r) internalization (indicating SP release) and c-Fos expression in the ipsilateral dorsal horn, which were blocked by IT SNX-482. IT ω-agatoxin IVA (0.03, 0.125 and 0.5 µg) did not reduce formalin-evoked paw flinching or c-Fos expression at any doses, with higher doses resulting in motor dysfunction. Thus, we demonstrated that blockade of spinal R-type, but not P/Q type VSCCs attenuated formalin-induced pain behavior, NK1r internalization and c-Fos expression in the superficial dorsal horn. This study supports a role for Cav2.3 in presynaptic neurotransmitter release from peptidergic nociceptive afferents and pain behaviors. PMID:23810829

  3. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries.

    PubMed

    Tandon, Shashank; Kambi, Niranjan; Mohammed, Hisham; Jain, Neeraj

    2013-07-01

    Understanding brain reorganization following long-term spinal cord injuries is important for optimizing recoveries based on residual function as well as developing brain-controlled assistive devices. Although it has been shown that the motor cortex undergoes partial reorganization within a few weeks after peripheral and spinal cord injuries, it is not known if the motor cortex of rats is capable of large-scale reorganization after longer recovery periods. Here we determined the organization of the rat (Rattus norvegicus) motor cortex at 5 or more months after chronic lesions of the spinal cord at cervical levels using intracortical microstimulation. The results show that, in the rats with the lesions, stimulation of neurons in the de-efferented forelimb motor cortex no longer evokes movements of the forelimb. Instead, movements of the body parts in the adjacent representations, namely the whiskers and neck were evoked. In addition, at many sites, movements of the ipsilateral forelimb were observed at threshold currents. The extent of representations of the eye, jaw and tongue movements was unaltered by the lesion. Thus, large-scale reorganization of the motor cortex leads to complete filling-in of the de-efferented cortex by neighboring representations following long-term partial spinal cord injuries at cervical levels in adult rats. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Anti-allodynic effect of intrathecal processed Aconitum jaluense is associated with the inhibition of microglial activation and P2X7 receptor expression in spinal cord.

    PubMed

    Yang, Jihoon; Park, Keun Suk; Yoon, Jae Joon; Bae, Hong-Beom; Yoon, Myung Ha; Choi, Jeong Il

    2016-07-13

    For their analgesic and anti-arthritic effects, Aconitum species have been used in folk medicine in some East Asian countries. Although their analgesic effect is attributed to its action on voltage-dependent sodium channels, they also suppress purinergic receptor expression in dorsal root ganglion neurons in rats with neuropathic pain. In vitro study also demonstrated that the Aconitum suppresses ATP-induced P2X7 receptor (P2X7R)-mediated inflammatory responses in microglial cell lines. Herein, we examined the effect of intrathecal administration of thermally processed Aconitum jaluense (PA) on pain behavior, P2X7R expression and microglial activation in a rat spinal nerve ligation (SNL) model. Mechanical allodynia induced by L5 SNL in Sprague-Dawley rats was measured using the von Frey test to evaluate the effect of intrathecal injection of PA. Changes in the expression of P2X7R in the spinal cord were examined using RT-PCR and Western blot analysis. In addition, the effect of intrathecal PA on microglial activation was evaluated by immunofluorescence. Intrathecal PA attenuated mechanical allodynia in a dose-dependent manner showing both acute and chronic effects with 65 % of the maximal possible effect. The expression and production of spinal P2X7R was increased five days after SNL, but daily intrathecal PA injection significantly inhibited the increase to the level of naïve animals. Immunofluorescence of the spinal cord revealed a significant increase in P2X7R expression and activation of microglia in the dorsal horn, which was inhibited by intrathecal PA treatment. P2X7R co-localized with microglia marker, but not neurons. Intrathecal PA exerts anti-allodynic effects in neuropathic pain, possibly by suppressing P2X7R production and expression as well as reducing microglial activation in the spinal cord.

  5. Beneficial effects of early hemostasis on spinal cord injury in the rat

    PubMed Central

    Fan, H; Chen, K; Duan, L; Wang, Y-Z; Ju, G

    2016-01-01

    Study design: Experimental study. Objectives: To investigate the effect of early hemostasis on spinal cord injury (SCI). Setting: Fourth Military Medical University, Xi'an, China. Methods: Sprague Dawley rats were used. Hematoxylin and eosin (HE) staining was performed to observe hemorrhage at different time points (2, 6, 12, 24 and 48 h) after SCI to determine the time window of hemostatic drug administration (n=3 per time point). Three different concentrations of Etamsylate (0.025, 0.05 and 0.1 g kg−1) were administered immediately and 5 and 10 h after SCI to evaluate the effective dosage (n=6 per group). Another 82 rats were then randomly divided into two groups, Etamsylate group (0.1 g kg−1, n=41) and glucose control group (n=41). Nissl staining was performed to observe neurons at 10 days post injury. Immunohistochemistry, western blot and quantitative real-time PCR were performed to detect tissue necrosis at 7 d.p.i., the activation of astrocytes and microglia/macrophages and lesion cavity at 10 d.p.i. Basso–Beattie–Bresnahan scoring and rump height index assay were used to examine locomotion recovery. Results: Early hemostasis reduced the lesion area and tissue necrosis, enhanced neuronal survival, alleviated the activation of microglia/macrophages and astrocytes and facilitated functional recovery after spinal cord contusion in rats. Early hemostasis decreased hemorrhage area and lesion area after spinal cord transection in rats. Conclusion: The present study demonstrated that early hemostasis has beneficial effects on SCI in the rat. It has the potential to be translated into clinical practice. PMID:27137123

  6. Activation of p38 MAP Kinase is Involved in Central Neuropathic Pain Following Spinal Cord Injury

    PubMed Central

    Crown, Eric D; Gwak, Young Seob; Ye, Zaiming; Johnson, Kathia M; Hulsebosch, Claire E

    2008-01-01

    Recent work regarding chronic central neuropathic pain (CNP) following spinal cord injury (SCI) suggests that activation of key signaling molecules such as members of the mitogen activated protein kinase (MAPK) family play a role in the expression of at-level mechanical allodynia. Specifically, Crown and colleagues (2005, 2006) have shown that the development of at-level CNP following moderate spinal cord injury is correlated with increased expression of the activated (and thus phosphorylated) forms of the MAPKs extracellular signal related kinase and p38 MAPK. The current study extends this work by directly examining the role of p38 MAPK in the maintenance of at-level CNP following spinal cord injury. Using a combination of behavioral, immunocytochemical, and electrophysiological measures we demonstrate that increased activation of p38 MAPK occurs in the spinal cord just rostral to the site of injury in rats that develop at-level mechanical allodynia after moderate SCI. Immunocytochemical analyses indicate that the increases in p38 MAPK activation occurred in astrocytes, microglia, and dorsal horn neurons in the spinal cord rostral to the site of injury. Inhibiting the enzymatic activity of p38 MAPK dose dependently reverses the behavioral expression of at-level mechanical allodynia and also decreases the hyperexcitability seen in thoracic dorsal horn neurons after moderate SCI. Taken together, these novel data are the first to demonstrate causality that increased activation of p38 MAPK in multiple cell types play an important role in the maintenance of at-level CNP following spinal cord injury. PMID:18590729

  7. Dorsal column stimulator applications

    PubMed Central

    Yampolsky, Claudio; Hem, Santiago; Bendersky, Damián

    2012-01-01

    Background: Spinal cord stimulation (SCS) has been used to treat neuropathic pain since 1967. Following that, technological progress, among other advances, helped SCS become an effective tool to reduce pain. Methods: This article is a non-systematic review of the mechanism of action, indications, results, programming parameters, complications, and cost-effectiveness of SCS. Results: In spite of the existence of several studies that try to prove the mechanism of action of SCS, it still remains unknown. The mechanism of action of SCS would be based on the antidromic activation of the dorsal column fibers, which activate the inhibitory interneurons within the dorsal horn. At present, the indications of SCS are being revised constantly, while new applications are being proposed and researched worldwide. Failed back surgery syndrome (FBSS) is the most common indication for SCS, whereas, the complex regional pain syndrome (CRPS) is the second one. Also, this technique is useful in patients with refractory angina and critical limb ischemia, in whom surgical or endovascular treatment cannot be performed. Further indications may be phantom limb pain, chronic intractable pain located in the head, face, neck, or upper extremities, spinal lumbar stenosis in patients who are not surgical candidates, and others. Conclusion: Spinal cord stimulation is a useful tool for neuromodulation, if an accurate patient selection is carried out prior, which should include a trial period. Undoubtedly, this proper selection and a better knowledge of its underlying mechanisms of action, will allow this cutting edge technique to be more acceptable among pain physicians. PMID:23230533

  8. Exercise Preconditioning Protects against Spinal Cord Injury in Rats by Upregulating Neuronal and Astroglial Heat Shock Protein 72

    PubMed Central

    Chang, Cheng-Kuei; Chou, Willy; Lin, Hung-Jung; Huang, Yi-Ching; Tang, Ling-Yu; Lin, Mao-Tsun; Chang, Ching-Ping

    2014-01-01

    The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was injected into the injured spinal cords. In addition to reducing neuronal and astroglial HSP 72, the (SiRNA-HSP 72) significantly attenuated the beneficial effects of exercise preconditioning in reducing functional deficits as well as spinal cord contusion and apoptosis. Because exercise preconditioning induces increased neuronal and astroglial levels of HSP 72 in the gray matter of normal spinal cord tissue, exercise preconditioning promoted functional recovery in rats after SCI by upregulating neuronal and astroglial HSP 72 in the gray matter of the injured spinal cord. We reveal an important function of neuronal and astroglial HSP 72 in protecting neuronal and astroglial apoptosis in the injured spinal cord. We conclude that HSP 72-mediated exercise preconditioning is a promising strategy for facilitating functional recovery from SCI. PMID:25334068

  9. [RECONSTRUCTION OF LOWER EXTREMITY FUNCTION OF COMPLETE SPINAL CORD INJURY RATS BY FIRST NEURON CONNECTION].

    PubMed

    Wang, Fangyong; Yuan, Yuan; Li, Jianjun

    2015-12-01

    To investigate the effects of the first neuron connection for the reconstruction of lower extremity function of complete spinal cord injury rats. Forty adult female Sprague Dawley rats of 300-350 g in weight were selected to prepare the models of L₁ transverse spinal cord injury. After 2 weeks of establishing model, the rats were randomly divided into control group (n = 20) and experimental group (n = 20). In the experimental group, the right hind limb function was reconstructed directly by the first neuron; in the control group, the other treatments were the same to the experimental group except that the distal tibial nerve and the proximal femoral nerve were not sutured. The recovery of motor function of lower extremity was observed by the Basso-Beattie-Bresnahan (BBB) scoring system on bilateral hind limbs at 7, 30, 50, and 70 days after operation. The changes of the spinal cord were observed by HE staining, neurofilament 200 immunohistochemistry staining, and the technique of horseradish peroxidase (HRP) tracing. After establishing models, 6 rats died. The right hind limb had no obvious recovery of the motor function, with the BBB score of 0 in 2 groups; the left hind limb motor function was recovered in different degrees, and there was no significant difference in BBB score between 2 groups (P > 0.05). In the experimental group, HE staining showed that the spinal cord was reconstructed with the sciatic nerve, which was embedded in the spinal cord, and the sciatic nerve membrane was clearly identified, and there was no obvious atrophy in the connecting part of the spinal cord. In the experimental group, the expression of nerve fiber was stained with immunohistochemistry, and the axons of the spinal cord were positively by stained and the peripheral nerve was connected with the spinal cord. HRP labelled synapses were detected by HRP retrograde tracing in the experimental group, while there was no HRP labelled synapse in the control group. Direct reconstruction

  10. Methane ameliorates spinal cord ischemia-reperfusion injury in rats: Antioxidant, anti-inflammatory and anti-apoptotic activity mediated by Nrf2 activation.

    PubMed

    Wang, Liping; Yao, Ying; He, Rong; Meng, Yan; Li, Na; Zhang, Dan; Xu, Jiajun; Chen, Ouyang; Cui, Jin; Bian, Jinjun; Zhang, Yan; Chen, Guozhong; Deng, Xiaoming

    2017-02-01

    Methane is reported to have antioxidant, anti-inflammatory and anti-apoptotic properties. We investigated the potential neuroprotective effects of methane-rich saline (MS) on spinal cord ischemia-reperfusion injury and determined that its therapeutic benefits are associated with the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Rats received 9min of spinal cord ischemia induced by occlusion of the descending thoracic aorta plus systemic hypotension followed by a single MS treatment (10ml/kg, ip) and 72h reperfusion. MS treatment attenuated motor sensory deficits and produced high concentrations of methane in spinal cords during reperfusion, which increased Nrf2 expression and transcriptional activity in neurons, microglia and astrocytes in the ventral, intermediate and dorsal gray matter of lumbar segments. Heme oxygenase-1, superoxide dismutase, catalase and glutathione were upregulated; and glutathione disulfide, superoxide, hydrogen peroxide, malondialdehyde, 8-hydroxy-2-deoxyguanosine and 3-nitrotyrosine were downregulated in MS-treated spinal cords. MS treatment reduced neuronal apoptosis in gray matter zones, which was consistent with the suppression of cytochrome c release to the cytosol from the mitochondria and the activation of caspase-9 and -3. Throughout the gray matter, the activation of microglia and astrocytes was inhibited; the nuclear accumulation of phosphorylated nuclear factor-kappa B p65 was reduced; and tumor necrosis factor α, interleukin 1β, chemokine (C-X-C motif) ligand 1, intercellular adhesion molecule 1 and myeloperoxidase were decreased. MS treatment attenuated blood-spinal cord barrier dysfunction by preventing the expression and activity of matrix metallopeptidase-9 and disrupting tight junction proteins. Consecutive intrathecal injection of specific siRNAs targeting Nrf2 at 24-h intervals 3 days before ischemia reduced the beneficial effects of MS. Our data indicate that MS treatment prevents IR-induced spinal

  11. Endogenous stem cell proliferation induced by intravenous hedgehog agonist administration after contusion in the adult rat spinal cord.

    PubMed

    Bambakidis, Nicholas C; Horn, Eric M; Nakaji, Peter; Theodore, Nicholas; Bless, Elizabeth; Dellovade, Tammy; Ma, Chiyuan; Wang, Xukui; Preul, Mark C; Coons, Stephen W; Spetzler, Robert F; Sonntag, Volker K H

    2009-02-01

    Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.

  12. α(2) noradrenergic receptor suppressed CaMKII signaling in spinal dorsal horn of mice with inflammatory pain.

    PubMed

    Wang, Xin-Tai; Lian, Xia; Xu, Ying-Ming; Suo, Zhan-Wei; Yang, Xian; Hu, Xiao-Dong

    2014-02-05

    Intrathecal application of α2 noradrenergic receptor agonists effectively alleviates the pathological pain induced by peripheral tissue injury. However, the spinal antinociceptive mechanisms of α2 noradrenergic receptors remain to be characterized. The present study performed immunohistochemistry and western blot to elucidate the signaling pathway initiated by α2 noradrenergic receptors in spinal dorsal horn of mice, and identified calcium/calmodulin-dependent protein kinase II (CaMKII) as an important target for noradrenergic suppression of inflammatory pain. Our data showed that intraplantar injection of Complete Freund's Adjuvant (CFA) substantially enhanced CaMKII autophosphorylation at Threonine 286, which could be abolished by intrathecal administration of α2 noradrenergic receptor agonist clonidine. Gi protein-coupled α2 noradrenergic receptor might inhibit cAMP-dependent protein kinase (PKA) to disturb CaMKII signaling. We found that pharmacological activation of PKA in intact mice also enhanced spinal CaMKII autophosphorylation level, which was completely antagonized by clonidine. Moreover, direct PKA inhibition in CFA-injected mice mimicked the suppressive effect of α2 noradrenergic receptors on CaMKII. PKA inhibition has been shown to downregulate CaMKII by enhancing protein phosphatase activity. Consistent with this notion, spinal treatment with protein phosphatase inhibitor okadaic acid ruled out clonidine-mediated CaMKII dephosphorylation in CFA-injected mice. Through PKA/protein phosphatase/CaMKII pathway, clonidine noticeably decreased CFA-evoked phosphorylation of N-methyl-d-aspartate subtype glutamate receptor GluN1 and GluN2B subunit as well as α-amino-3-hydroxy-5-methylisoxazole-4-propionic Acid subtype glutamate receptor GluA1 subunit. These data suggested that interference with CaMKII signaling might represent an important mechanism underlying noradrenergic suppression of inflammatory pain. Copyright © 2013 Elsevier B.V. All rights

  13. Connections from the rat dorsal column nuclei (DCN) to the periaqueductal gray matter (PAG).

    PubMed

    Barbaresi, Paolo; Mensà, Emanuela

    2016-08-01

    Electrical stimulation of the dorsal columns (DCs; spinal cord stimulation; SCS) has been proposed to treat chronic neuropathic pain. SCS may activate a dual mechanism that would affect both the spinal cord and supraspinal levels. Stimulation of DCs or DC nuclei (DCN) in animals where neuropathic pain has been induced causes activation of brainstem centers including the periaqueductal gray (PAG), which is involved in the endogenous pain suppression system. Biotinylated dextran-amine (BDA) was iontophoretically injected into the DCN to analyze the ascending projection directed to the PAG. Separate injections into the gracile nucleus (GrN) and the cuneate nucleus (CunN) showed BDA-positive fibers terminating in different regions of the contralateral PAG. GrN-PAG afferents terminated in the caudal and middle portions of PAG-l, whereas CunN-PAG fibers terminated in the middle and rostral portions of PAG-l. Based on the DCN somatotopic map, the GrN sends information to the PAG from the contralateral hindlimb and the tail and the CunN from the contralateral forelimb, shoulder, neck and ear. This somatotopic organization is consistent with earlier electrophysiological and PAG stimulation studies. These fibers could form part of the DCs-brainstem-spinal cord loop, which may be involved in the inhibitory effects of SCS on neuropathic pain. Copyright © 2016. Published by Elsevier Ireland Ltd.

  14. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats

    PubMed Central

    Solís, Karina H.; Méndez, Laura I.; García-López, Guadalupe; Díaz, Néstor F.; Portillo, Wendy; De Nova-Ocampo, Mónica; Molina-Hernández, Anayansi

    2017-01-01

    Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E) 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H1 receptor (H1R) which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H1R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2) and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H1R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H1R expression by qRT-PCR and Western blot and, finally, we tested H1R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers) and partially reverted the increased level of MAP2 protein at E14, concluding that H1R have an important role in the increased neurogenesis within the dorsal telencephalon of embryos from

  15. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats.

    PubMed

    Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M

    2012-04-01

    Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture.We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury.

  16. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats

    PubMed Central

    Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M

    2012-01-01

    Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture. We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury. PMID:22351637

  17. TRANSCRIPT EXPRESSION OF VESICULAR GLUTAMATE TRANSPORTERS IN LUMBAR DORSAL ROOT GANGLIA AND THE SPINAL CORD OF MICE – EFFECTS OF PERIPHERAL AXOTOMY OR HINDPAW INFLAMMATION

    PubMed Central

    MALET, M.; VIEYTES, C. A.; LUNDGREN, K. H.; SEAL, R. P.; TOMASELLA, E.; SEROOGY, K. B.; HÖKFELT, T.; GEBHART, G.F.; BRUMOVSKY, P. R.

    2013-01-01

    Using specific riboprobes, we characterized the expression of VGLUT1-VGLUT3 transcripts in lumbar 4-5 (L4-5) DRGs and the thoracolumbar to lumbosacral spinal cord in male BALB/C mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4-5 DRGs of injured mice, VGLUT1-, VGLUT2- and VGLUT3 mRNAs were expressed in ~45%, ~69% or ~17% of neuron profiles (NPs), respectively. VGLUT1 was expressed in large and medium-sized NPs, VGLUT2 in NPs of all sizes, and VGLUT3 in small and medium-sized NPs. In the spinal cord, VGLUT1 was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III-IV. In contrast, VGLUT2 was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT3 was detected in a discrete number of NPs in laminae III-IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT3, whereas VGLUT1 and VGLUT2 were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT1, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT1 and VGLUT2 transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury. PMID:23727452

  18. Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis.

    PubMed

    Rahman, W; Patel, R; Dickenson, A H

    2015-10-01

    Osteoarthritis (OA) remains one of the greatest healthcare burdens in western society, with chronic debilitating pain-dominating clinical presentation yet therapeutic strategies are inadequate in many patients. Development of better analgesics is contingent on improved understanding of the molecular mechanisms mediating OA pain. Voltage-gated calcium channels 2.2 (Cav2.2) play a critical role in spinal nociceptive transmission, therefore blocking Cav2.2 activity represents an attractive opportunity for OA pain treatment, but the only available licensed Cav2.2 antagonist ziconitide (PrilatTM) is of limited use. TROX-1 is an orally available, use dependent and state-selective Cav2 antagonist, exerting its analgesic effect primarily via Cav2.2 blockade, with an improved therapeutic window compared with ziconitide. Using a rat model of monosodium iodoacetate (MIA), 2 mg, induced OA we used in vivo electrophysiology to assess the effects of spinal or systemic administration of TROX-1 on the evoked activity of wide dynamic range spinal dorsal horn neurons in response to electrical, natural mechanical (dynamic brush and von Frey 2, 8, 26 and 6 g) and thermal (40, 45 and 45 °C) stimuli applied to the peripheral receptive field. MIA injection into the knee joint resulted in mechanical hypersensitivity of the ipsilateral hind paw and weight-bearing asymmetry. Spinal administration of TROX-1 (0.1 and 1 μg/50 μl) produced a significant dose-related inhibition of dynamic brush, mechanical (von Frey filament (vF) 8, 26 and 60 g) and noxious thermal-(45 and 48 °C) evoked neuronal responses in MIA rats only. Systemic administration of TROX-1 produced a significant inhibition of the mechanical-(vF 8, 26 and 60 g) evoked neuronal responses in MIA rats. TROX-1 did not produce any significant effect on any neuronal measure in Sham controls. Our in vivo electrophysiological results demonstrate a pathological state-dependent effect of TROX-1, which suggests an increased functional

  19. Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis

    PubMed Central

    Rahman, W.; Patel, R.; Dickenson, A.H.

    2015-01-01

    Osteoarthritis (OA) remains one of the greatest healthcare burdens in western society, with chronic debilitating pain-dominating clinical presentation yet therapeutic strategies are inadequate in many patients. Development of better analgesics is contingent on improved understanding of the molecular mechanisms mediating OA pain. Voltage-gated calcium channels 2.2 (Cav2.2) play a critical role in spinal nociceptive transmission, therefore blocking Cav2.2 activity represents an attractive opportunity for OA pain treatment, but the only available licensed Cav2.2 antagonist ziconitide (PrilatTM) is of limited use. TROX-1 is an orally available, use dependent and state-selective Cav2 antagonist, exerting its analgesic effect primarily via Cav2.2 blockade, with an improved therapeutic window compared with ziconitide. Using a rat model of monosodium iodoacetate (MIA), 2 mg, induced OA we used in vivo electrophysiology to assess the effects of spinal or systemic administration of TROX-1 on the evoked activity of wide dynamic range spinal dorsal horn neurons in response to electrical, natural mechanical (dynamic brush and von Frey 2, 8, 26 and 6 g) and thermal (40, 45 and 45 °C) stimuli applied to the peripheral receptive field. MIA injection into the knee joint resulted in mechanical hypersensitivity of the ipsilateral hind paw and weight-bearing asymmetry. Spinal administration of TROX-1 (0.1 and 1 μg/50 μl) produced a significant dose-related inhibition of dynamic brush, mechanical (von Frey filament (vF) 8, 26 and 60 g) and noxious thermal-(45 and 48 °C) evoked neuronal responses in MIA rats only. Systemic administration of TROX-1 produced a significant inhibition of the mechanical-(vF 8, 26 and 60 g) evoked neuronal responses in MIA rats. TROX-1 did not produce any significant effect on any neuronal measure in Sham controls. Our in vivo electrophysiological results demonstrate a pathological state-dependent effect of TROX-1, which suggests an increased

  20. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianzhong; Cao, Yong; Wu, Tianding

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord wasmore » clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.« less

  1. Studies of locomotor network neuroprotection by the selective poly(ADP-ribose) polymerase-1 inhibitor PJ-34 against excitotoxic injury to the rat spinal cord in vitro.

    PubMed

    Nasrabady, Sara E; Kuzhandaivel, Anujaianthi; Nistri, Andrea

    2011-06-01

    Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces 'parthanatos', namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    PubMed

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Osthole, a Coumadin Analog from Cnidium monnieri (L.) Cusson, Ameliorates Nucleus Pulposus-Induced Radicular Inflammatory Pain by Inhibiting the Activation of Extracellular Signal-Regulated Kinase in Rats.

    PubMed

    Wu, Hai-Xuan; Wang, Yi-Min; Xu, Hui; Wei, Ming; He, Qiu-Lan; Li, Mei-Na; Sun, Lai-Bao; Cao, Ming-Hui

    2017-01-01

    This study was aimed at assessing the role of extracellular signal regulated kinase (ERK) in mechanical allodynia resulting from lumbar disc herniation (LDH) and exploring the osthole's anti-nociceptive effect on ERK activation. Radicular pain was generated by applying nucleus pulposus (NP) to the L5 dorsal root ganglion (DRG). Allodynia was measured using Von Frey filaments to calculate the mechanical pain threshold. Phosphorylated ERK and total ERK protein in the lumbar spinal dorsal horn was detected by using the Western blot technique. Cyclooxygenase 2 (COX-2) mRNA was assessed by real-time reverse-transcription polymerase chain reaction. The application of NP to L5 DRG induced mechanical hypersensitivity which lasted for at least 28 days, and a significant increase of ERK phosphorylation in the ipsilateral spinal dorsal horn from postoperative day (POD) 1 to POD 21. ERK inhibitor attenuated NP-induced hyperalgesia compared to the dimethyl sulfoxide-(vehicle control) administered group (p < 0.05). Epidural treatment with osthole could ameliorate NP-evoked hyperalgesia by suppressing the activation of ERK rather than decreasing the expression of ERK protein. Osthole could also inhibit the increased expression of COX-2 mRNA in spinal dorsal horn, which was a known downstream effect of ERK signaling pathway. Our results suggest that ERK activation in the spinal dorsal horn plays a vital role in NP-evoked hyperalgesia. Osthole exerts analgesic effect on radicular inflammatory pain in LDH rat model, by down-regulating the mRNA expression of the target gene of COX-2 via inhibiting ERK activation in the spinal dorsal horn. © 2017 S. Karger AG, Basel.

  4. Changes in the basal membrane of dorsal root ganglia Schwann cells explain the biphasic pattern of the peripheral neuropathy in streptozotocin-induced diabetic rats.

    PubMed

    Becker, Maria; Benromano, Tali; Shahar, Abraham; Nevo, Zvi; Pick, Chaim G

    2014-12-01

    Peripheral neuropathy is one of the main complications of diabetes mellitus. The current study demonstrated the bimodal pattern of diabetic peripheral neuropathy found in the behavioral study of pain perception in parallel to the histopathological findings in dorsal root ganglia (DRGs) neurons and satellite Schwann cell basement membranes. A gradual decrease in heparan sulfate content, with a reciprocal increase in deposited laminin in the basement membranes of dorsal root ganglia Schwann cells, was shown in streptozotocin-treated rats. In addition, the characteristic biphasic pain profiles were demonstrated in diabetic rats, as shown by hypersensitivity at the third week and hyposensitivity at the tenth week post-streptozotocin injection, accompanied by a continuous decrease in the sciatic nerve conduction velocity. It appears that these basal membrane abnormalities in content of heparan sulfate and laminin, noticed in diabetic rats, may underline the primary damage in dorsal ganglion sensory neurons, simultaneously with the bimodal painful profile in diabetic peripheral neuropathy, simulating the scenario of filtration rate in diabetic kidney.

  5. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion.

    PubMed

    Konig, Niclas; Trolle, Carl; Kapuralin, Katarina; Adameyko, Igor; Mitrecic, Dinko; Aldskogius, Hakan; Shortland, Peter J; Kozlova, Elena N

    2017-01-01

    Spinal root avulsion results in paralysis and sensory loss, and is commonly associated with chronic pain. In addition to the failure of avulsed dorsal root axons to regenerate into the spinal cord, avulsion injury leads to extensive neuroinflammation and degeneration of second-order neurons in the dorsal horn. The ultimate objective in the treatment of this condition is to counteract degeneration of spinal cord neurons and to achieve functionally useful regeneration/reconnection of sensory neurons with spinal cord neurons. Here we compare survival and migration of murine boundary cap neural crest stem cells (bNCSCs) and embryonic stem cells (ESCs)-derived, predifferentiated neuron precursors after their implantation acutely at the junction between avulsed dorsal roots L3-L6 and the spinal cord. Both types of cells survived transplantation, but showed distinctly different modes of migration. Thus, bNCSCs migrated into the spinal cord, expressed glial markers and formed elongated tubes in the peripheral nervous system (PNS) compartment of the avulsed dorsal root transitional zone (DRTZ) area. In contrast, the ESC transplants remained at the site of implantation and differentiated to motor neurons and interneurons. These data show that both stem cell types successfully survived implantation to the acutely injured spinal cord and maintained their differentiation and migration potential. These data suggest that, depending on the source of neural stem cells, they can play different beneficial roles for recovery after dorsal root avulsion. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Connectivity of Pacemaker Neurons in the Neonatal Rat Superficial Dorsal Horn

    PubMed Central

    Ford, Neil C.; Arbabi, Shahriar; Baccei, Mark L.

    2014-01-01

    Pacemaker neurons with an intrinsic ability to generate rhythmic burst-firing have been characterized in lamina I of the neonatal spinal cord, where they are innervated by high-threshold sensory afferents. However, little is known about the output of these pacemakers, as the neuronal populations which are targeted by pacemaker axons have yet to be identified. The present study combines patch clamp recordings in the intact neonatal rat spinal cord with tract-tracing to demonstrate that lamina I pacemaker neurons contact multiple spinal motor pathways during early life. Retrograde labeling of premotor interneurons with the trans-synaptic virus PRV-152 revealed the presence of burst-firing in PRV-infected lamina I neurons, thereby confirming that pacemakers are synaptically coupled to motor networks in the spinal ventral horn. Notably, two classes of pacemakers could be distinguished in lamina I based on cell size and the pattern of their axonal projections. While small pacemaker neurons possessed ramified axons which contacted ipsilateral motor circuits, large pacemaker neurons had unbranched axons which crossed the midline and ascended rostrally in the contralateral white matter. Recordings from identified spino-parabrachial and spino-PAG neurons indicated the presence of pacemaker activity within neonatal lamina I projection neurons. Overall, these results show that lamina I pacemakers are positioned to regulate both the level of activity in developing motor circuits as well as the ascending flow of nociceptive information to the brain, thus highlighting a potential role for pacemaker activity in the maturation of pain and sensorimotor networks in the CNS. PMID:25380417

  7. Studies on the cellular localization of spinal cord substance P receptors.

    PubMed

    Helke, C J; Charlton, C G; Wiley, R G

    1986-10-01

    Substance P-immunoreactivity and specific substance P binding sites are present in the spinal cord. Receptor autoradiography showed the discrete localization of substance P binding sites in both sensory and motor regions of the spinal cord and functional studies suggested an important role for substance P receptor activation in autonomic outflow, nociception, respiration and somatic motor function. In the current studies, we investigated the cellular localization of substance P binding sites in rat spinal cord using light microscopic autoradiography combined with several lesioning techniques. Unilateral injections of the suicide transport agent, ricin, into the superior cervical ganglion reduced substance P binding and cholinesterase-stained preganglionic sympathetic neurons in the intermediolateral cell column. However, unilateral electrolytic lesions of ventral medullary substance P neurons which project to the intermediolateral cell column did not alter the density of substance P binding in the intermediolateral cell column. Likewise, 6-hydroxydopamine and 5,7-dihydroxytryptamine, which destroy noradrenergic and serotonergic nerve terminals, did not reduce the substance P binding in the intermediolateral cell column. It appears, therefore, that the substance P binding sites are located postsynaptically on preganglionic sympathetic neurons rather than presynaptically on substance P-immunoreactive processes (i.e. as autoreceptors) or on monoamine nerve terminals. Unilateral injections of ricin into the phrenic nerve resulted in the unilateral destruction of phrenic motor neurons in the cervical spinal cord and caused a marked reduction in the substance P binding in the nucleus. Likewise, sciatic nerve injections of ricin caused a loss of associated motor neurons in the lateral portion of the ventral horn of the lumbar spinal cord and a reduction in the substance P binding. Sciatic nerve injections of ricin also destroyed afferent nerves of the associated dorsal

  8. Three Element Phased Array Coil for Imaging of Rat Spinal Cord at 7T

    PubMed Central

    Mogatadakala, Kishore V.; Bankson, James A.; Narayana, Ponnada A.

    2008-01-01

    In order to overcome some of the limitations of an implantable coil, including its invasive nature and limited spatial coverage, a three element phased array coil is described for high resolution magnetic resonance imaging (MRI) of rat spinal cord. This coil allows imaging both thoracic and cervical segments of rat spinal cord. In the current design, coupling between the nearest neighbors was minimized by overlapping the coil elements. A simple capacitive network was used for decoupling the next neighbor elements. The dimensions of individual coils in the array were determined based on the signal-to-noise ratio (SNR) measurements performed on a phantom with three different surface coils. SNR measurements on a phantom demonstrated higher SNR of the phased array coil relative to two different volume coils. In-vivo images acquired on rat spinal cord with our coil demonstrated excellent gray and white matter contrast. To evaluate the performance of the phased array coil under parallel imaging, g-factor maps were obtained for two different acceleration factors of 2 and 3. These simulations indicate that parallel imaging with acceleration factor of 2 would be possible without significant image reconstruction related noise amplifications. PMID:19025892

  9. Dorsal scapular neuropathy causing rhomboids palsy and scapular winging.

    PubMed

    Argyriou, Andreas A; Karanasios, Panagiotis; Makridou, Alexandra; Makris, Nicolaos

    2015-01-01

    Most cases of scapular winging (SW) are attributed to either long thoracic or spinal accessory nerve lesions. Dorsal scapular nerve lesions are quite rare and the literature contains very few case reports of SW secondary to rhomboid paralysis. We are reporting the unusual case of a young patient who developed right-side scapular winging due to dorsal scapular neuropathy and rhomboids palsy, and we highlight the role of conservative treatment and rehabilitation for cases of mild/medium injury to the dorsal scapular nerve or to the rhomboid muscles. For those cases, physiotherapy is recommended, and this is mainly aimed at strengthening the trapezius in order to compensate for rhomboids weakness.

  10. Systemic effects induced by intralesional injection of ω-conotoxin MVIIC after spinal cord injury in rats

    PubMed Central

    2014-01-01

    Background Calcium channel blockers such as conotoxins have shown a great potential to reduce brain and spinal cord injury. MVIIC neuroprotective effects analyzed in in vitro models of brain and spinal cord ischemia suggest a potential role of this toxin in preventing injury after spinal cord trauma. However, previous clinical studies with MVIIC demonstrated that clinical side effects might limit the usefulness of this drug and there is no research on its systemic effects. Therefore, the present study aimed to investigate the potential toxic effects of MVIIC on organs and to evaluate clinical and blood profiles of rats submitted to spinal cord injury and treated with this marine toxin. Rats were treated with placebo or MVIIC (at doses of 15, 30, 60 or 120 pmol) intralesionally following spinal cord injury. Seven days after the toxin administration, kidney, brain, lung, heart, liver, adrenal, muscles, pancreas, spleen, stomach, and intestine were histopathologically investigated. In addition, blood samples collected from the rats were tested for any hematologic or biochemical changes. Results The clinical, hematologic and biochemical evaluation revealed no significant abnormalities in all groups, even in high doses. There was no significant alteration in organs, except for degenerative changes in kidneys at a dose of 120 pmol. Conclusions These findings suggest that MVIIC at 15, 30 and 60 pmol are safe for intralesional administration after spinal cord injury and could be further investigated in relation to its neuroprotective effects. However, 120 pmol doses of MVIIC may provoke adverse effects on kidney tissue. PMID:24739121

  11. Weight bearing of the limb as a confounding factor in assessment of mechanical allodynia in the rat.

    PubMed

    Kauppila, T; Kontinen, V K; Pertovaara, A

    1998-01-01

    Effect of weight bearing of the hindlimbs on the assessment of mechanically-induced hindlimb withdrawal threshold was determined in intact rats and in rats with various pathophysiological conditions causing allodynia or hyperalgesia. Hindlimb withdrawal was elicited by applying a series of calibrated monofilaments to the plantar or the dorsal surface of the paw. During testing the rat was either in a restraint tube with hindlimbs hanging semi-extended without weight bearing or it was standing on a metal grid (bearing its own weight). In intact rats, the withdrawal thresholds were significantly lower when the stimulus site was the dorsal hairy skin rather than the plantar glabrous skin. Also, thresholds were significantly lower when the hindlimbs were not bearing weight. Following carrageenan-induced unilateral inflammation of the plantar paw or a tibial nerve cut there was a marked threshold decrease to test stimuli applied to plantar or dorsal paw, respectively, ipsilateral to the pathological condition in standing rats. However, when the hindlimbs were not weight bearing the unilateral threshold decrease was markedly attenuated (carrageenan-treated rats) or completely abolished (tibial cut). In contrast, in rats with a unilateral spinal nerve ligation the threshold decrease ipsilateral to the nerve lesion was highly significant independent of the weight bearing of the hindlimbs. The results indicate that weight bearing of hindlimbs is an important confounding factor in the assessment of tactile allodynia in rats.

  12. DREAM regulates BDNF-dependent spinal sensitization

    PubMed Central

    2010-01-01

    Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization. PMID:21167062

  13. Characterisation of rebound depolarisation in mice deep dorsal horn neurons in vitro.

    PubMed

    Rivera-Arconada, Ivan; Lopez-Garcia, Jose A

    2015-09-01

    Spinal dorsal horn neurons constitute the first relay for pain processing and participate in the processing of other sensory, motor and autonomic information. At the cellular level, intrinsic excitability is a factor contributing to network function. In turn, excitability is set by the array of ionic conductance expressed by neurons. Here, we set out to characterise rebound depolarisation following hyperpolarisation, a feature frequently described in dorsal horn neurons but never addressed in depth. To this end, an in vitro preparation of the spinal cord from mice pups was used combined with whole-cell recordings in current and voltage clamp modes. Results show the expression of H- and/or T-type currents in a significant proportion of dorsal horn neurons. The expression of these currents determines the presence of rebound behaviour at the end of hyperpolarising pulses. T-type calcium currents were associated to high-amplitude rebounds usually involving high-frequency action potential firing. H-currents were associated to low-amplitude rebounds less prone to elicit firing or firing at lower frequencies. For a large proportion of neurons expressing both currents, the H-current constitutes a mechanism to ensure a faster response after hyperpolarisations, adjusting the latency of the rebound firing. We conclude that rebound depolarisation and firing are intrinsic factors to many dorsal horn neurons that may constitute a mechanism to integrate somatosensory information in the spinal cord, allowing for a rapid switch from inhibited-to-excited states.

  14. A potential protective effect of α-tocopherol on vascular complication in spinal cord reperfusion injury in rats

    PubMed Central

    2010-01-01

    Background Paraplegia remains a potential complication of spinal cord ischemic reperfusion injury (IRI) in which oxidative stress induced cyclooxygenase activities may contribute to ischemic neuronal damage. Prolonged administration of vitamin E (α-TOL), as a potent biological antioxidant, may have a protective role in this oxidative inflammatory ischemic cascade to reduce the incidence of paraplegia. The present study was designed to evaluate the preventive value of α-TOL in IRI of spinal cord. Methods For this study, 50 male Sprague-Dawley rats were used and divided into five experimental groups (n = 10): Control group (C); α-TOL control group (CE) which received intramuscular (i.m.) α-TOL injections (600 mg/kg); Sham operated group (S), IRI rats were subjected to laparotomy and clamping of the aorta just above the bifurcation for 45 min, then the clamp was released for 48 hrs for reperfusion; and IRIE rats group, received 600 mg/kg of α-TOL i.m. twice weekly for 6 weeks, followed by induction of IRI similar to the IRI group. At the end of the experimental protocol; motor, sensory and placing/stepping reflex evaluation was done. Plasma nitrite/nitrate (NOx) was measured. Then animals' spinal cord lumbar segments were harvested and homogenized for measurement of the levels of prostaglandin E2 (PGE2), malondialdehyde (MDA) and advanced oxidation products (AOPP), while superoxide dismutase (SOD) and catalase (CAT) activity were evaluated. Results Induction of IRI in rats resulted in significant increases in plasma levels of nitrite/nitrate (p < 0.001) and spinal cord homogenate levels of PGE2, MDA, advanced oxidation protein products AOPP and SOD with significant reduction (p < 0.001) in CAT homogenate levels. Significant impairment of motor, sensory functions and placing/stepping reflex was observed with IRI induction in the spinal cord (p < 0.001). α-TOL administration in IRIE group significantly improved all the previously measured parameters compared with

  15. Effect of topically applied minoxidil on the survival of rat dorsal skin flap.

    PubMed

    Gümüş, Nazım; Odemiş, Yusuf; Yılmaz, Sarper; Tuncer, Ersin

    2012-12-01

    Flap necrosis still is a challenging problem in reconstructive surgery that results in irreversible tissue loss. This study evaluated the effect of topically applied minoxidil on angiogenesis and survival of a caudally based dorsal rat skin flap. For this study, 24 male Wistar rats were randomly divided into three groups of eight each. A caudally based dorsal skin flap with the dimensions of 9 × 3 cm was raised. After elevation of the flaps, they were sutured back into their initial positions. In group 1 (control group), 1 ml of isotonic saline was applied topically to the flaps of all the animals for 14 days. In group 2, minoxidil solution was spread uniformly over the flap surface for 7 days after the flap elevation. In group 3, minoxidil solution was applied topically to the flap surface during a 14-day period. On day 7 after the flap elevation, the rats were killed. The average area of flap survival was determined for each rat. Subdermal vascular architecture and angiogenesis were evaluated under a light microscope after two full-thickness skin biopsy specimens had been obtained from the midline of the flaps. The lowest flap survival rate was observed in group 1, and no difference was observed between groups 1 and 2. Compared with groups 1 and 2, group 3 had a significantly increased percentage of flap survival (P < 0.05). Intense and moderate angiogenesis also was observed respectively at the proximal and distal areas of the flaps in group 3. The results of this experiment seem to show that the early effect of minoxidil is vasodilation and that prolonged use before flap elevation leads to angiogenesis, increasing flap viability. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  16. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.

    PubMed

    You, Si-Wei; Chen, Bing-Yao; Liu, Hui-Ling; Lang, Bing; Xia, Jie-Lai; Jiao, Xi-Ying; Ju, Gong

    2003-01-01

    A major issue in analysis of experimental results after spinal cord injury is spontaneous functional recovery induced by remaining nerve fibers. The authors investigated the relationship between the degree of locomotor recovery and the percentage and location of the fibers that spared spinal cord transection. The spinal cords of 12 adult rats were transected at T9 with a razor blade, which often resulted in sparing of nerve fibers in the ventral spinal cord. The incompletely-transected animals were used to study the degree of spontaneous recovery of hindlimb locomotion, evaluated with the BBB rating scale, in correlation to the extent and location of the remaining fibers. Incomplete transection was found in the ventral spinal cord in 42% of the animals. The degree of locomotor recovery was highly correlated with the percentage of the remaining fibers in the ventral and ventrolateral funiculi. In one of the rats, 4.82% of remaining fibers in unilateral ventrolateral funiculus were able to sustain a certain recovery of locomotion. Less than 5% of remaining ventrolateral white matter is sufficient for an unequivocal motor recovery after incomplete spinal cord injury. Therefore, for studies with spinal cord transection, the completeness of sectioning should be carefully checked before any conclusion can be reached. The fact that the degree of locomotor recovery is correlated with the percentage of remaining fibers in the ventrolateral spinal cord, exclusive of most of the descending motor tracts, may imply an essential role of propriospinal connections in the initiation of spontaneous locomotor recovery.

  17. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increase with the firing frequency of C-fibers.

    PubMed

    Adelson, D; Lao, L; Zhang, G; Kim, W; Marvizón, J C G

    2009-06-30

    Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1-10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Adelta-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli.

  18. Running Reduces Uncontrollable Stress-Evoked Serotonin and Potentiates Stress-Evoked Dopamine Concentrations in the Rat Dorsal Striatum

    PubMed Central

    Clark, Peter J.; Amat, Jose; McConnell, Sara O.; Ghasem, Parsa R.; Greenwood, Benjamin N.; Maier, Steven F.; Fleshner, Monika

    2015-01-01

    Accumulating evidence from both the human and animal literature indicates that exercise reduces the negative consequences of stress. The neurobiological etiology for this stress protection, however, is not completely understood. Our lab reported that voluntary wheel running protects rats from expressing depression-like instrumental learning deficits on the shuttle box escape task after exposure to unpredictable and inescapable tail shocks (uncontrollable stress). Impaired escape behavior is a result of stress-sensitized serotonin (5-HT) neuron activity in the dorsal raphe (DRN) and subsequent excessive release of 5-HT into the dorsal striatum following exposure to a comparatively mild stressor. However, the possible mechanisms by which exercise prevents stress-induced escape deficits are not well characterized. The purpose of this experiment was to test the hypothesis that exercise blunts the stress-evoked release of 5-HT in the dorsal striatum. Changes to dopamine (DA) levels were also examined, since striatal DA signaling is critical for instrumental learning and can be influenced by changes to 5-HT activity. Adult male F344 rats, housed with or without running wheels for 6 weeks, were either exposed to tail shock or remained undisturbed in laboratory cages. Twenty-four hours later, microdialysis was performed in the medial (DMS) and lateral (DLS) dorsal striatum to collect extracellular 5-HT and DA before, during, and following 2 mild foot shocks. We report wheel running prevents foot shock-induced elevation of extracellular 5-HT and potentiates DA concentrations in both the DMS and DLS approximately 24 h following exposure to uncontrollable stress. These data may provide a possible mechanism by which exercise prevents depression-like instrumental learning deficits following exposure to acute stress. PMID:26555633

  19. Development of serotonergic and adrenergic receptors in the rat spinal cord: effects of neonatal chemical lesions and hyperthyroidism.

    PubMed

    Lau, C; Pylypiw, A; Ross, L L

    1985-03-01

    The sympathetic preganglionic neurons in the spinal cord receive dense serotonergic (5-HT) and catecholaminergic (CA) afferent inputs from the descending supraspinal pathways. In the rat spinal cord, the levels of these biogenic amines and their receptors are low at birth, but undergo rapid ontogenetic increases in the ensuing 2-3 postnatal weeks until the adult levels are reached. In many systems it has been shown that denervation of presynaptic neurons leads to an up-regulation of the number of postsynaptic receptors. To determine whether the 5-HT and CA receptors in the developing spinal cord are also subject to such transsynaptic regulation, we examined the ontogeny of serotonergic receptors and alpha- and beta-adrenergic receptors in thoracolumbar spinal cord of rats given neurotoxins which destroy serotonergic (5,7-dihydroxytryptamine (5,7-DHT)) or noradrenergic (6-hydroxydopamine (6-OHDA)) nerve terminals. Intracisternal administration of 5,7-DHT or 6-OHDA at 1 and 6 days of age prevented, respectively, the development of 5-HT and CA levels in the spinal cord. Rats lesioned with 5,7-DHT displayed a marked elevation of 5-HT receptors with a binding of 50% greater than controls at 1 week and a continuing increase to twice normal by 4 weeks. A similar pattern of up-regulation was also detected with the alpha-adrenergic receptor, as rats lesioned with 6-OHDA exhibited persistent increases in receptor concentration. However, in these same animals ontogeny of the beta-adrenergic receptor in the spinal cord remained virtually unaffected by the chemical lesion. In several other parts of the nervous system, it has been demonstrated that the beta-adrenergic sensitivity can be modulated by hormonal signals, particularly that of the thyroid hormones. This phenomenon was examined in the spinal cord and in confirmation with previous studies neonatal treatment of triiodothyronine (0.1 mg/kg, s.c. daily) was capable of evoking persistent increases in beta

  20. Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations

    PubMed Central

    Bolzoni, F; Jankowska, E

    2015-01-01

    The present study aimed to compare presynaptic and postsynaptic actions of direct current polarization in the spinal cord, focusing on DC effects on primary afferents and motoneurons. To reduce the directly affected spinal cord region, a weak polarizing direct current (0.1–0.3 μA) was applied locally in deeply anaesthetized cats and rats; within the hindlimb motor nuclei in the caudal lumbar segments, or in the dorsal horn within the terminal projection area of low threshold skin afferents. Changes in the excitability of primary afferents activated by intraspinal stimuli (20–50 μA) were estimated using increases or decreases in compound action potentials recorded from the dorsal roots or peripheral nerves as their measure. Changes in the postsynaptic actions of the afferents were assessed from intracellularly recorded monosynaptic EPSPs in hindlimb motoneurons and monosynaptic extracellular field potentials (evoked by group Ia afferents in motor nuclei, or by low threshold cutaneous afferents in the dorsal horn). The excitability of motoneurons activated by intraspinal stimuli was assessed using intracellular records or motoneuronal discharges recorded from a ventral root or a muscle nerve. Cathodal polarization was found to affect motoneurons and afferents providing input to them to a different extent. The excitability of both was markedly increased during DC application, although post-polarization facilitation was found to involve presynaptic afferents and some of their postsynaptic actions, but only negligibly motoneurons themselves. Taken together, these results indicate that long-lasting post-polarization facilitation of spinal activity induced by locally applied cathodal current primarily reflects the facilitation of synaptic transmission. PMID:25416625

  1. Stretching After Heat But Not After Cold Decreases Contractures After Spinal Cord Injury in Rats.

    PubMed

    Iwasawa, Hiroyuki; Nomura, Masato; Sakitani, Naoyoshi; Watanabe, Kosuke; Watanabe, Daichi; Moriyama, Hideki

    2016-12-01

    Contractures are a prevalent and potentially severe complication in patients with neurologic disorders. Although heat, cold, and stretching are commonly used for treatment of contractures and/or spasticity (the cause of many contractures), the sequential effects of these modalities remain unclear. Using an established rat model with spinal cord injury with knee flexion contracture, we sought to determine what combination of heat or cold before stretching is the most effective for treatment of contractures derived from spastic paralyses and investigated which treatment leads to the best (1) improvement in the loss of ROM; (2) restoration of deterioration in the muscular and articular factors responsible for contractures; and (3) amelioration of histopathologic features such as muscular fibrosis in biceps femoris and shortening of the joint capsule. Forty-two adolescent male Wistar rats were used. After spasticity developed at 2 weeks postinjury, each animal with spinal cord injury underwent the treatment protocol daily for 1 week. Knee extension ROM was measured with a goniometer by two examiners blinded to each other's scores. The muscular and articular factors contributing to contractures were calculated by measuring ROM before and after the myotomies. We quantitatively measured the muscular fibrosis and the synovial intima length, and observed the distribution of collagen of skeletal muscle. The results were confirmed by a blinded observer. The ROM of heat alone (34° ± 1°) and cold alone (34° ± 2°) rats were not different with the numbers available from that of rats with spinal cord injury (35° ± 2°) (p = 0.92 and 0.89, respectively). Stretching after heat (24° ± 1°) was more effective than stretching alone (27° ± 3°) at increasing ROM (p < 0.001). Contrastingly, there was no difference between stretching after cold (25° ± 1°) and stretching alone (p = 0.352). Stretching after heat was the most effective for percentage improvement of muscular

  2. Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current ( Ih) in large-diameter dorsal root ganglion neurons.

    PubMed

    Liu, Da-Lu; Wang, Xu; Chu, Wen-Guang; Lu, Na; Han, Wen-Juan; Du, Yi-Kang; Hu, San-Jue; Bai, Zhan-Tao; Wu, Sheng-Xi; Xie, Rou-Gang; Luo, Ceng

    2017-01-01

    Cervical radiculopathic pain is a very common symptom that may occur with cervical spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain and is inadequately treated with current therapies. However, the precise mechanisms underlying cervical radiculopathic pain-associated mechanical allodynia have remained elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these changes are yet to be known. With combination of patch-clamp recording, immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability. Quantitative analysis of hyperpolarization-activated cation current ( I h ) revealed that I h was greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic pain rats. This increased I h was supported by the enhanced expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3 in large dorsal root ganglion neurons. Blockade of I h with selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated with cervical radiculopathic pain. This study sheds new light on the functional plasticity of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel mechanism that could underlie the mechanical allodynia associated with cervical radiculopathy.

  3. Transcutaneous spinal direct current stimulation of the lumbar and sacral spinal cord: a modelling study

    NASA Astrophysics Data System (ADS)

    Fernandes, Sofia R.; Salvador, Ricardo; Wenger, Cornelia; de Carvalho, Mamede; Miranda, Pedro C.

    2018-06-01

    Objective. Our aim was to perform a computational study of the electric field (E-field) generated by transcutaneous spinal direct current stimulation (tsDCS) applied over the thoracic, lumbar and sacral spinal cord, in order to assess possible neuromodulatory effects on spinal cord circuitry related with lower limb functions. Approach. A realistic volume conductor model of the human body consisting of 14 tissues was obtained from available databases. Rubber pad electrodes with a metallic connector and a conductive gel layer were modelled. The finite element (FE) method was used to calculate the E-field when a current of 2.5 mA was passed between two electrodes. The main characteristics of the E-field distributions in the spinal grey matter (spinal-GM) and spinal white matter (spinal-WM) were compared for seven montages, with the anode placed either over T10, T8 or L2 spinous processes (s.p.), and the cathode placed over right deltoid (rD), umbilicus (U) and right iliac crest (rIC) areas or T8 s.p. Anisotropic conductivity of spinal-WM and of a group of dorsal muscles near the vertebral column was considered. Main results. The average E-field magnitude was predicted to be above 0.15 V m-1 in spinal cord regions located between the electrodes. L2-T8 and T8-rIC montages resulted in the highest E-field magnitudes in lumbar and sacral spinal segments (>0.30 V m-1). E-field longitudinal component is 3 to 6 times higher than the ventral-dorsal and right-left components in both the spinal-GM and WM. Anatomical features such as CSF narrowing due to vertebrae bony edges or disks intrusions in the spinal canal correlate with local maxima positions. Significance. Computational modelling studies can provide detailed information regarding the electric field in the spinal cord during tsDCS. They are important to guide the design of clinical tsDCS protocols that optimize stimulation of application-specific spinal targets.

  4. GluN2B/CaMKII mediates CFA-induced hyperalgesia via HDAC4-modified spinal COX2 transcription.

    PubMed

    Lai, Cheng-Yuan; Hsieh, Ming-Chun; Ho, Yu-Cheng; Chen, Gin-Den; Chou, Dylan; Ruan, Ting; Lee, An-Sheng; Wang, Hsueh-Hsiao; Chau, Yat-Pang; Peng, Hsien-Yu; Lai, Cheng-Hung

    2018-06-01

    Histone deacetylase 4 (HDAC4), which actively shuttles between the nucleus and cytoplasm, is an attractive candidate for a repressor mechanism in epigenetic modification. However, the potential role of HDAC4-dependent epigenetics in the neural plasticity underlying the development of inflammatory pain has not been well established. By injecting complete Freund's adjuvant (CFA) into the hind-paw of Sprague-Dawley rats (200-250 g), we found animals displayed behavioral hyperalgesia was accompanied with HDAC4 phosphorylation and cytoplasmic redistribution in the dorsal horn neurons. Cytoplasmic HDAC4 retention led to its uncoupling with the COX2 promoter, hence prompting spinal COX2 transcription and expression in the dorsal horn. Moreover, the GluN2B-bearing N-methyl-d-aspartate receptor (GluN2B-NMDAR)/calmodulin-dependent protein kinase II (CaMKII) acted as an upstream cascade to facilitate HDAC4 phosphorylation/redistribution-associated spinal COX2 expression after inflammatory insults. The results of this pilot study demonstrated that the development and/or maintenance of inflammatory pain involved the spinal HDAC4-dependent epigenetic mechanisms. Our findings open up a new avenue for the development of a novel medical strategy for the relief of inflammatory pain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving.

    PubMed

    Li, Xuan; Carreria, Maria B; Witonsky, Kailyn R; Zeric, Tamara; Lofaro, Olivia M; Bossert, Jennifer M; Zhang, Jianjun; Surjono, Felicia; Richie, Christopher T; Harvey, Brandon K; Son, Hyeon; Cowan, Christopher W; Nestler, Eric J; Shaham, Yavin

    2017-12-29

    Methamphetamine (meth) seeking progressively increases after withdrawal (incubation of meth craving). We previously demonstrated an association between histone deacetylase 5 (HDAC5) gene expression in the rat dorsal striatum and incubation of meth craving. Here we used viral constructs to study the causal role of dorsal striatum HDAC5 in this incubation. In experiment 1 (overexpression), we injected an adeno-associated virus bilaterally into dorsal striatum to express either green fluorescent protein (control) or a mutant form of HDAC5, which strongly localized to the nucleus. After training rats to self-administer meth (10 days, 9 hours/day), we tested the rats for relapse to meth seeking on withdrawal days 2 and 30. In experiment 2 (knockdown), we injected an adeno-associated virus bilaterally into the dorsal striatum to express a short hairpin RNA either against luciferase (control) or against HDAC5. After training rats to self-administer meth, we tested the rats for relapse on withdrawal days 2 and 30. We also measured gene expression of other HDACs and potential HDAC5 downstream targets. We found that HDAC5 overexpression in dorsal striatum increased meth seeking on withdrawal day 30 but not day 2. In contrast, HDAC5 knockdown in the dorsal striatum decreased meth seeking on withdrawal day 30 but not on day 2; this manipulation also altered other HDACs (Hdac1 and Hdac4) and potential HDAC5 targets (Gnb4 and Suv39h1). Results demonstrate a novel role of dorsal striatum HDAC5 in incubation of meth craving. These findings also set up future work to identify HDAC5 targets that mediate this incubation. Published by Elsevier Inc.

  6. Organization of ascending spinal projections in Caiman crocodilus.

    PubMed

    Ebbesson, S O; Goodman, D C

    1981-01-01

    Ascending spinal projections in the caiman (Caiman crocodilus) were demonstrated with Nauta and Fink-Heimer methods following hemisections of the third spinal segment in a series of twelve animals. These results were compared with earlier data in the literature obtained from a turtle, a snake, and a lizard using the same experimental and histological procedures. The results show remarkable similarities considering that each species represents a different reptilian order with different evolutionary history and habitat. However, the caiman displays several important peculiarities. Although the dorsal funiculus of the caiman contains the largest number of ascending spinal projections of the four species examined, this funiculus has not differentiated into cuneate and gracile fasciculi as is the case in the tegu lizard. The ventro-lateral ascending spinal projections follow a fundamentally similar general morphologic pattern in the four species with only minor variations. The anatomical arrangement in the caiman and tegu lizard appears most similar in the high cervical and the medullary regions; however, this is not the case in midbrain and thalamic regions where considerably more extensive projections are seen in the caiman. In the caiman an extensive spinal connection to the ventro-lateral nucleus of the dorsal thalamus is present; this connection is reminiscent of the mammalian spinal projection to the ventro-basal complex. The caiman has in common with the other three reptilian species a small projection to another dorsal thalamic region that is apparently homologous to the mammalian intralaminar nuclei, which are the destination of the mammalian paleospinothalamic tract.

  7. Neuropeptide Y receptor-expressing dorsal horn neurons: role in nocifensive reflex and operant responses to aversive cold after CFA inflammation.

    PubMed

    Lemons, L L; Wiley, R G

    2012-08-02

    The spinal Neuropeptide Y (NPY) system is a potential target for development of new pain therapeutics. NPY and two of its receptors (Y1 and Y2) are found in the superficial dorsal horn of the spinal cord, a key area of nociceptive gating and modulation. Lumbar intrathecal injection of (NPY) is antinociceptive, reducing hyper-reflexia to thermal and mechanical stimulation, particularly after nerve injury and inflammation. We have also shown that intrathecal injection of the targeted cytotoxin, Neuropeptide Y-sap (NPY-sap), is also antinociceptive, reducing nocifensive reflex responses to noxious heat and formalin. In the present study, we sought to determine the role of dorsal horn Y1R-expressing neurons in pain by destroying them with NPY-sap and testing the rats on three operant tasks. Lumbar intrathecal NPY-sap (1) reduced Complete Freund's Adjuvant (CFA)-induced hyper-reflexia on the 10°C cold plate, (2) reduced cold aversion on the thermal preference and escape tasks, (3) was analgesic to noxious heat on the escape task, (4) reduced the CFA-induced allodynia to cold temperatures experienced on the thermal preference, feeding interference, and escape tasks, and (5) did not inhibit or interfere with morphine analgesia. Published by Elsevier Ltd.

  8. Blood-Spinal Cord Barrier Alterations in Subacute and Chronic Stages of a Rat Model of Focal Cerebral Ischemia

    PubMed Central

    Haller, Edward; Tajiri, Naoki; Thomson, Avery; Barretta, Jennifer; Williams, Stephanie N.; Haim, Eithan D.; Qin, Hua; Frisina-Deyo, Aric; Abraham, Jerry V.; Sanberg, Paul R.; Van Loveren, Harry; Borlongan, Cesario V.

    2016-01-01

    We previously demonstrated blood-brain barrier impairment in remote contralateral brain areas in rats at 7 and 30 days after transient middle cerebral artery occlusion (tMCAO), indicating ischemic diaschisis. Here, we focused on effects of subacute and chronic focal cerebral ischemia on the blood-spinal cord barrier (BSCB). We observed BSCB damage on both sides of the cervical spinal cord in rats at 7 and 30 days post-tMCAO. Major BSCB ultrastructural changes in spinal cord gray and white matter included vacuolated endothelial cells containing autophagosomes, pericyte degeneration with enlarged mitochondria, astrocyte end-feet degeneration and perivascular edema; damaged motor neurons, swollen axons with unraveled myelin in ascending and descending tracts and astrogliosis were also observed. Evans Blue dye extravasation was maximal at 7 days. There was immunofluorescence evidence of reduction of microvascular expression of tight junction occludin, upregulation of Beclin-1 and LC3B immunoreactivities at 7 days and a reduction of the latter at 30 days post-ischemia. These novel pathological alterations on the cervical spinal cord microvasculature in rats after tMCAO suggest pervasive and long-lasting BSCB damage after focal cerebral ischemia, and that spinal cord ischemic diaschisis should be considered in the pathophysiology and therapeutic approaches in patients with ischemic cerebral infarction. PMID:27283328

  9. The "beneficial" effects of locomotor training after various types of spinal lesions in cats and rats.

    PubMed

    Rossignol, Serge; Martinez, Marina; Escalona, Manuel; Kundu, Aritra; Delivet-Mongrain, Hugo; Alluin, Olivier; Gossard, Jean-Pierre

    2015-01-01

    This chapter reviews a number of experiments on the recovery of locomotion after various types of spinal lesions and locomotor training mainly in cats. We first recall the major evidence on the recovery of hindlimb locomotion in completely spinalized cats at the T13 level and the role played by the spinal locomotor network, also known as the central pattern generator, as well as the beneficial effects of locomotor training on this recovery. Having established that hindlimb locomotion can recover, we raise the issue as to whether spinal plastic changes could also contribute to the recovery after partial spinal lesions such as unilateral hemisections. We found that after such hemisection at T10, cats could recover quadrupedal locomotion and that deficits could be improved by training. We further showed that, after a complete spinalization a few segments below the first hemisection (at T13, i.e., the level of previous studies on spinalization), cats could readily walk with the hindlimbs within hours of completely severing the remaining spinal tracts and not days as is usually the case with only a single complete spinalization. This suggests that neuroplastic changes occurred below the first hemisection so that the cat was already primed to walk after the spinalization subsequent to the hemispinalization 3 weeks before. Of interest is the fact that some characteristic kinematic features in trained or untrained hemispinalized cats could remain after complete spinalization, suggesting that spinal changes induced by training could also be durable. Other studies on reflexes and on the pattern of "fictive" locomotion recorded after curarization corroborate this view. More recent work deals with training cats in more demanding situations such as ladder treadmill (vs. flat treadmill) to evaluate how the locomotor training regimen can influence the spinal cord. Finally, we report our recent studies in rats using compressive lesions or surgical complete spinalization and find

  10. Involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters in neonatal rat spinal cord.

    PubMed

    Suzuki, H; Yoshioka, K; Yanagisawa, M; Urayama, O; Kurihara, T; Hosoki, R; Saito, K; Otsuka, M

    1994-09-01

    1. The possible involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters was examined in the spinal cord of the neonatal rat. 2. The magnitude of substance P (SP)- or neurokinin A (NKA)-evoked depolarization of a lumbar ventral root in the isolated spinal cord preparation was increased by a mixture of peptidase inhibitors, consisting of actinonin (6 microM), arphamenine B (6 microM), bestatin (10 microM), captopril (10 microM) and thiorphan (0.3 microM). The mixture augmented the response to NKA more markedly than that to SP. 3. In the isolated spinal cord-cutaneous nerve preparation, the saphenous nerve-evoked slow depolarization of the L3 ventral root was augmented by the mixture of peptidase inhibitors in the presence of naloxone (0.5 microM) but not in the presence of both naloxone and a tachykinin receptor antagonist, GR71251 (5 microM). 4. Application of capsaicin (0.5 microM) for 6 min to the spinal cord evoked an increase in the release of SP from the spinal cord. The amount of SP released was significantly augmented by the mixture of peptidase inhibitors. 5. Synaptic membrane fractions were prepared from neonatal rat spinal cords. These fractions showed degrading activities for SP and NKA and the activities were inhibited by the mixture of peptidase inhibitors. The degrading activity for NKA was higher than that for SP and the inhibitory effect of the mixture for NKA was more marked than that for SP. Although some other fractions obtained from homogenates of spinal cords showed higher degrading activities for SP, these activities were insensitive to the mixture of peptidase inhibitors. 6. Effects of individual peptidase inhibitors on the enzymatic degradation of SP and NKA by synaptic membrane fractions were examined. Thiorphan, actinonin and captopril inhibited SP degradation, while thiorphan and actinonin, but not captopril, inhibited NKA degradation. The potency of the inhibition of each peptidase inhibitor was lower than

  11. Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain

    PubMed Central

    2014-01-01

    Background Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord. Results SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR) cell bodies and processes in lamina II in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin. The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity (LI) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38 MAPK in the DRGs Conclusions The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain. PMID:24521084

  12. Fast Synaptic Inhibition in Spinal Sensory Processing and Pain Control

    PubMed Central

    Zeilhofer, Hanns Ulrich; Wildner, Hendrik; Yevenes, Gonzalo E.

    2013-01-01

    The two amino acids γ-amino butyric acid (GABA) and glycine mediate fast inhibitory neurotransmission in different CNS areas and serve pivotal roles in the spinal sensory processing. Under healthy conditions, they limit the excitability of spinal terminals of primary sensory nerve fibers and of intrinsic dorsal horn neurons through pre- and postsynaptic mechanisms, and thereby facilitate the spatial and temporal discrimination of sensory stimuli. Removal of fast inhibition not only reduces the fidelity of normal sensory processing but also provokes symptoms very much reminiscent of pathological and chronic pain syndromes. This review summarizes our knowledge of the molecular bases of spinal inhibitory neurotransmission and its organization in dorsal horn sensory circuits. Particular emphasis is placed on the role and mechanisms of spinal inhibitory malfunction in inflammatory and neuropathic chronic pain syndromes. PMID:22298656

  13. Retronasal odor representations in the dorsal olfactory bulb of rats

    PubMed Central

    Gautam, Shree Hari; Verhagen, Justus V.

    2012-01-01

    Animals perceive their olfactory environment not only from odors originating in the external world (orthonasal route) but also from odors released in the oral cavity while eating food (retronasal route). Retronasal olfaction is crucial for the perception of food flavor in humans. However, little is known about the retronasal stimulus coding in the brain. The most basic question is if and how route affects the odor representations at the level of the olfactory bulb (OB), where odor quality codes originate. We used optical calcium imaging of presynaptic dorsal OB responses to odorants in anesthetized rats to ask whether the rat OB could be activated retronasally, and how these responses compare to orthonasal responses under similar conditions. We further investigated the effects of specific odorant properties on orthoversus retronasal response patterns. We found that at a physiologically relevant flow rate retronasal odorants can effectively reach the olfactory receptor neurons, eliciting glomerular response patterns that grossly overlap with those of orthonasal responses, but differ from the orthonasal patterns in the response amplitude and temporal dynamics. Interestingly, such differences correlated well with specific odorant properties. Less volatile odorants yielded relatively smaller responses retronasally, but volatility did not affect relative temporal profiles. More polar odorants responded with relatively longer onset latency and time to peak retronasally, but polarity did not affect relative response magnitudes. These data provide insight into the early stages of retronasal stimulus coding and establish relationships between ortho- and retronasal odor representations in the rat OB. PMID:22674270

  14. Slack KNa Channels Influence Dorsal Horn Synapses and Nociceptive Behavior.

    PubMed

    Evely, Katherine M; Pryce, Kerri D; Bausch, Anne E; Lukowski, Robert; Ruth, Peter; Haj-Dahmane, Samir; Bhattacharjee, Arin

    2017-01-01

    The sodium-activated potassium channel Slack (Kcnt1, Slo2.2) is highly expressed in dorsal root ganglion neurons where it regulates neuronal firing. Several studies have implicated the Slack channel in pain processing, but the precise mechanism or the levels within the sensory pathway where channels are involved remain unclear. Here, we furthered the behavioral characterization of Slack channel knockout mice and for the first time examined the role of Slack channels in the superficial, pain-processing lamina of the dorsal horn. We performed whole-cell recordings from spinal cord slices to examine the intrinsic and synaptic properties of putative inhibitory and excitatory lamina II interneurons. Slack channel deletion altered intrinsic properties and synaptic drive to favor an overall enhanced excitatory tone. We measured the amplitudes and paired pulse ratio of paired excitatory post-synaptic currents at primary afferent synapses evoked by electrical stimulation of the dorsal root entry zone. We found a substantial decrease in the paired pulse ratio at synapses in Slack deleted neurons compared to wildtype, indicating increased presynaptic release from primary afferents. Corroborating these data, plantar test showed Slack knockout mice have an enhanced nociceptive responsiveness to localized thermal stimuli compared to wildtype mice. Our findings suggest that Slack channels regulate synaptic transmission within the spinal cord dorsal horn and by doing so establishes the threshold for thermal nociception.

  15. Cytoarchitecture of the spinal cord of the postnatal (P4) mouse.

    PubMed

    Sengul, Gulgun; Puchalski, Ralph B; Watson, Charles

    2012-05-01

    Interpretation of the new wealth of gene expression and molecular mechanisms in the developing mouse spinal cord requires an accurate anatomical base on which data can be mapped. Therefore, we have assembled a spinal cord atlas of the P4 mouse to facilitate direct comparison with the adult specimens and to contribute to studies of the development of the mouse spinal cord. This study presents the anatomy of the spinal cord of the P4 C57Bl/6J mouse using Nissl and acetyl cholinesterase-stained sections. It includes a detailed map of the laminar organization of selected spinal cord segments and a description of named cell groups of the spinal cord such as the central cervical (CeCv), lateral spinal nucleus, lateral cervical, and dorsal nuclei. The motor neuron groups have also been identified according to the muscle groups they are likely to supply. General features of Rexed's laminae of the P4 spinal cord showed similarities to that of the adult (P56). However, certain differences were observed with regard to the extent of laminae and location of certain cell groups, such as the dorsal nucleus having a more dispersed structure and a more ventral and medial position or the CeCv being located in the medial part of lamina 5 in contrast to the adult where it is located in lamina 7. Motor neuron pools appeared to be more tightly packed in the P4 spinal cord. The dorsal horn was relatively larger and there was more white matter in the P56 spinal cord. Copyright © 2012 Wiley Periodicals, Inc.

  16. A preclinical physiological assay to test modulation of knee joint pain in the spinal cord: effects of oxycodone and naproxen.

    PubMed

    Miranda, Jason A; Stanley, Phil; Gore, Katrina; Turner, Jamie; Dias, Rebecca; Rees, Huw

    2014-01-01

    Sensory processing in the spinal cord during disease states can reveal mechanisms for novel treatments, yet very little is known about pain processing at this level in the most commonly used animal models of articular pain. Here we report a test of the prediction that two clinically effective compounds, naproxen (an NSAID) and oxycodone (an opiate), are efficacious in reducing the response of spinal dorsal horn neurons to noxious knee joint rotation in the monosodium iodoacetate (MIA) sensitized rat. The overall objective for these experiments was to develop a high quality in vivo electrophysiology assay to confidently test novel compounds for efficacy against pain. Given the recent calls for improved preclinical experimental quality we also developed and implemented an Assay Capability Tool to determine the quality of our assay and ensure the quality of our results. Spinal dorsal horn neurons receiving input from the hind limb knee joint were recorded in anesthetized rats 14 days after they were sensitized with 1 mg of MIA. Intravenous administered oxycodone and naproxen were each tested separately for their effects on phasic, tonic, ongoing and afterdischarge action potential counts in response to innocuous and noxious knee joint rotation. Oxycodone reduced tonic spike counts more than the other measures, doing so by up to 85%. Tonic counts were therefore designated the primary endpoint when testing naproxen which reduced counts by up to 81%. Both reductions occurred at doses consistent with clinically effective doses for osteoarthritis. These results demonstrate that clinically effective doses of standard treatments for osteoarthritis reduce pain processing measured at the level of the spinal cord for two different mechanisms. The Assay Capability Tool helped to guide experimental design leading to a high quality and robust preclinical assay to use in discovering novel treatments for pain.

  17. A Preclinical Physiological Assay to Test Modulation of Knee Joint Pain in the Spinal Cord: Effects of Oxycodone and Naproxen

    PubMed Central

    Miranda, Jason A.; Stanley, Phil; Gore, Katrina; Turner, Jamie; Dias, Rebecca; Rees, Huw

    2014-01-01

    Sensory processing in the spinal cord during disease states can reveal mechanisms for novel treatments, yet very little is known about pain processing at this level in the most commonly used animal models of articular pain. Here we report a test of the prediction that two clinically effective compounds, naproxen (an NSAID) and oxycodone (an opiate), are efficacious in reducing the response of spinal dorsal horn neurons to noxious knee joint rotation in the monosodium iodoacetate (MIA) sensitized rat. The overall objective for these experiments was to develop a high quality in vivo electrophysiology assay to confidently test novel compounds for efficacy against pain. Given the recent calls for improved preclinical experimental quality we also developed and implemented an Assay Capability Tool to determine the quality of our assay and ensure the quality of our results. Spinal dorsal horn neurons receiving input from the hind limb knee joint were recorded in anesthetized rats 14 days after they were sensitized with 1 mg of MIA. Intravenous administered oxycodone and naproxen were each tested separately for their effects on phasic, tonic, ongoing and afterdischarge action potential counts in response to innocuous and noxious knee joint rotation. Oxycodone reduced tonic spike counts more than the other measures, doing so by up to 85%. Tonic counts were therefore designated the primary endpoint when testing naproxen which reduced counts by up to 81%. Both reductions occurred at doses consistent with clinically effective doses for osteoarthritis. These results demonstrate that clinically effective doses of standard treatments for osteoarthritis reduce pain processing measured at the level of the spinal cord for two different mechanisms. The Assay Capability Tool helped to guide experimental design leading to a high quality and robust preclinical assay to use in discovering novel treatments for pain. PMID:25157947

  18. Connexin36 identified at morphologically mixed chemical/electrical synapses on trigeminal motoneurons and at primary afferent terminals on spinal cord neurons in adult mouse and rat

    PubMed Central

    Bautista, W.; McCrea, D. A.; Nagy, J. I.

    2014-01-01

    Morphologically mixed chemical/electrical synapses at axon terminals, with the electrical component formed by gap junctions, is common in the CNS of lower vertebrates. In mammalian CNS, evidence for morphologically mixed synapses has been obtained in only a few locations. Here, we used immunofluorescence approaches to examine the localization of the neuronally expressed gap junction forming protein connexin36 (Cx36) in relation to the axon terminal marker vesicular glutamate transporter1 (vglut1) in spinal cord and trigeminal motor nucleus (Mo5) of rat and mouse. In adult rodents, immunolabelling for Cx36 appeared exclusively as Cx36-puncta, and was widely distributed at all rostro-caudal levels in most spinal cord laminae and in the Mo5. A high proportion of Cx36-puncta was co-localized with vglut1, forming morphologically mixed synapses on motoneurons, in intermediate spinal cord lamina, and in regions of medial lamina VII, where vglut1-containing terminals associated with Cx36 converged on neurons adjacent to the central canal. Unilateral transection of lumbar dorsal roots reduced immunolabelling of both vglut1 and Cx36 in intermediate laminae and lamina IX. Further, vglut1-terminals displaying Cx36-puncta were contacted by terminals labelled for glutamic acid decarboxylase65, which is known to be contained in presynaptic terminals on large diameter primary afferents. Developmentally, mixed synapses begin to emerge in the spinal cord only after the second to third postnatal week and thereafter increase to adult levels. Our findings demonstrate that axon terminals of primary afferent origin form morphologically mixed synapses containing Cx36 in broadly distributed areas of adult rodent spinal cord and Mo5. PMID:24406437

  19. [Effect of bee venom injection on TrkA and TRPV1 expression in the dorsal root ganglion of rats with collagen-induced arthritis].

    PubMed

    Xian, Pei-Feng; Chen, Ying; Yang, Lu; Liu, Guo-Tao; Peng, Peng; Wang, Sheng-Xu

    2016-06-01

    To investigate the therapeutic effect of acupoint injection of bee venom on collagen-induced arthritis (CIA) in rats and explore the mechanism of bee venom therapy in the treatment of rheumatoid arthritis. Fifteen male Wistar rats were randomly divided into bee venom treatment group (BV group), CIA model group, and control group. In the former two groups, CIA was induced by injections of collagen II+IFA (0.2 mL) via the tail vein, and in the control group, normal saline was injected instead. The rats in BV group received daily injection of 0.1 mL (3 mg/mL) bee venom for 7 consecutive days. All the rats were assessed for paw thickness and arthritis index from days 14 to 21, and the pain threshold was determined on day 21. The expressions of TRPV1 and TrkA in the dorsal root ganglion at the level of L4-6 were detected using immunohistochemistry and Western blotting, respectively. The rats in CIA model group started to show paw swelling on day 10, and by day 14, all the rats in this group showed typical signs of CIA. In BV group, the rats receiving been venom therapy for 7 days showed a significantly smaller paw thickness and a low arthritis index than those in the model group. The pain threshold was the highest in the control group and the lowest in the model group. TRPV1-positive cells and TrkA expression in the dorsal root ganglion was significantly reduced in BV group as compared with that in the model group. s Injection of bee venom can decrease expression of TRPV1 and TrkA in the dorsal root ganglion to produce anti-inflammatory and analgesic effects, suggesting the potential value of bee venom in the treatment of rheumatoid arthritis.

  20. Intradermal endothelin-1 excites bombesin-responsive superficial dorsal horn neurons in the mouse

    PubMed Central

    Akiyama, T.; Nagamine, M.; Davoodi, A.; Iodi Carstens, M.; Cevikbas, F.; Steinhoff, M.

    2015-01-01

    Endothelin-1 (ET-1) has been implicated in nonhistaminergic itch. Here we used electrophysiological methods to investigate whether mouse superficial dorsal horn neurons respond to intradermal (id) injection of ET-1 and whether ET-1-sensitive neurons additionally respond to other pruritic and algesic stimuli or spinal superfusion of bombesin, a homolog of gastrin-releasing peptide (GRP) that excites spinal itch-signaling neurons. Single-unit recordings were made from lumbar dorsal horn neurons in pentobarbital-anesthetized C57BL/6 mice. We searched for units that exhibited elevated firing after id injection of ET-1 (1 μg/μl). Responsive units were further tested with mechanical stimuli, bombesin (spinal superfusion, 200 μg·ml−1·min−1), heating, cooling, and additional chemicals [histamine, chloroquine, allyl isothiocyanate (AITC), capsaicin]. Of 40 ET-1-responsive units, 48% responded to brush and pinch [wide dynamic range (WDR)] and 52% to pinch only [high threshold (HT)]. Ninety-three percent responded to noxious heat, 50% to cooling, and >70% to histamine, chloroquine, AITC, and capsaicin. Fifty-seven percent responded to bombesin, suggesting that they participate in spinal itch transmission. That most ET-1-sensitive spinal neurons also responded to pruritic and algesic stimuli is consistent with previous studies of pruritogen-responsive dorsal horn neurons. We previously hypothesized that pruritogen-sensitive neurons signal itch. The observation that ET-1 activates nociceptive neurons suggests that both itch and pain signals may be generated by ET-1 to result in simultaneous sensations of itch and pain, consistent with observations that ET-1 elicits both itch- and pain-related behaviors in animals and burning itch sensations in humans. PMID:26311187

  1. Spinal cord processing of cardiac nociception: are there sex differences between male and proestrous female rats?

    PubMed

    Little, Janine M; Qin, Chao; Farber, Jay P; Foreman, Robert D

    2011-09-21

    Sex differences in the characteristics of cardiac pain have been reported from clinical studies. For example, women experience chest pain less frequently than men. Women describe their chest pain as sharp and stabbing, while men have chest pain that is felt as a pressure or heaviness. Pain is also referred to the back more often in women than men. The mechanisms underlying sex differences in cardiac pain are unknown. One possible mechanism for the observed differences could be related to plasma estradiol. This study investigated the actions of estradiol on the activity of T(3) spinal neurons that process cardiosomatic information in male and female rats. Extracellular potentials of T(3) spinal neurons were recorded in response to mechanical somatic stimulation and noxious chemical cardiac stimulation in pentobarbital-anesthetized male and proestrous female rats. Fifty one percent and fifty percent of neurons responded to intrapericardial algogenic chemicals (0.2 ml) in male and female rats, respectively. Somatic fields were located by applying brush, pressure, and pinch to the upper body. Of those neurons receiving cardiac input, 54% in female and 55% in male rats also received somatic input. In both male and female rats, 81% of neurons responding to somatic stimuli had somatic fields located on the side of the upper body, while 19% of neurons had somatic fields located on the chest. These results indicate there are no significant differences in the responses of T(3) spinal neurons to cardiosomatic stimulation between male and proestrous female rats, despite differences in estradiol levels. Published by Elsevier B.V.

  2. Impact Depth and the Interaction with Impact Speed Affect the Severity of Contusion Spinal Cord Injury in Rats

    PubMed Central

    Lam, Cameron J.; Assinck, Peggy; Liu, Jie; Tetzlaff, Wolfram

    2014-01-01

    Abstract Spinal cord injury (SCI) biomechanics suggest that the mechanical factors of impact depth and speed affect the severity of contusion injury, but their interaction is not well understood. The primary aim of this work was to examine both the individual and combined effects of impact depth and speed in contusion SCI on the cervical spinal cord. Spinal cord contusions between C5 and C6 were produced in anesthetized rats at impact speeds of 8, 80, or 800 mm/s with displacements of 0.9 or 1.5 mm (n=8/group). After 7 days postinjury, rats were assessed for open-field behavior, euthanized, and spinal cords were harvested. Spinal cord tissue sections were stained for demyelination (myelin-based protein) and tissue sparing (Luxol fast blue). In parallel, a finite element model of rat spinal cord was used to examine the resulting maximum principal strain in the spinal cord during impact. Increasing impact depth from 0.9 to 1.5 mm reduced open-field scores (p<0.01) above 80 mm/s, reduced gray (GM) and white matter (WM) sparing (p<0.01), and increased the amount of demyelination (p<0.01). Increasing impact speed showed similar results at the 1.5-mm impact depth, but not the 0.9-mm impact depth. Linear correlation analysis with finite element analysis strain showed correlations (p<0.001) with nerve fiber damage in the ventral (R2=0.86) and lateral (R2=0.74) regions of the spinal cord and with WM (R2=0.90) and GM (R2=0.76) sparing. The results demonstrate that impact depth is more important in determining the severity of SCI and that threshold interactions exist between impact depth and speed. PMID:24945364

  3. Neuropeptide Y in human spinal cord.

    PubMed

    Allen, J M; Gibson, S J; Adrian, T E; Polak, J M; Bloom, S R

    1984-08-06

    The distribution of a newly described peptide, neuropeptide Y (NPY) within the human spinal cord has been determined using radioimmunoassay and immunocytochemistry. Higher concentrations were found in the lumbar (49.9 +/- 6.8 pmol/g) and sacral (47.0 +/- 10.6 pmol/g) regions than in the cervical (27.6 +/- 2.7 pmol/g) and thoracic spinal cord (33.8 +/- 5.3 pmol/g). Immunocytochemistry revealed numerous nerve fibers containing NPY in the spinal cord; these were particularly concentrated in the substantia gelatinosa of the dorsal horn. In the ventral spinal cord NPY-containing nerves were sparse becoming more abundant in lumbosacral segments.

  4. Microsurgical anatomy of the posterior median septum of the human spinal cord.

    PubMed

    Turkoglu, Erhan; Kertmen, Hayri; Uluc, Kutluay; Akture, Erinc; Gurer, Bora; Cikla, Ulaş; Salamat, Shahriar; Başkaya, Mustafa K

    2015-01-01

    The aim of this study was to analyze the topographical anatomy of the dorsal spinal cord (SC) in relation to the posterior median septum (PMS). This included the course and variations in the PMS, and its relationship to and distance from other dorsal spinal landmarks. Microsurgical anatomy of the PMS was examined in 12 formalin-fixed adult cadaveric SCs. Surface landmarks such as the dorsal root entry zone (DREZ), the denticulate ligament, the architecture of the leptomeninges and pial vascular distribution were noted. The PMS was examined histologically in all spinal segments. The PMS extended most deeply at spinal segments C7 and S4. This was statistically significant for all spinal segments except C5. The PMS was shallowest at segments T4 and T6, where it was statistically significantly thinner than at any other segment. In 80% of the SCs, small blood vessels were identified that traveled in a rostrocaudal direction in the PMS. The longest distance between the PMS and the DREZ was at the C1-C4 vertebral levels and the shortest distance was at the S5 level. Prevention of deficits following a dorsal midline neurosurgical approach to deep-seated SC lesions requires careful identification of the midline of the cord. The PMS and septum define the midline on the dorsum of the SC and their accurate identification is essential for a safe midline surgical approach. In this anatomical study, we describe the surface anatomy of the dorsal SC and its relationship with the PMS, which can be used to determine a safe entry zone into the SC. © 2014 Wiley Periodicals, Inc.

  5. Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation

    PubMed Central

    Budde, Matthew D.; Skinner, Nathan P.; Muftuler, L. Tugan; Schmit, Brian D.; Kurpad, Shekar N.

    2017-01-01

    Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE) have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE) approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI. Overall, the

  6. Ketorolac reduces spinal astrocytic activation and PAR1 expression associated with attenuation of pain after facet joint injury.

    PubMed

    Dong, Ling; Smith, Jenell R; Winkelstein, Beth A

    2013-05-15

    Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain.

  7. Ketorolac Reduces Spinal Astrocytic Activation and PAR1 Expression Associated with Attenuation of Pain after Facet Joint Injury

    PubMed Central

    Dong, Ling; Smith, Jenell R.

    2013-01-01

    Abstract Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain. PMID:23126437

  8. The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation

    PubMed Central

    Machova Urdzikova, Lucia; Karova, Kristyna; Ruzicka, Jiri; Kloudova, Anna; Shannon, Craig; Dubisova, Jana; Murali, Raj; Kubinova, Sarka; Sykova, Eva; Jhanwar-Uniyal, Meena; Jendelova, Pavla

    2015-01-01

    Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9–T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury. PMID:26729105

  9. Dorsal hippocampus is necessary for visual categorization in rats.

    PubMed

    Kim, Jangjin; Castro, Leyre; Wasserman, Edward A; Freeman, John H

    2018-02-23

    The hippocampus may play a role in categorization because of the need to differentiate stimulus categories (pattern separation) and to recognize category membership of stimuli from partial information (pattern completion). We hypothesized that the hippocampus would be more crucial for categorization of low-density (few relevant features) stimuli-due to the higher demand on pattern separation and pattern completion-than for categorization of high-density (many relevant features) stimuli. Using a touchscreen apparatus, rats were trained to categorize multiple abstract stimuli into two different categories. Each stimulus was a pentagonal configuration of five visual features; some of the visual features were relevant for defining the category whereas others were irrelevant. Two groups of rats were trained with either a high (dense, n = 8) or low (sparse, n = 8) number of category-relevant features. Upon reaching criterion discrimination (≥75% correct, on 2 consecutive days), bilateral cannulas were implanted in the dorsal hippocampus. The rats were then given either vehicle or muscimol infusions into the hippocampus just prior to various testing sessions. They were tested with: the previously trained stimuli (trained), novel stimuli involving new irrelevant features (novel), stimuli involving relocated features (relocation), and a single relevant feature (singleton). In training, the dense group reached criterion faster than the sparse group, indicating that the sparse task was more difficult than the dense task. In testing, accuracy of both groups was equally high for trained and novel stimuli. However, both groups showed impaired accuracy in the relocation and singleton conditions, with a greater deficit in the sparse group. The testing data indicate that rats encode both the relevant features and the spatial locations of the features. Hippocampal inactivation impaired visual categorization regardless of the density of the category-relevant features for

  10. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increases with the firing frequency of C-fibers

    PubMed Central

    Adelson, David; Lao, Lijun; Zhang, Guohua; Kim, Woojae; Marvizón, Juan Carlos G.

    2009-01-01

    Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1–10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Aδ-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli. PMID:19336248

  11. Cardiovascular and temperature changes in spinal cord injured rats at rest and during autonomic dysreflexia

    PubMed Central

    Laird, A S; Carrive, P; Waite, P M E

    2006-01-01

    In patients with high spinal cord injuries autonomic dysfunction can be dangerous, leading to medical complications such as postural hypotension, autonomic dysreflexia and temperature disturbance. While animal models have been developed to study autonomic dysreflexia, associated temperature changes have not been documented. Our aim here was to use radiotelemetry and infrared thermography in rodents to record the development of cardiovascular and skin temperature changes following complete T4 transection. In adult male Wistar rats (n = 5), responses were assessed prior to spinal cord injury (intact) and for 6 weeks following injury. Statistical analysis by a repeated-measure ANOVA revealed that following spinal cord injury (SCI), rats exhibited decreased mean arterial pressure (MAP, average decrease of 26 mmHg; P < 0.035) and elevated heart rate (HR, average increase of 65 bpm, P < 0.035) at rest. The basal core body temperature following SCI was also significantly lower than intact levels (−0.9°C; P < 0.0035). Associated with this decreased basal core temperature following SCI was an increased skin temperature of the mid-tail and hindpaw (+5.6 and +4.0°C, respectively; P < 0.0003) consistent with decreased cutaneous vasoconstrictor tone. Autonomic dysreflexia, in response to a 1 min colorectal distension (25 mmHg), was fully developed by 4 weeks after spinal cord transection, producing increases in MAP greater than 25 mmHg (P < 0.0003). In contrast to the tachycardia seen in intact animals in response to colorectal distension, SCI animals exhibited bradycardia (P < 0.0023). During episodes of autonomic dysreflexia mid-tail surface temperature decreased (approx. −1.7°C, P < 0.012), consistent with cutaneous vasoconstriction. This is the first study to compare cardiovascular dysfunction with temperature changes following spinal cord transection in rats. PMID:16973703

  12. Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease

    PubMed Central

    Wang, Bing; Chen, Li-Hua

    2016-01-01

    In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain. PMID:27747105

  13. Effects of core body temperature on changes in spinal somatosensory-evoked potential in acute spinal cord compression injury: an experimental study in the rat.

    PubMed

    Jou, I M

    2000-08-01

    Acute spinal cord injury was induced by a clip compression model in rats to approximate spinal cord injury encountered in spinal surgery. Spinal somatosensory-evoked potential neuromonitoring was used to study the electrophysiologic change. To compare and correlate changes in evoked potential after acute compression at different core temperatures with postoperative neurologic function and histologic change, to evaluate current intraoperative neuromonitoring warning criteria for neural damage, and to confirm the protective effect of hypothermia in acute spinal cord compression injury by electrophysiologic, histologic, and clinical observation. With the increase in aggressive correction of spinal deformities, and the invasiveness of surgical instruments, the incidence of neurologic complication appears to have increased despite the availability of sensitive intraoperative neuromonitoring techniques designed to alert surgeons to impending neural damage. Many reasons have been given for the frequent failures of neuromonitoring, but the influence of temperature-a very important and frequently encountered factor-on evoked potential has not been well documented. Specifically, decrease in amplitude and elongation of latency seem not to have been sufficiently taken into account when intraoperative neuromonitoring levels were interpreted and when acceptable intraoperative warning criteria were determined. Experimental acute spinal cord injury was induced in rats by clip compression for two different intervals and at three different core temperatures. Spinal somatosensory-evoked potential, elicited by stimulating the median nerve and recorded from the cervical interspinous C2-C3, was monitored immediately before and after compression, and at 15-minute intervals for 1 hour. Spinal somatosensory-evoked potential change is almost parallel to temperature-based amplitude reduction and latency elongation. Significant neurologic damage induced by acute compression of the cervical

  14. Spinal serum-inducible and glucocorticoid-inducible kinase 1 mediates neuropathic pain via kalirin and downstream PSD-95-dependent NR2B phosphorylation in rats.

    PubMed

    Peng, Hsien-Yu; Chen, Gin-Den; Lai, Cheng-Yuan; Hsieh, Ming-Chun; Lin, Tzer-Bin

    2013-03-20

    The coupling of the spinal postsynaptic density-95 (PSD-95) with the glutamatergic N-methyl-d-aspartate receptor NR2B subunit and the subsequent NR2B phosphorylation contribute to pain-related plasticity. Increasing evidence reveals that kalirin, a Rho-guanine nucleotide exchange factor, modulates PSD-95-NR2B-dependent neuroplasticity. Our laboratory recently demonstrated that serum-inducible and glucocorticoid-inducible kinase 1 (SGK1) participates in inflammation-associated pain hypersensitivity by modulating spinal glutamatergic neurotransmission. Because kalirin is one of the proteins in PSD that is highly phosphorylated by various kinases, we tested whether kalirin could be a downstream target of spinal SGK1 that participates in neuropathic pain development via regulation of the PSD-95-NR2B coupling-dependent phosphorylation of NR2B. We observed that spinal nerve ligation (SNL, L5) in male Sprague Dawley rats resulted in behavioral allodynia, which was associated with phosphorylated SGK1 (pSGK1), kalirin, and phosphorylated NR2B (pNR2B) expression and an increase in pSGK1-kalirin-PSD-95-pNR2B coprecipitation in the ipsilateral dorsal horn (L4-L5). SNL-enhanced kalirin immunofluorescence was coincident with pSGK1, PSD-95, and pNR2B immunoreactivity. Small-interfering RNA (siRNA) that targeted spinal kalirin mRNA expression (10 μg, 10 μl; i.t.) reduced SNL-induced allodynia, kalirin and pNR2B expression, as well as kalirin-PSD-95 and PSD-95-pNR2B coupling and costaining without affecting SGK1 phosphorylation. Daily administration of GSK-650394 (an SGK1 antagonist; 100 nm, 10 μl, i.t.) not only exhibited effects similar to the kalirin mRNA-targeting siRNA but also attenuated pSGK1-kalirin costaining and SGK1-kalirin coupling. We suggest that nerve injury could induce spinal SGK1 phosphorylation that subsequently interacts with and upregulates kalirin to participate in neuropathic pain development via PSD-95-NR2B coupling-dependent NR2B phosphorylation.

  15. Anesthetic effects on fictive locomotion in the rat isolated spinal cord

    PubMed Central

    Jinks, Steven L.; Andrada, Jason; Satter, Omar

    2011-01-01

    General anesthetic mechanisms are poorly understood. Anesthetic immobilizing effects occur in the spinal ventral horn. However, a detailed analysis of anesthetic effects on ventral motor networks is lacking. We delivered isoflurane, desflurane, or propofol during NMDA/5-HT-induced, or noxious tail stimulus-evoked, fictive locomotion in neonatal rat isolated spinal cords. Anesthetics changed the frequency, amplitude, and regularity of fictive locomotion with little effect on phase-lag. Isoflurane abolished pharmacologically-induced vs noxious stimulus-induced motor output at similar concentrations. Propofol abolished pharmacologically-induced fictive locomotion via a GABAA-receptor mechanism. Anesthetic effects on pharmacologically-elicted fictive locomotion appear clinically-relevant, and support a ventral horn immobilizing effect on locomotor rhythm generation. PMID:21817927

  16. Hindlimb Immobilization in a Wheelchair Alters Functional Recovery Following Contusive Spinal Cord Injury in the Adult Rat

    PubMed Central

    Caudle, Krista L.; Brown, Edward H.; Shum-Siu, Alice; Burke, Darlene A.; Magnuson, Trystan S. G.; Voor, Michael J.; Magnuson, David S. K.

    2015-01-01

    Background Locomotor training of rats with thoracic contusion spinal cord injuries can induce task-specific changes in stepping but rarely results in improved overground locomotion, possibly due to a ceiling effect. Thus, the authors hypothesize that incompletely injured rats maximally retrain themselves while moving about in their cages over the first few weeks postinjury. Objective To test the hypothesis using hindlimb immobilization after mild thoracic contusion spinal cord injury in adult female rats. A passive stretch protocol was included as an independent treatment. Methods Wheelchairs were used to hold the hindlimbs stationary in an extended position leaving the forelimbs free. The wheelchairs were used for 15 to 18 hours per day, 5 days per week for 8 weeks, beginning at 4 days postinjury. A 20-minute passive hindlimb stretch therapy was applied to half of the animals. Results Hindlimb locomotor function of the wheelchair group was not different from controls at 1 week postinjury but declined significantly over the next 4 weeks. Passive stretch had no influence on wheelchair animals but limited functional recovery of normally housed animals, preventing them from regaining forelimb–hindlimb coordination. Following 8 weeks of wheelchair immobilization and stretch therapy, only the wheelchair group displayed an improvement in function when returned to normal housing but retained significant deficits in stepping and coordination out to 16 weeks. Conclusion Hindlimb immobilization and passive stretch may hinder or conceal the normal course of functional recovery of spinal cord injured rats. These observations have implications for the management of acute clinical spinal cord injuries. PMID:21697451

  17. Secondary damage in the spinal cord after motor cortex injury in rats.

    PubMed

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  18. Xenon-delayed postconditioning attenuates spinal cord ischemia/reperfusion injury through activation AKT and ERK signaling pathways in rats.

    PubMed

    Liu, Shiyao; Yang, Yanwei; Jin, Mu; Hou, Siyu; Dong, Xiuhua; Lu, Jiakai; Cheng, Weiping

    2016-09-15

    Previous studies have shown that xenon-delayed postconditioning for up to 2h after reperfusion provides protection against spinal cord ischemia/reperfusion (I/R) injury in rats. This study was designed to determine the roles of phosphatidylinositol 3-kinase (PI3K)-Akt and extracellular signal-regulated kinase (ERK) in this neuroprotection. The rats were randomly assigned to the following nine groups (n=16∗9): 1) I/R+N2 group, 2) I/R+Xe group, 3) I/R+PD98059+N2 group (ERK blocking agent), 4) I/R+wortmannin+N2 group (PI3K-Akt blocking agent), 5) I/R+PD98059+Xe group, 6) I/R+wortmannin+Xe group, 7) I/R+DMSO+Xe group (dimethyl sulfoxide, vehicle control), 8) I/R+DMSO+N2 group, and 9) sham group (no spinal cord ischemia and no xenon). Spinal cord ischemia was induced for 25min in male Sprague-Dawley rats. Neurological function was assessed using the Basso, Beattie, and Bresnahan (BBB) open-field locomotor scale at 6, 12, 24 and 48h after reperfusion. Histological examination of the lumbar spinal cord was performed using Nissl staining and TUNEL staining at 4 (n=8) and 48 (n=8)h after reperfusion. Western blotting was performed to evaluate p-Akt and p-ERK expression in the spinal cord at 4 (n=8) and 48 (n=8) h after reperfusion. Compared with the sham group, all rats in the I/R groups had lower BBB scores, fewer normal motor neurons, more apoptotic neurons and lower p-Akt and p-ERK levels at each time point (P<0.05). Compared with the I/R group, rats in the I/R+Xe group had higher neurological scores, more normal motor neurons, fewer apoptotic neurons and significantly higher levels of p-Akt and p-ERK at each time point (P<0.05). Compared with the I/R+Xe group, the I/R+PD98059+Xe and I/R+wortmannin+Xe groups showed worse neurological outcomes and less p-Akt and p-ERK at each time point (P<0.05). These results suggest that xenon-delayed postconditioning improves neurological outcomes to spinal cord I/R injury in rats through the activation of the AKT and ERK signaling

  19. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus

    NASA Technical Reports Server (NTRS)

    Bassett, J. P.; Taube, J. S.; Oman, C. M. (Principal Investigator)

    2001-01-01

    Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of activity in DTN neurons. The majority of cells (75%) fired as a function of the rat's angular head velocity (AHV). Cells exhibited one of two types of firing patterns: (1) symmetric, in which the firing rate was positively correlated with AHV during head turns in both directions, and (2) asymmetric, in which the firing rate was positively correlated with head turns in one direction and correlated either negatively or not at all in the opposite direction. In addition to modulation by AHV, some of the AHV cells (40.1%) were weakly modulated by the rat's linear velocity, and a smaller number were modulated by HD (11%) or head pitch (15.9%). Autocorrelation analyses indicated that with the head stationary, AHV cells displayed irregular discharge patterns. Because afferents from the DTN are the major source of information projecting to the LMN, these results suggest that AHV information from the DTN plays a significant role in generating the HD signal in LMN. A model is proposed showing how DTN AHV cells can generate and update the LMN HD cell signal.

  20. Effect of prenatal and early life paracetamol exposure on the level of neurotransmitters in rats--Focus on the spinal cord.

    PubMed

    Blecharz-Klin, Kamilla; Joniec-Maciejak, Ilona; Jawna, Katarzyna; Pyrzanowska, Justyna; Piechal, Agnieszka; Wawer, Adriana; Widy-Tyszkiewicz, Ewa

    2015-12-01

    The present study has examined the influence of the prenatal and early life administration of paracetamol on the level of neurotransmitters in the spinal cord of rat pups. The effect of the drug was evaluated in 2-month old Wistar male rats exposed to paracetamol in doses of 5 (P5, n=9) or 15 mg/kg (P15, n=9) p.o. during the prenatal period and after birth until the completion of the second month of life. A parallel control group received tap water (Con, n=9). In this study we have determined the level of monoamines, their metabolites and amino acids in the spinal cord of rats using high performance liquid chromatography (HPLC) in the second month of life. The present experiment demonstrates the action of paracetamol at the molecular level associated with significant modulation of neurotransmission in the spinal cord related to dopaminergic and noradrenergic systems. Simultaneously, paracetamol administration increases the content of an aspartic and glutamic acids in the spinal cord at a critical time during development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Electrical stimulation at the dorsal root ganglion preserves trabecular bone mass and microarchitecture of the tibia in hindlimb-unloaded rats.

    PubMed

    Lau, Y-C; Qian, X; Po, K-T; Li, L-M; Guo, X

    2015-02-01

    This study seeks to investigate the effect of electrical stimulation (ES) at dorsal root ganglion (DRG) on disuse bone loss in a rat model. Hindlimb unloading for 14 days resulted in significant bone loss in rat tibia while rats with ES at DRG showed a significant reduced bone loss Mechanical unloading induces osteoporosis in both human and animals. Previous studies demonstrated that electrical stimulation (ES) to dorsal root ganglion (DRG) could trigger secretion of calcitonin gene-related peptide (CGRP) which plays an important role in bone modeling and remodeling. This study seeks to investigate the effect of ES to DRG on disuse bone loss in a rat model. Twenty-four rats were randomly assigned in three experimental groups: cage control (CC), hindlimb unloading (HU), and hindlimb unloading with ES (HUES). ES was applied via implantable micro-electrical stimulators (IMES) to right DRGs at vertebral levels L4-L6 in HUES group. Hindlimb unloading for 14 days resulted in 25.9% decrease in total bone mineral content (BMC), 29.2% decrease in trabecular BMD and trabecular microarchitecture and connectivity were significantly deteriorated in the proximal tibia metaphysis in HU group, while rats with ES at DRG showed significant reduced bone loss that there was 3.8% increase in total BMC, 2.3% decrease in trabecular BMD, and significant improvement in trabecular microarchitecture. There was a concurrent enhancement of expression of CGRP in stimulated DRGs. The results confirm the effect of ES at DRG on enhancing CGRP expression and suggest potential applications of IMES for the prevention and treatment of disuse bone loss.

  2. Dissecting the contribution of knee joint NGF to spinal nociceptive sensitization in a model of OA pain in the rat

    PubMed Central

    Sagar, D.R.; Nwosu, L.; Walsh, D.A.; Chapman, V.

    2015-01-01

    Summary Objective Although analgesic approaches targeting nerve growth factor (NGF) for the treatment of osteoarthritis (OA) pain remain of clinical interest, neurophysiological mechanisms by which NGF contribute to OA pain remain unclear. We investigated the impact of local elevation of knee joint NGF on knee joint, vs remote (hindpaw), evoked responses of spinal neurones in a rodent model of OA pain. Design In vivo spinal electrophysiology was carried out in anaesthetised rats with established pain behaviour and joint pathology following intra-articular injection of monosodium iodoacetate (MIA), vs injection of saline. Neuronal responses to knee joint extension and flexion, mechanical punctate stimulation of the peripheral receptive fields over the knee and at a remote site (ipsilateral hind paw) were studied before, and following, intra-articular injection of NGF (10 μg/50 μl) or saline. Results MIA-injected rats exhibited significant local (knee joint) and remote (lowered hindpaw withdrawal thresholds) changes in pain behaviour, and joint pathology. Intra-articular injection of NGF significantly (P < 0.05) increased knee extension-evoked firing of spinal neurones and the size of the peripheral receptive fields of spinal neurones (100% increase) over the knee joint in MIA rats, compared to controls. Intra-articular NGF injection did not significantly alter responses of spinal neurones following noxious stimulation of the ipsilateral hind paw in MIA-injected rats. Conclusion The facilitatory effects of intra-articular injection of NGF on spinal neurones receiving input from the knee joint provide a mechanistic basis for NGF mediated augmentation of OA knee pain, however additional mechanisms may contribute to the spread of pain to remote sites. PMID:25623624

  3. Dissecting the contribution of knee joint NGF to spinal nociceptive sensitization in a model of OA pain in the rat.

    PubMed

    Sagar, D R; Nwosu, L; Walsh, D A; Chapman, V

    2015-06-01

    Although analgesic approaches targeting nerve growth factor (NGF) for the treatment of osteoarthritis (OA) pain remain of clinical interest, neurophysiological mechanisms by which NGF contribute to OA pain remain unclear. We investigated the impact of local elevation of knee joint NGF on knee joint, vs remote (hindpaw), evoked responses of spinal neurones in a rodent model of OA pain. In vivo spinal electrophysiology was carried out in anaesthetised rats with established pain behaviour and joint pathology following intra-articular injection of monosodium iodoacetate (MIA), vs injection of saline. Neuronal responses to knee joint extension and flexion, mechanical punctate stimulation of the peripheral receptive fields over the knee and at a remote site (ipsilateral hind paw) were studied before, and following, intra-articular injection of NGF (10 μg/50 μl) or saline. MIA-injected rats exhibited significant local (knee joint) and remote (lowered hindpaw withdrawal thresholds) changes in pain behaviour, and joint pathology. Intra-articular injection of NGF significantly (P < 0.05) increased knee extension-evoked firing of spinal neurones and the size of the peripheral receptive fields of spinal neurones (100% increase) over the knee joint in MIA rats, compared to controls. Intra-articular NGF injection did not significantly alter responses of spinal neurones following noxious stimulation of the ipsilateral hind paw in MIA-injected rats. The facilitatory effects of intra-articular injection of NGF on spinal neurones receiving input from the knee joint provide a mechanistic basis for NGF mediated augmentation of OA knee pain, however additional mechanisms may contribute to the spread of pain to remote sites. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Fractionated radiation facilitates repair and functional motor recovery after spinal cord transection in rat.

    PubMed

    Kalderon, N; Xu, S; Koutcher, J A; Fuks, Z

    2001-06-22

    Previous studies suggest that motor recovery does not occur after spinal cord injury because reactive glia abort the natural repair processes. A permanent wound gap is left in the cord and the brain-cord circuitry consequently remains broken. Single-dose x-irradiation destroys reactive glia at the damage site in transected adult rat spinal cord. The wound then heals naturally, and a partially functional brain-cord circuitry is reconstructed. Timing is crucial; cell ablation is beneficial only within the third week after injury. Data presented here point to the possibility of translating these observations into a clinical therapy for preventing the paralysis following spinal cord injury in the human. The lesion site (at low thoracic level) in severed adult rat spinal cord was treated daily, over the third week postinjury, with protocols of fractionated radiation similar to those for treating human spinal cord tumors. This resulted, as with the single-dose protocol, in wound healing and restoration of some hindquarter motor function; in addition, the beneficial outcome was augmented. Of the restored hindlimb motor functions, weight-support and posture in stance was the only obvious one. Recovery of this motor function was partial to substantial and its incidence was 100% instead of about 50% obtained with the single-dose treatment. None of the hindlimbs, however, regained frequent stepping or any weight-bearing locomotion. These data indicate that the therapeutic outcome may be further augmented by tuning the radiation parameters within the critical time-window after injury. These data also indicate that dose-fractionation is an effective strategy and better than the single-dose treatment for targeting of reactive cells that abort the natural repair, suggesting that radiation therapy could be developed into a therapeutic procedure for repairing injured spinal cord.

  5. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons.

    PubMed

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-05-01

    Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons.The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation.Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation.Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG.

  6. Amitriptyline Activates TrkA to Aid Neuronal Growth and Attenuate Anesthesia-Induced Neurodegeneration in Rat Dorsal Root Ganglion Neurons

    PubMed Central

    Zheng, Xiaochun; Chen, Feng; Zheng, Ting; Huang, Fengyi; Chen, Jianghu; Tu, Wenshao

    2016-01-01

    Abstract Tricyclic antidepressant amitriptyline (AM) has been shown to exert neurotrophic activity on neurons. We thus explored whether AM may aid the neuronal development and protect anesthesia-induced neuro-injury in young spinal cord dorsal root ganglion (DRG) neurons. The DRG explants were prepared from 1-day-old rats. The effect of AM on aiding DRG neural development was examined by immunohistochemistry at dose-dependent manner. AM-induced changes in gene and protein expressions, and also phosphorylation states of tyrosine kinases receptor A (TrkA) and B (TrkB) in DRG, were examined by quantitative real-time polymerase chain reaction and western blot. The effect of AM on attenuating lidocaine-induced DRG neurodegeneration was examined by immunohistochemistry, and small interfering RNA (siRNA)-mediated TrkA/B down-regulation. Amitriptyline stimulated DRG neuronal development in dose-dependent manner, but exerted toxic effect at concentrations higher than 10 M. AM activated TrkA in DRG through phosphorylation, whereas it had little effect on TrkB-signaling pathway. AM reduced lidocaine-induced DRG neurodegeneration by regenerating neurites and growth cones. Moreover, the neuroprotection of AM on lidocaine-injured neurodegeneration was blocked by siRNA-mediated TrkA down-regulation, but not by TrkB down-regulation. Amitriptyline facilitated neuronal development and had protective effect on lidocaine-induced neurodegeneration, very likely through the activation of TrkA-signaling pathway in DRG. PMID:27149473

  7. Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury

    PubMed Central

    Moss, Andrew; Ingram, Rachel; Koch, Stephanie; Theodorou, Andria; Low, Lucie; Baccei, Mark; Hathway, Gareth J; Costigan, Michael; Salton, Stephen R; Fitzgerald, Maria

    2008-01-01

    Background The role of the neurotrophin regulated polypeptide, VGF, has been investigated in a rat spared injury model of neuropathic pain. This peptide has been shown to be associated with synaptic strengthening and learning in the hippocampus and while it is known that VGFmRNA is upregulated in dorsal root ganglia following peripheral nerve injury, the role of this VGF peptide in neuropathic pain has yet to be investigated. Results Prolonged upregulation of VGF mRNA and protein was observed in injured dorsal root ganglion neurons, central terminals and their target dorsal horn neurons. Intrathecal application of TLQP-62, the C-terminal active portion of VGF (5–50 nmol) to naïve rats caused a long-lasting mechanical and cold behavioral allodynia. Direct actions of 50 nM TLQP-62 upon dorsal horn neuron excitability was demonstrated in whole cell patch recordings in spinal cord slices and in receptive field analysis in intact, anesthetized rats where significant actions of VGF were upon spontaneous activity and cold evoked responses. Conclusion VGF expression is therefore highly modulated in nociceptive pathways following peripheral nerve injury and can cause dorsal horn cell excitation and behavioral hypersensitivity in naïve animals. Together the results point to a novel and powerful role for VGF in neuropathic pain. PMID:19077191

  8. Involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters in neonatal rat spinal cord.

    PubMed Central

    Suzuki, H; Yoshioka, K; Yanagisawa, M; Urayama, O; Kurihara, T; Hosoki, R; Saito, K; Otsuka, M

    1994-01-01

    1. The possible involvement of enzymatic degradation in the inactivation of tachykinin neurotransmitters was examined in the spinal cord of the neonatal rat. 2. The magnitude of substance P (SP)- or neurokinin A (NKA)-evoked depolarization of a lumbar ventral root in the isolated spinal cord preparation was increased by a mixture of peptidase inhibitors, consisting of actinonin (6 microM), arphamenine B (6 microM), bestatin (10 microM), captopril (10 microM) and thiorphan (0.3 microM). The mixture augmented the response to NKA more markedly than that to SP. 3. In the isolated spinal cord-cutaneous nerve preparation, the saphenous nerve-evoked slow depolarization of the L3 ventral root was augmented by the mixture of peptidase inhibitors in the presence of naloxone (0.5 microM) but not in the presence of both naloxone and a tachykinin receptor antagonist, GR71251 (5 microM). 4. Application of capsaicin (0.5 microM) for 6 min to the spinal cord evoked an increase in the release of SP from the spinal cord. The amount of SP released was significantly augmented by the mixture of peptidase inhibitors. 5. Synaptic membrane fractions were prepared from neonatal rat spinal cords. These fractions showed degrading activities for SP and NKA and the activities were inhibited by the mixture of peptidase inhibitors. The degrading activity for NKA was higher than that for SP and the inhibitory effect of the mixture for NKA was more marked than that for SP. Although some other fractions obtained from homogenates of spinal cords showed higher degrading activities for SP, these activities were insensitive to the mixture of peptidase inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7529113

  9. A Brain-Machine-Muscle Interface for Restoring Hindlimb Locomotion after Complete Spinal Transection in Rats

    PubMed Central

    Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang

    2014-01-01

    A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics. PMID:25084446

  10. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    PubMed

    Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang

    2014-01-01

    A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  11. Analysis of equivalent parameters of two spinal cord injury devices: the New York University impactor versus the Infinite Horizon impactor.

    PubMed

    Park, Jin Hoon; Kim, Jeong Hoon; Oh, Sun-Kyu; Baek, Se Rim; Min, Joongkee; Kim, Yong Whan; Kim, Sang Tae; Woo, Chul-Woong; Jeon, Sang Ryong

    2016-11-01

    The New York University (NYU) impactor and the Infinite Horizon (IH) impactor are used to create spinal cord injury (SCI) models. However, the parameters of these two devices that yield equivalent SCI severity remain unclear. To identify equivalent parameters, rats with SCIs induced by either device set at various parameters were subjected to behavioral and histologic analyses. This is an animal laboratory study. Groups of eight rats acquired SCIs by dropping a 10 g rod from a height of 25 mm or 50 mm by using the NYU device or by delivering a force of 150 kdyn, 175 kdyn, 200 kdyn, or 250 kdyn by using the IH impactor. All injured rats were tested weekly for 8 weeks by using the Basso, Beattie, and Bresnahan (BBB) test and the ladder rung test. On the 10th week, the lesion volume of each group was measured by using a 9.4 Tesla magnetic resonance imaging (MRI), and the spinal cords were subjected to histologic analysis using anterograde biotinylated dextran amine (BDA) tracing and immunofluorescence staining with an anti-protein kinase C-gamma (PKC-γ) antibody. Basso, Beattie, and Bresnahan test scores between the 25 mm and the 200 kdyn groups as well as between the 50 mm and and 250 kdyn groups were very similar. Although it was not statistically significant, the mean scores of the ladder rung test in the 200 kdyn group were higher than the 25 mm group at all assessment time points. There was a significantly different cavity volume only between the 50 mm and the 200 kdyn groups. Midline sagittal images of the spinal cord on the MRI revealed that the 25 mm group predominantly had dorsal injuries, whereas the 200 kdyn group had deeper injuries. Anterograde tracing with BDA showed that in the 200 kdyn group, the dorsal corticospinal tract of the caudal area of the lesion was labeled. Similar labeling was not observed in the 25 mm group. Immunofluorescence staining of PKC-γ also revealed strong staining of the dorsal

  12. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    PubMed

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  13. Spinal hemianesthesia: Unilateral and posterior

    PubMed Central

    Imbelloni, Luiz Eduardo

    2014-01-01

    The injection of a non-isobaric local anesthetic should induce a unilateral spinal anesthesia in patients in a lateral decubitus position. The posterior spinal hemianesthesia only be obtained with hypobaric solutions injected in the jackknife position. The most important factors to be considered when performing a spinal hemianesthesia are: type and gauge of the needle, density of the local anesthetic relative to the CSF, position of the patient, speed of administration of the solution, time of stay in position, and dose/concentration/volume of the anesthetic solution. The distance between the spinal roots on the right-left sides and anterior-posterior is, approximately, 10-15 mm. This distance allows performing unilateral spinal anesthesia or posterior spinal anesthesia. The great advantage of obtaining spinal hemianesthesia is the reduction of cardiovascular changes. Likewise, both the dorsal and unilateral sensory block predominates in relation to the motor block. Because of the numerous advantages of producing spinal hemianesthesia, anesthesiologists should apply this technique more often. This review considers the factors which are relevant, plausible and proven to obtain spinal hemianesthesia. PMID:25886320

  14. Pharmacodynamic evaluation of Lys5, MeLeu9, Nle10-NKA(4–10) prokinetic effects on bladder and colon activity in acute spinal cord transected and spinally intact rats

    PubMed Central

    Kullmann, F. Aura; Katofiasc, M.; Thor, K.B.; Marson, L.

    2017-01-01

    Purpose To determine feasibility of a novel therapeutic approach to drug-induced voiding after spinal cord injury (SCI) using a well-characterized, peptide, neurokinin 2 receptor (NK2 receptor) agonist, Lys5, MeLeu9, Nle10-NKA(4–10) (LMN-NKA). Methods Cystometry and colorectal pressure measurements were performed in urethane anesthetized, intact and acutely spinalized, female rats. Bladder pressure and voiding were monitored in response to intravenous LMN-NKA given with the bladder filled to 70% capacity. Results LMN-NKA (0.1–300 µg/kg) produced dose dependent, rapid (< 60 s), short duration (< 15 min) increases in bladder pressure. In intact rats, doses above 0.3–1 µg/kg induced urine release (voiding efficiency of ~ 70% at ≥ 1 µg/kg). In spinalized rats, urine release required higher doses (≥ 10 µg/kg) and was less efficient (30–50%). LMN-NKA (0.1–100 µg/kg) also produced dose dependent increases in colorectal pressure. No tachyphylaxis was observed, and the responses were blocked by an NK2 receptor antagonist (GR159897, 1 mg/kg i.v.). No obvious cardiorespiratory effects were noted. Conclusions These results suggest that rapid-onset, short duration, drug-induced voiding is possible in acute spinal and intact rats with intravenous administration of an NK2 receptor agonist. Future challenges remain in regards to finding alternative routes of administration that produce clinically significant voiding, multiple times per day, in animal models of chronic SCI. PMID:27889808

  15. Analysis of complications and perioperative data after open or percutaneous dorsal instrumentation following traumatic spinal fracture of the thoracic and lumbar spine: a retrospective cohort study including 491 patients.

    PubMed

    Kreinest, Michael; Rillig, Jan; Grützner, Paul A; Küffer, Maike; Tinelli, Marco; Matschke, Stefan

    2017-05-01

    The aim of the current study is to analyze perioperative data and complications of open vs. percutaneous dorsal instrumentation after dorsal stabilization in patients suffering from fractures of the thoracic or lumbar spine. In the time period from 01/2007 to 06/2009, open surgical approach was used for dorsal stabilization. The percutaneous surgical approach was used from 05/2009 to 03/2014. In every time period, all types of fractures were treated only by open or by percutaneous approach, respectively, to avoid any selection bias. Retrospectively, epidemiological data, complications and perioperative data were documented and statistically analyzed. A total of 491 patients met the inclusion criteria. Open surgery procedure was carried out on 169 patients, and percutaneous surgery procedure was carried out on 322 patients. Fracture level ranged from T1 to L5, and fractures were classified types A, B, and C. In 91.4% of all patients, no complication occured following dorsal stabilization after traumatic spine fracture during their hospital stay. However, 42 complications related to dorsal stabilization have been documented during the hospital stay. The complication rate was 14.8% if open surgical approach has been used and was significantly reduced to 5.3% using percutaneous surgical approach. Post-operative hospital stay was also reduced significantly using the percutaneous surgical approach. According to the current study, percutaneous dorsal stabilization of the spine could also be safely used in trauma cases and is not restricted to degenerative spinal surgery.

  16. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats

    PubMed Central

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-01-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord. PMID:29557386

  17. Regulating the dorsal neural tube expression of Ptf1a through a distal 3' enhancer.

    PubMed

    Mona, Bishakha; Avila, John M; Meredith, David M; Kollipara, Rahul K; Johnson, Jane E

    2016-10-01

    Generating the correct balance of inhibitory and excitatory neurons in a neural network is essential for normal functioning of a nervous system. The neural network in the dorsal spinal cord functions in somatosensation where it modulates and relays sensory information from the periphery. PTF1A is a key transcriptional regulator present in a specific subset of neural progenitor cells in the dorsal spinal cord, cerebellum and retina that functions to specify an inhibitory neuronal fate while suppressing excitatory neuronal fates. Thus, the regulation of Ptf1a expression is critical for determining mechanisms controlling neuronal diversity in these regions of the nervous system. Here we identify a sequence conserved, tissue-specific enhancer located 10.8kb 3' of the Ptf1a coding region that is sufficient to direct expression to dorsal neural tube progenitors that give rise to neurons in the dorsal spinal cord in chick and mouse. DNA binding motifs for Paired homeodomain (Pd-HD) and zinc finger (ZF) transcription factors are required for enhancer activity. Mutations in these sequences implicate the Pd-HD motif for activator function and the ZF motif for repressor function. Although no repressor transcription factor was identified, both PAX6 and SOX3 can increase enhancer activity in reporter assays. Thus, Ptf1a is regulated by active and repressive inputs integrated through multiple sequence elements within a highly conserved sequence downstream of the Ptf1a gene. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Thoracic 9 Spinal Transection-Induced Model of Muscle Spasticity in the Rat: A Systematic Electrophysiological and Histopathological Characterization

    PubMed Central

    Corleto, Jose A.; Bravo-Hernández, Mariana; Kamizato, Kota; Kakinohana, Osamu; Santucci, Camila; Navarro, Michael R.; Platoshyn, Oleksandr; Cizkova, Dasa; Lukacova, Nadezda; Taylor, Julian; Marsala, Martin

    2015-01-01

    The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the

  19. Timing of xenon-induced delayed postconditioning to protect against spinal cord ischaemia-reperfusion injury in rats.

    PubMed

    Yang, Y W; Cheng, W P; Lu, J K; Dong, X H; Wang, C B; Zhang, J; Zhao, L Y; Gao, Z F

    2014-07-01

    This study was designed to assess the neuroprotective effect of xenon-induced delayed postconditioning on spinal cord ischaemia-reperfusion injury (IRI) and to determine the time of administration for best neuroprotection in a rat model of spinal cord IRI. Fifty male rats were randomly divided equally into a sham group, control group, and three xenon postconditioning groups (n=10 per group). The control group underwent spinal cord IRI and immediately inhaled 50% nitrogen/50% oxygen for 3 h at the initiation of reperfusion. The three xenon postconditioning groups underwent the same surgical procedure and immediately inhaled 50% xenon/50% oxygen for 3 h at the initiation of reperfusion or 1 and 2 h after reperfusion. The sham operation group underwent the same surgical procedure without aortic occlusion, and inhaled 50% nitrogen/50% oxygen. Neurological function was assessed using the Basso, Beattie, and Bresnahan score at 4, 24, and 48 h of reperfusion. Histological examination was performed using Nissl staining and immunohistochemistry, and apoptosis was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labelling staining. Compared with the control group, the three xenon postconditioning groups showed improvements in neurological outcomes, and had more morphologically normal neurones at 48 h of reperfusion. Apoptotic cell death was reduced and the ratio of Bcl-2/Bax immunoreactivity increased in xenon-treated rats compared with controls. Xenon postconditioning up to 2 h after reperfusion provided protection against spinal cord IRI in rats, but the greatest neuroprotection occurred with administration of xenon for 1 h at reperfusion. © The Author [2013]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Isolated dorsal column dysfunction due to an intraspinal Osteolipoma - Case report and review of literature.

    PubMed

    Aiyer, Siddharth N; Shetty, Ajoy Prasad; Kanna, Rishi; Maheswaran, Anupama; Rajasekaran, S

    2016-01-01

    Osteolipoma is a rare variant of the ubiquitous lipoma. Published literature appears in the form of isolated case reports affecting soft tissue structures in the head, neck and rarely affecting the spine. We present a unique instance of an intraspinal osteolipoma in the cervical spine, without evidence of accompanying spinal dysraphism and an atypical clinical presentation of isolated dorsal column dysfunction. We describe the clinical presentation, operative procedure and post-operative outcomes with histopathological findings of this rare entity. A 61-year-old male presented with impaired dorsal column sensation due to an intraspinal extradural ossifying lesion in the cervical spinal canal. The patient underwent excision of the lesion with complete resolution of symptoms. Ossifying lesion in the spinal canal may be frequent finding on radiological imaging but presence of possible adipose tissue in the lesion should raise suspicion of rare clinical scenario of an osteolipoma.

  1. Low- and high-threshold primary afferent inputs to spinal lamina III antenna-type neurons.

    PubMed

    Fernandes, Elisabete C; Santos, Ines C; Kokai, Eva; Luz, Liliana L; Szucs, Peter; Safronov, Boris V

    2018-06-21

    and non-nociceptive sensory information. Antenna-type neurons with cell bodies located in lamina III and large dendritic trees extending from the superficial lamina I to deep lamina IV are best shaped for the integration of a wide variety of inputs arising from primary afferent fibers and intrinsic spinal circuitries. While the somatodendritic morphology, the hallmark of antenna neurons, has been well studied, little is still known about the axon structure and basic physiological properties of these cells. Here we did whole-cell recordings in a rat (P9-P12) spinal cord preparation with attached dorsal roots to examine the axon course, intrinsic firing properties and primary afferent inputs of antenna cells. Nine antenna cells were identified from a large sample of biocytin-filled lamina III neurons (n = 46). Axon of antenna cells showed intensive branching in laminae III-IV and, in half of the cases, issued dorsally directed collaterals reaching lamina I. Antenna cells exhibited tonic and rhythmic firing patterns; single spikes were followed by hyper- or depolarization. The neurons received monosynaptic inputs from the low-threshold Aβ afferents, Aδ afferents as well as from the high-threshold Aδ and C afferents. When selectively activated, C-fiber-driven mono- and polysynaptic EPSPs were sufficiently strong to evoke firing in the neurons. Thus, lamina III antenna neurons integrate low-threshold and nociceptive high-threshold primary afferent inputs, and can function as wide-dynamic-range neurons able to directly connect deep dorsal horn with the major nociceptive projection area lamina I.

  2. Oligodendrocyte precursor cell transplantation promotes functional recovery following contusive spinal cord injury in rats and is associated with altered microRNA expression

    PubMed Central

    Yang, Jin; Xiong, Liu-Lin; Wang, You-Cui; He, Xiang; Jiang, Ling; Fu, Song-Jun; Han, Xue-Fei; Liu, Jia; Wang, Ting-Hua

    2018-01-01

    It has been reported that oligodendrocyte precursor cells (OPCs) may be used to treat contusive spinal cord injury (SCC), and may alter microRNA (miRNA/miR) expression following SCC in rats. However, the association between miRNA expression and the treatment of rats with SCC with OPC transplantation remain unclear. The present study transplanted OPCs into the spinal cord of rats with SCC and subsequently used the Basso, Beattie and Bresnahan (BBB) score to assess the functional recovery and pain scores. An miRNA assay was performed to detect differentially expressed miRNAs in the spinal cord of SCC rats transplanted with OPCs, compared with SCC rats transplanted with medium. Quantitative polymerase chain reaction was used to verify significantly altered miRNA expression levels. The results demonstrated that OPC transplantation was able to improve motor recovery and relieve mechanical allodynia in rats with SCC. In addition, through a miRNA assay, 45 differentially expressed miRNAs (40 upregulated miRNAs and 5 downregulated miRNAs) were detected in the spinal cord of rats in the OPC group compared with in the Medium group. Differentially expressed miRNAs were identified according to the following criteria: Fold change >2 and P<0.05. Furthermore, quantitative polymerase chain reaction was used to verify the most highly upregulated (miR-375-3p and miR-1-3p) and downregulated (miR-363-3p, miR-449a-5p and miR-3074) spinal cord miRNAs that were identified in the miRNA assay. In addition, a bioinformatics analysis of these miRNAs indicated that miR-375 and miR-1 may act primarily to inhibit cell proliferation and apoptosis via transcriptional and translational regulation, whereas miR-363, miR-449a and miR-3074 may act primarily to inhibit cell proliferation and neuronal differentiation through transcriptional regulation. These results suggested that OPC transplantation may promote functional recovery of rats with SCC, which may be associated with the expression of various

  3. [The role of brain-derived neurotrophic factor in pain facilitation and spinal mechanism in rat model of bone cancer pain].

    PubMed

    Wang, Li-na; Yang, Jian-ping; Ji, Fu-hai; Wang, Xiu-yun; Zuo, Jian-ling; Xu, Qi-nian; Jia, Xiao-ming; Zhou, Jing; Ren, Chun-guang; Li, Wei

    2011-05-10

    To investigate the role of brain-derived neurotrophic factor (BDNF) in pain facilitation and spinal mechanisms in the rat model of bone cancer pain. The bone cancer pain model was developed by inoculated Walker 256 mammary gland carcinoma cells into the tibia medullary cavity. Sixty SD female rats were divided into 5 groups (n = 12 each) randomly; group I: control group (sham operation); group II: model group; group III: control group + anti-BDNF intrathecal (i.t.); group IV: model group + control IgG i.t.; group V: model group + anti-BDNF i.t.. Anti-BDNF or control IgG was injected i.t. during 7 to 9th day. Von-Frey threshold was measured one day before operation and every 2 days after operation. On the 9th day after threshold tested, rats were sacrificed after i.t. injection of either anti-BDNF or control IgG, the lumbar 4-6 spinal cord was removed. The expression of the spinal BDNF and the phosphorylation of extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) were detected by immunohistochemistry assay and Western-Blot. Co-expression pattern of BDNF and p-ERK1/2 were determined by double-labeling immunofluorescence. We demonstrated the coexistence of BDNF and p-ERK1/2 in the spinal cord of rats. From the 7 to 9th day after operation, von-Frey threshold in groups II and IV was significantly lower than that in group I and group V (P < 0.01), group V was remarkly higher than that in group IV (P < 0.01). The spinal BDNF and p-ERK1/2 expression in group II or IV were significantly increased compared with that in group I or V (P < 0.01), intrathecal anti-BDNF was significantly suppressed BDNF and p-ERK1/2 expression (P < 0.01). BDNF and p-ERK1/2 was coexistence in the spinal cord of rats, and it maybe involved in the bone cancer pain.

  4. Minocycline attenuates the development of diabetic neuropathy by inhibiting spinal cord Notch signaling in rat.

    PubMed

    Yang, Cheng; Gao, Jie; Wu, Banglin; Yan, Nuo; Li, Hui; Ren, Yiqing; Kan, Yufei; Liang, Jiamin; Jiao, Yang; Yu, Yonghao

    2017-10-01

    We studied the effects of minocycline (an inhibitor of microglial activation) on the expression and activity of Notch-1 receptor, and explored the therapeutic efficacy of minocycline combined with Notch inhibitor DAPT in the treatment of diabetic neuropathic pain (DNP). Diabetic rat model was established by intraperitoneal injection (ip) of Streptozotocin (STZ). Expression and activity of Notch-1 and expression of macrophage/microglia marker Iba-1 were detected by WB. Diabetes induction significantly attenuated sciatic nerve conduction velocity, and dramatically augmented the expression and the activity of Notch-1 in the lumbar enlargement of the spinal cord. Minocycline treatment, however, accelerated the decreased conduction velocity of sciatic nerve and suppressed Notch-1expression and activity in diabetic rats. Similar to DAPT treatment, minocycline administration also prolonged thermal withdrawal latency (TWL) and increase mechanical withdrawal threshold (MWT) in diabetic rats in response to heat or mechanical stimulation via inhibition the expression and the activity of Notch-1 in spinal cord. Combination of DAPT and minocycline further inhibited Notch-1 receptor signaling and reduce neuropathic pain exhibited as improved TWL and MWT. Our study revealed a novel mechanism of Notch-1 receptor inhibition in spinal cord induced by minocycline administration, and suggested that the combination of minocycline and DAPT has the potential to treat DNP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Cooperative interaction among the various regulatory sites within the NMDA receptor-channel complex in modulating the evoked responses to noxious thermal stimuli of spinal dorsal horn neurons in the cat.

    PubMed

    Song, X J; Zhao, Z Q

    1998-05-01

    Interactions among antagonists acting at different regulatory sites within the N-methyl-D-aspartate (NMDA) receptor-channel complex on the evoked responses to noxious thermal stimuli of wide dynamic range (WDR) neurons in spinal dorsal horn were studied on 21 adult anesthetized and spinalized cats. The responses of nociceptive spinal dorsal horn neurons to noxious heating (45-55 degrees C) of the glabrous skin of the unilateral hind paw were reduced markedly by iontophoretically applied antagonists. The specific recognition site antagonist, DL-2-amino-5-phosphonovaleratic acid (APV), the strychnine-insensitive glycine site antagonist 7-chlorokynurenic acid (7CKA), the polyamine site antagonist ifenprodil (IFEN), and the phencyclidine (PCP) site antagonists ketamine (KET) and MK-801 (40-100 nA) significantly reduced (t-tests, P < 0.01) the noxious thermal stimulus-evoked responses in about 70% of the neurons by (mean +/- SE) 54.1 +/- 5.8% (n = 19), 80.8 +/- 4.7% (n = 16), 51.1 +/- 6.4% (n = 10), 77 +/- 4.9% (n = 16) and 81.2 +/- 8.1% (n = 5), respectively. APV and IFEN were less effective in blocking noxious thermal stimuli-evoked responses than 7CKA, KET and MK-801 (ANOVA, P < 0.05). The responses were completely inhibited in some neurons. After co-administration of the antagonists, APV + 7CKA, APV + IFEN, 7CKA + IFEN, APV + KET and APV + MK-801, all at the subthreshold ejection current, the responses were reduced markedly in 13 of 16, 7 of 10, 5 of 10, 3 of 6 and 3 of 5 neurons, respectively. The present study suggests that blockage of any component of the NMDA receptor-channel complex antagonizes the NMDA receptor-mediated response, and that there are the cooperative interactions among the various regulatory sites within the NMDA receptor-channel complex in the transmission or modulation of spinal nociceptive thermal information.

  6. Inflammatory Pain Reduces C Fiber Activity-Dependent Slowing in a Sex-Dependent Manner, Amplifying Nociceptive Input to the Spinal Cord

    PubMed Central

    McCormick, Barry; Lukito, Veny; Wilson, Kirsten L.

    2017-01-01

    C fibers display activity-dependent slowing (ADS), whereby repetitive stimulation (≥1 Hz) results in a progressive slowing of action potential conduction velocity, which manifests as a progressive increase in response latency. However, the impact of ADS on spinal pain processing has not been explored, nor whether ADS is altered in inflammatory pain conditions. To investigate, compound action potentials were made, from dorsal roots isolated from rats with or without complete Freund's adjuvant (CFA) hindpaw inflammation, in response to electrical stimulus trains. CFA inflammation significantly reduced C fiber ADS at 1 and 2 Hz stimulation rates. Whole-cell patch-clamp recordings in the spinal cord slice preparation with attached dorsal roots also demonstrated that CFA inflammation reduced ADS in the monosynaptic C fiber input to lamina I neurokinin 1 receptor-expressing neurons (1–10 Hz stimulus trains) without altering the incidence of synaptic response failures. When analyzed by sex, it was revealed that females display a more pronounced ADS that is reduced by CFA inflammation to a level comparable with males. Cumulative ventral root potentials evoked by long and short dorsal root stimulation lengths, to maximize and minimize the impact of ADS, respectively, demonstrated that reducing ADS facilitates spinal summation, and this was also sex dependent. This finding correlated with the behavioral observation of increased noxious thermal thresholds and enhanced inflammatory thermal hypersensitivity in females. We propose that sex/inflammation-dependent regulation of C fiber ADS can, by controlling the temporal relay of nociceptive inputs, influence the spinal summation of nociceptive signals contributing to sex/inflammation-dependent differences in pain sensitivity. SIGNIFICANCE STATEMENT The intensity of a noxious stimulus is encoded by the frequency of action potentials relayed by nociceptive C fibers to the spinal cord. C fibers conduct successive action

  7. Inflammatory Pain Reduces C Fiber Activity-Dependent Slowing in a Sex-Dependent Manner, Amplifying Nociceptive Input to the Spinal Cord.

    PubMed

    Dickie, Allen C; McCormick, Barry; Lukito, Veny; Wilson, Kirsten L; Torsney, Carole

    2017-07-05

    C fibers display activity-dependent slowing (ADS), whereby repetitive stimulation (≥1 Hz) results in a progressive slowing of action potential conduction velocity, which manifests as a progressive increase in response latency. However, the impact of ADS on spinal pain processing has not been explored, nor whether ADS is altered in inflammatory pain conditions. To investigate, compound action potentials were made, from dorsal roots isolated from rats with or without complete Freund's adjuvant (CFA) hindpaw inflammation, in response to electrical stimulus trains. CFA inflammation significantly reduced C fiber ADS at 1 and 2 Hz stimulation rates. Whole-cell patch-clamp recordings in the spinal cord slice preparation with attached dorsal roots also demonstrated that CFA inflammation reduced ADS in the monosynaptic C fiber input to lamina I neurokinin 1 receptor-expressing neurons (1-10 Hz stimulus trains) without altering the incidence of synaptic response failures. When analyzed by sex, it was revealed that females display a more pronounced ADS that is reduced by CFA inflammation to a level comparable with males. Cumulative ventral root potentials evoked by long and short dorsal root stimulation lengths, to maximize and minimize the impact of ADS, respectively, demonstrated that reducing ADS facilitates spinal summation, and this was also sex dependent. This finding correlated with the behavioral observation of increased noxious thermal thresholds and enhanced inflammatory thermal hypersensitivity in females. We propose that sex/inflammation-dependent regulation of C fiber ADS can, by controlling the temporal relay of nociceptive inputs, influence the spinal summation of nociceptive signals contributing to sex/inflammation-dependent differences in pain sensitivity. SIGNIFICANCE STATEMENT The intensity of a noxious stimulus is encoded by the frequency of action potentials relayed by nociceptive C fibers to the spinal cord. C fibers conduct successive action

  8. Early changes in muscle atrophy and muscle fiber type conversion after spinal cord transection and peripheral nerve transection in rats.

    PubMed

    Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo

    2013-05-20

    Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.

  9. Treatment with ascorbic acid and α-tocopherol modulates oxidative-stress markers in the spinal cord of rats with neuropathic pain

    PubMed Central

    Riffel, A.P.K.; Santos, M.C.Q.; de Souza, J.A.; Scheid, T.; Horst, A.; Kolberg, C.; Belló-Klein, A.; Partata, W.A.

    2018-01-01

    Vitamin E (vit. E) and vitamin C (vit. C) are antioxidants that inhibit nociception. The effect of these vitamins on oxidative-stress markers in the spinal cord of rats with chronic constriction injury (CCI) of the sciatic nerve is unknown. This study investigated the effect of intraperitoneal administration of vit. E (15 mg·kg-1·day-1) and vit. C (30 mg·kg-1·day-1), given alone or in combination, on spinal cord oxidative-stress markers in CCI rats. Adult male Wistar rats weighing 200–250 g were divided equally into the following groups: Naive (rats did not undergo surgical manipulation); Sham (rats in which all surgical procedures involved in CCI were used except the ligature), and CCI (rats in which four ligatures were tied loosely around the right common sciatic nerve), which received injections of vitamins or vehicle (saline containing 1% Tween 80) for 3 or 10 days (n=6/each group). The vitamins prevented the reduction in total thiol content and the increase in superoxide-anion generation that were found in vehicle-treated CCI rats. While nitric-oxide metabolites increased in vehicle-treated CCI rats 3 days after surgery, these metabolites did not show significant changes in vitamin-treated CCI rats. In all rats, total antioxidant capacity and hydrogen-peroxide levels did not change significantly. Lipid hydroperoxides increased 25% only in vehicle-treated CCI rats. These changes may contribute to vit. C- and vit. E-induced antinociception, because scavenging reactive oxygen species seems to help normalize the spinal cord oxidative status altered by pain. PMID:29513797

  10. A rat model of unilateral hindpaw burn injury: slowly developing rightwards shift of the morphine dose-response curve.

    PubMed

    Wang, Shuxing; Lim, Grewo; Yang, Liling; Zeng, Qing; Sung, Backil; Jeevendra Martyn, J A; Mao, Jianren

    2005-07-01

    Management of pain after burn injury is an unresolved clinical issue. In a rat model of hindpaw burn injury, we examined the effects of systemic morphine on nociceptive behaviors following injury. Injury was induced by immersing the dorsal part of one hindpaw into a hot water bath (85 degrees C) for 4, 7, or 12 s under pentobarbital anesthesia. Mechanical allodynia to von Frey filament stimulation and thermal hyperalgesia to radiant heat were assessed. Burn injury induced by the 12-s (but not 4-, or 7-s) hot water immersion resulted in reliable and lasting mechanical allodynia and thermal hyperalgesia evident by day 1. In addition, there was an upregulation of protein kinase Cgamma and a progressive downregulation of mu-opioid receptors within the spinal cord dorsal horn ipsilateral to injury as revealed by immunohistochemistry and Western blot. In both injured and sham rats, the anti-nociceptive effects of subcutaneous morphine were examined on post-injury days 7 and 14. While the morphine AD50 dose was comparable on day 7 between burn (1.61 mg/kg) and control (1.7 mg/kg) rats, the morphine dose-response curve was shifted to the right in burn-injured rats (4.6 mg/kg) on post-injury day 14 as compared with both the injured rats on post-injury day 7 and sham rats on day 14 (1.72 mg/kg). These data indicate that hindpaw burn injury reliably produces persistent mechanical allodynia and thermal hyperalgesia and that the reduced efficacy of morphine anti-nociception in chronic burn injury may be in part due to a downregulation of spinal mu-opioid receptors.

  11. Role of medio-dorsal frontal and posterior parietal neurons during auditory detection performance in rats.

    PubMed

    Bohon, Kaitlin S; Wiest, Michael C

    2014-01-01

    To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units--15% in frontal cortex, 23% in parietal cortex--significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat's frontal-parietal network, without being concentrated preferentially in frontal or parietal areas.

  12. Polidocanol injection for chemical delay and its effect on the survival of rat dorsal skin flaps.

    PubMed

    Menevşe, Gülsüm Tetik; TeomanTellioglu, Ali; Altuntas, Nurgül; Cömert, Ayhan; Tekdemir, Ibrahim

    2014-06-01

    Surgical delay is an invasive method requiring a two-stage surgical procedure. Hence, methods that may serve as an alternative to surgical delay have become the focus of interest of research studies. From a conceptual view, any technique that interrupts the blood flow along the edges of a proposed flap will render the flap ischemic and induce a delay phenomenon. Polidocanol (Aethoxysklerol(®)-Kreussler) was initially used as a local anesthetic. Nowadays, it has been used as a sclerosing agent to treat telangiectasias and varicose veins. The aim of this experimental study was to investigate the effects of polidocanol injected around the periphery of a random flap as a sclerosing agent on flap delay and survival in a random flap model. A preliminary histopathologic study was performed on two rats to evaluate the sclerosing effect and distribution of polidocanol injection. After the preliminary study, the main study was carried out with three groups: group 1: dorsal flap (n = 10); group 2: dorsal flap + surgical delay (n = 10), group 3: dorsal flap + chemical delay (n = 10). Tissue samples obtained from the flap and injection area revealed destruction of intradermal vessels. The area affected with sclerosis was limited to 0.1 cm beyond the injection site. Mean viable flap areas were 52.1 ± 4.38% (44.0-58.2) in group 1, 64.8 ± 8.92% (57.2-89.2) in group 2, and 71.8 ± 5.18% (64.0-84.0) in group 3. A statistically highly significant difference was found between the surgical delay and chemical delay groups versus the group without delay (p < 0.001 and p < 0.001, respectively). The difference between the mean viable flap areas was not statistically significant in the surgical and chemical delay groups (p = 0.056). In conclusion, this study has shown that polidocanol injection around the dorsal flap in the rat is a safe and easy method for nonsurgical delay. The results have shown a flap survival benefit that is superior to controls and equivalent to surgical delay. The

  13. Effects of curcumin on pain threshold and on the expression of nuclear factor κ B and CX3C receptor 1 after sciatic nerve chronic constrictive injury in rats.

    PubMed

    Cao, Hong; Zheng, Jin-Wei; Li, Jia-Jia; Meng, Bo; Li, Jun; Ge, Ren-Shan

    2014-11-01

    To investigate the effects of curcumin on pain threshold and the expressions of nuclear factor κ B (NF-κ B) and CX3C chemokine receptor 1 (CX3CR1) in spinal cord and dorsal root ganglion (DRG) of the rats with sciatic nerve chronic constrictive injury. One hundred and twenty male Sprague Dawley rats, weighing 220-250 g, were randomly divided into 4 groups. Sham surgery (sham) group: the sciatic nerves of rats were only made apart but not ligated; chronic constrictive injury (CCI) group: the sciatic nerves of rats were only ligated without any drug treatment; curcumin treated injury (Cur) model group: the rats were administrated with curcumin 100 mg/(kg·d) by intraperitoneal injection for 14 days after CCI; solvent control (SC) group: the rats were administrated with the solvent at the same dose for 14 days after CCI. Thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) of rats were respectively measured on pre-operative day 2 and postoperative day 1, 3, 5, 7, 10 and 14. The lumbar segment L4-5 of the spinal cord and the L4, L5 DRG was removed at post-operative day 3, 7 and 14. The change of nuclear factor κ B (NF-κ B) p65 expression was detected by Western blotting while the expression of CX3CR1 was determined by immunohistochemical staining. Compared with the sham group, the TWL and MWT of rats in the CCI group were significantly decreased on each post-operative day (P<0.01), which reached a nadir on the 3rd day after CCI, and the expressions of NF-κ B p65 and CX3CR1 were markedly increased in spinal cord dorsal horn and DRG. In the Cur group, the TWL of rats were significantly increased than those in the CCI group on post-operative day 7, 10 and 14 (P<0.05) and MWT increased than those in the CCI group on post-operative day 10 and 14 (P<0.05). In addition, the administration of curcumin significantly decreased the positive expressions of NF-κ B p65 and CX3CR1 in spinal cord and DRG (P<0.05). Our study suggests that curcumin could

  14. Validation of a Preclinical Spinal Safety Model: Effects of Intrathecal Morphine in the Neonatal Rat

    PubMed Central

    Westin, B. David; Walker, Suellen M.; Deumens, Ronald; Grafe, Marjorie; Yaksh, Tony L.

    2010-01-01

    Background Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long term function following intrathecal morphine in the neonatal rat. Methods Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P)3, 10 and 21. The relationship between injectate volume and segmental spread was assessed post mortem and by in-vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 minutes following intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis and glial response were evaluated 1 and 7 days following P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. Results Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally-mediated analgesia at all ages with lower dose requirements in younger pups. High dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. Conclusions The therapeutic ratio for intrathecal morphine (toxic dose / antinociceptive dose) was at least 300 at P3, and at least 20 at P21 (latter doses limited by side effects). This data provides relative efficacy and safety data for comparison with other analgesic preparations and contributes supporting evidence for the validity of this preclinical neonatal safety model. PMID:20526189

  15. Validation of a preclinical spinal safety model: effects of intrathecal morphine in the neonatal rat.

    PubMed

    Westin, B David; Walker, Suellen M; Deumens, Ronald; Grafe, Marjorie; Yaksh, Tony L

    2010-07-01

    Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long-term function after intrathecal morphine in the neonatal rat. Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P) 3, 10, and 21. The relationship between injectate volume and segmental spread was assessed postmortem and by in vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 min after intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis, and glial response were evaluated 1 and 7 days after P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally mediated analgesia at all ages with lower dose requirements in younger pups. High-dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. The therapeutic ratio for intrathecal morphine (toxic dose/antinociceptive dose) was at least 300 at P3 and at least 20 at P21 (latter doses limited by side effects). These data provide relative efficacy and safety for comparison with other analgesic preparations and contribute supporting evidence for the validity of this preclinical neonatal safety model.

  16. The excitatory amino acid receptor antagonist MK-801 prevents the hypersensitivity induced by spinal cord ischemia in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, J.X.; Xu, X.J.; Aldskogius, H.

    1991-08-01

    Protection by the NMDA receptor antagonist MK-801 against transient spinal cord ischemia-induced hypersensitivity was studied in rats. The spinal ischemia was initiated by vascular occlusion resulting from the interaction between the photosensitizing dye Erythrosin B and an argon laser beam. The hypersensitivity, termed allodynia, where the animals reacted by vocalization to nonnoxious mechanical stimuli in the flank area, was consistently observed during several days after induction of the ischemia. Pretreatment with MK-801 (0.1-0.5 mg/kg, iv) 10 min before laser irradiation dose dependently prevented the occurrence of allodynia. The neuroprotective effect of MK-801 was not reduced by maintaining normal body temperaturemore » during and after irradiation. There was a significant negative correlation between the delay in the administration of MK-801 after irradiation and the protective effect of the drug. Histological examination revealed slight morphological damage in the spinal cord in 38% of control rats after 1 min of laser irradiation without pretreatment with MK-801. No morphological abnormalities were observed in rats after pretreatment with MK-801 (0.5 mg/kg). The present results provide further evidence for the involvement of excitatory amino acids, through activation of the NMDA receptor, in the development of dysfunction following ischemic trauma to the spinal cord.« less

  17. Transcutaneous electrical nerve stimulation on Yongquan acupoint reduces CFA-induced thermal hyperalgesia of rats via down-regulation of ERK2 phosphorylation and c-Fos expression.

    PubMed

    Yang, Lin; Yang, Lianxue; Gao, Xiulai

    2010-07-01

    Activation of extracellular signal-regulated kinase-1/2 (ERK1/2) and its involvement in regulating gene expression in spinal dorsal horn, cortical and subcortical neurons by peripheral noxious stimulation contribute to pain hypersensitivity. Transcutaneous electrical nerve stimulation (TENS) is a treatment used in physiotherapy practice to promote analgesia in acute and chronic inflammatory conditions. In this study, a total number of 114 rats were used for three experiments. Effects of complete Freund's adjuvant (CFA)-induced inflammatory pain hypersensitivity and TENS analgesia on ERK1/2 phosphorylation and c-Fos protein expression were examined by using behavioral test, Western blot, and immunostaining methods. We found that CFA injection caused an area of localized swelling, erythema, hypersensitivity to thermal stimuli, the decreased response time of hind paw licking (HPL), as well as upregulation of c-Fos protein expression and ERK2 phosphorylation in the ipsilateral spinal dorsal horn and the contralateral primary somatosensory area of cortex and the amygdala of rats. TENS on Yongquan acupoint for 20 min produced obvious analgesic effects as demonstrated with increased HPL to thermal stimuli of CFA-treated rats. In addition, TENS application suppressed the CFA-induced ERK2 activation and c-Fos protein expression. These results suggest that down-regulation of ERK2 phosphorylation and c-Fos expression were involved in TENS inhibition on CFA-induced thermal hyperalgesia of rats.

  18. Upregulation of EMMPRIN (OX47) in Rat Dorsal Root Ganglion Contributes to the Development of Mechanical Allodynia after Nerve Injury.

    PubMed

    Wang, Qun; Sun, Yanyuan; Ren, Yingna; Gao, Yandong; Tian, Li; Liu, Yang; Pu, Yanan; Gou, Xingchun; Chen, Yanke; Lu, Yan

    2015-01-01

    Matrix metalloproteinases (MMPs) are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR), and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG) after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL) model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury.

  19. Neuroprotective effects of Ganoderma lucidum polysaccharides against traumatic spinal cord injury in rats.

    PubMed

    Gokce, Emre Cemal; Kahveci, Ramazan; Atanur, Osman Malik; Gürer, Bora; Aksoy, Nurkan; Gokce, Aysun; Sargon, Mustafa Fevzi; Cemil, Berker; Erdogan, Bulent; Kahveci, Ozan

    2015-11-01

    Ganoderma lucidum (G. lucidum) is a mushroom belonging to the polyporaceae family of Basidiomycota and has widely been used as a traditional medicine for thousands of years. G. lucidum has never been studied in traumatic spinal cord injury. The aim of this study is to investigate whether G. lucidum polysaccharides (GLPS) can protect the spinal cord after experimental spinal cord injury. Rats were randomized into five groups of eight animals each: control, sham, trauma, GLPS, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only a laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analysed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test. After traumatic spinal cord injury, increases in caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. After the administration of GLPS, decreases were observed in tissue caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. Furthermore, GLPS treatment showed improved results in histopathological scores, ultrastructural scores, and functional tests. Biochemical, histopathological, and ultrastructural analyses and functional tests reveal that GLPS exhibits meaningful neuroprotective effects against spinal cord injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Extraction of motor activity from the cervical spinal cord of behaving rats

    NASA Astrophysics Data System (ADS)

    Prasad, Abhishek; Sahin, Mesut

    2006-12-01

    Injury at the cervical region of the spinal cord results in the loss of the skeletal muscle control from below the shoulders and hence causes quadriplegia. The brain-computer interface technique is one way of generating a substitute for the lost command signals in these severely paralyzed individuals using the neural signals from the brain. In this study, we are investigating the feasibility of an alternative method where the volitional signals are extracted from the cervical spinal cord above the point of injury. A microelectrode array assembly was implanted chronically at the C5-C6 level of the spinal cord in rats. Neural recordings were made during the face cleaning behavior with forelimbs as this task involves cyclic forelimb movements and does not require any training. The correlation between the volitional motor signals and the elbow movements was studied. Linear regression technique was used to reconstruct the arm movement from the rectified-integrated version of the principal neural components. The results of this study demonstrate the feasibility of extracting the motor signals from the cervical spinal cord and using them for reconstruction of the elbow movements.

  1. Effects of electroacupuncture and the retinoid X receptor (RXR) signalling pathway on oligodendrocyte differentiation in the demyelinated spinal cord of rats

    PubMed Central

    Yang, Xiao-Hua; Ding, Ying; Li, Wen; Zhang, Rong-Yi; Wu, Jin-Lang; Ling, Eng-Ang; Wu, Wutian

    2017-01-01

    Objectives In spinal cord demyelination, some oligodendrocyte precursor cells (OPCs) remain in the demyelinated region but have a reduced capacity to differentiate into oligodendrocytes. This study investigated whether ‘Governor Vessel’ (GV) electroacupuncture (EA) would promote the differentiation of endogenous OPCs into oligodendrocytes by activating the retinoid X receptor γ (RXR-γ)-mediated signalling pathway. Methods Adult rats were microinjected with ethidium bromide (EB) into the T10 spinal cord to establish a model of spinal cord demyelination. EB-injected rats remained untreated (EB group, n=26) or received EA treatment (EB+EA group, n=26). A control group (n=26) was also included that underwent dural exposure without EB injection. After euthanasia at 7 days (n=5 per group), 15 days (n=8 per group) or 30 days (n=13 per group), protein expression of RXR-γ in the demyelinated spinal cord was evaluated by immunohistochemistry and Western blotting. In addition, OPCs derived from rat embryonic spinal cord were cultured in vitro, and exogenous 9-cis-RA (retinoic acid) and RXR-γ antagonist HX531 were administered to determine whether RA could activate RXR-γ and promote OPC differentiation. Results EA was found to increase the numbers of both OPCs and oligodendrocytes expressing RXR-γ and RALDH2, and promote remyelination in the remyelinated spinal cord. Exogenous 9-cis-RA enhanced the differentiation of OPCs into mature oligodendrocytes by activating RXR-γ. Conclusions The results suggest that EA may activate RXR signalling to promote the differentiation of OPCs into oligodendrocytes in spinal cord demyelination. PMID:27841975

  2. Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus

    PubMed Central

    Moszczynska, Anna; Burghardt, Kyle J.; Yu, Dongyue

    2017-01-01

    Short interspersed elements (SINEs) are typically silenced by DNA hypermethylation in somatic cells, but can retrotranspose in proliferating cells during adult neurogenesis. Hypomethylation caused by disease pathology or genotoxic stress leads to genomic instability of SINEs. The goal of the present investigation was to determine whether neurotoxic doses of binge or chronic methamphetamine (METH) trigger retrotransposition of the identifier (ID) element, a member of the rat SINE family, in the dentate gyrus genomic DNA. Adult male Sprague-Dawley rats were treated with saline or high doses of binge or chronic METH and sacrificed at three different time points thereafter. DNA methylation analysis, immunohistochemistry and next-generation sequencing (NGS) were performed on the dorsal dentate gyrus samples. Binge METH triggered hypomethylation, while chronic METH triggered hypermethylation of the CpG-2 site. Both METH regimens were associated with increased intensities in poly(A)-binding protein 1 (PABP1, a SINE regulatory protein)-like immunohistochemical staining in the dentate gyrus. The amplification of several ID element sequences was significantly higher in the chronic METH group than in the control group a week after METH, and they mapped to genes coding for proteins regulating cell growth and proliferation, transcription, protein function as well as for a variety of transporters. The results suggest that chronic METH induces ID element retrotransposition in the dorsal dentate gyrus and may affect hippocampal neurogenesis. PMID:28272323

  3. Joint capsule treatment with enkephalin-encoding HSV-1 recombinant vector reduces inflammatory damage and behavioural sequelae in rat CFA monoarthritis.

    PubMed

    Lu, Ying; McNearney, Terry A; Wilson, Steven P; Yeomans, David C; Westlund, Karin N

    2008-03-01

    This study assessed enkephalin expression induced by intra-articular application of recombinant, enkephalin-encoding herpes virus (HSV-1) and the impact of expression on nociceptive behaviours and synovial lining inflammation in arthritic rats. Replication-conditional HSV-1 recombinant vectors with cDNA encoding preproenkephalin (HSV-ENK), or control transgene beta-galactosidase cDNA (HSV-beta-gal; control) were injected into knee joints with complete Freund's adjuvant (CFA). Joint temperatures, circumferences and nociceptive behaviours were monitored on days 0, 7, 14 and 21 post CFA and vector treatments. Lumbar (L4-6) dorsal root ganglia (DRG) and spinal cords were immunostained for met-enkephalin (met-ENK), beta-gal, HSV-1 proteins and Fos. Joint tissues were immunostained for met-ENK, HSV-1 proteins, and inflammatory mediators Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES) and cyclo-oxygenase-2, or stained with haematoxylin and eosin for histopathology. Compared to exuberant synovial hypertrophy and inflammatory cell infiltration seen in arthritic rats treated with CFA only or CFA and HSV-beta-gal, the CFA- and HSV-ENK-treated arthritic rats had: (i) striking preservation of synovial membrane cytoarchitecture with minimal inflammatory cell infiltrates; (ii) significantly improved nociceptive behavioural responses to mechanical and thermal stimuli; (iii) normalized Fos staining in lumbar dorsal horn; and (iv) significantly increased met-ENK staining in ipsilateral synovial tissue, lumbar DRG and spinal cord. The HSV-1 and transgene product expression were confined to ipsilateral lumbar DRG (HSV-1, met-ENK, beta-gal). Only transgene product (met-ENK and beta-gal) was seen in lumbar spinal cord sections. Targeted delivery of enkephalin-encoding HSV-1 vector generated safe, sustained opioid-induced analgesia with protective anti-inflammatory blunting in rat inflammatory arthritis.

  4. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection.

    PubMed

    Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan

    2015-06-01

    Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright

  5. Pbx3 is required for normal locomotion and dorsal horn development.

    PubMed

    Rottkamp, Catherine A; Lobur, Katherine J; Wladyka, Cynthia L; Lucky, Amy K; O'Gorman, Stephen

    2008-02-01

    The transcription cofactor Pbx3 is critical for the function of hindbrain circuits controlling respiration in mammals, but the perinatal lethality caused by constitutively null mutations has hampered investigation of other roles it may play in neural development and function. Here we report that the conditional loss of Pbx3 function in most tissues caudal to the hindbrain resulted in progressive deficits of posture, locomotion, and sensation that became apparent during adolescence. In adult mutants, the size of the dorsal horn of the spinal cord and the numbers of calbindin-, PKC-gamma, and calretinin-expressing neurons in laminae I-III were markedly reduced, but the ventral cord and peripheral nervous system appeared normal. In the embryonic dorsal horn, Pbx3 expression was restricted to a subset of glutamatergic neurons, but its absence did not affect the initial balance of excitatory and inhibitory interneuron phenotypes. By embryonic day 15 a subset of Meis(+) glutamatergic neurons assumed abnormally superficial positions and the number of calbindin(+) neurons was increased three-fold in the mutants. Loss of Pbx3 function thus leads to the incorrect specification of some glutamatergic neurons in the dorsal horn and alters the integration of peripheral sensation into the spinal circuitry regulating locomotion.

  6. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    PubMed

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-03

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction. Copyright © 2015. Published by Elsevier Inc.

  7. Memantine elicits spinal blockades of motor function, proprioception, and nociception in rats.

    PubMed

    Chen, Yu-Wen; Chiu, Chong-Chi; Liu, Kuo-Sheng; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-12-01

    Although memantine blocks sodium currents and produces local skin anesthesia, spinal anesthesia with memantine is unknown. The purpose of the study was to evaluate the local anesthetic effect of memantine in spinal anesthesia and its comparison with a widely used local anesthetic lidocaine. After intrathecally injecting the rats with five doses of each drug, the dose-response curves of memantine and lidocaine were constructed. The potencies of the drugs and durations of spinal anesthetic effects on motor function, proprioception, and nociception were compared with those of lidocaine. We showed that memantine produced dose-dependent spinal blockades in motor function, proprioception, and nociception. On a 50% effective dose (ED50 ) basis, the rank of potency was lidocaine greater than memantine (P < 0.05 for the differences). At the equipotent doses (ED25 , ED50 , ED75 ), the block duration produced by memantine was longer than that produced by lidocaine (P < 0.05 for the differences). Memantine, but not lidocaine, displayed more sensory/nociceptive block than motor block. The preclinical data demonstrated that memantine is less potent than lidocaine, whereas memantine produces longer duration of spinal anesthesia than lidocaine. Memantine shows a more sensory-selective action over motor blockade. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  8. Dynamic synchronization of ongoing neuronal activity across spinal segments regulates sensory information flow

    PubMed Central

    Contreras-Hernández, E; Chávez, D; Rudomin, P

    2015-01-01

    Previous studies on the correlation between spontaneous cord dorsum potentials recorded in the lumbar spinal segments of anaesthetized cats suggested the operation of a population of dorsal horn neurones that modulates, in a differential manner, transmission along pathways mediating Ib non-reciprocal postsynaptic inhibition and pathways mediating primary afferent depolarization and presynaptic inhibition. In order to gain further insight into the possible neuronal mechanisms that underlie this process, we have measured changes in the correlation between the spontaneous activity of individual dorsal horn neurones and the cord dorsum potentials associated with intermittent activation of these inhibitory pathways. We found that high levels of neuronal synchronization within the dorsal horn are associated with states of incremented activity along the pathways mediating presynaptic inhibition relative to pathways mediating Ib postsynaptic inhibition. It is suggested that ongoing changes in the patterns of functional connectivity within a distributed ensemble of dorsal horn neurones play a relevant role in the state-dependent modulation of impulse transmission along inhibitory pathways, among them those involved in the central control of sensory information. This feature would allow the same neuronal network to be involved in different functional tasks. Key points We have examined, in the spinal cord of the anaesthetized cat, the relationship between ongoing correlated fluctuations of dorsal horn neuronal activity and state-dependent activation of inhibitory reflex pathways. We found that high levels of synchronization between the spontaneous activity of dorsal horn neurones occur in association with the preferential activation of spinal pathways leading to primary afferent depolarization and presynaptic inhibition relative to activation of pathways mediating Ib postsynaptic inhibition. It is suggested that changes in synchronization of ongoing activity within a

  9. The Investigation of the Cox-2 Selective Inhibitor Parecoxib Effects in Spinal Cord Injury in Rat.

    PubMed

    Yuksel, Ulas; Bakar, Bulent; Dincel, Gungor Cagdas; Budak Yildiran, Fatma Azize; Ogden, Mustafa; Kisa, Ucler

    2018-01-22

    Today, spinal cord injury (SCI) can be rehabilitated but cannot be treated adequately. This experimental study was conducted to investigate possible beneficial effects of methylprednisolone and parecoxib in treatment of SCI. Forty-eight male Wistar albino rats were assigned into CONTROL, acute (MP-A, PX-A, and PXMP-A), and subacute (MP-S, PX-S, and PXMP-S) stage groups. Then, to induce SCI, a temporary aneurysm clip was applied to the spinal cord following T7-8 laminectomy, except in the CONTROL group. Four hours later parecoxib, methylprednisolone, or their combination was administered to rats intraperitoneally except CONTROL, SHAM-A, and SHAM-S groups. Rats in the acute stage group were sacrificed 72 h later, and whereas rats in the subacute stage were sacrificed 7 days later for histopathological and biochemical investigation and for gene-expression analyses. Parecoxib and methylprednisolone and their combination could not improve histopathological grades in any stage. They also could not decrease malondialdehyde or caspase-3, myeloperoxidase levels in any stage. Parecoxib and methylprednisolone could decrease the TNF-α gene expression in subacute stage. Methylprednisolone could increase TGF-1β gene-expression level in acute stage. Neither of the experimental drugs, either alone or in combination, did not show any beneficial effects in SCI model in rats.

  10. Effects of Tramadol on Substantia Gelatinosa Neurons in the Rat Spinal Cord: An In Vivo Patch-Clamp Analysis

    PubMed Central

    Yamasaki, Hiroyuki; Funai, Yusuke; Funao, Tomoharu; Mori, Takashi; Nishikawa, Kiyonobu

    2015-01-01

    Tramadol is thought to modulate synaptic transmissions in the spinal dorsal horn mainly by activating µ-opioid receptors and by inhibiting the reuptake of monoamines in the CNS. However, the precise mode of modulation remains unclear. We used an in vivo patch clamp technique in urethane-anesthetized rats to determine the antinociceptive mechanism of tramadol. In vivo whole-cell recordings of spontaneous inhibitory postsynaptic currents (sIPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) were made from substantia gelatinosa (SG) neurons (lamina II) at holding potentials of 0 mV and -70 mV, respectively. The effects of intravenous administration (0.5, 5, 15 mg/kg) of tramadol were evaluated. The effects of superfusion of tramadol on the surface of the spinal cord and of a tramadol metabolite (M1) were further analyzed. Intravenous administration of tramadol at doses >5 mg/kg decreased the sEPSCs and increased the sIPSCs in SG neurons. These effects were not observed following naloxone pretreatment. Tramadol superfusion at a clinically relevant concentration (10 µM) had no effect, but when administered at a very high concentration (100 µM), tramadol decreased sEPSCs, produced outward currents, and enhanced sIPSCs. The effects of M1 (1, 5 mg/kg intravenously) on sEPSCs and sIPSCs were similar to those of tramadol at a corresponding dose (5, 15 mg/kg). The present study demonstrated that systemically administered tramadol indirectly inhibited glutamatergic transmission, and enhanced GABAergic and glycinergic transmissions in SG neurons. These effects were mediated primarily by the activation of μ-opioid receptors. M1 may play a key role in the antinociceptive mechanisms of tramadol. PMID:25933213

  11. The Spinal Antinociceptive Effects of Endomorphins in Rats: Behavioral and G Protein Functional Studies

    PubMed Central

    Xie, Hong; Woods, James H.; Traynor, John R.; Ko, Mei-Chuan

    2008-01-01

    BACKGROUND Endomorphin-1 and endomorphin-2 are endogenous peptides that are highly selective for μ-opioid receptors. However, studies of their functional efficacy and selectivity are controversial. In this study, we systematically compared the effects of intrathecal (i.t.) administration of endomorphin-1 and -2 on nociception assays and G protein activation with those of [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), a highly effective peptidic μ-opioid receptor agonist. METHODS Male Sprague-Dawley rats were used. Acute and inflammatory pain models were used to compare the duration and magnitude of antinociception. Agonist-stimulated [35S]GTPγS binding was used to observe the functional activity at the level of the receptor-G protein in both spinal cord and thalamic membranes. In addition, antagonists selective for each receptor type were used to verify the functional selectivity of endomorphins in the rat spinal cord. RESULTS After i.t. administration, endomorphin-1 and -2 produced less antinociceptive effects than DAMGO in the model of acute pain. Concentration–response curves for DAMGO-, endomorphin-1-, and endomorphin-2-stimulated [35S]GTPγS binding revealed that both endomorphin-1 and -2 produced less G protein activation (i.e., approximately 50%–60%) than DAMGO did in the membranes of spinal cord and thalamus. In addition, i.t. endomorphin-induced antinociception was blocked by μ-opioid receptor selective dose of naltrexone (P < 0.05), but not by δ- and κ-opioid receptor antagonists, naltrindole and nor-binaltorphimine (P > 0.05). CONCLUSIONS Endomorphins are partial agonists for G protein activation at spinal and thalamic μ-opioid receptors. Both in vivo and in vitro measurements together suggest that DAMGO is more effective than endomorphins. Spinal endomorphins’ antinociceptive efficacy may range between 53% and 84% depending on the intensity and modality of the nociceptive stimulus. PMID:18499626

  12. Evaluation of Cisplatin Neurotoxicity in Cultured Rat Dorsal Root Ganglia via Cytosolic Calcium Accumulation

    PubMed Central

    Erol, Kevser; Yiğitaslan, Semra; Ünel, Çiğdem; Kaygısız, Bilgin; Yıldırım, Engin

    2016-01-01

    Background: Calcium homeostasis is considered to be important in antineoplastic as well as in neurotoxic adverse effects of cisplatin. Aims: This study aimed to investigate the role of Ca2+ in cisplatin neurotoxicity in cultured rat dorsal root ganglia (DRG) cells. Study Design: Cell culture study. Methods: DRG cells prepared from 1-day old Sprague-Dawley rats were used to determine the role of Ca2+ in the cisplatin (10–600 μM) neurotoxicity. The cells were incubated with cisplatin plus nimodipine (1–3 μM), dizocilpine (MK-801) (1–3 μM) or thapsigargin (100–300 nM). Toxicity of cisplatinon DRG cells was determined by the MTT assay. Results: The neurotoxicity of cisplatin was significant when used in high concentrations (100–600 μM). Nimodipine (1 μM) but not MK-801 or thapsigargin prevented the neurotoxic effects of 200 μM of cisplatin. Conclusion: Voltage-dependent calcium channels may play a role in cisplatin neurotoxicity. PMID:27403382

  13. Mangiferin attenuates contusive spinal cord injury in rats through the regulation of oxidative stress, inflammation and the Bcl‑2 and Bax pathway.

    PubMed

    Luo, Yang; Fu, Changfeng; Wang, Zhenyu; Zhang, Zhuo; Wang, Hongxia; Liu, Yi

    2015-11-01

    Mangiferin has antioxidant, antiviral, apoptosis regulating, anti‑inflammatory, antitumor and antidiabetic effects, which can also inhibit osteoclast formation and bone resorption. However, whether mangiferin ameliorates the neurological pain of spinal cord injury (SCI) in ratS remains to be elucidated. The present study investigated the therapeutic effects of mangiferin on neurological function, the water content of spinal cord, oxidative stress, the expression of inflammatory cytokines and the protein expression of Bcl‑2/Bax in a SCI rat model. In the present study, the Basso, Beattie and Bresnahan scores, and the water content of the spinal cord were used to analyze the therapeutic effects of mangiferin on neurological pain in the SCI rat. The concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and the serum levels of glutathione peroxidase (GSH‑PX), nuclear factor‑κB p65 unit, tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6 and caspase‑3/9 were detected using commercial kits. The expression levels of Bcl‑2 and Bax were measured using western blot analysis. The results demonstrated that administrating mangiferin began to ameliorate neurological function and the water content of the spinal cord in the SCI rat. The mangiferin‑treated group were found to have lower oxidative stress activity and lower expression levels of inflammatory cytokines, compared with the SCI rat. In addition, mangiferin significantly reduced the protein expression of Bax and promoted the protein expression of Bcl-2 in the SCI rat model. Finally, mangiferin markedly suppressed the expression of caspase‑3/9, indicating that the protective action of mangiferin may be associated with anti‑apoptosis activation. In conclusion, mangiferin attenuated contusive SCI in the rats through regulating oxidative stress, inflammation and the Bcl‑2 and Bax pathway.

  14. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion.

    PubMed

    Bambakidis, Nicholas C; Miller, Robert H

    2004-01-01

    A substantial cause of neurological disability in spinal cord injury is oligodendrocyte death leading to demyelination and axonal degeneration. Rescuing oligodendrocytes and preserving myelin is expected to result in significant improvement in functional outcome after spinal cord injury. Although previous investigators have used cellular transplantation of xenografted pluripotent embryonic stem cells and observed improved functional outcome, these transplants have required steroid administration and only a minority of these cells develop into oligodendrocytes. The objective of the present study was to determine whether allografts of oligodendrocyte precursors transplanted into an area of incomplete spinal cord contusion would improve behavioral and electrophysiological measures of spinal cord function. Additional treatment incorporated the use of the glycoprotein molecule Sonic hedgehog (Shh), which has been shown to play a critical role in oligodendroglial development and induce proliferation of endogenous neural precursors after spinal cord injury. Laboratory study. Moderate spinal cord contusion injury was produced in 39 adult rats at T9-T10. Ten animals died during the course of the study. Nine rats served as contusion controls (Group 1). Six rats were treated with oligodendrocyte precursor transplantation 5 days after injury (Group 2). The transplanted cells were isolated from newborn rat pups using immunopanning techniques. Another eight rats received an injection of recombinant Shh along with the oligodendrocyte precursors (Group 3), while six more rats were treated with Shh alone (Group 4). Eight additional rats received only T9 laminectomies to serve as noninjured controls (Group 0). Animals were followed for 28 days. After an initial complete hindlimb paralysis, rats of all groups receiving a contusive injury recovered substantial function within 1 week. By 28 days, rats in Groups 2 and 3 scored 4.7 and 5.8 points better on the Basso, Beattie, Bresnahan

  15. The utility of ionotropic glutamate receptor antagonists in the treatment of nociception induced by epidural glutamate infusion in rats.

    PubMed

    Osgood, Doreen B; Harrington, William F; Kenney, Elizabeth V; Harrington, J Frederick

    2013-01-01

    The authors have previously demonstrated that human herniated disc material contains high concentrations of free glutamate. In an experimental model, elevated epidural glutamate concentrations in the lumbar spine can cause a focal hyperesthetic state. Rats underwent epidural glutamate infusion in the lumbar spine by a miniosmotic pump over a 72-hour period. Some rats underwent coinfusion with glutamate and ionotropic glutamate antagonists. Nociception was assessed by von Frey fibers and by assessment of glutamate receptor expression in the corresponding dorsal horn of the spinal cord. The kainic acid antagonist, UBP 301, decreased epidural glutamate-based hyperesthesia in a dose dependent manner. Concordant with these findings, there was significant decrease in kainate receptor expression in the dorsal horn. The N-Methyl-4-isoxazoleproionic acid (NMDA) antagonist Norketamine also significantly diminished hyperesthesia and decreased receptor expression in the dorsal horn. Both UBP 301, the kainic acid receptor antagonist and Norketamine, an NMDA receptor antagonist, dampened epidural glutamate-based nociception. Focal epidural injections of Kainate or NMDA receptor antagonists could be effective treatments for disc herniation-based lumbar radiculopathy.

  16. The Effects of Difumarate Salt S-15176 after Spinal Cord Injury in Rats

    PubMed Central

    Tunçdemir, Matem; Kelten, Bilal; Akdemir, Osman; Karaoğlan, Alper; Taşdemiroğlu, Erol

    2015-01-01

    Objective In the present study we analyzed neuroprotective and antiapoptotic effect of the difumarate salt S-15176, as an anti-ischemic, an antioxidant and a stabilizer of mitochondrial membrane in secondary damage following spinal cord injury (SCI) in a rat model. Methods Three groups were performed with 30 Wistar rats; control (1), trauma (2), and a trauma+S-15176 (10 mg/kg i.p., dimethyl sulfoxide) treatment (3). SCI was performed at the thoracic level using the weight-drop technique. Spinal cord tissues were collected following intracardiac perfusion in 3rd and 7th days of posttrauma. Hematoxylin and eosin staining for histopatology, terminal deoxynucleotidyl transferase dUTP nick end labeling assay for apoptotic cells and immunohistochemistry for proapoptotic cytochrome-c, Bax and caspase 9 were performed to all groups. Functional recovery test were applied to each group in 3rd and 7th days following SCI. Results In trauma group, edematous regions, diffuse hemorrhage, necrosis, leukocyte infiltration and severe degeneration in motor neurons were observed prominently in gray matter. The number of apoptotic cells was significantly higher (p<0.05) than control group. In the S-15176-treated groups, apoptotic cell number in 3rd and 7th days (p<0.001), also cytochrome-c (p<0.001), Bax (p<0.001) and caspase 9 immunoreactive cells (p<0.001) were significantly decreased in number compared to trauma groups. Hemorrhage and edema in the focal areas were also noticed in gray matter of treatment groups. Results of the locomotor test were significantly increased in treatment group (p<0.05) when compared to trauma groups. Conclusion We suggest that difumarate salt S-15176 prevents mitochondrial pathways of apoptosis and protects spinal cord from secondary injury and helps to preserve motor function following SCI in rats. PMID:26180614

  17. High-frequency transcutaneous electrical nerve stimulation alleviates spasticity after spinal contusion by inhibiting activated microglia in rats.

    PubMed

    Hahm, Suk-Chan; Yoon, Young Wook; Kim, Junesun

    2015-05-01

    Transcutaneous electrical nerve stimulation (TENS) can be used as a physical therapy for spasticity, but the effects of TENS on spasticity and its underlying mechanisms remain unclear. The purpose of this study was to test the effects of TENS on spasticity and the role of activated microglia as underlying mechanisms of TENS treatment for spasticity in rats with a 50-mm contusive spinal cord injury (SCI). A spinal contusion was made at the T12 spinal segment in adult male Sprague-Dawley rats using the NYU impactor. Behavioral tests for motor function were conducted before and after SCI and before and after TENS application. To assess spasticity, the modified Ashworth scale (MAS) was used before and after SCI, high-frequency (HF)/low-frequency (LF) TENS application at 3 different intensities (motor threshold [MT], 50% and 90% MT) or minocycline administration. Immunohistochemistry for microglia was performed at the lumbar spinal segments. Motor recovery reached a plateau approximately 28 days after SCI. Spasticity was well developed and was sustained above the MAS grade of 3, beginning at 28 days after SCI. HF-TENS at 90% MT significantly alleviated spasticity. Motor function did not show any significant changes with LF- or HF-TENS treatment. HF-TENS significantly reduced the proportion of activated microglia observed after SCI. Minocycline, the microglia inhibitor, also significantly alleviated spasticity with the reduction of activated microglia expression. These results suggest that HF-TENS at 90% MT alleviates spasticity in rats with SCI by inhibiting activated microglia. © The Author(s) 2014.

  18. Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury

    PubMed Central

    Ellis, Amanda; Grace, Peter M.; Wieseler, Julie; Favret, Jacob; Springer, Kendra; Skarda, Bryce; Hutchinson, Mark R.; Falci, Scott; Rice, Kenner C.; Maier, Steven F.; Watkins, Linda R.

    2016-01-01

    Central neuropathic pain (CNP) is a pervasive, debilitating problem that impacts thousands of people living with central nervous system disorders, including spinal cord injury (SCI). Current therapies for treating this type of pain are ineffective and often have dose-limiting side effects. Although opioids are one of the most commonly used CNP treatments, recent animal literature has indicated that administering opioids shortly after a traumatic injury can actually have deleterious effects on long-term health and recovery. In order to study the deleterious effects of administering morphine shortly after trauma, we employed our low thoracic (T13) dorsal root avulsion model (Spinal Neuropathic Avulsion Pain, SNAP). Administering a weeklong course of 10 mg/kg/day morphine beginning 24 hr after SNAP resulted in amplified mechanical allodynia. Co-administering the non-opioid toll-like receptor 4 (TLR4) antagonist (+)-naltrexone throughout the morphine regimen prevented morphine-induced amplification of SNAP. Exploration of changes induced by early post-trauma morphine revealed that this elevated gene expression of TLR4, TNF, IL-1β, and NLRP3, as well as IL-1β protein at the site of spinal cord injury. These data suggest that a short course of morphine administered early after spinal trauma can exacerbate CNP in the long term. TLR4 initiates this phenomenon and, as such, may be potential therapeutic targets for preventing the deleterious effects of administering opioids after traumatic injury. PMID:27519154

  19. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    PubMed

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Post-stress facilitation of serotonergic, but not noradrenergic, neurotransmission in the dorsal hippocampus prevents learned helplessness development in rats.

    PubMed

    Joca, Sâmia Regiane Lourenço; Zanelati, Tatiane; Guimarães, Francisco Silveira

    2006-05-04

    Recent pieces of evidence suggest that the dorsal hippocampus may mediate adaptation to severe and inescapable stress, possibly by the facilitation of serotonergic and/or noradrenergic neurotransmission. Chronic social stress and high corticosteroid levels would impair this coping mechanism, predisposing animals to learned helplessness. To test the hypothesis that increasing serotonin or noradrenaline levels in the dorsal hippocampus would attenuate the development of learned helplessness (LH), rats received inescapable foot shock (IS) and were tested in a shuttle box 24 h latter. Prestressed animals showed impairment of escape responses. This effect was prevented by bilateral intrahippocampal injections of zimelidine (100 nmol/0.5 microl), a serotonin reuptake blocker, immediately after IS. This effect was not observed when zimelidine was administered before or 2 h after IS. Bilateral intrahippocampal injections of desipramine (3 or 30 nmol/0.5 microl), a noradrenaline reuptake blocker, before IS or immediately after it did not prevent LH development. Desipramine (30 nmol) enhanced LH development when injected before IS. These data suggest that poststress facilitation of hippocampal serotonergic, but not noradrenergic, neurotransmission in the dorsal hippocampus facilitates adaptation to severe inescapable stress. Antidepressant effects of noradrenaline-selective drugs seem to depend on other structures than the dorsal hippocampus.

  1. Effects of Aloe Vera on Spinal Cord Ischemia-Reperfusion Injury of Rats.

    PubMed

    Yuksel, Yasemin; Guven, Mustafa; Kaymaz, Burak; Sehitoglu, Muserref Hilal; Aras, Adem Bozkurt; Akman, Tarik; Tosun, Murat; Cosar, Murat

    2016-12-01

    The purpose of this study was to evaluate the possible protective/therapeutic effects of aloe vera (AV) on ischemia-reperfusion injury (I/R) of spinal cord in rats. A total of 28 Wistar Albino rats were divided into four random groups of equal number (n = 7). Group I (control) had no medication or surgery; Group II underwent spinal cord ischemia and was given no medication; Group III was administered AV by gastric gavage for 30 days as pre-treatment; Group IV was administered single dose intraperitoneal methylprednisolone (MP) after the ischemia. Nuclear respiratory factor-1 (NRF1), malondialdehyde (MDA) and superoxide dismutase (SOD) levels were evaluated. Tissue samples were examined histopathologically and neuronal nitric oxide synthase (nNOS) and nuclear factor-kappa B (NF-κB) protein expressions were assessed by immunohistochemical staining. NRF1 and SOD levels of ischemia group were found to be lower compared to the other groups. MDA levels significantly increased after I/R. Treatment with AV and MP resulted in reduced MDA levels and also alleviated hemorrhage, edema, inflammatory cell migration and neurons were partially protected from ischemic injury. When AV treatment was compared with MP, there was no statistical difference between them in terms of reduction of neuronal damage. I/R injury increased NF-κB and nNOS expressions. AV and MP treatments decreased NF-κB and nNOS expressions. It was observed that aloe vera attenuated neuronal damage histopathologically and biochemically as pretreatment. Further studies may provide more evidence to determine the additional role of aloe vera in spinal cord ischemia reperfusion injury.

  2. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury

    PubMed Central

    Figueroa, Johnny D.; Serrano-Illan, Miguel; Licero, Jenniffer; Cordero, Kathia; Miranda, Jorge D.

    2016-01-01

    Abstract Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA–mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN+ neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP+, APC+, and NG2+) and precursor cells (DCX+, nestin+). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the

  3. How does early maternal separation and chronic stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal raphe nucleus?

    PubMed

    Pollano, Antonella; Trujillo, Verónica; Suárez, Marta M

    2018-01-01

    Vulnerability to emotional disorders like depression derives from interactions between early and late environments, including stressful conditions. The serotonin (5HT) system is strongly affected by stress and chronic unpredictable stress can alter the 5HT system. We evaluated the distribution of active serotonergic neurons in the dorsal raphe nucleus (DR) through immunohistochemistry in maternally separated and chronically stressed rats treated with an antidepressant, tianeptine, whose mechanism of action is still under review. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50-74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle. We found an interaction between the effects of MS and chronic unpredictable stress on Fos-5HT immunoreactive cells at mid-caudal level of the DR. MS-chronically stressed rats showed an increase of Fos-5HT immunoreactive cells compared with AFR-chronically stressed rats. The ventrolateral (DRL/VLPAG) and dorsal (DRD) subdivisions of the DR were significantly more active than the ventral part (DRV). At the rostral level of the DR, tianeptine decreased the number of Fos-5HT cells in DR in the AFR groups, both unstressed and stressed. Overall, our results support the idea of a match in phenotype exhibited when the early and the adult environment correspond.

  4. First report of important causal relationship between the Adamkiewicz artery vasospasm and dorsal root ganglion cell degeneration in spinal subarachnoid hemorrhage: An experimental study using a rabbit model.

    PubMed

    Turkmenoglu, Osman N; Kanat, Ayhan; Yolas, Coskun; Aydin, Mehmet Dumlu; Ezirmik, Naci; Gundogdu, Cemal

    2017-01-01

    The blood supply of the lower spinal cord is heavily dependent on the artery of Adamkiewicz. The goal of this study was to elucidate the effects of lumbar subarachnoid hemorrhage (SAH) on the lumbar 4 dorsal root ganglion (L4DRG) cells secondary to Adamkiewicz artery (AKA) vasospasm. This study was conducted on 20 rabbits, which were randomly divided into three groups: Spinal SAH ( n = 8), serum saline (SS) (SS; n = 6) and control ( n = 6) groups. Experimental spinal SAH was performed. After 20 days, volume values of AKA and neuron density of L4DRG were analyzed. The mean alive neuron density of the L4DRG was 15420 ± 1240/mm 3 and degenerated neuron density was 1045 ± 260/mm 3 in the control group. Whereas, the density of living and degenerated neurons density were 12930 ± 1060/mm 3 and 1365 ± 480/mm 3 in serum saline (SS), 9845 ± 1028/mm 3 and 4560 ± 1340/mm 3 in the SAH group. The mean volume of imaginary AKAs was estimated as 1,250 ± 0,310 mm 3 in the control group and 1,030 ± 0,240 mm 3 in the SF group and 0,910 ± 0,170 mm 3 in SAH group. Volume reduction of the AKAs and neuron density L4DRG were significantly different between the SAH and other two groups ( P < 0.05). Decreased volume of the lumen of the artery of Adamkiewicz was observed in animals with SAH compared with controls. Increased degeneration the L4 dorsal root ganglion in animals with SAH was also noted. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies.

  5. First report of important causal relationship between the Adamkiewicz artery vasospasm and dorsal root ganglion cell degeneration in spinal subarachnoid hemorrhage: An experimental study using a rabbit model

    PubMed Central

    Turkmenoglu, Osman N.; Kanat, Ayhan; Yolas, Coskun; Aydin, Mehmet Dumlu; Ezirmik, Naci; Gundogdu, Cemal

    2017-01-01

    Background: The blood supply of the lower spinal cord is heavily dependent on the artery of Adamkiewicz. The goal of this study was to elucidate the effects of lumbar subarachnoid hemorrhage (SAH) on the lumbar 4 dorsal root ganglion (L4DRG) cells secondary to Adamkiewicz artery (AKA) vasospasm. Materials and Methods: This study was conducted on 20 rabbits, which were randomly divided into three groups: Spinal SAH (n = 8), serum saline (SS) (SS; n = 6) and control (n = 6) groups. Experimental spinal SAH was performed. After 20 days, volume values of AKA and neuron density of L4DRG were analyzed. Results: The mean alive neuron density of the L4DRG was 15420 ± 1240/mm3 and degenerated neuron density was 1045 ± 260/mm3 in the control group. Whereas, the density of living and degenerated neurons density were 12930 ± 1060/mm3 and 1365 ± 480/mm3 in serum saline (SS), 9845 ± 1028/mm3 and 4560 ± 1340/mm3 in the SAH group. The mean volume of imaginary AKAs was estimated as 1,250 ± 0,310 mm3 in the control group and 1,030 ± 0,240 mm3 in the SF group and 0,910 ± 0,170 mm3 in SAH group. Volume reduction of the AKAs and neuron density L4DRG were significantly different between the SAH and other two groups (P < 0.05). Conclusion: Decreased volume of the lumen of the artery of Adamkiewicz was observed in animals with SAH compared with controls. Increased degeneration the L4 dorsal root ganglion in animals with SAH was also noted. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies. PMID:28413527

  6. Antinociceptive interaction between spinal clonidine and lidocaine in the rat formalin test: an isobolographic analysis.

    PubMed

    Hao, S; Takahata, O; Iwasaki, H

    2001-03-01

    Clinical and basic science studies suggest that spinal alpha-2-adrenergic receptor agonists and local anesthetics produce analgesia, but interaction between alpha-2-adrenergic receptor agonists and local anesthetics in the persistent pain model has not been examined. In the present study, using isobolographic analysis, we investigated the antinociceptive interaction of intrathecal clonidine and lidocaine in the rat formalin test. Sprague-Dawley rats were implanted with chronic lumbar intrathecal catheters, and were tested for paw flinch by formalin injection. Biphasic painful behavior was counted. Intrathecal clonidine (3-12 nmol) was administered 15 min before formalin, and intrathecal lidocaine (375-1850 nmol) was administered 5 min before formalin. To examine the interaction of intrathecal clonidine and lidocaine, an isobolographic design was used. Spinal administration of clonidine produced dose-dependent suppression of the biphasic responses in the formalin test. Spinal lidocaine resulted in dose-dependent transient motor dysfunction and the motor dysfunction recovered to normal at 10-15 min after administration. Spinal lidocaine produced dose-dependent suppression of phase-2 activity in the formalin test. Isobolographic analysis showed that the combination of intrathecal clonidine and lidocaine synergistically reduced Phase-2 activity. We conclude that intrathecal clonidine synergistically interacts with lidocaine in reducing the nociceptive response in the formalin test. Preformalin administration of intrathecal clonidine and lidocaine dose-dependently produced antinociception in the formalin test. The combination of clonidine and lidocaine, synergistically produced suppression of nociceptive response in the persistent pain model.

  7. Functional recovery in rat spinal cord injury induced by hyperbaric oxygen preconditioning.

    PubMed

    Lu, Pei-Gang; Hu, Sheng-Li; Hu, Rong; Wu, Nan; Chen, Zhi; Meng, Hui; Lin, Jiang-Kai; Feng, Hua

    2012-12-01

    It is a common belief that neurosurgical interventions can cause inevitable damage resulting from the procedure itself in surgery especially for intramedullary spinal cord tumors. The present study was designed to examine if hyperbaric oxygen preconditioning (HBO-PC) was neuroprotective against surgical injuries using a rat model of spinal cord injury (SCI). Sprague-Dawley rats were randomly divided into three groups: HBO-PC group, hypobaric hypoxic preconditioning (HH-PC) control group, and normobaric control group. All groups were subjected to SCI by weight drop device. Rats from each group were examined for neurological behavior and electrophysiological function. Tissue sections were analyzed by using immunohistochemistry, TdT-mediated dUTP-biotin nick end labeling, and axonal tract tracing. Significant neurological deficits were observed after SCI and HBO-PC and HH-PC improved neurological deficits 1 week post-injury. The latencies of motor-evoked potential and somatosensory-evoked potential were significantly delayed after SCI, which was attenuated by HBO-PC and HH-PC. Compared with normobaric control group, pretreatment with HBO and hypobaric hypoxia significantly reduced the number of TdT-mediated dUTP-biotin nick end labeling-positive cells, and increased nestin-positive cells. HBO-PC and HH-PC enhanced axonal growth after SCI. In conclusion, preconditioning with HBO and hypobaric hypoxia can facilitate functional recovery and suppress cell apoptosis after SCI and may prove to be a useful preventive strategy to neurosurgical SCI.

  8. Effect of Dietary Calcium on Spinal Bone Fusion in an Ovariectomized Rat Model

    PubMed Central

    Cho, Jae-Hoon; Cho, Dae-Chul; Yu, Song-Hee; Jeon, Young-Hoon; Sung, Joo-Kyung

    2012-01-01

    Objective To evaluate the effect of calcium supplementation on spinal bone fusion in ovariectomized (OVX) rats. Methods Sixteen female Sprague Dawley rats underwent bilateral ovariectomy at 12 weeks of age to induce osteoporosis and were randomly assigned to two groups : control group (n=8) and calcium-supplemented group (OVX-Ca, n=8). Autologous spinal bone fusion surgery was performed on both groups 8 weeks later. After fusion surgery, the OVX-Ca group was supplemented with calcium in drinking water for 8 weeks. Blood was obtained 4 and 8 weeks after fusion surgery. Eight weeks after fusion surgery, the rats were euthanized and the L4-5 spine removed. Bone fusion status and fusion volume were evaluated by manual palpation and three-dimensional computed tomography. Results The mean fusion volume in the L4-5 spine was significantly greater in the OVX-Ca group (71.80±8.06 mm3) than in controls (35.34±8.24 mm3) (p<0.01). The level of osteocalcin, a bone formation marker, was higher in OVX-Ca rats than in controls 4 weeks (610.08±10.41 vs. 551.61±12.34 ng/mL) and 8 weeks (552.05±19.67 vs. 502.98±22.76 ng/mL) after fusion surgery (p<0.05). The level of C-terminal telopeptide fragment of type I collagen, a bone resorption marker, was significantly lower in OVX-Ca rats than in controls 4 weeks (77.07±12.57 vs. 101.75±7.20 ng/mL) and 8 weeks (69.58±2.45 vs. 77.15±4.10 ng/mL) after fusion surgery (p<0.05). A mechanical strength test showed that the L4-5 vertebrae in the OVX-Ca group withstood a 50% higher maximal load compared with the controls (p<0.01). Conclusion Dietary calcium given to OVX rats after lumbar fusion surgery improved fusion volume and mechanical strength in an ovariectomized rat model. PMID:23133713

  9. Neuroprotective effects of autophagy induced by rapamycin in rat acute spinal cord injury model.

    PubMed

    Wang, Zhen-Yu; Liu, Wen-Ge; Muharram, Akram; Wu, Zhao-Yan; Lin, Jian-Hua

    2014-01-01

    To explore the effects of rapamycin-induced autophagy on apoptosis in a rat model of acute spinal cord injury (SCI), and to explore the effect of rapamycin on apoptosis in primary spinal cord cell culture. SCI was induced at T10 in female adult Sprague-Dawley rats. After injury was induced, the rats were injected with rapamycin and/or methylprednisolone and were sacrificed at various days after injury. Apoptosis and autophagy were examined with TUNEL staining and electron microscopy. Hind limb function was assessed by the Gale scale. The expression of the apoptosis-related protein caspase-3 did not significantly increase until 21 days following injury, while increases in LC3II and LC3I began 10 days after injury, but then declined. TUNEL staining and electron microscopy confirmed that following injury autophagy occurred before apoptosis, but by 14 days after the injury, the level of autophagy had decreased significantly while the level of apoptosis showed a continued increase. Following treatment with rapamycin, apoptosis was significantly higher than in the vehicle control group, but significantly lower than in the sham-operated group, showing a protective effect of rapamycin. Gale scale grades in rats treated with rapamycin were significantly higher compared with the vehicle control group, suggesting a functional effect of rapamycin-induced inhibition of apoptosis. The results indicate that rapamycin significantly improved the prognosis of acute SCI in rats by inhibiting cell apoptosis. Rapamycin might be useful as a therapeutic agent for acute SCI. © 2014 S. Karger AG, Basel

  10. PKCepsilon-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons.

    PubMed

    Cang, Chun-Lei; Zhang, Hua; Zhang, Yu-Qiu; Zhao, Zhi-Qi

    2009-06-30

    Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our previous results have proved the expression of SP receptor neurokinin-1 (NK-1) on DRG neurons and its interaction with transient receptor potential vanilloid 1 (TRPV1) receptor. In this study we investigated the effect of NK-1 receptor agonist on Na(v)1.8, a tetrodotoxin (TTX)-resistant sodium channel, in rat small-diameter DRG neurons employing whole-cell patch clamp recordings. NK-1 agonist [Sar(9), Met(O2)(11)]-substance P (Sar-SP) significantly enhanced the Na(v)1.8 currents in a subgroup of small-diameter DRG neurons under both the normal and inflammatory situation, and the enhancement was blocked by NK-1 antagonist Win51708 and protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM), but not the protein kinase A (PKA) inhibitor H89. In particular, the inhibitor of PKCepsilon, a PKC isoform, completely blocked this effect. Under current clamp model, Sar-SP reduced the amount of current required to evoke action potentials and increased the firing rate in a subgroup of DRG neurons. These data suggest that activation of NK-1 receptor potentiates Na(v)1.8 sodium current via PKCepsilon-dependent signaling pathway, probably participating in the generation of inflammatory hyperalgesia.

  11. Cervical spinal epidural arteriovenous fistula with coexisting spinal anterior spinal artery aneurysm presenting as subarachnoid hemorrhage--case report.

    PubMed

    Nakagawa, Ichiro; Park, Hun-Soo; Hironaka, Yasuo; Wada, Takeshi; Kichikawa, Kimihiko; Nakase, Hiroyuki

    2014-01-01

    Hemorrhagic presentation of spinal epidural arteriovenous fistulas (AVFs) is rare in patients with cervical spinal vascular lesions. The present report describes a patient with cervical spine epidural AVFs associated with anterior spinal artery aneurysm at the same vertebral level presenting with subarachnoid hemorrhage. A 54-year-old man presented with sudden onset of headache. Computed tomography of the head showed subarachnoid hemorrhage. Diagnostic angiography revealed an epidural AVF located at the C1-2 level that was fed mainly by the dorsal somatic branches of the segmental arteries from the radicular artery and anterior spinal artery. This AVF drained only into the epidural veins without perimedullary venous reflux. Further, there was a 4-mm anterior spinal artery aneurysm in the vicinity of the fistula that was thought to be the cause of the hemorrhage. Endovascular transarterial fistulas embolization from the right radicular artery was performed to eliminate the AVF and to reduce hemodynamic stress on the aneurysm. No new symptoms developed after the treatment and discharged without neurological deficits. The aneurysm was noted to be reduced in size after the treatment and totally disappeared by 1 year later, according to follow-up angiography. Anterior spinal artery aneurysm from a separate vascular distribution may coexist with spinal epidural AVFs. In the setting of spinal subarachnoid hemorrhage, comprehensive imaging is indicated to rule out such lesions. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Idiopathic thoracic transdural intravertebral spinal cord herniation

    PubMed Central

    Turel, Mazda K; Wewel, Joshua T; Kerolus, Mena G; O'Toole, John E

    2017-01-01

    Idiopathic spinal cord herniation is a rare and often missed cause of thoracic myelopathy. The clinical presentation and radiological appearance is inconsistent and commonly confused with a dorsal arachnoid cyst and often is a misdiagnosed entity. While ventral spinal cord herniation through a dural defect has been previously described, intravertebral herniation is a distinct entity and extremely rare. We present the case of a 70-year old man with idiopathic thoracic transdural intravertebral spinal cord herniation and discuss the clinico-radiological presentation, pathophysiology and operative management along with a review the literature of this unusual entity. PMID:29021685

  13. A force plate measurement system to assess hindlimb weight support of spinal cord injured rats.

    PubMed

    Chang, Ming-Wen; Chang, Ching-Ping; Wei, Ying-Chieh; Hou, Shang-You; Young, Ming-Shing; Lin, Mao-Tsun

    2010-05-30

    This paper describes a force plate system for quantitative measurement of the hindlimb weight support of rats. The system is built around a microcontroller and uses strain gauges to measure individually the weight applied by each limb and also the general hindquarters of the rat. The sum of weights on the individual force plates adds up to the total weight of the rat. Mathematical comparison of the weights of the different force plates allows calculation of the weight percentage of the hindquarters (W%HQ=(hindquarters weight/total weight)x100%). When hindlimb impairment is high, the W%HQ is high and vise versa, allowing hindlimb weight support to be evaluated by the W%HQ. An actual laboratory embodiment is demonstrated and real experiments are performed on spinal cord damaged rats. W%HQ results are compared with Basso, Beattie, Bresnahan (BBB) locomotor behavioural test results on the same rats at approximately the same time. When a rat is placed in the correct position of the test chamber, the user can use a local keypad/LCD display (standalone mode) or the PC keyboard/display to control the system and access the current data. Comparing our results with those of the BBB method confirms the proposed hardware and W%HQ metric represent very well the recovery of a rat after spinal cord injury. Medical investigators report that under actual use, the presented system is stable, accurate and easy to use. Additional advantages of the presented force plate system include stand-alone capability, non-dependence on subjective human judgement and quantitative results. (c) 2010 Elsevier B.V. All rights reserved.

  14. PMMA embolization to the left dorsal foot artery during percutaneous vertebroplasty for spinal metastases.

    PubMed

    Iliopoulos, Panagiotis; Panagiotis, Iliopoulos; Korovessis, Panagiotis; Panagiotis, Korovessis; Vitsas, Vasilios; Vasilios, Vitsas

    2014-05-01

    Distal arterial embolization to the foot with PMMA during vertebral augmentation has not been previously reported. We report a rare case of distal PMMA embolization to the dorsal foot artery during ipsilateral percutaneous lumbar vertebral augmentation in a patient with spinal osteolytic metastases. A 68-year-old woman was admitted because of severe disabling low back pain. Plain roentgenograms, MRI and CT-scan revealed osteolysis in the L4 and L5 vertebral bodies with prevertebral soft tissue involvement. Percutaneous vertebroplasty with PMMA was performed in L2 to L5 vertebrae under general anesthesia. Intraoperatively, leakage into the segmental vessels L3 and L5 was observed. Four hours after the procedure the clinical diagnosis of acute ischemia and drop foot on the left was made. CT-angiography justified linear cement leakage in the course of the left third lumbar vein and fifth lumbar artery, and to the ipsilateral common iliac artery. The patient was treated with low molecular heparin and the ischemia resolved without further sequelae 1 week postoperatively. PMMA leakage is a complication associated with vertebroplasty and kyphoplasty. Although the outcome of the PMMA embolization to the vessels resolved without sequelae, in our case spine surgeons and interventional radiologists should be aware on this rare complication in patients with osteolytic vertebral metastases even when contemporary cement containment techniques are used.

  15. 6-Shogaol, a natural product, reduces cell death and restores motor function in rat spinal cord injury.

    PubMed

    Kyung, Kang Soo; Gon, Jeon Hyo; Geun, Kim Yong; Sup, Jung Jin; Suk, Woo Jae; Ho, Kim Jae

    2006-08-01

    Spinal cord injury (SCI) results in progressive waves of secondary injuries, which via the activation of a barrage of noxious pathological mechanisms exacerbate the injury to the spinal cord. Secondary injuries are associated with edema, inflammation, excitotoxicity, excessive cytokine release, caspase activation and cell apoptosis. This study was aimed at investigating the possible neuroprotective effects of 6-shogaol purified from Zingiber officinale by comparing an experimental SCI rat group with SCI control rats. Shogaol attenuated apoptotic cell death, including poly(ADP-ribose) polymerase activity, and reduced astrogliosis and hypomyelination which occurs in areas of active cell death in the spinal cords of SCI rats. The foremost protective effect of shogaol in SCI would therefore be manifested in the suppression of the acute secondary apoptotic cell death. However, it does not attenuate active microglia and macrophage infiltration. This finding is supported by a lack of histopathological changes in the areas of the lesion in the shogaol-treated SCI rats. Moreover, shogaol-mediated neuroprotection has been linked with shogaol's attenuation of p38 mitogen-activated protein kinase, p-SAPK/JNK and signal transducer, and with transcription-3 activation. Our results demonstrate that shogaol administrated immediately after SCI significantly diminishes functional deficits. The shogaol-treated group recovered hindlimb reflexes more rapidly and a higher percentage of these rats regained responses compared with the untreated injured rats. The overall hindlimb functional improvement of hindlimbs, as measured by the Basso, Beattie and Bresnahan scale, was significantly enhanced in the shogaol-treated group relative to the SCI control rats. Our data show that the therapeutic outcome of shogaol probably results from its comprehensive effects of blocking apoptotic cell death, resulting in the protection of white matter, oligodendrocytes and neurons, and inhibiting

  16. Spinal N-methyl-D-aspartate receptors and nociception-evoked release of primary afferent substance P.

    PubMed

    Nazarian, A; Gu, G; Gracias, N G; Wilkinson, K; Hua, X Y; Vasko, M R; Yaksh, T L

    2008-03-03

    Dorsal horn N-methyl-D-aspartate (NMDA) receptors contribute significantly to spinal nociceptive processing through an effect postsynaptic to non-primary glutamatergic axons, and perhaps presynaptic to the primary afferent terminals. The present study sought to examine the regulatory effects of NMDA receptors on primary afferent release of substance P (SP), as measured by neurokinin 1 receptor (NK1r) internalization in the spinal dorsal horn of rats. The effects of intrathecal NMDA alone or in combination with D-serine (a glycine site agonist) were initially examined on basal levels of NK1r internalization. NMDA alone or when co-administered with D-serine failed to induce NK1r internalization, whereas activation of spinal TRPV1 receptors by capsaicin resulted in a notable NK1r internalization. To determine whether NMDA receptor activation could potentiate NK1r internalization or pain behavior induced by a peripheral noxious stimulus, intrathecal NMDA was given prior to an intraplantar injection of formalin. NMDA did not alter the formalin-induced NK1r internalization nor did it enhance the formalin paw flinching behavior. To further characterize the effects of presynaptic NMDA receptors, the NMDA antagonists DL-2-amino-5-phosphonopentanoic acid (AP-5) and MK-801 were intrathecally administered to assess their regulatory effects on formalin-induced NK1r internalization and pain behavior. AP-5 had no effect on formalin-induced NK1r internalization, whereas MK-801 produced only a modest reduction. Both antagonists, however, reduced the formalin paw flinching behavior. In subsequent in vitro experiments, perfusion of NMDA in spinal cord slice preparations did not evoke basal release of SP or calcitonin gene-related peptide (CGRP). Likewise, perfusion of NMDA did not enhance capsaicin-evoked release of the two peptides. These results suggest that presynaptic NMDA receptors in the spinal cord play little if any role on the primary afferent release of SP.

  17. Gabapentin decreases microglial cells and reverses bilateral hyperalgesia and allodynia in rats with chronic myositis.

    PubMed

    Rosa, A S; Freitas, M F; Rocha, I R C; Chacur, M

    2017-03-15

    In the present work, we investigated the antinociceptive effect of gabapentin in a chronic myositis model and its interference in spinal glial cells. Chronic myositis was induced by injection of Complete Freund Adjuvant (CFA) into the right gastrocnemius (GS) muscle of rats and tests for evaluating mechanical hyperalgesia, thermal hyperalgesia and tactile allodynia were performed. Pharmacological treatment with gabapentin was administrated intrathecally and 100μg and 200μg doses were tested. For analyzing astrocytes and microglia in the spinal cord, immunochemistry assay was performed. It was found that gabapentin 200μg reverted CFA-induced chronic muscle pain bilaterally, in all applied tests and it was able to attenuate microglial but not astrocytes activation in the dorsal horn of spinal cord. In conclusion, gabapentin was able to inhibit hyperalgesia and allodynia in chronic myositis and also to attenuate spinal microglial activation. Therefore, gabapentin could be used as treatment for targeting chronic muscle pain. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury

    PubMed Central

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A.; Carlton, Susan M.; Walters, Edgar T.

    2017-01-01

    Abstract A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration–approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects. PMID:28073317

  19. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury.

    PubMed

    Wu, Zizhen; Li, Lin; Xie, Fuhua; Du, Junhui; Zuo, Yan; Frost, Jeffrey A; Carlton, Susan M; Walters, Edgar T; Yang, Qing

    2017-03-15

    A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.

  20. Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei

    PubMed Central

    Donner, Nina C; Handa, Robert J

    2009-01-01

    Dysfunctions of the brain serotonin (5-HT) system are often associated with affective disorders, such as depression. The raphe nuclei target the limbic system and most forebrain areas and constitute the main source of 5-HT in the brain. All 5-HT neurons express tryptophan hydroxylase-2 (TPH2), the brain specific, rate-limiting enzyme for 5-HT synthesis. ERbeta agonists have been shown to attenuate anxiety-and despair-like behaviors in rodent models. Therefore, we tested the hypothesis that ERbeta may contribute to the regulation of gene expression in 5-HT neurons of the dorsal raphe nuclei (DRN) by examining the effects of systemic and local application of the selective ERbeta agonist diarylpropionitrile (DPN) on tph2 mRNA expression. Ovariectomized (OVX) female rats were injected subcutaneously (s.c.) with DPN or vehicle once daily for 8 days. In situ hybridization revealed that systemic DPN-treatment elevated basal tph2 mRNA expression in the caudal and mid-dorsal DRN. Behavioral testing of all animals in the open field (OF) and on the elevated plus maze (EPM) on days 6 and 7 of treatment confirmed the anxiolytic nature of ERbeta activation. Another cohort of female OVX rats was stereotaxically implanted bilaterally with hormone-containing wax pellets flanking the DRN. Pellets contained either 17-beta-estradiol (E), DPN, or no hormone. Both DPN and E significantly enhanced tph2 mRNA expression in the mid-dorsal DRN. DPN also increased tph2 mRNA in the caudal DRN. DPN- and E-treated rats displayed a more active stress-coping behavior in the forced-swim test (FST). No behavioral differences were found in the OF or on the EPM. These data indicate that ERbeta acts at the level of the rat DRN to modulate tph2 mRNA expression and thereby influence 5-HT synthesis in DRN subregions. Our results also suggest that local activation of ERbeta neurons in the DRN may be sufficient to decrease despair-like behavior, but not anxiolytic behaviors. PMID:19559077

  1. Effects of Intrathecal SNC80, a Delta Receptor Ligand, on Nociceptive Threshold and Dorsal Horn Substance P Release

    PubMed Central

    Kouchek, Milad; Takasusuki, Toshifumi; Terashima, Tetsuji; Yaksh, Tony L.

    2013-01-01

    Delta-opioid receptors (DOR) are present in the superficial dorsal horn and are believed to regulate the release of small afferent transmitters as evidenced by the effects of spinally delivered delta-opioid preferring peptides. Here we examined the effects of intrathecal SNC80 [(+)-4-[α(R)-α-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-(methoxybenzyl)-N,N-diethylbenzamide], a selective nonpeptidic DOR agonist, in three preclinical pain models, acute thermal escape, intraplantar carrageenan-tactile allodynia, and intraplantar formalin flinches, and on the evoked release of substance P (SP) from small primary afferents. Rats with chronic intrathecal catheters received intrathecal vehicle or SNC80 (100 or 200 μg). Intrathecal SNC80 did not change acute thermal latencies or carrageenan-induced thermal hyperalgesia. However, SNC80 attenuated carrageenan-induced tactile allodynia and significantly reduced both phase 1 and phase 2 formalin-induced paw flinches, as assessed by an automatic flinch counting device. These effects were abolished by naltrindole (3 mg/kg i.p.), a selective DOR antagonist, but not CTOP (10 µg i.t.), a selective MOR antagonist. Furthermore, intrathecal SNC80 (200 μg) blocked formalin-induced substance P release otherwise evoked in the ispilateral superficial dorsal horn as measured by NK1 receptor internalization. In conclusion, intrathecal SNC80 alleviated pain hypersensitivity after peripheral inflammation in a fashion paralleling its ability to block peptide transmitter release from small peptidergic afferents, which by its pharmacology appears to represent an effect mediated by a spinal DOR. PMID:23978562

  2. miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury.

    PubMed

    Chang, Hsueh-Ling; Wang, Hung-Chen; Chunag, Yi-Ta; Chou, Chao-Wen; Lin, I-Ling; Lai, Chung-Sheng; Chang, Lin-Li; Cheng, Kuang-I

    2017-02-01

    The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague-Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.

  3. Localization and modulation of calcitonin gene-related peptide-receptor component protein-immunoreactive cells in the rat central and peripheral nervous systems.

    PubMed

    Ma, W; Chabot, J-G; Powell, K J; Jhamandas, K; Dickerson, I M; Quirion, R

    2003-01-01

    Calcitonin gene-related peptide (CGRP) is widely distributed in the central and peripheral nervous system. Its highly diverse biological activities are mediated via the G protein-coupled receptor that uniquely requires two accessory proteins for optimal function. CGRP receptor component protein (RCP) is a coupling protein necessary for CGRP-receptor signaling. In this study, we established the anatomical distribution of RCP in the rat central and peripheral nervous system and its relationship to CGRP immunoreactivity. RCP-immunoreactive (IR) perikarya are widely and selectively distributed in the cerebral cortex, septal nuclei, hippocampus, various hypothalamic nuclei, amygdala, nucleus colliculus, periaqueductal gray, parabrachial nuclei, locus coeruleus, cochlear nuclei, dorsal raphe nuclei, the solitary tractus nucleus and gracile nucleus, cerebellar cortex, various brainstem motor nuclei, the spinal dorsal and ventral horns. A sub-population of neurons in the dorsal root ganglia (DRG) and trigeminal ganglia were strongly RCP-IR. Overall, the localization of RCP-IR closely matched with that of CGRP-IR. We also determined whether RCP in DRG and dorsal horn neurons can be modulated by CGRP receptor blockade and pain-related pathological stimuli. The intrathecal injection of the antagonist CGRP(8-37) markedly increased RCP expression in the lumbar DRG and spinal dorsal horn. Carrageenan-induced plantar inflammation produced a dramatic bilateral increase in RCP expression in the dorsal horn while a partial sciatic nerve ligation reduced RCP expression in the ipsilateral superficial dorsal horn. Our data suggest that the distribution of RCP immunoreactivity is closely matched with CGRP immunoreactivity in most of central and peripheral nervous systems. The co-localization of RCP and CGRP in motoneurons and primary sensory neurons suggests that CGRP has an autocrine or paracrine effect on these neurons. Moreover, our data also suggest that RCP expression in DRG and

  4. Crucial roles of NGF in dorsal horn plasticity in partially deafferentated cats.

    PubMed

    Liu, Jia; Chen, Shan-Shan; Dan, Qi-Qin; Rong, Rong; Zhou, Xue; Zhang, Lian-Feng; Wang, Ting-Hua

    2011-04-01

    Though exogenous nerve growth factor (NGF) has been implicated in spinal cord plasticity, whether endogenous NGF plays a crucial role has not been established in vivo. This study investigated first the role of endogenous NGF in spinal dorsal horn (DH) plasticity following removal of L1-L5 and L7-S2 dorsal root ganglions (DRGs) in cats. Co-culture of chick embryo DRG with DH condition media, protein band fishing by cells as well as western blot showed that NGF could promote neurite growth in vitro. Immunohistochemistry and in situ hybridization technique revealed an increase in the NGF and NGF mRNA immunoreactive cells in the DH after partial deafferentation. Lastly, after blocking with NGF antibody, choleragen subunit B horseradish peroxidase (CB-HRP) tracing showed a reduction in the neuronal sprouting observed in the DH. Our results demonstrated that in the cat, endogenous NGF plays a crucial role in DH plasticity after partial deafferentation.

  5. Evaluation of Five Tests for Sensitivity to Functional Deficits following Cervical or Thoracic Dorsal Column Transection in the Rat

    PubMed Central

    Eggers, Ruben; Tuinenbreijer, Lizz; Kouwenhoven, Dorette; Verhaagen, Joost; Mason, Matthew R. J.

    2016-01-01

    The dorsal column lesion model of spinal cord injury targets sensory fibres which originate from the dorsal root ganglia and ascend in the dorsal funiculus. It has the advantages that fibres can be specifically traced from the sciatic nerve, verifiably complete lesions can be performed of the labelled fibres, and it can be used to study sprouting in the central nervous system from the conditioning lesion effect. However, functional deficits from this type of lesion are mild, making assessment of experimental treatment-induced functional recovery difficult. Here, five functional tests were compared for their sensitivity to functional deficits, and hence their suitability to reliably measure recovery of function after dorsal column injury. We assessed the tape removal test, the rope crossing test, CatWalk gait analysis, and the horizontal ladder, and introduce a new test, the inclined rolling ladder. Animals with dorsal column injuries at C4 or T7 level were compared to sham-operated animals for a duration of eight weeks. As well as comparing groups at individual timepoints we also compared the longitudinal data over the whole time course with linear mixed models (LMMs), and for tests where steps are scored as success/error, using generalized LMMs for binomial data. Although, generally, function recovered to sham levels within 2–6 weeks, in most tests we were able to detect significant deficits with whole time-course comparisons. On the horizontal ladder deficits were detected until 5–6 weeks. With the new inclined rolling ladder functional deficits were somewhat more consistent over the testing period and appeared to last for 6–7 weeks. Of the CatWalk parameters base of support was sensitive to cervical and thoracic lesions while hind-paw print-width was affected by cervical lesion only. The inclined rolling ladder test in combination with the horizontal ladder and the CatWalk may prove useful to monitor functional recovery after experimental treatment in this

  6. Baclofen and phaclofen modulate GABA release from slices of rat cerebral cortex and spinal cord but not from retina.

    PubMed Central

    Neal, M. J.; Shah, M. A.

    1989-01-01

    1. The effects of (-)-baclofen, muscimol and phaclofen on endogenous gamma-aminobutyric acid (GABA) release from rat cortical slices, spinal cord slices and entire retinas were studied. 2. The spontaneous resting release of GABA from the three tissues was 3 to 6 pmol mg-1 wet wt 10 min-1. Depolarization of cortical slices with KCl (50 mM) (high-K) produced an 8 fold increase in GABA release but high-K did not evoke an increased release of GABA from spinal slices or retinas. 3. When rats were injected with gamma-vinyl-GABA (250 mg kg-1 i.p.) (GVG) 18 h before death, the tissue GABA stores were increased 3 to 6 fold and high-K then evoked striking Ca-dependent releases of GABA from all three tissues. Thus, in subsequent experiments, unless otherwise stated, the nervous tissues were taken from GVG-treated rats. 4. (-)-Baclofen (10 microM) significantly reduced the K-evoked release of GABA from cortical and spinal slices but retinal release was not affected, even at a concentration of (+/-)-baclofen of 1 mM. For cortical slices, the IC50 for baclofen was approximately 5.2 microM. The inhibitory effect of baclofen on GABA release from cortical slices also occurred in slices prepared from saline-injected rats, indicating that GVG treatment did not qualitatively affect the results. 5. The inhibitory effect of (-)-baclofen on the K-evoked release of GABA from cortical and spinal slices was antagonised by phaclofen (500 microM), confirming that baclofen was producing its effects by acting at the GABAB-receptor.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2804540

  7. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity.

    PubMed

    Yoon, Seo-Yeon; Robinson, Caleb R; Zhang, Haijun; Dougherty, Patrick M

    2013-02-01

    Spinal glial cells contribute to the development of many types of inflammatory and neuropathic pain. Here the contribution of spinal astrocytes and astrocyte gap junctions to oxaliplatin-induced mechanical hypersensitivity was explored. The expression of glial fibrillary acidic protein (GFAP) in spinal dorsal horn was significantly increased at day 7 but recovered at day 14 after oxaliplatin treatment, suggesting a transient activation of spinal astrocytes by chemotherapy. Astrocyte-specific gap junction protein connexin 43 (Cx43) was significantly increased in dorsal horn at both day 7 and day 14 following chemotherapy, but neuronal (connexin 36 [Cx36]) and oligodendrocyte (connexin 32 [Cx32]) gap junction proteins did not show any change. Blockade of astrocyte gap junction with carbenoxolone (CBX) prevented oxaliplatin-induced mechanical hypersensitivity in a dose-dependent manner and the increase of spinal GFAP expression, but had no effect once the mechanical hypersensitivity induced by oxaliplatin had fully developed. These results suggest that oxaliplatin chemotherapy induces the activation of spinal astrocytes and this is accompanied by increased expression of astrocyte-astrocyte gap junction connections via Cx43. These alterations in spinal astrocytes appear to contribute to the induction but not the maintenance of oxaliplatin-induced mechanical hypersensitivity. Combined, these results suggest that targeting spinal astrocyte/astrocyte-specific gap junction could be a new therapeutic strategy to prevent oxaliplatin-induced neuropathy. Spinal astrocytes but not microglia were recently shown to be recruited in paclitaxel-related chemoneuropathy. Here, spinal astrocyte gap junctions are shown to play an important role in the induction of oxaliplatin neuropathy. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  8. Myelotomy promotes locomotor recovery in rats subjected to spinal cord injury: A meta-analysis of six randomized controlled trials.

    PubMed

    Qin, Chuan; Zhang, Wen-Hao; Yang, De-Gang; Yang, Ming-Liang; Du, Liang-Jie; Li, Jian-Jun

    2018-06-01

    To investigate the effects of myelotomy on locomotor recovery in rats subjected to spinal cord injury. Electronic databases including PubMed, Science Citation Index, Cochrane Library, China National Knowledge Infrastructure, Chinese Journals Full-text Database, China Biology Medicine disc, and Wanfang Database were searched to retrieve related studies published before September 2017. The MeSH terms (the Medical Subject Headings) such as "myelotomy", "spinal cord injuries", "rats", "randomized controlled trial" and all related entry terms were searched. Randomized controlled trials using myelotomy for the treatment of acute spinal cord injury in rats were included. Basso, Beattie, and Bresnahan scores were adopted as the evaluation method. RevMan Software (version 5.3) was used for data processing. The χ 2 and I 2 tests were used to assess heterogeneity. Using a random-effects model, a subgroup analysis was conducted to analyze the source of the heterogeneity. Basso, Beattie, and Bresnahan scores were observed 1-6 weeks after spinal cord injury. Six animal trials were included, using a total of 143 lab rats. The included trials were divided into two subgroups by injury degrees (moderate or severe). The pooled results showed that, 1-6 weeks after spinal cord injury, the overall Basso, Beattie, and Bresnahan score was significantly higher in the myelotomy group than in the contusion group (weighted mean difference (WMD) = 0.60; 95% confidence interval (CI): 0.23-0.97; P = 0.001; WMD = 2.10; 95% CI: 1.56-2.64; P < 0.001; WMD = 2.65; 95% CI: 1.73-3.57; P < 0.001; WMD = 1.66; 95% CI: 0.80-2.52; P < 0.001; WMD = 2.09; 95% CI: 0.92-3.26, P < 0.001; WMD = 2.25; 95% CI: 1.06-3.44, P < 0.001). The overall heterogeneity was high (I 2 = 85%; I 2 = 95%; I 2 = 94%; I 2 = 88%; I 2 = 91%; I 2 = 89%). The results in the moderate injury subgroup showed that Basso, Beattie, and Bresnahan scores were significantly higher in the myelotomy group than in the contusion group (WMD = 0

  9. Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons

    PubMed Central

    Llewellyn-Smith, I.J.; Marina, N.; Manton, R.N.; Reimann, F.; Gribble, F.M.; Trapp, S.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarius (NTS) and medullary reticular formation, produce GLP-1. In transgenic mice expressing glucagon promoter-driven yellow fluorescent protein (YFP), these brainstem PPG neurons project to many central autonomic regions where GLP-1 receptors are expressed. The spinal cord also contains GLP-1 receptor mRNA but the distribution of spinal PPG axons is unknown. Here, we used two-color immunoperoxidase labeling to examine PPG innervation of spinal segments T1–S4 in YFP-PPG mice. Immunoreactivity for YFP identified spinal PPG axons and perikarya. We classified spinal neurons receiving PPG input by immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS) and/or Fluorogold (FG) retrogradely transported from the peritoneal cavity. FG microinjected at T9 defined cell bodies that supplied spinal PPG innervation. The deep dorsal horn of lower lumbar cord contained YFP-immunoreactive neurons. Non-varicose, YFP-immunoreactive axons were prominent in the lateral funiculus, ventral white commissure and around the ventral median fissure. In T1–L2, varicose, YFP-containing axons closely apposed many ChAT-immunoreactive sympathetic preganglionic neurons (SPN) in the intermediolateral cell column (IML) and dorsal lamina X. In the sacral parasympathetic nucleus, about 10% of ChAT-immunoreactive preganglionic neurons received YFP appositions, as did occasional ChAT-positive motor neurons throughout the rostrocaudal extent of the ventral horn. YFP appositions also occurred on NOS-immunoreactive spinal interneurons and on spinal YFP-immunoreactive neurons. Injecting FG at T9 retrogradely labeled many YFP-PPG cell bodies in the medulla but none of the spinal YFP-immunoreactive neurons. These results show that brainstem PPG neurons

  10. TENS attenuates response to colon distension in paraplegic and quadriplegic rats.

    PubMed

    Collins, Heidi L; DiCarlo, Stephen E

    2002-10-01

    Individuals with spinal cord injuries above thoracic level 6 experience episodic bouts of life-threatening hypertension as part of a condition termed autonomic dysreflexia (AD). The hypertension can be caused by stimulation of the skin, distension of the urinary bladder or colon, and/or muscle spasms. Transcutaneous electrical nerve stimulation (TENS) may reduce the severity of AD because TENS has been used to inhibit second-order neurons in the dorsal horn. Therefore, we tested the hypothesis that TENS attenuates the hemodynamic responses to colon distension. Eleven Wistar rats underwent spinal cord transection between thoracic vertebrae 4 and 5 (paraplegic, n = 6) or between cervical vertebra 7 and thoracic vertebra 1 (quadriplegic, n = 5). After recovery, all rats were instrumented with a radiotelemetry device for recording arterial pressure. Subsequently, the hemodynamic responses to graded colon distension were determined before and during TENS. During TENS the hemodynamic responses to colon distension were significantly attenuated. Thus TENS may be a preventive approach to reduce the severity of AD in paraplegic and quadriplegic individuals.

  11. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury

    PubMed Central

    Nicola, F.C.; Rodrigues, L.P.; Crestani, T.; Quintiliano, K.; Sanches, E.F.; Willborn, S.; Aristimunha, D.; Boisserand, L.; Pranke, P.; Netto, C.A.

    2016-01-01

    Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action. PMID:27509306

  12. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury.

    PubMed

    Nicola, F C; Rodrigues, L P; Crestani, T; Quintiliano, K; Sanches, E F; Willborn, S; Aristimunha, D; Boisserand, L; Pranke, P; Netto, C A

    2016-08-08

    Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.

  13. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat.

    PubMed

    Pettorossi, V E; Della Torre, G; Bortolami, R; Brunetti, O

    1999-03-01

    1. The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. 2. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. 3. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a '12-train' series, an increasing inhibition. 4. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. 5. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. 6. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots.

  14. The role of capsaicin-sensitive muscle afferents in fatigue-induced modulation of the monosynaptic reflex in the rat

    PubMed Central

    Pettorossi, V E; Torre, G Della; Bortolami, R; Brunetti, O

    1999-01-01

    The role of group III and IV afferent fibres of the lateral gastrocnemious muscle (LG) in modulating the homonymous monosynaptic reflex was investigated during muscle fatigue in spinalized rats. Muscle fatigue was induced by a series of increasing tetanic electrical stimuli (85 Hz, 600 ms) delivered to the LG muscle nerve. Series consisted of increasing train numbers from 1 to 60. Potentials from the spinal cord LG motor pool and from the ventral root were recorded in response to proprioceptive afferent stimulation and analysed before and during tetanic muscle activations. Both the pre- and postsynaptic waves showed an initial enhancement and, after a ‘12-train’ series, an increasing inhibition. The enhancement of the responses to muscle fatiguing stimulation disappeared after L3-L6 dorsal root section, while a partial reflex inhibition was still present. Conversely, after section of the corresponding ventral root, there was only a reduction in the inhibitory effect. The monosynaptic reflex was also studied in animals in which a large number of group III and IV muscle afferents were eliminated by injecting capsaicin (10 mM) into the LG muscle. As a result of capsaicin treatment, the fatigue-induced inhibition of the pre- and postsynaptic waves disappeared, while the response enhancement remained. We concluded that the monosynaptic reflex inhibition, but not the enhancement, was mediated by those group III and IV muscle afferents that are sensitive to the toxic action of capsaicin. The afferents that are responsible for the response enhancement enter the spinal cord through the dorsal root, while those responsible for the inhibition enter the spinal cord through both the ventral and dorsal roots. PMID:10050025

  15. Reversal of pathological pain through specific spinal GABAA receptor subtypes.

    PubMed

    Knabl, Julia; Witschi, Robert; Hösl, Katharina; Reinold, Heiko; Zeilhofer, Ulrike B; Ahmadi, Seifollah; Brockhaus, Johannes; Sergejeva, Marina; Hess, Andreas; Brune, Kay; Fritschy, Jean-Marc; Rudolph, Uwe; Möhler, Hanns; Zeilhofer, Hanns Ulrich

    2008-01-17

    Inflammatory diseases and neuropathic insults are frequently accompanied by severe and debilitating pain, which can become chronic and often unresponsive to conventional analgesic treatment. A loss of synaptic inhibition in the spinal dorsal horn is considered to contribute significantly to this pain pathology. Facilitation of spinal gamma-aminobutyric acid (GABA)ergic neurotransmission through modulation of GABA(A) receptors should be able to compensate for this loss. With the use of GABA(A)-receptor point-mutated knock-in mice in which specific GABA(A) receptor subtypes have been selectively rendered insensitive to benzodiazepine-site ligands, we show here that pronounced analgesia can be achieved by specifically targeting spinal GABA(A) receptors containing the alpha2 and/or alpha3 subunits. We show that their selective activation by the non-sedative ('alpha1-sparing') benzodiazepine-site ligand L-838,417 (ref. 13) is highly effective against inflammatory and neuropathic pain yet devoid of unwanted sedation, motor impairment and tolerance development. L-838,417 not only diminished the nociceptive input to the brain but also reduced the activity of brain areas related to the associative-emotional components of pain, as shown by functional magnetic resonance imaging in rats. These results provide a rational basis for the development of subtype-selective GABAergic drugs for the treatment of chronic pain, which is often refractory to classical analgesics.

  16. Role of dorsal hippocampus κ opioid receptors in contextual aversive memory consolidation in rats.

    PubMed

    Vanz, Felipe; Bicca, Maíra Assunção; Linartevichi, Vagner Fagnani; Giachero, Marcelo; Bertoglio, Leandro José; Monteiro de Lima, Thereza C

    2018-06-01

    The main κ opioid receptors (κORs) subtypes already described (κ 1 ORs and κ 2 ORs) are expressed in brain regions involved in aversive memory consolidation, including the dorsal hippocampus (DH). However, the role of DH κORs in consolidation of aversive memories with varied intensity and specificity is still uncertain. The present study aimed to investigate this question using pharmacological agents in rats subjected to a weak, moderate or strong contextual aversive conditioning (CAC) protocol. Antagonizing DH κORs with nor-binaltorphimine (nor-BNI), immediately after, but not 6 h later, a moderate CAC leads to intensified freezing behavior in the re-exposure to the paired context. Thus, indicating that DH κORs have an inhibitory role in the consolidation of an aversive memory. Increased DH κORs expression 1 h and 3 h after the moderate CAC was also observed. This up-regulation was absent in animals only exposed to the shock or to the context, indicating that this phenomenon requires a shock-context pairing to occur. Intra-DH nor-BNI infusion induced no changes following a weak CAC, but it was able to potentiate the expression of freezing behavior in novel and unpaired context after a strong CAC, indicating that DH κORs also modulate the consolidation of a more intense and generalized memory. Moreover, infusing the κ 2 ORs agonist GR 89696, but not the κ 1 ORs agonist U-69593, into the DH reduced the conditioned freezing expression. Nor-BNI pretreatment in a sub-effective dose prevented the κ 2 ORs agonist effects. Altogether, the present findings provide convergent evidence that κORs activation negatively modulates contextual aversive memory consolidation in rat dorsal hippocampus. Copyright © 2018. Published by Elsevier Ltd.

  17. Human psychophysics and rodent spinal neurones exhibit peripheral and central mechanisms of inflammatory pain in the UVB and UVB heat rekindling models.

    PubMed

    O'Neill, Jessica; Sikandar, Shafaq; McMahon, Stephen B; Dickenson, Anthony H

    2015-09-01

    Translational research is key to bridging the gaps between preclinical findings and the patients, and a translational model of inflammatory pain will ideally induce both peripheral and central sensitisation, more effectively mimicking clinical pathophysiology in some chronic inflammatory conditions. We conducted a parallel investigation of two models of inflammatory pain, using ultraviolet B (UVB) irradiation alone and UVB irradiation with heat rekindling. We used rodent electrophysiology and human quantitative sensory testing to characterise nociceptive processing in the peripheral and central nervous systems in both models. In both species, UVB irradiation produces peripheral sensitisation measured as augmented evoked activity of rat dorsal horn neurones and increased perceptual responses of human subjects to mechanical and thermal stimuli. In both species, UVB with heat rekindling produces central sensitisation. UVB irradiation alone and UVB with heat rekindling are translational models of inflammation that produce peripheral and central sensitisation, respectively. The predictive value of laboratory models for human pain processing is crucial for improving translational research. The discrepancy between peripheral and central mechanisms of pain is an important consideration for drug targets, and here we describe two models of inflammatory pain that involve ultraviolet B (UVB) irradiation, which can employ peripheral and central sensitisation to produce mechanical and thermal hyperalgesia in rats and humans. We use electrophysiology in rats to measure the mechanically- and thermally-evoked activity of rat spinal neurones and quantitative sensory testing to assess human psychophysical responses to mechanical and thermal stimulation in a model of UVB irradiation and in a model of UVB irradiation with heat rekindling. Our results demonstrate peripheral sensitisation in both species driven by UVB irradiation, with a clear mechanical and thermal hypersensitivity of

  18. Transverse tripolar spinal cord stimulation: theoretical performance of a dual channel system.

    PubMed

    Struijk, J J; Holsheimer, J

    1996-07-01

    A new approach to spinal cord stimulation is presented, by which several serious problems of conventional methods can be solved. A transverse tripolar electrode with a dual-channel voltage stimulator is evaluated theoretically by means of a volume conductor model, combined with nerve fibre models. The simulations predict that a high degree of freedom in the control of activation of dorsal spinal pathways may be obtained with the described system. This implies an easier control of paraesthesia coverage of skin areas and the possibility to correct undesired paraesthesia patterns, caused by lead migration, tissue growth, or anatomical asymmetries, for example, without surgical intervention. It will also be possible to preferentially activate either dorsal column or dorsal root fibres, which has some important clinical advantages. Compared to conventional stimulation systems, the new system has a relatively high current drain.

  19. Unilateral lesion of dorsal hippocampus in adult rats impairs contralateral long-term potentiation in vivo and spatial memory in the early postoperative phase.

    PubMed

    Li, Hongjie; Wu, Xiaoyan; Bai, Yanrui; Huang, Yan; He, Wenting; Dong, Zhifang

    2012-05-01

    It is well documented that bilateral hippocampal lesions or unilateral hippocampal lesion at birth causes impairment of contralateral LTP and long-term memory. However, effects of unilateral hippocampal lesion in adults on contralateral in vivo LTP and memory are not clear. We here examined the influence of unilateral electrolytic dorsal hippocampal lesion in adult rats on contralateral LTP in vivo and spatial memory during different postoperative phases. We found that acute unilateral hippocampal lesion had no effect on contralateral LTP. However, contralateral LTP was impaired at 1 week after lesion, and was restored to the control level at postoperative week 4. Similarly, spatial memory was also impaired at postoperative week 1, and was restored at postoperative week 4. In addition, the rats at postoperative week 1 showed stronger spatial exploratory behavior in a novel open-field environment. The sham operation had no effects on contralateral LTP, spatial memory and exploration at either postoperative week 1 or week 4. These results suggest that unilateral dorsal hippocampal lesion in adult rats causes transient contralateral LTP impairment and spatial memory deficit. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord.

    PubMed

    Taccola, G; Margaryan, G; Mladinic, M; Nistri, A

    2008-08-13

    Acute spinal cord injury evolves rapidly to produce secondary damage even to initially spared areas. The result is loss of locomotion, rarely reversible in man. It is, therefore, important to understand the early pathophysiological processes which affect spinal locomotor networks. Regardless of their etiology, spinal lesions are believed to include combinatorial effects of excitotoxicity and severe stroke-like metabolic perturbations. To clarify the relative contribution by excitotoxicity and toxic metabolites to dysfunction of locomotor networks, spinal reflexes and intrinsic network rhythmicity, we used, as a model, the in vitro thoraco-lumbar spinal cord of the neonatal rat treated (1 h) with either kainate or a pathological medium (containing free radicals and hypoxic/aglycemic conditions), or their combination. After washout, electrophysiological responses were monitored for 24 h and cell damage analyzed histologically. Kainate suppressed fictive locomotion irreversibly, while it reversibly blocked neuronal excitability and intrinsic bursting induced by synaptic inhibition block. This result was associated with significant neuronal loss around the central canal. Combining kainate with the pathological medium evoked extensive, irreversible damage to the spinal cord. The pathological medium alone slowed down fictive locomotion and intrinsic bursting: these oscillatory patterns remained throughout without regaining their control properties. This phenomenon was associated with polysynaptic reflex depression and preferential damage to glial cells, while neurons were comparatively spared. Our model suggests distinct roles of excitotoxicity and metabolic dysfunction in the acute damage of locomotor networks, indicating that different strategies might be necessary to treat the various early components of acute spinal cord lesion.

  1. Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons

    PubMed Central

    Staff, Nathan P.; Podratz, Jewel L.; Grassner, Lukas; Bader, Miranda; Paz, Justin; Knight, Andrew M.; Loprinzi, Charles L.; Trushina, Eugenia; Windebank, Anthony J.

    2013-01-01

    Bortezomib is part of a newer class of chemotherapeutic agents whose mechanism of action is inhibition of the proteasome-ubiquitination system. Primarily used in multiple myeloma, bortezomib causes a sensory-predominant axonal peripheral neuropathy in approximately 30% of patients. There are no established useful preventative agents for bortezomib-induced peripheral neuropathy (BIPN), and the molecular mechanisms of BIPN are unknown. We have developed an in vitro model of BIPN using rat dorsal root ganglia neuronal cultures. At clinically–relevant dosages, bortezomib produces a sensory axonopathy as evidenced by whole explant outgrowth and cell survival assays. This sensory axonopathy is associated with alterations in tubulin and results in accumulation of somatic tubulin without changes in microtubule ultrastructure. Furthermore, we observed an increased proportion of polymerized tubulin, but not total or acetylated tubulin, in bortezomib-treated DRG neurons. Similar findings are observed with lactacystin, an unrelated proteasome-inhibitor, which argues for a class effect of proteasome inhibition on dorsal root ganglion neurons. Finally, there is a change in axonal transport of mitochondria induced by bortezomib in a time-dependent fashion. In summary, we have developed an in vitro model of BIPN that recapitulates the clinical sensory axonopathy; this model demonstrates that bortezomib induces an alteration in microtubules and axonal transport. This robust model will be used in future mechanistic studies of BIPN and its prevention. PMID:24035926

  2. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat.

    PubMed

    Manjarrez, E; Rojas-Piloni, J G; Jimenez, I; Rudomin, P

    2000-12-01

    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the 'conditioning' spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways.

  3. [Influence of acupunction on NT-4 expression in spared root ganglion and spinal cord].

    PubMed

    Long, Shuang-Lian; Liu, Fen; Wang, Ting-Hua; Wang, Te-Wei; Ke, Qing; Yuan, Yuan

    2005-09-01

    To explore the changes of the expression of NT-4 in spared dorsal root ganglia (DRG,L6) on both the operation/Acup side and the nonoperation/non-Acup side as well as in the spinal lamina II (L3, L5, L6) and Clarke' nucleus (L3) of the normal adult cats, partial dorsal rhizotomy cats, and Acup spared DRG cats so as to disclose the relation between NT-4 and the plasticity of spinal cord as well as the Acup promoting spinal cord plasticity. Twenty-five adult cats were divided into 5 groups; normal control group; unilateral partial root rhizotomy 7 d and 14 d groups (unilateral L1-L5, L7-S2 DRG were transected, but L6 DRG was spared); Acup spared DRG 7 d and 14 d groups (electro-needle stimulation was performed following unilateral partial root rhizotomy). The cats survived for 7 or 14 days after operation respectively. Bilateral L6 dorsal root ganglia and L3, L5, L6 spinal cord of every group were made into 20 microm frozen sections. Then, sections were stained under the same condition using specific NT-4 (1 : 200) antibody by the immunohistochemistry ABC method. The distribution and the number of NT-4 immunoreactive neurons in bilateral spared DRG (L6) on the operation/Acup side and the nonoperation/Acup side as well as in the, spinal lamina II (L3, L5, L6) and Clarke' nucleus (L3) of each cat were oberserved and counted. All data were analyzed by one-way ANOVA, SNK-q test and paired-t test. Partial dorsal root rhizotomy led to continuous declination of total NT-4 immunoreactive neurons in spared ganglia, till the 14 d, while Acup reversed this tendency and made NT-4 immunoreactive neurons decrease firstly and then approach to normal level till the 14 d after Acup. In addition, Acup increased NT-4 expression in L5, L6 spinal lamina II. The above finding indicate that NT-4 plays an important role in the mechanism by which Acup promotes spinal cord plasticity. Partial dorsal root rhizotomy and Acup spared DRG may exert effects on the expression of NT-4 in the

  4. Neuroprotective effects and impact on caspase-12 expression of tauroursodeoxycholic acid after acute spinal cord injury in rats

    PubMed Central

    Dong, Yi; Miao, Lei; Hei, Long; Lin, Leilei; Ding, Huiqiang

    2015-01-01

    Objective: To observe the effects of tauroursodeoxycholic acid (TUDCA) on nerve function after acute spinal cord injury (SCI) in rats, observe its effect on neuronal apoptosis and caspase-12 expression levels, and investigate the underlying mechanism. Methods: We used a modified Allen’s weight-drop trauma method to establish a rat acute SCI model. The rats were randomly divided into three groups: group A (sham surgery group), group B (DMSO control group) and group C (TUDCA treatment group), with 36 rats in each group. At one minute and at 24 hours after successfully establishing the model, rats in group C received an intraperitoneal injection of TUDCA (200 mg/kg), while rats in group B received an equal amount of DMSO at the same time points. At 24 hours, three days, and five days after injury, a modified Tarlov scoring method and Rivlin’s oblique plate test were used to evaluate rat spinal cord nerve function recovery. Animals were sacrificed at 24 hours, three days, and five days after injury. Specimens were obtained from the center of the injury sites; the pathological changes in spinal cord tissue were observed after hematoxylin-eosin (HE) staining; apoptosis was detected using the TUNEL method, and the expression of caspase-12 was measured at the protein level using immunohistochemistry and Western blots. Results: Group C differed significantly from group B in Tarlov scores and the oblique table test as early as 24 hours after the injury (P < 0.05). The TUNEL assay test results showed that neurons underwent apoptosis after SCI, which peaked at 24 hours. The ratios of apoptotic cells in group C were significantly lower than those in group B at 24 hours, three days, and five days after injury (P < 0.01). The immunohistochemistry and Western blot results showed that the caspase-12 expression levels of group C were lower than those of group B at 24 hours, three days, and five days after injury (P < 0.05). Conclusion: TUDCA can inhibit the expression of caspase

  5. Making sense out of spinal cord somatosensory development

    PubMed Central

    Seal, Rebecca P.

    2016-01-01

    The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits. PMID:27702783

  6. Effects of cholinergic system of dorsal hippocampus of rats on MK-801 induced anxiolytic-like behavior.

    PubMed

    Zarrindast, Mohammad Reza; Nasehi, Mohammad; Piri, Morteza; Heidari, Negar

    2011-11-14

    Some investigations have shown that the glutamate receptors play a critical role in cognitive processes such as learning and anxiety. The possible involvement of the cholinergic system of the dorsal hippocampus in the anxiolytic-like response induced by MK-801, NMDA receptor antagonist, was investigated in the present study. Male Wistar rats were used in the elevated plus maze apparatus to test the parameters: open arm time (%OAT), open arm entries (%OAE), close arm time (%CAT), close arm entries (%CAE) and other exploratory behaviors (locomotor activity, grooming, rearing and defecation) of anxiety-like response. The data indicated that intra-CA1 administration of MK-801 increased %OAT (2μg/rat) and %OAE (1 and 2μg/rat) while decreased %CAT and %CAE and did not alter other exploratory behaviors, indicating an anxiolytic-like effect. Moreover, intra-hippocampal injections of mecamylamine, a cholinergic receptor antagonists (2μg/rat) and scopolamine (4μg/rat), by themselves, 5min before testing, increased %OAT and %OAE but decreased %CAT and %CAE and did not alter locomotor activity and other exploratory behaviors, suggesting an anxiolytic-like effect. On the other hand, intra-CA1 co-administration of an ineffective dose of scopolamine (3μg/rat), but not mecamylamine (1μg/rat), with an ineffective dose of MK-801 (0.5μg/rat) increased %OAT and %OAE and decreased %CAT and %CAE. The data may indicate the possible involvement of the cholinergic system of the CA1 in the anxiolytic-like response induced by MK-801. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    atrophy. Interestingly, there is a clinical phenomenon that stretching can lead to muscle fiber hypertrophy , but that doesn’t appear to be...specific muscle groups) on functional recovery after spinal cord injury in a rat model. We have undertaken these studies because of an observation we...spinal cord injury, locomotor recovery, physical therapy, muscle stretch, joint range- of-motion, rat. Overall Project Summary: In this, the

  8. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury

    PubMed Central

    McPherson, Jacob G.; Miller, Robert R.; Perlmutter, Steve I.

    2015-01-01

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural–computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury. PMID:26371306

  9. Ptychodiscus brevis toxin enhances the frequency-dependent depression of the monosynaptic reflex in neonatal rat spinal cord in vitro.

    PubMed

    Deshpande, S B; Singh, J N; Das Gupta, S

    2003-12-10

    The involvement of frequency-dependent depression (FDD) of synaptic transmission for the depressant action of the Ptychodiscus brevis toxin (PbTx) was investigated in neonatal rat spinal cord in vitro. The stimulation of a dorsal root by train of pulses (five stimuli) at different frequencies evoked potentials in the ventral root (monosynaptic reflex, MSR). Amplitude of the fifth response as percent of first response at 0.1, 0.2, 0.5, 1.0 and 2.0 Hz were 90, 80, 75, 70 and 50%, respectively. In Mg2+-free medium, PbTx depressed the MSR and also enhanced the FDD in a concentration-dependent manner. Further, the PbTx-induced depression can well be correlated with the enhancement of FDD (r=0.98). In the presence of Mg2+ (1.3 mM), the FDD was greater than that in the absence of Mg2+. But in the presence of Mg2+ PbTx did not alter FDD, even though there was 25% depression at 28 microM (significantly lesser than in Mg2+-free medium). The results indicate that the Mg2+-sensitive component of PbTx-induced depression of MSR is mediated via the neuronal systems involving FDD.

  10. The action of chlorphenesin carbamate on the frog spinal cord.

    PubMed

    Aihara, H; Kurachi, M; Nakane, S; Sasajima, M; Ohzeki, M

    1980-02-01

    Studies were carried out to elucidate the mechanism of action of chlorphenesin carbamate (CPC) and to compare the effect of the drug with that of mephenesin on the isolated bullfrog spinal cord. Ventral and dorsal root potentials were recorded by means of the sucrose-gap method. CPC caused marked hyperpolarizations and depressed spontaneous activities in both of the primary afferent terminals (PAT) and motoneurons (MN). These hyperpolarizations were observed even in high-Mg2+ and Ca2+-free Ringer's solution, suggesting that CPC has direct actions on PAT and MN. Various reflex potentials (dorsal and ventral root potentials elicited by stimulating dorsal and ventral root, respectively) tended to be depressed by CPC as well as by mephenesin. Excitatory amino acids (L-aspartic acid and L-glutamic acid) caused marked depolarizations in PAT and MN, and increased the firing rate in MN. CPC did not modify the depolarization but abolished the motoneuron firing induced by these amino acids. However, mephenesin reduced both the depolarization and the motoneuron firing. The dorsal and ventral root potentials evoked by tetanic stimulation (40 Hz) of the dorsal root were depressed by the drugs. These results indicate that CPC has an apparent depressing action on the spinal neuron, and this action may be ascribed to the slight hyperpolarization and/or the prolongation of refractory period.

  11. EphrinB3/EphA4-mediated guidance of ascending and descending spinal tracts.

    PubMed

    Paixão, Sónia; Balijepalli, Aarathi; Serradj, Najet; Niu, Jingwen; Luo, Wenqin; Martin, John H; Klein, Rüdiger

    2013-12-18

    The spinal cord contains many descending and ascending longitudinal tracts whose development appears to be controlled by distinct guidance systems. We identified a population of dorsal spinal neurons marked by coexpression of the transcription factor Zic2 and the guidance receptor EphA4. Zic2+;EphA4+ neurons are surrounded by mechanosensory terminals, suggesting innervation by mechanoreceptor afferents. Their axons form an ipsilateral ascending pathway that develops during embryogenesis and projects within the ventral aspect of the dorsal funiculus, the same location as the descending corticospinal tract (CST), which develops postnatally. Interestingly, the same guidance mechanism, namely, ephrinB3-induced EphA4 forward signaling, is required for the guidance of both ascending and descending axon tracts. Our analysis of conditional EphA4 mutant mice also revealed that the development of the dorsal funiculus occurs independently of EphA4 expression in descending CST axons and is linked to the distribution of Zic2+;EphA4+ spinal neurons and the formation of the ascending pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Disinhibition by propranolol and chlordiazepoxide of nonrewarded lever-pressing in the rat is unaffected by dorsal noradrenergic bundle lesion.

    PubMed

    Salmon, P; Tsaltas, E; Gray, J A

    1989-03-01

    Ten male Sprague-Dawley rats received 6-hydroxydopamine-induced lesions of the dorsal noradrenergic bundle and 10 others underwent control operations. The lesion depleted levels of noradrenaline in the hippocampus to 2% of those in the controls. All rats were then trained for 16 sessions to lever-press in a Skinner box on a variable interval 18 sec schedule of food-reinforcement, then for 42 days on a successive discrimination between periods of variable interval (VI 18 sec) food-reinforcement and periods of extinction. This report describes the effects of chlordiazepoxide (CDP; 5 mg/kg) and propranolol (5 and 10 mg/kg) injected intraperitoneally in both groups on modified ABBA designs after this training. Both drugs increased the response rates in extinction periods. The effect of propranolol was similar at each dose and smaller than that of CDP. Although CDP and propranolol (5 mg/kg) increased variable interval response rates also, this could not account for the effect on extinction response rates. Responding did not differ between the lesioned and control animals and the effects of drugs were similar in each group. It is unlikely that CDP or propranolol release nonrewarded responding by disrupting transmission in the dorsal noradrenergic bundle.

  13. Re-thinking the role of the dorsal striatum in egocentric/response strategy.

    PubMed

    Botreau, Fanny; Gisquet-Verrier, Pascale

    2010-01-01

    Rats trained in a dual-solution cross-maze task, which can be solved by place and response strategies, predominantly used a response strategy after extensive training. This paper examines the involvement of the medial and lateral dorsal striatum (mDS and lDS) in the choice of these strategies after partial and extensive training. Our results show that rats with lDS and mDS lesions used mainly a response strategy from the early phase of training. We replicated these unexpected data in rats with lDS lesions and confirmed their tendency to use the response strategy in a modified cross-maze task. When trained in a dual-solution water-maze task, however, control and lesioned rats consistently used a place strategy, demonstrating that lDS and mDS lesioned rats can use a place strategy and that the shift towards a response strategy did not systematically result from extensive training. The present data did not show any clear dissociation between the mDS and lDS in dual solution tasks. They further indicate that the dorsal striatum seems to determine the strategies adopted in a particular context but cannot be considered as a neural support for the response memory system. Accordingly, the role of the lateral and medial part of the dorsal striatum in egocentric/response memory should be reconsidered.

  14. Peripheral ionotropic glutamate receptors contribute to Fos expression increase in the spinal cord through antidromic electrical stimulation of sensory nerves.

    PubMed

    Li, Jia-Heng; He, Pei-Yao; Fan, Dan-Ni; Alemujiang, Dilinapa; Huo, Fu-Quan; Zhao, Yan; Cao, Dong-Yuan

    2018-06-21

    Previous studies have shown that peripheral ionotropic glutamate receptors are involved in the increase in sensitivity of a cutaneous branch of spinal dorsal ramus (CBDR) through antidromic electrical stimulation (ADES) of another CBDR in the adjacent segment. CBDR in the thoracic segments run parallel to each other and no synaptic contact at the periphery is reported. The present study investigated whether the increased sensitivity of peripheral sensory nerves via ADES of a CBDR induced Fos expression changes in the adjacent segments of the spinal cord. Fos expression increased in the T8 - T12 segments of the spinal cord evoked by ADES of the T10 CBDR in rats. The increased Fos expression in the T11 and T12, but not T8 - T10 spinal cord segments, was significantly blocked by local application of either N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) or non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) into the receptive field of T11 CBDR. The results suggest that endogenous glutamate released by ADES of sensory nerve may bind to peripheral ionotropic glutamate receptors and activate adjacent sensory nerve endings to increase the sensitivity of the spinal cord. These data reveal the potential mechanisms of neuron activation in the spinal cord evoked by peripheral sensitization. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Activity of adenylyl cyclase and protein kinase A contributes to morphine-induced spinal apoptosis.

    PubMed

    Lim, Grewo; Wang, Shuxing; Lim, Jeong-Ae; Mao, Jianren

    2005-12-02

    Our previous study has shown that chronic morphine exposure induces neuronal apoptosis within the spinal cord dorsal horn; however, the mechanisms of morphine-induced apoptosis remain unclear. Here we examined whether adenylyl cyclase (AC) and protein kinase A (PKA) would play a role in this process. Intrathecal morphine regimen (10 microg, twice daily x 7 days) that resulted in antinociceptive tolerance induced spinal apoptosis as revealed by in situ terminal deoxynucleotidyl transferase (TdT)-UTP-biotin nick end labeling (TUNEL). The TUNEL-positive cells were detected primarily in the superficial laminae of the spinal cord dorsal horn, which was associated with an increase in the expression of activated caspase-3 and mitogen-activated protein kinase (MAPK) within the same spinal region. Co-administration of morphine with a broad AC inhibitor (ddA), a PKA inhibitor (H89), or a MAPK inhibitor (PD98059) substantially reduced the number of TUNEL-positive cells, as compared with the morphine alone group. The results indicate that the spinal AC and PKA pathway through intracellular MAPK may be contributory to the cellular mechanisms of morphine-induced apoptosis.

  16. Four-point bending as a method for quantitatively evaluating spinal arthrodesis in a rat model.

    PubMed

    Robinson, Samuel T; Svet, Mark T; Kanim, Linda A; Metzger, Melodie F

    2015-02-01

    The most common method of evaluating the success (or failure) of rat spinal fusion procedures is manual palpation testing. Whereas manual palpation provides only a subjective binary answer (fused or not fused) regarding the success of a fusion surgery, mechanical testing can provide more quantitative data by assessing variations in strength among treatment groups. We here describe a mechanical testing method to quantitatively assess single-level spinal fusion in a rat model, to improve on the binary and subjective nature of manual palpation as an end point for fusion-related studies. We tested explanted lumbar segments from Sprague-Dawley rat spines after single-level posterolateral fusion procedures at L4-L5. Segments were classified as 'not fused,' 'restricted motion,' or 'fused' by using manual palpation testing. After thorough dissection and potting of the spine, 4-point bending in flexion then was applied to the L4-L5 motion segment, and stiffness was measured as the slope of the moment-displacement curve. Results demonstrated statistically significant differences in stiffness among all groups, which were consistent with preliminary grading according to manual palpation. In addition, the 4-point bending results provided quantitative information regarding the quality of the bony union formed and therefore enabled the comparison of fused specimens. Our results demonstrate that 4-point bending is a simple, reliable, and effective way to describe and compare results among rat spines after fusion surgery.

  17. Activity-Based Therapies To Promote Forelimb Use after a Cervical Spinal Cord Injury

    PubMed Central

    Dai, Haining; MacArthur, Linda; McAtee, Marietta; Hockenbury, Nicole; Tidwell, J. Lille; McHugh, Brian; Mansfield, Kevin; Finn, Tom; Hamers, Frank P.T.

    2009-01-01

    Abstract Significant interest exists in strategies for improving forelimb function following spinal cord injury. We investigated the effect of enriched housing combined with skilled training on the recovery of skilled and automatic forelimb function after a cervical spinal cord injury in adult rats. All animals were pretrained in skilled reaching, gridwalk crossing, and overground locomotion. Some received a cervical over-hemisection lesion at C4-5, interrupting the right side of the spinal cord and dorsal columns bilaterally, and were housed in standard housing alone or enriched environments with daily training. A subset of animals received rolipram to promote neuronal plasticity. Animals were tested weekly for 4 weeks to measure reaching, errors on the gridwalk, locomotion, and vertical exploration. Biotinylated dextran amine was injected into the cortex to label the corticospinal tract. Enriched environments/daily training significantly increased the number and success of left reaches compared to standard housing. Animals also made fewer errors on the gridwalk, a measure of coordinated forelimb function. However, there were no significant improvements in forelimb use during vertical exploration or locomotion. Likewise, rolipram did not improve any of the behaviors tested. Both enriched housing and rolipram increased plasticity of the corticospinal tract rostral to the lesion. These studies indicate that skilled training after a cervical spinal cord injury improves recovery of skilled forelimb use (reaching) and coordinated limb function (gridwalk) but does not improve automatic forelimb function (locomotion and vertical exploration). These studies suggest that rehabilitating forelimb function after spinal cord injury will require separate strategies for descending and segmental pathways. PMID:19317604

  18. The Locus Coeruleus–Norepinephrine System Mediates Empathy for Pain through Selective Up-Regulation of P2X3 Receptor in Dorsal Root Ganglia in Rats

    PubMed Central

    Lü, Yun-Fei; Yang, Yan; Li, Chun-Li; Wang, Yan; Li, Zhen; Chen, Jun

    2017-01-01

    Empathy for pain (vicariously felt pain), an ability to feel, recognize, understand and share the painful emotions of others, has been gradually accepted to be a common identity in both humans and rodents, however, the underlying neural and molecular mechanisms are largely unknown. Recently, we have developed a rat model of empathy for pain in which pain can be transferred from a cagemate demonstrator (CD) in pain to a naïve cagemate observer (CO) after 30 min dyadic priming social interaction. The naïve CO rats display both mechanical pain hypersensitivity (hyperalgesia) and enhanced spinal nociception. Chemical lesions of bilateral medial prefrontal cortex (mPFC) abolish the empathic pain response completely, suggesting existence of a top-down facilitation system in production of empathy for pain. However, the social transfer of pain was not observed in non-cagemate observer (NCO) after dyadic social interaction with a non-cagemate demonstrator (NCD) in pain. Here we showed that dyadic social interaction with a painful CD resulted in elevation of circulating norepinephrine (NE) and increased neuronal activity in the locus coeruleus (LC) in the CO rats. Meanwhile, CO rats also had over-expression of P2X3, but not TRPV1, in the dorsal root ganglia (DRG). Chemical lesion of the LC-NE neurons by systemic DSP-4 and pharmacological inhibition of central synaptic release of NE by clonidine completely abolished increase in circulating NE and P2X3 receptor expression, as well as the sympathetically-maintained development of empathic mechanical hyperalgesia. However, in the NCO rats, neither the LC-NE neuronal activity nor the P2X3 receptor expression was altered after dyadic social interaction with a painful NCD although the circulating corticosterone and NE were elevated. Finally, in the periphery, both P2X3 receptor and α1 adrenergic receptor were found to be involved in the development of empathic mechanical hyperalgesia. Taken together with our previous results

  19. Intraoperative electroacupuncture relieves remifentanil-induced postoperative hyperalgesia via inhibiting spinal glial activation in rats.

    PubMed

    Shi, Changxi; Liu, Yue; Zhang, Wei; Lei, Yishan; Lu, Cui'e; Sun, Rao; Sun, Yu'e; Jiang, Ming; Gu, Xiaoping; Ma, Zhengliang

    2017-01-01

    Background Accumulating studies have suggested that remifentanil, the widely-used opioid analgesic in clinical anesthesia, can activate the pronociceptive systems and enhance postoperative pain. Glial cells are thought to be implicated in remifentanil-induced hyperalgesia. Electroacupuncture is a complementary therapy to relieve various pain conditions with few side effects, and glial cells may be involved in its antinociceptive effect. In this study, we investigated whether intraoperative electroacupuncture could relieve remifentanil-induced postoperative hyperalgesia by inhibiting the activation of spinal glial cells, the production of spinal proinflammatory cytokines, and the activation of spinal mitogen-activated protein kinases. Methods A rat model of remifentanil-induced postoperative hyperalgesia was used in this study. Electroacupuncture during surgery was conducted at bilateral Zusanli (ST36) acupoints. Behavior tests, including mechanical allodynia and thermal hyperalgesia, were performed at different time points. Astrocytic marker glial fibrillary acidic protein, microglial marker Iba1, proinflammatory cytokines, and phosphorylated mitogen-activated protein kinases in the spinal cord were detected by Western blot and/or immunofluorescence. Results Mechanical allodynia and thermal hyperalgesia were induced by both surgical incision and remifentanil infusion, and remifentanil infusion significantly exaggerated and prolonged incision-induced pronociceptive effects. Glial fibrillary acidic protein, Iba1, proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α), and phosphorylated mitogen-activated protein kinases (p-p38, p-JNK, and p-ERK1/2) were upregulated after surgical incision, remifentanil infusion, and especially after their combination. Intraoperative electroacupuncture significantly attenuated incision- and/or remifentanil-induced pronociceptive effects, spinal glial activation, proinflammatory cytokine upregulation, and

  20. Intraoperative electroacupuncture relieves remifentanil-induced postoperative hyperalgesia via inhibiting spinal glial activation in rats

    PubMed Central

    Shi, Changxi; Liu, Yue; Zhang, Wei; Lei, Yishan; Lu, Cui’e; Sun, Rao; Sun, Yu’e; Jiang, Ming; Gu, Xiaoping; Ma, Zhengliang

    2017-01-01

    Background Accumulating studies have suggested that remifentanil, the widely-used opioid analgesic in clinical anesthesia, can activate the pronociceptive systems and enhance postoperative pain. Glial cells are thought to be implicated in remifentanil-induced hyperalgesia. Electroacupuncture is a complementary therapy to relieve various pain conditions with few side effects, and glial cells may be involved in its antinociceptive effect. In this study, we investigated whether intraoperative electroacupuncture could relieve remifentanil-induced postoperative hyperalgesia by inhibiting the activation of spinal glial cells, the production of spinal proinflammatory cytokines, and the activation of spinal mitogen-activated protein kinases. Methods A rat model of remifentanil-induced postoperative hyperalgesia was used in this study. Electroacupuncture during surgery was conducted at bilateral Zusanli (ST36) acupoints. Behavior tests, including mechanical allodynia and thermal hyperalgesia, were performed at different time points. Astrocytic marker glial fibrillary acidic protein, microglial marker Iba1, proinflammatory cytokines, and phosphorylated mitogen-activated protein kinases in the spinal cord were detected by Western blot and/or immunofluorescence. Results Mechanical allodynia and thermal hyperalgesia were induced by both surgical incision and remifentanil infusion, and remifentanil infusion significantly exaggerated and prolonged incision-induced pronociceptive effects. Glial fibrillary acidic protein, Iba1, proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α), and phosphorylated mitogen-activated protein kinases (p-p38, p-JNK, and p-ERK1/2) were upregulated after surgical incision, remifentanil infusion, and especially after their combination. Intraoperative electroacupuncture significantly attenuated incision- and/or remifentanil-induced pronociceptive effects, spinal glial activation, proinflammatory cytokine upregulation, and