Sample records for rat tibia efeitos

  1. Changes in geometrical and biomechanical properties of immature male and female rat tibia

    NASA Technical Reports Server (NTRS)

    Zernicke, Ronald F.; Hou, Jack C.-H.; Vailas, Arthur C.; Nishimoto, Mitchell; Patel, Sanjay

    1990-01-01

    The differences in the geometry and mechanical properties of immature male and female rat tibiae were detailed in order to provide comparative data for spaceflight, exercise, or disease experiments that use immature rats as an animal model. The experiment focuses on the particularly rapid period of growth that occurs in the Sprague-Dawley rat between 40 and 60 d of age. Tibial length and middiaphysical cross-sectional data were analyzed for eight different groups of rats according to age and sex, and tibial mechanical properties were obtained via three-point bending tests to failure. Results indicate that, during the 15 d period of rapid growth, changes in rat tibial geometry are more important than changes in bone material properties for influencing the mechanical properties of the tibia. Male tibiae changed primarily in structural properties, while in the female rats major changes in mechanical properties of the tibia were only attributable to changes in the structural properties of the bone.

  2. Onset of mandible and tibia osteoradionecrosis – a comparative pilot study in the rat

    PubMed Central

    Damek-Poprawa, Monika; Both, Stefan; Wright, Alexander C.; Maity, Amit; Akintoye, Sunday O.

    2012-01-01

    Objectives Osteoradionecrosis (ORN) is common in the jaws following radiotherapy. We hypothesized that mandible is more susceptible to ORN than tibia based on site-disparity in hypoxic-hypocellular-hypovascular tissue breakdown. Study Design Twelve rats received 50 Gy irradiation to mandible or tibia; 4 of 12 rats further received minor surgical trauma to the irradiated sites. Structural and cellular skeletal changes were assessed with computer tomography, histology and immunostaining. Results Mandible developed ORN with 70% mean bone loss 10 weeks post-irradiation (p < 0.05) while tibia was structurally and radiological intact for 20 weeks post-irradiation. Hypocellularity, hypoxia and oxidative stress were higher in irradiated mandible (p < 0.001) than tibia (p < 0.01) but vascular damage was similar at both skeletal sites. Combined effects of radiation and minor trauma promoted mandibular alveolar bone loss and tibial fracture Conclusion ORN has a more rapid onset in mandible relative to tibia in the rat PMID:23254371

  3. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality

    PubMed Central

    Okagbare, Paul I.; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A.

    2012-01-01

    Abstract. We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies. PMID:23085899

  4. Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality.

    PubMed

    Okagbare, Paul I; Begun, Dana; Tecklenburg, Mary; Awonusi, Ayorinde; Goldstein, Steven A; Morris, Michael D

    2012-09-01

    We report on in vivo noninvasive Raman spectroscopy of rat tibiae using robust fiber-optic Raman probes and holders designed for transcutaneous Raman measurements in small animals. The configuration allows placement of multiple fibers around a rat leg, maintaining contact with the skin. Bone Raman data are presented for three regions of the rat tibia diaphysis with different thicknesses of overlying soft tissue. The ability to perform in vivo noninvasive Raman measurement and evaluation of subtle changes in bone composition is demonstrated with rat leg phantoms in which the tibia has carbonated hydroxylapatite, with different carbonate contents. Our data provide proof of the principle that small changes in bone composition can be monitored through soft tissue at anatomical sites of interest in biomedical studies.

  5. Freezing of Rat Tibiae at -20°C Does Not Affect the Mechanical Properties of Intramedullary Bone/Implant-Interface: Brief Report

    PubMed Central

    Diefenbeck, Michael; Mückley, Thomas; Zankovych, Sergiy; Bossert, Jörg; Jandt, Klaus D; Schrader, Christian; Schmidt, Jürgen; Finger, Ulrich; Faucon, Mathilde

    2011-01-01

    Background: The effects of freezing-thawing cycles on intramedullary bone-implant interfaces have been studied in a rat model in mechanical pull-out tests. Implants: Twenty TiAl6V4 rods (Ø 0.8 mm, length 10 mm) implanted in rat tibiae Methods: 10 rats underwent bilateral tibial implantation of titanium rods. At eight weeks, the animals were sacrificed and tibiae harvested for biomechanical testing. Eight tibiae were frozen and stored at -20°C for 14 days, the remaining eight were evaluated immediately post-harvest. Pull-out tests were used to determine maximum force and interfacial shear strength. Results: There were no significant differences between fresh and those of the frozen-thawed group in maximum force or in interfacial shear strength. Conclusion: Frozen Storage of rat tibiae containing implants at -20° C has no effects on the biomechanical properties of Bone/ Implant interface. PMID:21760868

  6. Time course of epiphyseal growth plate fusion in rat tibiae

    NASA Technical Reports Server (NTRS)

    Martin, E. A.; Ritman, E. L.; Turner, R. T.

    2003-01-01

    Although the rat is the most common animal model used in studying osteoporosis, it is often used inappropriately. Osteoporosis is a disease that most commonly occurs in humans long after growth plate fusion with the associated cessation of longitudinal bone growth, but there has been a question as to when or to what extent the rat growth plate fuses. To investigate this question, we used microcomputed X-ray tomography, at voxel resolutions ranging from (5.7 micro m)(3) to (11 micro m)(3), to image the proximal epiphyseal growth plates of both male (n = 19) and female (n = 15) rat tibiae, ranging in age from 2 to 25 months. The three-dimensional images were used to evaluate fusion of the epiphyseal growth plate by quantitating the amount of cancellous bone that has bridged across the growth plate. The results suggest that the time course of fusion of the epiphyseal growth plate follows a sigmoidal pattern, with 10% of the maximum number of bridges having formed by 3.9 months in the male tibiae and 5.8 months in the female tibiae, 50% of the maximum number of bridges having formed by 5.6 months in the male tibiae and 5.9 months in the female tibiae, and 90% of the total maximum of bridges have formed by 7.4 months for the males and 6.5 months for the females. The total volume of bridges per tibia at the age at which the maximum number of bridges per tibia has first formed is 0.99 mm(3)/tibia for the males and 0.40 mm(3)/tibia for the females. After the maximum number of bridges (-290 for females, -360 for males) have formed the total volume of bridges per tibia continues to increase for an additional 7.0 months in the males and 17.0 months for the females until they reach maximum values (-1.5 mm(3)/tibia for the males and -2.2 mm(3)/tibia for the females).

  7. Moderate tibia axial loading promotes discordant response of bone composition parameters and mechanical properties in a hindlimb unloading rat model.

    PubMed

    Yang, Peng-Fei; Huang, Ling-Wei; Nie, Xiao-Tong; Yang, Yue; Wang, Zhe; Ren, Li; Xu, Hui-Yun; Shang, Peng

    2018-06-01

    The purpose of the present study was to characterize the dynamic alterations of bone composition parameters and mechanical properties to disuse and mechanical intervention. A tail suspension hindlimb unloading model and an in vivo axial tibia loading model in rats were used. A moderate mechanical loading that was capable of engendering 800 µε tibia strain was applied to the right tibia of rats in both control and hindlimb unloading group across 28 days of the experimental period. The contralateral tibia served as control. Hindlimb unloading led to bone loss in tibia from day 14. Bone mineral density, mineral content and mechanical properties responded differently with microstructure to disuse in timing course. Mechanical loading of 800 µε tibia strain failed to alter the bone of the control group, but minimized the detrimental effects of unloading by completely prohibiting the decrease of bone mineral content and main mechanical properties after 28 days. Less obvious influence of mechanical loading on bone microstructure was found. The moderate mechanical loading is not able to stimulate the mechanical response of healthy tibia, but indeed lead to discordant recovery of bone composition parameters and mechanical properties.

  8. Allometric relationships among body mass, MUZZLE-tail length, and tibia length during the growth of Wistar rats.

    PubMed

    Santiago, Hildemberg Agostinho Rocha de; De Pierro, Lucas Rodolfo; Reis, Rafael Menezes; Caluz, Antônio Gabriel Ricardo Engracia; Ribeiro, Victor Barbosa; Volpon, José Batista

    2015-11-01

    To investigate allometric relationships among body mass (BM), muzzle-tail length (MTL), and tibia length (TL) in Wistar rats and establish their growth rate change parameters. Eighteen male and 18 female Wistar rats were studied from the 3rd to the 21st week of age. BM, MTL, and TL were measured daily, and relative growth was compared using allometry. A positive correlation between BM and MTL (p<0.05) and BM and TL (p<0.05) was observed. Males and females showed comparable curves; however, females had turning points at a younger age. The allometric relationship between BM and MTL presented a regular increase until reaching a mass of 351 g (males) and 405 g (females). BM and TL showed an initial increase until 185 g (males) and 182 g (females), and then reached a plateau that finished at 412 g (males) and 334 g (females), to display another increase. The allometric relationship of body mass with animal length and tibia length was comparable for male and female rats, with female rats maturing earlier. Animal longitudinal growth occurred in a single stage. In contrast, tibia length depicted two stages of accelerated growth with an intermediate period of deceleration.

  9. Effects of salmon calcitonin on fracture healing in ovariectomized rats.

    PubMed

    Li, Xiaolin; Luo, Xinle; Yu, Nansheng; Zeng, Bingfang

    2007-01-01

    To explore the effects of salmon calcitonin on the healing process of osteoporotic fractures in ovariectomized rats. We performed this study in The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China, during the period March 2002 to December 2004. We used 120 female adult Wistar rats in this experiment, among which 90 underwent ovariectomy (OVX) and the other 30 had sham-operation. All rats had their left tibias fractured 3 months later. The 90 OVX rats were randomly divided into 3 groups with 30 in each, while the 30 sham-operated rats served as control group. After the fracture the rats had subcutaneous injection of normal saline, salmon calcitonin and estrogen, respectively. X-ray film, histological examination, bone mineral density (BMD) measurement and biomechanics testing were carried out to evaluate the fracture healing. Compared with OVX rats treated with normal saline, the rats with salmon calcitonin had significantly higher BMD values in the left tibia, higher max torque, shear stress of the left tibia 8 weeks after fracture (p<0.05), and presented with stronger callus formation, shorter fracture healing time and faster normalization of microstructure of bone trabeculae. Salmon calcitonin can, not only increase BMD in osteoporotic bone, but also enhance the bone biomechanical properties and improve the process of fracture healing in fractured osteoporotic bone.

  10. Comparison of metal concentrations in rat tibia tissues with various metallic implants.

    PubMed

    Okazaki, Yoshimitsu; Gotoh, Emiko; Manabe, Takeshi; Kobayashi, Kihei

    2004-12-01

    To compare metal concentrations in tibia tissues with various metallic implants, SUS316L stainless steel, Co-Cr-Mo casting alloy, and Ti-6Al-4V and V-free Ti-15Zr-4Nb-4Ta alloys were implanted into the rat tibia for up to 48 weeks. After the implant was removed from the tibia by decalcification, the tibia tissues near the implant were lyophilized. Then the concentrations of metals in the tibia tissues by microwave acid digestion were determined by inductively coupled plasma-mass spectrometry. Fe concentrations were determined by graphite-furnace atomic absorption spectrometry. The Fe concentration in the tibia tissues with the SUS316L implant was relatively high, and it rapidly increased up to 12 weeks and then decreased thereafter. On the other hand, the Co concentration in the tibia tissues with the Co-Cr-Mo implant was lower, and it increased up to 24 weeks and slightly decreased at 48 weeks. The Ni concentration in the tibia tissues with the SUS316L implant increased up to 6 weeks and then gradually decreased thereafter. The Cr concentration tended to be higher than the Co concentration. This Cr concentration linearly increased up to 12 weeks and then decreased toward 48 weeks in the tibia tissues with the SUS316L or Co-Cr-Mo implant. Minute quantities of Ti, Al and V in the tibia tissues with the Ti-6Al-4V implant were found. The Ti concentration in the tibia tissues with the Ti-15Zr-4Nb-4Ta implant was lower than that in the tibia tissues with the Ti-6Al-4V implant. The Zr, Nb and Ta concentrations were also very low. The Ti-15Zr-4Nb-4Ta alloy with its low metal release in vivo is considered advantageous for long-term implants.

  11. Obesity and type 2 diabetes, not a diet high in fat, sucrose, and cholesterol, negatively impacts bone outcomes in the hyperphagic Otsuka Long Evans Tokushima Fatty rat.

    PubMed

    Ortinau, Laura C; Linden, Melissa A; Dirkes, Rebecca; Rector, R Scott; Hinton, Pamela S

    2017-12-01

    Obesity and type 2 diabetes (T2D) increase fracture risk; however, the association between obesity/T2D may be confounded by consumption of a diet high in fat, sucrose, and cholesterol (HFSC). The study objective was to determine the main and interactive effects of obesity/T2D and a HFSC diet on bone outcomes using hyperphagic Otuska Long Evans Tokushima Fatty (OLETF) rats and normophagic Long Evans Tokushima Otsuka (LETO) controls. At 8weeks of age, male OLETF and LETO rats were randomized to either a control (CON, 10 en% from fat as soybean oil) or HFSC (45 en% from fat as soybean oil/lard, 17 en% sucrose, and 1wt%) diet, resulting in four treatment groups. At 32weeks, total body bone mineral content (BMC) and density (BMD) and body composition were measured by dual-energy X-ray absorptiometry, followed by euthanasia and collection of blood and tibiae. Bone turnover markers and sclerostin were measured using ELISA. Trabecular microarchitecture of the proximal tibia and geometry of the tibia mid-diaphysis were measured using microcomputed tomography; whole-bone and tissue-level biomechanical properties were evaluated using torsional loading of the tibia. Two-factor ANOVA was used to determine main and interactive effects of diet (CON vs. HFSC) and obesity/T2D (OLETF vs. LETO) on bone outcomes. Hyperphagic OLEFT rats had greater final body mass, body fat, and fasting glucose than normophagic LETO, with no effect of diet. Total body BMC and serum markers of bone formation were decreased, and bone resorption and sclerostin were increased in obese/T2D OLETF rats. Trabecular bone volume and microarchitecture were adversely affected by obesity/T2D, but not diet. Whole-bone and tissue-level biomechanical properties of the tibia were not affected by obesity/T2D; the HFSC diet improved biomechanical properties only in LETO rats. Obesity/T2D, regardless of diet, negatively impacted the balance between bone formation and resorption and trabecular bone volume and microarchitecture in OLETF rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Second hand tobacco smoke adversely affects the bone of immature rats.

    PubMed

    Rosa, Rodrigo César; Pereira, Sângela Cunha; Cardoso, Fabrizio Antônio Gomide; Caetano, Abadio Gonçalves; Santiago, Hildemberg Agostinho Rocha de; Volpon, José Batista

    2017-12-01

    To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness). Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01) and a decrease of 11.25% in tibia length (p<0.001). Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001), leading to a 42.8% reduction in maximum strength (p<0.001) and a 56.7% reduction in stiffness (p<0.001). Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure.

  13. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats

    NASA Technical Reports Server (NTRS)

    Allen, Matthew R.; Bloomfield, Susan A.

    2003-01-01

    This study was designed to determine the effects of 28 days of hindlimb unloading (HU) on the mature female rat skeleton. In vivo proximal tibia bone mineral density and geometry of HU and cage control (CC) rats were measured with peripheral quantitative computed tomography (pQCT) on days 0 and 28. Postmortem pQCT, histomorphometry, and mechanical testing were performed on tibiae and femora. After 28 days, HU animals had significantly higher daily food consumption (+39%) and lower serum estradiol levels (-49%, P = 0.079) compared with CC. Proximal tibia bone mineral content and cortical bone area significantly declined over 28 days in HU animals (-4.0 and 4.8%, respectively), whereas total and cancellous bone mineral densities were unchanged. HU animals had lower cortical bone formation rates and mineralizing surface at tibial midshaft, whereas differences in similar properties were not detected in cancellous bone of the distal femur. These results suggest that cortical bone, rather than cancellous bone, is more prominently affected by unloading in skeletally mature retired breeder female rats.

  14. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuehua, E-mail: yuesjtu@126.com; Zheng, Xinfeng, E-mail: zxf272@126.com; Li, Bo, E-mail: libo@126.com

    Highlights: • Examine autophagy level in the proximal tibia of ovariectomized rats. • Investigate whether autophagy level is associated with bone loss. • Investigate whether autophagy level is associated with oxidative stress status. - Abstract: Objectives: The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status. Methods: 36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) andmore » bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed. Results: Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found. Conclusions: Ovariectomy induced oxidative stress, autophagy and bone loss. Autophagy of osteocyte was inversely correlated with oxidative stress status and bone loss.« less

  15. A Novel microCT Method for Bone and Marrow Adipose Tissue Alignment Identifies Key Differences Between Mandible and Tibia in Rats.

    PubMed

    Coutel, Xavier; Olejnik, Cécile; Marchandise, Pierre; Delattre, Jérôme; Béhal, Hélène; Kerckhofs, Greet; Penel, Guillaume

    2018-01-30

    Bone homeostasis is influenced by the bone marrow adipose tissue (BMAT). BMAT distribution varies from one anatomical location in the skeleton to another. We developed an advanced microfocus computed tomography imaging and analysis protocol that allows accurate alignment of both the BMAT distribution and bone micro-architecture as well as calculation of the distance of the BMAT adipocytes from the bone surface. Using this protocol, we detected a different spatial BMAT distribution between the rat tibia and mandible: in the proximal metaphysis of the tibia a large amount of BMAT (~ 20% of the total BMAT) was located close to the bone surface (< 20 µm), whereas in the alveolar ridge ~ 30% of the total BMAT was located between 40 and 60 µm from the bone surface. In the alveolar ridge of rats, the trabecular bone volume was 48.3% higher compared to the proximal metaphysis of the tibia (p < 0.0001) and the percentage of adiposity determined to the relative marrow volume was lower (1.5%) compared to the proximal metaphysis of the tibia (9%, p = 0.0002). Interestingly, in the tibia a negative correlation was found between the percentage of adiposity in the total volume and the trabecular thickness (r =- 0.74, p = 0.037). The present study highlights that in comparison to tibial proximal metaphysis, the mandibular bone exhibits a massive trabecular network and a low BMAT content with almost no contact with the bone surface. These findings are of great interest because of the importance of the fat-bone interaction and its potential relevance to several resorptive bone diseases.

  16. Effect of strontium ranelate on fracture healing in rat tibia.

    PubMed

    Cebesoy, Oguz; Tutar, Ediz; Kose, Kamil Cagri; Baltaci, Yasemin; Bagci, Cahit

    2007-12-01

    Various anti-osteoporotic agents are available for clinical use. In contrast to other anti-osteoporotic drugs, strontium ranelate has anti-resorptive and bone-forming effects (dual action). Our objective in the present study is to investigate the efficacy of strontium ranelate (SR) on fracture healing in rat tibia. Forty-two male Wistar rats randomized into two groups (groups 1 and 2, n=21 for each). Left tibiae of all animals were broken in a closed manner using a manual three-point bending technique through mid-tibia following deep anesthesia with ketamine. The animals in group 1 were fed 25g/day specially produced food containing 450mg/kg SR starting from the first post-operative day. Group 2 were given 25g/day normal food. The animals were sacrificed on the 2nd, 3rd and 4th post-operative weeks (each week 7 animals were sacrificed from each group) and the broken tibiae were removed. The tibiae were examined first radiographically and second, histopathologically. Radiologically, callus maturity and bone union increased with time in both groups. But no significant differences were found regarding callus maturity and bone union in weekly comparisons (p=0.52, p=0.19, p=0.74). Histopathologically, it was seen that the fractures remarkably healed steadily in both groups on the 2nd, 3rd and 4th post-operative weeks. But no significant differences were found regarding the progression of fracture callus in weekly comparison (p=1.0, p=0.52, p=1.0). In the present study, we were unable to find any beneficial or harmful effects of strontium ranelate on fracture healing.

  17. Bone mineral density, chemical composition and biomechanical properties of the tibia of female rats exposed to cadmium since weaning up to skeletal maturity.

    PubMed

    Brzóska, M M; Majewska, K; Moniuszko-Jakoniuk, J

    2005-10-01

    The influence of exposure to cadmium (Cd) during skeletal development on the risk of bone fractures at the stage of skeletal maturity was investigated on a female rat model of human exposure. The tibias of rats treated with 1, 5 or 50 mg Cd/l in drinking water for 3, 6, 9 and 12 months (since weaning) were used. The exposure to Cd dose- and time-dependently influenced the tibia bone mineral density (BMD) and chemical composition. In skeletally matured animals, at each level of the exposure to Cd, the BMD at the whole tibia and its diaphysis as well as the percentage of minerals content in the bone, including the content of zinc, copper and iron, were decreased compared to control. Moreover, in the 50 mg Cd/l group, the percentage of organic components content increased. The Cd-induced changes, at all levels of exposure, resulted in weakening in the yield strength and fracture strength of the tibia (a three-point bending test of the diaphysis and compression test with vertical loading) of the skeletally matured females. A very important and clinically useful finding of this study is that a decrease (even by several percent) in the tibia BMD results in weakness in the bone biomechanical properties and that the BMD may predict the risk of its fracture at the exposure to Cd. Moreover, the results together with our previous findings seem to suggest that tibia, due to higher vulnerability of its diaphysis, compared to the femoral diaphysis, to damage by Cd may be more useful than femur to investigate the effect of Cd on the cortical bone. The present study revealed that a low exposure to Cd (1 mg Cd/l), corresponding to low human environmental exposure, during the skeletal development affects the tibia mineral status leading to weakening in its mechanical properties at the skeletal maturity. The findings allow for the conclusion that environmental exposure to Cd during childhood and adolescence may enhance the risk of low BMD and fractures at adulthood.

  18. Second hand tobacco smoke adversely affects the bone of immature rats

    PubMed Central

    Rosa, Rodrigo César; Pereira, Sângela Cunha; Cardoso, Fabrizio Antônio Gomide; Caetano, Abadio Gonçalves; de Santiago, Hildemberg Agostinho Rocha; Volpon, José Batista

    2017-01-01

    OBJECTIVES: To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. METHODS: Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness). RESULTS: Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01) and a decrease of 11.25% in tibia length (p<0.001). Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001), leading to a 42.8% reduction in maximum strength (p<0.001) and a 56.7% reduction in stiffness (p<0.001). CONCLUSION: Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure. PMID:29319726

  19. Can the contralateral limb be used as a control during the growing period in a rodent model?

    PubMed

    Mustafy, Tanvir; Londono, Irène; Villemure, Isabelle

    2018-05-12

    The contralateral limb is often used as a control in various clinical, forensic and anthropological studies. However, no studies have been performed to determine if the contra-lateral limb is a suitable control during the bone development period. The aim of this study was to determine the bilateral symmetry of growing rat tibiae in terms of geometric shape, mechanical strength and bone morphological parameters with developmental stages. Left and right tibias of 18 male Sprague-Dawley rats at 4, 8 and 12 weeks of age were scanned with micro-CT for bone-morphometric evaluation and for 3D deviation analysis to quantify the geometric shape variations between left and right tibiae. Overall tibial lengths and curvatures were also measured, and bone mechanical strength was investigated using three-point bending tests. Deviation distributions between bilateral tibiae remained below 0.5 mm for more than 80% of the geometry for all groups. Tibial lengths, longitudinal tibial curvatures, bone-morphometric parameters and mechanical strengths changed significantly during the growing period but kept a strong degree of symmetry between bilateral tibiae. These results suggest that bilateral tibiae can be considered symmetrical in nature and that contralateral limb can be used as a control during the growing period in different experimental scenarios. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Would Interstitial Fluid Flow be Responsible for Skeletal Maintenance in Tail-Suspended Rats?

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ting; Huang, Yun-Fei; Sun, Lian-Wen; Luan, Hui-Qin; Zhu, Bao-Zhang; Fan, Yu-Bo

    2017-02-01

    Despite the fast development of manned space flight, the mechanism and countermeasures of weightlessness osteoporosis in astronauts are still within research. It is accepted that unloading has been considered as primary factor, but the precise mechanism is still unclear. Since bone's interstitial fluid flow (IFF) is believed to be significant to nutrient supply and waste metabolism of bone tissue, it may influence bone quality as well. We investigated IFF's variation in different parts of body (included parietal bone, ulna, lumbar, tibia and tailbone) of rats using a tail-suspended (TS) system. Ten female Sprague-Dawley (SD) rats were divided into two groups: control (CON) and tail-suspension (TS) group. And after 21 days' experiment, the rats were injected reactive red to observe lacuna's condition under a confocal laser scanning microscope. The variations of IFF were analyzed by the number and area of lacuna. Volumetric bone mineral density (vBMD) and microarchitecture of bones were evaluated by micro-CT. The correlation coefficients between lacuna's number/area and vBMD were also analyzed. According to our experimental results, a 21 days' tail-suspension could cause a decrease of IFF in lumbar, tibia and tailbone and an increase of IFF in ulna. But in parietal bone, it showed no significant change. The vBMD and microarchitecture parameters also decreased in lumbar and tibia and increased in ulna. But in parietal bone and tailbone, it showed no significant change. And correlation analysis showed significant correlation between vBMD and lacuna's number in lumbar, tibia and ulna. Therefore, IFF decrease may be partly contribute to bone loss in tail-suspended rats, and it should be further investigated.

  1. Regional alterations of type I collagen in rat tibia induced by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Shiiba, Masashi; Arnaud, Sara B.; Tanzawa, Hideki; Kitamura, Eiji; Yamauchi, Mitsuo

    2002-01-01

    Skeletal unloading induces loss of mineral density in weight-bearing bones that leads to inferior bone mechanical strength. This appears to be caused by a failure of bone formation; however, its mechanisms still are not well understood. The objective of this study was to characterize collagen, the predominant matrix protein in bone, in various regions of tibia of rats that were subjected to skeletal unloading by 4 weeks tail suspension. Sixteen male Sprague-Dawley rats (4 months old) were divided into tail suspension and ambulatory controls (eight rats each). After the tail suspension, tibias from each animal were collected and divided into five regions and collagen was analyzed. The collagen cross-linking and the extent of lysine (Lys) hydroxylation in unloaded bones were significantly altered in proximal epiphysis, diaphysis, and, in particular, proximal metaphysis but not in distal regions. The pool of immature/nonmineralized collagen measured by its extractability with a chaotropic solvent was significantly increased in proximal metaphysis. These results suggest that skeletal unloading induced an accumulation of post-translationally altered nonmineralized collagen and that these changes are bone region specific. These alterations might be caused by impaired osteoblastic function/differentiation resulting in a mineralization defect.

  2. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    PubMed

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors in future fracture healing studies.

  3. Effects of Multi-Deficiencies-Diet on Bone Parameters of Peripheral Bone in Ovariectomized Mature Rat

    PubMed Central

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors in future fracture healing studies. PMID:23977109

  4. Use of micro-CT-based finite element analysis to accurately quantify peri-implant bone strains: a validation in rat tibiae.

    PubMed

    Torcasio, Antonia; Zhang, Xiaolei; Van Oosterwyck, Hans; Duyck, Joke; van Lenthe, G Harry

    2012-05-01

    Although research has been addressed at investigating the effect of specific loading regimes on bone response around the implant, a precise quantitative understanding of the local mechanical response close to the implant site is still lacking. This study was aimed at validating micro-CT-based finite element (μFE) models to assess tissue strains after implant placement in a rat tibia. Small implants were inserted at the medio-proximal site of 8 rat tibiae. The limbs were subjected to axial compression loading; strain close to the implant was measured by means of strain gauges. Specimen-specific μFE models were created and analyzed. For each specimen, 4 different models were created corresponding to different representations of the bone-implant interface: bone and implant were assumed fully osseointegrated (A); a low stiffness interface zone was assumed with thickness of 40 μm (B), 80 μm (C), and 160 μm (D). In all cases, measured and computational strains correlated highly (R (2) = 0.95, 0.92, 0.93, and 0.95 in A, B, C, and D, respectively). The averaged calculated strains were 1.69, 1.34, and 1.15 times higher than the measured strains for A, B, and C, respectively, and lower than the experimental strains for D (factor = 0.91). In conclusion, we demonstrated that specimen-specific FE analyses provide accurate estimates of peri-implant bone strains in the rat tibia loading model. Further investigations of the bone-implant interface are needed to quantify implant osseointegration.

  5. The application of micro-CT in monitoring bone alterations in tail-suspended rats in vivo

    NASA Astrophysics Data System (ADS)

    Luan, Hui-Qin; Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; McClean, Colin J.; Fan, Yu-Bo

    2014-06-01

    Osteopenia is a pathological process that affects human skeletal health not only on earth but also in long-time spaceflight. Micro-computed tomography (micro-CT) is a nondestructive method for assessing both bone quantity and bone quality. To investigate the characteristics of micro-CT on evaluating the microgravity-induced osteopenia (e.g. early detection time and the sensitive parameters), the bone loss process of tail-suspended rats was monitored by micro-CT in this study. 8-Week-old female Sprague Dawley rats were divided into two groups: tail suspension (TS) and control (CON). Volumetric bone mineral density (vBMD) and microstructure of the femur and tibia were evaluated in vivo by micro-CT at 0, 7, 14, 22 days. Biomechanical properties of the femur and tibia were determined by three-point bending test. The ash weight of bone was also investigated. The results showed that (1) bone loss in the proximal tibia appeared earlier than in the distal femur. (2) On day 7, the percent bone volume (BV/TV) of the tibia 15.44% decreased significantly, and the trabecular separation (Tb.Sp) 30.29% increased significantly in TS group, both of which were detected earlier than other parameters. (3) Biomechanical properties (e.g. femur, -22.4% maximum load and -23.75% Young’s modulus vs. CON) and ash weight of the femur and tibia decreased significantly in the TS group in comparison to CON group. (4) vBMD of the femur and tibia were clearly related to bone ash and dry weight (r = 0.75-0.87, p < 0.05). (5) BV/TV of both femur and tibia were clearly related to maximum load and Young’s modulus (r = 0.66-0.87, p < 0.05). Similarly, trabecular vBMD and BV/TV of the femur and tibia were clearly related to Young’s modulus (r = 0.73-0.89, p < 0.05). These indicated that BV/TV and Tb.Sp were more sensitive than other parameters for evaluating bone loss induced by tail suspension, moreover, trabecular vBMD and other parameters might be used to evaluate bone strength. Therefore, micro-CT is a reliable and sensitive method for predicting unloading-induced bone loss in small animals.

  6. [Is there a relation between weight in rats, bone density, ash weight and histomorphometric indicators of trabecular volume and thickness in the bones of extremities?].

    PubMed

    Zák, J; Kapitola, J; Povýsil, C

    2003-01-01

    Authors deal with question, if there is possibility to infer bone histological structure (described by histomorphometric parameters of trabecular bone volume and trabecular thickness) from bone density, ash weight or even from weight of animal (rat). Both tibias of each of 30 intact male rats, 90 days old, were processed. Left tibia was utilized to the determination of histomorphometric parameters of undecalcified bone tissue patterns by automatic image analysis. Right tibia was used to the determination of values of bone density, using Archimedes' principle. Values of bone density, ash weight, ash weight related to bone volume and animal weight were correlated with histomorphometric parameters (trabecular bone volume, trabecular thickness) by Pearson's correlation test. One could presume the existence of relation between data, describing bone mass at the histological level (trabecular bone of tibia) and other data, describing mass of whole bone or even animal mass (weight). But no statistically significant correlation was found. The reason of the present results could be in the deviations of trabecular density in marrow of tibia. Because of higher trabecular bone density in metaphyseal and epiphyseal regions, the histomorphometric analysis of trabecular bone is preferentially done in these areas. It is possible, that this irregularity of trabecular tibial density could be the source of the deviations, which could influence the results of correlations determined. The values of bone density, ash weight and animal weight do not influence trabecular bone volume and vice versa: static histomorphometric parameters of trabecular bone do not reflect bone density, ash weight and weight of animal.

  7. Multi-Elemental Profiling of Tibial and Maxillary Trabecular Bone in Ovariectomised Rats

    PubMed Central

    Han, Pingping; Lu, Shifeier; Zhou, Yinghong; Moromizato, Karine; Du, Zhibin; Friis, Thor; Xiao, Yin

    2016-01-01

    Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla. PMID:27338361

  8. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    NASA Astrophysics Data System (ADS)

    Bateman, Ted A.; Ayers, Reed A.; Spetzler, Michael L.; Simske, Steven J.; Zimmerman, Robert J.

    1997-01-01

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton et al., 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid et al., 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19-29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (University of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes.

  9. Electrical stimulation at the dorsal root ganglion preserves trabecular bone mass and microarchitecture of the tibia in hindlimb-unloaded rats.

    PubMed

    Lau, Y-C; Qian, X; Po, K-T; Li, L-M; Guo, X

    2015-02-01

    This study seeks to investigate the effect of electrical stimulation (ES) at dorsal root ganglion (DRG) on disuse bone loss in a rat model. Hindlimb unloading for 14 days resulted in significant bone loss in rat tibia while rats with ES at DRG showed a significant reduced bone loss Mechanical unloading induces osteoporosis in both human and animals. Previous studies demonstrated that electrical stimulation (ES) to dorsal root ganglion (DRG) could trigger secretion of calcitonin gene-related peptide (CGRP) which plays an important role in bone modeling and remodeling. This study seeks to investigate the effect of ES to DRG on disuse bone loss in a rat model. Twenty-four rats were randomly assigned in three experimental groups: cage control (CC), hindlimb unloading (HU), and hindlimb unloading with ES (HUES). ES was applied via implantable micro-electrical stimulators (IMES) to right DRGs at vertebral levels L4-L6 in HUES group. Hindlimb unloading for 14 days resulted in 25.9% decrease in total bone mineral content (BMC), 29.2% decrease in trabecular BMD and trabecular microarchitecture and connectivity were significantly deteriorated in the proximal tibia metaphysis in HU group, while rats with ES at DRG showed significant reduced bone loss that there was 3.8% increase in total BMC, 2.3% decrease in trabecular BMD, and significant improvement in trabecular microarchitecture. There was a concurrent enhancement of expression of CGRP in stimulated DRGs. The results confirm the effect of ES at DRG on enhancing CGRP expression and suggest potential applications of IMES for the prevention and treatment of disuse bone loss.

  10. THE EFFECT OF THE GROWTH HORMONE FROM THE ANTERIOR LOBE OF THE PITUITARY ON BONE UNDER CONDITIONS OF IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, E.A.

    1963-05-21

    Young rats 3 to 4 days old were given an x-ray dose of 1000 r on the left hind leg. A daily dose of 200 gamma of growth hormone obtained from the pituitary of a bull was administered, until the animals were killed on the 36th, 41st, and 44th days after the irradiation. The length of the tibia in the left and right legs was determined by x rays. In the irradiated animals, the ratio of the length of the left tibia to the right tibia was about 0.50, and the introduction of growth hormone into the rat had onlymore » a slight effect on tibial growth. The bones were then fixed in a Zenkerformalin fluid, and cytological studies were carried out. These studies show that irradiation of the extremity of a four-day rat with an x-ray dose of 2000 r resulted in deep disturbances in the cartilage bone with subsequent arrest in the development of the bone. The introduction of growth hormone ameliorated the changes in bone structure, but did not result in normal bone development. (TTT)« less

  11. Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis

    PubMed Central

    2011-01-01

    Introduction Osteoarthritis (OA) is a complex, multifactorial joint disease affecting both the cartilage and the subchondral bone. Animal models of OA aid in the understanding of the pathogenesis of OA and testing suitable drugs for OA treatment. In this study we characterized the temporal changes in the tibial subchondral bone architecture in a rat model of low-dose monosodium iodoacetate (MIA)-induced OA using in vivo micro-computed tomography (CT). Methods Male Wistar rats received a single intra-articular injection of low-dose MIA (0.2 mg) in the right knee joint and sterile saline in the left knee joint. The animals were scanned in vivo by micro-CT at two, six, and ten weeks post-injection, analogous to early, intermediate, and advanced stages of OA, to assess architectural changes in the tibial subchondral bone. The articular cartilage changes in the tibiae were assessed macroscopically and histologically at ten weeks post-injection. Results Interestingly, tibiae of the MIA-injected knees showed significant bone loss at two weeks, followed by increased trabecular thickness and separation at six and ten weeks. The trabecular number was decreased at all time points compared to control tibiae. The tibial subchondral plate thickness of the MIA-injected knee was increased at two and six weeks and the plate porosity was increased at all time points compared to control. At ten weeks, histology revealed loss of proteoglycans, chondrocyte necrosis, chondrocyte clusters, cartilage fibrillation, and delamination in the MIA-injected tibiae, whereas the control tibiae showed no changes. Micro-CT images and histology showed the presence of subchondral bone sclerosis, cysts, and osteophytes. Conclusions These findings demonstrate that the low-dose MIA rat model closely mimics the pathological features of progressive human OA. The low-dose MIA rat model is therefore suitable to study the effect of therapeutic drugs on cartilage and bone in a non-trauma model of OA. In vivo micro-CT is a non-destructive imaging technique that can track structural changes in the tibial subchondral bone in this animal model, and could also be used to track changes in bone in preclinical drug intervention studies for OA treatments. PMID:22185204

  12. Effects of Roughly Focused Extracorporeal Shock Waves Therapy on the Expressions of Bone Morphogenetic Protein-2 and Osteoprotegerin in Osteoporotic Fracture in Rats

    PubMed Central

    Huang, Hai-Ming; Li, Xiao-Lin; Tu, Shu-Qiang; Chen, Xiao-Feng; Lu, Chang-Chun; Jiang, Liang-Hua

    2016-01-01

    Background: Roughly focused extracorporeal shock waves therapy (ESWT) is characterized by a wide focal area, a large therapy zone, easy positioning, and less pain during treatment. The purpose of this study was to investigate the effects of roughly focused ESWT on the expression of osteoprotegerin (OPG) and bone morphogenetic protein-2 (BMP-2) in osteoporotic fractures in rats. Methods: Seventy-two female Sprague-Dawley (SD) rats, 3 months old, were divided into sham-operated group (n = 6) and an ovariectomized (OVX) group (n = 66). Sixty OVX SD rats were used as a model of double proximal tibial osteotomy and inner fixation. The osteotomy site in the left tibia was treated with roughly focused ESWT once at an energy density of 0.26 mJ/mm2, 60 doses/min, and 2000 pact quantities. The contralateral right tibia was left untreated and served as a control. Expression of OPG and BMP-2 in the callus of the osteoporotic fracture area was assessed using immunohistochemistry, real-time polymerase chain reaction (PCR), and Western blotting analysis. Results: Bone mineral density (BMD) at the proximal tibia, femur, and L5 spine was significantly reduced after ovariectomy. BMD of proximal tibia was 12.9% less in the OVX group than that in the sham-operated group. Meanwhile, bilateral oophorectomy resulted in a lower trabecular bone volume fraction (BV/TV) in the proximal tibia of the sham-OVX animals. Three months after bilateral oophorectomy, BV/TV was 14.29% of baseline BV/TV in OVX legs versus 45.91% in the sham-OVX legs (P < 0.001). These data showed that the SD rats became a suitable model of osteoporosis, 3 months after they were OVX. Immunohistochemical analysis showed higher levels of BMP-2 and OPG expression in the treatment group than those in the control group. Compared with the contralateral controls, decreased expression of OPG and BMP-2 at 3 days after roughly focused ESWT, followed by a later increase at 7 days, was indicated by real-time PCR and Western blotting analysis. The OPG messenger RNA (mRNA) expression levels peaked at 6 weeks after the shock wave treatment, paired with a much earlier (at 4 weeks) increase of BMP-2, and declined close to normal at 8 weeks. Conclusions: Roughly focused ESWT may promote the expression of OPG and BMP-2 in the osteoporotic fracture area in rats. BMP-2 and OPG may act synergistically and may lead to a significant enhancement of bone formation and remodeling. PMID:27779163

  13. Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats

    PubMed Central

    Tomaszewska, Ewa; Kurlak, Paulina; Pierzynowski, Stefan G

    2015-01-01

    Gastrectomy (Gx) leads to osteopenia/osteoporosis in humans and animals. However, little is known about the influence of Gx on the cartilage in this regard. Recent studies have demonstrated a protective effect of 2-oxoglutaric acid (2-Ox) on bone and cartilage. Hence, the purpose of this study was to investigate whether 2-Ox can mitigate eventual Gx-induced cartilage impairment. Twenty female Sprague-Dawley rats were subjected to Gx and randomly divided into two groups: Gx + 2-Ox and Gx. Another 20 rats were sham-operated (ShO) and randomly divided into two groups: ShO + 2-Ox and ShO. The daily dose of 2-Ox administered to the rats in the drinking water was 0.43 g per 100 g rat. After eight weeks, rats were euthanized and femora and tibiae were collected. Histology and histomorphometry analyses of the articular cartilage and the growth plate were done. Gx resulted in a 32% (±44.5 femur, ±35.8 tibia) decrease in overall thickness of articular cartilage in both bones (femur: ShO 279.1 ± 48.5 vs. Gx 190.2 ± 38.4 µm, tibia: ShO 222.9 ± 50.3 µm vs. Gx 151.3 ± 52.6 µm) (in some zones up to 58 ± 28.0%), and in the growth plate up to 20% (±22.4) (femur: ShO 243.0 ± 34.0 vs. Gx 207.0 ± 33.7 µm, tibia: ShO 220.0 ± 24.6 µm vs. Gx 171.1 ± 16.1 µm). Gx altered the spatial distribution of thick and thin collagen fibers, and chondrocyte shape and size. 2-Ox administration prevented the reduction in both cartilages thickness (Gx + 2-Ox: articular cartilage 265.2 ± 53.8 µm, 235.6 ± 42.7 µm, growth plate 236.7 ± 39.2 µm, 191.3 ± 16.5 µm in femur and tibia, respectively), and abolished the spatial changes in collagen distribution and structure induced by Gx. Gx affects cartilage structure and thickness, however, 2-Ox administration mitigates these effects and showed protective and stimulatory properties. Our observations suggest that dietary 2-Ox can be used to offset some of the changes in hyaline cartilage, in particular articular cartilage, following bariatric surgeries. PMID:26202375

  14. Impact of 4-methylbenzylidene camphor, daidzein, and estrogen on intact and osteotomized bone in osteopenic rats.

    PubMed

    Komrakova, Marina; Sehmisch, Stephan; Tezval, Mohammad; Schmelz, Ulrich; Frauendorf, Holm; Grueger, Thomas; Wessling, Thomas; Klein, Carolin; Birth, Miriam; Stuermer, Klaus M; Stuermer, Ewa K

    2011-11-01

    The study investigated the influence of 4-methylbenzylidene camphor (4-MBC), daidzein, and estradiol-17β-benzoate (E(2)) on either intact or osteotomized cancellous bone in ovariectomized (Ovx) rats. Three-month old Ovx rats were fed with soy-free (SF) diet over 8 weeks; thereafter, bilateral transverse metaphyseal osteotomy of tibia was performed and rats were divided into groups: rats fed with SF diet and SF diet supplemented with 4-MBC (200 mg), daidzein (50 mg), or E(2) (0.4 mg) per kilogram body weight. After 5 or 10 weeks, computed tomographical, biomechanical, histological, and ashing analyses were performed in lumbar spine and tibia of 12 rats from each group. 4-MBC and E(2) improved bone parameters in lumbar spine and tibia, were not favorable for osteotomy healing, and decreased serum osteocalcin level. However, daidzein improved bone parameters to a lesser extent and facilitated osteotomy healing. For lumbar spine, the bone mineral density was 338±9, 346±5, 361±6, and 360±5 mg/cm(3) in SF, daidzein, 4-MBC, and E(2), respectively, after 10 weeks. For tibia, the yield load was 98±5, 114±3, 90±2, and 52±4 N in SF, daidzein, 4-MBC, and E(2), respectively, after 10 weeks. Serum daidzein was 54±6 ng/ml in daidzein group and equol was not detected. Alp and Igf1 genes were down-regulated in callus after daidzein and E(2) compared with 4-MBC (week 5). The response of bone tissue and serum markers of bone metabolism could be ordered: daidzein<4-MBC

  15. Effects of spaceflight and Insulin-like Growth Factor-1 on rat bone properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, T.A.; Ayers, R.A.; Spetzler, M.L.

    Spaceflight induces bone degradation which is analogous to an accelerated onset of osteoporosis in humans (Tilton {ital et al.}, 1980). In rats, decreased bone formation is indicative of reduced osteoblast activity (Morey and Baylink, 1978). Chiron Corporation (Emeryville, CA) is interested in using the microgravity environment of low-Earth-orbit to test its therapeutic drug, Insulin-like Growth Factor-1 (IGF-1). This pharmaceutic is known to promote osteoblast activity (Schmid {ital et al.}, 1984) and therefore may encourage bone growth in rats. Chiron sponsored the Immune.3 payload on STS-73 (May 19{endash}29, 1996) through its Center for Space Commercialization (CSC) partner BioServe Space Technologies (Universitymore » of Colorado and Kansas State University) to investigate the effects of IGF-1 on mitigating the skeletal degradation that affects rats and humans during spaceflight. Twelve rats were flown for 10 days using two Animal Enclosure Modules (AEMs) provided by NASA Ames Research Center. Of the twelve, six received 1.4 mg/day of IGF-1; the other six saline. Sixteen vivarium ground controls received the same treatment on a one day delay. Rat femora and tibiae were examined for bone mineral density via DXA scan. Femora and humeri were measured for physical and compositional properties, as well as mechanically tested in three point flexure. Quantitative histomorphometric examination of tibiae, humeri, fibulae, ribs and cranial bone; and microhardness testing on tibiae and humeri are currently in progress. Flight humeri and vivarium femora were significantly larger than their counterparts; however, significant differences in mechanical properties and mineral density were not concurrent to these mass changes. {copyright} {ital 1997 American Institute of Physics.}« less

  16. The effect of feeding different sugar-sweetened beverages to growing female Sprague-Dawley rats on bone mass and strength.

    PubMed

    Tsanzi, Embedzayi; Light, Heather R; Tou, Janet C

    2008-05-01

    Consumption of sugar beverages has increased among adolescents. Additionally, the replacement of sucrose with high fructose corn syrup (HFCS) as the predominant sweetener has resulted in higher fructose intake. Few studies have investigated the effect of drinking different sugar-sweetened beverages on bone, despite suggestions that sugar consumption negatively impacts mineral balance. The objective of this study was to determine the effect of drinking different sugar-sweetened beverages on bone mass and strength. Adolescent (age 35d) female Sprague-Dawley rats were randomly assigned (n=8-9/group) to consume deionized distilled water (ddH2O, control) or ddH2O containing 13% w/v glucose, sucrose, fructose or high fructose corn syrup (HFCS-55) for 8weeks. Tibia and femur measurements included bone morphometry, bone turnover markers, determination of bone mineral density (BMD) and bone mineral content (BMC) by dual energy X-ray absorptiometry (DXA) and bone strength by three-point bending test. The effect of sugar-sweetened beverage consumption on mineral balance, urinary and fecal calcium (Ca) and phosphorus (P) was measured by inductively coupled plasma optical emission spectrometry. The results showed no difference in the bone mass or strength of rats drinking the glucose-sweetened beverage despite their having the lowest food intake, but the highest beverage and caloric consumption. Only in comparisons among the rats provided sugar-sweetened beverage were femur and tibia BMD lower in rats drinking the glucose-sweetened beverage. Differences in bone and mineral measurements appeared most pronounced between rats drinking glucose versus fructose-sweetened beverages. Rats provided the glucose-sweetened beverage had reduced femur and tibia total P, reduced P and Ca intake and increased urinary Ca excretion compared to the rats provided the fructose-sweetened beverage. The results suggested that glucose rather than fructose exerted more deleterious effects on mineral balance and bone.

  17. Ricinus communis-based biopolymer and epidermal growth factor regulations on bone defect repair: A rat tibia model

    NASA Astrophysics Data System (ADS)

    Mendoza-Barrera, C.; Meléndez-Lira, M.; Altuzar, V.; Tomás, S. A.

    2003-01-01

    We report the effect of the addition of an epidermal growth factor to a Ricinus communis-based biopolymer in the healing of a rat tibia model. Bone repair and osteointegration after a period of three weeks were evaluated employing photoacoustic spectroscopy and x-ray diffraction. A parallel study was performed at 1, 2, 3, 4, 5, 6, 7, and 8 weeks with energy dispersive x-ray spectroscopy. We conclude that the use of an epidermal growth factor (group EGF) in vivo accelerates the process of bony repair in comparison with other groups, and that the employment of the Ricinus communis-based biopolymer as a bone substitute decreases bone production.

  18. Cosmos 1887: morphology, histochemistry, and vasculature of the growing rat tibia

    NASA Technical Reports Server (NTRS)

    Doty, S. B.; Morey-Holton, E. R.; Durnova, G. N.; Kaplansky, A. S.

    1990-01-01

    Light microscopy, electron microscopy, and enzyme histochemistry were used to study the effects of spaceflight on metaphyseal and cortical bone of the rat tibia. Cortical cross-sectional area and perimeter were not altered by a 12.5-day spaceflight in 3-month-old male rats. The endosteal osteoblast population and the vasculature near the periosteal surface in flight rats compared with ground controls showed more pronounced changes in cortical bone than in metaphyseal bone. The osteoblasts demonstrated greater numbers of transitional Golgi vesicles, possibly caused by a decreased cellular metabolic energy source, but no difference in the large Golgi saccules or the cell membrane-associated alkaline phosphatase activity. The periosteal vasculature in the diaphysis of flight rats often showed lipid accumulations within the lumen of the vessels, occasional degeneration of the vascular wall, and degeneration of osteocytes adjacent to vessels containing intraluminal deposits. These changes were not found in the metaphyseal region of flight animals. The focal vascular changes may be due to ischemia of bone or a developing fragility of the vessel walls as a result of spaceflight.

  19. A PERSISTENT BONE GROWTH DEFICIT IN THE X-IRRADIATED RAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, R.D.; Kimeldorf, D.J.

    1964-02-10

    ABS>A critical assessment of the roentgenographic technique was made for a quantitative determination of bone and tail length in the rat. The method was found to be very reliable if error sources were controlled and minimized. The early and long term effects of x irradiation on skeletal growth were investigated with respect to the age at exposure. Rats exposed at a juvenile age (37 days) to a sublethal dose (430 rad) exhibited a retardation in femur, tibia, and tail growth within 14 days after exposure. The maximum deficit was attained within 30 days after exposure and remained approximately constant formore » the next 300 days. Femur and tibia length of animals which were exposed to x rays as young adults (101 days of age) did not differ from those of controls for the first two months after exposure. However, there was a deficit in femur and tibia length in these animals at the end of life span. The magnitude of the bone length reduction at the end of life span was dose dependent. The two major differences in response between the two age groups were the time course of the radiation effect on growth and the magnitude of the deficit. The reduction in bone length occurred faster and was greater in the younger irradiated group. (auth)« less

  20. Dipyrone has no effects on bone healing of tibial fractures in rats

    PubMed Central

    Gali, Julio Cesar; Sansanovicz, Dennis; Ventin, Fernando Carvalho; Paes, Rodrigo Henrique; Quevedo, Francisco Carlos; Caetano, Edie Benedito

    2014-01-01

    OBJECTIVE: To evaluate the effect of dipyrone on healing of tibial fractures in rats. METHODS: Fourty-two Wistar rats were used, with mean body weight of 280g. After being anesthetized, they were submitted to closed fracture of the tibia and fibula of the right posterior paw through manual force. The rats were randomly divided into three groups: the control group that received a daily intraperitoneal injection of saline solution; group D-40, that received saline injection containing 40mg/Kg dipyrone; and group D-80, that received saline injection containing 80mg/Kg dipyrone. After 28 days the rats were sacrificed and received a new label code that was known by only one researcher. The fractured limbs were then amputated and X-rayed. The tibias were disarticulated and subjected to mechanical, radiological and histological evaluation. For statistical analysis the Kruskal-Wallis test was used at a significance level of 5%. RESULTS: There wasn't any type of dipyrone effect on healing of rats tibial fractures in relation to the control group. CONCLUSION: Dipyrone may be used safely for pain control in the treatment of fractures, without any interference on bone healing. Level of Evidence II, Controlled Laboratory Study. PMID:25246852

  1. High-fat/high-sucrose diet results in higher bone mass in aged rats.

    PubMed

    Minematsu, Akira; Nishii, Yasue; Sakata, Susumu

    2018-06-01

    Intake of high-fat/high-sucrose (HFS) diet or high fat diet influences bone metabolism in young rodents, but its effects on bone properties of aged rodents still remain unclear. This study aimed to examine the effects of HFS diet intake on trabecular bone architecture (TBA) and cortical bone geometry (CBG) in aged rats. Fifteen male Wistar rats over 1 year were randomly divided into two groups. One group was fed a standard laboratory diet (SLD) and the other group was fed a HFS diet for six months. The femur/tibia, obtained from both groups at the end of experimental period, were scanned by micro-computed tomography for TBA/CBG analyses. Serum biochemical analyses were also conducted. Body weight was significantly higher in the HFS group than in the SLD group. In both femur and tibia, the HFS group showed higher trabecular/cortical bone mass in reference to bone mineral content, volume bone mineral density and TBA/CBG parameters compared with the SLD group. In addition, serum calcium, inorganic phosphorus, total protein, triacylglycerol, HDL and TRACP-5b levels were significantly higher in the HFS group than in the SLD group. There were good correlations between body weight and bone parameters in the femur and tibia. These results suggest that HFS diet intake results in higher bone mass in aged rats. Such effects of HFS diet intake might have been induced by increased body weight.

  2. Effect of hydrocortisone on total body calcium in rats. [/sup 47/Ca and /sup 85/Sr tracer techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasumura, S.; Ellis, K.J.; Cohn, S.H.

    Administration of 5 mg. of hydrocortisone acetate to rats every other day for 2 weeks resulted in growth retardation and weight loss as indicated by body weights of experimental animals, which averaged 33 percent lower than those of the controls, and a significant decrease in the length of the tibiae and femurs (p less than 0.01 for treated vs controls). However, despite the smaller size of the treated animals, the values for total body calcium (TBCa) and the calcium in the tibia and femur did not differ significantly from control values. Thus, there was more calcium per unit length ofmore » bone, resulting in an increase in the skeletal density of treated rats. This finding was confirmed by x-ray examination of these bones. The net intestinal absorption of calcium (rate of initial entry) calculated from plasma levels following an oral and intravenous dose of /sup 47/Ca and /sup 85/Sr, respectively, was not significantly different in hydrocortisone-treated rats compared to controls. This would indicate that the rate of intestinal absorption of calcium is unimpaired despite the administration of massive doses of corticosteroids. When the animals were placed on a calcium-deficient diet, both TBCa and tibia and femur calcium levels were decreased. Subsequent administration of hydrocortisone did not alter the calcium values. The results of this study are compatible with the hypothesis that hydrocortisone promotes weight loss, retards growth, but inhibits the rate of bone resorption.« less

  3. Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats.

    PubMed

    Dobrowolski, Piotr; Tomaszewska, Ewa; Kurlak, Paulina; Pierzynowski, Stefan G

    2016-01-01

    Gastrectomy (Gx) leads to osteopenia/osteoporosis in humans and animals. However, little is known about the influence of Gx on the cartilage in this regard. Recent studies have demonstrated a protective effect of 2-oxoglutaric acid (2-Ox) on bone and cartilage. Hence, the purpose of this study was to investigate whether 2-Ox can mitigate eventual Gx-induced cartilage impairment. Twenty female Sprague-Dawley rats were subjected to Gx and randomly divided into two groups: Gx + 2-Ox and Gx. Another 20 rats were sham-operated (ShO) and randomly divided into two groups: ShO + 2-Ox and ShO. The daily dose of 2-Ox administered to the rats in the drinking water was 0.43 g per 100 g rat. After eight weeks, rats were euthanized and femora and tibiae were collected. Histology and histomorphometry analyses of the articular cartilage and the growth plate were done. Gx resulted in a 32% (±44.5 femur, ±35.8 tibia) decrease in overall thickness of articular cartilage in both bones (femur: ShO 279.1 ± 48.5 vs. Gx 190.2 ± 38.4 µm, tibia: ShO 222.9 ± 50.3 µm vs. Gx 151.3 ± 52.6 µm) (in some zones up to 58 ± 28.0%), and in the growth plate up to 20% (±22.4) (femur: ShO 243.0 ± 34.0 vs. Gx 207.0 ± 33.7 µm, tibia: ShO 220.0 ± 24.6 µm vs. Gx 171.1 ± 16.1 µm). Gx altered the spatial distribution of thick and thin collagen fibers, and chondrocyte shape and size. 2-Ox administration prevented the reduction in both cartilages thickness (Gx + 2-Ox: articular cartilage 265.2 ± 53.8 µm, 235.6 ± 42.7 µm, growth plate 236.7 ± 39.2 µm, 191.3 ± 16.5 µm in femur and tibia, respectively), and abolished the spatial changes in collagen distribution and structure induced by Gx. Gx affects cartilage structure and thickness, however, 2-Ox administration mitigates these effects and showed protective and stimulatory properties. Our observations suggest that dietary 2-Ox can be used to offset some of the changes in hyaline cartilage, in particular articular cartilage, following bariatric surgeries. © 2016 by the Society for Experimental Biology and Medicine.

  4. The Protective Effects of Exclusive Enteral Nutrition Formulas on Growth Factor Expression and the Proximal Tibial Epiphyseal Growth Plate in a TNBS-Induced IBD Rat Model.

    PubMed

    Shi, Jieru; Huang, Zhiheng; Wang, Yuhuan; Huang, Ying

    2015-07-01

    This study aimed to evaluate the effectiveness of different types of nutritional formulas in a rat model of TNBS-induced IBD. IBD was induced with TNBS in 4-week-old rats that were then fed different exclusive enteral nutrition diets for 7 days. The length of the tibia and the number of chondrocytes in the proximal tibias were analyzed at 7 days after supplementation. Immunohistochemical analysis, ELISA and real-time PCR were performed to evaluate the levels of growth hormone receptor (GHR) and insulin-like growth factor-I receptor (IGF-IR), the growth factors IGF-I and insulin-like growth factor-binding protein-3 (IGFBP3) , bone morphogenetic protein (BMP)-2 and BMP-6 respectively. The results demonstrated that the tibia length of the peptide formula group was longer than that of the IBD-Modulen(®) formula and normal diet groups (P < 0.05). Furthermore, the number of chondrocytes of the proximal tibial was more pronounced in the peptide formula group compared to the other groups (P < 0.05). The peptide formula was also more effective in increasing the expression of GHR compared to the other groups (P < 0.05), while the expression of IGF-IR was not significantly different (P > 0.05). In addition, the IGF-I and IGFBP3 levels were more pronounced in the peptide formula supplement group (P < 0.05), and the expression of BMP-2 and BMP-6 mRNA in the proximal tibia growth plate from the peptide formula group was higher than that in the ordinary formula and normal diet groups (P < 0.05). EEN, and particularly a peptide formula, exerted protective effects on the proximal tibial epiphyseal growth plate in a TNBS-induced IBD model.

  5. Site- and compartment-specific changes in bone with hindlimb unloading in mature adult rats

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.; Allen, M. R.; Hogan, H. A.; Delp, M. D.

    2002-01-01

    The purpose of this study was to examine site- and compartment-specific changes in bone induced by hindlimb unloading (HU) in the mature adult male rat (6 months old). Tibiae, femora, and humeri were removed after 14, 21, and 28 days of HU for determination of bone mineral density (BMD) and geometry by peripheral quantitative computed tomography (pQCT), mechanical properties, and bone formation rate (BFR), and compared with baseline (0 day) and aging (28 day) controls. HU resulted in 20%-21% declines in cancellous BMD at the proximal tibia and femoral neck after 28 day HU vs. 0 day controls (CON). Cortical shell BMD at these sites was greater (by 4%-6%) in both 28 day HU and 28 day CON vs. 0 day CON animals, and nearly identical to that gain seen in the weight-bearing humerus. Mechanical properties at the proximal tibia exhibited a nonsignificant decline after HU vs. those of 0 day CON rats. At the femoral neck, a 10% decrement was noted in ultimate load in 28 day HU rats vs. 28 day CON animals. Middiaphyseal tibial bone increased slightly in density and area during HU; no differences in structural and material properties between 28 day HU and 28 day CON rats were noted. BFR at the tibial midshaft was significantly lower (by 90%) after 21 day HU vs. 0 day CON; this decline was maintained throughout 28 day HU. These results suggest there are compartment-specific differences in the mature adult skeletal response to hindlimb unloading, and that the major impact over 28 days of unloading is on cancellous bone sites. Given the sharp decline in BFR for midshaft cortical bone, it appears likely that deficits in BMD, area, or mechanical properties would develop with longer duration unloading.

  6. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse

    PubMed Central

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat. PMID:29875702

  7. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse.

    PubMed

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups ( n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  8. Hydrogen-rich saline prevents bone loss in diabetic rats induced by streptozotocin.

    PubMed

    Guo, Jialiang; Dong, Weichong; Jin, Lin; Wang, Pengcheng; Hou, Zhiyong; Zhang, Yingze

    2017-10-01

    As an antioxidant molecule, hydrogen has been received much more attention and reported to be used as the treatment strategy for various diseases. In this study, we hypothesize that systemic delivery of hydrogen saline water may improve the reservation of bone tissue in the tibias and femurs of osteoporotic rats caused by diabetes mellitus (DM), which is characterized by increased levels of oxidative stress and overproducing reactive oxygen species (ROS). The animals were divided into three groups of 12 animals and lavaged with normal saline (normal control and DM), or hydrogen saline water (DM + HRS). General status, blood glucose level, tibial and femoral mechanical strength, and micro-CT scans of the proximal tibia were recorded and analyzed. After 12 weeks, the glucose level was significantly decreased in the DM + HRS group compared with that of the DM group. Micro-CT scans showed that bone volume/total volume, connectivity density, trabecular thickness, and trabecular number were significantly increased compared with the DM group. Mechanical results of energy, stiffness and elastic modulus in the DM + HRS group were significantly higher than in the other groups for the tibia and femur. The results indicate that the systemic delivery of hydrogen saline water, which is safe and well tolerated, preserves bone volume and decreases fracture risks in streptozotocin-induced diabetic status rats, whose bone structure or inherent material properties of bone tissues are changed.

  9. Effects of local vibration and pulsed electromagnetic field on bone fracture: A comparative study.

    PubMed

    Bilgin, Hakkı Murat; Çelik, Ferhat; Gem, Mehmet; Akpolat, Veysi; Yıldız, İsmail; Ekinci, Aysun; Özerdem, Mehmet Siraç; Tunik, Selçuk

    2017-07-01

    The effectiveness of various therapeutic methods on bone fracture has been demonstrated in several studies. In the present study, we tried to evaluate the effect of local low-magnitude, high-frequency vibration (LMHFV) on rat tibia fracture in comparison with pulsed electromagnetic fields (PEMF) during the healing process. Mid-diaphysis tibiae fractures were induced in 30 Sprague-Dawley rats. The rats were assigned into groups such as control (CONT), LMHFV (15 min/day, 7 days/week), and PEMF (3.5 h/day, 7 days/week) for a three-week treatment. Nothing was applied to control group. Radiographs, serum osteocalcin levels, and stereological bone analyses of the three groups were compared. The X-rays of tibiae were taken 21 days after the end of the healing process. PEMF and LMHFV groups had more callus formation when compared to CONT group; however, the difference was not statistically significant (P = 0.375). Serum osteocalcin levels were elevated in the experimental groups compared to CONT (P ≤ 0.001). Stereological tests also showed higher osteogenic results in experimental groups, especially in LMHFV group. The results of the present study suggest that application of direct local LMHFV on fracture has promoted bone formation, showing great potential in improving fracture outcome. Bioelectromagnetics. 38:339-348, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. The effect of both a thoracic trauma and a soft-tissue trauma on fracture healing in a rat model

    PubMed Central

    2011-01-01

    Background and purpose There is some clinical evidence that fracture healing is impaired in multiply injured patients. Nothing is known, however, about the effects of various types of injuries and their contribution to a possible disturbance of the fracture-healing process. We investigated the effect of a thoracic trauma and an additional soft-tissue trauma on fracture healing in a rat tibia model. Methods 3 groups of rats were operated: group A with a simple fracture of the tibia and fibula, group B with a fracture and an additional thoracic trauma, and group C with a fracture, thoracic trauma, and an additional soft-tissue trauma. The fracture and the soft-tissue injury were produced by a special guillotine-like device and the thoracic trauma by a blast wave generator. After one day, the serum level of IL-6 was quantified, and at the end of the study (28 days) the mechanical properties and the callus volume of the healed tibia were determined. Results Increasing the severity of the injury caused IL-6 levels to more than double 1 day after injury. It halved the load to failure in mechanical tests and led to reduced callus volume after 28 days of healing. Interpretation Fracture healing is impaired when additional thoracic trauma and soft tissue trauma occurs. PMID:21463222

  11. Randall Selitto pressure algometry for assessment of bone-related pain in rats.

    PubMed

    Falk, S; Ipsen, D H; Appel, C K; Ugarak, A; Durup, D; Dickenson, A H; Heegaard, A M

    2015-03-01

    Deep pain is neglected compared with cutaneous sources. Pressure algometry has been validated in the clinic for assessment of bone-related pain in humans. In animal models of bone-related pain, we have validated the Randall Selitto behavioural test for assessment of acute and pathological bone pain and compared the outcome with more traditional pain-related behaviour measures. Randall Selitto pressure algometry was performed over the anteromedial part of the tibia in naïve rats, sham-operated rats, and rats inoculated with MRMT-1 carcinoma cells in the left tibia, and the effect of morphine was investigated. Randall Selitto measures of cancer-induced bone pain were supplemented by von Frey testing, weight-bearing and limb use test. Contribution of cutaneous nociception to Randall Selitto measures were examined by local anaesthesia. Randall Selitto pressure algometry over the tibia resulted in reproducible withdrawal thresholds, which were dose-dependently increased by morphine. Cutaneous nociception did not contribute to Randall Selitto measures. In cancer-bearing animals, compared with sham, significant differences in pain-related behaviours were demonstrated by the Randall Selitto test on day 17 and 21 post-surgery. A difference was also demonstrated by von Frey testing, weight-bearing and limb use tests. Our results indicate that pressure applied by the Randall Selitto algometer on a region, where the bone is close to the skin, may offer a way to measure bone-related pain in animal models and could provide a supplement to the traditional behavioural tests and a means to study deep pain. © 2014 European Pain Federation - EFIC®

  12. Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects.

    PubMed

    Pasqualini, Marion; Lavet, Cédric; Elbadaoui, Mohamed; Vanden-Bossche, Arnaud; Laroche, Norbert; Gnyubkin, Vasily; Vico, Laurence

    2013-07-01

    Whole body vibration (WBV) is receiving increasing interest as an anti-osteoporotic prevention strategy. In this context, selective effects of different frequency and acceleration magnitude modalities on musculoskeletal responses need to be better defined. Our aim was to investigate the bone effects of different vibration frequencies at constant g level. Vertical WBV was delivered at 0.7 g (peak acceleration) and 8, 52 or 90 Hz sinusoidal vibration to mature male rats 10 min daily for 5 days/week for 4 weeks. Peak accelerations measured by skin or bone-mounted accelerometers at L2 vertebral and tibia crest levels revealed similar values between adjacent skin and bone sites. Local accelerations were greater at 8 Hz compared with 52 and 90 Hz and were greater in vertebra than tibia for all the frequencies tested. At 52 Hz, bone responses were mainly seen in L2 vertebral body and were characterized by trabecular reorganization and stimulated mineral apposition rate (MAR) without any bone volume alteration. At 90 Hz, axial and appendicular skeletons were affected as were the cortical and trabecular compartments. Cortical thickness increased in femur diaphysis (17%) along with decreased porosity; trabecular bone volume increased at distal femur metaphysis (23%) and even more at L2 vertebral body (32%), along with decreased SMI and increased trabecular connectivity. Trabecular thickness increased at the tibia proximal metaphysis. Bone cellular activities indicated a greater bone formation rate, which was more pronounced at vertebra (300%) than at long bone (33%). Active bone resorption surfaces were unaffected. At 8 Hz, however, hyperosteoidosis with reduced MAR along with increased resorption surfaces occurred in the tibia; hyperosteoidosis and trend towards decreased MAR was also seen in L2 vertebra. Trabecular bone mineral density was decreased at femur and tibia. Thus the most favorable regimen is 90 Hz, while deleterious effects were seen at 8 Hz. We concluded that the skeleton is frequency-scalable, thus highlighting the importance of WBV regimen conditions and suggesting that cautions are required for frequencies less than 10 Hz, at least in rats. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Effects of Spaceflight on the Attachment of Muscle to the Tibia, Fibula and Calcaneus

    NASA Technical Reports Server (NTRS)

    Johnson, R. B.; Tsao, A. K.; St.John, K. R.; Betcher, R. A.; Tucci, M. A.; Parsell, D. E.; Dai, X.; Zardiackas, L. D.; Benghuzzi, H. A.

    1999-01-01

    Microgravity significantly reduces transmission of ground-reaction forces to bones, promoting atrophy. There is little information available concerning the effects of microgravity on bones at sites where anti-gravity muscles are attached (tendon-bone junctions). This study evaluates the effects of microgravity on the origin and insertion sites of anti-gravity muscles on the rat tibia, fibula and calcaneus. Changes in the strength of those tendon-bone junctions could predispose the animal to injury following spaceflight.

  14. Improved Healing of Large, Osseous, Segmental Defects by Reverse Dynamization: Evaluation in a Sheep Model

    DTIC Science & Technology

    2014-10-01

    initiated. One such fixator has been tested on a cadaveric sheep tibia. In the unlocked, loose position, the axial stiffness of the tibia and fixator...suggested by our previous studies using rats. This aspect of the project is the present focus of attention, and additional cadaver legs will be tested...characterize external fixators). A 3 mm tibial defect was created in the leg of a cadaveric sheep, and stabilized with an experimental external

  15. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute.

    PubMed

    Nilsson, M; Wang, J S; Wielanek, L; Tanner, K E; Lidgren, L

    2004-01-01

    An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth.

  16. [Bone histomorphometry of lactating and no lactating hyperthyroid rats].

    PubMed

    Serakides, Rogéria; Ocarino, Natália de Melo; Magalhães, Fernanda do Carmo; Souza, Cíntia de Almeida; Leite, Eveline Dias; Freitas, Edmilson Santos de

    2008-06-01

    The objective of this study was to verify if hyperthyroidism potentiates the osteopenia lactational. 24 adult female rats were distributed in four groups: euthyroid no lactating (control), euthyroid lactating, hyperthyroid no lactating and hyperthyroid lactating. 20 days after gestation, all the animals were necropsied. The thoracic and lumbar vertebrae, the femur and tibia were decalcified and processed for histomorphometric analysis. The euthyroid lactating group presented intense osteopenia in the studied bones. In the hyperthyroid no lactating group, there was not any change in trabecular bone percentage in none of the analyzed bone. In the hyperthyroid lactating group, there was osteopenia in the tibia and femur, similar to the one in the euthyroid lactating group. But the trabecular bone percentage in all the vertebral bodies was significantly larger in comparison with the euthyroid lactating group. It was concluded that the hyperthyroidism does not potentiate the osteopenia lactational in female rats, but it minimizes the vertebral osteopenia once it stimulates the osteoblastic activity.

  17. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats

    NASA Technical Reports Server (NTRS)

    Cavolina, J. M.; Evans, G. L.; Harris, S. A.; Zhang, M.; Westerlind, K. C.; Turner, R. T.

    1997-01-01

    A 14-day orbital spaceflight was performed using ovariectomized Fisher 344 rats to determine the combined effects of estrogen deficiency and near weightlessness on tibia radial bone growth and cancellous bone turnover. Twelve ovariectomized rats with established cancellous osteopenia were flown aboard the space shuttle Columbia (STS-62). Thirty ovariectomized rats were housed on earth as ground controls: 12 in animal enclosure modules, 12 in vivarium cages, and 6 killed the day of launch for baseline measurements. An additional 18 ovary-intact rats were housed in vivarium cages as ground controls: 8 rats were killed as baseline controls and the remaining 10 rats were killed 14 days later. Ovariectomy increased periosteal bone formation at the tibia-fibula synostosis; cancellous bone resorption and formation in the secondary spongiosa of the proximal tibial metaphysis; and messenger RNA (mRNA) levels for the prepro-alpha2(1) subunit of type 1 collagen, osteocalcin, transforming growth factor-beta, and insulin-like growth factor I in the contralateral proximal tibial metaphysis and for the collagen subunit in periosteum pooled from tibiae and femora and decreased cancellous bone area. Compared to ovariectomized weight-bearing rats, the flight group experienced decreases in periosteal bone formation, collagen subunit mRNA levels, and cancellous bone area. The flight rats had a small decrease in the cancellous mineral apposition rate, but no change in the calculated bone formation rate. Also, spaceflight had no effect on cancellous osteoblast and osteoclast perimeters or on mRNA levels for bone matrix proteins and signaling peptides. On the other hand, spaceflight resulted in an increase in bone resorption, as ascertained from the diminished retention of a preflight fluorochrome label. This latter finding suggests that osteoclast activity was increased. In a follow-up ground-based experiment, unilateral sciatic neurotomy of ovariectomized rats resulted in cancellous bone loss in the unloaded limb in excess of that induced by gonadal hormone deficiency. This additional bone loss was arrested by estrogen replacement. We conclude from these studies that estrogen alters the expression of signaling peptides believed to mediate skeletal adaptation to changes in mechanical usage and likewise modifies the skeletal response to mechanical unloading.

  18. A Comparative 68Ga-Citrate and 68Ga-Chloride PET/CT Imaging of Staphylococcus aureus Osteomyelitis in the Rat Tibia

    PubMed Central

    Lankinen, Petteri; Noponen, Tommi; Autio, Anu; Luoto, Pauliina; Löyttyniemi, Eliisa; Hakanen, Antti J.

    2018-01-01

    There may be some differences in the in vivo behavior of 68Ga-chloride and 68Ga-citrate leading to different accumulation profiles. This study compared 68Ga-citrate and 68Ga-chloride PET/CT imaging under standardized experimental models. Methods. Diffuse Staphylococcus aureus tibial osteomyelitis and uncomplicated bone healing rat models were used (n = 32). Two weeks after surgery, PET/CT imaging was performed on consecutive days using 68Ga-citrate or 68Ga-chloride, and tissue accumulation was confirmed by ex vivo analysis. In addition, peripheral quantitative computed tomography and conventional radiography were performed. Osteomyelitis was verified by microbiological analysis and specimens were also processed for histomorphometry. Results. In PET/CT imaging, the SUVmax of 68Ga-chloride and 68Ga-citrate in the osteomyelitic tibias (3.6 ± 1.4 and 4.7 ± 1.5, resp.) were significantly higher (P = 0.0019 and P = 0.0020, resp.) than in the uncomplicated bone healing (2.7 ± 0.44 and 2.5 ± 0.49, resp.). In osteomyelitic tibias, the SUVmax of 68Ga-citrate was significantly higher than the uptake of 68Ga-chloride (P = 0.0017). In animals with uncomplicated bone healing, no difference in the SUVmax of 68Ga-chloride or 68Ga-citrate was seen in the operated tibias. Conclusions. This study further corroborates the use of 68Ga-citrate for PET imaging of osteomyelitis. PMID:29681785

  19. Transcutaneous Raman spectroscopy for assessing progress of bone-graft incorporation in bone reconstruction and repair

    NASA Astrophysics Data System (ADS)

    Okagbare, Paul I.; Esmonde-White, Francis W. L.; Goldstein, Steven A.; Morris, Michael D.

    2011-03-01

    Allografts and other bone-grafts are frequently used for a variety of reconstructive approaches in orthopaedic surgery. However, successful allograft incorporation remains uncertain. Consequently, there is significant need for methods to monitor the fate of these constructs. Only few noninvasive methods can fully assess the progress of graft incorporation and to provide information on the metabolic status of the graft, such as the mineral and matrix composition of the regenerated-tissue that may provide early indications of graft success or failure. For example, Computed-tomography and MRI provide information on the morphology of the graft/host interface. Limited information is also available from DXA. To address this challenge, we present here the implementation of a noninvasive Raman spectroscopy technique for in-vivo assessment of allograft incorporation in animal-model. In an animal use committee approved osseointegration experiment, a 3mm defect is created in rat's tibia. The defect is reconstructed using auto or allograft and Raman spectra are collected at several time-points during healing using an array of optical-fibers in contact with the skin of the rat over the tibia while the rat is anaesthetized. The array allows excitation and collection of Raman spectra through the skin at various positions around the tibia. Raman parameters such as mineral/matrix, carbonate/phosphate and cross-linking are recovered and monitored. The system is calibrated against locally-constructed phantoms that mimic the morphology, optics and spectroscopy of the rat. This new technology provides a non-invasive method for in-vivo assessment of bone-graft incorporation in animal-models and can be adapted for similar study in human subjects.

  20. [Effect of gravitation loading and retabolil on development of atrophy in muscles and bones of rats due to suspension].

    PubMed

    KaplanskiI, A S; Il'ina-Kakueva, E I; Durnova, G N; Alekseev, E A; Loginov, V I

    1999-01-01

    In a 3-wk experiment with tail-suspended rats histological and histomorphometric methods were used to determine the effects of graded gravitational loading (GGL) and anabolic steroid retabolil (nortestosterone decanoate) on the course of atrophy in soleus m. (SM), gastrocnemius m. (GM), tibia and humerus, and functioning of somatotrophic hormones (STH) of the pituitary and thyrocytes of the thyroid. Suspension was found to produce atrophy in SM and, to a less degree, in GM, partial transformation of SM slow fibers into the fast ones, suppression of the tibial longitudinal growth, demineralization of the tibial and humeral spongious metaphyses; besides, functional activities of STH-cells and thyrocytes were inhibited. Graded gravitational loading of rats by intermittence of suspension for 2 hrs slowed down atrophy in both muscles and osteopenia in tibia, stimulated the synthetic and secretory functions of STH-cells without any marked effect on thyrocytes or humeral osteopenia. GGL failed to influence the slow-to-fast transformation of SM fibers. Two injections of retabolil at the total dose of 3 mg/kg of the body mass somewhat interfered with the SM atrophy and humoral osteopenia, and were favorable to the synthetic but not secretory activity of STH-cells. Neither SM and tibial atrophies nor thyroid activity of the gland were improved. The prophylactic action of GGL upon the SM and humeral atrophies was significantly higher when combined with retabolil, whereas GM and tibia were not noticeably cured by retabolil. Inhibition of the SM atrophy and humeral osteopenia in rats treated with GGL and retabolil concurred with elevated activities of STH-cells and thyrocytes indirectly suggesting their more intensive production of the growth hormone and thyroid hormones, respectively.

  1. [Role of growth hormone underproduction and support load deficit in development of muscle atrophy and osteopenia in tail-suspended rats].

    PubMed

    Kaplanskiĭ, A S; Durnova, G N; Ili'ina-Kakueva, E I; Loginov, V I

    1999-01-01

    In a 20-day experiment with tail-suspended male rats histological and histomorphometric techniques were used to study the effects of growth hormone, thyroxin, and graded support loads on the progress of atrophy in soleus and gastrocnemius m.m., tibial metaphyses spongiosis, and growth of tibiae. Daily injections of growth hormone at a dose of 0.5 mg/kg of the body mass were found to restore the longitudinal growth of tibiae and to suppress osteopenia in the spongiosis of metaphyses; however, they did not have any noteworthy effect on the muscular atrophy in the suspended rats. Support loading of the hind limbs for 2 hours a day in parallel to the treatment with growth hormone and thyroxin (0.02 mg/kg of the body mass per a day) suppressed the atrophy in soleus m. but not in gastrocnemius m. They were not able to oppose to osteoporosis in tibial metaphyses spongiosis; tibial growth was not normalized. Thyroxin did not appear to markedly influence muscle and bone atrophies; moreover, it made hypofunctioning of the thyroid more intense and, when combined with the growth hormone, masked the positive effect of the latter on the rats' bones.

  2. Increased longitudinal growth in rats on a silicon-depleted diet☆

    PubMed Central

    Jugdaohsingh, Ravin; Calomme, Mario R.; Robinson, Karen; Nielsen, Forrest; Anderson, Simon H.C.; D'Haese, Patrick; Geusens, Piet; Loveridge, Nigel; Thompson, Richard P.H.; Powell, Jonathan J.

    2008-01-01

    Silicon-deficiency studies in growing animals in the early 1970s reported stunted growth and profound defects in bone and other connective tissues. However, more recent attempts to replicate these findings have found mild alterations in bone metabolism without any adverse health effects. Thus the biological role of silicon remains unknown. Using a specifically formulated silicon-depleted diet and modern methods for silicon analysis and assessment of skeletal development, we undertook, through international collaboration between silicon researchers, an extensive study of long-term silicon depletion on skeletal development in an animal. 21-day old female Sprague–Dawley rats (n = 20) were fed a silicon-depleted diet (3.2 µg Si/g feed) for 26 weeks and their growth and skeletal development were compared with identical rats (n = 10) on the same diet but with silicon added as Si(OH)4 to their drinking water (53.2 µg Si/g water); total silicon intakes were 24 times different. A third group of rats, receiving a standard rodent stock feed (322 µg Si/g feed) and tap water (5 µg Si/g water), served as a reference group for optimal growth. A series of anthropometric and bone quality measures were undertaken during and following the study. Fasting serum silicon concentrations and especially urinary silicon excretion were significantly lower in the silicon-deprived group compared to the supplemented group (P = 0.03 and 0.004, respectively). Tibia and soft-tissue silicon contents did not differ between the two groups, but tibia silicon levels were significantly lower compared to the reference group (P < 0.0001). Outward adverse health effects were not observed in the silicon-deprived group. However, body lengths from week 18 onwards (P < 0.05) and bone lengths at necropsy (P ≤ 0.002) were longer in this group. Moreover, these measures correlated inversely with serum silicon concentrations (P ≤ 0.02). A reduction in bone growth plate thickness and an apparent increase in chondrocyte density were also observed in the silicon-deprived animals. No other differences were observed between the two groups, except for tibia phosphorus concentrations, which were lower in the silicon-deprived animals (P = 0.0003). Thus in this study we were unable to reproduce the profound deficiency state reported in rats and chicks in the early 1970s. Indeed, although silicon intake and circulating fasting serum levels differed between the silicon-deprived and silicon-supplemented animals, tibia and soft-tissue levels did not and may explain the lack of difference in bone quality and bone markers (except serum CTx) between these two groups. Markedly higher tibia silicon levels in the reference group and nutritional differences between the formulated low-Si and reference diets suggest that one or more co-factors may be absent from the low-Si diet that affect silicon incorporation into bone. However, evidence for urinary silicon conservation (to maintain tissue levels), changes in bone/body lengths, bone calcium:phosphorus ratio and differences at the growth plate with silicon deprivation are all novel and deserve further study. These results suggest that rats actively maintain body silicon levels via urinary conservation, but the low circulating serum silicon levels during silicon deficiency result in inhibition of growth plate closure and increased longitudinal growth. Silicon-responsive genes and Si transporters are being investigated in the kidneys of these rats. PMID:18550464

  3. Changes in cortical bone channels network and osteocyte organization after the use of zoledronic acid.

    PubMed

    Rabelo, Gustavo Davi; Travençolo, Bruno Augusto Nassif; Oliveira, Marcio Augusto; Beletti, Marcelo Emílio; Gallottini, Marina; Silveira, Fernando Ricardo Xavier da

    2015-12-01

    The aim of this study was to evaluate the effects of zoledronic acid (ZA) on the cortical bone channels network (CBCN) and osteocyte organization in relation to the bone channels. Eighteen male Wistar rats were divided into control (CG) and test groups (TG). Twelve animals from TG received 3 ZA doses (7.5 µg/kg), and 6 animals from CG did not receive any medication. TG animals were euthanized at 14 (n = 6) and 75 (n = 6) dadys after drug injection. CBCN was analyzed in mandibles and tibias using computational routines. The osteocyte organization was qualitatively evaluated in tibias using a three-dimensional reconstruction of images from serial histological sections. Significant differences in CBCN of tibia were found between the treated and untreated rats, with a wider range of sizes and shapes of the channels after the use of ZA (channels area p = 0.0063, channels area SD p = 0.0276) and less bone matrix (bone volume p = 0.0388). The alterations in the channels' morphology were more evident at 75 days after the drug injection (channels perimeter p = 0.0286). No differences were found in mandibles CBCN. The osteocyte distribution revealed more variable patterns of cell distribution in ZA groups, with non-homogeneous distribution of cells in relation to the bone channels. Zoledronic acid induces structural changes in CBCN and modifies the osteocyte arrangement in cortical bone in the tibia; also, the variability in the morphology of bone channels became more evident after a certain time of the use of the drug.

  4. Ketorolac administration does not delay early fracture healing in a juvenile rat model: a pilot study.

    PubMed

    Cappello, Teresa; Nuelle, Julia A V; Katsantonis, Nicolas; Nauer, Rachel K; Lauing, Kristen L; Jagodzinski, Jason E; Callaci, John J

    2013-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective at controlling pain in children, especially in the treatment of fractures. Adult animal and adult clinical studies demonstrate conflicting evidence for the inhibitory relationship between NSAIDs and fracture healing. Published pediatric orthopaedic clinical studies do not demonstrate an inhibitory effect of ketorolac on bone healing. Little is known about the effects of any NSAID on bone formation in juvenile animals. This study investigates the effects of the NSAID ketorolac on fracture healing in a juvenile rat model. Unilateral surgically induced and stabilized tibial shaft fractures were created in 45 juvenile (3 to 4 wk old) male Sprague-Dawley rats. Either ketorolac (5 mg/kg; n=24) or saline (0.9% normal saline; n=21) was then administered to the rats 6 d/wk by intraperitoneal injections. Animals were then randomly assigned into time groups and euthanized at 7 days (n=8 ketorolac, n=7 saline), 14 days (n=8 ketorolac, n=7 saline), or 21 days (n=8 ketorolac, n=7 saline) postfracture. Biomechanical analysis was performed using a custom-designed 4-point bending loading apparatus. Statistics for tibial stiffness and strength data were performed using software package Systat 11. Specimens were also evaluated histologically using hematoxylin and eosin staining. Strength and stiffness of all fractured tibiae increased over time from day 7 to day 21 regardless of treatment type. No statistical difference was found between the fractured tibiae strength or stiffness in the ketorolac or control-treated specimens at the same time point. In addition, the quality of the fracture callus was similar in both groups at each of the time points. In this study of a juvenile rat model with a stabilized tibia fracture, fracture callus strength, stiffness, and histologic characteristics were not affected by the administration of ketorolac during the first 21 days of fracture healing. The absence of inhibitory effects of ketorolac on early juvenile rat fracture healing supports the clinical practice of utilizing NSAIDs for analgesia in children with long bone fractures.

  5. Ketorolac Administration Does Not Delay Early Fracture Healing in a Juvenile Rat Model

    PubMed Central

    Cappello, Teresa; Nuelle, Julia A.V.; Katsantonis, Nicolas; Nauer, Rachel K.; Lauing, Kristen L.; Jagodzinski, Jason E.; Callaci, John J.

    2014-01-01

    Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective at controlling pain in children, especially in the treatment of fractures. Adult animal and adult clinical studies demonstrate conflicting evidence for the inhibitory relationship between NSAIDs and fracture healing. Published pediatric orthopaedic clinical studies do not demonstrate an inhibitory effect of ketorolac on bone healing. Little is known about the effects of any NSAID on bone formation in juvenile animals. This study investigates the effects of the NSAID ketorolac on fracture healing in a juvenile rat model. Methods Unilateral surgically induced and stabilized tibial shaft fractures were created in 45 juvenile (3 to 4wk old) male Sprague-Dawley rats. Either ketorolac (5 mg/kg; n=24) or saline (0.9% normal saline; n=21) was then administered to the rats 6 d/wk by intraperitoneal injections. Animals were then randomly assigned into time groups and euthanized at 7 days (n=8 ketorolac, n=7 saline), 14 days (n=8 ketorolac, n=7 saline), or 21 days (n=8 ketorolac, n=7 saline) postfracture. Biomechanical analysis was performed using a custom-designed 4-point bending loading apparatus. Statistics for tibial stiffness and strength data were performed using software package Systat 11. Specimens were also evaluated histologically using hematoxylin and eosin staining. Results Strength and stiffness of all fractured tibiae increased over time from day 7 to day 21 regardless of treatment type. No statistical difference was found between the fractured tibiae strength or stiffness in the ketorolac or control-treated specimens at the same time point. In addition, the quality of the fracture callus was similar in both groups at each of the time points. Conclusions In this study of a juvenile rat model with a stabilized tibia fracture, fracture callus strength, stiffness, and histologic characteristics were not affected by the administration of ketorolac during the first 21 days of fracture healing. Clinical Relevance The absence of inhibitory effects of ketorolac on early juvenile rat fracture healing supports the clinical practice of utilizing NSAIDs for analgesia in children with long bone fractures. PMID:23653032

  6. Nandrolone slows hindlimb bone loss in a rat model of bone loss due to denervation.

    PubMed

    Cardozo, Christopher P; Qin, Weiping; Peng, Yuanzhen; Liu, Xuan; Wu, Yong; Pan, Jiangping; Bauman, William A; Zaidi, Mone; Sun, Li

    2010-03-01

    Nandrolone is an anabolic steroid that has been demonstrated to reduce the loss of bone and muscle from hindlimb unweighting and to slow muscle atrophy after nerve transection. To determine whether nandrolone has the ability to protect bone against loss due to disuse after denervation, male rats underwent sciatic nerve transaction, followed 28 days later by treatment with nandrolone or vehicle for 28 days. Bone mineral density (BMD) was determined 28 days later or 56 days after nerve transection. Denervation led to reductions in BMD of 7% and 12% for femur and tibia, respectively. Nandrolone preserved 80% and 60% of BMD in femur and tibia, respectively, demonstrating that nandrolone administration significantly reduced loss of BMD from denervation. This study offers a potential novel pharmacological strategy for use of nandrolone to reduce bone loss in severe disuse- and denervation-related bone loss, such as that which occurs after spinal cord injury.

  7. Effects of Astragalus membranaceus with supplemental calcium on bone mineral density and bone metabolism in calcium-deficient ovariectomized rats.

    PubMed

    Kang, Se-Chan; Kim, Hee Jung; Kim, Mi-Hyun

    2013-01-01

    It has been reported that Astragalus membranaceus, an Asian traditional herb, has an estrogenic effect in vitro. To examine the possible role of A. membranaceus extract with supplemental calcium (Ca) on bone status in calcium-deficient (LCa) ovariectomized (OVX) rats, a total of 48 female rats were divided into six groups: (1) normal control, (2) sham operation with LCa (sham-LCa), (3) OVX with LCa (OVX-LCa), (4) A. membranaceus supplementation with OVX-LCa (OVX-MLCa), (5) Ca supplementation with OVX (OVX-Ca), and (6) A. membranaceus and Ca supplementation with OVX (OVX-MCa). A. membranaceus ethanol extract (500 mg/kg BW) and/or Ca (800 mg/kg BW) were administered orally for 8 weeks along with a Ca-deficient diet. Results revealed that Ca supplementation with or without A. membranaceus extract significantly improved bone mineral density, biomechanical strength, and ash weight of the femur and tibia in OVX rats. High Ca with A. membranaceus combination supplementation significantly increased the ash weight of the femur and tibia and decreased urinary Ca excretion compared with supplementation of Ca alone. Uterine weight was not changed by A. membranaceus administration in OVX rats. These results suggest that A. membranaceus extract combined with supplemental Ca may be more protective against the Ca loss of bone than A. membranaceus or supplementation of Ca alone in calcium-insufficient postmenopausal women.

  8. Eucommia leaf extract (ELE) prevents OVX-induced osteoporosis and obesity in rats.

    PubMed

    Zhang, Wenping; Fujikawa, Takahiko; Mizuno, Kaito; Ishida, Torao; Ooi, Kazuya; Hirata, Tetsuya; Wada, Atsunori

    2012-01-01

    The cortex of Eucommia ulmoides Oliver is widely used to treat kidney deficiency in traditional Chinese medicine. Its leaves have recently been reported to have anti-obesity properties in metabolic syndrome-like rat models. Due to a sharp decline in estrogen production, obesity, together with osteoporosis, are common problems in postmenopausal women. In this study, we examined the potential effect of Eucommia leaf extract (ELE) in preventing osteoporosis and obesity induced by ovariectomy (OVX). Forty-six female Wistar rats were divided into six groups: Sham-Cont, OVX-Cont, and four OVX groups administered estradiol and different concentrations of ELE 1.25%, ELE 2.5%, and ELE 5%. Treatments were administered after ovariectomy at six weeks of age and continued for 12 weeks. OVX induced a significant decrease in the bone mineral density (BMD) of the lumbar, femora, and tibiae, together with a marked increase in body mass index (BMI). The administration of 5% ELE led to a significant increase in tibial and femoral BMD, as well as significantly increased bone-strength parameters when compared with OVX-Cont rats. According to the suppressed Dpd and increased osteocalcin concentrations in ELE 5% rats, we suggest that varying proportions of bone formation and bone absorption contributed to the enhanced BMD in the femora and tibiae. In addition, significant decreases in body weight, BMI and fat tissue in 5% ELE rats were also observed. These results suggest that ELE may have curative properties for BMD and BMI in OVX rats, and could provide an alternative therapy for the prevention of both postmenopausal osteoporosis and obesity.

  9. Evaluation of the effects of pulsed wave LLLT on tibial diaphysis in two rat models of experimental osteoporosis, as examined by stereological and real-time PCR gene expression analyses.

    PubMed

    Mohsenifar, Zhaleh; Fridoni, Mohammadjavad; Ghatrehsamani, Mahdi; Abdollahifar, Mohammad-amin; Abbaszadeh, Hojjatallah; Mostafavinia, Atarodalsadat; Fallahnezhad, Somaye; Asghari, Mohammadali; Bayat, Saba; Bayat, Mohammad

    2016-05-01

    Osteoporosis (OP) and osteoporotic fracture are major public health issues for society; the burden for the affected individual is also high. Previous studies have shown that pulsed wave low-level laser therapy (PW LLLT) has osteogenic effects. This study intended to evaluate the impacts of PW LLLT on the cortical bone of osteoporotic rats' tibias in two experimental models, ovariectomized and dexamethasone-treated. We divided the rats into four ovariectomized induced OP (OVX-d) and four dexamethasone-treated (glucocorticoid-induced OP, GIOP) groups. A healthy (H) group of rats was considered for baseline evaluations. At 14 weeks following ovariectomy, we subdivided the OVX-d rats into the following groups: (i) control which had OP, (ii) OVX-d rats treated with alendronate (1 mg/kg), (iii) OVX-d rats treated with LLLT, and (iv) OVX-d rats treated with alendronate and PW LLLT. The remaining rats received dexamethasone over a 5-week period and were also subdivided into four groups: (i) control rats treated with intramuscular (i.m.) injections of distilled water (vehicle), (ii) rats treated with subcutaneous alendronate injections (1 mg/kg), (iii) laser-treated rats, and (iv) rats simultaneously treated with laser and alendronate. The rats received alendronate for 30 days and underwent PW LLLT (890 nm, 80 Hz, 0.972 J/cm(2)) three times per week during 8 weeks. Then, the right tibias were extracted and underwent a stereological analysis of histological parameters and real-time polymerase chain reaction (RT-PCR). A significant increase in cortical bone volume (mm(3)) existed in all study groups compared to the healthy rats. There were significant decreases in trabecular bone volume (mm(3)) in all study groups compared to the group of healthy rats. The control rats with OP and rats from the vehicle group showed significantly increased osteoclast numbers compared to most other groups. Alendronate significantly decreased osteoclast numbers in osteoporotic rats. Concurrent treatments (compounded by PW LLLT and alendronate) produce the same effect on osteoporotic bone.

  10. Bisphosphonate-ciprofloxacin bound to Skelite is a prototype for enhancing experimental local antibiotic delivery to injured bone.

    PubMed

    Buxton, T B; Walsh, D S; Harvey, S B; McPherson, J C; Hartmann, J F; Plowman, K M

    2004-09-01

    The risk of osteomyelitis after open bone fracture may be reduced by locally applied antibiotics. ENC-41-HP (E41), which comprises ciprofloxacin linked to a 'bone seeking' bisphosphonate, loaded on to carrier Skelite calcium phosphate granules (E41-Skelite) has favourable in vitro characteristics for application to wounded bone. This study assessed E41-Skelite in a rat model of acute tibial osteomyelitis. Mechanically induced tibial troughs were contaminated with approximately log10 4 colony forming units (c.f.u.) of Staphylococcus aureus (Cowan 1 strain) 'resistant' to E41 (minimum inhibitory concentration 8-16 microg/ml), lavaged and packed with Skelite alone, or with E41-Skelite slurry. Animals were killed at 24 h (n = 62), 72 h (n = 46) or 14 days (n = 12), and each tibia was assessed for S. aureus load (c.f.u./g tibia) and histological appearance (14 days only). At 24 and 72 h, the tibias of rats treated with E41-Skelite (n = 54) had a significantly lower mean (s.e.m.) load of S. aureus than animals that received Skelite alone (n = 54): log10 3.6(0.2) versus 6.4(0.1) c.f.u./g respectively at 24 h (P < 0.001, Mann-Whitney rank sum test) and log10 4.4(0.2) versus 6.6(0.1) c.f.u./g at 72 h (P < 0.001). At 14 days, E41-Skelite-treated tibias had fewer bacteria, no signs of osteomyelitis and histological signs of healing. E41-Skelite, a prototype granulated topical antibiotic delivery system, reduced the development of infection in experimental bone wounds. Copyright 2004 British Journal of Surgery Society Ltd.

  11. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    NASA Astrophysics Data System (ADS)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was the case for femur, but tibia bone strength was negatively affected by the synbiotic diet. Thus, unexpectedly, the synbiotic diet was associated with null or detrimental effects on bone strength.

  12. Effects of Low-Intensity Pulsed Ultrasound on Implant Osseointegration in Ovariectomized Rats.

    PubMed

    Zhou, Hongbo; Hou, Yongfu; Zhu, Zhimin; Xiao, Weixiong; Xu, Qian; Li, Lei; Li, Xin; Chen, Wenchuan

    2016-04-01

    To investigate the effect of low-intensity pulsed ultrasound (US) on periimplant bone healing and osseointegration under osteoporotic conditions. Seventy-two 12-week-old female Sprague Dawley rats received bilateral ovariectomies. Twelve weeks later, titanium implants were bilaterally placed in the proximal tibial metaphysis. The right tibia was exposed to low-intensity pulsed US (40 mW/cm2, spatial and temporal average) for 20 min/d starting the 2nd day after implantation, and the left tibia served as a control without stimulation. The rats were randomly assigned to 6 groups of 12 each according to the US duration (group 1: weeks 0–2, 280 minutes; group 2: weeks 0–4, 560 minutes; group 3: weeks 0–6, 840 minutes; group 4: weeks 0–8, 1120 minutes; group 5: weeks 0–10, 1400 minutes; group 6: weeks 0–12, 1680 minutes). At the end of the 2nd, 4th, 6th, 8th, 10th, and 12th weeks, the rats were euthanized, and bilateral tibias were harvested. Peri-implant bone volume and bone-implant contact were assessed by micro–computed tomography; the implantbone interface was assessed histologically; and implant fixation strength was determined by a removal torque test. Low-intensity pulsed US increased bone-implant contact at the 4th, 6th, 8th, 10th, and 12th weeks (P = .019, .017, <.001, <.001, and <.001, respectively) and periimplant bone volume at all times (P = <.001, .002, .012, .007, .005, and .010). Removal torque on the US side was improved at the 6th, 8th, 10th, and 12th weeks (P= .012, <.001, .006, and .009). Ultrasound evoked a favorable bone response in the histologic study. Low-intensity pulsed US might enhance new bone formation, especially at an early stage, and improve osseointegration in osteoporotic bone as an auxiliary method. However, further studies are needed to elucidate the mechanisms underlying its action.

  13. Effects of Low-Intensity Pulsed Ultrasound on Implant Osseointegration in Ovariectomized Rats.

    PubMed

    Zhou, Hongbo; Hou, Yongfu; Zhu, Zhimin; Xiao, Weixiong; Xu, Qian; Li, Lei; Li, Xin; Chen, Wenchuan

    2016-04-01

    To investigate the effect of low-intensity pulsed ultrasound (US) on peri-implant bone healing and osseointegration under osteoporotic conditions. Seventy-two 12-week-old female Sprague Dawley rats received bilateral ovariectomies. Twelve weeks later, titanium implants were bilaterally placed in the proximal tibial metaphysis. The right tibia was exposed to low-intensity pulsed US (40 mW/cm 2 , spatial and temporal average) for 20 min/d starting the 2nd day after implantation, and the left tibia served as a control without stimulation. The rats were randomly assigned to 6 groups of 12 each according to the US duration (group 1: weeks 0-2, 280 minutes; group 2: weeks 0-4, 560 minutes; group 3: weeks 0-6, 840 minutes; group 4: weeks 0-8, 1120 minutes; group 5: weeks 0-10, 1400 minutes; group 6: weeks 0-12, 1680 minutes). At the end of the 2nd, 4th, 6th, 8th, 10th, and 12th weeks, the rats were euthanized, and bilateral tibias were harvested. Peri-implant bone volume and bone-implant contact were assessed by micro-computed tomography; the implant-bone interface was assessed histologically; and implant fixation strength was determined by a removal torque test. Low-intensity pulsed US increased bone-implant contact at the 4th, 6th, 8th, 10th, and 12th weeks (P = .019, .017, <.001, <.001, and <.001, respectively) and peri-implant bone volume at all times (P = <.001, .002, .012, .007, .005, and .010). Removal torque on the US side was improved at the 6th, 8th, 10th, and 12th weeks (P= .012, <.001, .006, and .009). Ultrasound evoked a favorable bone response in the histologic study. Low-intensity pulsed US might enhance new bone formation, especially at an early stage, and improve osseointegration in osteoporotic bone as an auxiliary method. However, further studies are needed to elucidate the mechanisms underlying its action. © 2016 by the American Institute of Ultrasound in Medicine.

  14. Effect of low-magnitude whole-body vibration combined with alendronate in ovariectomized rats: a random controlled osteoporosis prevention study.

    PubMed

    Chen, Guo-Xian; Zheng, Shuai; Qin, Shuai; Zhong, Zhao-Ming; Wu, Xiu-Hua; Huang, Zhi-Ping; Li, Wei; Ding, Ruo-Ting; Yu, Hui; Chen, Jian-Ting

    2014-01-01

    Alendronate (ALE) is a conventional drug used to treat osteoporosis. Low-magnitude whole-body vibration (WBV) exercise has been developed as a potential treatment for osteoporosis. The aim of this study was to investigate whether low-magnitude WBV could enhance the protective effect of ALE on bone properties in ovariectomized rats. A total of 128 Sprague-Dawley rats were randomly divided into five groups (SHAM, OVX+VEH, OVX+WBV, OVX + ALE, OVX+WBV+ALE). The level of WBV applied was 0.3 g at 45-55 Hz for 20 min/day, 5 day/week and for 3 months. ALE was administered in dose of 1 mg/Kg once a week. Every four weeks eight rats from each group were sacrificed and their blood and both tibiae were harvested. The expression of osteocalcin and CTX in serum was measured by enzyme-linked immunosorbent assay (ELISA) and the tibiae were subjected to metaphyseal three-point bending and μCT analysis. Osteocalcin rose after ovariectomy and was not appreciably changed by either alendronate or WBV alone or in combination. Alendronate treatment significantly prevented an increase in CTX. WBV alone treatment did not alter this effect. Compared with the OVX+WBV group, nearly all tested indices such as the BV/TV, TV apparent, Tb.N, Tb.Th, and Conn.D were higher in the OVX+ALE group at week 12.Compared with the OVX+WBV group, certain tested indices such as BV/TV, TV apparent, Tb.N, and Con.D, were higher in the OVX+WBV+ALE group at week 12. At week 12, tibiae treated with WBV+ALE exhibited a significantly higher Fmax compared to the OVX+VEH group, and a significant difference was also found in energy absorption between the OVX+WBV+ALE and OVX+VEH groups. Compared with the WBV, ALE was more effective at preventing bone loss and improved the trabecular architecture. However, WBV enhanced the effect of alendronate in ovariectomized rats by inducing further improvements in trabecular architecture.

  15. Effect of Low-Magnitude Whole-Body Vibration Combined with Alendronate in Ovariectomized Rats: A Random Controlled Osteoporosis Prevention Study

    PubMed Central

    Zhong, Zhao-Ming; Wu, Xiu-Hua; Huang, Zhi-Ping; Li, Wei; Ding, Ruo-Ting; Yu, Hui; Chen, Jian-Ting

    2014-01-01

    Background Alendronate (ALE) is a conventional drug used to treat osteoporosis. Low-magnitude whole-body vibration (WBV) exercise has been developed as a potential treatment for osteoporosis. The aim of this study was to investigate whether low-magnitude WBV could enhance the protective effect of ALE on bone properties in ovariectomized rats. Methods A total of 128 Sprague-Dawley rats were randomly divided into five groups (SHAM, OVX+VEH, OVX+WBV, OVX + ALE, OVX+WBV+ALE). The level of WBV applied was 0.3 g at 45–55 Hz for 20 min/day, 5 day/week and for 3 months. ALE was administered in dose of 1 mg/Kg once a week. Every four weeks eight rats from each group were sacrificed and their blood and both tibiae were harvested. The expression of osteocalcin and CTX in serum was measured by enzyme-linked immunosorbent assay (ELISA) and the tibiae were subjected to metaphyseal three-point bending and μCT analysis. Results Osteocalcin rose after ovariectomy and was not appreciably changed by either alendronate or WBV alone or in combination. Alendronate treatment significantly prevented an increase in CTX. WBV alone treatment did not alter this effect. Compared with the OVX+WBV group, nearly all tested indices such as the BV/TV, TV apparent, Tb.N, Tb.Th, and Conn.D were higher in the OVX+ALE group at week 12.Compared with the OVX+WBV group, certain tested indices such as BV/TV, TV apparent, Tb.N, and Con.D, were higher in the OVX+WBV+ALE group at week 12. At week 12, tibiae treated with WBV+ALE exhibited a significantly higher Fmax compared to the OVX+VEH group, and a significant difference was also found in energy absorption between the OVX+WBV+ALE and OVX+VEH groups. Conclusions Compared with the WBV, ALE was more effective at preventing bone loss and improved the trabecular architecture. However, WBV enhanced the effect of alendronate in ovariectomized rats by inducing further improvements in trabecular architecture. PMID:24796785

  16. A controlled trial of glutamine effects on bone healing.

    PubMed

    Polat, Onur; Kilicoglu, Sibel Serin; Erdemli, Esra

    2007-01-01

    Glutamine is considered a nonessential amino acid, but it may be conditionally essential in patients with catabolic conditions. For centuries, researchers have looked for ways to promote and accelerate fracture healing. This controlled animal study examines the effects of glutamine on fracture healing. The left tibias of 10 standardized albino rats were broken at the distal third to produce a closed fracture. L-glutamine/L-alanyl solution (2.0 mL/kg) was administered through the tail veins of half the rats for the first 7 d, and physiologic serum alone was given to the control group. On the 21st day, all rats were euthanized and their left legs removed; after histologic observation, the tibias were examined under light microscopy. In the glutamine-injected group, development of primary callus was quicker and more regular than in the control group. The control group produced insufficient fibrous callus, and the glutamine group attained formed cartilaginous callus. Glutamine was noted to have positive effects on healing of traumatically fractured bone through attainment of positive nitrogen balance. This effect was minimal in enhancing the quality of fracture healing under conditions of stress, but some effect was noted on the speed of healing. Further research is needed in this area.

  17. Morphologic and molecular alteration during tibia fracture healing in rat.

    PubMed

    Yu, M-D; Su, B-H; Zhang, X-X

    2018-03-01

    To monitor morphological feature and related osteogenic and bone metabolic change during healing of tibia fracture in a rat model. Tibia density and trabecular thickness were evaluated. Histopathology was examined by HE staining. Serous inflammatory factors IL-4, IL-6, TNF-α and metabolic biomarkers ALP, β-CTX, P1NP, were determined by ELISA. The expression of RUNX2, TGF-β1, VEGF-α, BMP-2, BMP-4, and BMP-7 in callus tissue were qualified by RT-PCR. Bone density decreased until week 4 and then increased post-operation. Trabeculae in callus were thickened over time with active osteogenesis. ELISA indicated the most severe inflammation at week 2, with the highest level of TNF-α, IL-6, and the lowest level of IL-4. After 4 weeks, the inflammation was alleviated accompanying with the decline of TNF-α and IL-6, while there was the elevation of IL-4. Bone metabolism showed active osteogenesis and resorption at week 6 with high P1NP and β-CTX. The expression of RUNX2, TGF-β1, VEGF-α, BMP-2, BMP-4, and BMP-7 increased progressively from week 1 to 6. The major lesions at week 2 in sham were tissue necrosis, periosteal reactive hyperplasia, inflammatory cell infiltration, capillary hyperplasia and slight fibro-blast cytopoiesis. At week 4, proliferation was greatly activated, fibrous callus shaped and chondrogenesis and some osteogenesis occurred at week 8. In rat model, bone density started to increase at week 6 after fracture, accompanied with trabeculae thickening, serous inflammatory factors decline, and peaked bone morphogenetic protein/growth factors, which indicated active osteogenesis was conforming to the classical phase of secondary fracture healing.

  18. Adaptations in the Microarchitecture and Load Distribution of Maternal Cortical and Trabecular Bone in Response to Multiple Reproductive Cycles in Rats

    PubMed Central

    de Bakker, Chantal M. J.; Altman-Singles, Allison R.; Li, Yihan; Tseng, Wei-Ju; Li, Connie; Liu, X. Sherry

    2017-01-01

    Pregnancy, lactation, and weaning result in dramatic changes in maternal calcium metabolism. In particular, the increased calcium demand during lactation causes a substantial degree of maternal bone loss. This reproductive bone loss has been suggested to be largely reversible, as multiple clinical studies have found that parity and lactation history have no adverse effect on post-menopausal fracture risk. However, the precise effects of pregnancy, lactation, and post-weaning recovery on maternal bone structure are not well understood. Our study aimed to address this question by longitudinally tracking changes in trabecular and cortical bone microarchitecture at the proximal tibia in rats throughout three cycles of pregnancy, lactation, and post-weaning using in vivo μCT. We found that the trabecular thickness underwent a reversible deterioration during pregnancy and lactation, which was fully recovered after weaning, while other parameters of trabecular microarchitecture (including trabecular number, spacing, connectivity density, and structure model index) underwent a more permanent deterioration which recovered minimally. Thus, pregnancy and lactation resulted in both transient and long-lasting alterations in trabecular microstructure. In the meantime, multiple reproductive cycles appeared to improve the robustness of cortical bone (resulting in an elevated cortical area and polar moment of inertia), as well as increase the proportion of the total load carried by the cortical bone at the proximal tibia. Taken together, changes in the cortical and trabecular compartments suggest that while rat tibial trabecular bone appears to be highly involved in maintaining calcium homeostasis during female reproduction, cortical bone adapts to increase its load-bearing capacity, allowing the overall mechanical function of the tibia to be maintained. PMID:28109138

  19. A high-fat diet can affect bone healing in growing rats.

    PubMed

    Yamanaka, Jéssica Suzuki; Yanagihara, Gabriela Rezende; Carlos, Bruna Leonel; Ramos, Júnia; Brancaleon, Brígida Batista; Macedo, Ana Paula; Issa, João Paulo Mardegan; Shimano, Antônio Carlos

    2018-05-01

    A high-fat diet (HFD) can have a negative effect on bone quality in young and old people. Although bone healing in children is normally efficient, there is no evidence that children who have a diet rich in fat have compromised bone fracture regeneration compared with children with recommended dietary fat levels. The purpose of the present study was to evaluate the effects of an HFD on bone healing in growing female rats. Twenty-six postweaning female Wistar rats were divided into two groups (13 animals per group): a standard diet (SD) group and an HFD (with 60% of energy from fat) group. The rats received the assigned diets for 5 weeks, and in the third week they were submitted to an osteotomy procedure of the left tibia. Body mass and feed intake were recorded during the experiment. One day before euthanasia, an insulin tolerance test was performed. After euthanasia, the tibiae were removed and analyzed by densitometry, mechanical testing, histomorphometry, stereology and immunohistochemistry. An HFD caused an adaptive response to maintain energetic balance by decreasing feed intake and causing insulin insensitivity. There was no change in bone mineral density, collagen amount and immunostaining for bone formation, but maximal load and stiffness were decreased in the HFD group. In addition, bone volume had a tendency to be higher in the SD group than in the HFD group. Compared with rats receiving an SD, growing rats receiving an HFD for 5 weeks had similar bone mineral density but altered mechanical properties at the osteotomy defect site.

  20. Fractal dimension analysis of weight-bearing bones of rats during skeletal unloading

    NASA Technical Reports Server (NTRS)

    Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Sanhueza, A. I.; Yamauchi, M.

    2001-01-01

    Fractal analysis was used to quantify changes in trabecular bone induced through the use of a rat tail-suspension model to simulate microgravity-induced osteopenia. Fractal dimensions were estimated from digitized radiographs obtained from tail-suspended and ambulatory rats. Fifty 4-month-old male Sprague-Dawley rats were divided into groups of 24 ambulatory (control) and 26 suspended (test) animals. Rats of both groups were killed after periods of 1, 4, and 8 weeks. Femurs and tibiae were removed and radiographed with standard intraoral films and digitized using a flatbed scanner. Square regions of interest were cropped at proximal, middle, and distal areas of each bone. Fractal dimensions were estimated from slopes of regression lines fitted to circularly averaged plots of log power vs. log spatial frequency. The results showed that the computed fractal dimensions were significantly greater for images of trabecular bones from tail-suspended groups than for ambulatory groups (p < 0.01) at 1 week. Periods between 1 and 4 weeks likewise yielded significantly different estimates (p < 0.05), consistent with an increase in bone loss. In the tibiae, the proximal regions of the suspended group produced significantly greater fractal dimensions than other regions (p < 0.05), which suggests they were more susceptible to unloading. The data are consistent with other studies demonstrating osteopenia in microgravity environments and the regional response to skeletal unloading. Thus, fractal analysis could be a useful technique to evaluate the structural changes of bone.

  1. High-impact exercise in rats prior to and during suspension can prevent bone loss

    PubMed Central

    Yanagihara, G.R.; Paiva, A.G.; Gasparini, G.A.; Macedo, A.P.; Frighetto, P.D.; Volpon, J.B.; Shimano, A.C.

    2016-01-01

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension. PMID:26840705

  2. High-impact exercise in rats prior to and during suspension can prevent bone loss.

    PubMed

    Yanagihara, G R; Paiva, A G; Gasparini, G A; Macedo, A P; Frighetto, P D; Volpon, J B; Shimano, A C

    2016-03-01

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension.

  3. Tissue Reaction to a Novel Bone Substitute Material Fabricated With Biodegradable Polymer-Calcium Phosphate Nanoparticle Composite.

    PubMed

    Shimizu, Hideo; Jinno, Yohei; Ayukawa, Yasunori; Atsuta, Ikiru; Arahira, Takaaki; Todo, Mitsugu; Koyano, Kiyoshi

    2016-10-01

    The aim of this study was to evaluate the effectiveness of a novel bone substitute material fabricated using a biodegradable polymer-calcium phosphate nanoparticle composite. Porous structured poly-L-lactic acid (PLLA) and hydroxyapatite (HA) nanoparticle composite, which was fabricated using solid-liquid phase separation and freeze-drying methods, was grafted into bone defects created in rat calvarium or tibia. Rats were killed 4 weeks after surgery, and histological analyses were performed to evaluate new bone formation. Scanning electron microscopic observation showed the interconnecting pores within the material and the pore diameter was approximately 100 to 300 μm. HA nanoparticles were observed to be embedded into the PLLA beams. In the calvarial implantation model, abundant blood vessels and fibroblastic cells were observed penetrating into pores, and in the tibia model, newly formed bone was present around and within the composite. The PLLA-HA nanoparticle composite bone substitute developed in this study showed biocompatibility, elasticity, and operability and thus has potential as a novel bone substitute.

  4. Histomorphometric study of tibia of rats exposed aboard American Spacelab Life Sciences 2 Shuttle Mission

    NASA Technical Reports Server (NTRS)

    Durnova, G.; Kaplansky, A.; Morey-Holton, E.

    1996-01-01

    Tibial bones of rats flown onboard the SLS-2 shuttle mission were studied. Trabecular bone parameters were investigated, including growth plate height, trabecular bone volume, thickness and number, and trabecular separation in the primary and secondary spongiosa. Several histomorphometric changes were noted, allowing researchers to conclude that exposure to microgravity resulted in osteopenia of spongy bone of tibial metaphysis. The roles of bone formation and bone resorption are discussed.

  5. Osteoclast inhibition impairs chondrosarcoma growth and bone destruction.

    PubMed

    Otero, Jesse E; Stevens, Jeff W; Malandra, Allison E; Fredericks, Douglas C; Odgren, Paul R; Buckwalter, Joseph A; Morcuende, Jose

    2014-12-01

    Because Chondrosarcoma is resistant to available chemotherapy and radiation regimens, wide resection is the mainstay in treatment, which frequently results in high morbidity and which may not prevent local recurrence. There is a clear need for improved adjuvant treatment of this malignancy. We have observed the presence of osteoclasts in the microenvironment of chondrosarcoma in human pathological specimens. We utilized the Swarm rat chondrosarcoma (SRC) model to test the hypothesis that osteoclasts affect chondrosarcoma pathogenesis. We implanted SRC tumors in tibia of Sprague-Dawley rats and analyzed bone histologically and radiographically for bone destruction and tumor growth. At three weeks, tumors invaded local bone causing cortical disruption and trabecular resorption. Bone destruction was accompanied by increased osteoclast number and resorbed bone surface. Treatment of rats with the zoledronic acid prevented cortical destruction, inhibited trabecular resorption, and resulted in decreased tumor volume in bone. To confirm that inhibition of osteoclasts per se, and not off-target effects of drug, was responsible for the prevention of tumor growth and bone destruction, we implanted SRC into osteopetrotic rat tibia. SRC-induced bone destruction and tumor growth were impaired in osteopetrotic bone compared with control bone. The results from our animal model demonstrate that osteoclasts contribute to chondrosarcoma-mediated bone destruction and tumor growth and may represent a therapeutic target in particular chondrosarcoma patients. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. The salutary effect of dietary calcium on bone mass in a rat model of simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Globus, R.; Halloran, B. P.; Morey-Holton, E.

    1985-01-01

    Whether supplementation of dietary calcium reduces the differences in bone mass of unweighed limbs and normally weighted limbs, and whether parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH)2D) respond differently to dietary calcium in unweighted animals in comparison with pair-fed controls was studied. The hind limbs of rats were unweighted by a tail suspension method and diets containing 0.1% to 2.4% calcium. After 2 weeks serum calcium, phosphorus, PTH and 1,25(OH)2D intestinal calcium transport were determined and bone mass, ash weight, and calcium in the tibia, L-1 vertebra, and humerus were measured. No significant differences in body weights were observed among the various groups. Suspended rats maintained constant levels of serum calcium and phosphate over the wide range of dietary calcium. Serum PTH and 1,25(OH)2D and intestinal calcium transport fell as dietary calcium was increased. Bone calcium in the tibia and vertebra from suspended rats remained less than that from pair-fed control. It is suggested that although no striking difference between suspended and control animals was observed in response to dieteary calcium, increasing dietary calcium may reduce the negative impact of unloading on the calcium content of the unweighted bones. The salutary effect of high dietary calcium appears to be due to inhibition of bone resorption rather than to stimulation of bone formation.

  7. [Phytoestrogens role in bone functional structure protection in the ovariectomized rat].

    PubMed

    Mihalache, Gr; Mihalache, Gr D; Indrei, L L; Indrei, Anca; Hegsted, Maren

    2002-01-01

    Effects of soy protein diet on bone formation and density were evaluated in ovariectomized rats as a model for postmenopausal women. Twenty-seven 9-month-old rats were assigned to 3 treatment groups for the 9-week study: sham-surgery (Sh, n = 9); ovariectomy (Ovx, n = 9); ovariectomy + soy diet (OvxS, n = 9). Rats had free access to an AIN-93 M diet or AIN-93 M diet with 7% soy protein concentration and water. At sacrifice, rear legs were removed, and the right femur and tibia were cleaned manually. Serum alkaline phosphatase, a marker of bone formation, was measured colorimetrically. Bone density was measured using Archimedes' Principle. Alkaline phosphatase activity was greater in OvxS (114 +/- 19 U/L) and Ovx (128 +/- 26 U/L) compared to Sh (110 +/- 22 U/L). Femur bone density was greater for OvxS (1.520 +/- 0.02 g/cc) compared to Ovx (1.510 +/- 0.017 g/cc), but not to Sh (1532 +/- 0.025 g/cc). Tibia bone density was greater for OvxS (1.560 +/- 0.019 g/cc) compared to Ovx (1.553 +/- 0.015 g/cc), but not to Sh (1566 +/- 0.03 g/cc). In conclusion soy protein diet increased the rate of bone formation and bone density in some bones, suggesting that may help prevent bone loss in postmenopausal women.

  8. Skeletal response to short-term weightlessness

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey-Holton, E. R.

    1986-01-01

    Male Sprague Dawley rats were placed in orbit for 7 days aboard the space shuttle. Bone histomorphometry was performed in the long bones and lumbar vertebrae of flight rats and compared to data derived from ground based control rats. Trabecular bone mass was not altered during the first week of weightlessness. Strong trends were observed in flight rats for decreased periosteal bone formation in the tibial diaphysis, reduced osteoblast size in the proximal tibia, and decreased osteoblast surface and number in the lumbar vertebra. Histologic indices of bone resorption was relatively normal in flight rats. The results indicate that 7 day of weightlessness are not of sufficient duration to induce histologicaly detectable loss of trabecular bone in rats. However, cortical and trabecular bone formation appear to be diminished during the first week of space flight.

  9. [Effects of intrathecal administration of AM22-52 on mechanical allodynia and CCL2 expression in DRG in bone cancer rats].

    PubMed

    Chen, Ya-Juan; Huo, Yuan-Hui; Hong, Yanguo

    2017-02-25

    The pain peptide adrenomedullin (AM) plays a pivotal role in pathological pain. The present study was designed to investigate the effect of blockade of AM receptor on bone cancer pain (BCP) and its mechanism. BCP was developed by inoculation of Walker 256 mammary gland carcinoma cells in the tibia medullary cavity of Sprague Dawley rats. The selective AM receptor antagonist AM 22-52 was administered intrathecally on 15 d after the inoculation. Quantitative real-time PCR was used to detect mRNA level of CC chemokine ligand 2 (CCL2) in dorsal root ganglion (DRG). Double immunofluorescence staining was used to analyze the localizations of CCL2 and AM in DRG of normal rats. The results showed that, from 6 to15 d after the inoculation, the animals showed significant reduction in the mechanical pain threshold in the ipsilateral hindpaw, companied by the decline in bone density of tibia bone. The expression of CCL2 mRNA in DRG of BCP rats was increased by 3 folds (P < 0.001 vs saline group). Intrathecal administration of AM 22-52 abolished bone cancer-induced mechanical allodynia and increase of CCL2 mRNA level (P < 0.001). In normal rats, CCL2 was co-localized with AM in DRG neurons. These results suggest that AM may play a role in the pathogenesis of BCP. The increased AM bioactivity up-regulates CCL2 expression in DRG, which may contribute to the induction of pain hypersensitivity in bone cancer.

  10. Role of Pitavastatin in Prevention of Osteopenic Changes in Ovariectomized Rats.

    PubMed

    Qadir, Farida; Alam, Syed Mahboob; Zehra, Tabassum; Mehmood, Ahmar; Siddiqi, Abeer Qamar

    2016-01-01

    To determine the effect of pitavastatin, a third generation statin, on development of osteopenia in ovariectomized rats. Experimental study. Department of Pharmacology, Basic Medical Sciences Institute, Jinnah Postgraduate Medical Center, Karachi, from January to July 2013. Forty female Sprague Dawley rats were divided into ovariectomized (OVX), Sham OVX and OVX given pitavastatin 0.4 mg/kg/day, 0.8 mg/kg/day, for 8 weeks. Bone density measurements using CT scan and Archimedes’ principle were made on femora and tibiae. Blood samples were analyzed for acid phosphatase (ACP) and alkaline phosphatase (ALP) levels. Ovariectomy-induced osteopenic changes were indicated by significant decrease in bone densities and Hounsfield (HU) index of distal femoral and proximal tibial metaphyses and elevation of ACP and ALP levels. 0.4 mg/kg pitavastatin did not significantly alter the evaluated parameters. 0.8 mg/kg produced a restoration of HU of lower femur and femoral density comparable to Sham. HU of upper tibia and tibial density following 0.8 mg/kg was significantly higher than OVX but was not approximate to Sham. ALP and ACP with 0.8 mg/kg were comparable to Sham. Supra-therapeutic dose of pitavastatin was effective in preventing estrogen deficiency-induced decrease in bone density of ovariectomized rates, over an 8-week period.

  11. Time-Dependent Changes in T1 during Fracture Healing in Juvenile Rats: A Quantitative MR Approach

    PubMed Central

    Baron, Katharina; Neumayer, Bernhard; Amerstorfer, Eva; Scheurer, Eva; Diwoky, Clemens; Stollberger, Rudolf; Sprenger, Hanna; Weinberg, Annelie M.

    2016-01-01

    Quantitative magnetic resonance imaging (qMRI) offers several advantages in imaging and determination of soft tissue alterations when compared to qualitative imaging techniques. Although applications in brain and muscle tissues are well studied, its suitability to quantify relaxation times of intact and injured bone tissue, especially in children, is widely unknown. The objective observation of a fracture including its age determination can become of legal interest in cases of child abuse or maltreatment. Therefore, the aim of this study is the determination of time dependent changes in intact and corresponding injured bones in immature rats via qMRI, to provide the basis for an objective and radiation-free approach for fracture dating. Thirty-five MR scans of 7 Sprague-Dawley rats (male, 4 weeks old, 100 ± 5 g) were acquired on a 3T MRI scanner (TimTrio, Siemens AG, Erlangen, Germany) after the surgical infliction of an epiphyseal fracture in the tibia. The images were taken at days 1, 3, 7, 14, 28, 42 and 82 post-surgery. A proton density-weighted and a T1-weighted 3D FLASH sequence were acquired to calculate the longitudinal relaxation time T1 of the fractured region and the surrounding tissues. The calculation of T1 in intact and injured bone resulted in a quantitative observation of bone development in intact juvenile tibiae as well as the bone healing process in the injured tibiae. In both areas, T1 decreased over time. To evaluate the differences in T1 behaviour between the intact and injured bone, the relative T1 values (bone-fracture) were calculated, showing clear detectable alterations of T1 after fracture occurrence. These results indicate that qMRI has a high potential not only for clinically relevant applications to detect growth defects or developmental alterations in juvenile bones, but also for forensically relevant applications such as the dating of fractures in cases of child abuse or maltreatment. PMID:27832068

  12. Formation of ectopic osteogenesis in weightlessness

    NASA Technical Reports Server (NTRS)

    1977-01-01

    An ectopic osteogenesis experiment aboard the Cosmos-936 biosatellite is described. Decalcified, lyophilized femur and tibia were implanted under the fascia or in the anterior wall of the abdomen in rats. Bone formation before and after the tests is described and illustrated. The extent of formation of ectopic bone in weightlessness did not differ significantly from that in the ground controls, but the bone marrow of the ectopic bone of the flight rats consisted exclusively of fat cells. The deficit of support-muscle loading was considered to cause the disturbance in skeletal bone tissue development.

  13. SEMA3A suspended in matrigel improves titanium implant fixation in ovariectomized rats.

    PubMed

    Li, Yunfeng; He, Dongming; Liu, Biao; Hu, Jing

    2017-10-01

    The aim of this study was to evaluate the effect of SEMA3A released from matrigel on implant fixation in ovariectomized (OVX) rats. Sixty female rats were subjected to bilateral ovariectomy. Twelve weeks later, rats were randomly divided into three groups according to implants they accepted: (1) Control, implants with distilled water; (2) Matrigel, implants with matrigel coating; (3) Matrigel + SEMA3A, implants with coating of SEMA3A suspended in matrigel. Implants were inserted in metaphysis of proximal tibiae in all animas bilaterally. In vitro release of SEMA3A was tested using enzyme linked immunosorbent assay. In vitro release of SEMA3A was detectable during the first 10 days, and a burst release of was observed during the first 3 days. No significant difference was observed between Control and Matrigel group. The protective effects of SEMA3A in matrigel on peri-implant bone, implant osseointegration and fixation was confirmed. Compared to matrigel alone, SEMA3A suspended in matrigel increased percent bone volume by 88.7% and 83.3% (p < 0.01), bone-to-implant contact ratio by 148.9% (p < 0.01), and 24.8% (p < 0.05), the maximal push-out force by 149.3% and 209.2% (p < 0.01) at 4 and 8 weeks after implant insertion, respectively. Surface modification with SEMA3A suspended in matrigel improved implant osseointegration and fixation in the proximal tibiae of OVX rats. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2060-2065, 2017. © 2016 Wiley Periodicals, Inc.

  14. A new Fe-Mn-Si alloplastic biomaterial as bone grafting material: In vivo study

    NASA Astrophysics Data System (ADS)

    Fântânariu, Mircea; Trincă, Lucia Carmen; Solcan, Carmen; Trofin, Alina; Strungaru, Ştefan; Şindilar, Eusebiu Viorel; Plăvan, Gabriel; Stanciu, Sergiu

    2015-10-01

    Designing substrates having suitable mechanical properties and targeted degradation behavior is the key's development of bio-materials for medical application. In orthopedics, graft material may be used to fill bony defects or to promote bone formation in osseous defects created by trauma or surgical intervention. Incorporation of Si may increase the bioactivity of implant locally, both by enhancing interactions at the graft-host interface and by having a potential endocrine like effect on osteoblasts. A Fe-Mn-Si alloy was obtained as alloplastic graft materials for bone implants that need long recovery time period. The surface morphology of the resulted specimens was investigated using scanning electrons microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffractions (X'Pert equipment) or X-ray dispersive energy analyze (Bruker EDS equipment). This study objective was to evaluate in vivo the mechanisms of degradation and the effects of its implantation over the main metabolic organs. Biochemical, histological, plain X radiography and computed tomography investigations showed good compatibility of the subcutaneous implants in the rat organism. The implantation of the Fe-Mn-Si alloy, in critical size bone (tibiae) defect rat model, did not induced adverse biological reactions and provided temporary mechanical support to the affected bone area. The biodegradation products were hydroxides layers which adhered to the substrate surface. Fe-Mn-Si alloy assured the mechanical integrity in rat tibiae defects during bone regeneration.

  15. Analysis of fractal dimensions of rat bones from film and digital images

    NASA Technical Reports Server (NTRS)

    Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Yamauchi, M.

    2001-01-01

    OBJECTIVES: (1) To compare the effect of two different intra-oral image receptors on estimates of fractal dimension; and (2) to determine the variations in fractal dimensions between the femur, tibia and humerus of the rat and between their proximal, middle and distal regions. METHODS: The left femur, tibia and humerus from 24 4-6-month-old Sprague-Dawley rats were radiographed using intra-oral film and a charge-coupled device (CCD). Films were digitized at a pixel density comparable to the CCD using a flat-bed scanner. Square regions of interest were selected from proximal, middle, and distal regions of each bone. Fractal dimensions were estimated from the slope of regression lines fitted to plots of log power against log spatial frequency. RESULTS: The fractal dimensions estimates from digitized films were significantly greater than those produced from the CCD (P=0.0008). Estimated fractal dimensions of three types of bone were not significantly different (P=0.0544); however, the three regions of bones were significantly different (P=0.0239). The fractal dimensions estimated from radiographs of the proximal and distal regions of the bones were lower than comparable estimates obtained from the middle region. CONCLUSIONS: Different types of image receptors significantly affect estimates of fractal dimension. There was no difference in the fractal dimensions of the different bones but the three regions differed significantly.

  16. Acute and Subacute Toxicity In Vivo of Thermal-Sprayed Silver Containing Hydroxyapatite Coating in Rat Tibia

    PubMed Central

    Tsukamoto, Masatsugu; Miyamoto, Hiroshi; Ando, Yoshiki; Eto, Shuichi; Akiyama, Takayuki; Yonekura, Yutaka; Mawatari, Masaaki

    2014-01-01

    To reduce the incidence of implant-associated infection, we previously developed a novel coating technology using hydroxyapatite (HA) containing silver (Ag). This study examined in vivo acute and subacute toxicity associated with the Ag-HA coating in rat tibiae. Ten-week-old rats received implantation of HA-, 2% Ag-HA-, or 50% Ag-HA-coated titanium rods. Concentrations of silver in serum, brain, liver, kidneys, and spleen were measured in the acute phase (2–4 days after treatment) and subacute phase (4–12 weeks after treatment). Biochemical and histological examinations of those organs were also performed. Mean serum silver concentration peaked in the acute phase and then gradually decreased. Mean silver concentrations in all examined organs from the 2% Ag-HA coating groups showed no significant differences compared with the HA coating group. No significant differences in mean levels of glutamic-oxaloacetic transaminase, glutamic-pyruvic transaminase, lactate dehydrogenase, creatinine, or blood urea nitrogen were seen between the three groups and controls. Histological examinations of all organs revealed no abnormal pathologic findings. No acute or subacute toxicity was seen in vivo for 2% Ag-HA coating or HA coating. Ag-HA coatings on implants may represent biologically safe antibacterial biomaterials and may be of value for reducing surgical-site infections related to implantation. PMID:24779019

  17. Low dose PTH improves metaphyseal bone healing more when muscles are paralyzed.

    PubMed

    Sandberg, Olof; Macias, Brandon R; Aspenberg, Per

    2014-06-01

    Stimulation of bone formation by PTH is related to mechanosensitivity. The response to PTH treatment in intact bone could therefore be blunted by unloading. We studied the effects of mechanical loading on the response to PTH treatment in bone healing. Most fractures occur in the metaphyses, therefor we used a model for metaphyseal bone injury. One hind leg of 20 male SD rats was unloaded via intramuscular botulinum toxin injections. Two weeks later, the proximal unloaded tibia had lost 78% of its trabecular contents. At this time-point, the rats received bilateral proximal tibiae screw implants. Ten of the 20 rats were given daily injections of 5 μg/kg PTH (1-34). After two weeks of healing, screw fixation was measured by pull-out, and microCT of the distal femur cancellous compartment was performed. Pull-out force provided an estimate for cancellous bone formation after trauma. PTH more than doubled the pull-out force in the unloaded limbs (from 14 to 30 N), but increased it by less than half in the loaded ones (from 30 to 44 N). In relative terms, PTH had a stronger effect on pull-out force in unloaded bone than in loaded bone (p=0.03). The results suggest that PTH treatment for stimulation of bone healing does not require simultaneous mechanical stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. A serum factor that recalcifies demineralized bone is conserved in bony fish and sharks but is not found in invertebrates.

    PubMed

    Hamlin, N J; Ong, K G; Price, P A

    2006-05-01

    We investigated the evolutionary origin of a serum activity that induces calcification within a type I collagen matrix, an activity previously described in rat and bovine serum. Serum was obtained from vertebrates with calcified tissues (bony fish and shark), vertebrates without calcified tissues (lamprey and hagfish), and three invertebrates (marine worm, crab, and sea urchin). Serum from the bony fish and shark proved to contain a potent nucleator of collagen calcification; like the previously described calcifying activity in rat serum, the fish and shark activities are both able to recalcify a demineralized rat tibia when tested in Dulbecco's modified Eagle medium containing as little as 1.5% of the respective serum and have an apparent molecular weight of 50-150 kDa. No calcifying activity could be detected in any of several experimental tests of invertebrate or hagfish serum. Weak calcifying activity could be detected in lamprey serum, but calcification was restricted to the growth plate of the decalcified tibia, with no detectable calcification in the type I collagen of the midshaft. These studies reveal a correlation between the evolutionary timing of the appearance of calcified tissues in vertebrates and the appearance of the serum activity that initiates calcification within collagen and, therefore, support the hypothesis that this serum activity may play a role in normal calcification of bone.

  19. Chronic Hyperglycemia Modulates Rat Osteoporotic Cortical Bone Microarchitecture into Less Fragile Structures

    PubMed Central

    de Mello-Sampayo, Cristina; Agripino, Alaíde Alves; Stilwell, Duarte; Vidal, Bruno; Fernando, Ana Luisa; Silva-Lima, Beatriz; Vaz, Maria Fátima; Canhão, Helena

    2017-01-01

    There is controversy concerning the diabetes impact on bone quality, notorious in type 2 diabetic postmenopausal women. One pointed cause might be uncontrolled glycemia. In this study, the effect of chronic hyperglycemia in bone turnover, morphology, and biomechanics was evaluated in female Wistar rats in the presence/absence of estrogens (ovariectomy). Animals (n = 28) were divided into sham, ovariectomized (OVX), hyperglycemic (streptozotocin 40 mg/kg, single-dose i.p.-STZ), and hyperglycemic-ovariectomized (STZ + OVX) animals. Blood biomarkers were estimated 60 days postovariectomy. Body weight, vertebral microarchitecture (L4-histomorphometry), femur biomechanical properties (bending tests), tibia ultrastructure (scanning electron microscopy), and femur and urinary calcium (atomic absorption) were also evaluated. The increased PINP/CTX ratio of hyperglycemic animals and the similar ratio between STZ + OVX and healthy animals contrasting with the lower ratio of OVX (in line with its histomorphometric data) suggest a tendency for improved bone formation in hyperglycemic-ovariectomized animals. The increased tibia medullar canal, which contrasts with the unaffected cortical thickness of both hyperglycemic groups while that of OVX decreased, was associated to the increased stiffness and strength of STZ + OVX bones compared to those of OVX, in line with the observed ultrastructure. Concluding, chronic hyperglycemia in ovariectomized female rats causes bone morphological changes that translate positively in the ultrastructure and mechanical properties of cortical bones. PMID:29081798

  20. * Composite Biomaterial as a Carrier for Bone-Active Substances for Metaphyseal Tibial Bone Defect Reconstruction in Rats.

    PubMed

    Horstmann, Peter Frederik; Raina, Deepak Bushan; Isaksson, Hanna; Hettwer, Werner; Lidgren, Lars; Petersen, Michael Mørk; Tägil, Magnus

    2017-12-01

    Restoring lost bone is a major challenge in orthopedic surgery. Currently available treatment strategies have shortcomings, such as risk of infection, nonunion, and excessive resorption. Our primary aim was to study if a commercially available gentamicin-containing composite calcium sulfate/hydroxyapatite biomaterial (GBM) could serve as a carrier for local delivery of bone morphogenic protein-2 (BMP-2) and zoledronic acid (ZA) in a tibia defect model in rats. Empty and allograft-filled defects were used as controls. A 3 × 4-mm metaphyseal bone defect was created in the proximal tibia, and the rats were grouped according to defect filling: (1) Empty, (2) Allograft, (3) GBM, (4) GBM + ZA, and (5) GBM + ZA + BMP-2. In vivo microcomputed tomography (micro-CT) images at 4 weeks showed significantly higher mineralized tissue volume (MV) in the intramedullary defect region and the neocortical/callus region in all GBM-treated groups. After euthanization at 8 weeks, ex vivo micro-CT showed that addition of ZA (GBM + ZA) and BMP-2 (GBM + ZA + BMP-2) mainly increased the neocortical and callus formation, with the highest MV in the combined ZA and BMP-2-treated group. Qualitative histological analysis, verifying the increased neocortical/callus thickness and finding of trabecular bone in all GBM-treated groups, supported that the differences in MV measured with micro-CT in fact represented bone tissue. In conclusion, GBM can serve as a carrier for ZA and BMP-2 leading to increased MV in the neocortex and callus of a metaphyseal bone defect in rats.

  1. Lithium chloride enhances bone regeneration and implant osseointegration in osteoporotic conditions.

    PubMed

    Jin, Yifan; Xu, Lihua; Hu, Xiaohui; Liao, Shixian; Pathak, Janak L; Liu, Jinsong

    2016-10-06

    Osteoporotic patients have a high risk of dental and orthopedic implant failure. Lithium chloride (LiCl) has been reported to enhance bone formation. However, the role of LiCl in the success rate of dental and orthopedic implants in osteoporotic conditions is still unknown. We investigated whether LiCl enhances implant osseointegration, implant fixation, and bone formation in osteoporotic conditions. Sprague-Dawley female rats (n = 18) were ovariectomized (OVX) to induce osteoporosis, and another nine rats underwent sham surgery. Three months after surgery, titanium implants were implanted in the tibia of the OVX and sham group rats. After implantation, the OVX rats were gavaged with 150 mg/kg/2 days of LiCl (OVX + LiCl group) or saline (OVX group), and sham group rats were gavaged with saline for 3 months. Implant osseointegration and bone formation were analyzed using histology, biomechanical testing, and micro computed tomography (micro-CT). More bone loss was observed in the OVX group compared to the control, and LiCl treatment enhanced bone formation and implant fixation in osteoporotic rats. In the OVX group, bone-implant contact (BIC) was decreased by 81.2 % compared to the sham group. Interestingly, the OVX + LiCl group showed 4.4-fold higher BIC compared to the OVX group. Micro-CT data of tibia from the OVX + LiCl group showed higher bone volume, trabecular thickness, trabecular number, and osseointegration compared to the OVX group. Maximum push-out force and implant-bone interface shear strength were 2.9-fold stronger in the OVX + LiCl group compared to the OVX group. In conclusion, LiCl enhanced implant osseointegration, implant fixation, and bone formation in osteoporotic conditions, suggesting LiCl as a promising therapeutic agent to prevent implant failure and bone loss in osteoporotic conditions.

  2. Reloading partly recovers bone mineral density and mechanical properties in hind limb unloaded rats

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Li, Dijie; Arfat, Yasir; Chen, Zhihao; Liu, Zonglin; Lin, Yu; Ding, Chong; Sun, Yulong; Hu, Lifang; Shang, Peng; Qian, Airong

    2014-12-01

    Skeletal unloading results in decreased bone formation and bone mass. During long-term space flight, the decreased bone mass is impossible to fully recover. Therefore, it is necessary to develop the effective countermeasures to prevent spaceflight-induced bone loss. Hindlimb Unloading (HLU) simulates effects of weightlessness and is utilized extensively to examine the response of musculoskeletal systems to certain aspects of space flight. The purpose of this study is to investigate the effects of a 4-week HLU in rats and subsequent reloading on the bone mineral density (BMD) and mechanical properties of load-bearing bones. After HLU for 4 weeks, the rats were then subjected to reloading for 1 week, 2 weeks and 3 weeks, and then the BMD of the femur, tibia and lumbar spine in rats were assessed by dual energy X-ray absorptiometry (DXA) every week. The mechanical properties of the femur were determined by three-point bending test. Dry bone and bone ash of femur were obtained through Oven-Drying method and were weighed respectively. Serum alkaline phosphatase (ALP) and serum calcium were examined through ELISA and Atomic Absorption Spectrometry. The results showed that 4 weeks of HLU significantly decreased body weight of rats and reloading for 1 week, 2 weeks or 3 weeks did not recover the weight loss induced by HLU. However, after 2 weeks of reloading, BMD of femur and tibia of HLU rats partly recovered (+10.4%, +2.3%). After 3 weeks of reloading, the reduction of BMD, energy absorption, bone mass and mechanical properties of bone induced by HLU recovered to some extent. The changes in serum ALP and serum calcium induced by HLU were also recovered after reloading. Our results indicate that a short period of reloading could not completely recover bone after a period of unloading, thus some interventions such as mechanical vibration or pharmaceuticals are necessary to help bone recovery.

  3. Bone growth and calcium balance during simulated weightlessness in the rat

    NASA Technical Reports Server (NTRS)

    Roer, Robert D.; Dillaman, Richard M.

    1990-01-01

    Rats, age 28 days, experiencing tail suspension in modified metabolic cages for 1, 2, and 3 wk were compared with littermate controls. Food and water consumption, urinary and fecal Ca excretion, and serum Ca were measured; hearts, fore- and hindlimb bones, skulls, and mandibles were removed for determination of wet, dry, and ash weights and Ca concentration and for histological examination. Weight gain and Ca intake and excretion were the same for both groups; both displayed net Ca gain. Suspended rats had significantly lower wet, dry, and ash weights of femora and tibiae. Dry weights of the humeri and radii/ulnae were moderately higher, and the skull and mandible dry and ash weights were significantly higher in suspended than in control rats. Cortical thickness of the femur, but not humerus, was less in suspended rats. The data are consistent with the hypothesis that bone growth is influenced by the cardiovascular changes associated with tail suspension.

  4. Bone-bonding behavior of alumina bead composite.

    PubMed

    Shinzato, S; Kobayashi, M; Choju, K; Kokubo, T; Nakamura, T

    1999-08-01

    Previously we developed an alumina bead composite (ABC) consisting of alumina bead powder (AL-P) and bisphenol-alpha-glycidyl methacrylate (Bis-GMA)-based resin and reported its excellent osteoconductivity in rat tibiae. In the present study, are evaluated histologically and mechanically the effect of alumina crystallinity on the osteoconductivity and bone-bonding strength of the composite. AL-P was manufactured by fusing crushed alpha-alumina powder and quenching it. The AL-P was composed mainly of amorphous and delta-crystal phases of alumina. Its average particle size was 3.5 microm, and it took a spherical form. Another composite (alpha ALC), filled with pure alpha-alumina powder (alpha AL-P), was used as a referential material. The proportion of powder added to each composite was 70% w/w. Mechanical testing of ABC and alpha ALC indicated that they would be strong enough for use under weight-bearing conditions. The affinity indices for ABC, determined using male Wistar rat tibiae, were significantly higher than those for alpha ALC (p < 0.0001) up to 8 weeks. Composite plates (15 x 10 x 2 mm) that had an uncured surface layer on one side were made in situ in a rectangular mold. One of the plates was implanted into the proximal metaphysis of the tibia of a male Japanese white rabbit, and the failure load was measured by a detaching test 10 weeks after implantation. The failure loads for ABC on its uncured surface [1.91+/-1.23 kgf (n = 8)] were significantly higher than those for alpha ALC on its uncured surface [0.35+/-0.33 kgf (n = 8); (p < 0.0001)], and they also were significantly higher than those for ABC on the other (cured surface) side (p < 0.0001). Histological examinations using rabbit tibiae revealed bone ingrowth into the composite only on the uncured surface of ABC. This study revealed that the amorphous phase of alumina and formation of an uncured surface layer are needed for the osteoconductive and bone-bonding ability of ABC. ABC shows promise as a basis for the development of a highly osteoconductive and mechanically strong biomaterial.

  5. Post-junctional facilitation of substance P signaling in a tibia fracture rat model of complex regional pain syndrome type I

    PubMed Central

    Wei, Tzuping; Li, Wen-wu; Guo, Tian-Zhi; Zhao, Rong; Wang, Liping; Clark, David J; Oaklander, Ann Louise; Schmelz, Martin; Kingery, Wade S.

    2009-01-01

    Tibia fracture in rats evokes nociceptive, vascular, and bone changes resembling complex regional pain syndrome (CRPS). Substance P (SP) signaling contributes to the hindpaw warmth, increased vascular permeability, and edema observed in this model, suggesting that neurogenic inflammatory responses could be enhanced after fracture. Four weeks after tibia fracture we measured SP and calcitonin gene-related peptide (CGRP) protein levels in the sciatic nerve and serum. Hindpaw skin extravasation responses and SP receptor (NK1), CGRP receptor (calcitonin receptor-like receptor, CRLR) and neutral endopeptidase (NEP) protein levels were also determined. Gene expression levels of these peptides, receptors, and peptidase were examined in the DRG and skin. Spontaneous and intravenous SP-evoked extravasation responses were increased ipsilateral, but not contralateral to the fracture. Fracture increased SP and CGRP gene expression in the ipsilateral L4,L5 DRG and neuropeptide protein levels in the sciatic nerve and in serum, but had no effect on electrically-evoked SP and CGRP release. NK1 receptor expression was increased in the ipsilateral hindpaw skin keratinocytes and endothelial cells after injury, but CRLR and NEP expression were unchanged. Fracture also increased epidermal thickness, but had no effect on epidermal skin neurite counts. These results demonstrate that spontaneous and intravenous SP-evoked extravasation responses are enhanced in the ipsilateral hindlimb after fracture and that fracture chronically increases the expression of endothelial and keratinocyte NK1 receptors in the injured limb. We postulate that SP activation of these up-regulated NK1 receptors results in skin warmth, protein leakage, edema, and keratinocyte proliferation in the injured limb. PMID:19464118

  6. Post-junctional facilitation of Substance P signaling in a tibia fracture rat model of complex regional pain syndrome type I.

    PubMed

    Wei, Tzuping; Li, Wen-Wu; Guo, Tian-Zhi; Zhao, Rong; Wang, Liping; Clark, David J; Oaklander, Anne Louise; Schmelz, Martin; Kingery, Wade S

    2009-08-01

    Tibia fracture in rats evokes nociceptive, vascular, and bone changes resembling complex regional pain syndrome (CRPS). Substance P (SP) signaling contributes to the hindpaw warmth, increased vascular permeability, and edema observed in this model, suggesting that neurogenic inflammatory responses could be enhanced after fracture. Four weeks after tibia fracture we measured SP and calcitonin gene-related peptide (CGRP) protein levels in the sciatic nerve and serum. Hindpaw skin extravasation responses and SP receptor (NK1), CGRP receptor (calcitonin receptor-like receptor, CRLR) and neutral endopeptidase (NEP) protein levels were also determined. Gene expression levels of these peptides, receptors, and peptidase were examined in the DRG and skin. Spontaneous and intravenous SP-evoked extravasation responses were increased ipsilateral, but not contralateral to the fracture. Fracture increased SP and CGRP gene expression in the ipsilateral L4,L5 DRG and neuropeptide protein levels in the sciatic nerve and in serum, but had no effect on electrically evoked SP and CGRP release. NK1 receptor expression was increased in the ipsilateral hindpaw skin keratinocytes and endothelial cells after injury, but CRLR and NEP expression were unchanged. Fracture also increased epidermal thickness, but had no effect on epidermal skin neurite counts. These results demonstrate that spontaneous and intravenous SP-evoked extravasation responses are enhanced in the ipsilateral hindlimb after fracture and that fracture chronically increases the expression of endothelial and keratinocyte NK1 receptors in the injured limb. We postulate that SP activation of these up-regulated NK1 receptors results in skin warmth, protein leakage, edema, and keratinocyte proliferation in the injured limb.

  7. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee

    PubMed Central

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (p<0.05), osteophyte formation and subchondral sclerotic bone (p<0.05). Using sectional cartilage area, modified Mankin scoring system as well as thickness of calcified and un-calcified cartilage analysis, the results showed that articular cartilage damage was ameliorated and T+F(M) group had the most protection as compared with other locations (p<0.05). Detectable cartilage surface damage and proteoglycan loss were measured and T+F(M) group showed the smallest lesion score among other groups (p<0.05). Micro-CT revealed significantly improved in subchondral bone repair in all ESWT groups compared to OA group (p<0.05). There were no significantly differences in bone remodeling after ESWT groups except F(M) group. In the immunohistochemical analysis, T+F(M) group significant reduced TUNEL activity, promoted cartilage proliferation by observation of PCNA marker and reduced vascular invasion through observation of CD31 marker for angiogenesis compared to OA group (P<0.001). Overall the data suggested that the order of the effective site of ESWT was T+F(M) ≧ T(M) > T(M+L) > F(M) in OA rat knees. PMID:28367081

  8. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee.

    PubMed

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (p<0.05), osteophyte formation and subchondral sclerotic bone (p<0.05). Using sectional cartilage area, modified Mankin scoring system as well as thickness of calcified and un-calcified cartilage analysis, the results showed that articular cartilage damage was ameliorated and T+F(M) group had the most protection as compared with other locations (p<0.05). Detectable cartilage surface damage and proteoglycan loss were measured and T+F(M) group showed the smallest lesion score among other groups (p<0.05). Micro-CT revealed significantly improved in subchondral bone repair in all ESWT groups compared to OA group (p<0.05). There were no significantly differences in bone remodeling after ESWT groups except F(M) group. In the immunohistochemical analysis, T+F(M) group significant reduced TUNEL activity, promoted cartilage proliferation by observation of PCNA marker and reduced vascular invasion through observation of CD31 marker for angiogenesis compared to OA group (P<0.001). Overall the data suggested that the order of the effective site of ESWT was T+F(M) ≧ T(M) > T(M+L) > F(M) in OA rat knees.

  9. EFFECTS OF ZOLEDRONIC ACID ON OOFORECTOMIZED RATS' TIBIAE: A PROSPECTIVE AND RANDOMIZED STUDY

    PubMed Central

    Alves Pereira, Fernando Roberto; Dutra, Ricardo César; Reis Olímpio, Thiago César; Müller, Sérgio Swain; Palacio, Evandro Pereira

    2015-01-01

    To investigate clinical, biomechanic and histomorphometric effects of zoledronic acid on osteoporotic rats’ tibiae after bilateral ooforectomy. Methods: 40 female Wistar (Rattus novergicus albinus) rats were prospectively studied. On the 60th day of life, the animals were randomized into two groups according to the surgical procedure: bilateral ooforectomy (O) (n=20) and sham surgery (“sham”) (P) (n=20). After 30 days, the animals were divided into four groups, according to the administration of zoledronic acid (ZA) 0.1mg/kg or distilled water (DW): OZA (n=10), ODW (n=10), PZA (n=10) and PDW (n=10). After 12 months, the animals were sacrificed, and had their tibiae assessed. In the clinical study, animals’ weight was considered; in the biomechanical study, compressive assays were applied and, in the histomorphometric analysis, the bone trabecular area was determined. Results: “O” groups showed a significantly greater weight gain than “P” groups (p=0.005). Groups OZA and PZA showed an insignificant weight gain when compared to ODW (p=0.47) and PDW (p=0.68). The groups receiving zoledronic acid and distilled water were able to bear maximum load, similar (p=0.2), at the moment of fracture. In the groups receiving zoledronic acid, an insignificant increase of the bone trabecular area was found when compared to the groups receiving distilled water (p=0.21). There was a positive correlation between trabecular area and maximum load (p=0.04; r=0.95). Conclusion: Zoledronic acid did not significantly influence animals’ weight. The results showed an insignificant increase both of the tibial shaft bone resistance and the bone trabecular area. PMID:26998455

  10. Evaluation of Bone Healing After Osteotomies Prepared With Er:YAG Laser in Contact and Noncontact Modes and Piezosurgery--An Animal Study.

    PubMed

    Gabrić, Dragana; Blašković, Marko; Gjorgijevska, Elizabeta; Mladenov, Mitko; Tašič, Blaž; Jurič, Ivona Bago; Ban, Ticijana

    2016-01-01

    To analyze the healing of bone tissue treated with Er:YAG laser contact and noncontact modes of and piezosurgery in a rat model using triangular laser profilometry. Twenty-four 10-week-old adult male Wistar rats were used in the study. Three osteotomies on the medial part of tibia were performed in each animal, 1 in the right tibia and 2 in the left tibia. The osteotomies were performed with a piezoelectric device set at maximal power and the Er:YAG laser in contact mode (power, 7.5 W; pulse energy, 375 mJ; repetition rate, 20 Hz; MSP mode) and noncontact mode (power, 7.5 W; pulse energy, 750 mJ; repetition rate, 10 Hz; QSP mode) with a novel type of circular, digitally controlled handpiece (x-Runner). After surgery, 6 animals were immediately euthanized (group 1), and the others were euthanized after 1 week (group 2, n = 6), 2 weeks (group 3, n = 6), and 3 weeks (group 4, n = 6). Bone healing after osteotomy was analyzed using a 3-dimensional laser scanning technique (ie, laser triangulation profilometry). The volume reduction rates are similar for all 3 techniques (0.2 to 0.25 mm(3) per week). Greater volume reduction of 0.25 mm3 per week was observed for the Er:YAG laser in noncontact mode (x-Runner). After 3 weeks, almost complete healing of the prepared osteotomy was observed. Within the limitations of this study, the osteotomies performed by the Er:YAG laser in digitally controlled noncontact mode healed the fastest. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xin-Ai; Jia, Lin-Lin; Cui, Wei

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heartmore » weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of TNF-α attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of TNF-α attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of TNF-α attenuates hypertension-induced imbalance of cytokines. • PVN inhibition of TNF-α attenuates PVN NF-κB p65 activity and oxidative stress.« less

  12. [Differential expression genes of bone tissues surrounding implants in diabetic rats by gene chip].

    PubMed

    Wang, Xin-xin; Ma, Yue; Li, Qing; Jiang, Bao-qi; Lan, Jing

    2012-10-01

    To compare mRNA expression profiles of bone tissues surrounding implants between normal rats and rats with diabetes using microarray technology. Six Wistar rats were randomly selected and divided into normal model group and diabetic group. Diabetic model condition was established by injecting Streptozotocin into peritoneal space. Titanium implants were implanted into the epiphyseal end of the rats' tibia. Bone tissues surrounding implant were harvested and sampled after 3 months to perform comprehensive RNA gene expression profiling, including 17983 for genome-wide association study.GO analysis was used to compare different gene expression and real-time PCR was used to confirm the results on core samples. The results indicated that there were 1084 differential gene expression. In the diabetic model, there were 352 enhanced expression genes, 732 suppressed expression genes. GO analysis involved 1154 different functional type. Osteoblast related gene expressions in bone tissue samples of diabetic rats were decreased, and lipid metabolism pathway related gene expression was increased.

  13. Effect of Electromagnetic Wave on Bone Healing in Fixed and Unfixed Conditions.

    PubMed

    Onger, Mehmet Emin; Göçer, Hasan; Çirakli, Alper; Büyükceran, Ismail; Kiliç, Mesut; Kaplan, Süleyman

    2016-09-01

    Mobile phones have come into daily life and are now one of the most frequently used devices for communication. The aim of this study was to evaluate possible effect of electromagnetic wave (EMW) with and without fixation material on bone healing.Forty male rats were exposed to fracture on tibia bone and were randomly divided into 4 groups as E(+)K(+), E(+)K(-), E(-)K(+), and E(-)K(-) where E(+) means EMW exposure and K(+) means Kirschner wire fixation. At the end of study tibia samples were taken from all the groups for the quantitative evaluation of regeneration.Significant difference was found between Group E(+)K(+) and E(-)K(+) in terms of both new bone and capillary volume.Electromagnetic wave may be harmful for bone healing with fixation whereas it has no same effect on bone regeneration without fixation.

  14. Prevention of bone loss in ovariectomized rats: the effect of Salvia miltiorrhiza extracts.

    PubMed

    Chae, H J; Chae, S W; Yun, D H; Keum, K S; Yoo, S K; Kim, H R

    2004-02-01

    The preventive effect of Salvia miltiorrhiza extracts (SMEs) on the progress of bone loss induced by ovariectomy (OVX) was studied in rats. We measured body weight and bone histomorphometry in sham, OVX or SMEs-administered OVX rats. From light microscopic analyses, a porous or erosive appearances were observed on the surface of trabecular bone of tibia in OVX rats, whereas those of the same bone in sham rats and in SMEs-administered rats were composed of fine particles. The trabecular bone area and trabecular thickness in OVX rats decreased by 50% from those in sham rats, these decreases were completely inhibited by administration of SMEs for 7 weeks. In this study, the mechanical strength in femur neck was significantly enhanced by the treatment of SMEs for 7 weeks. In OVX rats, free T3 was normal in all cases, whereas free T4 was significantly increased. Although there was no difference between OVX and SMEs-administered rats in T3 level, we have found significant difference between them in T4 level. These results strongly suggest that SMEs are effective in preventing the development of bone loss induced by OVX in rats.

  15. Calcium requirements of growing rats based on bone mass, structure, or biomechanical strength are similar.

    PubMed

    Hunt, Janet R; Hunt, Curtiss D; Zito, Carol Ann; Idso, Joseph P; Johnson, LuAnn K

    2008-08-01

    Although calcium (Ca) supplementation increases bone density, the increase is small and the effect on bone strength and fracture risk is uncertain. To investigate if bone mass, morphology, and biomechanical properties are affected by deficient to copious dietary Ca concentrations, the long bones (tibia and femur) of growing female Sprague-Dawley rats (8/group) were assessed after 13 wk of consuming 1, 2, 3, 4, 5, 6, or 7 g Ca/kg of a modified AIN-93G diet. Dietary phosphorous (P) and vitamin D remained constant at recommended concentrations. The assessment included mineralization, density, biomechanical properties of breaking by a 3-point flexure test, and morphological properties by microcomputed topography scanning of trabecular bone of the proximal tibia metaphysis. Dietary treatment did not affect food intake, weight gain, renal and muscle Ca concentrations, and bone hydroxyproline. All bone parameters measured were significantly impaired by Ca deficiency in rats fed the diet containing 1 g Ca/kg. Modest impairments occurred with some parameters (bone density, biomechanical bending moment, modulus of elasticity, and stress) in rats fed 2 g Ca/kg, but all parameters stabilized between 2 and 3 g/kg diet, with no differences between 3 and 7 g/kg. The results suggest that a threshold response in bone Ca retention or bone mass at approximately 2.5 g Ca/kg diet is associated with similar threshold responses in bone breaking strength and related biomechanics as well as trabecular structural properties. There was no evidence of a relative P deficiency or of improved or impaired bone strength and structure as Ca intakes increased beyond those needed to maximize bone density.

  16. One year of abaloparatide, a selective peptide activator of the PTH1 receptor, increased bone mass and strength in ovariectomized rats.

    PubMed

    Varela, Aurore; Chouinard, Luc; Lesage, Elisabeth; Guldberg, Robert; Smith, Susan Y; Kostenuik, Paul J; Hattersley, Gary

    2017-02-01

    Abaloparatide is a novel 34 amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor 1 (PTHR1) signaling pathway. The effects of 12months of abaloparatide treatment on bone mass, bone strength and bone quality was assessed in osteopenic ovariectomized (OVX) rats. SD rats were subjected to OVX or sham surgery at 6months of age and left untreated for 3months to allow OVX-induced bone loss. Eighteen OVX rats were sacrificed after this bone depletion period, and the remaining OVX rats received daily s.c. injections of vehicle (n=18) or abaloparatide at 1, 5 or 25μg/kg/d (n=18/dose level) for 12months. Sham controls (n=18) received vehicle daily. Bone changes were assessed by DXA and pQCT after 0, 3, 6 or 12months of treatment, and destructive biomechanical testing was conducted at month 12 to assess bone strength and bone quality. Abaloparatide dose-dependently increased bone mass at the lumbar spine and at the proximal and diaphyseal regions of the tibia and femur. pQCT revealed that increased cortical bone volume at the tibia was a result of periosteal expansion and endocortical bone apposition. Abaloparatide dose-dependently increased structural strength of L4-L5 vertebral bodies, the femur diaphysis, and the femur neck. Increments in peak load for lumbar spine and the femur diaphysis of abaloparatide-treated rats persisted even after adjusting for treatment-related increments in BMC, and estimated material properties were maintained or increased at the femur diaphysis with abaloparatide. The abaloparatide groups also exhibited significant and positive correlations between bone mass and bone strength at these sites. These data indicate that gains in cortical and trabecular bone mass with abaloparatide are accompanied by and correlated with improvements in bone strength, resulting in maintenance or improvement in bone quality. Thus, this study demonstrated that long-term daily administration of abaloparatide to osteopenic OVX rats led to dose-dependent improvements in bone mass, geometry and strength. Copyright © 2016. Published by Elsevier Inc.

  17. Effects of spaceflight on trabecular bone in rats

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Wronski, T. J.; Morey, E. R.; Kimmel, D. B.

    1983-01-01

    Alterations in trabecular bone were observed in growing male Wistar rats after 18.5 days of orbital flight on the COSMOS 1129 biosatellite. Spaceflight induced a decreased mass of mineralized tissue and an increased fat content of the bone marrow in the proximal tibial and humeral metaphyses. The osteoblast population appeared to decline immediately adjacent to the growth cartilage-metaphyseal junction, but osteoclast numbers were unchanged. These results suggested that bone formation may have been inhibited during spaceflight, but resorption remained constant. With the exception of trabecular bone mass in the proximal tibia, the observed skeletal changes returned to normal during a 29-day postflight period.

  18. [Efficacy of using zinc oxide nanoparticles in nutrition. Experiments on the laboratory animal].

    PubMed

    Raspopov, R V; Trushina, E N; Mustafina, O K; Tananova, O N; Gmoshinskiĭ, I V; Khotimchenko, S A

    2011-01-01

    In experiments on rats there was researched bioavailability of zinc oxide (ZnO) nanoparticles. There were determined the content of Zn in blood serum and tibia, intestinal uptake of macromolecules of egg albumin, some hematological, biochemical and immune indices, liver cells apoptosis. The results obtained show that the uptake of nanoparticles of ZnO enables restoration of this microelement status damaged by zinc deficit diet.

  19. Influence of electric field exposure on bone growth and fracture repair in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, B.J.; Phillips, R.D.

    1983-01-01

    Rats were exposed to a 60-Hz electric field at an unperturbed field strength of 100 kV/m to determine its affect on bone growth and fracture repair. Exposure of immature male and female rats for 20 h/day for 30 days did not alter growth rate, cortical bone area, or medullary cavity area of the tibia. In another experiment, midfibular osteotomies were performed and the juvenile rats were exposed at 100 kV/m for 14 days. Evaluation by resistance to deformation and breaking strength indicated that fracture repair was not as advanced in the exposed animals as in the sham-exposed animals. In anothermore » experiment measurements of resistance to deformation were made in adult rats at 16, 20 and 26 days after osteotmy. Fracture repair was slower in exposed compared to control animals at day 20 and, to a lesser extent, at day 16, but not at day 26. 28 references, 6 tables.« less

  20. Hydroxyapatite Coating on TiO₂ Nanotube by Sol-Gel Method for Implant Applications.

    PubMed

    Lim, Hyun-Pil; Park, Sang-Won; Yun, Kwi-Dug; Park, Chan; Ji, Min-Kyung; Oh, Gye-Jeong; Lee, Jong-Tak; Lee, Kwangmin

    2018-02-01

    The aim of this study was to determine the effect of hydroxyapatite (HA) coating on titanium dioxide (TiO2) nanotube by sol-gel process on viability of osteoblast like cell (MC3T3-E1) and bone formation in rat tibia. Specimens were divided into three groups including commercially pure titanium (control group), TiO2 nanotubes (group N), and HA coated TiO2 nanotubes (group HN). Surface characteristics were determined using field emission scanning electron microscope (FE-SEM; S-4700, Hitachi, Japan) and contact angles were measured. Cell viability was investigated in vitro after 1 day, 3 days, and 7 days of incubation. Implants (2.0 mm in diameter and 5.0 mm in length) were inserted into the tibia of rats. After 4 weeks, histomorphometric analysis was performed. Both N and HN groups showed enhanced hydrophilicity compared to control group. After 7 days of implantation, group HN showed higher cell viability with marginal significance (0.05 < P < 0.1). Bone to implant contact (BIC) ratio in the control group, group N, and group HN were 32.5%, 33.1%, and 43.8%, respectively. Results of this study showed that HA coated TiO2 nanotube using sol-gel process could be used to enhance hydrophilicity and improve osseointegration of dental implant surface.

  1. Effect of avocado/soybean unsaponifiables on osseointegration: a proof-of-principle preclinical in vivo study.

    PubMed

    de Oliveira, Guilherme José Pimentel Lopes; de Paula, Luiz Guilherme Freitas; Spin-Neto, Rubens; Stavropoulos, Andreas; Spolidório, Luis Carlos; Marcantonio, Elcio; Marcantonio, Rosemary Adriana Chiérici

    2014-01-01

    To evaluate the influence of administration of avocado/soybean unsaponifiables (ASU) on implant osseointegration in rat tibiae. Thirty rats were randomly assigned into one of three equal-sized groups: (1) ASU1: administration of ASU starting 7 days prior to implant placement; (2) ASU2: administration of ASU starting on the day of implant placement, and (3) CTL: administration of saline solution. In all animals, one titanium implant was placed in each tibia. All animals received ASU or saline solution by gavage daily until sacrifice 60 days postoperatively. Implant osseointegration and bone maturation were assessed by biomechanical and radiographic bone density analysis; descriptive histology; immunohistochemistry for bone morphogenetic protein 2 (BMP-2), transforming growth factor beta 1 (TGF-β1), and osteocalcin; and histomorphometric evaluation of bone-to-implant contact (BIC) and mineralized bone area fraction within the threads of the implant. ASU1 and ASU2 showed three times higher expression of BMP-2 and nine times higher expression of TGF-β1 compared with CTL (P < .05). Histomorphometric analysis, however, showed that both ASU1 and ASU2 groups presented significantly higher BIC values only in the cortical bone compartment when compared to CTL (P < .05). ASU consumption seems to exert only a subtle effect on implant osseointegration.

  2. Novel β-TCP Coated Titanium Nanofiber Surface for Enhanced Bone Growth.

    PubMed

    Lim, Hyun-Pil; Park, Sang-Won; Yun, Kwi-Dug; Park, Chan; Ji, Min-Kyung; Oh, Gye-Jeong; Lee, Jong-Tak; Lee, Kwangmin

    2018-02-01

    In this study, we examined the effect of β-tricalcium phosphate (β-TCP) coating on alkali-treated CP Grade II titanium surface via RF magnetron sputtering on osteoblast like cell (MC3T3-E1) viability and bone formation in rat tibia. The specimens were divided into three groups; commercially pure titanium (control group), alkali-treated titanium with nanofiber structure (NF group) and β-TCP coating on alkali-treated titanium with nanofiber structure (TNF group). The surface characteristics of specimens were observed under a field emission scanning electron microscope (FE-SEM), and contact angle was measured. The cell viability was assessed in vitro after 1 day, 3 days and 7 days. Implants of 2.0 mm diameter and 5.0 mm length were inserted into the tibia of rats. After 4 wks, the histomorphometric analysis was performed. Group NF and group TNF showed improved hydrophilicity of Ti. Group TNF showed significantly higher cell viability (P < 0.05) after 7 days. The bone to implant contact (BIC) ratio of the control group, NF group, and TNF group were 32.3%, 35.5%, and 63.9%, respectively. The study results suggested that β-TCP coated alkali-treated titanium surface via RF magnetron sputtering might be effective in implant dentistry due to enhanced hydrophilicity, improved cell response, and better osseointegration.

  3. Comparison of intrinsic and extrinsic tracer methods for estimating calcium bioavailability to rats from dairy foods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchowski, M.S.; Sowizral, K.C.; Lengemann, F.W.

    Dairy products doubly labeled with 45Ca and 47Ca were used to evaluate an extrinsic labeling procedure for calcium bioavailability determination. Nonfat milk, yogurt, and fresh cheese curd were prepared from caprine milk that was intrinsically labeled with 45Ca. The products were then labeled extrinsically with 47Ca and administered to rats by gavage. The 47Ca to 45Ca ratio in bone and teeth averaged about 1.00 with either milk, yogurt, or CaCl2, but the ratio was about 1.04 when dosed with cheese curd. Ca absorption, determined by whole-body counting of 47Ca, was lower (P less than 0.05) in cheese curd (59%) thanmore » in either milk (69%), yogurt (72%), or CaCl2 (72%). Expressed as percent of dose, the absorption of 47Ca was highly correlated with bone 47Ca (r = 0.973) and with bone 45Ca (r = 0.946). Correlation between tibia 47Ca and tibia 45Ca was r = 0.923. For the dairy products tested, our results indicated that extrinsic 47Ca was absorbed similarly to intrinsic 45Ca. Moreover, the percent of radioactive dose retained in bone appears to be a valid indicator of relative bioavailability of food Ca.« less

  4. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats.

    PubMed

    Lin, Hsin-Shih; Wang, Ho-Seng; Chiu, Hung-Ta; Cheng, Kuang-You B; Hsu, Ar-Tyan; Huang, Tsang-Hai

    2018-06-01

    The purpose of the study was to investigate the adaptation process of hindlimb cortical bone subjected to free-fall landing training. Female Wistar rats (7 weeks old) were randomly assigned to four landing (L) groups and four age-matched control (C) groups (n = 12 per group): L1, L2, L4 L8, C1, C2, C4 and C8. Animals in the L1, L2, L4 and L8 groups were respectively subjected to 1, 2, 4 and 8 weeks of free-fall-landing training (40 cm height, 30 times/day and 5 days/week) while the C1, C2, C4 and C8 groups served as age-matched control groups. The tibiae of the L8 group were higher in cortical bone mineral content (BMC) than those in the C8 group (p < 0.05). Except for the higher bone mineralization over bone surface ratio (MS/BS, %) shown in the tibiae of the L1 group (p < 0.05), dynamic histomorphometry in the tibial and femoral cortical bone showed no difference between landing groups and their age-matched control groups. In the femora, the L1 group was lower than the C1 group in cortical bone area (Ct.Ar) and cortical thickness (Ct.Th) (p < 0.05); however, the L4 group was higher than the C4 group in Ct.Ar and Ct.Th (p <0 .05). In the tibiae, the moment of inertia about the antero-posterior axis ( I ap ), Ct.Ar and Ct.Th was significantly higher in the L8 group than in the C8 group (p < 0.05). In biomechanical testing, fracture load (FL) of femora was lower in the L1 group than in the C1 group (p < 0.05). Conversely, yield load (YL), FL and yield load energy (YE) of femora, as well as FL of tibiae were all significantly higher in the L8 group than in the C8 group (p < 0.05). Free-fall landing training may initially compromise bone material. However, over time, the current free-fall landing training induced improvements in biomechanical properties and/or the structure of growing bones.

  5. Foam-reinforced elderly human tibia approximates young human tibia better than porcine tibia: a study of the structural properties of three soft tissue fixation devices.

    PubMed

    Bailey, Shana B; Grover, Dustin M; Howell, Stephen M; Hull, Maury L

    2004-01-01

    Because there is an insufficient supply of young human knees, an alternative is needed for evaluating anterior cruciate ligament reconstructions. The authors determined whether an elderly human tibia reinforced with foam is a better substitute for a young human tibia than a porcine tibia in this study of the tibialfixation of a soft tissue anterior cruciate ligament graft using 3 devices. A foam-reinforced elderly human tibia more closely approximates the performance of a young human tibia than porcine tibia. Biomechanical study. Failure mode, stiffness, yield, and slippage were determined for a double-looped tendon graft fixed with either an interference screw, WasherLoc, or tandem washers in young human tibiae, foam-reinforced tibiae from elderly humans, and porcine tibiae. The stiffness and yield of interference screw and WasherLoc fixation in foam-reinforced tibiae more closely approximate those in young human tibiae than in porcine tibiae. Slippage of all combinations of tibiae and fixation devices was similar A foam-reinforced human tibia more closely approximates the performance of a young human tibia than that of porcine tibia in this study. Fixation devices should be tested in foam-reinforced tibiae from elderly humans rather than tibiae from large farm animals when the supply of young human knees is insufficient.

  6. Vancomycin containing PLLA/β-TCP controls experimental osteomyelitis in vivo.

    PubMed

    Kankilic, Berna; Bilgic, Elif; Korkusuz, Petek; Korkusuz, Feza

    2014-11-19

    Implant-related osteomyelitis (IRO) is recently controlled with local antibiotic delivery systems to overcome conventional therapy disadvantages. In vivo evaluation of such systems is however too little. We asked whether vancomycin (V)-containing poly-l-lactic acid/β-tricalcium phosphate (PLLA/β-TCP) composites control experimental IRO and promote bone healing in vivo. Fifty-six rats were distributed to five groups in this longitudinal controlled study. Experimental IRO was established at tibiae by injecting methicillin-resistant Staphylococcus aureus (MRSA) suspensions with titanium particles in 32 rats. Vancomycin-free PLLA/β-TCP composites were implanted into the normal and infected tibiae, whereas V-PLLA/β-TCP composites and coated (C)-V-PLLA/β-TCP composites were implanted into IRO sites. Sham-operated tibiae established the control group. Radiological and histological scores were quantified with microbiological findings on weeks 1 and 6. IRO is resolved in the CV- and the V-PLLA/β-TCP groups but not in the PLLA/β-TCP group. MRSA was not isolated in the CV- and the V-PLLA/β-TCP groups at all times whereas the bacteria were present in the PLLA/β-TCP group. Radiological signs secondary to infection are improved from 10.9 ± 0.9 to 3.0 ± 0.3 in the V-PLLA/β-TCP group but remained constant in the PLLA/β-TCP group. Histology scores are improved from 24.7 ± 6.5 to 17.6 ± 4.8 and from 27.6 ± 7.9 to 32.4 ± 8.9 in the CV-PLLA/β-TCP and the V-PLLA/β-TCP groups, respectively. New bone was formed in all the PLLA/β-TCP group at weeks 1 and 6. CV- and V-PLLA/β-TCP composites controlled experimental IRO and promoted bone healing. CV- and V-PLLA/β-TCP composites have the potential of controlling experimental IRO and promoting bone healing.

  7. Effects of Radiation and a High Iron Load on Bone Mineral Density

    NASA Technical Reports Server (NTRS)

    Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.

    2012-01-01

    Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.

  8. Chronic and intermittent exposure to alcohol vapors: a new model of alcohol-induced osteopenia in the rat.

    PubMed

    Maurel, Delphine B; Jaffré, Christelle; O'Brien, Emmanuelle Simon; Tournier, Carine C; Houchi, Hakim; Benhamou, Claude-Laurent; Naassila, Mickael

    2013-01-01

    Different models are used to study the effects of chronic alcohol consumption on bone tissue in the rat. However, the current models take several months to show indices of osteopenia as observed in chronic drinkers. Numerous studies have supported that chronic and intermittent exposure to ethanol vapors has predictive validity as a model of alcohol dependence in humans. However, this model has never been applied to bone research to study its effects on the parameters that define osteopenia. This was the goal of this study in the rat. Male Wistar rats were exposed to ethanol vapor inhalation (n = 6) or air (controls, n = 6). Animals were exposed to chronic (11 weeks) and intermittent (14 hours a day) ethanol vapor reaching stable blood alcohol levels (BALs; 150 to 250 mg/dl) at the end of the third week of inhalation. After the sacrifice, right and left femur and tibia were dissected free of fat and connective tissue and bone mineral density (BMD) was assessed by dual X-ray absorptiometry. The microarchitecture of the femur was studied using microcomputed tomography. The BMD of the left and right femurs and the left tibia was lower in the ethanol group compared with the control group. The bone volume fraction (BV/TV) and the bone surface density (BS/TV) were lower in the ethanol group compared with control animals. The trabecular number (Tb.N) was lower in the ethanol group while the trabecular spacing was higher. The decrease in the BMD, BV/TV, and Tb.N is in the same range as what is observed in human drinkers and what is reported with other animal alcohol models (Lieber-DeCarli liquid diet, ethanol in the tap water). Therefore, this model could be useful to study the effects of chronic alcohol consumption in the bone research field and has the advantage of controlling easily targeted BALs. Copyright © 2012 by the Research Society on Alcoholism.

  9. Skeletal accumulation of fluorescently tagged zoledronate is higher in animals with early stage chronic kidney disease.

    PubMed

    Swallow, E A; Aref, M W; Chen, N; Byiringiro, I; Hammond, M A; McCarthy, B P; Territo, P R; Kamocka, M M; Winfree, S; Dunn, K W; Moe, S M; Allen, M R

    2018-06-11

    This work examines the skeletal accumulation of fluorescently tagged zoledronate in an animal model of chronic kidney disease. The results show higher accumulation in 24-h post-dose animals with lower kidney function due to greater amounts of binding at individual surfaces. Chronic kidney disease (CKD) patients suffer from increased rates of skeletal-related mortality from changes driven by biochemical abnormalities. Bisphosphonates are commonly used in reducing fracture risk in a variety of diseases, yet their use is not recommended in advanced stages of CKD. This study aimed to characterize the accumulation of a single dose of fluorescently tagged zoledronate (FAM-ZOL) in the setting of reduced kidney function. At 25 weeks of age, FAM-ZOL was administered to normal and CKD rats. Twenty-four hours later, multiple bones were collected and assessed using bulk fluorescence imaging, two-photon imaging, and dynamic histomorphometry. CKD animals had significantly higher levels of FAM-ZOL accumulation in the proximal tibia, radius, and ulna, but not in lumbar vertebral body or mandible, based on multiple measurement modalities. Although a majority of trabecular bone surfaces were covered with FAM-ZOL in both normal and CKD animals, the latter had significantly higher levels of fluorescence per unit bone surface in the proximal tibia. These results provide new data regarding how reduced kidney function affects drug accumulation in rat bone.

  10. Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia.

    PubMed

    Nakamura, Hiroaki; Sato, Ginga; Hirata, Azumi; Yamamoto, Toshio

    2004-01-01

    Matrix metalloproteinase (MMP)-13 (an interstitial collagenase also called collagenase 3) is involved in degradation of extracellular matrix in various tissues. Using immunohistochemistry and Western blotting, we investigated localization of MMP-13 in rat tibia, to clarify the role of MMP-13 in bone resorption. MMP-13 reactivity was mainly seen on bone surfaces under osteoclasts, and in some osteocytes and their lacunae near osteoclasts. However, immunoreactivity was not seen in chondrocytes or osteoclasts. MMP-13 was also localized on cement lines in the epiphysis. In the growth plate erosion zone, perivascular cells showed MMP-13 reactivity. Immunoelectron microscopy revealed that MMP-13 was localized on the bone surfaces, under the ruffled borders and some clear zones of osteoclasts. Gold-labeled MMP-13 was closely associated with collagen fibrils. Gold labeling was also detected in Golgi apparatus of osteocytes adjacent to osteoclasts and bone lining cells. Western blotting showed that MMP-13 was mainly associated with mineralized bone matrix. These findings suggest that MMP-13 synthesized and secreted by osteoblast-lineage cells is localized under the ruffled borders of osteoclasts. MMP-13 may play an important role in degradation of type I collagen in bone matrix, acting in concert with cathepsin K and MMP-9 produced by osteoclasts. MMP-13 in perivascular cells may be involved in removal of cartilage matrix proteins such as type II collagen and aggrecan.

  11. Bisphosphonates inhibit pain, bone loss, and inflammation in a rat tibia fracture model of complex regional pain syndrome

    PubMed Central

    Wang, Liping; Guo, Tian-Zhi; Wei, Tzuping; Li, Wen-wu; Shi, Xiaoyou; Clark, J David; Kingery, Wade S

    2016-01-01

    BACKGROUND Bisphosphonates are used to prevent the bone loss and fractures associated with osteoporosis, bone metastases, multiple myeloma, and osteogenis deformans. Distal limb fractures cause regional bone loss with cutaneous inflammation and pain in the injured limb that can develop into complex regional pain syndrome (CRPS). Clinical trials have reported that anti-resorptive bisphosphonates can prevent fracture-induced bone loss, inhibit serum inflammatory cytokine levels, and alleviate CRPS pain. Previously we observed that the inhibition of inflammatory cytokines or adaptive immune responses attenuated the development of pain behavior in a rat fracture model of CRPS and we hypothesized that bisphosphonates could prevent pain behavior, trabecular bone loss, post-fracture cutaneous cytokine up-regulation, and adaptive immune responses in this CRPS model. METHODS Rats underwent tibia fracture and cast immobilization for 4 weeks and were chronically administered either subcutaneously perfused alendronate or oral zoledronate. Behavioral measurements included hindpaw von Frey allodynia, unweighting, warmth, and edema. Bone microarchitecture was measured by uCT and bone cellular activity was evaluated by static and dynamic histomorphometry. Spinal cord Fos immunostaining was performed and skin cytokine (TNF, IL-1, IL-6) and nerve growth factor (NGF) levels were determined by EIA. Skin and sciatic nerve immunoglobulin levels were determined by EIA. RESULTS Tibia fracture rats developed hindpaw allodynia, unweighting, warmth, and edema, increased spinal Fos expression, trabecular bone loss in the lumbar vertebra and bilateral distal femurs as measured by uCT, increased trabecular bone resorption and osteoclast surface with decreased bone formation rates, increased cutaneous inflammatory cytokine and NGF expression and elevated immunocomplex deposition in skin and nerve. Alendronate (60 μg/kg/day s.c.) or zoledronate (3 mg/kg/day p.o.) treatment for 28 days, started at the time of fracture, completely inhibited the development of hindpaw allodynia and reduced hindpaw unweighting by 44 ± 13% and 58 ± 5%, respectively. Orally administered zoledronate (3 mg/kg/day for 21 days) treatment also completely reversed established allodynia and unweighting when started at 4-weeks post-fracture. Histomorphometric and uCT analysis demonstrated that both the 3 and 60 μg/kg/day alendronate treatments reversed trabecular bone loss (a 88 ± 25% and 188 ± 39% increase in the ipsilateral distal femur BV/TV, respectively) and blocked the increase in osteoclast numbers and erosion surface observed in bilateral distal femurs and in L5 vertebra of the fracture rats. Alendronate treatment inhibited fracture-induced increases in hindpaw inflammatory mediators, reducing post-fracture levels of TNF by 43 ± 9%, IL-1 by 60 ± 9%, IL-6 by 56 ± 14%, and NGF by 37 ± 14%, but had no effect on increased spinal cord Fos expression, or skin and sciatic nerve immunocomplex deposition. CONCLUSIONS Collectively, these results indicate that bisphosphonate therapy inhibits pain, osteoclast activation, trabecular bone loss, and cutaneous inflammation in the rat fracture model of CRPS, data supporting the hypothesis that bisphosphonate therapy can provide effective multimodal treatment for CRPS. PMID:27636578

  12. Increased resistance during jump exercise does not enhance cortical bone formation.

    PubMed

    Boudreaux, Ramon D; Swift, Joshua M; Gasier, Heath G; Wiggs, Michael P; Hogan, Harry A; Fluckey, James D; Bloomfield, Susan A

    2014-01-01

    This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.

  13. Multi-Generational Drinking of Bottled Low Mineral Water Impairs Bone Quality in Female Rats

    PubMed Central

    Zeng, Hui; Wang, Lingqiao; Wang, Dahua; Luo, Jiaohua; Zhang, Liang; Huang, Yujing; Chen, Ji-an; Shu, Weiqun

    2015-01-01

    Background Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse. Objective To elucidate the skeletal effects of multi-generational bottled water drinking in female rats. Methods Rats continuously drank tap water (TW), bottled natural water (bNW), bottled mineralized water (bMW), or bottled purified water (bPW) for three generations. Results The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups) were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group. Conclusion Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model. PMID:25803851

  14. Effects of local vibration on bone loss in -tail-suspended rats.

    PubMed

    Sun, L W; Luan, H Q; Huang, Y F; Wang, Y; Fan, Y B

    2014-06-01

    We investigated the effects of vibration (35 Hz, 45 Hz and 55 Hz) as countermeasure locally applied to unloading hind limbs on bone, muscle and Achilles tendon. 40 female Sprague Dawley rats were divided into 5 groups (n=8, each): tail-suspension (TS), TS plus 35 Hz/0.3 g vibration (TSV35), TS plus 45 Hz/0.3 g vibration (TSV45), TS plus 55 Hz/0.3 g vibration (TSV55) and control (CON). After 21 days, bone mineral density (BMD) and the microstructure of the femur and tibia were evaluated by μCT in vivo. The biomechanical properties of the femur and Achilles tendon were determined by a materials testing system. Ash weight of bone, isotonic contraction and wet weight of soleus were also investigated. 35 Hz and 45 Hz localized vibration were able to significantly ameliorate the decrease in trabecular BMD (expressed as the percentage change from TS, TSV35: 48.11%, TSV45: 31.09%), microstructure and ash weight of the femur and tibia induced by TS. Meanwhile, 35 Hz vibration significantly improved the biomechanical properties of the femur (57.24% bending rigidity and 41.66% Young's modulus vs. TS) and Achilles tendon (45.46% maximum load and 66.67% Young's modulus vs. TS). Additionally, Young's modulus of the femur was highly correlated with microstructural parameters. Localized vibration was useful for counteracting microgravity-induced musculoskeletal loss. In general, the efficacy of 35 Hz was better than 45 Hz or 55 Hz in tail-suspended rats. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiao-Jing; Zhang, Dong-Mei; Jia, Lin-Lin

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocytemore » diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines. • PVN inhibition of NF-κB attenuates PVN NF-κB p65 activity and oxidative stress.« less

  16. Investigation of strontium accumulation on ovariectomized Sprague-Dawley rat tibia by micro-PIXE

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, Y.; Jin, W.; Zheng, Y.; Rong, C.; Lyu, H.; Shen, H.

    2014-08-01

    Strontium ranelate is a newly developed drug effective in osteoporosis treatment by depressing bone resorption and maintaining bone formation. Strontium accumulation and distribution are determined in bones of rat after strontium ranelate administration by using micro-PIXE. The investigated rats are divided into four groups: (A) control, (B) ovariectomized, (C) ovariectomized followed with strontium chloride, (D) ovariectomized followed with strontium ranelate. It was found that strontium ranelate would result in increasing trabecular volume and decreasing bone resorption to treat osteoporosis. There are similar contours of calcium and strontium in two-dimensional images, while the strontium is not evenly distributed in the bone. It supports the conclusion that strontium has an affinity for bone and it is capable of replacing calcium atoms as a part of the strontium mechanism in the osteoporosis treatment. The results related to biochemistry are also discussed.

  17. The effects of virgin coconut oil on bone oxidative status in ovariectomised rat.

    PubMed

    Abujazia, Mouna Abdelrahman; Muhammad, Norliza; Shuid, Ahmad Nazrun; Soelaiman, Ima Nirwana

    2012-01-01

    Virgin coconut oil (VCO) was found to have antioxidant property due to its high polyphenol content. The aim of this study was to investigate the effect of the virgin coconut oil on lipid peroxidation in the bone of an osteoporotic rat model. Normal female Sprague-Dawley rats aged 3 months old were randomly divided into 4 groups, with 8 rats in each group: baseline, sham, ovariectomised (OVX) control group, and OVX given 8% VCO in the diet for six weeks. The oxidative status of the bone was assessed by measuring the index of lipid peroxidation, which is malondialdehyde (MDA) concentration, as well as the endogenous antioxidant enzymes glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the tibia at the end of the study. The results showed that there was a significant decrease in MDA levels in the OVX-VCO group compared to control group. Ovariectomised rats treated with VCO also had significantly higher GPX concentration. The SOD level seemed to be increased in the OVX-VCO group compared to OVX-control group. In conclusion, VCO prevented lipid peroxidation and increased the antioxidant enzymes in the osteoporotic rat model.

  18. The Effects of Virgin Coconut Oil on Bone Oxidative Status in Ovariectomised Rat

    PubMed Central

    Abujazia, Mouna Abdelrahman; Muhammad, Norliza; Shuid, Ahmad Nazrun; Soelaiman, Ima Nirwana

    2012-01-01

    Virgin coconut oil (VCO) was found to have antioxidant property due to its high polyphenol content. The aim of this study was to investigate the effect of the virgin coconut oil on lipid peroxidation in the bone of an osteoporotic rat model. Normal female Sprague-Dawley rats aged 3 months old were randomly divided into 4 groups, with 8 rats in each group: baseline, sham, ovariectomised (OVX) control group, and OVX given 8% VCO in the diet for six weeks. The oxidative status of the bone was assessed by measuring the index of lipid peroxidation, which is malondialdehyde (MDA) concentration, as well as the endogenous antioxidant enzymes glutathione peroxidase (GPX) and superoxide dismutase (SOD) in the tibia at the end of the study. The results showed that there was a significant decrease in MDA levels in the OVX-VCO group compared to control group. Ovariectomised rats treated with VCO also had significantly higher GPX concentration. The SOD level seemed to be increased in the OVX-VCO group compared to OVX-control group. In conclusion, VCO prevented lipid peroxidation and increased the antioxidant enzymes in the osteoporotic rat model. PMID:22927879

  19. The Diterpene Sclareol Vascular Effect in Normotensive and Hypertensive Rats.

    PubMed

    Campos, Debora Ribeiro; Celotto, Andrea Carla; Albuquerque, Agnes Afrodite S; Ferreira, Luciana Garros; Monteiro, Ariadne Santana E Neves; Coelho, Eduardo Barbosa; Evora, Paulo Roberto Barbosa

    2017-06-29

    The diterpene Sclareol has antimicrobial action, cytotoxic and cytostatic effects and anti-tumor activities. However, researches on the cardiovascular system are scarce. This study was designed to investigate the mechanisms involved in the Sclareol cardiovascular effect in normotensive and hypertensive rats. The arterial hypertension was promoted using 2-kidneys 1-clip model in rats. The effect of sclareol on blood pressure was performed by using three dose (10, 20 and 40 mg/kg). Cumulative dose-response curves for Sclareol were determined for endothelium-intact and endothelium-denuded aortic rings in presence or absence of L-NAME and ODQ. The NOx levels were measure in the plasma sample. The Sclareol administration in vivo caused a significant reduction in blood pressure in both groups. In vitro the sclareol promoted relaxation in aorta, with endothelium, pre-contracted to Phe. The inhibitors of the nitric oxide synthase and soluble guanylate cyclase were as efficient as the removal of endothelium, in inhibiting the Sclareol-induced relaxation. Otherwise, it was no change of NOx. Also, for unknown reasons, the Sclareol is not selective for hypertensive animals. The diterpene Sclareol showed in vivo hypotensive and in-vitro vasodilator effects; The chemiluminescence plasmatic NO analysis showed no significant difference between groups and The Sclareol exhibit better effect on normotensive than hypertensive animals to reduce blood pressure. It is concluded that the diterpenes metabolites would be a promising source prototype for the development of new agents in the cardiovascular therapy. O diterpeno Esclareol tem ação antimicrobiana, efeitos citotóxicos e citostáticos e atividades antitumorais. No entanto, pesquisas sobre o sistema cardiovascular são escassas. Este estudo foi desenvolvido para investigar os mecanismos envolvidos no efeito cardiovascular de Esclareol em ratos normotensos e hipertensos. A hipertensão arterial foi promovida utilizando modelo de 2 clones de 1-clipe em ratos. O efeito do esclareol sobre a pressão arterial foi realizado utilizando três doses (10, 20 e 40 mg/kg). As curvas dose-resposta cumulativas para Esclareol foram determinadas para anéis aórticos endotélio-intactos e desprovidos de endotélio na presença ou ausência de L-NAME e ODQ. Os níveis de NOx foram medidos na amostra de plasma. A administração de Esclareol in vivo causou uma redução significativa na pressão sanguínea em ambos os grupos. In vitro o esclareol promoveu relaxamento na aorta, com endotélio, pré-contraído a Phe. Os inibidores da óxido nítrico sintase e da guanilato ciclase solúvel foram tão eficientes quanto a remoção do endotélio, na inibição do relaxamento induzido por Esclareol. Por outra parte, não houve mudança de NOx. Além disso, por razões desconhecidas, o Sclareol não é seletivo para animais hipertensos. O diterpeno Esclareol apresentou efeitos hipotensores in vivo e vasodilatadores in vitro; A análise de NO plasmático por quimioluminescência não mostrou diferença significativa entre os grupos e O Esclareol exibe melhor efeito sobre os animais normotensos do que hipertensos para reduzir a pressão arterial. Conclui-se que os metabólitos de diterpenos seriam um protótipo de fonte promissora para o desenvolvimento de novos agentes na terapia cardiovascular.

  20. Establishment of a novel dwarf rat strain: cartilage calcification insufficient (CCI) rats

    PubMed Central

    TANAKA, Masami; WATANABE, Minoru; YOKOMI, Izuru; MATSUMOTO, Naoki; SUDO, Katsuko; SATOH, Hitoshi; IGARASHI, Tsuneo; SEKI, Azusa; AMANO, Hitoshi; OHURA, Kiyoshi; RYU, Kakei; SHIBATA, Shunichi; NAGAYAMA, Motohiko; TANUMA, Jun-ichi

    2014-01-01

    Rats with dwarfism accompanied by skeletal abnormalities, such as shortness of the limbs, tail, and body (dwarf rats), emerged in a Jcl-derived Sprague-Dawley rat colony maintained at the Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine. Since the dwarfism was assumed to be due to a genetic mutation based on its frequency, we bred the dwarf rats and investigated their characteristics in order to identify the causative factors of their phenotypes and whether they could be used as a human disease model. One male and female that produced dwarf progeny were selected, and reproduction was initiated by mating the pair. The incidence of dwarfism was 25.8% among the resultant litter, and dwarfism occurred in both genders, suggesting that it was inherited in an autosomal recessive manner. At 12 weeks of age, the body weights of the male and female dwarf rats were 40% and 57% of those of the normal rats, respectively. In soft X-ray radiographic and histological examinations, shortening and hypoplasia of the long bones, such as the tibia and femur, were observed, which were suggestive of endochondral ossification abnormalities. An immunohistochemical examination detected an aggrecan synthesis disorder, which might have led to delayed calcification and increased growth plate thickening in the dwarf rats. We hypothesized that the principal characteristics of the dwarf rats were systemically induced by insufficient cartilage calcification in their long bones; thus, we named them cartilage calcification insufficient (CCI) rats. PMID:25736479

  1. A novel chemically modified curcumin reduces inflammation-mediated connective tissue breakdown in a rat model of diabetes: periodontal and systemic effects.

    PubMed

    Elburki, M S; Moore, D D; Terezakis, N G; Zhang, Y; Lee, H-M; Johnson, F; Golub, L M

    2017-04-01

    Periodontal disease is the most common chronic inflammatory disease known to mankind (and the major cause of tooth loss in the adult population) and has also been linked to various systemic diseases, particularly diabetes mellitus. Based on the literature linking periodontal disease with diabetes in a "bidirectional manner", the objectives of the current study were to determine: (i) the effect of a model of periodontitis, complicated by diabetes, on mechanisms of tissue breakdown including bone loss; and (ii) the response of the combination of this local and systemic phenotype to a novel pleiotropic matrix metalloproteinase inhibitor, chemically modified curcumin (CMC) 2.24. Diabetes was induced in adult male rats by intravenous injection of streptozotocin (nondiabetic rats served as controls), and Escherichia coli endotoxin (lipopolysaccharide) was repeatedly injected into the gingiva to induce periodontitis. CMC 2.24 was administered by oral gavage (30 mg/kg) daily; untreated diabetic rats received vehicle alone. After 3 wk of treatment, the rats were killed, and gingiva, jaws, tibia and skin were collected. The maxillary jaws and tibia were dissected and radiographed. The gingival tissues of each experimental group (n = 6 rats/group) were pooled, extracted, partially purified and, together with individual skin samples, analyzed for matrix metalloproteinase (MMP)-2 and MMP-9 by gelatin zymography; MMP-8 was analyzed in gingival and skin tissue extracts, and in serum, by western blotting. The levels of three bone-resorptive cytokines [interleukin (IL)-1β, IL-6 and tumor necrosis factor-α], were measured in gingival tissue extracts and serum by ELISA. Systemic administration of CMC 2.24 to diabetic rats with endotoxin-induced periodontitis significantly inhibited alveolar bone loss and attenuated the severity of local and systemic inflammation. Moreover, this novel tri-ketonic phenylaminocarbonyl curcumin (CMC 2.24) appeared to reduce the pathologically excessive levels of inducible MMPs to near-normal levels, but appeared to have no significant effect on the constitutive MMPs required for physiologic connective tissue turnover. In addition to the beneficial effects on periodontal disease, induced both locally and systemically, CMC 2.24 also favorably affected extra-oral connective tissues, skin and skeletal bone. This study supports our hypothesis that CMC 2.24 is a potential therapeutic pleiotropic MMP inhibitor, with both intracellular and extracellular effects, which reduces local and systemic inflammation and prevents hyperglycemia- and bacteria-induced connective tissue destruction. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Ipamorelin, a new growth-hormone-releasing peptide, induces longitudinal bone growth in rats.

    PubMed

    Johansen, P B; Nowak, J; Skjaerbaek, C; Flyvbjerg, A; Andreassen, T T; Wilken, M; Orskov, H

    1999-04-01

    Ipamorelin is a new and potent synthetic pentapeptide which has distinct and specific growth hormone (GH)-releasing properties. With the objective of investigating the effects on longitudinal bone growth rate (LGR), body weight (BW), and GH release, ipamorelin in different doses (0, 18, 90 and 450 microg/day) was injected s.c. three times daily for 15 days to adult female rats. After intravital tetracycline labelling on days 0, 6, and 13, LGR was determined by measuring the distance between the respective fluorescent bands in the proximal tibia metaphysis. Ipamorelin dose-dependently increased LGR from 42 microm/day in the vehicle group to 44, 50, and 52 microm/day in the treatment groups (P<0.0001). There was also a pronounced and dose-dependent effect on BW gain. The treatment did not affect total IGF-I levels, IGFBPs, or serum markers of bone formation and resorption. The number of tartrate-resistant acid phosphatase-positive multinuclear cells in the metaphysis of the tibia did not change significantly with treatment. The responsiveness of the pituitary to a provocative i.v. dose of ipamorelin or GHRH showed that the plasma GH response was marginally reduced (P<0.03) after ipamorelin, but unchanged after GHRH. The pituitary GH content was unchanged by ipamorelin treatment. Whether ipamorelin or other GH secretagogues may have a place in the treatment of children with growth retardation requires demonstration in future clinical studies. Copyright 1999 Harcourt Publishers Ltd.

  3. Fenoterol did not enhance glucocorticoid-induced skeletal changes in male rats.

    PubMed

    Folwarczna, Joanna; Nowińska, Barbara; Śliwiński, Leszek; Pytlik, Maria; Cegieła, Urszula; Betka, Anna

    2011-01-01

    Glucocorticoids and β(2)-adrenergic receptor agonists are the most commonly used drugs in the treatment of asthma. Both therapies are potentially dangerous to the skeletal system. The aim of the present study was to investigate the effects of fenoterol, a β(2)-receptor agonist, on the development of bone changes induced by glucocorticoid (prednisolone) administration in mature male rats. The experiments were carried out on 24-week-old male Wistar rats. The effects of prednisolone 21-hemisuccinate sodium salt (7 mg/kg s.c. daily) or/and fenoterol hydrobromide (1.4 mg/kg i.p. daily), administered for 4 weeks, on the skeletal system were studied. Bone turnover markers, geometric parameters, mass, mass of bone mineral in the tibia, femur and L-4 vertebra, bone histomorphometric parameters and mechanical properties of tibial metaphysis, femoral diaphysis and femoral neck were determined. Both prednisolone and fenoterol had damaging effects on the skeletal system of mature male rats. However, concurrent administration of fenoterol and prednisolone did not result in the intensification of the deleterious skeletal effect of either drug administered separately.

  4. Effects of caffeic and chlorogenic acids on the rat skeletal system.

    PubMed

    Folwarczna, J; Pytlik, M; Zych, M; Cegieła, U; Nowinska, B; Kaczmarczyk-Sedlak, I; Sliwinski, L; Trzeciak, H; Trzeciak, H I

    2015-02-01

    Caffeic acid, predominantly as esters linked to quinic acid (chlorogenic acids), is a phenolic acid present at high levels in coffee. The aim of the study was to investigate effects of caffeic and chlorogenic acids on the skeletal system of female rats with normal estrogen levels and estrogen-deficient. Caffeic acid (5 and 50 mg/kg p.o. daily) and chlorogenic acid (100 mg/kg p.o. daily) were administered for 4 weeks to non-ovariectomized and bilaterally ovariectomized mature Wistar rats, and their effects were compared with appropriate controls. Moreover, estradiol (0.2 mg/kg p.o. daily) was administered to ovariectomized rats. Bone turnover markers, mass, mineralization and mechanical properties were examined. Although caffeic acid at a low dose exerted some unfavorable effects on the skeletal system, at high doses, caffeic and chlorogenic acids slightly increased mineralization in the tibia and improved mechanical properties of the femoral diaphysis (compact bone). Unlike estradiol, they did not counteract the worsening of the tibial metaphysis bone strength (cancellous bone) and increases in osteocalcin concentration induced by estrogen deficiency. High doses of the phenolic acids slightly favorably affected the rat skeletal system independently of the estrogen status.

  5. Dried Pomegranate Potentiates Anti-Osteoporotic and Anti-Obesity Activities of Red Clover Dry Extracts in Ovariectomized Rats

    PubMed Central

    Kang, Su Jin; Choi, Beom Rak; Kim, Seung Hee; Yi, Hae Yeon; Park, Hye Rim; Kim, Dong Chul; Choi, Seong Hun; Han, Chang Hyun; Park, Soo Jin; Song, Chang Hyun; Ku, Sae Kwang; Lee, Young Joon

    2015-01-01

    Red clover (RC) shows potential activity against menopausal symptoms and pomegranates have antioxidative and beneficial effects on postmenopausal symptoms; thus, we investigated whether the anti-climacteric activity of RC could be enhanced by the addition of dried pomegranate concentrate powder (PCP) extracts in ovariectomized (OVX) rats. Regarding the anti-osteoporotic effects, bone mineral density increased significantly in OVX induced rats treated with 60 and 120 mg/kg of an RC:PCP 2:1 mixture, respectively, compared with OVX control rats. Additionally, femoral, tibia, and L4 bone resorption was decreased in OVX induced control rats treated with the RC:PCP 2:1 mixture (60 and 120 mg/kg), respectively, compared with OVX control rats. Regarding anti-obesity effects, the OVX induced rats treated with 60 and 120 mg/kg of the RC:PCP 2:1 mixture showed a decrease in total fat pad thickness, the mean diameters of adipocytes and the body weights gain compared with OVX induced control rats. The estradiol and bone-specific alkaline phosphatase levels were significantly increased in OVX induced rats treated with the RC:PCP 2:1 mixture (120 mg/kg) compared with OVX induced control rats, also, the uterine atrophy was significantly inhibited in 60 and 120 mg/kg of the RC:PCP 2:1 mixture treatment compared with OVX control rats. In conclusion, our results indicate that PCP enhanced the anti-climacteric effects of RC in OVX rats. The RC:PCP 2:1 mixture used in this study may be a promising new potent and protective agent for relieving climacteric symptoms. PMID:25912038

  6. Influence of 1800 MHz GSM-like electromagnetic radiation exposure on fracture healing.

    PubMed

    Aslan, Ahmet; Kırdemır, Vecihi; Kocak, Ahmet; Atay, Tolga; Baydar, Metin Lütfi; Özerdemoglu, Remzi Arif; Aydogan, Nevres Hürriyet

    2014-02-01

    In this study, we aimed to investigate whether 1800 MHz frequency electromagnetic radiation (EMR) has an effect on bone healing. A total of 30 Wistar albino rats were divided into two equal groups. Fractures were created in the right tibias of all rats; next, intramedullary fixations with K-wire were performed. A control group (Group I) was kept under the same experimental conditions except without EMR exposure. Rats in Group II were exposed to an 1800 MHz frequency EMR for 30 min a day for 5 days a week. Next, radiological, mechanical, and histological examinations were performed to evaluate tibial fracture healing. Radiological, histological and mechanical scores were not significantly different between groups (respectively, p = 0.114, p = 0.184 and p = 0.083), and all of these scores were lower than those of the controls. EMR at 1800 MHz frequency emitted from cellular phones has no effect on bone fracture healing. Copyright © 2014 IMSS. Published by Elsevier Inc. All rights reserved.

  7. VITAMIN A AND ENDOCHONDRAL OSSIFICATION IN THE RAT AS INDICATED BY THE USE OF SULFUR-35 AND PHOSPHORUS-32

    PubMed Central

    Dziewiatkowski, Dominic D.

    1954-01-01

    The administration of vitamin A to vitamin A-deficient rats resulted in a decreased concentration of inorganic sulfate-sulfur in the serum from a value of 2.5 mg. per cent to 1.8 mg. per cent, the latter being close to the value of 2.0 mg. per cent found in normal rats of the same age. The uptake of sulfate and phosphate by femurs and tibiae of vitamin A-deficient rats was less than that in normal rats of the same age. An increased uptake followed the administration of vitamin A: radioautography indicated that in the case of sulfate, its uptake was particularly increased in the epiphyseal cartilage; an increased uptake of phosphate was particularly evident in the diaphysis immediately adjacent to the epiphyseal cartilage plate. The specific activity of the sulfate-sulfur in the chondroitin sulfate samples isolated from the skeletons of vitamin A-deficient rats fell progressively as the deficiency continued. Following administration of vitamin A, the specific activity approached and exceeded the value given by the sample from the skeletons of normal rats of the same age. A substantial increase was found in the value of the specific activity of the sulfate-sulfur of sulfomucopolysaccharides isolated from skins of vitamin A-deficient rats that had been given vitamin A. Following administration of vitamin A to rats deficient in this vitamin, an increased accumulation of some sulfur-containing material was found in regions of active calcification. PMID:13163335

  8. Vitamin K3 increased BMD at 1 and 2 months post-surgery and the maximum stress of the middle femur in the rat.

    PubMed

    Hong, You-jia; Liu, Sheng; Jiang, Ning-yi; Jiang, Sen; Liang, Jiu-gen

    2015-02-01

    The therapeutic effects of vitamin K3 (VK3) on osteoporosis are still unknown. In this study, we hypothesized that VK3 possesses therapeutic effects on osteoporosis; to verify this hypothesis, the ovariectomized rat was used as an osteoporosis model. Fifty-six Sprague-Dawley female rats aged 8 to 9 months were randomly assigned to 4 groups: sham surgery, ovariectomy with saline, ovariectomy with low-dose VK3, and ovariectomy with high-dose VK3. Intramuscular injection of VK3 was performed every other day beginning 1 month postoperatively. The therapeutic effects of VK3 on osteoporosis were evaluated by measurement of bone mineral density (BMD), bone biochemical markers, biomechanical properties, and bone morphometric parameters. The overall average BMD in VK3-treated groups increased to a level between those of the ovariectomy group and the sham surgery group. The procollagen I N-terminal peptide level peaked at 2 months after surgery in all groups except in the group that had undergone ovariectomy with low-dose VK3. The tartrate-resistant acid phosphatase 5b level increased more slowly at 4 months after surgery than at 2 months after surgery in the VK3-treated groups. The ovariectomy with high-dose VK3 group had the highest maximum stress of the middle femur of all groups. With VK3 treatment, the trabecular bone area percentage increased. All morphometric indicators for the middle tibia in the VK3-treated groups reached the levels found in the sham surgery group. In summary, VK3 therapy increased BMD at 1 and 2 months postsurgery and the maximum stress of the middle femur. In addition, VK3 therapy slowed the increase in bone turnover in ovariectomized rats. Furthermore, VK3 can improve morphometric indicators for the middle tibia. Our preliminary study indicates that VK3 has a potential therapeutic effect on osteoporosis and is worthy of further investigation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Skeletal effects of estrogen deficiency as induced by an aromatase inhibitor in an aged male rat model.

    PubMed

    Vanderschueren, D; Boonen, S; Ederveen, A G; de Coster, R; Van Herck, E; Moermans, K; Vandenput, L; Verstuyf, A; Bouillon, R

    2000-11-01

    Aromatization of androgens into estrogens may be important for maintenance of the male skeleton. To address this hypothesis, we evaluated the skeletal effects of selective estrogen deficiency as induced by the aromatase inhibitor vorozole (Vor), with or without 17beta-estradiol (E(2)) administration (1.35 microg/day), in aged (12-month-old) male rats. A baseline group was killed at the start of the experiment (Base). The control group (Control), the group treated with vorozole alone (Vor), the group treated with E(2) alone (E(2)), or the group with a combination of both (Vor + E(2)) were killed 15 weeks later. Vorozole significantly increased serum testosterone (T) and reduced serum E(2) compared with Control. Body weight gain and serum insulin-like growth factor-I (IGF-I) were also lower in Vor, whereas significant weight loss and decrease of serum IGF-I occurred as a result of E(2) administration. Bone formation as assessed by serum osteocalcin was unaffected but osteoid surface in the proximal metaphysis of the tibia was increased in Vor-treated rats. Bone resorption as evaluated by urinary deoxypyridinoline excretion was increased in Vor. Biochemical parameters of bone turnover were reduced significantly in all E(2) treated rats. Premature closure of the growth plates and decreased osteoid and mineralizing surfaces were also observed in E(2) and Vor + E(2). Apparent bone density of lumbar vertebrae and femur, as measured by dual-energy X-ray absorptiometry (DXA), was significantly reduced in Vor. Vorozole decreased femoral bone density mainly in the distal femur (trabecular and cortical region). This decrease of bone density was not present in E(2) and Vor + E(2). Similar findings were observed when bone density was assessed by peripheral quantitative computed tomography (pQCT); that is, trabecular density of the distal femur, the proximal tibia, and the distal lumbar vertebra were all lower in Vor. This decrease in density was not observed in all E(2)-treated animals. In conclusion, administration of the aromatase inhibitor, vorozole, to aged male rats induces net trabecular bone loss in both the appendicular and axial skeleton, despite a concomitant increase in serum testosterone. E(2) administration is able to prevent this trabecular bone loss in vorozole-treated animals.

  10. Modeling and analysis of elastic fields in tibia and fibula

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Chowdhury, B. U.; Parvej, M. S.; Afsar, A. M.

    2017-12-01

    In this study, stress analysis of tibia and fibula subjected to body weight in static condition was carried out. The tibia and fibula were fabricated by casting process. A 3-D solid model of tibia and fibula was developed in SolidWorks by using the geometry of cross sections at different locations of the fabricated tibia and fibula. The 3-D model was analyzed by ANSYS to evaluate the stress, strain, and deformation for identifying the critical sections of tibia and fibula. It is found that, in terms of deformation, the critical zone is the contact zone between tibia-fibula and patella. However, in terms of stress, the critical zone is located on fibula between 25% and 40% height from the lower mating portion of the tibia and fibula.

  11. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats.

    PubMed

    Potikanond, Saranyapin; Rattanachote, Pinyada; Pintana, Hiranya; Suntornsaratoon, Panan; Charoenphandhu, Narattaphol; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2016-02-01

    The present study aimed to test the hypothesis that testosterone deprivation impairs osteoblastic insulin signaling, decreases osteoblast survival, reduces bone density, and that obesity aggravates those deleterious effects in testosterone-deprived rats. Twenty four male Wistar rats underwent either a bilateral orchiectomy (O, n=12) or a sham operation (S, n=12). Then the rats in each group were further divided into two subgroups fed with either a normal diet (ND) or a high-fat diet (HF) for 12 weeks. At the end of the protocol, blood samples were collected to determine metabolic parameters and osteocalcin ratios. The tibiae were collected to determine bone mass using microcomputed tomography and for osteoblast isolation. The results showed that rats fed with HF (sham-operated HF-fed rats (HFS) and ORX HF-fed rats (HFO)) developed peripheral insulin resistance and had decreased trabecular bone density. In ND-fed rats, only the ORX ND-fed rats (NDO) group had decreased trabecular bone density. In addition, osteoblastic insulin resistance, as indicated by a decrease in tyrosine phosphorylation of the insulin receptor and Akt, were observed in all groups except the sham-operated ND-fed rats (NDS) rats. Those groups, again with the exception of the NDS rats, also had decreased osteoblastic survival. No differences in the levels of osteoblastic insulin resistance and osteoblastic survival were found among the NDO, HFS, and HFO groups. These findings suggest that either testosterone deprivation or obesity alone can impair osteoblastic insulin signaling and decrease osteoblastic survival leading to the development of osteoporosis. However, obesity does not aggravate those deleterious effects in the bone of testosterone-deprived rats. © 2016 Society for Endocrinology.

  12. Increased Resistance during Jump Exercise Does Not Enhance Cortical Bone Formation

    PubMed Central

    Boudreaux, Ramon D.; Swift, Joshua M.; Gasier, Heath G.; Wiggs, Michael P.; Hogan, Harry A.; Fluckey, James D.; Bloomfield, Susan A.

    2014-01-01

    PURPOSE This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. METHODS Sprague-Dawley rats (male, 6-mos-old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15) or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 weeks. Load in the HRE group was progressively increased from 80g added to a weighted vest (50 repetitions) to 410g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions) with only a 30g vest applied. RESULTS Low- and high-load jump RE resulted in 6–11% higher cortical bone mineral content (BMC) and cortical bone area compared to controls as determined by in vivo pQCT measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (vBMD; +11%) and cross-sectional moment of inertia (CSMI; +20%) versus CC group. Three-point bending to failure revealed a marked increase in tibial max force (25–29%), stiffness (19–22%), and energy to max force (35–55%), and a reduction in elastic modulus (−11–14%) in both LRE and HRE compared to controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20–30% higher periosteal mineralizing surface versus CC group. Mineral apposition rate (MAR) and bone formation rate (BFR) were significantly greater in LRE animals (27%, 39%) than in the HRE group. CONCLUSION These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared to overload training in skeletally mature rats. PMID:24743108

  13. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats.

    PubMed

    Diefenbeck, M; Schrader, C; Gras, F; Mückley, T; Schmidt, J; Zankovych, S; Bossert, J; Jandt, K D; Völpel, A; Sigusch, B W; Schubert, H; Bischoff, S; Pfister, W; Edel, B; Faucon, M; Finger, U

    2016-09-01

    Implant related infection is one of the most feared and devastating complication associated with the use of orthopaedic implant devices. Development of anti-infective surfaces is the main strategy to prevent implant contamination, biofilm formation and implant related osteomyelitis. A second concern in orthopaedics is insufficient osseointegration of uncemented implant devices. Recently, we reported on a macroporous titanium-oxide surface (bioactive TiOB) which increases osseointegration and implant fixation. To combine enhanced osseointegration and antibacterial function, the TiOB surfaces were, in addition, modified with a gentamicin coating. A rat osteomyelitis model with bilateral placement of titanium alloy implants was employed to analyse the prophylactic effect of gentamicin-sodiumdodecylsulfate (SDS) and gentamicin-tannic acid coatings in vivo. 20 rats were randomly assigned to four groups: (A) titanium alloy; PBS inoculum (negative control), (B) titanium alloy, Staphylococcus aureus inoculum (positive control), (C) bioactive TiOB with gentamicin-SDS and (D) bioactive TiOB plus gentamicin-tannic acid coating. Contamination of implants, bacterial load of bone powder and radiographic as well as histological signs of implant-related osteomyelitis were evaluated after four weeks. Gentamicin-SDS coating prevented implant contamination in 10 of 10 tibiae and gentamicin-tannic acid coating in 9 of 10 tibiae (infection prophylaxis rate 100% and 90% of cases, respectively). In Group (D) one implant showed colonisation of bacteria (swab of entry point and roll-out test positive for S. aureus). The interobserver reliability showed no difference in the histologic and radiographic osteomyelitis scores. In both gentamicin coated groups, a significant reduction of the histological osteomyelitis score (geometric mean values: C = 0.111 ± 0.023; D = 0.056 ± 0.006) compared to the positive control group (B: 0.244 ± 0.015; p < 0.05) was observed. The radiographic osteomyelitis scores confirmed these histological findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effects of Huang Bai (Phellodendri Cortex) on bone growth and pubertal development in adolescent female rats.

    PubMed

    Lee, Sun Haeng; Lee, Hyun Jeong; Lee, Sung Hyun; Kim, Young-Sik; Lee, Donghun; Chun, Jiu; Lee, Jin Yong; Kim, Hocheol; Chang, Gyu Tae

    2018-01-01

    To evaluate the effects of Huang Bai ( Phellodendron amurense ) on growth and maturation in adolescent female rats. Female Sprague-Dawley rats (28 days old; n = 72) were divided into six daily treatment groups: control (distilled water), Huang Bai (100 and 300 mg/kg), recombinant human GH (rhGH; 20 μg/kg), estradiol (1 μg/kg), and triptorelin (100 μg). Body weight, food intake, and vaginal opening were measured daily from postnatal day (PND) 28 to PND 43. Tetracycline (20 mg/kg) was injected on PND 41. After sacrifice on PND 43, the ovaries and uterus were weighed, and the tibias were fixed in 4% paraformaldehyde. Decalcified and dehydrated tibias were sectioned at a thickness of 40 μm, and sectioned tissues were examined with a fluorescence microscope. Insulin-like growth factor (IGF)-1 and bone morphogenetic protein (BMP)-2 were detected using immunohistochemistry. Relative to controls, body weight was higher in the triptorelin group. Bone growth rate increased in the Huang Bai 100 mg/kg (354.00 ± 31.1 μm/day), rhGH (367.10 ± 27.11 μm/day), and triptorelin (374.50 ± 25.37 μm/day) groups. Expression of IGF-1 and BMP-2 in the hypertrophic zone was higher in all experimental groups. Vaginal opening occurred earlier in the estradiol group (PND 33.58 ± 1.62) than in controls and later in the triptorelin group (PND > 43). Ovarian and uterine weights were lower in the oestradiol and triptorelin groups. However, Huang Bai had nonsignificant effects on vaginal opening and the weights of ovaries and the uterus. Huang Bai stimulated bone growth by upregulating IGF-1 and BMP-2 in the growth plate. However, it had no effect on pubertal development.

  15. Targeted delivery of lovastatin and tocotrienol to fracture site promotes fracture healing in osteoporosis model: micro-computed tomography and biomechanical evaluation.

    PubMed

    Ibrahim, Nurul 'Izzah; Khamis, Mohd Fadhli; Mod Yunoh, Mohd Faridz; Abdullah, Shahrum; Mohamed, Norazlina; Shuid, Ahmad Nazrun

    2014-01-01

    Osteoporosis is becoming a major health problem that is associated with increased fracture risk. Previous studies have shown that osteoporosis could delay fracture healing. Although there are potential agents available to promote fracture healing of osteoporotic bone such as statins and tocotrienol, studies on direct delivery of these agents to the fracture site are limited. This study was designed to investigate the effects of two potential agents, lovastatin and tocotrienol using targeted drug delivery system on fracture healing of postmenopausal osteoporosis rats. The fracture healing was evaluated using micro CT and biomechanical parameters. Forty-eight Sprague-Dawley female rats were divided into 6 groups. The first group was sham-operated (SO), while the others were ovariectomized (OVx). After two months, the right tibiae of all rats were fractured at metaphysis region using pulsed ultrasound and were fixed with plates and screws. The SO and OVxC groups were given two single injections of lovastatin and tocotrienol carriers. The estrogen group (OVx+EST) was given daily oral gavages of Premarin (64.5 µg/kg). The Lovastatin treatment group (OVx+Lov) was given a single injection of 750 µg/kg lovastatin particles. The tocotrienol group (OVx+TT) was given a single injection of 60 mg/kg tocotrienol particles. The combination treatment group (OVx+Lov+TT) was given two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks of treatment, the fractured tibiae were dissected out for micro-CT and biomechanical assessments. The combined treatment group (OVx+Lov+TT) showed significantly higher callus volume and callus strength than the OVxC group (p<0.05). Both the OVx+Lov and OVx+TT groups showed significantly higher callus strength than the OVxC group (p<0.05), but not for callus volume. In conclusion, combined lovastatin and tocotrienol may promote better fracture healing of osteoporotic bone.

  16. Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats

    NASA Astrophysics Data System (ADS)

    Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo

    2017-08-01

    Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the rehabilitation of disused or aged osteoporosis.

  17. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  18. Effect of osteoporosis on fixation of osseointegrated implants in rats.

    PubMed

    Li, Yunfeng; He, Sheng; Hua, Yunwei; Hu, Jing

    2017-11-01

    The effect of osteoporosis on implant osseointegration has been widely investigated, whereas osteoporosis may also newly occur in patient with previously osseointegrated implant. This study was designed to investigate the effect of osteoporosis on implant fixation in rats after successful osseointegration had been obtained. Seventy female Sprague-Dawley rats were included, and each animal received two titanium implants in the distal metaphysis of femur bilaterally. Eight weeks later, ten rats were sacrificed to confirm the establishment of implant osseointegration. All left rats were randomly subjected to bilateral ovariectomy (OVX) or sham operation. Three, six, and twelve weeks later, implant osseointegration, peri-implant bone tissue, and biomechanical properties of implant were analyzed. Right femurs with implants were used for micro-CT and histological analysis, and left femurs with implants were used for biomechanical test. Micro-CT, histology, and biomechanical test confirmed the destructive effect of OVX on previously osseointegrated implant in rats; when compared to sham-operated rats, peri-implant bone volume, trabecular architecture, bone-to-implant contact ratio, as well as biomechanical parameters decreased progressively within 12 weeks. Results also indicated that the effect of OVX on undisturbed bone (proximal tibiae) was much stronger than that on peri-implant bone. Osteoporosis produced a progressive negative effect on previously osseointegrated implant in distal femora of rats during 12 weeks. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2426-2432, 2017. © 2016 Wiley Periodicals, Inc.

  19. Injury tolerance of tibia for the car-pedestrian impact.

    PubMed

    Mo, Fuhao; Arnoux, Pierre Jean; Jure, Jean Jaques; Masson, Catherine

    2012-05-01

    Lower limbs are normally the first contacted body region during car-pedestrian accidents, and easily suffer serious injuries. The previous tibia bending tolerances for pedestrian safety were mainly developed from three-point bending tests on tibia mid-shaft. The tibia tolerances of other locations are still not investigated enough. In addition, tibia loading condition under the car-pedestrian impact should be explored to compare with the three-point bending. This work aims to investigate the injury tolerance of tibia fracture with combined experimental data and numerical simulation. Eleven new reported quasi-static bending tests of tibia mid-shaft, and additional eleven dynamic mid-shaft bending test results in the previous literature were used to define injury risk functions. Furthermore, to investigate the influence of tibia locations on bending tolerance, finite element simulations with lower limb model were implemented according to three-point bending and pedestrian impact conditions. The regressive curve of tibia bending tolerance was obtained from the simulations on the different impact locations, and indicated that tibia fracture tolerance could vary largely due to the impact locations for the car-pedestrian crash. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Analysis of fracture healing in osteopenic bone caused by disuse: experimental study.

    PubMed

    Paiva, A G; Yanagihara, G R; Macedo, A P; Ramos, J; Issa, J P M; Shimano, A C

    2016-03-01

    Osteoporosis has become a serious global public health issue. Hence, osteoporotic fracture healing has been investigated in several previous studies because there is still controversy over the effect osteoporosis has on the healing process. The current study aimed to analyze two different periods of bone healing in normal and osteopenic rats. Sixty, 7-week-old female Wistar rats were randomly divided into four groups: unrestricted and immobilized for 2 weeks after osteotomy (OU2), suspended and immobilized for 2 weeks after osteotomy (OS2), unrestricted and immobilized for 6 weeks after osteotomy (OU6), and suspended and immobilized for 6 weeks after osteotomy (OS6). Osteotomy was performed in the middle third of the right tibia 21 days after tail suspension, when the osteopenic condition was already set. The fractured limb was then immobilized by orthosis. Tibias were collected 2 and 6 weeks after osteotomy, and were analyzed by bone densitometry, mechanical testing, and histomorphometry. Bone mineral density values from bony calluses were significantly lower in the 2-week post-osteotomy groups compared with the 6-week post-osteotomy groups (multivariate general linear model analysis, P<0.000). Similarly, the mechanical properties showed that animals had stronger bones 6 weeks after osteotomy compared with 2 weeks after osteotomy (multivariate general linear model analysis, P<0.000). Histomorphometry indicated gradual bone healing. Results showed that osteopenia did not influence the bone healing process, and that time was an independent determinant factor regardless of whether the fracture was osteopenic. This suggests that the body is able to compensate for the negative effects of suspension.

  1. PTH prevents the adverse effects of focal radiation on bone architecture in young rats.

    PubMed

    Chandra, Abhishek; Lan, Shenghui; Zhu, Ji; Lin, Tiao; Zhang, Xianrong; Siclari, Valerie A; Altman, Allison R; Cengel, Keith A; Liu, X Sherry; Qin, Ling

    2013-08-01

    Radiation therapy is a common treatment regimen for cancer patients. However, its adverse effects on the neighboring bone could lead to fractures with a great impact on quality of life. The underlying mechanism is still elusive and there is no preventive or curative solution for this bone loss. Parathyroid hormone (PTH) is a current therapy for osteoporosis that has potent anabolic effects on bone. In this study, we found that focal radiation from frequent scans of the right tibiae in 1-month-old rats by micro-computed tomography severely decreased trabecular bone mass and deteriorated bone structure. Interestingly, PTH daily injections remarkably improved trabecular bone in the radiated tibiae with increases in trabecular number, thickness, connectivity, structure model index and stiffness, and a decrease in trabecular separation. Histomorphometric analysis revealed that radiation mainly decreased the number of osteoblasts and impaired their mineralization activity but had little effects on osteoclasts. PTH reversed these adverse effects and greatly increased bone formation to a similar level in both radiated and non-radiated bones. Furthermore, PTH protects bone marrow mesenchymal stem cells from radiation-induced damage, including a decrease in number and an increase in adipogenic differentiation. While radiation generated the same amount of free radicals in the bone marrow of vehicle-treated and PTH-treated animals, the percentage of apoptotic bone marrow cells was significantly attenuated in the PTH group. Taken together, our data demonstrate a radioprotective effect of PTH on bone structure and bone marrow and shed new light on a possible clinical application of anabolic treatment in radiotherapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. External torsion in a proximal tibia and internal torsion in a distal tibia occur independently in varus osteoarthritic knees compared to healthy knees.

    PubMed

    Mochizuki, Tomoharu; Tanifuji, Osamu; Koga, Yoshio; Hata, Ryosuke; Mori, Takahiro; Nishino, Katsutoshi; Sato, Takashi; Kobayashi, Koichi; Omori, Go; Sakamoto, Makoto; Tanabe, Yuji; Endo, Naoto

    2017-05-01

    The relative torsional angle of the distal tibia is dependent on a deformity of the proximal tibia, and it is a commonly used torsional parameter to describe deformities of the tibia; however, this parameter cannot show the location and direction of the torsional deformity in the entire tibia. This study aimed to identify the detailed deformity in the entire tibia via a coordinate system based on the diaphysis of the tibia by comparing varus osteoarthritic knees to healthy knees. In total, 61 limbs in 58 healthy subjects (age: 54 ± 18 years) and 55 limbs in 50 varus osteoarthritis (OA) subjects (age: 72 ± 7 years) were evaluated. The original coordinate system based on anatomic points only from the tibial diaphysis was established. The evaluation parameters were 1) the relative torsion in the distal tibia to the proximal tibia, 2) the proximal tibial torsion relative to the tibial diaphysis, and 3) the distal tibial torsion relative to the tibial diaphysis. The relative torsion in the distal tibia to the proximal tibia showed external torsion in both groups, while the external torsion was lower in the OA group than in the healthy group (p < 0.0001). The proximal tibial torsion relative to the tibial diaphysis had a higher external torsion in the OA group (p = 0.012), and the distal tibial torsion relative to the tibial diaphysis had a higher internal torsion in the OA group (p = 0.004) in comparison to the healthy group. The reverse torsional deformity, showing a higher external torsion in the proximal tibia and a higher internal torsion in the distal tibia, occurred independently in the OA group in comparison to the healthy group. Clinically, this finding may prove to be a pathogenic factor in varus osteoarthritic knees. Level Ⅲ. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  3. Experiment K-6-03. Gravity and skeletal growth, part 1. Part 2: Morphology and histochemistry of bone cells and vasculature of the tibia; Part 3: Nuclear volume analysis of osteoblast histogenesis in periodontal ligament cells; Part 4: Intervertebral disc swelling pressure associated with microgravity

    NASA Technical Reports Server (NTRS)

    Holton, E.; Hargens, A.; Gonsalves, M.; Berretta, D.; Doty, S.; Roberts, W.; Garetto, L.; Kaplansky, A.; Durnova, G.; Gott, S.

    1990-01-01

    Bone area, bone electrophysiology, bone vascularity, osteoblast morphology, and osteoblast histogenesis were studied in rats associated with Cosmos 1887. The results suggest that the synchronous animals were the only group with a significantly larger bone area than the basal group, that the bone electrical potential was more negative in flight than in the synchronous rats, that the endosteal osteoblasts from flight rats had greater numbers of transitional Golgi vesicles but no difference in the large Golgi saccules or the alkaline phosphatase activity, that the perioteal vasculature in the shaft of flight rats often showed very dense intraluminal deposits with adjacent degenerating osteocytes as well as lipid accumulations within the lumen of the vessels and sometimes degeneration of the vascular wall (this change was not present in the metaphyseal region of flight animals), and that the progenitor cells decreased in flight rats while the preosteoblasts increased compared to controls. Many of the results suggest that the animals were beginning to recover from the effects of spaceflight during the two day interval between landing and euthanasia; flight effects, such as the vascular changes, did not appear to recover.

  4. Strontium coating by electrochemical deposition improves implant osseointegration in osteopenic models

    PubMed Central

    LIANG, YONGQIANG; LI, HAOYAN; XU, JIANG; LI, XIN; LI, XINCHANG; YAN, YUTING; QI, MENGCHUN; HU, MIN

    2015-01-01

    Osteopenia, a preclinical state of osteoporosis, restricts the application of adult orthodontic implant anchorage and tooth implantation. Strontium (Sr) is able to promote bone formation and inhibit bone absorption. The aim of the present study was to evaluate a new method for improving the success rate of dental implantation. In this study, an electrochemical deposition (ECD) method was used to prepare a Sr coating on a titanium implant. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction, and the surface morphology of the coating was studied using scanning electron microscopy. A total of 24 Sprague-Dawley rats received bilateral ovariectomy (OVX) and an additional 12 rats underwent a sham surgery. All rats were then implanted in the bilateral tibiae with titanium mini-implants with or without a Sr coating. The results of histological examination and a fluorescence double labeling assay showed strong new bone formation with a wider zone between the double labels, a higher rate of bone mineralization and better osseointegration in the OVX rats that received Sr-coated implants compared with the OVX rats that received uncoated implants. The study indicates that Sr coatings are easily applied by an ECD method, and that Sr coatings have a promoting effect on implant osseointegration in animals with osteopenia. PMID:25452797

  5. Hydroxyapatite coating of titanium implants using hydroprocessing and evaluation of their osteoconductivity.

    PubMed

    Kuroda, Kensuke; Okido, Masazumi

    2012-01-01

    Many techniques for the surface modification of titanium and its alloys have been proposed from the viewpoint of improving bioactivity. This paper contains an overview of surface treatment methods, including coating with hydroxyapatite (HAp), an osteoconductive compound. There are two types of coating methods: pyroprocessing and hydroprocessing. In this paper, hydroprocessing for coating on the titanium substrate with HAp, carbonate apatite (CO(3)-Ap), a CO(3)-Ap/CaCO(3) composite, HAp/collagen, and a HAp/gelatin composite is outlined. Moreover, evaluation by implantation of surface-modified samples in rat tibiae is described.

  6. Hydroxyapatite Coating of Titanium Implants Using Hydroprocessing and Evaluation of Their Osteoconductivity

    PubMed Central

    Kuroda, Kensuke; Okido, Masazumi

    2012-01-01

    Many techniques for the surface modification of titanium and its alloys have been proposed from the viewpoint of improving bioactivity. This paper contains an overview of surface treatment methods, including coating with hydroxyapatite (HAp), an osteoconductive compound. There are two types of coating methods: pyroprocessing and hydroprocessing. In this paper, hydroprocessing for coating on the titanium substrate with HAp, carbonate apatite (CO3–Ap), a CO3–Ap/CaCO3 composite, HAp/collagen, and a HAp/gelatin composite is outlined. Moreover, evaluation by implantation of surface-modified samples in rat tibiae is described. PMID:22400015

  7. Effect of ionizing radiation on the bone growth of the proximal part of pelvic limb (in Slovak)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horak, J.; Horakova, A.; Chlebovsky, O.

    1971-01-01

    BS>The effect of x radiation was studied on the growth of os ilium, the femur, the tibia, and the fibula in the fetus of rats. Pregnant female rats were exposed to a dose of 250 R, this either of single irradiation on the 11th, 12th, 13th, 14th, and 15th days following fertilization or of chronic irradiation applied over the 1st to the 19th day of pregnancy. The fetuses were removed on the 19th day of pregnancy. The exposure was ascertained to inhibit or to stimulate the growth in dependence on the degree of the development of the fetus at amore » time of exposure. It was verified that during development, the bones manifested stages of increased radiosensitivity as well as of relative radioresistance. The most marked changes were observed in the fibula. (auth)« less

  8. [Histomorphometric analysis of the bones of rats on board the Kosmos 1667 biosatellite].

    PubMed

    Kaplanskiĭ, A S; Durnova, G N; Sakharova, Z F; Il'ina-Kakueva, E I

    1987-01-01

    Bones of the rats flown on Cosmos-1667 were examined histologically and histomorphometrically. It was found that 7-day exposure to weightlessness led to osteoporosis in the spongy matter of proximal metaphyses of tibia and, although to a lesser extent, in the spongiosa of lumbar vertebrae whereas no signs of osteoporosis were seen in the spongy matter of iliac bones. Osteoporosis in the spongy matter of the above bones developed largely due to the inhibition of bone neoformation, which was indicated by a decrease in the number and activity of osteoblasts. Increased bone resorption (as shown by a greater number and activity of osteoclasts) was observed only in the spongy matter of tibial metaphyses. It is emphasized that a reduction of the number of highly active osteoblasts in spongy bones is one of the early signs of inhibition of bone neoformation and development of osteoporosis.

  9. Formononetin prevents ovariectomy-induced bone loss in rats.

    PubMed

    Ha, Hyekyung; Lee, Ho Young; Lee, Je-Hyun; Jung, Dayoung; Choi, Jiyoon; Song, Kye-Yong; Jung, Hee Jin; Choi, Jae Sue; Chang, Soo-Ik; Kim, Chungsook

    2010-04-01

    The major risk factor of postmenopausal osteoporosis is estrogen deficiency. Hormone replacement therapy is efficacious against osteoporosis, but it induces several significant adverse effects. In this study, therefore, we compared therapeutic potencies of three phytoestrogens: genistein, daidzein, and formononetin. Our result showed that in Saos-2 cells, formononetin and genistein (5 x 10(-7) M) treatment increased alkaline phosphatase activity by 33.0 +/- 5.8% and 21.1 +/- 4.0%. Genistein inhibited osteoclast formation in a dose-dependent manner. In OVX rats, formononetin-treated groups given 1 and 10 mg/kg/day displayed increased trabecular bone areas (TBAs) within the tibia. Genistein- and daidzein-treated groups also displayed increased tibial TBAs. TBAs of the lumbar vertebrae were higher in all treated groups than in the control group. In conclusion, formononetin as well as other isoflavones, such as daidzein and genistein, inhibited bone loss caused by estrogen-deficiency.

  10. Mild and Short-Term Caloric Restriction Prevents Obesity-Induced Cardiomyopathy in Young Zucker Rats without Changing in Metabolites and Fatty Acids Cardiac Profile

    PubMed Central

    Ruiz-Hurtado, Gema; García-Prieto, Concha F.; Pulido-Olmo, Helena; Velasco-Martín, Juan P.; Villa-Valverde, Palmira; Fernández-Valle, María E.; Boscá, Lisardo; Fernández-Velasco, María; Regadera, Javier; Somoza, Beatriz; Fernández-Alfonso, María S.

    2017-01-01

    Caloric restriction (CR) ameliorates cardiac dysfunction associated with obesity. However, most of the studies have been performed under severe CR (30–65% caloric intake decrease) for several months or even years in aged animals. Here, we investigated whether mild (20% food intake reduction) and short-term (2-weeks) CR prevented the obese cardiomyopathy phenotype and improved the metabolic profile of young (14 weeks of age) genetically obese Zucker fa/fa rats. Heart weight (HW) and HW/tibia length ratio was significantly lower in fa/fa rats after 2 weeks of CR than in counterparts fed ad libitum. Invasive pressure measurements showed that systolic blood pressure, maximal rate of positive left ventricle (LV) pressure, LV systolic pressure and LV end-diastolic pressure were all significantly higher in obese fa/fa rats than in lean counterparts, which were prevented by CR. Magnetic resonance imaging revealed that the increase in LV end-systolic volume, stroke volume and LV wall thickness observed in fa/fa rats was significantly lower in animals on CR diet. Histological analysis also revealed that CR blocked the significant increase in cardiomyocyte diameter in obese fa/fa rats. High resolution magic angle spinning magnetic resonance spectroscopy analysis of the LV revealed a global decrease in metabolites such as taurine, creatine and phosphocreatine, glutamate, glutamine and glutathione, in obese fa/fa rats, whereas lactate concentration was increased. By contrast, fatty acid concentrations in LV tissue were significantly elevated in obese fa/fa rats. CR failed to restore the LV metabolomic profile of obese fa/fa rats. In conclusion, mild and short-term CR prevented an obesity-induced cardiomyopathy phenotype in young obese fa/fa rats independently of the cardiac metabolic profile. PMID:28203206

  11. Impact of Chiropractic Manipulation on Bone and Skeletal Muscle of Ovariectomized Rats.

    PubMed

    López-Herradón, A; Fujikawa, R; Gómez-Marín, M; Stedile-Lovatel, J P; Mulero, F; Ardura, J A; Ruiz, P; Muñoz, I; Esbrit, P; Mahíllo-Fernández, I; Ortega-de Mues, A

    2017-11-01

    Evidence suggests that chiropractic manipulation might exert positive effects in osteoporotic patients. The aim of this study was to evaluate the effects of chiropractic manipulation on bone structure and skeletal muscle in rats with bone loss caused by ovariectomy (OVX). The 6-month old Sprague-Dawley rats at 10 weeks following OVX or sham operation (Sh) did not suffer chiropractic manipulation (NM group) or were submitted to true chiropractic manipulation using the chiropractic adjusting instrument Activator V ® three times/week for 6 weeks as follows: Force 1 setting was applied onto the tibial tubercle of the rat right hind limb (TM group), whereas the corresponding left hind limb received a false manipulation (FM group) consisting of ActivatorV ® firing in the air and slightly touching the tibial tubercle. Bone mineral density (BMD) and bone mineral content (BMC) were determined in long bones and L3-L4 vertebrae in all rats. Femora and tibia were analyzed by μCT. Mechano growth factor (MGF) was detected in long bones and soleus, quadriceps and tibial muscles by immunohistochemistry and Western blot. The decrease of BMD and BMC as well as trabecular bone impairment in the long bones of OVX rats vs Sh controls was partially reversed in the TM group versus FM or NM rats. This bone improvement by chiropractic manipulation was associated with an increased MGF expression in the quadriceps and the anterior tibial muscle in OVX rats. These findings support the notion that chiropractic manipulation can ameliorate osteoporotic bone at least partly by targeting skeletal muscle.

  12. Doping dose of salbutamol and exercise training: impact on the skeleton of ovariectomized rats.

    PubMed

    Bonnet, N; Laroche, N; Beaupied, H; Vico, L; Dolleans, E; Benhamou, C L; Courteix, D

    2007-08-01

    Previous studies in healthy rats have demonstrated a deleterious bone impact of beta-agonist treatment. The purpose of this study was to examine the trabecular and cortical effects of beta(2)-agonists at doping dose on treadmill exercising rats with estrogen deficiency. Adult female rats were ovariectomized (OVX; n = 44) or sham operated (n = 12). Then, OVX rats received a subcutaneous injection of salbutamol (SAB) or vehicle with (EXE) or without treadmill exercise for 10 wk. Bone mineral density (BMD) was analyzed by densitometry. Microcomputed tomography and histomorphometric analysis were performed to study trabecular bone structure and bone cell activities. After 10 wk, SAB rats presented a much more marked decrease of BMD and trabecular parameters. Exercise did not change the high level of bone resorption in OVX EXE SAB compared with OVX SAB group (both on COOH-terminal collagen cross-links and osteoclast number). These results confirm the deleterious effect of beta(2)-agonists on bone quantity (femoral BMD gain: OVX EXE, +6.8%, vs. OVX EXE SAB, -1.8%; P < 0.01) and quality (-8.0% of femoral trabecular thickness in OVX EXE SAB vs. OVX EXE), indicating that SAB suppresses the effect of EXE in OVX rats. Furthermore, we notice that the slight beneficial effect of exercise was mainly localized in the tibia. These findings indicate the presence of a bone alteration threshold below which there is no more alteration in structural bone quantity and quality. The negative effects of SAB on bone observed in this study in trained rats may indicate potential complications in doping female athletes with exercise-induced amenorrhea.

  13. The effects of the concentration of high-density polyethylene particles on the bone-implant interface.

    PubMed

    Brooks, R A; Sharpe, J R; Wimhurst, J A; Myer, B J; Dawes, E N; Rushton, N

    2000-05-01

    We used a rat model in vivo to study the effects of the concentration of polyethylene particles on the bone-implant interface around stable implants in the proximal tibia. Intra-articular injections of 10(4), 10(6) or 10(8) high-density polyethylene (HDPE) particles per joint were given 8, 10 and 12 weeks after surgery. The animals were killed after 14 and 26 weeks and the response at the interface determined. Fibrous tissue was seen at the bone-implant interface when the head of the implant was flush with the top of the tibia but not when it was sunk below the tibial plateau. In the latter case the implant was completely surrounded by a shell of bone. The area of fibrous tissue and that of the gap between the implant and bone was related to the concentration of particles in the 14-week group (p < 0.05). Foreign-body granulomas containing HDPE particles were seen at the bone-implant interface in animals given 10(8) particles. The pathology resembles that seen around prostheses with aseptic loosening and we suggest that this is a useful model by which to study this process.

  14. Effect of step width manipulation on tibial stress during running.

    PubMed

    Meardon, Stacey A; Derrick, Timothy R

    2014-08-22

    Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (p<0.001 for all). The data from this study suggests that stresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Bioactivity of Ti-6Al-4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer.

    PubMed

    Moon, So-Hee; Lee, Seung-Jae; Park, Il-Song; Lee, Min-Ho; Soh, Yun-Jo; Bae, Tae-Sung; Kim, Hyung-Seop

    2012-11-01

    Nanostructure surface of titanium implants treated with anodic oxidation, heat, and bisphosphonates, has been introduced to improve osseointegration of the implants. However, no information could be found about the efficiency of these approaches on Ti-6Al-4V alloy surfaces. This study examined the drug loading capacity of anodized nanotubular Ti-6Al-4V alloy surfaces in vitro as well as the bone response to surface immobilized bisphosphonates (BPs) on anodized nanotubular Ti-6Al-4V alloy surface in tibiae of rats. Ti-6Al-4V alloy titanium was divided into two groups: (1) control group (nontreated); (2) test group (anodized, heat-, and bisphosphonate-treated group). In vitro, amount of the drug released from the both groups' specimens was examined; all samples were 1 × 2 cm in size. In vivo, the 10 implants were placed inside of tibias of five rats. After 4 weeks, the bone response of the implants was evaluated using a removal torque test, and measuring bone contact and bone area. In addition, the surfaces of the extracted implants were observed by FE-SEM and EDS. In vitro, the drug loading capacity of the Ti-6Al-4V alloy surfaces was enhanced by anodizing surface modification. The values of the removal torque, bone contact, and bone area were significantly higher in the test group (p < 0.05). Furthermore, according to the EDS analysis, the amounts of Ca and P on the surface of the extracted implants were higher in the test group. Within the limits of this experiment, results of this research demonstrated that bisphosphonate-treated Ti-6Al-4V alloy implants with nanotubular surfaces have positive effects in bone-to-implant contact. Copyright © 2012 Wiley Periodicals, Inc.

  16. Transient Receptor Potential Channel and Interleukin-17A Involvement in LTTL Gel Inhibition of Bone Cancer Pain in a Rat Model.

    PubMed

    Wang, Juyong; Zhang, Ruixin; Dong, Changsheng; Jiao, Lijing; Xu, Ling; Liu, Jiyong; Wang, Zhengtao; Lao, Lixing

    2015-07-01

    Cancer pain management is a challenge for which Chinese herbal medicine might be useful. To study the spinal mechanisms of the Chinese medicated gel Long-Teng-Tong-Luo (LTTL), a 7-herb compound, on bone cancer pain, a bone cancer pain model was made by inoculating the tibias of female rats with Walker 256 cells. LTTL gel or inert gel, 0.5 g/cm(2)/d, was applied to the skin of tumor-bearing tibias for 21 days beginning a day after the inoculation. Mechanical threshold and paw withdrawal latency to thermal stimulation was measured. Transient receptor potential (TRP) cation channels in lumbar dorsal root ganglia (DRG) were immunostained and counted, and lumbar spinal cord interleukin-17A (IL-17A) was measured with real-time polymerase chain reaction and enzyme-linked immunosorbent assay. TRP antagonists and interleukin (IL)-17A antibodies were intrathecally administered to determine their effects on bone cancer pain. The gel significantly (P < .05) alleviated cancer-induced mechanical allodynia and thermal hyperalgesia and inhibited cancer-enhanced expression of IL-17A in spinal astrocytes and the TRP subfamily members V1, A1, and V4 in lumbar DRG. Intrathecal TRP antagonists at 10 µg significantly (P < .05) attenuated mechanical allodynia, thermal hyperalgesia, and IL-17A expression, indicating that TRP channels facilitate spinal IL-17 expression and cancer pain. IL-17A antibodies inhibited cancer pain, suggesting that IL-17A promotes such pain. The data show that LTTL gel inhibits cancer pain, and this might be accounted for by the decrease in expression of DRG TRP channels and spinal astrocyte IL-17A. © The Author(s) 2015.

  17. Dynamic Fluid Flow Mechanical Stimulation Modulates Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Hu, Minyi; Yeh, Robbin; Lien, Michelle; Teeratananon, Morgan; Agarwal, Kunal; Qin, Yi-Xian

    2013-03-01

    Osteoblasts are derived from mesenchymal stem cells (MSCs), which initiate and regulate bone formation. New strategies for osteoporosis treatments have aimed to control the fate of MSCs. While functional disuse decreases MSC growth and osteogenic potentials, mechanical signals enhance MSC quantity and bias their differentiation toward osteoblastogenesis. Through a non-invasive dynamic hydraulic stimulation (DHS), we have found that DHS can mitigate trabecular bone loss in a functional disuse model via rat hindlimb suspension (HLS). To further elucidate the downstream cellular effect of DHS and its potential mechanism underlying the bone quality enhancement, a longitudinal in vivo study was designed to evaluate the MSC populations in response to DHS over 3, 7, 14, and 21 days. Five-month old female Sprague Dawley rats were divided into three groups for each time point: age-matched control, HLS, and HLS+DHS. DHS was delivered to the right mid-tibiae with a daily "10 min on-5 min off-10 min on" loading regime for five days/week. At each sacrifice time point, bone marrow MSCs of the stimulated and control tibiae were isolated through specific cell surface markers and quantified by flow cytometry analysis. A strong time-dependent manner of bone marrow MSC induction was observed in response to DHS, which peaked on day 14. After 21 days, this effect of DHS was diminished. This study indicates that the MSC pool is positively influenced by the mechanical signals driven by DHS. Coinciding with our previous findings of mitigation of disuse bone loss, DHS induced changes in MSC number may bias the differentiation of the MSC population towards osteoblastogenesis, thereby promoting bone formation under disuse conditions. This study provides insights into the mechanism of time-sensitive MSC induction in response to mechanical loading, and for the optimal design of osteoporosis treatments.

  18. Development of sensory innervation in rat tibia: co-localization of CGRP and substance P with growth-associated protein 43 (GAP-43)

    PubMed Central

    Gajda, Mariusz; Litwin, Jan A; Cichocki, Tadeusz; Timmermans, Jean-Pierre; Adriaensen, Dirk

    2005-01-01

    The development of sensory innervation in long bones was investigated in rat tibia in fetuses on gestational days (GD) 16–21 and in neonates and juvenile individuals on postnatal days (PD) 1–28. A double immunostaining method was applied to study the co-localization of the neuronal growth marker growth-associated protein 43 (GAP-43) and the pan-neuronal marker protein gene product 9.5 (PGP 9.5) as well as that of two sensory fibre-associated neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP). The earliest, not yet chemically coded, nerve fibres were observed on GD17 in the perichondrium of the proximal epiphysis. Further development of the innervation was characterized by the successive appearance of nerve fibres in the perichondrium/periosteum of the shaft (GD19), the bone marrow cavity and intercondylar eminence (GD21), the metaphyses (PD1), the cartilage canals penetrating into the epiphyses (PD7), and finally in the secondary ossification centres (PD10) and epiphyseal bone marrow (PD14). Maturation of the fibres, manifested by their immunoreactivity for CGRP and SP, was visible on GD21 in the epiphyseal perichondrium, the periosteum of the shaft and the bone marrow, on PD1 in the intercondylar eminence and the metaphyses, on PD7 in the cartilage canals, on PD10 in the secondary ossification centres and on PD14 in the epiphyseal bone marrow. The temporal and topographic pattern of nerve fibre appearance corresponds with the development of regions characterized by active mineralization and bone remodelling, suggesting a possible involvement of the sensory innervation in these processes. PMID:16050900

  19. Bone vascularization and bone micro-architecture characterizations according to the μCT resolution

    NASA Astrophysics Data System (ADS)

    Crauste, E.; Autrusseau, F.; Guédon, Jp.; Pilet, P.; Amouriq, Y.; Weiss, P.; Giumelli, B.

    2015-03-01

    Trabecular bone and its micro-architecture are of prime importance for health. Changes of bone micro-architecture are linked to different pathological situations like osteoporosis and begin now to be understood. In a previous paper [12], we started to investigate the relationships between bone and vessels and proposed some indices of characterization for the vessels issued from those used for the bone. Our main objective in this paper is to qualify the classical values used for bone as well as those we proposed for vessels according to different acquisition parameters and for several thresholding methods used to separate bone vessels and background. This study is also based on vessels perfusion by a contrast agent (barium sulfate mixed with gelatin) before euthanasia on rats. Femurs and tibias as well as mandibles were removed after rat's death and were imaged by microCT (Skyscan 1272, Bruker, Belgium) with a resolution ranging from 18 to 3μm. The so obtained images were analyzed with various softwares (NRecon Reconstruction, CtAn, and CtVox from Bruker) in order to calculate bone and vessels micro-architecture parameters (density of bone/blood within the volume), and to know if the results both for bone and vascular micro-architecture are constant along the chosen pixel resolution. The result is clearly negative. We found a very different characterization both for bone and vessels with the 3μm acquisition. Tibia and mandibles bones were also used to show results that can be visually assessed. The largest portions of the vascular tree are orthogonal to the obtained slices of the bone. Therefore, the contrast agent appears as cylinders of various sizes.

  20. Acute versus chronic phase mechanisms in a rat model of CRPS.

    PubMed

    Wei, Tzuping; Guo, Tian-Zhi; Li, Wen-Wu; Kingery, Wade S; Clark, John David

    2016-01-19

    Tibia fracture followed by cast immobilization in rats evokes nociceptive, vascular, epidermal, and bone changes resembling complex regional pain syndrome (CRPS). In most cases, CRPS has three stages. Over time, this acute picture, allodynia, warmth, and edema observed at 4 weeks, gives way to a cold, dystrophic but still painful limb. In the acute phase (at 4 weeks post fracture), cutaneous immunological and NK1-receptor signaling mechanisms underlying CRPS have been discovered; however, the mechanisms responsible for the chronic phase are still unknown. The purpose of this study is to understand the mechanisms responsible for the chronic phases of CRPS (at 16 weeks post fracture) at both the peripheral and central levels. We used rat tibial fracture/cast immobilization model of CRPS to study molecular, vascular, and nociceptive changes at 4 and 16 weeks post fracture. Immunoassays and Western blotting were carried out to monitor changes in inflammatory response and NK1-receptor signaling in the skin and spinal cord. Skin temperature and thickness were measured to elucidate vascular changes, whereas von Frey testing and unweighting were carried out to study nociceptive changes. All data were analyzed by one-way analysis of variance (ANOVA) followed by Neuman-Keuls multiple comparison test to compare among all cohorts. In the acute phase (at 4 weeks post fracture), hindpaw allodynia, unweighting, warmth, edema, and/or epidermal thickening were observed among 90 % fracture rats, though by 16 weeks (chronic phase), only the nociceptive changes persisted. The expression of the neuropeptide signaling molecule substance P (SP), NK1 receptor, inflammatory mediators TNFα, IL-1β, and IL-6 and nerve growth factor (NGF) were elevated at 4 weeks in sciatic nerve and/or skin, returning to normal levels by 16 weeks post fracture. The systemic administration of a peripherally restricted IL-1 receptor antagonist (anakinra) or of anti-NGF inhibited nociceptive behaviors at 4 weeks but not 16 weeks. However, spinal levels of NK1 receptor, TNFα, IL-1β, and NGF were elevated at 4 and 16 weeks, and intrathecal injection of an NK1-receptor antagonist (LY303870), anakinra, or anti-NGF each reduced nociceptive behaviors at both 4 and 16 weeks. These results demonstrate that tibia fracture and immobilization cause peripheral changes in neuropeptide signaling and inflammatory mediator production acutely, but central spinal changes may be more important for the persistent nociceptive changes in this CRPS model.

  1. Evaluating Glucocorticoid Administration on Biomechanical Properties of Rats’ Tibial Diaphysis

    PubMed Central

    Freidouni, Mohammadjavad; Nejati, Hossein; Salimi, Maryam; Bayat, Mohammad; Amini, Abdollah; Noruzian, Mohsen; Asgharie, Mohammad Ali; Rezaian, Milad

    2015-01-01

    Background: Osteoporosis is a disease, which causes bone loss and fractures. Although glucocorticoids effectively suppress inflammation, their chronic use is accompanied by bone loss with a tendency toward secondary osteoporosis. Objectives: This study took into consideration the importance of cortical bone in the entire bone's mechanical competence. Hence, the aim of this study was to assess the effects of different protocols of glucocorticoid administration on the biomechanical properties of tibial bone diaphysis in rats compared to control and low-level laser-treated rats. Materials and Methods: This experimental study was conducted at Shahid Beheshti University of Medical Sciences, Tehran, Iran. We used systematic random sampling to divide 40 adult male rats into 8 groups with 5 rats in each group. Groups were as follows: 1) control, 2) dexamethasone (7 mg/week), 3) dexamethasone (0.7 mg/week), 4) methylprednisolone (7 mg/kg/week), 5) methylprednisolone (5 mg/kg twice weekly), 6) dexamethasone (7 mg/kg three times per week), 7) dexamethasone (0.7 mg/kg thrice per week), and 8) low-level laser-treated rats. The study periods were 4-7 weeks. At the end of the treatment periods, we examined the mechanical properties of tibial bone diaphysis. Data were analyzed by statistical analyses. Results: Glucocorticoid-treated rats showed weight loss and considerable mortality (21%). The biomechanical properties (maximum force) of glucocorticoid-treated rats in groups 4 (62 ± 2.9), 6 (63 ± 5.1), and 7 (60 ± 5.3) were comparable with the control (46 ± 1.5) and low-level laser-treated (57 ± 3.2) rats. Conclusions: In contrast to the findings in humans and certain other species, glucocorticoid administration caused anabolic effect on the cortical bone of tibia diaphysis bone in rats. PMID:26019900

  2. [CHANGES OF SEMAPHORIN 3A EXPRESSION IN HEALING OF TIBIA FRACTURE AFTER TRAUMATIC BRAIN INJURY].

    PubMed

    Li, Zhengzheng; Zhao, Junwei; Yi, Zhigang; Luo, Wei; Li, Kang; Wang, Yuliang; Wang, Jing; An, Liping; Ma, Jinglin

    2016-10-08

    To investigate the mechanism of Semaphorin 3A (Sema3A) in fracture healing after nerve injury by observing the expression of Sema3A in the tibia fracture healing after traumatic brain injury (TBI). A total of 192 Wistar female rats, 8-10 weeks old and weighing 220-250 g, were randomly divided into tibia fracture group (group A, n =48), TBI group (group B, n =48), TBI with tibia fracture group (group C, n =48), and control group (group D, n =48). The tibia fracture model was established at the right side of group A; TBI model was made in group B by the improved Feeney method; the TBI and tibia fracture model was made in group C; no treatment was given in group D. The tissue samples were respectively collected at 3, 5, 7, 14, 21, and 28 days after operation; HE staining, immunohistochemistry staining, and Western blot method were used for the location and quantitative detection of Sema3A in callus tissue. HE staining showed that no obvious changes were observed at each time point in groups B and D. At 3 and 5 days, there was no obvious callus growth at fracture site with inflammatory cells and fibrous tissue filling in groups A and C. At 7 and 14 days, fibrous tissue grew from periosteum to fracture site in groups A and C; the proliferation of chondrocytes in exterior periosteum gradually formed osteoid callus at fracture site in groups A and C. The chondrocyte had bigger size, looser arrangement, and more osteoid in group C than group A. Group B had disorder periosteum, slight subperiosteal bone hyperplasia, and no obvious change of bone trabecula in group B when compared with group D. At 21 and 28 days, cartilage callus was gradually replaced by new bone trabecula in groups A and C. Group C had loose arrange, disorder structure, and low density of bone trabecula, big callus area and few chondrocyte and osteoid when compared with group A; group B was similar to Group D. Immunohistochemistry staining showed that Sema3A expression in chondrocytes in group C was higher than that in group A, particularly at 7, 14, and 21 day. Sema3A was significantly higher in osteoblasts of new bone trabecula in group A than group C, especially at 14 and 21 days ( P <0.05). Western blot results showed that the Sema3A had the same expression trend during fracture healing in groups A and C. However, the expression of Sema3A protein was significantly higher in group C than group A ( P <0.05) and in group B than group D ( P <0.05) at 7, 14, 21, and 28 days. Abnormal expression of Sema3A may play a role in fracture healing after nerve injury by promoting the chondrocytes proliferation and reducing the distribution of sensory nerve fibers and osteoblast differentiation.

  3. Effects of spaceflight and simulated weightlessness on longitudinal bone growth

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Zhang, M.; Evans, G. L.; Westerlind, K. C.; Cavolina, J. M.; Morey-Holton, E.; Turner, R. T.

    2000-01-01

    Indirect measurements have suggested that spaceflight impairs bone elongation in rats. To test this possibility, our laboratory measured, by the fluorochrome labeling technique, bone elongation that occurred during a spaceflight experiment. The longitudinal growth rate (LGR) in the tibia of rats in spaceflight experiments (Physiological Space Experiments 1, 3, and 4 and Physiological-Anatomical Rodent Experiment 3) and in two models of skeletal unloading (hind-limb elevation and unilateral sciatic neurotomy) were calculated. The effects of an 11 day spaceflight on gene expression of cartilage matrix proteins in rat growth plates were also determined by northern analysis and are reported for the first time in this study. Measurements of longitudinal growth indicate that skeletal unloading generally did not affect LGR, regardless of age, strain, gender, duration of unloading, or method of unloading. There was, however, one exception with 34% suppression in LGR detected in slow-growing, ovariectomized rats skeletally unloaded for 8 days by hind-limb elevation. This detection of reduced LGR by hind-limb elevation is consistent with changes in steady-state mRNA levels for type II collagen (-33%) and for aggrecan (-53%) that were detected in rats unloaded by an 11 day spaceflight. The changes detected in gene expression raise concern that spaceflight may result in changes in the composition of extracellular matrix, which could have a negative impact on conversion of growth-plate cartilage into normal cancellous bone by endochondral ossification.

  4. The Effects of Targeted Deliveries of Lovastatin and Tocotrienol on Ossification-Related Gene Expressions in Fracture Healing in an Osteoporosis Rat Model

    PubMed Central

    Ibrahim, Nurul ‘Izzah; Mohamed, Norazlina; Soelaiman, Ima Nirwana; Shuid, Ahmad Nazrun

    2015-01-01

    Osteoporotic drugs are used to prevent fragility fractures, but their role in fracture healing still remains unknown. Thus, alternative agents with suitable mode of delivery are needed to promote fracture healing. This study was performed to investigate the effects of direct deliveries of lovastatin and tocotrienol to fracture sites on ossification-related gene expression in fracture healing in a postmenopausal osteoporosis model. Forty-eight Sprague Dawley female rats were divided into six groups. Group I comprised the sham-operated rats, while Groups II–VI were ovariectomized rats. After 8 weeks, the right tibiae of all rats were fractured and stabilized. Group I and Group II were given two single injections of lovastatin and tocotrienol carriers. Group III was given an estrogen preparation at 64.5 µg/kg daily via oral gavages. Group IV was injected with lovastatin particles (750 µg/kg), while Group V was injected with tocotrienol particles (60 mg/kg). Group VI received two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks, the gene expressions were measured. Group VI showed significantly higher gene expressions of osteocalcin, BMP-2, VEGF-α, and RUNX-2 compared to Group II. In conclusion, combined treatment of lovastatin and tocotrienol upregulated the expression of genes related to fracture healing. PMID:26501302

  5. The Effects of Targeted Deliveries of Lovastatin and Tocotrienol on Ossification-Related Gene Expressions in Fracture Healing in an Osteoporosis Rat Model.

    PubMed

    Ibrahim, Nurul 'Izzah; Mohamed, Norazlina; Soelaiman, Ima Nirwana; Shuid, Ahmad Nazrun

    2015-10-16

    Osteoporotic drugs are used to prevent fragility fractures, but their role in fracture healing still remains unknown. Thus, alternative agents with suitable mode of delivery are needed to promote fracture healing. This study was performed to investigate the effects of direct deliveries of lovastatin and tocotrienol to fracture sites on ossification-related gene expression in fracture healing in a postmenopausal osteoporosis model. Forty-eight Sprague Dawley female rats were divided into six groups. Group I comprised the sham-operated rats, while Groups II-VI were ovariectomized rats. After 8 weeks, the right tibiae of all rats were fractured and stabilized. Group I and Group II were given two single injections of lovastatin and tocotrienol carriers. Group III was given an estrogen preparation at 64.5 µg/kg daily via oral gavages. Group IV was injected with lovastatin particles (750 µg/kg), while Group V was injected with tocotrienol particles (60 mg/kg). Group VI received two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks, the gene expressions were measured. Group VI showed significantly higher gene expressions of osteocalcin, BMP-2, VEGF-α, and RUNX-2 compared to Group II. In conclusion, combined treatment of lovastatin and tocotrienol upregulated the expression of genes related to fracture healing.

  6. Sigma-1 Receptor Antagonist BD1047 Reduces Mechanical Allodynia in a Rat Model of Bone Cancer Pain through the Inhibition of Spinal NR1 Phosphorylation and Microglia Activation

    PubMed Central

    Zhu, Shanshan; Wang, Chenchen; Han, Yuan; Song, Chao; Hu, Xueming; Liu, Yannan

    2015-01-01

    Previous studies have demonstrated that sigma-1 receptor plays important roles in the induction phase of rodent neuropathic pain; however, whether it is involved in bone cancer pain (BCP) and the underlying mechanisms remain elusive. The aim of this study was to examine the potential role of the spinal sigma-1 receptor in the development of bone cancer pain. Walker 256 mammary gland carcinoma cells were implanted into the intramedullary space of the right tibia of Sprague-Dawley rats to induce ongoing bone cancer-related pain behaviors; our findings indicated that, on days 7, 10, 14, and 21 after operation, the expression of sigma-1 receptor in the spinal cord was higher in BCP rats compared to the sham rats. Furthermore, intrathecal injection of 120 nmol of sigma-1 receptor antagonist BD1047 on days 5, 6, and 7 after operation attenuated mechanical allodynia as well as the associated induction of c-Fos and activation of microglial cells, NR1, and the subsequent Ca2+-dependent signals of BCP rats. These results suggest that sigma-1 receptor is involved in the development of bone cancer pain and that targeting sigma-1 receptor may be a new strategy for the treatment of bone cancer pain. PMID:26696751

  7. Effects of voluntary exercise on the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups born from morphine- dependent mothers during pregnancy.

    PubMed

    Haydari, Sakineh; Safari, Manouchehr; Zarbakhsh, Sam; Bandegi, Ahmad Reza; Miladi-Gorji, Hossein

    2016-11-10

    This study was designed to investigate whether free access to a running wheel during pregnancy in morphine-dependent mothers would influence the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with free access to a running wheel. Male pups are weaned at 21days of birth and their bones marrows were aspirated from the femurs and tibias and also the bone marrow stromal cells (BMSCs) cultured. MTT assay was used to determine cell viability and proliferation rate. The level of BDNF was measured in the supernant of BMSCs culture by ELISA. The sedentary morphine-dependent mothers' pups showed a significant increase in the percentage cell viability and proliferation rate and also a significant decrease in the BDNF protein levels in BMSCs. The rat pups borne from exercising the control and morphine-dependent mothers exhibited an increase in the percentage viability, proliferation rate and BDNF levels of the BMSCs. This study showed that maternal exercise during pregnancy in morphine-dependent and non-dependent mothers, with increasing of BDNF levels increased the proliferation and viability of BMSCs in the rat pups. Also, chronic administration of morphine during pregnancy was able to increase the proliferation and viability of BMSCs in the rat pups. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Exercise initiated after the onset of insulin resistance improves trabecular microarchitecture and cortical bone biomechanics of the tibia in hyperphagic Otsuka Long Evans Tokushima Fatty rats.

    PubMed

    Ortinau, Laura C; Linden, Melissa A; Dirkes, Rebecca K; Rector, R Scott; Hinton, Pamela S

    2017-10-01

    The present study extends our previous findings that exercise, which prevents the onset of insulin resistance and type 2 diabetes (T2D), also prevents the detrimental effects of T2D on whole-bone and tissue-level strength. Our objective was to determine whether exercise improves bone's structural and material properties if insulin resistance is already present in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. The OLETF rat is hyperphagic due to a loss-of-function mutation in cholecystokinin-1 receptor (CCK-1 receptor), which leads to progressive obesity, insulin resistance and T2D after the majority of skeletal growth is complete. Because exercise reduces body mass, which is a significant determinant of bone strength, we used a body-mass-matched caloric-restricted control to isolate body-mass-independent effects of exercise on bone. Eight-wk old, male OLETF rats were fed ad libitum until onset of hyperglycemia (20weeks of age), at which time they were randomly assigned to three groups: ad libitum fed, sedentary (O-SED); ad libitum fed, treadmill running (O-EX); or, sedentary, mild caloric restriction to match body mass of O-EX (O-CR). Long-Evans Tokushima Otsuka rats served as the normophagic, normoglycemic controls (L-SED). At 32weeks of age, O-SED rats had T2D as evidenced by hyperglycemia and a significant reduction in fasting insulin compared to OLETFs at 20weeks of age. O-SED rats also had reduced total body bone mineral content (BMC), increased C-terminal telopeptide of type I collagen (CTx)/tartrate resistant acid phosphatase isoform 5b (TRAP5b), decreased N-terminal propeptide of type I procollagen (P1NP), reduced percent cancellous bone volume (BV/TV), trabecular number (Tb.N) and increased trabecular separation (Tb.Sp) and structural model index (SMI) of the proximal tibia compared to L-SED. T2D also adversely affected biomechanical properties of the tibial diaphysis, and serum sclerostin was increased and β-catenin, runt-related transcription factor 2 (Runx2) and insulin-like growth factor-I (IGF-I) protein expression in bone were reduced in O-SED vs. L-SED. O-EX or O-CR had greater total body bone mineral density (BMD) and BMC, and BV/TV, Tb.N, Tb.Sp, and SMI compared to O-SED. O-EX had lower CTx and CR greater P1NP relative to O-SED. O-EX, not O-CR, had greater cortical thickness and area, and improved whole-bone and tissue-level biomechanical properties associated with a 4-fold increase in cortical bone β-catenin protein expression vs. O-SED. In summary, EX or CR initiated after the onset of insulin resistance preserved cancellous bone volume and structure, and EX elicited additional benefits in cortical bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Radiographic evidence of disuse osteoporosis in the monkey /M. nemestrina/

    NASA Technical Reports Server (NTRS)

    Young, D. R.; Schneider, V. S.

    1981-01-01

    Radiological techniques were utilized for monitoring progressive changes in compact bone in the tibia of monkeys during experimentally induced osteopenia. Bone mass loss in the tibia during restraint was evaluated from radiographs, from bone mineral analysis, and from images reconstructed from gamma ray computerized tomography. The losses during 6 months of restraint tended to occur predominantly in the proximal tibia and were characterized by subperiosteal bone loss, intracortical striations, and scalloped endosteal surfaces. Bone mineral content in the cross section of the tibia declined 17-21%. In 6 months of recovery, the mineral content of the proximal tibia remained depressed.

  10. Orthotopic model of canine osteosarcoma in athymic rats for evaluation of stereotactic radiotherapy.

    PubMed

    Schwartz, Anthony L; Custis, James T; Harmon, Joseph F; Powers, Barbara E; Chubb, Laura S; LaRue, Susan M; Ehrhart, Nicole P; Ryan, Stewart D

    2013-03-01

    To develop an orthotopic model of canine osteosarcoma in athymic rats as a model for evaluating the effects of stereotactic radiotherapy (SRT) on osteosarcoma cells. 26 athymic nude rats. 3 experiments were performed. In the first 2 experiments, rats were injected with 1 × 10(6) Abrams canine osteosarcoma cells into the proximal aspect of the tibia (n = 12) or distal aspect of the femur (6). Tumor engraftment and progression were monitored weekly via radiography, luciferase imaging, and measurement of urine pyridinoline concentration for 5 weeks and histologic evaluation after euthanasia. In the third experiment, 8 rats underwent canine osteosarcoma cell injection into the distal aspect of the femur and SRT was administered to the affected area in three 12-Gy fractions delivered on consecutive days (total radiation dose, 36 Gy). Percentage tumor necrosis and urinary pyridinoline concentrations were used to assess local tumor control. The short-term effect of SRT on skin was also evaluated. Tumors developed in 10 of 12 tibial sites and all 14 femoral sites. Administration of SRT to rats with femoral osteosarcoma was feasible and successful. Mean tumor necrosis of 95% was achieved histologically, and minimal adverse skin effects were observed. The orthotopic model of canine osteosarcoma in rats developed in this study was suitable for evaluating the effects of local tumor control and can be used in future studies to evaluate optimization of SRT duration, dose, and fractionation schemes. The model could also allow evaluation of other treatments in combination with SRT, such as chemotherapy or bisphosphonate, radioprotectant, or parathyroid hormone treatment.

  11. Electrical stimulation on joint contracture: an experiment in rat model with direct current.

    PubMed

    Akai, M; Shirasaki, Y; Tateishi, T

    1997-04-01

    To examine whether electrical stimulation could decrease the degree of joint stiffness in a rat lower extremity model. Rat knee joints were surgically immobilized in a flexed position for 3 weeks. Two groups of rats were stimulated with 20 microA and 50 microA constant direct current. Another group had surgical intervention and sham electrodes without electricity. The hind leg was extirpated and prepared for a sample with the femur-knee joint-tibia unit. Recording the knee flexion angle with extension torque, the degree of joint contracture was assessed biomechanically by measuring the bone-joint-bone sample as a cantilever. Measurement was performed with (1) spectral analysis of transfer function measurement using random mechanical noise with frequency range from 1 to 50Hz, and (2) dynamic stiffness and loss tangent with steady-state sinusoidal excitation (11 and 35Hz). The results showed that no significant difference or trend was found in vibration analysis among three groups. However, spectral analysis of transfer function measurement revealed more deformation against load, and more viscous nature in the stimulation groups, especially in low frequency band, than in the sham group. Electrical stimulation with constant direct current has a possibility of reducing the degree of joint contracture.

  12. Inhibition of Histone Deacetylases Attenuates Morphine Tolerance and Restores MOR Expression in the DRG of BCP Rats.

    PubMed

    He, Xiao-Tao; Zhou, Kai-Xiang; Zhao, Wen-Jun; Zhang, Chen; Deng, Jian-Ping; Chen, Fa-Ming; Gu, Ze-Xu; Li, Yun-Qing; Dong, Yu-Lin

    2018-01-01

    The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.

  13. Micro-osmotic pumps for continuous release of the tyrosine kinase inhibitor bosutinib in juvenile rats and its impact on bone growth.

    PubMed

    Tauer, Josephine Tabea; Hofbauer, Lorenz C; Jung, Rolang; Erben, Reinhold G; Suttorp, Meinolf

    2013-11-04

    Bosutinib is a third-generation dual tyrosine kinase inhibitor (TKI) inhibiting Abl and Src kinases. It was developed to act on up-regulated tyrosine kinases (TKs) like BCR-ABL in Philadelphia chromosome positive (Ph+) chronic myeloid leukemia (CML) when resistance to first- and second-generation TKIs developed. However, first- and second-generation TKIs show off-target effects on bone metabolism, whereas studies on skeletal adverse effects of bosutinib are still lacking. Therefore, it was the aim of this study to continuously expose juvenile rats to bosutinib and to analyze its influence on the growing bone. Starting after weaning, 4-week-old Wistar rats were chronically exposed over a 28-day period to varying concentrations of bosutinib, which were continuously administered subcutaneously via implanted Alzet® micro-osmotic pumps. After necropsy, the length of the femora and tibiae were analyzed. Continuous administration of bosutinib by micro-osmotic pumps led to serum drug levels in the lower therapeutic range, was well tolerated, and exhibited only minor adverse effects on the growing skeleton. Micro-osmotic pumps represent a convenient system for continuous TKI release in young growing rats. Compared to first- and second-generation TKIs, bosutinib seems to exert fewer adverse effects on the growing bone.

  14. Outcomes of tibia shaft fractures caused by low energy gunshot wounds.

    PubMed

    Su, Charles A; Nguyen, Mai P; O'Donnell, Jeffrey A; Vallier, Heather A

    2018-05-16

    The purpose of this project was to compare the rates of infections, nonunions, malunions, and secondary operations in tibia fractures resultant from low energy GSWs versus those seen in open and closed tibia fractures resultant from blunt trauma. A secondary objective was to assess the utility of using the traditional Gustilo-Anderson classification system for open fractures to describe fractures secondary to low energy GSW. A retrospective review of 327 patients with tibia shaft fractures was conducted at our level I trauma center. Patients underwent a variety of interventions depending on their injury. Standard fixation techniques were utilized. Outcome measures include: mechanism of injury, rates of superficial and deep infection, nonunion, malunion, and secondary operations. Deep infection after low energy GSW tibia fractures was uncommon and seen in only 2.3% of patients. Rates of infection after low energy GSWs were similar to low and high energy closed tibia fractures resultant from blunt trauma, but significantly less than that seen in open type II (25%, p < 0.05), type IIIA (19.5%, p < 0.05), and type IIIB fractures (47%, p < 0.01). There were no nonunions following GSW fractures, versus 3.7% after closed tibia fractures from blunt trauma (p = 0.2). Nonunions were more common after open fractures from blunt trauma (11%, p < 0.05) versus GSWs. Differences in infection and nonunion were associated with more secondary operations (18%, p < 0.01) in the open tibia fracture group compared with GSWs (2.3%) and closed fractures (7.9% p = 0.19). While GSWs are traditionally thought of as open injuries, low energy GSW tibia fractures had a low rate of infection and no nonunions, and resulted in a reoperation rate similar to closed blunt tibia shaft fractures and significantly lower than open tibia fractures. Copyright © 2018. Published by Elsevier Ltd.

  15. The anterior tilt angle of the proximal tibia epiphyseal plate: a significant radiological finding in young children with trampoline fractures.

    PubMed

    Stranzinger, Enno; Leidolt, Lars; Eich, Georg; Klimek, Peter Michael

    2014-08-01

    Evaluation of the anterior tilt angle of the proximal tibia epiphyseal plate in young children, which suffered a trampoline fracture in comparison with a normal population. 62 children (31 females, 31 males) between 2 and 5 years of age (average 2 years 11 months, standard deviation 11 months) with radiographs in two views of the tibia were included in this retrospective study. 25 children with proximal tibia fractures were injured with a history of jumping on a trampoline. All other causes for tibia fractures were excluded. A normal age-mapped control cohort of 37 children was compared. These children had neither evidence of a trampoline related injury nor a fracture of the tibia. The anterior tilt angle of the epiphyseal plate of the tibia was defined as an angle between the proximal tibia physis and the distal tibia physis on a lateral view. Two radiologists evaluated all radiographs for fractures and measured the anterior tilt angle in consensus. An unpaired Student's t-test was used for statistical analysis (SPSS). Original reports were reviewed and compared with the radiological findings and follow-up radiographs. In the normal control group, the average anterior tilt angle measured -3.2°, SD ± 2.8°. The children with trampoline fractures showed an anterior tilt of +4.4°, SD ± 2.9°. The difference was statistically significant, P<0.0001. In 6 patients (24% of all patients with confirmed fractures) the original report missed to diagnose the proximal tibial fracture. Young children between 2 and 5 years of age are at risk for proximal tibia fractures while jumping on a trampoline. These fractures may be very subtle and difficult to detect on initial radiographs. Measurement of the anterior tilt angle of the proximal tibia epiphyseal plate on lateral radiographs is supportive for interpreting correctly trampoline fractures. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. A New Measurement Technique of the Characteristics of Nutrient Artery Canals in Tibias Using Materialise's Interactive Medical Image Control System Software

    PubMed Central

    Li, Jiantao; Zhang, Hao; Yin, Peng; Su, Xiuyun; Zhao, Zhe; Zhou, Jianfeng; Li, Chen; Li, Zhirui; Zhang, Lihai; Tang, Peifu

    2015-01-01

    We established a novel measurement technique to evaluate the anatomic information of nutrient artery canals using Mimics (Materialise's Interactive Medical Image Control System) software, which will provide full knowledge of nutrient artery canals to assist in the diagnosis of longitudinal fractures of tibia and choosing an optimal therapy. Here we collected Digital Imaging and Communications in Medicine (DICOM) format of 199 patients hospitalized in our hospital. All three-dimensional models of tibia in Mimics were reconstructed. In 3-matic software, we marked five points in tibia which located at intercondylar eminence, tibia tuberosity, outer ostium, inner ostium, and bottom of medial malleolus. We then recorded Z-coordinates values of the five points and performed statistical analysis. Our results indicate that foramen was found to be absent in 9 (2.3%) tibias, and 379 (95.2%) tibias had single nutrient foramen. The double foramina was observed in 10 (2.5%) tibias. The mean of tibia length was 358 ± 22 mm. The mean foraminal index was 31.8%  ± 3%. The mean distance between tibial tuberosity and foramen (TFD) is 66 ± 12 mm. Foraminal index has significant positive correlation with TFD (r = 0.721, P < 0.01). Length of nutrient artery canals has significant negative correlation with TFD (r = −0.340, P < 0.01) and has significant negative correlation with foraminal index (r = −0.541, P < 0.01). PMID:26788498

  17. Effects of physical exercise on the cartilage of ovariectomized rats submitted to immobilization

    PubMed Central

    Simas, José Martim Marques; Kunz, Regina Inês; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Bertolini, Gladson Ricardo Flor

    2015-01-01

    ABSTRACT Objective To analyze the effects of physical exercise on cartilage histomorphometry in osteoporosis-induced rats subjected to immobilization. Methods We used 36 Wistar rats that were separated into six groups: G1, G2 and G3 submitted to pseudo-oophorectomy, and G4, G5 and G6 submitted to oophorectomy. After 60 days at rest, G2, G3, G5 and G6 had the right hind limbs immobilized for 15 days, followed by the same period in remobilization, being free in the box to G2 and G5, and climb ladder to G3 and G6. At the end of the experiment, the rats were euthanized, their tibias bilaterally removed and submitted to histological routine. Results There was significant increase in thickness of the articular cartilage (F(5;29)=13.88; p<0.0001) and epiphyseal plate (F(5;29)=14.72; p<0.0001) as the number of chondrocytes (F(5;29)=5.11; p=0.0021) in ovariectomized rats, immobilized and submitted to exercise. In the morphological analysis, degeneration of articular cartilage with subchondral bone exposure, loss of cellular organization, discontinuity of tidemark, presence of cracks and flocculation in ovariectomized, immobilized and free remobilization rats were found. In ovariectomized and immobilized remobilization ladder rats, signs of repair of the cartilaginous structures in the presence of clones, pannus, subcortical blood vessel invasion in the calcified zone, increasing the amount of isogenous groups and thickness of the calcified zone were observed. Conclusion Exercise climb ladder was effective in cartilaginous tissue recovery process damaged by immobilization, in model of osteoporosis by ovariectomy in rats. PMID:26761556

  18. Natural tibialization of fibula in non-union tibia: Two cases.

    PubMed

    Prabhat, Vinay; Vargaonkar, Gauresh S; Mallojwar, Sunil R; Kumar, Ramesh

    2016-01-01

    Non-union of tibia is known to be a common complication after fracture both bones of leg treated conservatively. During the course of natural healing, fibula usually unites early as it had more soft tissue attachment and vascular supply. Due to early union of fibula and absence of axial force across the tibia, it undergoes non-union. Two cases, a 32-year-old male and 65-year-old female treated conservatively for fracture both bones of leg long years back, presented to us with mild calf pain on and off. On radiological examination, there was non-union of tibia along with compensatory fibular hypertrophy to the extent that fibula became main weight bearing bone. In both the cases, we observed gross fibular hypertrophy in presence of non-union of tibia. In conservatively treated cases of fracture, both bones of leg, non-union of tibia may coexist with compensatory hypertrophy of fibula to the extent that, it becomes main weight bearing bone of the leg. We are presenting here two cases of natural tibialization of fibula along with nonunion tibia. Our article supports the theory of Wolff's law.

  19. The effects of prostaglandin E2 in growing rats - Increased metaphyseal hard tissue and cortico-endosteal bone formation

    NASA Technical Reports Server (NTRS)

    Jee, W. S. S.; Ueno, K.; Deng, Y. P.; Woodbury, D. M.

    1985-01-01

    The role of in vivo prostaglandin E2 (PGE2) in bone formation is investigated. Twenty-five male Sprague-Dawley rats weighing between 223-267 g were injected subcutaneously with 0.3, 1.0, 3.0, and 6.0 mg of PGE2-kg daily for 21 days. The processing of the tibiae for observation is described. Radiographs and histomorphometric analyses are also utilized to study bone formation. Body weight, weights of soft tissues and bones morphometry are evaluated. It is observed that PGE2 depressed longitudinal bone growth, increased growth cartilage thickness, decreased degenerative cartilage cell size and cartilage cell production, and significantly increased proximal tibial metaphyseal hard tissue mass. The data reveal that periosteal bone formation is slowed down at higher doses of PGE2 and endosteal bone formation is slightly depressed less than 10 days post injection; however, here is a late increase (10 days after post injection) in endosteal bone formation and in the formation of trabecular bone in the marrow cavity of the tibial shaft. It is noted that the effects of PGE2 on bone formation are similar to the responses of weaning rats to PGE2.

  20. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Tanner, S.; Curren, T.; Morey-Holton, E.

    1997-01-01

    To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing.

  1. Effect of modified alkaline supplementation on bone metabolic turnover in rats.

    PubMed

    Chui, D H; Marotta, F; Liu, T; Minelli, E; Yadav, H; Signorelli, P; Lorenzetti, A; Jain, S

    2008-01-01

    This study aims to determine the effects of a high protein diet and alkaline supplementation on bone metabolic turnover in rats. Eight-week-old male Sprague-Dawley rats were investigated by bone status, including bone mineral density (BMD) and biomechanical markers from blood and urine. Thirty rats were randomly divided into three groups and treated for 8 weeks as follows: baseline control group (n. 10, C), high-protein supplemented diet group (n. 10, chronic acidosis, CA group) and supplemented chronic acidosis (n.10, SCA). Diet-treated rats were fed an acidic high-protein diet and the supplementation consisted in a modified alkaline formula (Basenpulver, NaMed, Italy). At the end of the experimental period, the rats were sacrificed, blood samples were drawn and femur and tibia were removed for analysis of bone mineral density (BMD) by dual energy X-ray absorptiometry (DEXA). In the CA group, 24-hour urinary calcium (Ca) and phosphorus (P) excretion were increased 2.1-fold (p<0.05 vs normal diet controls) as well as kidney weight. However, serum Ca and P concentration, as well as urinary Dpd excretion were not significantly changed. Femural and tibial BMD was significantly decreased in the CA group (p<0.05), but alkaline supplementation prevented such phenomenon (p<0.05 vs CA). These results suggest that blood Ca and P concentrations in chronic acidosis condition during the 12-week supplementation might be maintained by hypercalciuria and hyperphosphaturia at the expenses of bone structure. However, modified alkaline supplementation is able to prevent such derangements.

  2. Effects of electromagnetic fields on bone loss in hyperthyroidism rat model.

    PubMed

    Liu, Chaoxu; Zhang, Yingchi; Fu, Tao; Liu, Yang; Wei, Sheng; Yang, Yong; Zhao, Dongming; Zhao, Wenchun; Song, Mingyu; Tang, Xiangyu; Wu, Hua

    2017-02-01

    Optimal therapeutics for hyperthyroidism-induced osteoporosis are still lacking. As a noninvasive treatment, electromagnetic fields (EMF) have been proven to be effective for treating osteoporosis in non-hyperthyroidism conditions. We herein systematically evaluated the reduced effects of EMF on osteoporosis in a hyperthyroidism rat model. With the use of Helmholtz coils and an EMF stimulator, 15 Hz/1 mT EMF was generated. Forty-eight 5-month-old male Sprague-Dawley rats were randomly divided into four different groups: control, levothyroxine treated (L-T4), EMF exposure + levothyroxine (EMF + L-T4), and EMF exposure without levothyroxine administration (EMF). All rats were treated with L-T4 (100 mg/day) except those in control and EMF groups. After 12 weeks, the results obtained from bone mineral density analyses and bone mechanical measurements showed significant differences between L-T4 and EMF + L-T4 groups. Micro CT and bone histomorphometric analyses indicated that trabecular bone mass and architecture in distal femur and proximal tibia were augmented and restored partially in EMF + L-T4 group. In addition, bone thyroid hormone receptors (THR) expression of hyperthyroidism rats was attenuated in EMF + L-T4 group, compared to control group, which was not observed in L-T4 group. According to these results, we concluded that 15 Hz/1 mT EMF significantly inhibited bone loss and micro architecture deterioration in hyperthyroidism rats, which might occur due to reduced THR expression caused by EMF exposure. Bioelectromagnetics. 38:137-150, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Blood pressure-independent renoprotection in diabetic rats treated with AT1 receptor-neprilysin inhibition compared with AT1 receptor blockade alone.

    PubMed

    Roksnoer, Lodi C W; van Veghel, Richard; van Groningen, Marian C Clahsen-; de Vries, René; Garrelds, Ingrid M; Bhaggoe, Usha M; van Gool, Jeanette M G; Friesema, Edith C H; Leijten, Frank P J; Hoorn, Ewout J; Danser, A H Jan; Batenburg, Wendy W

    2016-07-01

    ARNI [dual AT1 (angiotensin II type 1) receptor-neprilysin inhibition] exerts beneficial effects on blood pressure and kidney function in heart failure, compared with ARB (AT1 receptor blockade) alone. We hypothesized that ARNI improves cardiac and kidney parameters in diabetic TGR(mREN2)27 rats, an angiotensin II-dependent hypertension model. Rats were made diabetic with streptozotocin for 5 or 12 weeks. In the final 3 weeks, rats were treated with vehicle, irbesartan (ARB) or irbesartan+thiorphan (ARNI). Blood pressure, measured by telemetry in the 5-week group, was lowered identically by ARB and ARNI. The heart weight/tibia length ratio in 12-week diabetic animals was lower after ARNI compared with after ARB. Proteinuria and albuminuria were observed from 8 weeks of diabetes onwards. ARNI reduced proteinuria more strongly than ARB, and a similar trend was seen for albuminuria. Kidneys of ARNI-treated animals showed less severe segmental glomerulosclerosis than those of ARB-treated animals. After 12 weeks, no differences between ARNI- and ARB-treated animals were found regarding diuresis, natriuresis, plasma endothelin-1, vascular reactivity (acetylcholine response) or kidney sodium transporters. Only ARNI-treated rats displayed endothelin type B receptor-mediated vasodilation. In conclusion, ARNI reduces proteinuria, glomerulosclerosis and heart weight in diabetic TGR(mREN2)27 rats more strongly than does ARB, and this occurs independently of blood pressure. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  4. Accessibility of ³H-secoisolariciresinol diglycoside lignan metabolites in skeletal tissue of ovariectomized rats.

    PubMed

    Sacco, Sandra M; Thompson, Lilian U; Ganss, Bernhard; Ward, Wendy E

    2011-10-01

    Flaxseed, rich in the phytoestrogen lignan secoisolariciresinol diglycoside (SDG), provides protection against bone loss at the lumbar vertebrae primarily when combined with low-dose estrogen therapy in the ovariectomized rat model of postmenopausal osteoporosis. Whether SDG metabolites are accessible to skeletal tissue, and thus have the potential to interact with low-dose estrogen therapy to exert direct local action on bone metabolism, is unknown. The objective of this study was to determine whether metabolites of SDG are accessible to the skeleton of ovariectomized rats and to compare the distribution of SDG metabolites in skeletal tissue with that in other tissues. Rats were fed a 10% flaxseed diet and gavaged daily with tritium-labeled SDG (7.4 kBq/g of body weight) in deionized water (500 μL) (n=3) or deionized water alone (n=3) for 7 days, after which tissues were collected for liquid scintillation counting. Radioactivity was detected in similar concentrations in the lumbar vertebrae, femurs, and tibias. Compared with non-skeletal tissues, total radioactivity in the skeleton was significantly lower than in the liver, heart, kidney, thymus, and brain (P < .001). There were no significant differences in levels of radioactivity between skeletal tissue versus the spleen, lung, bladder, uterus, vagina, and mammary gland. In conclusion, SDG metabolites are accessible to skeletal tissue of ovariectomized rats. Thus, it is biologically plausible that SDG metabolites may play a direct role in the protective effects of flaxseed combined with low-dose estrogen therapy against the loss of bone mass and bone strength in the ovariectomized rat model of postmenopausal osteoporosis.

  5. Effects of dietary phytase on body weight gain, body composition and bone strength in growing rats fed a low-zinc diet.

    PubMed

    McClung, James P; Stahl, Chad H; Marchitelli, Louis J; Morales-Martinez, Nelson; Mackin, Katherine M; Young, Andrew J; Scrimgeour, Angus G

    2006-03-01

    Phytic acid, a major phosphorous storage compound found in foodstuffs, is known to form insoluble complexes with nutritionally essential minerals, including zinc (Zn). Phytases are enzymes that catalyze the removal of these minerals from phytic acid, improving their bioavailability. The objective of the present study was to determine the ability of dietary phytase to affect body weight, body composition, and bone strength in growing rats fed a high phytic acid, low Zn diet. Rats (n = 20) were fed either a control (AIN-93) or phytase supplemented (Natuphos, BASF, 1,500 phytase units (FTU)/kg) diet for a period of 8 weeks. Phytase supplementation resulted in increased (P<.05) bone and plasma Zn, but no change in plasma inorganic phosphorous or bone levels of Ca, Fe, or Mg. The addition of phytase to the diets resulted in a 22.4% increase (P<.05) in body weight at the end of the study as compared with rats fed a control diet. Dual x-ray absorptiometry (DXA) revealed that phytase supplementation resulted in increase lean body mass (LBM, P<.001) and increased bone mineral content (BMC, P<.001) as compared with feeding the control diet. Bone studies indicated that femurs and tibias from phytase supplemented rats had greater mass (P<.05) and were stronger (P<.05) than rats fed the control diet. This data suggest that the addition of phytase to low Zn diets results in improved Zn status, which may be responsible for beneficial effects on growth, body composition, and bone strength.

  6. Effects of dexamethasone, celecoxib, and methotrexate on the histology and metabolism of bone tissue in healthy Sprague Dawley rats.

    PubMed

    Liu, Yanzhi; Cui, Yang; Chen, Yan; Gao, Xiang; Su, Yanjie; Cui, Liao

    2015-01-01

    To investigate the long-term effects of three antiarthritics, namely dexamethasone, celecoxib, and methotrexate on the histology and metabolism of intact bone tissue in rats. Thirty-two 12-week-old healthy female Sprague Dawley rats were randomly allocated into four groups: 1) control (saline, daily); 2) dexamethasone (2 mg/kg, twice weekly); 3) celecoxib (50 mg/kg, daily); and 4) methotrexate (0.5 mg/kg, twice weekly). The drugs were administered to the rats for 12 weeks and the animals were weighed on a weekly basis. The femurs and lumbar vertebrae were harvested for bone mineral density and bone mechanical properties analyses. The proximal tibiae were processed for bone histomorphometry and micro-computed tomography analyses. The following results were obtained: 1) dexamethasone strongly inhibited bone formation rate accompanied with a decrease in bone mineral density and bone biomechanical properties; 2) celecoxib stimulated bone resorption, leading to a decrease of bone mass and femur biomechanic properties; and 3) methotrexate caused bone loss and bone quality deterioration to a lesser extent due to the increase of the bone turnover rate on the proximal tibial metaphysis of the rats. This study provides a comparative profile of the long-term effects of clinical doses of celecoxib, methotrexate, and dexamethasone on intact skeletons of the rats. The results indicate that the three antiarthritics have varying degrees of side effects on bone metabolism, and these findings will help physicians to learn more about the potential effects of antiarthritics on bone metabolism.

  7. Immunohistochemical localization of bone morphogenetic proteins and the receptors in epiphyseal growth plate.

    PubMed

    Yazaki, Y; Matsunaga, S; Onishi, T; Nagamine, T; Origuchi, N; Yamamoto, T; Ishidou, Y; Imamura, T; Sakou, T

    1998-01-01

    The expression of bone morphogenetic proteins (BMPs) and BMP receptors (BMPRs) in the epiphyseal growth plate has not been clarified. In this study, we studied immunohistochemically the spatial and temporal localization of BMP-2/4, osteogenic protein-1 (OP-1, or BMP-7), and BMP receptors (BMPR-IA, BMPR-IB, and BMPR-II) in the epiphyseal plate of growing rats. The proximal parts of tibia in growing rats were observed. At 12 weeks after birth, BMP-2/4 and OP-1 were expressed markedly in proliferating and maturing chondrocytes. BMPR-IA, IB and II were clearly co-expressed in proliferating and maturing chondrocytes, and the expression was decreased in hypertrophic chondrocytes. At 24 weeks, the expression of BMP-2/4 and OP-1 was decreased, but BMPRs were still well-expressed in proliferating chondrocytes. The temporal and spatial expression of BMP and BMPR suggests that BMP and BMP receptors play roles in the multistep cascade of enchondral ossification in the epiphyseal growth plate.

  8. Leptin administration affects growth and skeletal development in a rat intrauterine growth restriction model: preliminary study.

    PubMed

    Bar-El Dadon, Shimrit; Shahar, Ron; Katalan, Vered; Monsonego-Ornan, Efrat; Reifen, Ram

    2011-09-01

    Skeletal abnormalities are one of the hallmarks of growth delay during gestation. The aim of this study was to determine changes induced by leptin in skeletal growth and development in a rat model of intrauterine growth retardation (IUGR) and to elucidate the possible underlying mechanisms. Intrauterine growth retardation was induced prepartum and the effects of leptin to mothers prenatally or to offspring postnatally were studied. Radii were harvested and tested mechanically and structurally. Tibias were evaluated for growth-plate morphometry. On day 40 postpartum, total bone length and mineral density and tibial growth-plate width and numbers of cells within its zones of offspring treated with leptin were significantly greater than in the control group. Postnatal leptin administration in an IUGR model improves the structural properties and elongation rate of bone. These findings could pave the way to preventing some phenotypic presentations of IUGR. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. In Vivo Axial Loading of the Mouse Tibia

    PubMed Central

    Melville, Katherine M.; Robling, Alexander G.

    2015-01-01

    Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  10. Load transfer in the proximal tibia following implantation with a unicompartmental knee replacement: a static snapshot.

    PubMed

    Simpson, D J; Kendrick, B J L; Dodd, C A F; Price, A J; Gill, H S; Murray, D W

    2011-05-01

    Unicompartmental knee replacement (UKR) is an appealing alternative to total knee replacement when the patient has isolated medial compartment osteoarthritis. A common observation post-operatively is radiolucency between the tibial tray wall and the bone. In addition, some patients complain of persistent pain over the proximal tibia antero-medially; this may be related to elevated bone strains in the tibia. Currently, there is no intentionally made mechanical bond between the vertical wall of an Oxford UKR and the adjacent bone; whether one exists or not will influence the load transmission in the proximal tibia and may affect the elevated tibia strain. The aim of this study was to investigate how introducing a mechanical tie between the tibial tray wall and the adjacent bone might alter the load carried into the tibia for both cemented and cementless UKRs. Strain energy density in the region of bone adjacent to the tray wall was considerably increased when a mechanical tie was introduced; this has the potential of reducing the likelihood of a radiolucency occurring in that region. Moreover, a mechanical tie had the effect of reducing proximal tibia strain, which may decrease the incidence of pain following implantation with a UKR.

  11. Glabridin and glycyrrhizic acid show no beneficial effect on the chemical composition and mechanical properties of bones in ovariectomized rats, when administered in moderate dose.

    PubMed

    Kaczmarczyk-Sedlak, Ilona; Klasik-Ciszewska, Sylwia; Wojnar, Weronika

    2016-10-01

    One of the major causes of osteoporosis and bone fracture in postmenopausal women is estrogen deficiency. To prevent the fractures, and avoid the side effects of hormone replacement therapy, phytoestrogens including the isoflavonoids are used. In the presented study two constituents occurring in the licorice root-the isoflavane glabridin and triterpenoid saponin glycyrrhizic acid were examined on the skeletal system of ovariectomized rats. The female Wistar rats were divided into five groups: control group, ovariectomized group as well as three ovariectomized groups treated with estradiol (0.2mg/kg), glabridin (5mg/kg) or glycyrrhizic acid (15mg/kg). All substances were administered orally for 4 weeks. The estradiol served as a positive control. The mechanical properties of femoral diaphysis, tibial metaphysis and femoral neck were assessed using bending and compression tests. Moreover the chemical composition of the femur, tibia and L-4 vertebra - content of water, organic substances and minerals - was determined. Ovariectomy induced unfavorable changes in the skeletal system of the rats. Administration of glabridin and glycyrrhizic acid to the ovariectomized rats did not improve analyzed parameters of the bones. Obtained results indicate, that the tested substances revealed no beneficial effect on the mechanical properties and chemical composition of the tested bones, thus they cannot be used as the osteoporosis protective agents. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Chronic treatment with polychlorinated biphenyls (PCB) during pregnancy and lactation in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocchi, Daniela; Tulipano, Giovanni; Colciago, Alessandra

    Polychlorinated biphenyls (PCBs) are pollutants detected in animal tissues and breast milk. The experiments described in the present paper were aimed at evaluating whether the four PCB congeners most abundant in animal tissues (PCB-138, -153, -180 and -126), administered since fetal life till weaning, can induce long-term alterations of GH-axis activity and bone mass in the adult rat. We measured PCB accumulation in rat brain and liver, somatic growth, pituitary GH expression and plasma hormone concentrations at different ages. Finally, we studied hypothalamic somatostatin expression and bone structure in adulthood, following long-term PCB exposure. Dams were treated during pregnancy frommore » GD15 to GD19 and during breast-feeding. A constant reduction of the growth rate in both male and female offspring from weaning to adulthood was observed in exposed animals. Long-lasting alterations on hypothalamic-pituitary GH axis were indeed observed in PCB-exposed rats in adulthood: increased somatostatin expression in hypothalamic periventricular nucleus (both males and females) and lateral arcuate nucleus (males, only) and decreased GH mRNA levels in the pituitary of male rats. Plasma IGF-1 levels were higher in PCB-exposed male and female animals as compared with controls at weaning and tended to be higher at PN60. Plasma testosterone and thyroid hormone concentrations were not significantly affected by exposure to PCBs. In adulthood, PCBs caused a significant reduction of bone mineral content and cortical bone thickness of tibiae in male rat joint to increased width of the epiphyseal cartilage disk. In conclusion, the developmental exposure to the four selected PCB compounds used in the present study induced far-reaching effects in the adult offspring, the male rats appearing more sensitive than females.« less

  13. Feeding Blueberry Diets to Young Rats Dose-Dependently Inhibits Bone Resorption through Suppression of RANKL in Stromal Cells

    PubMed Central

    Zhang, Jian; Lazarenko, Oxana P.; Kang, Jie; Blackburn, Michael L.; Ronis, Martin J. J.; Badger, Thomas M.; Chen, Jin-Ran

    2013-01-01

    Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB) powder for two weeks beginning on postnatal day 21 (PND21) significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5%) for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT) of tibia, demonstrated that bone mineral density (BMD) and content (BMC) were dose-dependently increased in BB-fed rats compared to controls (P<0.05). Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition) rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand) a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ) which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption. PMID:23936431

  14. Effect of fluid and salt supplements in preventing the development of "osteopenia" in hypokinetic rats

    NASA Astrophysics Data System (ADS)

    Zorbas, Y. G.; Federenko, Y. F.; Togawa, M. N.

    It has been suggested that a daily intake of fluid and salt supplements may be used to prevent bone demineralization in human subjects after prolonged exposure to hypokinesia (diminished muscular activity). Thus, the objective of this investigation was to evaluate the effect of fluid and salt supplementation in the prevention of development of osteoporosis in 64 Wistar rats with an initial body weight of 339-345 g, after exposure to 90 days of hypokinesia. They divided into 4 equal groups: the first group of rats placed under ordinary vivarium conditions and served as vivarium control; the second group were also placed under ordinary vivarium conditions but received daily fluid and salt supplements; the third group were subjected to pure hypokinesia, i.e. without the use of any preventive measures; and the fourth group were submitted to hypokinesia and received daily fluid and salt supplements. For the simulation of the hypokinetic effect the experimental group of rats were kept in small, individual, wooden cages. Through the experimental period the second and fourth group of rats received 8 ml/100 g body wt water and 5 ml 100 g body wt NaCl daily. By the end of the experimental period the animals were decapitated and the spongy matter of tibia and vertebrae of the rats were examined for changes referable to osteoporosis. It was found that the daily intake of fluid and salt supplements caused an increase in the volume density of primary spongiosa of bones. It was concluded that a daily intake of fluid and salt supplements may be used to prevent the development of osteoporosis in rats subjected to prolonged motor activity restriction.

  15. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats.

    PubMed

    Glorie, Lorenzo; Behets, Geert J; Baerts, Lesley; De Meester, Ingrid; D'Haese, Patrick C; Verhulst, Anja

    2014-09-01

    Dipeptidyl peptidase IV (DPP IV) modulates protein activity by removing dipeptides. DPP IV inhibitors are currently used to improve glucose tolerance in type 2 diabetes patients. DPP IV substrates not only increase insulin secretion but also affect bone metabolism. In this study, the effect of DPP IV inhibitor sitagliptin on bone was evaluated in normal and streptozotocin-induced diabetic rats. This study included 64 male Wistar rats divided into four groups (n = 16): two diabetic and two control groups. One diabetic and one control group received sitagliptin through drinking water. Tibiae were scanned every 3 wk using an in vivo μCT scanner. After 6 and 12 wk, rats were euthanized for histomorphometric analysis of bone parameters. The mechanical resistance of femora to fracture was assessed using a three-point bending test, and serum levels of bone metabolic markers were measured. Efficient DPP IV inhibition was achieved in sitagliptin-treated groups. Trabecular bone loss, the decrease in trabecular number, and the increase in trabecular spacing was attenuated through sitagliptin treatment in diabetic rats, as shown by in vivo μCT. Bone histomorphometry was in line with these results. μCT analysis furthermore showed that sitagliptin prevented cortical bone growth stagnation in diabetic rats, resulting in stronger femora during three-point bending. Finally, the serum levels of the resorption marker CTX-I were significantly lower in sitagliptin-treated diabetic animals compared with untreated diabetic animals. In conclusion, sitagliptin treatment attenuates bone loss and increases bone strength in diabetic rats probably through the reduction of bone resorption and independent of glycemic management. Copyright © 2014 the American Physiological Society.

  16. Polyaxial Screws in Locked Plating of Tibial Pilon Fractures.

    PubMed

    Yenna, Zachary C; Bhadra, Arup K; Ojike, Nwakile I; Burden, Robert L; Voor, Michael J; Roberts, Craig S

    2015-08-01

    This study examined the axial and torsional stiffness of polyaxial locked plating techniques compared with fixed-angle locked plating techniques in a distal tibia pilon fracture model. The effect of using a polyaxial screw to cross the fracture site was examined to determine its ability to control relative fracture site motion. A laboratory experiment was performed to investigate the biomechanical stiffness of distal tibia fracture models repaired with 3.5-mm anterior polyaxial distal tibial plates and locking screws. Sawbones Fourth Generation Composite Tibia models (Pacific Research Laboratories, Inc, Vashon, Washington) were used to model an Orthopaedic Trauma Association 43-A1.3 distal tibia pilon fracture. The polyaxial plates were inserted with 2 central locking screws at a position perpendicular to the cortical surface of the tibia and tested for load as a function of axial displacement and torque as a function of angular displacement. The 2 screws were withdrawn and inserted at an angle 15° from perpendicular, allowing them to span the fracture and insert into the opposing fracture surface. Each tibia was tested again for axial and torsional stiffness. In medial and posterior loading, no statistically significant difference was found between tibiae plated with the polyaxial plate and the central screws placed in the neutral position compared with the central screws placed at a 15° position. In torsional loading, a statistically significant difference was noted, showing greater stiffness in tibiae plated with the polyaxial plate and the central screws placed at a 15° position compared with tibiae plated with the central screws placed at a 0° (or perpendicular) position. This study showed that variable angle constructs show similar stiffness properties between perpendicular and 15° angle insertions in axial loading. The 15° angle construct shows greater stiffness in torsional loading. Copyright 2015, SLACK Incorporated.

  17. Associations among slipped capital femoral epiphysis, tibia vara, and type 2 juvenile diabetes.

    PubMed

    Bowen, James Richard; Assis, Morcello; Sinha, Kumar; Hassink, Sandra; Littleton, Aaron

    2009-06-01

    Clinical consequences of obesity are numerous and include slipped capital epiphysis of the femur, tibia vara, impaired mobility, insufficient muscle strength, glucose intolerance, type 2 diabetes, hyperlipidemia, nonalcoholic fatty liver disease, cholelithiasis, hypertension, sleep apnea, polycystic ovary disease, increased cardiorespiratory effort, and pseudotumor cerebri, among others. Because slipped capital femoral epiphysis, tibia vara, and type 2 diabetes are observed commonly in obese children, a degree of multiple disease occurrence in a patient would be anticipated; however, the senior author has never observed an obese adolescent who presented at the initial diagnosis with a coexistence of slipped capital femora epiphysis, tibia vara, or type 2 diabetes, so, possibly, these constellations of comorbidities may represent unique obesity phenotypes. We reviewed the population consisting of all consecutive patients with newly diagnosed slipped capital femoral epiphysis or tibia vara from 2000 to 2006 and a selected group of patients with type 2 diabetes treated at the Alfred I. duPont Hospital for Children, Wilmington, DE. There were 57 cases of slipped capital femoral epiphysis, 41 cases of tibia vara, and 53 cases of type 2 diabetes. The tibia vara group had the highest body mass index (BMI; 40.81 [13.01]); the diabetes group (BMI, 35.76 [7.04]) and the slipped capital femoral epiphysis group (BMI, 29.08 [7.07]) had the lowest BMI. There was no significant difference in age at the disease onset and height between groups. There was no overlap of disease at initial presentation among slipped capital femoral epiphysis, adolescent tibia vara, and type 2 diabetes. We observed 3 separate obesity-related phenotypes in adolescents with no overlap of disease at initial presentation among slipped capital femoral epiphysis, adolescent tibia vara, and type 2 diabetes.

  18. Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1 mice tibiae: A mouse model of premature aging.

    PubMed

    Yang, Haisheng; Albiol, Laia; Chan, Wing-Lee; Wulsten, Dag; Seliger, Anne; Thelen, Michael; Thiele, Tobias; Spevak, Lyudmila; Boskey, Adele; Kornak, Uwe; Checa, Sara; Willie, Bettina M

    2017-12-08

    Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (Gorab Prx1 ) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the Gorab Prx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that Gorab Prx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the Gorab Prx1 tibiae (p < .05), suggesting delayed mineralization. In vivo strain gauge measurement and finite element analysis showed ∼two times higher tissue-level strains within the Gorab Prx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that Gorab Prx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the Gorab Prx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mapping Radiation Injury and Recovery in Bone Marrow Using 18F-FLT PET/CT and USPIO MRI in a Rat Model.

    PubMed

    Rendon, David A; Kotedia, Khushali; Afshar, Solmaz F; Punia, Jyotinder N; Sabek, Omaima M; Shirkey, Beverly A; Zawaski, Janice A; Gaber, M Waleed

    2016-02-01

    We present and test the use of multimodality imaging as a topological tool to map the amount of the body exposed to ionizing radiation and the location of exposure, which are important indicators of survival and recovery. To achieve our goal, PET/CT imaging with 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) was used to measure cellular proliferation in bone marrow (BM), whereas MRI using ultra-small superparamagnetic iron oxide (USPIO) particles provided noninvasive information on radiation-induced vascular damage. Animals were x-ray-irradiated at a dose of 7.5 Gy with 1 of 3 radiation schemes-whole-body irradiation, half-body shielding (HBS), or 1-leg shielding (1LS)-and imaged repeatedly. The spatial information from the CT scan was used to segment the region corresponding to BM from the PET scan using algorithms developed in-house, allowing for quantification of proliferating cells, and BM blood volume was estimated by measuring the changes in the T2 relaxation rates (ΔR2) collected from MR scans. (18)F-FLT PET/CT imaging differentiated irradiated from unirradiated BM regions. Two days after irradiation, proliferation of 1LS animals was significantly lower than sham (P = 0.0001, femurs; P < 0.0001, tibias) and returned to sham levels by day 10 (P = 0.6344, femurs; P = 0.3962, tibias). The degree of shielding affected proliferation recovery, showing an increase in the irradiated BM of the femurs, but not the tibias, of HBS animals when compared with 1LS (P = 0.0310, femurs; P = 0.5832, tibias). MRI of irradiated spines detected radiation-induced BM vascular damage, measured by the significant increase in ΔR2 2 d after whole-body irradiation (P = 0.0022) and HBS (P = 0.0003) with a decreasing trend of values, returning to levels close to baseline over 10 d. Our data were corroborated using γ-counting and histopathology. We demonstrated that (18)F-FLT PET/CT and USPIO MRI are valuable tools in mapping regional radiation exposure and the effects of radiation on BM. Analysis of the (18)F-FLT signal allowed for a clear demarcation of exposed BM regions and elucidated the kinetics of BM recovery, whereas USPIO MRI was used to assess vascular damage and recovery. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. CMT for materials science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, J.

    This session is comprised of two articles by John Kinney describing biomedical and other uses for computerized tomography. In the first article, Kinney describes the use of a three-dimensional x-ray tomographic microscope to image the trabecular bone architecture of the proximal tibias of rats in vivo. Research in this field may help to detect the earliest stages of hypoestrogenemic bone loss and may help to more rapidly test the effectiveness of new clinical treatments for this major public health problem. The second article describes recent advances in X-ray tomography using synchrotron radiation to evaluate microstructures in ceramic matrix composites, bonemore » loss in osteoporosis, and the development of carries lesions in teeth.« less

  1. Polysaccharides of Trametes versicolor Improve Bone Properties in Diabetic Rats.

    PubMed

    Chen, Chung-Hwan; Kang, Lin; Lo, Hui-Chen; Hsu, Tai-Hao; Lin, Fang-Yi; Lin, Yi-Shan; Wang, Zai-Jie; Chen, Shih-Tse; Shen, Chwan-Li

    2015-10-28

    This study investigates the effects of Trametes versicolor (L.:Fr.) Pilát (TVP, also known as Yunzhi) on bone properties in diabetic rats. Forty-five male Wistar rats (8 weeks old) were fed either a chow diet (control) or a high-fat diet throughout the study period of 28 days. Animals in the high-fat-diet group were injected with nicotinamide and streptozotocin to induce diabetes mellitus (DM). The DM rats were divided into a group receiving distilled water (vehicle) and another group receiving TVP at 0.1 g/kg weight by gavage. Relative to the vehicle group, TVP gavage lowered postprandial blood sugar (225 ± 18 mg/dL for TVP vs 292 ± 15 mg/dL for vehicle, p < 0.001) on day 26. Compared to the vehicle group, TVP mitigated DM-induced bone deterioration as determined by increasing bone volume of proximal tibia (22.8 ± 1.4% for TVP vs 16.8 ± 1.3% for vehicle, p = 0.003), trabecular number (p = 0.011), and femoral bone strength (11% in maximal load, 22% in stiffness, 14% in modulus, p < 0.001), and by reducing loss of femoral cortical porosity by 25% (p < 0.001). Our study demonstrates the protective effect of TVP on bone properties was mediated through, in part, the improvement of hyperglycemic control in DM animals.

  2. Morinda citrifolia L. Leaf Extract Protects against Cerebral Ischemia and Osteoporosis in an In Vivo Experimental Model of Menopause

    PubMed Central

    Thipkaew, Cholathip; Thukham-mee, Wipawee; Wannanon, Panakaporn

    2018-01-01

    We aimed to determine the protective effects against cerebral ischemia and osteoporosis of Morinda citrifolia extract in experimental menopause. The neuroprotective effect was assessed by giving M. citrifolia leaf extract at doses of 2, 10, and 50 mg/kg BW to the bilateral ovariectomized (OVX) rats for 7 days. Then, they were occluded in the right middle cerebral artery (MCAO) for 90 minutes. The neurological score, brain infarction volume, oxidative stress status, and ERK1/2 and eNOS activities were assessed 24 hours later. M. citrifolia improved neurological score, brain infarction, and brain oxidative stress status in the cortex of OVX rats plus the MCAO. No changes in ERK 1/2 signal pathway and NOS expression were observed in this area. Our data suggested that the neuroprotective effect of the extract might occur partly via the improvement of oxidative stress status in the cortex. The antiosteoporotic effect in OVX rats was also assessed after an 84-day intervention of M. citrifolia. The serum levels of calcium, osteocalcin, and alkaline phosphatase and osteoblast density in the tibia were increased, but the density of osteoclast was decreased in OVX rats which received the extract. Therefore, the current data suggested that the extract possessed antiosteoporotic effect by increasing bone formation but decreasing bone resorption. PMID:29765488

  3. Morinda citrifolia L. Leaf Extract Protects against Cerebral Ischemia and Osteoporosis in an In Vivo Experimental Model of Menopause.

    PubMed

    Wattanathorn, Jintanaporn; Thipkaew, Cholathip; Thukham-Mee, Wipawee; Muchimapura, Supaporn; Wannanon, Panakaporn; Tong-Un, Terdthai

    2018-01-01

    We aimed to determine the protective effects against cerebral ischemia and osteoporosis of Morinda citrifolia extract in experimental menopause. The neuroprotective effect was assessed by giving M. citrifolia leaf extract at doses of 2, 10, and 50 mg/kg BW to the bilateral ovariectomized (OVX) rats for 7 days. Then, they were occluded in the right middle cerebral artery (MCAO) for 90 minutes. The neurological score, brain infarction volume, oxidative stress status, and ERK1/2 and eNOS activities were assessed 24 hours later. M. citrifolia improved neurological score, brain infarction, and brain oxidative stress status in the cortex of OVX rats plus the MCAO. No changes in ERK 1/2 signal pathway and NOS expression were observed in this area. Our data suggested that the neuroprotective effect of the extract might occur partly via the improvement of oxidative stress status in the cortex. The antiosteoporotic effect in OVX rats was also assessed after an 84-day intervention of M. citrifolia . The serum levels of calcium, osteocalcin, and alkaline phosphatase and osteoblast density in the tibia were increased, but the density of osteoclast was decreased in OVX rats which received the extract. Therefore, the current data suggested that the extract possessed antiosteoporotic effect by increasing bone formation but decreasing bone resorption.

  4. Parametric analysis of occupant ankle and tibia injuries in frontal impact

    PubMed Central

    Mo, Fuhao; Jiang, Xiaoqing; Duan, Shuyong; Xiao, Zhi; Shi, Wei

    2017-01-01

    Objective Non-fatal tibia and ankle injuries without proper protection from the restraint system has gotten wide attention from researchers. This study aimed to investigate occupant tibia and ankle injuries under realistic frontal impact environment that is rarely considered in previous experimental and simulant studies. Methods An integrated occupant-vehicle model was established by coupling an isolated car cab model and a hybrid occupant model with a biofidelic pelvis-lower limb model, while its loading conditions were extracted from the realistic full-frontal impact test. A parametric study was implemented concerning instrument panel (IP) design and pedal intrusion/rotation parameters. Results The significant influences of the IP angle, pedal intrusion and pedal rotation on tibia axial force, tibia bending moment and ankle dorsiflexion angle are noted. By coupling their effects, a new evaluation index named CAIEI (Combined Ankle Injury Evaluation Index) is established to evaluate ankle injury (including tibia fractures in ankle region) risk and severity in robustness. Conclusions Overall results and analysis indicate that ankle dorsiflexion angle should be considered when judging the injury in lower limb under frontal impact. Meanwhile, the current index with coupling effects of tibia axial force, bending moment and ankle dorsiflexion angle is in a good correlation with the simulation injury outcomes. PMID:28910377

  5. A High-Saturated-Fat, High-Sucrose Diet Aggravates Bone Loss in Ovariectomized Female Rats.

    PubMed

    Dong, Xiao-Li; Li, Chun-Mei; Cao, Si-Si; Zhou, Li-Ping; Wong, Man-Sau

    2016-06-01

    Estrogen deficiency in women and high-saturated fat, high-sucrose (HFS) diets have both been recognized as risk factors for metabolic syndrome. Studies on the combined actions of these 2 detrimental factors on the bone in females are limited. We sought to determine the interactive actions of estrogen deficiency and an HFS diet on bone properties and to investigate the underlying mechanisms. Six-month-old Sprague Dawley sham or ovariectomized (OVX) rats were pair fed the same amount of either a low-saturated-fat, low-sucrose (LFS) diet (13% fat calories; 15% sucrose calories) or an HFS diet (42% fat calories; 30% sucrose calories) for 12 wk. Blood, liver, and bone were collected for correspondent parameters measurement. Ovariectomy decreased bone mineral density in the tibia head (TH) by 62% and the femoral end (FE) by 49% (P < 0.0001). The HFS diet aggravated bone loss in OVX rats by an additional 41% in the TH and 37% in the FE (P < 0.05). Bone loss in the HFS-OVX rats was accompanied by increased urinary deoxypyridinoline concentrations by 28% (P < 0.05). The HFS diet induced cathepsin K by 145% but reduced osteoprotegerin mRNA expression at the FE of the HFS-sham rats by 71% (P < 0.05). Ovariectomy significantly increased peroxisome proliferator-activated receptor γ mRNA expression by 136% and 170% at the FE of the LFS- and HFS-OVX rats, respectively (P < 0.05). The HFS diet aggravated ovariectomy-induced lipid deposition and oxidative stress (OS) in rat livers (P < 0.05). Trabecular bone mineral density at the FE was negatively correlated with rat liver malondialdehyde concentrations (R(2) = 0.39; P < 0.01). The detrimental actions of the HFS diet and ovariectomy on bone properties in rats occurred mainly in cancellous bones and were characterized by a high degree of bone resorption and alterations in OS. © 2016 American Society for Nutrition.

  6. Study on 41Ca-AMS for diagnosis and assessment of cancer bone metastasis in rats

    NASA Astrophysics Data System (ADS)

    Shen, Hongtao; Pang, Fangfang; Jiang, Shan; He, Ming; Dong, Kejun; Dou, Liang; Pang, Yijun; Yang, Xianlin; Ruan, Xiangdong; Liu, Manjun; Xia, Chunbo

    2015-10-01

    The annual incidence of new cancer patients in China is about 2 million, 30-40% of which will end up with bone metastasis. Profound study on the preclinical model and early diagnosis of cancer bone metastasis in rats are very significant for the drug development, better understanding and treatment of bone metastases. In order to monitor the process of bone metabolism and early detection of bone metastasis of cancer cells, a technique of 41Ca isotope tracer combined with AMS has been developed and applied in the study on the bone metastasis of cancer cells by rat model. In this work, 3-month-old female Sprague-Dawley (SD) rats were randomly divided into different groups, and tumor cells injected respectively into the tail vein, femoral artery, femoral cavity and the thigh muscle to establish the rat models for bone metastases. The most appropriate model, i.e., the thigh muscle group, was finally adopted in our real metastases experiment. Each rat in this group was intramuscularly (i.m.) injected with 250 μl CaCl2 solution (containing 1.4 mg Ca and 5nCi 41Ca). About 40 days later, the rat mammary gland carcinoma cells (Walker 256) were injected into these rats following the established protocol. After bone metastasis, medicine interventions were performed. The sequential urine and blood samples were collected and analyzed for 41Ca (by AMS) and N-terminal telopeptide (Ntx), respectively. Bone Mineral Density (BMD) values in the femur and the tibia were measured by CT scan. The results of 41Ca/Ca in longitudinal urinary samples can sensitively reveal the skeletal perturbations caused by bone metastasis of rats, suggests that 41Ca might be similarly developed for human use and improve clinical management through the assessment of the curative effect and non-invasive detection of the earliest stages of cancer growth in bone.

  7. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments.

    PubMed

    Fang, Juan; Gong, He; Kong, Lingyan; Zhu, Dong

    2013-12-20

    Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of osteoarthritis and provides theoretical basis and computational method for the prevention and treatment of osteoarthritis. It can also serve as basis for further study on periprosthetic BMD changes after total knee arthroplasty, and provide a theoretical basis for optimization design of prosthesis.

  8. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments

    PubMed Central

    2013-01-01

    Background Bone can adjust its morphological structure to adapt to the changes of mechanical environment, i.e. the bone structure change is related to mechanical loading. This implies that osteoarthritis may be closely associated with knee joint deformity. The purposes of this paper were to simulate the internal bone mineral density (BMD) change in three-dimensional (3D) proximal tibia under different mechanical environments, as well as to explore the relationship between mechanical environment and bone morphological abnormity. Methods The right proximal tibia was scanned with CT to reconstruct a 3D proximal tibia model in MIMICS, then it was imported to finite element software ANSYS to establish 3D finite element model. The internal structure of 3D proximal tibia of young normal people was simulated using quantitative bone remodeling theory in combination with finite element method, then based on the changing pattern of joint contact force on the tibial plateau in valgus knees, the mechanical loading was changed, and the simulated normal tibia structure was used as initial structure to simulate the internal structure of 3D proximal tibia for old people with 6° valgus deformity. Four regions of interest (ROIs) were selected in the proximal tibia to quantitatively analyze BMD and compare with the clinical measurements. Results The simulation results showed that the BMD distribution in 3D proximal tibia was consistent with clinical measurements in normal knees and that in valgus knees was consistent with the measurement of patients with osteoarthritis in clinics. Conclusions It is shown that the change of mechanical environment is the main cause for the change of subchondral bone structure, and being under abnormal mechanical environment for a long time may lead to osteoarthritis. Besides, the simulation method adopted in this paper can more accurately simulate the internal structure of 3D proximal tibia under different mechanical environments. It helps to better understand the mechanism of osteoarthritis and provides theoretical basis and computational method for the prevention and treatment of osteoarthritis. It can also serve as basis for further study on periprosthetic BMD changes after total knee arthroplasty, and provide a theoretical basis for optimization design of prosthesis. PMID:24359345

  9. Regional bone geometry of the tibia in triathletes and stress reactions--an observational study.

    PubMed

    Newsham-West, Richard J; Lyons, Brett; Milburn, Peter D

    2014-03-01

    The association between tibial morphology and tibial stress fractures or tibial stress syndrome was examined in triathletes with an unusually high incidence of these injuries. A cross-sectional study design examined associations between tibial geometry from MRI images and training and injury data between male and female triathletes and between stress fracture (SF) and non-stress fracture (NSF) groups. Fifteen athletes (7 females, 8 males) aged 17-23 years who were currently able to train and race were recruited from the New Zealand Triathlete Elite Development Squad. Geometric measurements were taken at 5 zones along the tibia using MRI and compared between symptomatic and asymptomatic tibiae subjects. SF tibiae displayed either oedema within the cancellous bone and/or stress fracture on MRI. When collapsed across levels, symptomatic tibiae had thicker medial cortices (F1,140=9.285, p=0.003), thicker lateral cortices (F1,140=10.129, p=0.002) and thinner anterior cortices (F1,140=14.517, p=0.000) than NSF tibiae. Only medial cortex thickness in SF tibia was significantly different (F4,140=3.358, p=0.012) at different levels. Follow-up analysis showed that athletes showing oedema within the cancellous bone and/or stress fracture on MRI had, within 2 years of analysis, subsequently taken time off training and racing due a tibial stress fracture. The thinner anterior cortex in SF tibiae is associated with a stress reaction in these triathletes. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Resveratrol Treatment Normalizes the Endothelial Function and Blood Pressure in Ovariectomized Rats.

    PubMed

    Fabricio, Victor; Oishi, Jorge Camargo; Biffe, Bruna Gabriele; Ruffoni, Leandro Dias Gonçalves; Silva, Karina Ana da; Nonaka, Keico Okino; Rodrigues, Gerson Jhonatan

    2017-02-01

    Despite knowing that resveratrol has effects on blood vessels, blood pressure and that phytostrogens can also improve the endothelium-dependent relaxation/vasodilation, there are no reports of reveratrol's direct effect on the endothelial function and blood pressure of animals with estrogen deficit (mimicking post-menopausal increased blood pressure). To verify the effect of two different periods of preventive treatment with resveratrol on blood pressure and endothelial function in ovariectomized young adult rats. 3-month old female Wistar rats were used and distributed in 6 groups: intact groups with 60 or 90 days, ovariectomized groups with 60 or 90 days, and ovariectomized treated with resveratrol (10 mg/kg of body weight per day) for 60 or 90 days. The number of days in each group corresponds to the duration of the experimental period. Vascular reactivity study was performed in abdominal aortic rings, systolic blood pressure was measured and serum nitric oxide (NO) concentration was quantified. Ovariectomy induced blood pressure increase 60 and 90 days after surgery, whereas the endothelial function decreased only 90 days after surgery, with no difference in NO concentration among the groups. Only longer treatment (90 days) with resveratrol was able to improve the endothelial function and normalize blood pressure. Our results suggest that 90 days of treatment with resveratrol is able to improve the endothelial function and decrease blood pressure in ovariectomized rats. Apesar de se saber que o resveratrol apresenta efeitos sobre a pressão arterial e os vasos sanguíneos, e que os fitoestrógenos podem melhorar o relaxamento/vasodilatação dependente do endotélio, não há relatos do efeito direto do resveratrol sobre a pressão arterial e a função endotelial em animais com deficiência de estrógeno (mimetizando a pressão arterial aumentada pós-menopausa). Verificar o efeito de dois diferentes períodos de tratamento preventivo com resveratrol sobre a pressão arterial e a função endotelial em ratas adultas jovens ovariectomizadas. Foram utilizadas ratas Wistar com 3 meses de idade, distribuídas em 6 grupos: grupos intactas com 60 ou 90 dias, grupos ovariectomizadas com 60 ou 90 dias, grupos ovariectomizadas e tratadas com resveratrol na dose de 10mg/kg de massa corporal por dia, durante 60 ou 90 dias, sendo o número de dias em cada grupo relativo à duração do período experimental. Foi realizado um estudo de reatividade vascular em anéis da aorta abdominal, mensurada a pressão arterial sistólica e quantificada a concentração sérica de óxido nítrico (NO). A ovariectomia induziu aumento da pressão arterial 60 e 90 dias após a cirurgia, enquanto a função endotelial decaiu apenas após 90 dias, e não houve diferença na concentração de NO entre os grupos. Apenas o tratamento prolongado com resveratrol (90 dias) foi capaz de melhorar a função endotelial e normalizar a pressão arterial. Nossos resultados sugerem que o tratamento por 90 dias com resveratrol é capaz de melhorar a função endotelial e diminuir a pressão sanguínea em ratas ovariectomizadas.

  11. Exercise Prevents Enhanced Postoperative Neuroinflammation and Cognitive Decline and Rectifies the Gut Microbiome in a Rat Model of Metabolic Syndrome.

    PubMed

    Feng, Xiaomei; Uchida, Yosuke; Koch, Lauren; Britton, Steve; Hu, Jun; Lutrin, David; Maze, Mervyn

    2017-01-01

    Postoperative cognitive decline (PCD) can affect in excess of 10% of surgical patients and can be considerably higher with risk factors including advanced age, perioperative infection, and metabolic conditions such as obesity and insulin resistance. To define underlying pathophysiologic processes, we used animal models including a rat model of metabolic syndrome generated by breeding for a trait of low aerobic exercise tolerance. After 35 generations, the low capacity runner (LCR) rats differ 10-fold in their aerobic exercise capacity from high capacity runner (HCR) rats. The LCR rats respond to surgical procedure with an abnormal phenotype consisting of exaggerated and persistent PCD and failure to resolve neuroinflammation. We determined whether preoperative exercise can rectify the abnormal surgical phenotype. Following institutional approval of the protocol each of male LCR and male HCR rats were randomly assigned to four groups and subjected to isoflurane anesthesia and tibia fracture with internal fixation (surgery) or anesthesia alone (sham surgery) and to a preoperative exercise regimen that involved walking for 10 km on a treadmill over 6 weeks (exercise) or being placed on a stationary treadmill (no exercise). Feces were collected before and after exercise for assessment of gut microbiome. Three days following surgery or sham surgery the rats were tested for ability to recall a contextual aversive stimulus in a trace fear conditioning paradigm. Thereafter some rats were euthanized and the hippocampus harvested for analysis of inflammatory mediators. At 3 months, the remainder of the rats were tested for memory recall by the probe test in a Morris Water Maze. Postoperatively, LCR rats exhibited exaggerated cognitive decline both at 3 days and at 3 months that was prevented by preoperative exercise. Similarly, LCR rats had excessive postoperative neuroinflammation that was normalized by preoperative exercise. Diversity of the gut microbiome in the LCR rats improved after exercise. Preoperative exercise eliminated the metabolic syndrome risk for the abnormal surgical phenotype and was associated with a more diverse gut microbiome. Prehabilitation with exercise should be considered as a possible intervention to prevent exaggerated and persistent PCD in high-risk settings.

  12. Low Preoperative BMD Is Related to High Migration of Tibia Components in Uncemented TKA-92 Patients in a Combined DEXA and RSA Study With 2-Year Follow-Up.

    PubMed

    Andersen, Mikkel R; Winther, Nikkolaj S; Lind, Thomas; Schrøder, Henrik M; Flivik, Gunnar; Petersen, Michael M

    2017-07-01

    The fixation of uncemented tibia components in total knee arthroplasty may rely on the bone quality of the tibia; however, no previous studies have shown convincing objective proof of this. Component migration is relevant as it has been shown to predict aseptic loosening. We performed 2-year follow-up of 92 patients who underwent total knee arthroplasty surgery with an uncemented tibia component. Bone mineral density (BMD; g/cm 2 ) of the tibia host bone was measured preoperatively using dual energy X-ray absorptiometry. The proximal tibia was divided into 2 regions of interest (ROI) in the part of the tibia bone where the components were implanted. Radiostereometric analysis was performed postoperatively and after 3, 6, 12, and 24 months. The primary outcome was maximum total point motion (MTPM; mm). Regression analysis was performed to evaluate the relation between preoperative BMD and MTPM. We found low preoperative BMD in ROI1 to be significantly related to high MTPM at all follow-ups: after 3 months (R 2  = 20%, P BMD  = 0.017), 6 months (R 2  = 29%, P BMD  = 0.003), 12 months (R 2  = 33%, P BMD  = 0.001), and 24 months (R 2  = 27%, P BMD  = 0.001). We also found a significant relation for low BMD in ROI2 and high MTPM: 3 months (R 2  = 19%, P BMD  = 0.042), 6 months (R 2  = 28%, P BMD  = 0.04), 12 months (R 2  = 32%, P BMD  = 0.004), and 24 months (R 2  = 24%, P BMD  = 0.005). Low preoperative BMD in the tibia is related to high MTPM. Thus, high migration of uncemented tibia components is to be expected in patients with poor bone quality. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Fosfomycin Addition to Poly(D,L-Lactide) Coating Does Not Affect Prophylaxis Efficacy in Rat Implant-Related Infection Model, But That of Gentamicin Does

    PubMed Central

    Yorukoglu, Ali Cagdas; Kaleli, Ilknur; Bir, Ferda

    2016-01-01

    Gentamicin is the preferred antimicrobial agent used in implant coating for the prevention of implant-related infections (IRI). However, the present heavy local and systemic administration of gentamicin can lead to increased resistance, which has made its future use uncertain, together with related preventive technologies. Fosfomycin is an alternative antimicrobial agent that lacks the cross-resistance presented by other classes of antibiotics. We evaluated the efficacy of prophylaxis of 10% fosfomycin-containing poly(D,L-lactide) (PDL) coated K-wires in a rat IRI model and compared it with uncoated (Control 1), PDL-coated (Control 2), and 10% gentamicin-containing PDL-coated groups with a single layer of coating. Stainless steel K-wires were implanted and methicillin-resistant Staphylococcus aureus (ATCC 43300) suspensions (103 CFU/10 μl) were injected into a cavity in the left tibiae. Thereafter, K-wires were removed and cultured in tryptic soy broth and then 5% sheep blood agar mediums. Sliced sections were removed from the tibiae, stained with hematoxylin-eosin, and semi-quantitatively evaluated with X-rays. The addition of fosfomycin into PDL did not affect the X-ray and histopathological evaluation scores; however, the addition of gentamicin lowered them. The addition of gentamicin showed a protective effect after the 28th day of X-ray evaluations. PDL-only coating provided no protection, while adding fosfomycin to PDL offered a 20% level protection and adding gentamicin offered 80%. Furthermore, there were 103 CFU level growths in the gentamicin-added group, while the other groups had 105. Thus, the addition of fosfomycin to PDL does not affect the efficacy of prophylaxis, but the addition of gentamicin does. We therefore do not advise the use of fosfomycin as a single antimicrobial agent in coating for IRI prophylaxis. PMID:27806071

  14. Effects of growth hormone treatment on the pituitary expression of GHRH receptor mRNA in uremic rats.

    PubMed

    Ferrando, Susana; Rodríguez, Julián; Santos, Fernando; Weruaga, Ana; Fernández, Marta; Carbajo, Eduardo; García, Enrique

    2002-09-01

    A decreased ability of pituitary cells to secrete growth hormone (GH) in response to growth hormone releasing hormone (GHRH) stimulation has been shown in young uremic rats. The aim of the current study was to examine the effect of uremia and GH treatment on pituitary GHRH receptor expression. Pituitary GHRH receptor mRNA levels were analyzed by RNase protection assay in young female rats made uremic by subtotal nephrectomy, either untreated (UREM) or treated with 10 IU/kg/day of GH (UREM-GH), and normal renal function animals fed ad libitum (SAL) or pair-fed with the UREM group (SPF). Rats were sacrificed 14 days after the second stage nephrectomy. Renal failure was confirmed by concentrations (X +/- SEM) of serum urea nitrogen (mmol/L) and creatinine (micromol/L) in UREM (20 +/- 1 and 89.4 +/- 4.5) and UREM-GH (16 +/- 1 and 91.4 +/- 6.9) that were much higher (P < 0.001) than those of sham animals (SAL, 3 +/- 0 and 26.5 +/- 2.2; SPF, 4 +/- 0 and 26.5 +/- 2.1). UREM rats became growth retarded as shown by a daily longitudinal tibia growth rate below (P < 0.05) that observed in SAL animals (156 +/- 3 vs. 220 +/- 5 microm/day). GH treatment resulted in significant growth rate acceleration (213 +/- 6 microm/day). GHRH receptor mRNA levels were no different among the SAL (0.43 +/- 0.03), SPF (0.43 +/- 0.08) and UREM (0.44 +/- 0.04) groups, whereas UREM-GH rats had significantly higher values (0.72 +/- 0.07). The status of pituitary GHRH receptor is not modified by nutritional deficit or by severe uremia causing growth retardation. By contrast, the growth promoting effect of GH administration is associated with stimulated GHRH receptor gene expression.

  15. Effect of intervention initiation timing of pulsed electromagnetic field on ovariectomy-induced osteoporosis in rats.

    PubMed

    Zhou, Jun; Liao, Yuan; Zeng, Yahua; Xie, Haitao; Fu, Chengxiao; Li, Neng

    2017-09-01

    The aim of this study is to explore the effect of timing of initiation of pulsed electromagnetic field (PEMF) therapy on bone mass, microarchitecture, and biomechanical properties, and to investigate receptor activator of NF-kB (RANK) expression in ovariectomized (OVX) rats. Sixty female Sprague-Dawley rats were randomly divided into two equal batches of three groups each (10 rats in each group). The first batch comprised of sham-operated (Sham-0 group), ovariectomized (OVX-0 group), and ovariectomized plus treated with PEMF starting from the day of OVX (Early PEMF group). The second batch comprised of sham-operated (Sham-12 group), ovariectomized (OVX-12 group), and ovariectomized plus treated with PEMF starting 12 weeks after OVX (Late PEMF group). Rats (whole body) in the early and late PEMF groups were exposed to PEMF (3.8 mT peak, 8 Hz pulse burst repetition rate). After 12 weeks of PEMF therapy, Early PEMF prevented OVX-induced deterioration in bone mineral density (BMD) and mechanical properties in lumbar vertebral body and femur, and deterioration in bone microarchitecture in lumbar vertebral body and proximal tibia. Late PEMF intervention only inhibited deterioration of BMD, bone microarchitecture, and mechanical properties in lumbar vertebral body. Both early and late PEMF therapy suppressed RANK protein expression in OVX rats without a concomitant effect on RANK mRNA expression. These results demonstrate that timing of initiation of PEMF therapy plays an important role in achieving optimal beneficial effects. The specific PEMF parameters may exert these favorable biological responses, at least partially, via inhibition of protein expression of RANK. Bioelectromagnetics. 38:456-465, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Mechanical loading increases detection of estrogen receptor-alpha in osteocytes and osteoblasts despite chronic energy restriction.

    PubMed

    Swift, Sibyl N; Swift, Joshua M; Bloomfield, Susan A

    2014-12-01

    Estrogen receptor-α (ER-α) is an important mediator of the bone response to mechanical loading. We sought to determine whether restricting dietary energy intake by 40% limits the bone formation rate (BFR) response to mechanical loading (LOAD) by downregulating ER-α-expressing osteocytes, or osteoblasts, or both. Female rats (n = 48, 7 mo old) were randomized to ADLIB-SHAM and ADLIB-LOAD groups fed AIN-93M purified diet ad libitum or to ER40-SHAM and ER40-LOAD groups fed modified AIN-93M with 40% less energy (100% of all other nutrients). After 12 wk, LOAD rats were subjected to a muscle contraction protocol three times every third day. ER40 produced lower proximal tibia bone volume (-22%), trabecular thickness (-14%), and higher trabecular separation (+127%) in SHAM but not LOAD rats. ER40 rats exhibited reductions in mineral apposition rate, but not percent mineralizing surface or BFR. LOAD induced similar relative increases in these kinetic measures of osteoblast activity/recruitment in both diet groups., but absolute values for ER40 LOAD rats were lower vs. ADLIB-LOAD. There were fourfold and eightfold increases in proportion of estrogen receptor-α protein-positive osteoblast and osteocytes, respectively, in LOAD vs. SHAM rats, with no effect of ER40. These data suggest that a brief period of mechanical loading significantly affects estrogen receptor-α in cancellous bone osteoblasts and osteocytes. Chronic energy restriction does result in lower absolute values in indices of osteoblast activity after mechanical loading, but not by a smaller increment relative to unloaded bones; this change is not explained by an associated downregulation of ER-α in osteoblasts or osteocytes.

  17. On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo.

    PubMed

    Yang, Peng-Fei; Kriechbaumer, Andreas; Albracht, Kirsten; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Shang, Peng; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2015-02-05

    The mechanical relationship between bone and muscle has been long recognized. However, it still remains unclear how muscles exactly load on bone. In this study, utilizing an optical segment tracking technique, the in vivo tibia loading regimes in terms of tibia segment deformation in humans were investigated during walking, forefoot and rear foot stair ascent and running and isometric plantar flexion. Results suggested that the proximal tibia primarily bends to the posterior aspect and twists to the external aspect with respect to the distal tibia. During walking, peak posterior bending and peak torsion occurred in the first half (22%) and second half (76%) of the stance phase, respectively. During stair ascent, two noticeable peaks of torsion were found with forefoot strike (38% and 82% of stance phase), but only one peak of torsion was found with rear foot strike (78% of stance phase). The torsional deformation angle during both stair ascent and running was larger with forefoot strike than rear foot strike. During isometric plantar flexion, the tibia deformation regimes were characterized more by torsion (maximum 1.35°) than bending (maximum 0.52°). To conclude, bending and torsion predominated the tibia loading regimes during the investigated activities. Tibia torsional deformation is closely related to calf muscle contractions, which further confirm the notion of the muscle-bone mechanical link and shift the focus from loading magnitude to loading regimes in bone mechanobiology. It thus is speculated that torsion is another, yet under-rated factor, besides the compression and tension, to drive long bone mechano-adaptation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Yogurt protects against growth retardation in weanling rats fed diets high in phytic acid

    PubMed Central

    Gaetke, Lisa M.; McClain, Craig J.; Toleman, C. Jean; Stuart, Mary A.

    2010-01-01

    The purpose of this study was to determine the affects of adding yogurt to animal diets which were high in phytic acid (PA) and adequate in zinc (38 μg Zn/g). The PA:Zn molar ratio was 60:1. Zinc status was determined by documenting growth and measuring the zinc concentration in bone (tibia) and plasma. For 25 days, 6 groups (n=6) of Sprague-Dawley weanling rats were fed one of the following AIN-76 diets. Half of the diets contained PA. Four of the diets contained yogurt with either active or heat-treated (inactive) cultures added at 25% of the diet. Diets: (without PA) 1) AIN, 2) AIN with active yogurt, 3) AIN and inactive yogurt; and (with PA) 4) AIN with PA, 5) AIN with PA plus active yogurt, and 6) AIN with PA plus inactive yogurt. Body weight, weight gain, and zinc concentration in bone and plasma were measured, and feed efficiency ratio (FER) was calculated. Rats fed diets with PA and yogurt had normal growth compared to the control group. Growth retardation was evident in the group fed the diet with PA and no yogurt. This group had significantly lower body weight compared to all other groups (p<0.05). Rats fed diets with PA, with or without yogurt, had significantly lower zinc concentration in bone and plasma (p<0.05). Adding yogurt to diets high in PA resulted in normal growth in weanling rats, however, zinc concentration in bone and plasma was still sub-optimal. PMID:19269152

  19. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength.

    PubMed

    Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René

    2010-06-01

    Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Intestinal pH and Absorption and Deposition of Ca 47 in the Rachitic Chick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasserman, R H; Taylor, A N

    The effect of pH of the dosing solution on the relative tibia deposition of Ca 47 absorbed from the duodenum of rachitic and vit. D-treated chicks was examined. Vit. D had its usual enhancing effect on Ca 47 absorption; however, it was observed that the percent absorbed Ca47 deposited in tibia varied with intraduodenal pH and vit. D-status of the chick. At low pH values (1.9, 2.0), there were no differences in the percent of duodenally absorbed Ca 47 accumulated by tibia in rachitic or vit. D-treated chicks whereas, at high pH values, proportionally less of the absorbed Ca 47more » was deposited in rachitic tibia; pH was without effect on uptake of Ca 47 by tibia in the vit. D-treated birds.« less

  1. Evaluation of the Effects of Photobiomodulation on Partial Osteotomy in Streptozotocin-Induced Diabetes in Rats.

    PubMed

    Mostafavinia, Ataroalsadat; Masteri Farahani, Reza; Abdollahifar, Mohammad-Amin; Ghatrehsamani, Mahdi; Ghoreishi, Seyed Kamran; Hajihossainlou, Behnam; Chien, Sufan; Dadras, Sara; Rezaei, Fatemehalsadat; Bayat, Mohammad

    2018-05-31

    We examined the effects of photobiomodulation (PBM) on stereological parameters, and gene expression of Runt-related transcription factor 2 (RUNX2), osteocalcin, and receptor activator of nuclear factor kappa-B ligand (RANKL) in repairing tissue of tibial bone defect in streptozotocin (STZ)-induced type 1 diabetes mellitus (TIDM) in rats during catabolic response of fracture healing. There were conflicting results regarding the efficacy of PBM on bone healing process in healthy and diabetic animals. Forty-eight rats have been distributed into four groups: group 1 (healthy control, no TIDM and no PBM), group 2 (healthy test, no TIDM and PBM), group 3 (diabetic control, TIDM and no PBM), and group 4 (diabetic test, no TIDM and PBM). TIDM was induced in the groups 3 and 4. A partial bone defect in tibia was made in all groups. The bone defects of groups second and fourth were irradiated by a laser (890 nm, 80 Hz, 1.5 J/cm 2 ). Thirty days after the surgery, all bone defects were extracted and were submitted to stereological examination and real-time polymerase chain reaction (RT-PCR). PBM significantly increased volumes of total callus, total bone, bone marrow, trabecular bone, and cortical bone, and the numbers of osteocytes and osteoblasts of callus in TIDM rats compared to those of callus in diabetic control. In addition, TIDM increased RUNX2, and osteocalcin in callus of tibial bone defect compared to healthy group. PBM significantly decreased osteocalcin gene expression in TIDM rats. PBM significantly increased many stereological parameters of bone repair in an STZ-induced TIDM during catabolic response of fracture healing. Further RT-PCR test demonstrated that bone repair was modulated in diabetic rats during catabolic response of fracture healing by significant increase in mRNA expression of RUNX2, and osteocalcin compared to healthy control rats. PBM also decreased osteocalcin mRNA expression in TIDM rats.

  2. Is Animal Age a Factor In the Response of Bone to Spaceflight?

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Garetto, L. P.; Doty, S. B.; Halloran, B. P.; Turner, R. T.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The rodent bone response to spaceflight may be influenced by a multitude of actors including flight duration, strain, and housing. Review of bone formation rates during spaceflight suggests that age may also play a role in the response. Weanling rats show fewer bone changes than older rats. To determine if the long bones of weanling rats were insensitive to weight-bearing, a hindlimb unloading experiment was conducted simultaneously with a 9d shuttle flight in 34d old group-housed male rats. All animals were injected with bone markers 7d and 1d before flight and euthanized at landing, 24hr, and 72hr following recovery. If no differences in body weight, bone length, or bone formation at the tibiofibular junction were noted at the different time points, data were combined for each group. No significant differences in body weight were found at any time period among the groups. The humerus, tibia, and femur elongated significantly during the flight period with no difference in lengths between groups at the end of the flight period. The group-housed flight rats showed no change in cortical bone formation rate compared to preflight values, flight controls, or vivarium controls. However, the hindlimb unloading group showed a significant 30% decrease in bone formation rate compared to all other groups. Individually-housed 38d old animals flown for 14d showed approx. 10% suppression of cortical growth. We speculate that the mechanical threshold required for cross-sectional bone growth is reached in group-house weanling rats during spaceflight, perhaps, through physical interactions, and that the weanling animals are sensitive to loading. However, the threshold is not fully reached in either singly-housed flight or hindlimb unloaded weanling rats. Older singly-housed flight animals appear to show equal or greater bone changes compared to hindlimb unloaded rats. We conclude that age, flight duration, strain, and housing have important roles in rodent skeletal responses to spaceflight.

  3. Resveratrol attenuates bone cancer pain through regulating the expression levels of ASIC3 and activating cell autophagy.

    PubMed

    Zhu, Haili; Ding, Jieqiong; Wu, Ji; Liu, Tingting; Liang, Jing; Tang, Qiong; Jiao, Ming

    2017-11-01

    Bone cancer pain (BCP) is one of the most common pains in patients with malignant cancers. The mechanism underlying BCP is largely unknown. Our previous studies and the increasing evidence both have shown that acid-sensing ion channels 3 (ASIC3) is an important protein in the pathological pain state in some pain models. We hypothesized that the expression change of ASIC3 might be one of the factors related to BCP. In this study, we established the BCP model through intrathecally injecting rat mammary gland carcinoma cells (MRMT-1) into the left tibia of Sprague-Dawley female rats, and found that the BCP rats showed bone destruction, increased mechanical pain sensitivities and up-regulated ASIC3 protein expression levels in L4-L6 dorsal root ganglion. Then, resveratrol, which was intraperitoneally injected into the BCP rats on post-operative Day 21, dose-dependently increased the paw withdrawal threshold of BCP rats, reversed the pain behavior, and had an antinociceptive effect on BCP rats. In ASIC3-transfected SH-SY5Y cells, the ASIC3 protein expression levels were regulated by resveratrol in a dose- and time-dependent manner. Meanwhile, resveratrol also had an antinociceptive effect in ASIC3-mediated pain rat model. Furthermore, resveratrol also enhanced the phosphorylation of AMPK, SIRT1, and LC3-II levels in ASIC3-transfected SH-SY5Y cells, indicating that resveratrol could activate the AMPK-SIRT1-autophagy signal pathway in ASIC3-transfected SH-SY5Y cells. In BCP rats, SIRT1 and LC3-II were also down-regulated. These findings provide new evidence for the use of resveratrol as a therapeutic treatment during BCP states. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Effect of Lactation on myocardial vulnerability to ischemic insult in rats.

    PubMed

    Askari, Sahar; Imani, Alireza; Sadeghipour, Hamidreza; Faghihi, Mahdieh; Edalatyzadeh, Zohreh; Choopani, Samira; Karimi, Nasser; Fatima, Sulail

    2017-05-01

    Cardiovascular diseases are the leading cause of mortality and long-term disability worldwide. Various studies have suggested a protective effect of lactation in reducing the risk of cardiovascular diseases. This study was designed to assess the effects of pregnancy and lactation on the vulnerability of the myocardium to an ischemic insult. Eighteen female rats were randomly divided into three groups: ischemia-reperfusion (IR), in which the hearts of virgin rats underwent IR (n = 6); lactating, in which the rats nursed their pups for 3 weeks and the maternal hearts were then submitted to IR (n = 6); and non-lactating, in which the pups were separated after birth and the maternal hearts were submitted to IR (n = 6). Outcome measures included heart rate (HR), left ventricular developed pressure (LVDP), rate pressure product (RPP), ratio of the infarct size to the area at risk (IS/AAR %), and ventricular arrhythmias - premature ventricular contraction (PVC) and ventricular tachycardia (VT). The IS/AAR was markedly decreased in the lactating group when compared with the non-lactating group (13.2 ± 2.5 versus 39.7 ± 3.5, p < 0.001) and the IR group (13.2 ± 2.5 versus 34.0 ± 4.7, p < 0.05). The evaluation of IR-induced ventricular arrhythmias indicated that the number of compound PVCs during ischemia, and the number and duration of VTs during ischemia and in the first 5 minutes of reperfusion in the non-lactating group were significantly (p < 0.05) higher than those in the lactating and IR groups. Lactation induced early-onset cardioprotective effects, while rats that were not allowed to nurse their pups were more susceptible to myocardial IR injury. As doenças cardiovasculares são a principal causa de mortalidade e invalidez a longo prazo a nível mundial. Diversos estudos têm sugerido um efeito protetor da lactação na redução do risco para doenças cardiovasculares. Este estudo foi desenvolvido para avaliar os efeitos da gestação e da lactação sobre a vulnerabilidade do miocárdio ao insulto isquêmico. Dezoito ratas foram divididas aleatoriamente em três grupos: isquemia-reperfusão (IR), no qual os corações de ratas virgens foram submetidos à IR (n = 6); lactantes, no qual as ratas amamentaram seus filhotes por 3 semanas e os corações maternos foram, em seguida, submetidos à IR (n = 6); e não lactantes, no qual os filhotes foram separados após o nascimento e os corações maternos foram submetidos à IR (n = 6). As medidas de desfecho incluíram frequência cardíaca (FC), pressão desenvolvida no ventrículo esquerdo (PDVE), duplo produto (DP), razão do tamanho do infarto sobre a área sob risco (TI/ASR %) e arritmias ventriculares - contração ventricular prematura (CVP) e taquicardia ventricular (TV). O TI/ASR foi substancialmente menor no grupo de lactantes quando comparado ao grupo de não lactantes (13,2 ± 2,5 versus 39,7 ± 3,5, p < 0,001) e ao grupo IR (13,2 ± 2,5 versus 34,0 ± 4,7, p < 0,05). A avaliação das arritmias ventriculares induzidas pela IR indicou que o número de CVPs compostas na isquemia, e o número e a duração das TVs na isquemia e nos primeiros 5 minutos de reperfusão no grupo de não lactantes foram significativamente (p < 0,05) mais elevados do que os encontrados nos grupos IR e de lactantes. A lactação induziu o aparecimento precoce de efeitos cardioprotetores, enquanto ratas que não foram permitidas a amamentar seus filhotes se mostraram mais suscetíveis à lesão miocárdica por IR.

  5. [Intramedullary nailing of the distal tibia illustrated with the Expert(TM) tibia nail].

    PubMed

    El Attal, R; Hansen, M; Rosenberger, R; Smekal, V; Rommens, P M; Blauth, M

    2011-12-01

    Restoration of axis, length, and rotation of the lower leg. Sufficient primary stability of the osteosynthesis for functional aftercare and to maintain joint mobility. Good bony healing in closed and open fractures. Closed and open fractures of the tibia and complete lower leg fractures distal to the isthmus (AO 42), extraarticular fractures of the distal tibia (AO 43 A1/A2/A3), segmental fractures of the tibia with a fracture in the distal tibia, and certain intraarticular fractures of the distal tibia without impression of the joint line with the use of additional implants (AO 43 C1) Patient in reduced general condition (e.g., bed ridden), flexion of the knee of less than 90°, patients with knee arthroplasty of the affected leg, infection in the area of the nail's insertion, infection of the tibial cavity, complex articular fractures of the proximal or distal tibia with joint depression. Closed reduction of the fracture preferably on a fracture table or using a distractor or an external fixation frame. If necessary, use pointed reduction clamps or sterile drapery. In some cases, additional implants like percutaneous small fragment screws, poller screws or k-wires are helpful. Open reduction is rarely necessary and must be avoided. Opening of the proximal tibia in line with the medullary canal. Canulated insertion of the Expert(TM) tibia nail (ETN; Synthes GmbH, Oberdorf, Switzerland) with reaming of the medullary canal. Control of axis, length, and rotation. Distal interlocking with the radiolucent drill and proximal interlocking with the targeting device. Immediate mobilization of ankle and knee joint. Mobilization with 20 kg weight-bearing with crutches. X-ray control 6 weeks postoperatively and increased weight-bearing depending on the fracture status. In cases with simple fractures, good bony contact, or transverse fracture pattern, full weight-bearing at the end of week 6 is targeted. Between July 2004 and May 2005, 180 patients were included in a multicenter study. The follow-up rate was 81% after 1 year. Of these, 91 fractures (50.6%) were located in the distal third of the tibia. In this segment, the rate of delayed union was 10.6%. Malalignment of > 5° was observed in 5.4%. A secondary malalignment after initial good reduction was detected in only 1.1% of all cases. The implant-specific risk for screw breakage was 3.2%. One patient sustained a deep infection. If additional fibula plating was performed an 8-fold higher risk for delayed bone healing was observed (95%CI: 2.9-21.2, p< 0.001). If the fracture of the fibula was at the same height as on the tibia, the risk for delayed healing was even 14-fold (95% CI: 3.4-62.5, p< 0.001). Biomechanically plating of the fibula does not increase stability in suprasyndesmal distal tibia-fibular fractures treated with an intramedullary nail. Using the ETN with its optimized locking options, fibula plating is not recommended, thus, avoiding soft tissue problems and potentially delayed bone healing.

  6. Effect of the starting point of half-pin insertion on the insertional torque of the pin at the tibia.

    PubMed

    Kim, Sung Jae; Kim, Sung Hwan; Kim, Young Hwan; Chun, Yong Min

    2015-01-01

    The authors have observed a failure to achieve secure fixation in elderly patients when inserting a half-pin at the anteromedial surface of the tibia. The purpose of this study was to compare two methods for inserting a half-pin at tibia diaphysis in elderly patients. Twenty cadaveric tibias were divided into Group C or V. A half-pin was inserted into the tibias of Group C via the conventional method, from the anteromedial surface to the interosseous border of the tibia diaphysis, and into the tibias of Group V via the vertical method, from the anterior border to the posterior surface at the same level. The maximum insertion torque was measured during the bicortical insertion with a torque driver. The thickness of the cortex was measured by micro-computed tomography. The relationship between the thickness of the cortex engaged and the insertion torque was investigated. The maximum insertion torque and the thickness of the cortex were significantly higher in Group V than Group C. Both groups exhibited a statistically significant linear correlation between torque and thickness by Spearman's rank correlation analysis. Half-pins inserted by the vertical method achieved purchase of more cortex than those inserted by the conventional method. Considering that cortical thickness and insertion torque in Group V were significantly greater than those in Group C, we suggest that the vertical method of half-pin insertion may be an alternative to the conventional method in elderly patients.

  7. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    PubMed

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point after transfection. In addition, human VEGF gene transfection increased osteoblast cell proliferation after 3 days. These in vitro results suggest that cell-based human VEGF gene therapy is not only effective at causing human VEGF expression, but also enhances endogenous rat VEGF mRNA expression in both fibroblasts and osteoblasts, particularly the rat VEGF164 isoform.

  8. Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Morey-Holton, E. R.; Doty, S. B.; Currier, P. A.; Tanner, S. J.; Halloran, B. P.

    1994-01-01

    Loss of bone mass during periods of skeletal unloading remains an important clinical problem. To determine the extent to which resorption contributes to the relative loss of bone during skeletal unloading of the growing rat and to explore potential means of preventing such bone loss, 0.1 mg P/kg alendronate was administered to rats before unloading of the hindquarters. Skeletal unloading markedly reduced the normal increase in tibial mass and calcium content during the 9 day period of observation, primarily by decreasing bone formation, although bone resorption was also modestly stimulated. Alendronate not only prevented the relative loss of skeletal mass during unloading but led to a dramatic increase in calcified tissue in the proximal tibia compared with the vehicle-treated unloaded or normally loaded controls. Bone formation, however, assessed both by tetracycline labeling and by [3H]proline and 45Ca incorporation, was suppressed by alendronate treatment and further decreased by skeletal unloading. Total osteoclast number increased in alendronate-treated animals, but values were similar to those in controls when corrected for the increased bone area. However, the osteoclasts had poorly developed brush borders and appeared not to engage the bone surface when examined at the ultrastructural level. We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis.

  9. Bone marrow stromal cells promote neuroplasticity of cerebral ischemic rats via a phosphorylated CRMP2-mediated mechanism.

    PubMed

    He, Xiang; Jiang, Ling; Dan, Qi-Qin; Lv, Qiang; Hu, Yue; Liu, Jia; Wang, Shu-Fen; Wang, Ting-Hua

    2017-03-01

    Collapsin response mediator protein 2 (CRMP2), an important protein involved in axonal growth and the maintenance of neuronal membrane integrity, has proved to be altered in nervous system diseases. This study was aimed to investigate the role of CRMP2 in bone marrow stromal cells (BMSCs) treating rats with cerebral ischemia. BMSCs were isolated from shaft of the femurs, tibiae, and humeri and were intra-carotid administrated immediately after middle cerebral artery occlusion (MCAO). Modified Neurological Severity Scores (mNSS) was conducted at 3, 7, 14dpo and the electrophysiologic evaluation was evaluated at 14dpo. Then all rats were sacrificed and brain tissues were harvested for RT-PCR, Western blot and Immunohistochemistry analysis. We found BMSCs treatment significantly improved the neurobehavioral performance impaired by ischemic brain injury, accompanied with the notably increasing levels of Synaptophysin (SYP) and Growth associated protein 43 (GAP43). We also found the protein level of phosphorylated CRMP2 (p-CRMP2) and phosphorylation-mediated protein including Glycogen synthase kinase 3 Beta (GSK3β), Cyclin-dependent kinase 5 (CDK5) were dramatically downregulated in ischemic rats following BMSCs transplant. Furthermore, the GSK3β-mediated factors including neurotrophic and signaling factors were all significantly upregulated in BMSCs-treated group. On the basis of these findings, we suggest that the neuroplasticity effect of BMSCs on cerebral ischemia may be associated with the phosphorylated modulation of CRMP2. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Radiotherapy Suppresses Bone Cancer Pain through Inhibiting Activation of cAMP Signaling in Rat Dorsal Root Ganglion and Spinal Cord.

    PubMed

    Zhu, Guiqin; Dong, Yanbin; He, Xueming; Zhao, Ping; Yang, Aixing; Zhou, Rubing; Ma, Jianhua; Xie, Zhong; Song, Xue-Jun

    2016-01-01

    Radiotherapy is one of the major clinical approaches for treatment of bone cancer pain. Activation of cAMP-PKA signaling pathway plays important roles in bone cancer pain. Here, we examined the effects of radiotherapy on bone cancer pain and accompanying abnormal activation of cAMP-PKA signaling. Female Sprague-Dawley rats were used and received tumor cell implantation (TCI) in rat tibia (TCI cancer pain model). Some of the rats that previously received TCI treatment were treated with X-ray radiation (radiotherapy). Thermal hyperalgesia and mechanical allodynia were measured and used for evaluating level of pain caused by TCI treatment. PKA mRNA expression in dorsal root ganglion (DRG) was detected by RT-PCR. Concentrations of cAMP, IL-1β, and TNF-α as well as PKA activity in DRG and the spinal cord were measured by ELISA. The results showed that radiotherapy significantly suppressed TCI-induced thermal hyperalgesia and mechanical allodynia. The level of PKA mRNA in DRG, cAMP concentration and PKA activity in DRG and in the spinal cord, and concentrations of IL-1β and TNF-α in the spinal cord were significantly reduced by radiotherapy. In addition, radiotherapy also reduced TCI-induced bone loss. These findings suggest that radiotherapy may suppress bone cancer pain through inhibition of activation of cAMP-PKA signaling pathway in DRG and the spinal cord.

  11. Lifelong intake of flaxseed or menhaden oil to provide varying n-6 to n-3 PUFA ratios modulate bone microarchitecture during growth, but not after OVX in Sprague-Dawley rats.

    PubMed

    Longo, Amanda B; Sullivan, Philip J; Peters, Sandra J; LeBlanc, Paul J; Wohl, Gregory R; Ward, Wendy E

    2017-08-01

    Skeletal health is a lifelong process impacted by environmental factors, including nutrient intake. The n-3 source and PUFA ratio affect bone health in growing rats, or following ovariectomy (OVX), but no study has investigated the longitudinal effect of PUFA-supplementation throughout these periods of bone development. One-month-old, Sprague-Dawley rats (n = 98) were randomized to receive one of four diets from 1 through 6 months of age. Diets were modified from AIN-93G to contain a varying amount and source of n-3 (flaxseed versus menhaden oil) to provide an n-6 to n-3 ratio of 10:1 or 5:1. At 3 (prior to SHAM or OVX) and 6 months of age, bone microarchitecture of the tibia was quantified using in vivo micro-computed tomography (SkyScan 1176, Bruker microCT). Providing 5:1 (flaxseed) resulted in lower trabecular thickness and medullary area and greater cortical area fraction during growth compared to diets with a 10:1 PUFA ratio, but many of these differences were not apparent following OVX. PUFA-supplementation at levels attainable in human diet modulates some bone structure outcomes during periods of growth, but is not an adequate strategy for the prevention of OVX-induced bone loss in rats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Disuse exaggerates the detrimental effects of alcohol on cortical bone

    NASA Technical Reports Server (NTRS)

    Hefferan, Theresa E.; Kennedy, Angela M.; Evans, Glenda L.; Turner, Russell T.

    2003-01-01

    BACKGROUND: Alcohol abuse is associated with an increased risk for osteoporosis. However, comorbidity factors may play an important role in the pathogenesis of alcohol-related bone fractures. Suboptimal mechanical loading of the skeleton, an established risk factor for bone loss, may occur in some alcohol abusers due to reduced physical activity, muscle atrophy, or both. The effect of alcohol consumption and reduced physical activity on bone metabolism has not been well studied. The purpose of this study was to determine whether mechanical disuse alters bone metabolism in a rat model for chronic alcohol abuse. METHODS: Alcohol was administered in the diet (35% caloric intake) of 6-month-old male rats for 4 weeks. Rats were hindlimb-unloaded the final 2 weeks of the experiment to prevent dynamic weight bearing. Afterward, cortical bone histomorphometry was evaluated at the tibia-fibula synostosis. RESULTS: At the periosteal surface of the tibial diaphysis, alcohol and hindlimb unloading independently decreased the mineralizing perimeter, mineral apposition rate, and bone formation rate. In addition, alcohol, but not hindlimb unloading, increased endocortical bone resorption. The respective detrimental effects of alcohol and hindlimb unloading to inhibit bone formation were additive; there was no interaction between the two variables. CONCLUSIONS: Reduced weight bearing accentuates the detrimental effects of alcohol on cortical bone in adult male rats by further inhibiting bone formation. This finding suggests that reduced physical activity may be a comorbidity factor for osteoporosis in alcohol abusers.

  13. Anterior iliac crest, posterior iliac crest, and proximal tibia donor sites: a comparison of cancellous bone volumes in fresh cadavers.

    PubMed

    Engelstad, Mark E; Morse, Timothy

    2010-12-01

    The anterior iliac crest, posterior iliac crest, and proximal tibia are common cancellous donor sites used for autogenous bone grafting. Donor site selection is partly dependent on the expected volume of available bone, but reports of cancellous bone volumes at each of these sites are variable. The goal of this study was to compare the volumes of cancellous bone harvested from donor sites within the same cadaver. Within each of 10 fresh frozen cadavers, cancellous bone was harvested from 3 donor sites-anterior iliac crest, posterior iliac crest, and proximal tibia-using established surgical techniques. Bone volumes were measured by fluid displacement. Mean compressed cancellous bone volumes from the 3 donor sites were compared among cadavers. Within each cadaver, the 3 donor sites were given a volume rank score from 1 (least volume) to 3 (most volume). Among cadavers, mean compressed cancellous bone volumes from the proximal tibia (11.3 mL) and posterior iliac crest (10.1 mL) were significantly greater than the anterior iliac crest (7.0 mL). Within cadavers, the mean volume rank score of the proximal tibia (mean rank, 2.7) was statistically greater than that for the posterior iliac crest (mean rank, 2.0), which was statistically greater than that for the anterior iliac crest (mean rank, 1.2). Strong correlations in bone volume existed between the proximal tibia and iliac crests (r = 0.67) and between the anterior iliac crest and posterior iliac crest (r = 0.93). The proximal tibia and posterior iliac crest yielded a significantly greater mean volume of compressed cancellous bone than the anterior iliac crest. Within individual cadaver skeletons, the proximal tibia was most likely to yield the largest cancellous volume, whereas the anterior iliac crest was most likely to yield the smallest cancellous volume. Although the proximal tibia contains relatively large volumes of cancellous bone, further investigation is required to determine how much cancellous bone can safely be harvested. Copyright © 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Histology of Epiphyseal Plate of Adolescent Rat Stimulated by Laserpuncture

    NASA Astrophysics Data System (ADS)

    Handayani, Selfi; Ramelan, Ari H.; Purwanto, Bambang; Saputra, Koosnadi; Tamtomo, Didik G.

    2017-11-01

    Epiphyseal plate was used for determining longitudinal bone growth. Laserpuncture was believed to stimulate height growth. We used 40 male Wistar rats which aged three weeks old and weighed more than 40 g as subjects. They randomly divided into group A or B and each group evenly divided into four subgroups which were a negative control and others applied with laser on GV20, ST 36 or combination of GV 20+ST 36 respectively. These acupoints were then stimulated using the laser. After treatment, mice were sacrificed, then tibias were taken for histology preparation processes. By light microscope, epiphyseal plate (EP) height (µm) and chondrocytes hypertrophy (CH) height were measured at six equidistant points, and the values were averaged to obtain a final result for each section. Collected data were analyzed using ANOVA test, and the significant value was set up p< 0.05. The mean of EC and CH were lower than control, but mean of ratio EP/CH were higher than control. However, ANOVA showed that there did not differ significantly (p=0.36).

  15. Changes in blood flow during one stage lengthening of bone: an experimental study in rats.

    PubMed

    Kwon, S T; Chung, C Y

    2000-06-01

    Distraction osteogenesis is a well-accepted method of bone lengthening. Its disadvantages, however, are that it requires an external fixator and takes a long time. One-stage lengthening therefore offers certain advantages. A first point of reference for the safe limits of this procedure might be the changes of blood flow, and this is also the crucial factor in deciding on the appropriate method of lengthening, particularly where the hand or foot is involved. Using a laser Doppler flowmeter we measured blood flow in the dorsum of the foot after using bilateral minimonofixators to lengthen the tibias of 15 Sprague-Dawley rats. They were lengthened in four stages: stage 0 (before lengthening); stage I--12.5%; stage II--25%; and stage III--31.25% of lengthening. The blood flow during stage I decreased to 79% compared to that of stage 0; 16% during stage II; and 1% during stage III. This study suggests that the maximal permissible extent of lengthening might be less than a quarter according to the blood flow as suggested by this animal model.

  16. [Evaluation of bone structure and quality of ovariectomized rats by microcrack].

    PubMed

    Dai, Ru-chun; Liao, Er-yuan; Yang, Chuan

    2003-12-01

    To compare microcrack with bone mineral desity (BMD), bone histomorphometry and biomechanics parameters, and to investigate the potential of microcrack in the evaluation of bone biomechanical quality. Eight 10-month-old Sprague-Dawley rats were served as baseline controls, and 90 10-month-old rats were randomly divided into A, B, and C groups. Each group comprised ovariectomized (OVX), 17 beta-estradiol treated [EST, 10 micro/(kg x d)] and sham-operated (SHAM) subgroups. Rats from groups A,B and C were killed at the 3rd, 15th and 21st week post-operatively. Total body and lumbar vertebral BMD were measured before being killed, and BMD of isolated lumbar vertebrae and tibiae were measured after killing. Bone histomorphometry of the proximal end of isolated right tibia was performed,and compression test was carried out on the isolated 5th lumbar vertebra (L5). After fatigue damage, the isolated 4th lumbar vertebra was stained by en bloc basic fuchsin staining, and microcrack density (Cr. Dn) and microcrack surface density (Cr. SDn) were de- termined on the bone tissue sections. Bone parameters in each subgroup of rats were observed at different time. (1) At the 15th and 21st week post-operatively, multi-part BMD, Cr. Dn and Cr. SDn were higher than those at the 3rd week. (2) At the 15th week, trabecular separation (Tb. Sp) increased, trabecular number (Tb. N) decreased, and the maximum loading level and elastic modulus of vertebra reached the peak. (3) At the 3rd week, Tb. Sp, Cr. Dn and Cr. SDn in the OVX subgroup were greater than those in the EST subgroup, while the percentage of trabecular area (TbTr) in the OVX subgroup was lower than that of the EST and SHAM subgroups. No changes of BMDs and biomechanic parameters were observed among the three subgroups. (4) At the 15th week, multi-part BMD and maximum loading level in the OVX and EST subgroups were lower than those in the SHAM subgroup, while elastic modulus, bone histomorphometry parameters, Cr. Dn and Cr. SDn had no change among the three subgroups. (5) At the 21st week, multi-part BMDs, Tb. N and TbTr in the OVX subgroup were smaller than those in the EST and SHAM subgroups. Tb. Sp, bone formation rate, mineral apposition rate, percent labeled perimeter,Cr. Dn and Cr. SDn in the OVX subgroups were greater than those in the EST and SHAM subgroups. Maximum loading level and elastic modulus of vertebra in EST and OVX subgroups were lower than those in the SHAM subgroup. There were no significant differences in all of these parameters Microcrack can be regarded as an alterative between the EST and the SHAM subgroup. Conclusion parameter in the evaluation of bone biomechanical quality.

  17. Identification tibia and fibula bone fracture location using scanline algorithm

    NASA Astrophysics Data System (ADS)

    Muchtar, M. A.; Simanjuntak, S. E.; Rahmat, R. F.; Mawengkang, H.; Zarlis, M.; Sitompul, O. S.; Winanto, I. D.; Andayani, U.; Syahputra, M. F.; Siregar, I.; Nasution, T. H.

    2018-03-01

    Fracture is a condition that there is a damage in the continuity of the bone, usually caused by stress, trauma or weak bones. The tibia and fibula are two separated-long bones in the lower leg, closely linked at the knee and ankle. Tibia/fibula fracture often happen when there is too much force applied to the bone that it can withstand. One of the way to identify the location of tibia/fibula fracture is to read X-ray image manually. Visual examination requires more time and allows for errors in identification due to the noise in image. In addition, reading X-ray needs highlighting background to make the objects in X-ray image appear more clearly. Therefore, a method is required to help radiologist to identify the location of tibia/fibula fracture. We propose some image-processing techniques for processing cruris image and Scan line algorithm for the identification of fracture location. The result shows that our proposed method is able to identify it and reach up to 87.5% of accuracy.

  18. Progress in Finite Element Modeling of the Lower Extremities

    DTIC Science & Technology

    2015-06-01

    bending and subsequent injury , e.g., the distal tibia motion results in bending of the tibia rather than the tibia rotating about the knee joint...layers, rich anisotropy, and wide variability. Developing a model for predictive injury capability, therefore, needs to be versatile and flexible to... injury capability presents many challenges, the first of which is identifying the types of conditions where injury prediction is needed. Our focus

  19. Asymmetric bone adaptations to soleus mechanical loading after spinal cord injury

    PubMed Central

    Dudley-Javoroski, S.; Shields, R.K.

    2009-01-01

    The purpose of this report is to examine longitudinal bone mineral density (BMD) changes in individuals with spinal cord injury (SCI) who began unilateral soleus electrical stimulation early after injury. Twelve men with SCI and seven without SCI underwent peripheral quantitative computed tomography assessment of distal tibia BMD. After 4.5 to 6 years of training, average trained limb BMD was 27.5% higher than untrained limb BMD. The training effect was more pronounced in the central core of the tibia cross-section (40.5% between-limb difference). No between-limb difference emerged in the anterior half of the tibia (19.2 mg/cm3 difference, p>0.05). A robust between-limb difference emerged in the posterior half of the tibia (76.1 mg/cm3 difference, p=0.0439). The posterior tibia BMD of one subject remained within the range of non-SCI values for 3.8 years post-SCI. The results support that the constrained orientation of soleus mechanical loads, administered over several years, elicited bone-sparing effects in the posterior tibia. This study provides a demonstration of the bone-protective potential of a carefully controlled dose of mechanical load. The specific orientation of applied mechanical loads may strongly influence the manifestation of BMD adaptations in humans with SCI. PMID:18799855

  20. Derivation and application of a mathematical model for long bone growth.

    PubMed

    Seetharam, Suneil; Bhatia, Sujata K

    2012-01-01

    The objective of this work was to develop a mathematical model of long bone growth and to gain insights regarding growth disorders. A cell balance (mass balance of moving cells) assessment was performed on the three regions of the growth plate, to determine the variables (including number of proliferating cells, and division rate of proliferating cells) that influence tibia growth rate. Once this relationship was established, clinical data were used to understand how tibia growth rate and number of proliferating cells change with time. These equations were then inserted into the model to determine how cell division rate changes with time. The model was utilized to determine the influence of growth time, and to measure changes in vitamin C deficiency, Indian hedgehog (IHH) expression, and bone morphogenetic protein-2 (BMP-2) implants on tibia length. According to the model, a 10-month discrepancy in growth time between the two tibias is required to produce clinically significant leg asymmetry. In addition, vitamin C deficiency, IHH overexpression, and BMP-2 implants can all affect tibia length. These bioactive molecules have the greatest effect on tibia growth rate when these perturbations occur early in life for extended periods of time. The results are significant for modeling and predicting the effects of perturbations, including bioactive implants, on long bone growth.

  1. Effects of feeding different concentration and forms of zinc on the performance and tissue mineral status of broiler chicks.

    PubMed

    Ao, T; Pierce, J L; Pescatore, A J; Cantor, A H; Dawson, K A; Ford, M J; Paul, M

    2011-08-01

    1. Two studies were conducted to investigate the effect of feeding different concentration and forms of zinc (Zn) on the performance and tibia Zn status of broiler chicks. 2. In Experiment 1, chicks fed on the control or the diet supplemented with 12?mg of Zn as sulphate had lower feed intake, weight gain and tibia Zn content than other treatment groups. Chicks given 12 and 24 mg of organic Zn in starter and grower phases, respectively, had the same performance and tibia Zn content as those fed 40 mg of Zn as sulphate and the same performance but higher tibia Zn content than those given 12 mg of Zn as organic over the 42 d. 3. In Experiment 2, chicks given 24 mg organic Zn had greater weight gain than chicks fed on the other treatment diets in the starter period. Chicks fed on the control diet had lower tibia Zn content than chicks fed other treatment diets. Chicks given 80 mg Zn as sulphate had higher tibia Zn content than chicks fed the other treatment diets except those given 40 mg of Zn as sulphate. 4. The results from these trials indicate that feeding lower concentration of Zn as organic form may better promote the growth performance of broiler chicks.

  2. The effect of retained intramedullary nails on tibial bone mineral density.

    PubMed

    Allen, J C; Lindsey, R W; Hipp, J A; Gugala, Z; Rianon, N; LeBlanc, A

    2008-07-01

    Intramedullary nailing has become a standard treatment for adult tibial shaft fractures. Retained intramedullary nails have been associated with stress shielding, although their long-term effect on decreasing tibial bone mineral density is currently unclear. The purpose of this study was to determine if retained tibial intramedullary nails decrease tibial mineral density in patients with successfully treated fractures. Patients treated with statically locked intramedullary nails for isolated, unilateral tibia shaft fractures were studied. Inclusion required that fracture had healed radiographically and that the patient returned to the pre-injury activity level. Data on patient demographic, fracture type, surgical technique, implant, and post-operative functional status were tabulated. Dual energy X-ray absorptiometry was used to measure bone mineral density in selected regions of the affected tibia and the contralateral intact tibia. Image reconstruction software was employed to ensure symmetry of the studied regions. Twenty patients (mean age 43; range 22-77 years) were studied at a mean of 29 months (range 5-60 months) following intramedullary nailing. There was statistically significant reduction of mean bone mineral density in tibiae with retained intramedullary nails (1.02 g/cm(2) versus 1.06 g/cm(2); P=0.04). A significantly greater decrease in bone mineral density was detected in the reamed versus non-reamed tibiae (-7% versus +6%, respectively; P<0.05). The present study demonstrates a small, but statistically significant overall bone mineral density decrease in healed tibiae with retained nails. Intramedullary reaming appears to be a factor potentiating the reduction of tibia bone mineral density in long-term nail retention.

  3. Longitudinal shapes of the tibia and femur are unrelated and variable.

    PubMed

    Howell, Stephen M; Kuznik, Kyle; Hull, Maury L; Siston, Robert A

    2010-04-01

    In general practice, short films of the knee are used to assess component position and define the entry point for intramedullary femoral alignment in TKAs; however, whether it is justified to use the short film commonly used in research settings and everyday practice as a substitute for the whole leg view is controversial and needs clarification. In 138 long leg CT scanograms we measured the angle formed by the anatomic axis of the proximal fourth of the tibia and the mechanical axis of the tibia, the angle formed by the anatomic axis of the distal fourth of the femur and the mechanical axis of the femur, the "bow" of the tibia (as reflected by the offset of the anatomic axis from the center of the talus), and the "bow" of the femur (as reflected by the offset of the anatomic axis from the center of the femoral head). Because the angle formed by these axes and the bow of the tibia and femur have wide variability in females and males, a short film of the knee should not be used in place of the whole leg view when accurate assessment of component position and limb alignment is essential. A previous study of normal limbs found that only 2% of subjects have a neutral hip-knee-ankle axis, which can be explained by the wide variability of the bow in the tibia and femur and the lack of correlation between the bow of the tibia and femur in a given limb as shown in the current study.

  4. Effect of a novel microbial phytase on production performance and tibia mineral concentration in broiler chickens given low-calcium diets.

    PubMed

    Singh, A; Walk, C L; Ghosh, T K; Bedford, M R; Haldar, S

    2013-01-01

    1. In a 42-d feeding trial, 264 one-d-old, as hatched, Cobb 400 broiler chickens (6 pens per group, n = 11 per pen in a 2 × 2 factorial arrangement) were fed on two concentrations of dietary calcium (Ca) (9.0 and 7.5 g/kg in starter, 7.5 and 6 g/kg in grower phases) and supplemental phytase (0 and 500 U/kg diet). 2. During d 0-21, the high Ca + phytase diet improved body weight. During d 0-42, feed intake was increased by the low Ca diet and decreased by phytase supplementation. Feed conversion ratio during d 0-21 was improved by the high Ca + phytase diet. 3. At d 42, Ca in duodenal digesta was reduced by low dietary Ca and supplemental phytase. High dietary Ca reduced P in duodenal and jejunal digesta. Phytase reduced digesta P and increased serum P concentration. 4. Relative tibia length decreased with low dietary Ca and increased with phytase. The robusticity index of tibia was improved by the low Ca diet and phytase supplementation. Phytase supplementation increased tibia ash and concentrations of Ca, magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn) and iron (Fe) in tibia. The low Ca diet increased Mg, Mn and Fe and reduced Cu and Zn in tibia. 5. It was concluded that 7.5 g Ca/kg during weeks 0-3 and 6 g Ca/kg during weeks 3-6 sustained broiler performance and bone ash, while phytase supplementation facilitated tibia mineralisation, particularly during the grower phase.

  5. Short term sodium alendronate administration improves the peri-implant bone quality in osteoporotic animals

    PubMed Central

    de OLIVEIRA, Danila; HASSUMI, Jaqueline Suemi; GOMES-FERREIRA, Pedro Henrique da Silva; POLO, Tárik Ocon Braga; FERREIRA, Gabriel Ramalho; FAVERANI, Leonardo Perez; OKAMOTO, Roberta

    2017-01-01

    Abstract Sodium alendronate is a bisphosphonate drug that exerts antiresorptive action and is used to treat osteoporosis. Objective The aim of this study was to evaluate the bone repair process at the bone/implant interface of osteoporotic rats treated with sodium alendronate through the analysis of microtomography, real time polymerase chain reactions and immunohistochemistry (RUNX2 protein, bone sialoprotein (BSP), alkaline phosphatase, osteopontin and osteocalcin). Material and Methods A total of 42 rats were used and divided in to the following experimental groups: CTL: control group (rats submitted to fictitious surgery and fed with a balanced diet), OST: osteoporosis group (rats submitted to a bilateral ovariectomy and fed with a low calcium diet) and ALE: alendronate group (rats submitted to a bilateral ovariectomy, fed with a low calcium diet and treated with sodium alendronate). A surface treated implant was installed in both tibial metaphyses of each rat. Euthanasia of the animals was conducted at 14 (immunhostochemistry) and 42 days (immunohistochemistry, micro CT and PCR). Data were subjected to statistical analysis with a 5% significance level. Results Bone volume (BV) and total pore volume were higher for ALE group (P<0.05). Molecular data for RUNX2 and BSP proteins were significantly expressed in the ALE group (P<0.05), in comparison with the other groups. ALP expression was higher in the CTL group (P<0.05). The immunostaining for RUNX2 and osteopontin was positive in the osteoblastic lineage cells of neoformed bone for the CTL and ALE groups in both periods (14 and 42 days). Alkaline phosphatase presented a lower staining area in the OST group compared to the CTL in both periods and the ALE at 42 days. Conclusion There was a decrease of osteocalcin precipitation at 42 days for the ALE and OST groups. Therefore, treatment with short-term sodium alendronate improved bone repair around the implants installed in the tibia of osteoporotic rats. PMID:28198975

  6. The Effect of Vibration Treatments Combined with Teriparatide or Strontium Ranelate on Bone Healing and Muscle in Ovariectomized Rats.

    PubMed

    Komrakova, M; Hoffmann, D B; Nuehnen, V; Stueber, H; Wassmann, M; Wicke, M; Tezval, M; Stuermer, K M; Sehmisch, S

    2016-10-01

    The aim of the present study was to study the effect of combined therapy of teriparatide (PTH) or strontium ranelate (SR) with whole-body vibration (WBV) on bone healing and muscle properties in an osteopenic rat model. Seventy-two rats (3 months old) were bilaterally ovariectomized (Ovx), and 12 rats were left intact (Non-Ovx). After 8 weeks, bilateral transverse osteotomy was performed at the tibia metaphysis in all rats. Thereafter, Ovx rats were divided into six groups (n = 12): (1) Ovx-no treatment, (2) Ovx + vibration (Vib), (3) SR, (4) SR + Vib, (5) PTH, and (6) PTH + Vib. PTH (40 μg/kg BW sc. 5×/week) and SR (613 mg/kg BW in food daily) were applied on the day of ovariectomy, vibration treatments 5 days later (vertical, 70 Hz, 0.5 mm, 2×/day for 15 min) for up to 6 weeks. In the WBV + SR group, the callus density, trabecular number, and Alp and Oc gene expression were decreased compared to SR alone. In the WBV + PTH group, the cortical and callus widths, biomechanical properties, Opg gene expression, and Opg/Rankl ratio were increased; the cortical and callus densities were decreased compared to PTH alone. A case of non-bridging was found in both vibrated groups. Vibration alone did not change the bone parameters; PTH possessed a stronger effect than SR therapy. In muscles, combined therapies improved the fiber size of Ovx rats. WBV could be applied alone or in combination with anti-osteoporosis drug therapy to improve muscle tissue. However, in patients with fractures, anti-osteoporosis treatments and the application of vibration could have an adverse effect on bone healing.

  7. Wrapping grafting for congenital pseudarthrosis of the tibia

    PubMed Central

    Yan, An; Mei, Hai-Bo; Liu, Kun; Wu, Jiang-Yan; Tang, Jin; Zhu, Guang-Hui; Ye, Wei-Hua

    2017-01-01

    Abstract Objective: Treatment of congenital pseudarthrosis of the tibia (CPT) remains a challenge. The autogenic iliac bone graft is important consistent of treatment for CPT. The purpose of this study was to investigate the role of wrapping autogenic iliac bone graft in improvement of the curing opportunities of CPT. Methods: We combined Ilizarov fixator with intramedullary rodding of the tibia and wrapping autogenic iliac bone graft for treatment 51 cases of CPT between 2007 and 2010. The mean age is 3.2 years at index operation, of which 31 patients (61%) were below 3 years old. According to Crawford classification, 5 tibia had type-II morphology; 3, type-III; 43, type-IV. Results: In the postoperative follow-up of 3.5 months (range from 3 to 4.5 months), all cases were found that the bone graft sites of pseudarthrosis of the tibia showed a significant augmentation and spindle-shaped expansion as obvious change. All cases of this series have been followed-up, average followed-up time were 1.6 years (range from 7 to 3.1 years), of which 19 cases were more than 2 years. The average time of removed the Ilizarov ring fixator was 3.5 months (range from 3 to 4.5 months). According to Johnston Clinical evaluation system, 26 cases had grade I, 21 cases, grade II, 4 cases, grade III. Following the Ohnishi X-ray evaluation criteria, union of pseudarthrosis of the tibia were 42 cases, delayed union 5 cases, nonunion 4 cases. Conclusion: Autogenic iliac bone graft is able to offer the activity of osteoblasts and osteogenesis induced by bone morphogenetic protein (BMP) and glycoprotein, meanwhile enclosing bone graft could help keep cancellous bone fragments in close contact around pseudarthrosis of the tibia, allowing the formation of high concentration of glycoprotein and BMP induced by chemical factors because of established the sealing environment in location, all of which could enhance the healing of pseudarthrosis of the tibia. PMID:29310362

  8. Bone pulsating metastasis due to renal cell carcinoma.

    PubMed

    Cınar, Murat; Derincek, Alihan; Karan, Belgin; Akpınar, Sercan; Tuncay, Cengiz

    2010-11-01

    Pulsation on the bone cortex surface is a rare condition. Pulsative palpation of the superficial-located bone tumors can be misperceived as an aneurysm. Fifty-eight-year-old man is presented with pulsating bone mass in his proximal tibia. During angiographic examination, hypervascular masses were diagnosed both at right kidney and at right proximal tibia. Renal cell carcinoma was diagnosed after abdominal CT scan. Proximal tibia biopsy was complicated with projectile bleeding.

  9. Multiple Tibial Insufficiency Fractures in the Same Tibia

    PubMed Central

    Defoort, Saartje; Mertens, Peter

    2011-01-01

    Stress fractures were first described by Briethaupt in 1855. Since then, there have been many discussions in the literature concerning stress fractures, which have been described in both weight-bearing and non-weight-bearing bones. Currently, the tibia is the most frequent location, but multiple stress fractures in the same tibia are rare. This paper presents an unusual case of a 60-year-old woman with multiple tibial stress fractures of spontaneous onset. PMID:23569673

  10. Age-related changes in the fracture resistance of male Fischer F344 rat bone.

    PubMed

    Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J; Does, Mark D; Nyman, Jeffry S

    2016-02-01

    In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Raman spectroscopy analysis of embedded cross-sections of the tibia mid-shaft detected an increase in carbonate subsitution with advanced aging for both inner and outer tissue. Published by Elsevier Inc.

  11. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model.

    PubMed

    Semedo, Patricia; Correa-Costa, Matheus; Antonio Cenedeze, Marcos; Maria Avancini Costa Malheiros, Denise; Antonia dos Reis, Marlene; Shimizu, Maria Heloisa; Seguro, Antonio Carlos; Pacheco-Silva, Alvaro; Saraiva Camara, Niels Olsen

    2009-12-01

    Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2|x|10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson's trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney.

  12. Post-weaning high-fat diet results in growth cartilage lesions in young male rats

    PubMed Central

    Haysom, Samuel S.; Vickers, Mark H.; Yu, Lennex H.; Reynolds, Clare M.; Firth, Elwyn C.

    2017-01-01

    To determine if a high-fat diet (HF) from weaning would result in a pro-inflammatory state and affect joint cartilage, we fed male rats either HF or Chow diet post-weaning, and voluntary wheel exercise (EX) or cage only activity (SED) after 9 weeks of age. At 17 weeks body composition, plasma biomarkers and histomorphology scores of femoro-tibial cartilages of HF-SED, HF-EX, Chow-SED and Chow-EX groups were compared. Food intake and activity were not significantly different between groups. HF diet resulted in significantly higher weight gain, %fat, fat:lean ratio, and plasma leptin, insulin and TNFα concentrations, with significant interactions between diet and exercise. No abnormal features were detected in the hyaline articular cartilage or in the metaphyseal growth plate in all four groups. However, collagen type X- positive regions of retained epiphyseal growth cartilage (EGC) was present in all HF-fed animals and significantly greater than that observed in Chow-fed sedentary rats. Most lesions were located in the lateral posterior aspect of the tibia and/or femur. The severity of lesions was greater in HF-fed animals. Although exercise had a significantly greater effect in reducing adiposity and associated systemic inflammation in HF-fed rats, it had no effect on lesion incidence or severity. Lesion incidence was also significantly associated with indices of obesity and plasma markers of chronic inflammation. Clinically, EGC lesions induced by HF feeding in rats from very early in life, and possibly by insufficient activity, is typical of osteochondrosis in animals. Such lesions may be the precursor of juvenile osteochondritis dissecans requiring surgery in children/adolescents, conservative management of which could benefit from improved understanding of early changes in cellular and gene expression. PMID:29166409

  13. The Effects of Annatto Tocotrienol on Bone Biomechanical Strength and Bone Calcium Content in an Animal Model of Osteoporosis Due to Testosterone Deficiency

    PubMed Central

    Chin, Kok-Yong; Gengatharan, Dhivakaran; Mohd Nasru, Fadlin Sakina; Khairussam, Rehan Amalia; Ern, Sherlyn Lai Hui; Aminuddin, Siti Aina Wahidah; Ima-Nirwana, Soelaiman

    2016-01-01

    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content (p < 0.05) but it did not affect femoral biomechanical strength (p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength. PMID:27983628

  14. A link between central kynurenine metabolism and bone strength in rats with chronic kidney disease

    PubMed Central

    Pawlak, Krystyna; Oksztulska-Kolanek, Ewa; Domaniewski, Tomasz; Znorko, Beata; Karbowska, Malgorzata; Citkowska, Aleksandra; Rogalska, Joanna; Roszczenko, Alicja; Brzoska, Malgorzata M.; Pawlak, Dariusz

    2017-01-01

    Background Disturbances in mineral and bone metabolism represent one of the most complex complications of chronic kidney disease (CKD). Serotonin, a monoamine synthesized from tryptophan, may play a potential role in bone metabolism. Brain-derived serotonin exerts a positive effect on the bone structure by limiting bone resorption and enhancing bone formation. Tryptophan is the precursor not only to the serotonin but also and primarily to kynurenine metabolites. The ultimate aim of the present study was to determine the association between central kynurenine metabolism and biomechanical as well as geometrical properties of bone in the experimental model of the early stage of CKD. Methods Thirty-three Wistar rats were randomly divided into two groups (sham-operated and subtotal nephrectomized animals). Three months after surgery, serum samples were obtained for the determination of biochemical parameters, bone turnover biomarkers, and kynurenine pathway metabolites; tibias were collected for bone biomechanical, bone geometrical, and bone mass density analysis; brains were removed and divided into five regions for the determination of kynurenine pathway metabolites. Results Subtotal nephrectomized rats presented higher serum concentrations of creatinine, urea nitrogen, and parathyroid hormone, and developed hypocalcemia. Several biomechanical and geometrical parameters were significantly elevated in rats with experimentally induced CKD. Subtotal nephrectomized rats presented significantly higher kynurenine concentrations and kynurenine/tryptophan ratio and significantly lower tryptophan levels in all studied parts of the brain. Kynurenine in the frontal cortex and tryptophan in the hypothalamus and striatum correlated positively with the main parameters of bone biomechanics and bone geometry. Discussion In addition to the complex mineral, hormone, and metabolite changes, intensified central kynurenine turnover may play an important role in the development of bone changes in the course of CKD. PMID:28439468

  15. Keratinocyte expression of inflammatory mediators plays a crucial role in substance P-induced acute and chronic pain

    PubMed Central

    2012-01-01

    Tibia fracture in rats followed by cast immobilization leads to nociceptive, trophic, vascular and bone-related changes similar to those seen in Complex Regional Pain Syndrome (CRPS). Substance P (SP) mediated neurogenic inflammation may be responsible for some of the signs of CRPS in humans. We therefore hypothesized that SP acting through the SP receptor (NK1) leads to the CRPS-like changes found in the rat model. In the present study, we intradermally injected rats with SP and monitored hindpaw mechanical allodynia, temperature, and thickness as well as tissue levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), and nerve growth factor-β (NGF) for 72 h. Anti-NGF antibody was utilized to block the effects of SP-induced NGF up-regulation. Fracture rats treated with the selective NK1 receptor antagonist LY303870 prior to cast removal were assessed for BrdU, a DNA synthesis marker, incorporation in skin cells to examine cellular proliferation. Bone microarchitecture was measured using micro computed tomography (μCT). We observed that: (1) SP intraplantar injection induced mechanical allodynia, warmth and edema as well as the expression of nociceptive mediators in the hindpaw skin of normal rats, (2) LY303870 administered intraperitoneally after fracture attenuated allodynia, hindpaw unweighting, warmth, and edema, as well as cytokine and NGF expression, (3) LY303870 blocked fracture-induced epidermal thickening and BrdU incorporation after fracture, (4) anti-NGF antibody blocked SP-induced allodynia but not warmth or edema, and (5) LY303870 had no effect on bone microarchitecture. Collectively our data indicate that SP acting through NK1 receptors supports the nociceptive and vascular components of CRPS, but not the bone-related changes. PMID:22824437

  16. Activity of Tedizolid in Methicillin-Resistant Staphylococcus epidermidis Experimental Foreign Body-Associated Osteomyelitis.

    PubMed

    Park, Kyung-Hwa; Greenwood-Quaintance, Kerryl E; Schuetz, Audrey N; Mandrekar, Jayawant N; Patel, Robin

    2017-02-01

    We developed a rat model of methicillin-resistant Staphylococcus epidermidis (MRSE) foreign body-associated osteomyelitis and used it to compare tedizolid alone and in combination with rifampin against rifampin alone, vancomycin plus rifampin, and vancomycin alone. A clinical strain of MRSE was inoculated into the proximal tibia, and a stainless steel wire with a precolonized MRSE biofilm was implanted. Following a 1-week infection period, 92 rats received either no treatment (n = 17) or 14 days of intraperitoneal tedizolid (n = 15), tedizolid plus rifampin (n = 15), rifampin (n = 15), vancomycin plus rifampin (n = 15), or vancomycin (n = 15). Quantitative bone and wire cultures were performed after treatment completion and also 1 week after infection in a separate group of five rats. The median quantity of staphylococci in bone after the 1-week infection period was 4.89 log 10 CFU/g bone (interquartile range, 3.83 to 5.33 log 10 CFU/g bone); staphylococci were recovered from all associated wires. A median quantity of staphylococci of 3.70 log 10 CFU/g bone was detected in bones of untreated control rats after 3 weeks. Quantities of staphylococci in bones of all treatment groups except the group receiving vancomycin alone (2.78 log 10 CFU/g) were significantly lower than those for untreated controls, with no staphylococci being detected in the groups receiving rifampin monotherapy, tedizolid-plus-rifampin combination therapy, and vancomycin-plus-rifampin combination therapy. Quantities of staphylococci on wires from all treatment groups that included rifampin were significantly lower than those for untreated controls. No resistance to rifampin, tedizolid, or vancomycin was detected. Tedizolid combined with rifampin was active in a rat model of MRSE foreign body-associated osteomyelitis. Copyright © 2017 American Society for Microbiology.

  17. The Effects of Annatto Tocotrienol on Bone Biomechanical Strength and Bone Calcium Content in an Animal Model of Osteoporosis Due to Testosterone Deficiency.

    PubMed

    Chin, Kok-Yong; Gengatharan, Dhivakaran; Mohd Nasru, Fadlin Sakina; Khairussam, Rehan Amalia; Ern, Sherlyn Lai Hui; Aminuddin, Siti Aina Wahidah; Ima-Nirwana, Soelaiman

    2016-12-14

    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content ( p < 0.05) but it did not affect femoral biomechanical strength ( p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength.

  18. Cardio Protective Effects of Lumbrokinase and Dilong on Second-Hand Smoke-Induced Apoptotic Signaling in the Heart of a Rat Model.

    PubMed

    Liao, Hung-En; Lai, Chao-Hung; Ho, Tsung-Jung; Yeh, Yu-Lan; Jong, Gwo-Ping; Kuo, Wu-Hsien; Chung, Li-Chin; Pai, Pei-ying; Wen, Su-Ying; Huang, Chih-Yang

    2015-06-30

    Exposure to second-hand tobacco smoke (SHS) has been epidemiologically linked to heart disease among non-smokers. However, the molecular mechanism behind SHS-induced cardiac disease is not well known. This study found that SD rats exposed to cigarette smoke at a dose of 10 cigarettes for 30 min twice a day for 1 month had a reduced left ventricle-to-tibia length ratio (mg/mm), increased cardiomyocyte apoptosis by TUNEL assay and a wider interstitial space by H&E staining. However, lumbrokinase and dilong both reversed the effects of SHS. Western blotting demonstrated significantly increased expression of the pro-apoptotic protein caspase-3 in the hearts of the rats exposed to SHS. Elevated protein expression levels of Fas, FADD and the apoptotic initiator activated caspase-8, a molecule in the death-receptor-dependent pathway, coupled with increased t-Bid and apoptotic initiator activated caspase-9 were found. Molecules in the mitochondria-dependent pathway, which disrupts mitochondrial membrane potential, were also found in rats exposed to SHS. These factors indicate myocardial apoptosis. However, treatment with lumbrokinase and dilong inhibited SHS-induced apoptosis. Regarding regulation of the survival pathway, we found in western blot analysis that cardiac protein expression of pAkt, Bcl2, and Bcl-xL was significantly down-regulated in rats exposed to SHS. These effects were reversed with lumbrokinase and dilong treatment. The effects of SHS on cardiomyocytes were also found to be mediated by the Fas death receptor-dependent apoptotic pathway, an unbalanced mitochondria membrane potential and decreased survival signaling. However, treatment with both lumbrokinase and dilong inhibited the effects of SHS. Our data suggest that lumbrokinase and dilong may prevent heart disease in SHS-exposed non-smokers.

  19. A potential means of improving the evaluation of deformity corrections with Taylor spatial frames over time by using volumetric imaging: preliminary results.

    PubMed

    Starr, Vanessa; Olivecrona, H; Noz, M E; Maguire, G Q; Zeleznik, M P; Jannsson, Karl-åke

    2009-01-01

    In this study we explore the possibility of accurately and cost-effectively monitoring tibial deformation induced by Taylor Spatial Frames (TSFs), using time-separated computed tomography (CT) scans and a volume fusion technique to determine tibial rotation and translation. Serial CT examinations (designated CT-A and CT-B, separated by a time interval of several months) of two patients were investigated using a previously described and validated volume fusion technique, in which user-defined landmarks drive the 3D registration of the two CT volumes. Both patients had undergone dual osteotomies to correct for tibial length and rotational deformity. For each registration, 10 or more landmarks were selected, and the quality of the fused volume was assessed both quantitatively and via 2D and 3D visualization tools. First, the proximal frame segment and tibia in CT-A and CT-B were brought into alignment (registered) by selecting landmarks on the frame and/or tibia. In the resulting "fused" volume, the proximal frame segment and tibia from CT-A and CT-B were aligned, while the distal frame segment and tibia from CT-A and CT-B were likely not aligned as a result of tibial deformation or frame adjustment having occurred between the CT scans. Using the proximal fused volume, the distal frame segment and tibia were then registered by selecting landmarks on the frame and/or tibia. The difference between the centroids of the final distal landmarks was used to evaluate the lengthening of the tibia, and the Euler angles from the registration were used to evaluate the rotation. Both the frame and bone could be effectively registered (based on visual interpretation). Movement between the proximal frame and proximal bone could be visualized in both cases. The spatial effect on the tibia could be both visually assessed and measured: 34 mm, 10 degrees in one case; 5 mm, 1 degrees in the other. This retrospective analysis of spatial correction of the tibia using Taylor Spatial Frames shows that CT offers an interesting potential means of quantitatively monitoring the patient's treatment. Compared with traditional techniques, modern CT scans in conjunction with image processing provide a high-resolution, spatially correct, and three-dimensional measurement system which can be used to quickly and easily assess the patient's treatment at low cost to the patient and hospital.

  20. Repeated irradiation from micro-computed tomography scanning at 2, 4 and 6 months of age does not induce damage to tibial bone microstructure in male and female CD-1 mice.

    PubMed

    Sacco, Sandra M; Saint, Caitlin; Longo, Amanda B; Wakefield, Charles B; Salmon, Phil L; LeBlanc, Paul J; Ward, Wendy E

    2017-01-01

    Long-term effects of repeated i n vivo micro-computed tomography (μCT) scanning at key stages of growth and bone development (ages 2, 4 and 6 months) on trabecular and cortical bone structure, as well as developmental patterns, have not been studied. We determined the effect of repetitive μCT scanning at age 2, 4 and 6 months on tibia bone structure of male and female CD-1 mice and characterized developmental changes. At 2, 4 and 6 months of age, right tibias were scanned using in vivo μCT (Skyscan 1176) at one of three doses of radiation per scan: 222, 261 or 460 mGy. Left tibias of the same mice were scanned only at 6 months to serve as non-irradiated controls to determine whether recurrent radiation exposure alters trabecular and cortical bone structure at the proximal tibia. In males, eccentricity was lower ( P <0.05) in irradiated compared with non-irradiated tibias (222 mGy group). Within each sex, all other structural outcomes were similar between irradiated and non-irradiated tibias regardless of dose. Trabecular bone loss occurred in all mice due to age while cortical development continued to age 6 months. In conclusion, repetitive μCT scans at various radiation doses did not damage trabecular or cortical bone structure of proximal tibia in male and female CD-1 mice. Moreover, scanning at 2, 4 and 6 months of age highlight the different developmental time course between trabecular and cortical bone. These scanning protocols can be used to investigate longitudinal responses of bone structures to an intervention.

  1. Fatigue Failure in Extra-Articular Proximal Tibia Fractures: Locking Intramedullary Nail Versus Double Locking Plates-A Biomechanical Study.

    PubMed

    Kandemir, Utku; Herfat, Safa; Herzog, Mary; Viscogliosi, Paul; Pekmezci, Murat

    2017-02-01

    The goal of this study is to compare the fatigue strength of a locking intramedullary nail (LN) construct with a double locking plate (DLP) construct in comminuted proximal extra-articular tibia fractures. Eight pairs of fresh frozen cadaveric tibias with low bone mineral density [age: 80 ± 7 (SD) years, T-score: -2.3 ± 1.2] were used. One tibia from each pair was fixed with LN, whereas the contralateral side was fixed with DLP for complex extra-articular multifragmentary metaphyseal fractures (simulating OTA 41-A3.3). Specimens were cyclically loaded under compression simulating single-leg stance by staircase method out to 260,000 cycles. Every 2500 cycles, localized gap displacements were measured with a 3D motion tracking system, and x-ray images of the proximal tibia were acquired. To allow for mechanical settling, initial metrics were calculated at 2500 cycles. The 2 groups were compared regarding initial construct stiffness, initial medial and lateral gap displacements, stiffness at 30,000 cycles, medial and lateral gap displacements at 30,000 cycles, failure load, number of cycles to failure, and failure mode. Failure metrics were reported for initial and catastrophic failures. DLP constructs exhibited higher initial stiffness and stiffness at 30,000 cycles compared with LN constructs (P < 0.03). There were no significant differences between groups for loads at failure or cycles to failure. For the fixation of extra-articular proximal tibia fractures, a LN provides a similar fatigue performance to double locked plates. The locked nail could be safely used for fixation of proximal tibia fractures with the advantage of limited extramedullary soft tissue damage.

  2. Fibular fixation as an adjuvant to tibial intramedullary nailing in the treatment of combined distal third tibia and fibula fractures: a biomechanical investigation.

    PubMed

    Morin, Paul M; Reindl, Rudolf; Harvey, Edward J; Beckman, Lorne; Steffen, Thomas

    2008-02-01

    Distal third tibia fractures have classically been treated with standard plating, but intramedullary (IM) nailing has gained popularity. Owing to the lack of interference fit of the nail in the metaphyseal bone of the distal tibia, it may be beneficial to add rigid plating of the fibula to augment the overall stability of fracture fixation in this area. This study sought to assess the biomechanical effect of adding a fibular plate to standard IM nailing in the treatment of distal third tibia and fibula fractures. Eight cadaveric tibia specimens were used. Tibial fixation consisted of a solid titanium nail locked with 3 screws distally and 2 proximally, and fibular fixation consisted of a 3.5 mm low-contact dynamic compression plate. A section of tibia and fibula was removed. Testing was accomplished with an MTS machine. Each leg was tested 3 times; with and without a fibular plate and with a repetition of the initial test condition. Vertical displacements were tested with an axial load up to 500 N, and angular rotation was tested with torques up to 5 N*m. The difference in axial rotation was the only statistically significant finding (p = 0.003), with fibular fixation resulting in 1.1 degrees less rotation through the osteotomy site (17.96 degrees v. 19.10 degrees ). Over 35% of this rotational displacement occurred at the nail-locking bolt interface with the application of small torsional forces. Fibular plating in addition to tibial IM fixation of distal third tibia and fibula fractures leads to slightly increased resistance to torsional forces. This small improvement may not be clinically relevant.

  3. Customized Knee Prosthesis in Treatment of Giant Cell Tumors of the Proximal Tibia: Application of 3-Dimensional Printing Technology in Surgical Design.

    PubMed

    Luo, Wenbin; Huang, Lanfeng; Liu, He; Qu, Wenrui; Zhao, Xin; Wang, Chenyu; Li, Chen; Yu, Tao; Han, Qing; Wang, Jincheng; Qin, Yanguo

    2017-04-07

    BACKGROUND We explored the application of 3-dimensional (3D) printing technology in treating giant cell tumors (GCT) of the proximal tibia. A tibia block was designed and produced through 3D printing technology. We expected that this 3D-printed block would fill the bone defect after en-bloc resection. Importantly, the block, combined with a standard knee joint prosthesis, provided attachments for collateral ligaments of the knee, which can maintain knee stability. MATERIAL AND METHODS A computed tomography (CT) scan was taken of both knee joints in 4 patients with GCT of the proximal tibia. We developed a novel technique - the real-size 3D-printed proximal tibia model - to design preoperative treatment plans. Hence, with the application of 3D printing technology, a customized proximal tibia block could be designed for each patient individually, which fixed the bone defect, combined with standard knee prosthesis. RESULTS In all 4 cases, the 3D-printed block fitted the bone defect precisely. The motion range of the affected knee was 90 degrees on average, and the soft tissue balance and stability of the knee were good. After an average 7-month follow-up, the MSTS score was 19 on average. No sign of prosthesis fracture, loosening, or other relevant complications were detected. CONCLUSIONS This technique can be used to treat GCT of the proximal tibia when it is hard to achieve soft tissue balance after tumor resection. 3D printing technology simplified the design and manufacturing progress of custom-made orthopedic medical instruments. This new surgical technique could be much more widely applied because of 3D printing technology.

  4. Validation of a measuring technique with computed tomography for cement penetration into trabecular bone underneath the tibial tray in total knee arthroplasty on a cadaver model

    PubMed Central

    2014-01-01

    Background In total knee arthroplasty (TKA), cement penetration between 3 and 5 mm beneath the tibial tray is required to prevent loosening of the tibia component. The objective of this study was to develop and validate a reliable in vivo measuring technique using CT imaging to assess cement distribution and penetration depth in the total area underneath a tibia prosthesis. Methods We defined the radiodensity ranges for trabecular tibia bone, polymethylmethacrylate (PMMA) cement and cement-penetrated trabecular bone and measured the percentages of cement penetration at various depths after cementing two tibia prostheses onto redundant femoral heads. One prosthesis was subsequently removed to examine the influence of the metal tibia prostheses on the quality of the CT images. The percentages of cement penetration in the CT slices were compared with percentages measured with photographs of the corresponding transversal slices. Results Trabecular bone and cement-penetrated trabecular bone had no overlap in quantitative scale of radio-density. There was no significant difference in mean HU values when measuring with or without the tibia prosthesis. The percentages of measured cement-penetrated trabecular bone in the CT slices of the specimen were within the range of percentages that could be expected based on the measurements with the photographs (p = 0.04). Conclusions CT scan images provide valid results in measuring the penetration and distribution of cement into trabecular bone underneath the tibia component of a TKA. Since the proposed method does not turn metal elements into artefacts, it enables clinicians to assess the width and density of the cement mantle in vivo and to compare the results of different cementing methods in TKA. PMID:25158996

  5. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.

    PubMed

    Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès

    2016-12-01

    Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.

  6. Infection Reduces Return-to-duty Rates for Soldiers with Type III Open Tibia Fractures

    DTIC Science & Technology

    2014-09-01

    Infection reduces return-to-duty rates for soldiers with Type III open tibia fractures Matthew A. Napierala, MD, Jessica C. Rivera, MD, Travis C... Type III open tibia fracture and tabulated the prevalence of infectious complications.We searched the Physical Evaluation Board database to determine...were not infected ( p 0.1407). Soldiers who experienced any type of infectious complication ( p 0.0470) and having osteomyelitis ( p 0.0335) had a lower

  7. Analysis of anatomic periarticular tibial plate fit on normal adults.

    PubMed

    Goyal, Kanu S; Skalak, Anthony S; Marcus, Randall E; Vallier, Heather A; Cooperman, Daniel R

    2007-08-01

    Implant manufacturers are producing anatomically contoured periarticular plates to improve the treatment of proximal tibia fractures. We assessed the accuracy of the designation anatomic. We applied eight-hole medial and lateral anatomically contoured periarticular plates to 101 cadaveric tibiae. The tibiae and the plate fits were mapped, quantified, and analyzed using a MicroScribe G2LX digitizer, Rhinoceros software, and MATLAB software. By corresponding the clinical appearance of good fit with our digital findings, we created numerical criteria for plate fit in three planes: coronal (volume of free space between the plate and bone), sagittal (alignment with the tibial plateau and shaft), and axial (match in curvature between the proximal horizontal part of the plate and the tibial plateau). An anatomic fit should mirror the shape of the tibia in all three planes, and only four medial and four lateral plate fits qualified. Recognizing and understanding the substantial variations in fit that exist between anatomically contoured plates and the tibia may help lead to a more stable fixation and prevent malreduction of the fracture and/or soft tissue impingement.

  8. Improvement in bone properties by using risedronate adsorbed hydroxyapatite novel nanoparticle based formulation in a rat model of osteoporosis.

    PubMed

    Sahana, H; Khajuria, Deepak Kumar; Razdan, Rema; Mahapatra, D Roy; Bhat, M R; Suresh, Sarasija; Rao, R Ramachandra; Mariappan, L

    2013-02-01

    A superior drug formulation capable of achieving efficient osteogenesis is in imperative demand for the treatment of osteoporosis. In the present study we investigated the potential of using novel risedronate-hydroxyapatite (HA) nanoparticle based formulation in an animal model of established osteoporosis. Nanoparticles of HA loaded with risedronate (NHLR) of various sizes (80-130 nm) were generated for bone targeted drug delivery. Three months after ovariectomy, 36 ovariectomized (OVX) rats were divided into 6 equal groups and treated with various doses of NHLR (500, 350 and 250 microg/kg intravenous single dose) and sodium risedronate (500 microg/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. One month after drug administration, the left tibia and femur were tested for bone mechanical properties and histology, respectively. In the right femur, bone density was measured by method based on Archimedes principle and bone porosity analyses were performed using X-ray imaging. NHLR (250 microg/kg) showed a significant increase in bone density and reduced bone porosity when compared with OVX control. Moreover, NHLR (250 microg/kg) significantly increased bone mechanical properties and bone quality when compared with OVX control. The results strongly suggest that the NHLR, which is a novel nanoparticle based formulation, has a therapeutic advantage over risedronate sodium monotherapy for the treatment of osteoporosis in a rat model of postmenopausal osteoporosis.

  9. Cannabis sativa smoke inhalation decreases bone filling around titanium implants: a histomorphometric study in rats.

    PubMed

    Nogueira-Filho, Getulio da R; Cadide, Tiago; Rosa, Bruno T; Neiva, Tiago G; Tunes, Roberto; Peruzzo, Daiane; Nociti, Francisco Humberto; César-Neto, João B

    2008-12-01

    Although the harmful effect of tobacco smoking on titanium implants has been documented, no studies have investigated the effects of cannabis sativa (marijuana) smoking. Thus, this study investigated whether marijuana smoke influences bone healing around titanium implants. Thirty Wistar rats were used. After anesthesia, the tibiae surface was exposed and 1 screw-shaped titanium implant was placed bilaterally. The animals were randomly assigned to one of the following groups: control (n = 15) and marijuana smoke inhalation (MSI) 8 min/d (n = 15). Urine samples were obtained to detect the presence of tetra-hidro-cannabinoid. After 60 days, the animals were killed. The degree of bone-to-implant contact and the bone area within the limits of the threads of the implant were measured in the cortical (zone A) and cancellous bone (zone B). Tetra-hidro-cannabinoid in urine was positive only for the rats of MSI group. Intergroup analysis did not indicate differences in zone A-cortical bone (P > 0.01), however, a negative effect of marijuana smoke (MSI group) was observed in zone B-cancellous bone for bone-to-implant contact and bone area (Student's t test, P < 0.01) values. Considering the limitations of the present study, the deleterious impact of cannabis sativa smoke on bone healing may represent a new concern for implant success/failure.

  10. Zinc deficiency reduces bone mineral density in the spine of young adult rats: a pilot study.

    PubMed

    Ryz, Natasha R; Weiler, Hope A; Taylor, Carla G

    2009-01-01

    The objective of this study was to investigate the effects of zinc deficiency initiated during adolescence on skeletal densitometry, serum markers of bone metabolism, femur minerals and morphometry in young adult rats. Ten-week-old male rats were fed a <1-mg Zn/kg diet (9ZD), a 5-mg Zn/kg diet (9MZD) or a 30-mg Zn/kg diet (9CTL) for up to 9 weeks. Analyses included bone mineral density, serum osteocalcin and C-terminal peptides of type I collagen, serum zinc, femur zinc, calcium and phosphorus, and femur morphometry. Bone mineral density was 14% lower in the spine of 9ZD, but was not altered in the whole body, tibia or femur, or in any of the aforementioned sites in 9MZD, compared to 9CTL. When adjusted for size, spine bone mineral apparent density was still 8% lower in 9ZD than 9CTL. Serum osteocalcin, a marker for bone formation, was approximately 33% lower in 9ZD compared to both 9MZD and 9CTL. The 9ZD and 9MZD had 57% lower femur zinc and 56-88% lower serum zinc concentrations compared to 9CTL. These findings indicate that severe zinc deficiency initiated during adolescence may have important implications for future bone health, especially with regards to bone consolidation in the spine. 2009 S. Karger AG, Basel.

  11. A biomechanical model for actively controlled snow ski bindings.

    PubMed

    Hull, M L; Ramming, J E

    1980-11-01

    Active control of snow ski bindings is a new design concept which potentially offers improved protection from lower extremity injury. Implementation of this concept entails measuring physical variables and calculating loading and/or deformation in injury prone musculoskeletal components. The subject of this paper is definition of a biomechanical model for calculating tibia torsion based on measurements of torsion loading between the boot and ski. Previous control schemes have used leg displacement only to indicate tibia torsion. The contributions of both inertial and velocity-dependent torques to tibia loading are explored and it is shown that both these moments must be included in addition to displacement-dependent moments. A new analog controller design which includes inertia, damping, and stiffness terms in the tibia load calculation is also presented.

  12. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  13. [Intramedullary nailing of the tibia with the expert tibia nail].

    PubMed

    Hansen, Matthias; El Attal, René; Blum, Jochen; Blauth, Michael; Rommens, Pol Maria

    2009-12-01

    Restoration of axis, length, and rotation of the lower leg. Sufficient primary stability of the osteosynthesis for functional aftercare. Early functional aftercare to maintain joint mobility. Good bony healing in closed and open fractures. All closed and open fractures of the tibia and complete lower leg fractures (AO 42). Certain extraarticular fractures of the proximal and distal tibia (AO 41 A2/A3; AO 43 A1/A2/A3). Segmental fractures of the tibia. Certain intraarticular fractures of the tibia with use of additional implants (AO 41 C1/C2; AO 43 C1/C2). Stabilization during and after segmental bone transport or callus distraction of the tibia. Patients in poor general condition (e.g., bedridden). Flexion of the knee of less than 90 degrees . Infection in the nail's insertion area. Infection of the tibial cavity. Complex articular fractures of the proximal or distal tibia with joint depression. Closed reduction of the fracture. If necessary, use of reduction clamps through additional stab incisions or open surgical procedures. In some cases, additional osteosynthesis procedures are necessary (e.g., screws). Positioning of the patient may be performed on a radiolucent table or a traction table. Opening of the proximal tibia in line with the medullary canal. Cannulated or noncannulated insertion of the Expert Tibia Nail((R)) with or without reaming of the medullary canal depending on the fracture type and soft-tissue condition. Control of axis, length, and rotation. Distal interlocking with the radiolucent drill and proximal interlocking with the targeting device. Immediate mobilization of ankle joint and knee joint. Depending on the type of fracture, mobilization with 20 kg partial weight bearing or pain-dependent full weight bearing with crutches. X-ray control 6 weeks postoperatively and increased weight bearing depending on the fracture status. In a prospective, international multicentric study, 181 patients with 186 fractures were included between July 2004 and May 2005. 57 of these fractures (30.7%) initially were graded open, 15 of them grade I, 32 grade II, and ten grade III. Most of the fractures (36%) were shaft fractures. After 1 year, 146 patients (81%) could be evaluated clinically and radiologically. The overall pseudarthrosis rate was 12.2% (18.2% for open and 9.7% for closed fractures). The risk for secondary operations or revisions (including dynamization of the nail) was 18.8%. Without consideration of dynamization procedures, revisions were necessary in only 5.4% of all patients. The risk for varus, valgus or antecurvation malalignment of more than 5 degrees in any plane on radiologic long leg views was 4.3% for shaft fractures, 1.5% for distal fractures, and 13.6% for proximal fractures. The implant-specific risk for bolt breakage was 3.2%.

  14. Modifications in Bone Matrix of Estrogen-Deficient Rats Treated with Intermittent PTH

    PubMed Central

    Campos, Jenifer Freitas; Katchburian, Eduardo; de Medeiros, Valquíria Pereira; Nader, Helena Bonciani; Nonaka, Keico Okino; Plotkin, Lilian Irene; Reginato, Rejane Daniele

    2015-01-01

    Bone matrix dictates strength, elasticity, and stiffness to the bone. Intermittent parathyroid hormone (iPTH), a bone-forming treatment, is widely used as a therapy for osteoporosis. We investigate whether low doses of intermittent PTH (1-34) change the profile of organic components in the bone matrix after 30 days of treatment. Forty 6-month-old female Wistar rats underwent ovariectomy and after 3 months received low doses of iPTH administered for 30 days: daily at 0.3 µg/kg/day (PTH03) or 5 µg/kg/day (PTH5); or 3 times per week at 0.25 µg/kg/day (PTH025). After euthanasia, distal femora were processed for bone histomorphometry, histochemistry for collagen and glycosaminoglycans, biochemical quantification of sulfated glycosaminoglycans, and hyaluronan by ELISA and TUNEL staining. Whole tibiae were used to estimate the bone mineral density (BMD). Histomorphometric analysis showed that PTH5 increased cancellous bone volume by 6% over vehicle-treated rats. In addition, PTH5 and PTH03 increased cortical thickness by 21% and 20%, respectively. Tibial BMD increased in PTH5-treated rats and this group exhibited lower levels of chondroitin sulfate; on the other hand, hyaluronan expression was increased. Hormonal administration in the PTH5 group led to decreased collagen maturity. Further, TUNEL-positive osteocytes were decreased in the cortical compartment of PTH5 whereas administration of PTH025 increased the osteocyte death. Our findings suggest that daily injections of PTH at low doses alter the pattern of organic components from the bone matrix, favoring the increase of bone mass. PMID:25695082

  15. Dynamic hydraulic fluid stimulation regulated intramedullary pressure.

    PubMed

    Hu, Minyi; Serra-Hsu, Frederick; Bethel, Neville; Lin, Liangjun; Ferreri, Suzanne; Cheng, Jiqi; Qin, Yi-Xian

    2013-11-01

    Physical signals within the bone, i.e. generated from mechanical loading, have the potential to initiate skeletal adaptation. Strong evidence has pointed to bone fluid flow (BFF) as a media between an external load and the bone cells, in which altered velocity and pressure can ultimately initiate the mechanotransduction and the remodeling process within the bone. Load-induced BFF can be altered by factors such as intramedullary pressure (ImP) and/or bone matrix strain, mediating bone adaptation. Previous studies have shown that BFF induced by ImP alone, with minimum bone strain, can initiate bone remodeling. However, identifying induced ImP dynamics and bone strain factor in vivo using a non-invasive method still remains challenging. To apply ImP as a means for alteration of BFF, it was hypothesized that non-invasive dynamic hydraulic stimulation (DHS) can induce local ImP with minimal bone strain to potentially elicit osteogenic adaptive responses via bone-muscle coupling. The goal of this study was to evaluate the immediate effects on local and distant ImP and strain in response to a range of loading frequencies using DHS. Simultaneous femoral and tibial ImP and bone strain values were measured in three 15-month-old female Sprague Dawley rats during DHS loading on the tibia with frequencies of 1Hz to 10Hz. DHS showed noticeable effects on ImP induction in the stimulated tibia in a nonlinear fashion in response to DHS over the range of loading frequencies, where they peaked at 2Hz. DHS at various loading frequencies generated minimal bone strain in the tibiae. Maximal bone strain measured at all loading frequencies was less than 8με. No detectable induction of ImP or bone strain was observed in the femur. This study suggested that oscillatory DHS may regulate the local fluid dynamics with minimal mechanical strain in the bone, which serves critically in bone adaptation. These results clearly implied DHS's potential as an effective, non-invasive intervention for osteopenia and osteoporosis treatments. © 2013. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of functional outcome of the floating knee injury using multivariate analysis.

    PubMed

    Yokoyama, Kazuhiko; Tsukamoto, Tatsuro; Aoki, Shinichi; Wakita, Ryuji; Uchino, Masataka; Noumi, Takashi; Fukushima, Nobuaki; Itoman, Moritoshi

    2002-11-01

    The objective of this study is to evaluate significant contributing factors affecting the functional prognosis of floating knee injuries using multivariate analysis. A total of 68 floating knee injuries (67 patients) were treated at Kitasato University Hospital from 1986 to 1999. Both the femoral fractures and the tibial fractures were managed surgically by various methods. The functional results of these injuries were evaluated using the grading system of Karlström and Olerud. Follow-up periods ranged from 2 to 19 years (mean 50.2 months) after the original injury. We defined satisfactory (S) outcomes as those cases with excellent or good results and unsatisfactory (US) outcomes as those cases with acceptable or poor results. Logistic regression analysis was used as a multivariate analysis, and the dependent variables were defined as a satisfactory outcome or as an unsatisfactory outcome. The explanatory variables were predicting factors influencing the functional outcome such as age at trauma, gender, severity of soft-tissue injury in the femur and the tibia, AO fracture grade in the femur and the tibia, Fraser type (type I or type II), Injury Severity Score (ISS), and fixation time after injury (less than 1 week or more than 1 week) in the femur and the tibia. The final functional results were as follows: 25 cases had excellent results, 15 cases good results, 16 cases acceptable results, and 12 cases poor results. The predictive logistic regression equation was as follows: Log 1-p/p = 3.12-1.52 x Fraser type - 1.65 x severity of soft-tissue injury in the tibia - 1.31 x fixation time after injury in the tibia - 0.821 x AO fracture grade in the tibia + 1.025 x fixation time after injury in the femur - 0.687 x AO fracture grade in the femur ( p=0.01). Among the variables, Fraser type and the severity of soft-tissue injury in the tibia were significantly related to the final result. The multivariate analysis showed that both the involvement of the knee joint and the severity grade of soft-tissue injury in the tibia represented significant risk factors of poor outcome in floating knee injuries in this study.

  17. Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents.

    PubMed

    Leonard, Mary B; Zemel, Babette S; Wrotniak, Brian H; Klieger, Sarah B; Shults, Justine; Stallings, Virginia A; Stettler, Nicolas

    2015-04-01

    Childhood obesity is associated with biologic and behavioral characteristics that may impact bone mineral density (BMD) and structure. The objective was to determine the association between obesity and bone outcomes, independent of sexual and skeletal maturity, muscle area and strength, physical activity, calcium intake, biomarkers of inflammation, and vitamin D status. Tibia and radius peripheral quantitative CT scans were obtained in 91 obese (BMI>97th percentile) and 51 non-obese adolescents (BMI>5th and <85th percentiles). Results were converted to sex- and race-specific Z-scores relative to age. Cortical structure, muscle area and muscle strength (by dynamometry) Z-scores were further adjusted for bone length. Obese participants had greater height Z-scores (p<0.001), and advanced skeletal maturity (p<0.0001), compared with non-obese participants. Tibia cortical section modulus and calf muscle area Z-scores were greater in obese participants (1.07 and 1.63, respectively, both p<0.0001). Tibia and radius trabecular and cortical volumetric BMD did not differ significantly between groups. Calf muscle area and strength Z-scores, advanced skeletal maturity, and physical activity (by accelerometry) were positively associated with tibia cortical section modulus Z-scores (all p<0.01). Adjustment for muscle area Z-score attenuated differences in tibia section modulus Z-scores between obese and non-obese participants from 1.07 to 0.28. After multivariate adjustment for greater calf muscle area and strength Z-scores, advanced maturity, and less moderate to vigorous physical activity, tibia section modulus Z-scores were 0.32 (95% CI -0.18, 0.43, p=0.06) greater in obese, vs. non-obese participants. Radius cortical section modulus Z-scores were 0.45 greater (p=0.08) in obese vs. non-obese participants; this difference was attenuated to 0.14 with adjustment for advanced maturity. These findings suggest that greater tibia cortical section modulus in obese adolescents is attributable to advanced skeletal maturation and greater muscle area and strength, while less moderate to vigorous physical activities offset the positive effects of these covariates. The impact of obesity on cortical structure was greater at weight bearing sites. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Vitamin D insufficiency reduces the protective effect of bisphosphonate on ovariectomy-induced bone loss in rats.

    PubMed

    Mastaglia, Silvina R; Pellegrini, Gretel G; Mandalunis, Patricia M; Gonzales Chaves, Macarena M; Friedman, Silvia M; Zeni, Susana N

    2006-10-01

    The present study was carried out to obtain an experimental model of vitamin D (vit D) insufficiency and established osteopenia (experiment 1) to then investigate whether vit D status, i.e. normal or insufficient, interferes with bone mass recovery resulting from bisphosphonate therapy (experiment 2). Rats (n = 40) underwent OVX (n = 32) or a sham operation (n = 8). The first 15 days post-surgery, all groups were kept under fluorescent tube lighting and fed a diet containing 200 IU% vit D (+D). They were then assigned during an additional 45 days to receive either +D or a diet lacking vit D (-D) and kept under 12 h light/dark cycles using fluorescent or red lighting. Serum 25HOD was significantly lower in -D rats (P < 0.0001). The type of lighting did not induce differences in 25OHD, calcium (sCa), phosphorus (sP), bone alkaline phosphatase (b-AL), CTX, bone density or histology. No osteoid was observed in undecalcified bone sections. Experiment 2 (105 days): rats were fed either +D or -D according to experiment 1 and were treated with either placebo or 16 mug olpadronate (OPD)/100 g rat/week during the last 45 days. Whereas 25HOD was significantly lower (P < 0.0001) in -D/OPD than in +D/OPD rats, no significant differences in sCa, sP, b-AL or CTX were observed. OPD prevented the loss of lumbar spine (LS) and proximal tibia (PT) BMD and the decrease in bone volume (BV/TV) (P < 0.05) and in the number of trabeculae observed in untreated rats. However, +D/OPD animals presented significantly higher values of LS BMD, PT BMD and BV/TV than -D/OPD rats (P < 0.05). No osteoid was observed in undecalcified sections of bone. In summary, this is the first experimental study to provide evidence that differences in vit D status may affect the anticatabolic response to bisphosphonate treatment. However, the molecular mechanism through which vit D insufficiency reduces the effect of the aminobisphosphonate remains to be defined.

  19. Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney Disease

    PubMed Central

    Kalaska, Bartlomiej; Pawlak, Krystyna; Domaniewski, Tomasz; Oksztulska-Kolanek, Ewa; Znorko, Beata; Roszczenko, Alicja; Rogalska, Joanna; Brzoska, Malgorzata M.; Lipowicz, Pawel; Doroszko, Michal; Pryczynicz, Anna; Pawlak, Dariusz

    2017-01-01

    The diagnosis and treatment of bone disorders in patients with chronic kidney disease (CKD) represent a clinical challenge. CKD leads to mineral and bone complications starting early in the course of renal failure. Recently, we have observed the positive relationship between intensified central kynurenine turnover and bone strength in rats with subtotal 5/6 nephrectomy (5/6 Nx)-induced CKD. The aim of the present study was to determine the association between peripheral kynurenine pathway metabolites and bone strength in rats with 5/6 Nx-induced CKD. The animals were sacrificed 1 and 3 months after 5/6 Nx or sham operation. Nephrectomized rats presented higher concentrations of serum creatinine, urea nitrogen, and parathyroid hormone both 1 and 3 months after nephrectomy. These animals revealed higher concentrations of kynurenine and 3-hydroxykynurenine in the serum and higher gene expression of aryl hydrocarbon receptor (AhR) as a physiological receptor for kynurenine and AhR-dependent cytochrome in the bone tissue. Furthermore, nephrectomy significantly increased the number of osteoclasts in the bone without affecting their resorptive activity measured in serum. These changes were particularly evident in rats 1 month after 5/6 Nx. The main bone biomechanical parameters of the tibia were unchanged between nephrectomized and sham-operated rats but were significantly increased in older compared to younger animals. A similar trend was observed for geometrical parameters measured with calipers, bone mineral density based on Archimedes' method and image of bone microarchitecture obtained from micro-computed tomography analyses of tibial cortical bone. In nephrectomized animals, peripheral kynurenine levels correlated negatively with the main parameters of bone biomechanics, bone geometry, and bone mineral density values. In conclusion, our data suggest that CKD-induced elevated levels of peripheral kynurenine cause pathological changes in bone structure via AhR pathway. This finding opens new opportunities for the treatment/prevention of osteoporosis in CKD. PMID:29163188

  20. Jabuticaba-Induced Endothelium-Independent Vasodilating Effect on Isolated Arteries.

    PubMed

    Andrade, Daniela Medeiros Lobo de; Borges, Leonardo Luis; Torres, Ieda Maria Sapateiro; Conceição, Edemilson Cardoso da; Rocha, Matheus Lavorenti

    2016-09-01

    Despite the important biological effects of jabuticaba, its actions on the cardiovascular system have not been clarified. To determine the effects of jabuticaba hydroalcoholic extract (JHE) on vascular smooth muscle (VSM) of isolated arteries. Endothelium-denuded aortic rings of rats were mounted in isolated organ bath to record isometric tension. The relaxant effect of JHE and the influence of K+ channels and Ca2+ intra- and extracellular sources on JHE-stimulated response were assessed. Arteries pre-contracted with phenylephrine showed concentration-dependent relaxation (0.380 to 1.92 mg/mL). Treatment with K+ channel blockers (tetraethyl-ammonium, glibenclamide, 4-aminopyridine) hindered relaxation due to JHE. In addition, phenylephrine-stimulated contraction was hindered by previous treatment with JHE. Inhibition of sarcoplasmic reticulum Ca2+ ATPase did not change relaxation due to JHE. In addition, JHE inhibited the contraction caused by Ca2+ influx stimulated by phenylephrine and KCl (75 mM). JHE induces endothelium-independent vasodilation. Activation of K+ channels and inhibition of Ca2+ influx through the membrane are involved in the JHE relaxant effect. Embora a jabuticaba apresente importantes efeitos biológicos, suas ações sobre o sistema cardiovascular ainda não foram esclarecidas. Determinar os efeitos do extrato de jabuticaba (EHJ) sobre o músculo liso vascular (MLV) em artérias isoladas. Aortas (sem endotélio) de ratos foram montadas em banho de órgãos isolados para registro de tensão isométrica. Foram verificados o efeito relaxante, a influência dos canais de K+ e das fontes de Ca2+ intra- e extracelular sob a resposta estimulada pelo EHJ. Artérias pré-contraídas com fenilefrina apresentaram relaxamento concentração-dependente (0,380 a 1,92 mg/mL). O tratamento com bloqueadores de canais de K+ (tetraetilamônio, glibenclamida, 4-aminopiridina) prejudicaram o relaxamento pelo EHJ. A contração estimulada com fenilefrina também foi prejudicada pelo tratamento prévio com EHJ. A inibição da Ca2+ATPase do reticulo sarcoplasmático não alterou o relaxamento pelo EHJ. Além disso, o EHJ inibiu a contração causada pelo influxo de Ca2+ estimulado por fenilefrina e KCl (75 mM). O EHJ induz vasodilatação independente do endotélio. Ativação dos canais de K+ e inibição do influxo de Ca2+ através da membrana estão envolvidas no efeito relaxante do EHJ.

  1. Stress fracture as a complication of autogenous bone graft harvest from the distal tibia.

    PubMed

    Chou, Loretta B; Mann, Roger A; Coughlin, Michael J; McPeake, William T; Mizel, Mark S

    2007-02-01

    Autogenous bone graft from the distal tibia provides cancellous bone graft for foot and ankle operations, and it has osteogenic and osteoconductive properties. The site is in close proximity to the foot and ankle, and published retrospective studies show low morbidity from the procedure. One-hundred autografts were obtained from the distal tibia between 2000 and 2003. In four cases the distal tibial bone graft harvest resulted in a stress fracture. There were three women and one man. The average time of diagnosis of the stress fracture from the operation was 1.8 months. All stress fractures healed with a short course (average 2.4 months) of cast immobilization. This study demonstrated that a stress fracture from the donor site of autogenous bone graft of the distal tibia occurs and can be successfully treated nonoperatively.

  2. Novel implant for peri-prosthetic proximal tibia fractures.

    PubMed

    Tran, Ton; Chen, Bernard K; Wu, Xinhua; Pun, Chung Lun

    2018-03-01

    Repair of peri-prosthetic proximal tibia fractures is very challenging in patients with a total knee replacement or arthroplasty. The tibial component of the knee implant severely restricts the fixation points of the tibial implant to repair peri-prosthetic fractures. A novel implant has been designed with an extended flange over the anterior of tibial condyle to provide additional points of fixation, overcoming limitations of existing generic locking plates used for proximal tibia fractures. Furthermore, the screws fixed through the extended flange provide additional support to prevent the problem of subsidence of tibial component of knee implant. The design methodology involved extraction of bone data from CT scans into a flexible CAD format, implant design and structural evaluation and optimisation using FEM as well as prototype development and manufacture by selective laser melting 3D printing technology with Ti6Al4 V powder. A prototype tibia implant was developed based on a patient-specific bone structure, which was regenerated from the CT images of patient's tibia. The design is described in detail and being applied to fit up to 80% of patients, for both left and right sides based on the average dimensions and shape of the bone structure from a wide range of CT images. A novel tibial implant has been developed to repair peri-prosthetic proximal tibia fractures which overcomes significant constraints from the tibial component of existing knee implant. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Limb saving surgery for Ewing's sarcoma of the distal tibia: a case report.

    PubMed

    Mizoshiri, Naoki; Shirai, Toshiharu; Terauchi, Ryu; Tsuchida, Shinji; Mori, Yuki; Katsuyama, Yusei; Hayashi, Daichi; Oka, Yoshinobu; Kubo, Toshikazu

    2018-05-02

    Ewing's sarcoma is a primary malignant tumor of bone occurring mostly in childhood. Few effective reconstruction techniques are available after wide resection of Ewing's sarcoma at the distal end of the tibia. Reconstruction after wide resection is especially difficult in children, as it is necessary to consider the growth and activity of the lower limbs. A 12-year-old Japanese boy had presented with right lower leg pain at age 8 years. Imaging examination showed a bone tumor accompanied by a large extra-skeletal mass in the distal part of his tibia. The tumor was histologically diagnosed as Ewing's sarcoma. The patient received chemotherapy, followed by wide resection. Reconstruction consisted of a bone transport method involving external fixation of Taylor Spatial Frame. To prevent infection after surgery, the external fixation pin was coated with iodine. One year after surgery, the patient showed poor consolidation of bone, so iliac bone transplantation was performed on the extended bones and docking site of the distal tibia. After 20 months, tibia formation was good. Three years after surgery, there was no evidence of tumor recurrence or metastases; bone fusion was good, and he was able to run. The bone transport method is an effective surgical method of reconstruction after wide resection of a bone tumor at the distal end of the tibia, if a pin can be inserted into the distal bone fragment. Coating external fixation pins with iodine may prevent postoperative infection.

  4. Repeatability testing of a new Hybrid III 6-year-old ATD lower extremity.

    PubMed

    Boucher, Laura C; Ryu, Yeonsu; Kang, Yun-Seok; Bolte, John H

    2017-05-29

    Vehicle safety is improving, thus decreasing the number of life-threatening injuries and increasing the need for research in other areas of the body. The current child anthropomorphic test device (ATD) does not have the capabilities or instrumentation to measure many of the potential interactions between the lower extremity and the vehicle interior. A prototype Hybrid III 6-year-old ATD lower extremity (ATD-LE) was developed and contains a tibia load cell and a more biofidelic ankle. The repeatability of the device has not yet been assessed; thus, the objective was to evaluate the repeatability of the ATD-LE. Additionally, a dynamic assessment was conducted to quantify injury threshold values. A pneumatic ram impactor was used at 2 velocities to evaluate repeatability. The ATD-LE was fixed to a table and impacted on the plantar aspect of the forefoot. Three repeated trials at 1.3 and 2.3 m/s without shoes and 2.3 m/s with shoes were conducted. The consistency of tibia force (N), bending moment (Nm), ankle range of motion (ROM, °), and stiffness (Nm/°) were quantified. A dynamic assessment using knee bolster airbag (KBA) tests was also conducted. The ATD-LE was positioned to mimic 3 worst-case scenarios: toes touching the mid-dashboard, touching the lower dashboard, and flat on the floor prior to airbag deployment. The impact responses in the femur and tibia were directly collected and compared with published injury threshold values. Ram impact testing indicated primarily excellent repeatability for the variables tested. For all 3 conditions the coefficients of variance (CV) were as follows: tibia force, 1.9-2.7%; tibia moment, 1.0-2.2%; ROM, 1.3-1.4%; ankle stiffness, 4.8-15.6%. The shoe-on condition resulted in a 25% reduction in tibia force and a 56% reduction in tibia bending moment. The KBA tests indicate that the highest injury risk may be when the toes touch the lower dashboard, due to the high bending moments recorded in the tibia at 76.2 Nm, which was above the injury threshold. The above work has demonstrated that the repeatability of the ATD-LE was excellent for tibia force, bending moment, and ankle ROM. The ATD-LE has the ability to provide new information to engineers and researchers due to its ability to directly evaluate the crash response of the ankle and leg. New information on injury mechanism and injury tolerance may lead to injury reduction and thus help advance the safety of children.

  5. Allograft-prosthesis composites after bone tumor resection at the proximal tibia.

    PubMed

    Biau, David Jean; Dumaine, Valérie; Babinet, Antoine; Tomeno, Bernard; Anract, Philippe

    2007-03-01

    The survival of irradiated allograft-prosthesis composites at the proximal tibia is mostly unknown. However, allograft-prosthesis composites have proved beneficial at other reconstruction sites. We presumed allograft-prosthesis composites at the proximal tibia would improve survival and facilitate reattachment of the extensor mechanism compared with that of conventional (megaprostheses) reconstructions. We retrospectively reviewed 26 patients who underwent resection of proximal tibia tumors followed by reconstruction with allo-graft-prosthesis composites. Patients received Guepar massive custom-made fully constrained prostheses. Allografts were sterilized with gamma radiation, and the stems were cemented into the allograft and host bone. The minimum followup was 6 months (median, 128 months; range, 6-195 months). Fourteen patients had one or more components removed. The median allograft-prosthesis composite survival was 102 months (95% confidence interval, 64.2-infinity). Of the 26 allografts, seven fractured, six showed signs of partial resorption, and six had infections develop. Seven allografts showed signs of fusion with the host bone. Six extensor mechanism reconstructions failed. Allograft-prosthesis composites sterilized by gamma radiation yielded poor results for proximal tibial reconstruction as complications and failures were common. We do not recommend irradiated allograft-prosthesis composites for proximal tibia reconstruction.

  6. [Effect of a novel soy fermented product enriched with isoflavones and calcium on bone tissue of rats].

    PubMed

    Bedani, Raquel; Rossi, Elizeu Antonio; Lepera, José Salvador; Wang, Charles Chenwei; de Valdez, Graciela Font

    2006-06-01

    The objective was to evaluate the effect of soy fermented product intake on the corporal weight and bone tissue of ovariectomized mature rats. This product was fermented with Enterococcus faecium and Lactobacillus jugurti and enriched with isoflavones and calcium. The animals were divided in 5 groups: sham-ovariectomized; ovariectomized; ovariectomized treated with soy fermented product enriched with isoflavones and calcium; ovariectomized treated with soy fermented product enriched with calcium and ovariectomized treated with non-fermented product enriched only with calcium. In order to evaluate the effect of the tested product on bone tissue (femur and tibia), the following parameters were analyzed: length; mechanical assay of three points; density (Archimedes principle); mineral content; calcium content; measure of the trabecular widths. The corporal weight of group treated with soy fermented product containing isoflavones and calcium showed no statistical difference from sham-ovariectomized group and trabecular widths tended to have larger than ovariectomized group. However, there was no significant difference to the other evaluated parameters in result of the diverse treatments. Thus, soy fermented product enriched with isoflavones and calcium inhibited the increasing of corporal weight caused by ovariectomy and revealed a tendency to trabecular protection after castration.

  7. Pathomorphism of spiral tibial fractures in computed tomography imaging.

    PubMed

    Guzik, Grzegorz

    2011-01-01

    Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.

  8. Minimally invasive plate osteosynthesis with locking compression plate for distal diametaphyseal tibia fracture.

    PubMed

    Shrestha, D; Acharya, B M; Shrestha, P M

    2011-01-01

    Distal diametaphyseal tibia fracture though requires operative treatment is difficult to manage. Conventional osteosynthesis is not suitable because distal tibia is subcutaneous bone with poor vascularity. Closed reduction and minimally invasive plate osteosynthesis (MIPO) with locking compression plate (LCP) has emerged as an alternative treatment option because it respects biology of distal tibia and fracture hematoma and also provides biomechanicaly stable construct. To find out suitability of MIPO with LCP for distal diametaphyseal tibia fracture including union time and complicatios and compare wih other available management options in literature. Twenty patients with closed distal diametaphyseal tibia fracture with or without intra articular extension (AO classification: 12 type 43A1, 4 type 43A2, 2 type 43A3 and 2 type 43B1) treated with MIPO with LCP were prospectively followed for average duration of 18.45 months (range 5-30 months). Average duration of injury-hospital and injury-surgery interval was 12.8 hrs (range 2-44 hrs) and 4.45 days (range 1-10 days) respectively. All fractures got united with an average duration of 18.5 weeks (range14-28weeks) except one case of delayed union which was managed with percutaneous bone marrow injection. Two patients had union with valgus angulation less than 5 degees but no nonunion was found. There were two superficial and one deep post operative wound infection. All infections healed with extended period of intravenous antibiotics besides repeated debridemet for deep infection. Implants were removed in eight patients among whom six (30%) had malleolar skin irritation and pain due to prominent hardware. The present case series shows that MIPO with LCP is an effective treatment method in terms of union time and complications rate for distal diametaphyseal tibia fracture. Malleolar skin irritation is common problem because of prominent hardware.

  9. Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation.

    PubMed

    Scheller, Erica L; Khandaker, Shaima; Learman, Brian S; Cawthorn, William P; Anderson, Lindsay M; Pham, H A; Robles, Hero; Wang, Zhaohua; Li, Ziru; Parlee, Sebastian D; Simon, Becky R; Mori, Hiroyuki; Bree, Adam J; Craft, Clarissa S; MacDougald, Ormond A

    2018-01-26

    Bone marrow adipose tissue (BMAT) is preserved or increased in states of caloric restriction. Similarly, we found that BMAT in the tail vertebrae, but not the red marrow in the tibia, resists loss of neutral lipid with acute, 48-hour fasting in rats. The mechanisms underlying this phenomenon and its seemingly distinct regulation from peripheral white adipose tissue (WAT) remain unknown. To test the role of β-adrenergic stimulation, a major regulator of adipose tissue lipolysis, we examined the responses of BMAT to β-adrenergic agonists. Relative to inguinal WAT, BMAT had reduced phosphorylation of hormone sensitive lipase (HSL) after treatment with pan-β-adrenergic agonist isoproterenol. Phosphorylation of HSL in response to β3-adrenergic agonist CL316,243 was decreased by an additional ~90% (distal tibia BMAT) or could not be detected (tail vertebrae). Ex vivo, adrenergic stimulation of lipolysis in purified BMAT adipocytes was also substantially less than iWAT adipocytes and had site-specific properties. Specifically, regulated bone marrow adipocytes (rBMAs) from proximal tibia and femur underwent lipolysis in response to both CL316,243 and forskolin, while constitutive BMAs from the tail responded only to forskolin. This occurred independently of changes in gene expression of β-adrenergic receptors, which were similar between adipocytes from iWAT and BMAT, and could not be explained by defective coupling of β-adrenergic receptors to lipolytic machinery through caveolin 1. Specifically, we found that whereas caveolin 1 was necessary to mediate maximal stimulation of lipolysis in iWAT, overexpression of caveolin 1 was insufficient to rescue impaired BMAT signaling. Lastly, we tested the ability of BMAT to respond to 72-hour treatment with CL316,243 in vivo. This was sufficient to cause beiging of iWAT adipocytes and a decrease in iWAT adipocyte cell size. By contrast, adipocyte size in the tail BMAT and distal tibia remained unchanged. However, within the distal femur, we identified a subpopulation of BMAT adipocytes that underwent lipid droplet remodeling. This response was more pronounced in females than in males and resembled lipolysis-induced lipid partitioning rather than traditional beiging. In summary, BMAT has the capacity to respond to β-adrenergic stimuli, however, its responses are muted and BMAT generally resists lipid hydrolysis and remodeling relative to iWAT. This resistance is more pronounced in distal regions of the skeleton where the BMAT adipocytes are larger with little intervening hematopoiesis, suggesting that there may be a role for both cell-autonomous and microenvironmental determinants. Resistance to β-adrenergic stimuli further separates BMAT from known regulators of energy partitioning and contributes to our understanding of why BMAT is preserved in states of fasting and caloric restriction. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. 'Trampoline fracture' of the proximal tibia in children: report of 3 cases and review of literature.

    PubMed

    Bruyeer, E; Geusens, E; Catry, F; Vanstraelen, L; Vanhoenacker, F

    2012-01-01

    We present three cases of fracture of the proximal tibia in young children who were jumping on a trampoline. The typical radiological findings and the underlying mechanism of trauma are discussed. The key radiological features are: a transverse hairline fracture of the upper tibia often accompanied by a buckle fracture of the lateral or medial tibial cortex, buckling of the anterior upper tibial cortex and anterior tilting of the epiphyseal plate. New types of injuries related to specific recreational activities are recognized. It is often helpful to associate a typical injury with a particular activity. Trampoline related injuries have increased dramatically over the last years. The most common lesions are fractures and ligamentous injuries, in particular a transverse fracture of the proximal tibia. However the radiological findings can be very subtle and easily overlooked. It is therefore important to be aware of the typical history and radiological findings.

  11. Digital image processing of bone - Problems and potentials

    NASA Technical Reports Server (NTRS)

    Morey, E. R.; Wronski, T. J.

    1980-01-01

    The development of a digital image processing system for bone histomorphometry and fluorescent marker monitoring is discussed. The system in question is capable of making measurements of UV or light microscope features on a video screen with either video or computer-generated images, and comprises a microscope, low-light-level video camera, video digitizer and display terminal, color monitor, and PDP 11/34 computer. Capabilities demonstrated in the analysis of an undecalcified rat tibia include the measurement of perimeter and total bone area, and the generation of microscope images, false color images, digitized images and contoured images for further analysis. Software development will be based on an existing software library, specifically the mini-VICAR system developed at JPL. It is noted that the potentials of the system in terms of speed and reliability far exceed any problems associated with hardware and software development.

  12. [The accuracy of palpation from orientation points for the navigated implantation of knee prostheses].

    PubMed

    Fuiko, R; Kotten, B; Zettl, R; Ritschl, P

    2004-03-01

    Cinematic and pointing procedures are used for non-image based navigated implantation during total knee replacement. Pointing procedures require an exact knowledge of the landmarks. In this anatomical study, landmarks are defined and repeatedly referenced. Precision and reproducibility are evaluated by means of an inter- and an intra-observer study. The axes of the femur and tibia are calculated using the landmarks. The specific landmarks of 30 femurs and 27 tibias were palpated by three surgeons and digitised by means of a photogrammetric system, as used intra-operatively. The recorded data were statistically evaluated. The specific landmarks can be referenced with great precision. The vectors that influence the implant position show a mean femoral deviation of 0.9 mm and a mean tibial deviation of 1.0 mm. The repeating accuracy of every observer was 1.5 mm femoral and 1.0 mm tibial. The calculated long axes at the femur and tibia thus reach a precision of 0.1 degrees (min.-max.: 0-0.9 degrees) at the femur and 0.2 degrees (.0-1.1 degrees) at the tibia. The short axes at the distal femur and proximal tibia exhibit an average deviation of from 0.7 degrees to 1.9 degrees (0-11.3 degrees). Long axes (mechanical axes) can be determined exactly but the precision of the short axes (rotational axes) is unsatisfactory, although palpation of landmarks was accurate. Therefore, palpation of more than one rotational axis at the femur and tibia is mandatory and should be visualized on the monitor during surgery.

  13. Cumulative exposure to lead and cognition in persons with Parkinson’s disease

    PubMed Central

    Weuve, Jennifer; Press, Daniel Z.; Grodstein, Francine; Wright, Robert O.; Hu, Howard; Weisskopf, Marc G.

    2012-01-01

    Background Dementia is an important consequence of Parkinson’s disease (PD), with few known modifiable risk factors. Cumulative exposure to lead, at levels experienced in the community, may exacerbate PD-related neural dysfunction, resulting in impaired cognition. Methods Among 101 persons with PD (“cases”) and, separately, 50 persons without PD (“controls”), we evaluated cumulative lead exposure, gauged via tibia and patella bone lead concentrations, in relation to cognitive function, assessed using a telephone battery developed and validated in a separate sample of PD patients. We also assessed the interaction between lead and case-control status. Results After multivariable adjustment, higher tibia bone lead concentration among PD cases was associated with worse performance on all of the individual telephone tests. In particular, tibia lead levels corresponded to significantly worse performance on a telephone analogue of the Mini-Mental State Examination and tests of working memory and attention. Moreover, higher tibia bone lead concentration was associated with significantly worse global composite score encompassing all the cognitive tests (P=0.04). The magnitude of association per standard deviation increment in tibia bone lead level was equivalent to the difference in global scores among controls in our study who were about seven years apart in age. The tibia lead-cognition association was notably stronger within cases than within controls (Pdifference=0.06). Patella bone lead concentration was not consistently associated with performance on the tests. Conclusions These data provide evidence suggesting that cumulative exposure to lead may result in worsened cognition among persons with PD. PMID:23143985

  14. Cumulative exposure to lead and cognition in persons with Parkinson's disease.

    PubMed

    Weuve, Jennifer; Press, Daniel Z; Grodstein, Francine; Wright, Robert O; Hu, Howard; Weisskopf, Marc G

    2013-02-01

    Dementia is an important consequence of Parkinson's disease (PD), with few known modifiable risk factors. Cumulative exposure to lead, at levels experienced in the community, may exacerbate PD-related neural dysfunction, resulting in impaired cognition. Among 101 persons with PD ("cases") and, separately, 50 persons without PD ("controls"), we evaluated cumulative lead exposure, gauged by tibia and patella bone lead concentrations, in relation to cognitive function, assessed using a telephone battery developed and validated in a separate sample of PD patients. We also assessed the interaction between lead and case-control status. After multivariable adjustment, higher tibia bone lead concentration among PD cases was associated with worse performance on all of the individual telephone tests. In particular, tibia lead levels corresponded to significantly worse performance on a telephone analog of the Mini-Mental State Examination and tests of working memory and attention. Moreover, higher tibia bone lead concentration was associated with significantly worse global composite score encompassing all the cognitive tests (P = 0.04). The magnitude of association per standard deviation increment in tibia bone lead level was equivalent to the difference in global scores among controls in our study, who were approximately 7 years apart in age. The tibia lead-cognition association was notably stronger within cases than within controls (P(difference) = 0.06). Patella bone lead concentration was not consistently associated with performance on the tests. These data provide evidence suggesting that cumulative exposure to lead may result in worsened cognition among persons with PD. Copyright © 2012 Movement Disorders Society.

  15. Bone stress in runners with tibial stress fracture.

    PubMed

    Meardon, Stacey A; Willson, John D; Gries, Samantha R; Kernozek, Thomas W; Derrick, Timothy R

    2015-11-01

    Combinations of smaller bone geometry and greater applied loads may contribute to tibial stress fracture. We examined tibial bone stress, accounting for geometry and applied loads, in runners with stress fracture. 23 runners with a history of tibial stress fracture & 23 matched controls ran over a force platform while 3-D kinematic and kinetic data were collected. An elliptical model of the distal 1/3 tibia cross section was used to estimate stress at 4 locations (anterior, posterior, medial and lateral). Inner and outer radii for the model were obtained from 2 planar x-ray images. Bone stress differences were assessed using two-factor ANOVA (α=0.05). Key contributors to observed stress differences between groups were examined using stepwise regression. Runners with tibial stress fracture experienced greater anterior tension and posterior compression at the distal tibia. Location, but not group, differences in shear stress were observed. Stepwise regression revealed that anterior-posterior outer diameter of the tibia and the sagittal plane bending moment explained >80% of the variance in anterior and posterior bone stress. Runners with tibial stress fracture displayed greater stress anteriorly and posteriorly at the distal tibia. Elevated tibial stress was associated with smaller bone geometry and greater bending moments about the medial-lateral axis of the tibia. Future research needs to identify key running mechanics associated with the sagittal plane bending moment at the distal tibia as well as to identify ways to improve bone geometry in runners in order to better guide preventative and rehabilitative efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Pullout strength of bone-patellar tendon-bone allograft bone plugs: a comparison of cadaver tibia and rigid polyurethane foam.

    PubMed

    Barber, F Alan

    2013-09-01

    To compare the load-to-failure pullout strength of bone-patellar tendon-bone (BPTB) allografts in human cadaver tibias and rigid polyurethane foam blocks. Twenty BPTB allografts were trimmed creating 25 mm × 10 mm × 10 mm tibial plugs. Ten-millimeter tunnels were drilled in 10 human cadaver tibias and 10 rigid polyurethane foam blocks. The BPTB anterior cruciate ligament allografts were inserted into these tunnels and secured with metal interference screws, with placement of 10 of each type in each material. After preloading (10 N), cyclic loading (500 cycles, 10 to 150 N at 200 mm/min) and load-to-failure testing (200 mm/min) were performed. The endpoints were ultimate failure load, cyclic loading elongation, and failure mode. No difference in ultimate failure load existed between grafts inserted into rigid polyurethane foam blocks (705 N) and those in cadaver tibias (669 N) (P = .69). The mean rigid polyurethane foam block elongation (0.211 mm) was less than that in tibial bone (0.470 mm) (P = .038), with a smaller standard deviation (0.07 mm for foam) than tibial bone (0.34 mm). All BPTB grafts successfully completed 500 cycles. The rigid polyurethane foam block showed less variation in test results than human cadaver tibias. Rigid polyurethane foam blocks provide an acceptable substitute for human cadaver bone tibia for biomechanical testing of BPTB allografts and offer near-equivalent results. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Evidence for differential control of tibial position in perturbed unilateral stance after acute ACL rupture.

    PubMed

    Chmielewski, T L; Ramsey, D K; Snyder-Mackler, L

    2005-01-01

    Functional outcomes in anterior cruciate ligament-deficient "potential copers" and "non-copers" may be related to their knee stabilization strategies. Therefore, the purpose of this study was to differentiate dynamic knee stabilization strategies of potential copers and non-copers through analysis of sagittal plane knee angle and tibia position during disturbed and undisturbed unilateral standing. Ten uninjured potential coper and non-coper subjects stood in unilateral stance on a platform that translated anteriorly, posteriorly and laterally. Knee angle and tibia position with reference to the femur were calculated before and after platform movement. During perturbation trials, potential copers maintained kinematics that were similar to uninjured subjects across conditions. Conversely, non-copers stood with greater knee flexion than uninjured subjects and a tibia position that was more posterior than the other groups. Both non-copers and potential copers demonstrated small changes in tibia position following platform movement, but direction of movement was not similar. The similarities between the knee kinematics of potential copers and uninjured subjects suggest that potential copers compensated well from their injury by utilizing analogous dynamic knee stabilization strategies. In comparison to the other groups, by keeping the knee in greater flexion and the tibia in a more posterior position, non-copers appear to constrain the tibia in response to a challenging task, which is consistent with a "stiffening strategy". Based on the poor functional outcomes of non-copers, a stiffening strategy does not lead to dynamic knee stability, and the strategy may increase compressive forces which could contribute to or exacerbate articular cartilage degeneration.

  18. [Correlation analysis on the disorders of patella-femoral joint and torsional deformity of tibia].

    PubMed

    Sun, Zhen-Jie; Yuan, Yi; Liu, Rui-Bo

    2015-03-01

    To reveal the possible mechanism involved in patella-femoral degenerative arthritis (PFDA) in- duced by torsion-deformity of tibia via analyzing the relationship between torsion-deformity of the tibia in patients with PFDA and the disorder of patella-femoral joint under the static and dynamic conditions. From October 2009 to October 2010, 50 patients (86 knees, 24 knees of male patients and 62 knees of female patients) with PFDA were classified as disease group and 16 people (23 knees, 7 knees of males and 16 knees of females) in the control group. The follow indexes were measured: the torsion-angle of tibia on CT scanning imagings, the patella-femoral congruence angle and lateral patella-femoral angle under static and dynamic conditions when the knee bent at 30 degrees of flexion. Based on the measurement results, the relationship between the torsion-deformity of tibias and the disorders of patella-femoral joints in patients with PFDA were analyzed. Finally,the patients were divided into three groups including large torsion-angle group, small torsion-angle group and normal group according to the size of torsion-angle, in order to analyze the relationship between torsion-deformity and disorders of patella-femoral joint, especially under the dynamic conditions. Compared with patients without PFDA, the ones with PFDA had bigger torsion-angle (30.30 ± 7.11)° of tibia, larger patella-femoral congruence angle (13.20 ± 3.94)° and smaller lateral patella-femoral angle (12.30 ± 3.04)°. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had statistical differences respectively in both too-big torsion-angle group and too-small torsion-angle group. The congruence angle and lateral patella-femoral angle under static and dynamic conditions had no statistical differences in normal torsion-angle group. Torsion-deformity of tibia is the main reason for disorder of patella-femoral joint in the patients with PFDA. Torsion-deformity of tibia is always accompanied by instability of patella-femoral joint,especially under the dynamic condition, thus causing PFDA. It can not only provide arrangement information and degenerative condition of patella-femoral joint,but also provide guidance through the analysis on the relationship for better clinical prevention and early treatment of degenerative bone and joint disease.

  19. The use of a robotic tibial rotation device and an electromagnetic tracking system to accurately reproduce the clinical dial test.

    PubMed

    Stinton, S K; Siebold, R; Freedberg, H; Jacobs, C; Branch, T P

    2016-03-01

    The purpose of this study was to: (1) determine whether a robotic tibial rotation device and an electromagnetic tracking system could accurately reproduce the clinical dial test at 30° of knee flexion; (2) compare rotation data captured at the footplates of the robotic device to tibial rotation data measured using an electromagnetic sensor on the proximal tibia. Thirty-two unilateral ACL-reconstructed patients were examined using a robotic tibial rotation device that mimicked the dial test. The data reported in this study is only from the healthy legs of these patients. Torque was applied through footplates and was measured using servomotors. Lower leg motion was measured at the foot using the motors. Tibial motion was also measured through an electromagnetic tracking system and a sensor on the proximal tibia. Load-deformation curves representing rotational motion of the foot and tibia were compared using Pearson's correlation coefficients. Off-axis motions including medial-lateral translation and anterior-posterior translation were also measured using the electromagnetic system. The robotic device and electromagnetic system were able to provide axial rotation data and translational data for the tibia during the dial test. Motion measured at the foot was not correlated to motion of the tibial tubercle in internal rotation or in external rotation. The position of the tibial tubercle was 26.9° ± 11.6° more internally rotated than the foot at torque 0 Nm. Medial-lateral translation and anterior-posterior translation were combined to show the path of the tubercle in the coronal plane during tibial rotation. The information captured during a manual dial test includes both rotation of the tibia and proximal tibia translation. All of this information can be captured using a robotic tibial axial rotation device with an electromagnetic tracking system. The pathway of the tibial tubercle during tibial axial rotation can provide additional information about knee instability without relying on side-to-side comparison between knees. The translation of the proximal tibia is important information that must be considered in addition to axial rotation of the tibia when performing a dial test whether done manually or with a robotic device. Instrumented foot position cannot provide the same information. IV.

  20. Impact of response criteria (tibia ash weight vs. percent) on phytase relative non phytate phosphorus equivalance.

    PubMed

    Li, W; Angel, R; Kim, S-W; Jiménez-Moreno, E; Proszkowiec-Weglarz, M; Plumstead, P W

    2015-09-01

    The current study was conducted to evaluate the impacts of using tibia ash percentage or ash weight as the response criteria on estimated phytase relative equivalence. Straight run broilers were fed treatment (Trt) diets from 7 to 21 d age (6 birds/pen, 8 pens/Trt). The corn-soy based Trt were formulated to contain 0.80% Ca and 4 non-phytate phosphorus (nPP) concentrations (0.20, 0.27, 0.34, and 0.40%). Monocalcium phosphate was the inorganic phosphate source added to achieve 4 different dietary nPP concentrations and against which the nPP relative equivalence of phytase was determined. A 6-phytase (Danisco Animal Nutrition, DuPont Industrial Biosciences, Marlborough, UK) was added at 500 or 1,000 phytase unit ( FTU: )/kg to the 0.20% nPP diet resulting 6 total Trts. Tibia ash was determined at 21 d age. Phytase fed at 500 or 1,000 FTU/kg increased tibia ash weight and ash percentage compared to that of birds fed 0.20% nPP diet without phytase (P<0.05). Graded nPP were log transformed and regressed against tibia ash (weight and percentage) to calculate phytase nPP relative equivalence. The R2 obtained from pen value regressions were 0.81 and 0.84, for tibia ash weight and percentage, respectively. Ash percentage from birds fed 500 and 1,000 FTU phytase/kg fell within the range obtained with the MCP additions. Ash weight (842 mg/tibia) from birds fed 1,000 FTU phytase/kg exceeded (P<0.05) maximum weight (773 mg/tibia) measured in birds fed the greatest nPP Trt (0.40%), thus the nPP relative equivalence was only calculated in birds fed 500 FTU phytase/kg Trt. The nPP relative equivalence in birds fed 500 FTU phytase/kg were 0.117 and 0.168% based on ash percentage and weight, respectively (P<0.05). The nPP relative equivalence in birds fed 1,000 FTU phytase/kg was 0.166% for ash percentage. Results suggested that ash weight better reflects the amount of bone mineralization as compared to ash percentage and using ash percentage may lead to an underestimation of phytase efficacy. © 2015 Poultry Science Association Inc.

  1. The interplay of dietary nutrient specification and varying calcium to total phosphorus ratio on efficacy of a bacterial phytase: 1. Growth performance and tibia mineralization.

    PubMed

    Olukosi, O A; Fru-Nji, F

    2014-12-01

    A 14-d experiment was conducted to study the effects of 2 dietary variables on efficacy of a 6-phytase from Citrobacter braakii on broiler growth performance and tibia mineralization. Diets were formulated with or without nutrient matrix values for phytase as negative or positive control (NC or PC, respectively) and with 2 Ca:total P (tP; 2:1 or 2.5:1). The diets were supplemented with 0, 1,000, or 2,000 phytase units (FYT)/kg, thus producing a 2 × 2 × 3 factorial arrangement. Birds and feed were weighed on d 7 and 21, and tibia bones were collected from all the birds on d 21. The main effects of nutrient matrix, Ca:tP, and phytase supplementation were significant (P < 0.05) for all the growth performance responses (except for G:F for which there was no effect of matrix). The Ca:tP × phytase and matrix × phytase interactions were significant (P < 0.05) for weight gain. In the PC diets, phytase increased weight gain (P < 0.05) relative to the control only in diets with 2,000 FYT/kg, whereas in NC diets weight gain increased (P < 0.01) only from 0 to 1,000 FYT/kg levels. Broilers consuming diets with 2.5:1 Ca:tP had lower (P < 0.05) tibia ash, whereas phytase increased (P < 0.01) tibia ash, Ca, P, and Zn but decreased (P < 0.01) tibia K. Phytase supplementation of diets with 2:1 Ca:tP increased (P < 0.05) tibia P in birds receiving 1,000 FYT/kg relative to the control with no further increase at 2,000 FYT/kg, whereas each level of phytase supplementation increased (P < 0.05) tibia P in the diets with 2.5:1 Ca:tP. It was concluded that the best response to lower phytase supplementation (1,000 FYT/kg) was in NC diets with narrow Ca:tP, whereas the best response to higher level of phytase supplementation (2,000 FYT/kg) was achieved in diets in PC diets with wide Ca:tP. ©2014 Poultry Science Association Inc.

  2. Raloxifene analog (LY117018 HCL) ameliorates cyclosporin A-induced osteopenia in oophorectomized rats.

    PubMed

    Bowman, A R; Sass, D A; Marshall, I; Ma, Y F; Liang, H; Jee, W S; Epstein, S

    1996-08-01

    Cyclosporin A (CsA) administered to the oophorectomized (Ox) rat exacerbates the high turnover osteopenia associated with estrogen deficiency. 17 beta-estradiol replacement therapy prevent this bone loss. The aim of this study was to see whether an estrogen-like compound, Raloxifene analog (LY117018 HCL, Ral) could likewise ameliorate CsA-induced osteopenia in the Ox rat. Sixty 6-month-old Sprague-Dawley rats, divided into five groups, underwent oophorectomy. One group acted as a basal group and the others received either vehicle (group B), CsA 15 mg/kg/day (group C), Ral 3 mg/kg/day (group D), or CsA 15 mg/kg/day and Ral 3 mg/kg/day (group E) for 28 days by gavage. A sixth sham operated group of 12 rats received vehicle only (group A). Rats were weighed and bled on days 0, 14, and 28 for measurement of ionized calcium, glucose, osteocalcin (BGP), 17 beta-estradiol, and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3). Tibiae were removed on day 28 for bone histomorphometry after double tetracycline and calcein labeling. Oophorectomy caused a significant gain in weight in groups B and C which was prevented by Ral in groups D and E. Randomized blood glucose levels and 1,25(OH)2D3 levels were elevated in both CsA-treated groups. Blood ionized calcium levels were lower in vehicle (group B) compared with sham (group A) on day 28. Ox (group B) had significantly higher serum BGP levels compared with sham-operated rats. Serum BGP levels were further elevated in group C compared with vehicle and were lowered in both Ral-treated groups to vehicle levels by day 28. Bone histomorphometry revealed a high turnover osteopenia with increased parameters of bone formation and resorption and loss of cancellous bone volume postoophorectomy (group B). CsA (group C) exacerbated the effects of oophorectomy. Ral (group D) completely prevented the high turnover osteopenia caused by oophorectomy and was able to attenuate substantially the effects of CsA in the Ox rat (group E). Ral therapy ameliorated CsA-induced osteopenia in the Ox rat and might prove a useful agent in preventing bone loss in postmenopausal women receiving CsA.

  3. [Structural changes in the tibial bones from an excessive load].

    PubMed

    Moshiashvili, B I

    1977-10-01

    80 cases of pathological reconstruction of the tibia in young men at the age of 18--20 are described. The pathology developed as a result of intense regular physical exercise. In 53 patients the process was localized in the upper third of the tibia, in 20--in the middle third and in 7--in the lower third of the bone. In 6 cases the fracture of the tibial proximal metaphysis happened against the background of pathological reconstruction of the tibia; 3 of them sustained simultaneously a fracture of the fibular head. Some recommendations of practical importance are suggested.

  4. Molecular development of fibular reduction in birds and its evolution from dinosaurs

    PubMed Central

    Botelho, João Francisco; Smith‐Paredes, Daniel; Soto‐Acuña, Sergio; O'Connor, Jingmai; Palma, Verónica; Vargas, Alexander O.

    2016-01-01

    Birds have a distally reduced, splinter‐like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid‐related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis‐like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo–tibial disparity. PMID:26888088

  5. Peripheral Quantitative Computed Tomography: Measurement Sensitivity in Persons With and Without Spinal Cord Injury

    PubMed Central

    Shields, Richard K.; Dudley-Javoroski, Shauna; Boaldin, Kathryn M.; Corey, Trent A.; Fog, Daniel B.; Ruen, Jacquelyn M.

    2012-01-01

    Objectives To determine (1) the error attributable to external tibia-length measurements by using peripheral quantitative computed tomography (pQCT) and (2) the effect these errors have on scan location and tibia trabecular bone mineral density (BMD) after spinal cord injury (SCI). Design Blinded comparison and criterion standard in matched cohorts. Setting Primary care university hospital. Participants Eight able-bodied subjects underwent tibia length measurement. A separate cohort of 7 men with SCI and 7 able-bodied age-matched male controls underwent pQCT analysis. Interventions Not applicable. Main Outcome Measures The projected worst-case tibia-length–measurement error translated into a pQCT slice placement error of ±3mm. We collected pQCT slices at the distal 4% tibia site, 3mm proximal and 3mm distal to that site, and then quantified BMD error attributable to slice placement. Results Absolute BMD error was greater for able-bodied than for SCI subjects (5.87mg/cm3 vs 4.5mg/cm3). However, the percentage error in BMD was larger for SCI than able-bodied subjects (4.56% vs 2.23%). Conclusions During cross-sectional studies of various populations, BMD differences up to 5% may be attributable to variation in limb-length–measurement error. PMID:17023249

  6. High-Dietary Alpha-Tocopherol or Mixed Tocotrienols Have No Effect on Bone Mass, Density, or Turnover in Male Rats During Skeletal Maturation.

    PubMed

    Tennant, Katherine G; Leonard, Scott W; Wong, Carmen P; Iwaniec, Urszula T; Turner, Russell T; Traber, Maret G

    2017-07-01

    High levels of alpha-tocopherol, the usual vitamin E supplement, are reported to decrease bone mass in rodents; however, the effects of other vitamin E forms on the skeleton are unknown. To test the hypothesis that high intakes of various vitamin E forms or the vitamin E metabolite, carboxyethyl hydroxy chromanol, were detrimental to bone status, Sprague-Dawley rats (n = 6 per group, 11-week males) for 18 weeks consumed semipurified diets that contained adequate alpha-tocopherol, high alpha-tocopherol (500 mg/kg diet), or 50% Tocomin (250 mg mixed tocopherols and tocotrienols/kg diet). Vitamin E status was evaluated by measuring plasma, liver, and bone marrow vitamin E concentrations. Bone density, microarchitecture (cross-sectional volume, cortical volume, marrow volume, cortical thickness, and cancellous bone volume fraction, trabecular number, thickness, and spacing), and cancellous bone formation were assessed in the tibia using dual-energy X-ray absorptiometry, microcomputed tomography, and histomorphometry, respectively. In addition, serum osteocalcin was assessed as a global marker of bone turnover; gene expression in response to treatment was evaluated in the femur using targeted (osteogenesis related) gene profiling. No significant differences were detected between treatment groups for any of the bone endpoints measured. Vitamin E supplementation, either as alpha-tocopherol or mixed tocotrienols, while increasing vitamin E concentrations both in plasma and tissues, had no effect on the skeleton in rats.

  7. Serca2a and Na(+)/Ca(2+) exchanger are involved in left ventricular function following cardiac remodelling of female rats treated with anabolic androgenic steroid.

    PubMed

    Nascimento, Andrews Marques do; Lima, Ewelyne Miranda de; Brasil, Girlandia Alexandre; Caliman, Izabela Facco; Silva, Josiane Fernandes da; Lemos, Virgínia Soares; Andrade, Tadeu Uggere de; Bissoli, Nazaré Souza

    2016-06-15

    Anabolic-androgenic steroids are misused, including by women, but little is known about the cardiovascular effects of these drugs on women. To evaluated the effects of nandrolone decanoate (ND) and resistive physical exercise on cardiac contractility in young female rats. Female Wistar rats were separated into 4 groups: C (untrained animals); E (animals were submitted to resistance exercise by jumping in water 5 times per week); ND (animals were treated with ND, 20mg/kg/week for 4weeks); and NDE (trained and treated). The haemodynamic parameters (+dP/dtmax, -dP/dtmin and Tau) were assessed in the left ventricle. The heart was collected for histological analyses and collagen deposition. The gastrocnemius muscle was weighed, and hypertrophy was assessed by the ratio of their weights to gastrocnemius/tibia length. The expression of calcium handling proteins was measured by western blot analysis. ND treatment and physical exercise increased cardiac contractility and relaxation. In addition, ND promoted increases in phospholamban phosphorylated (p-PLB) and isoforms of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, while resistance exercise increased the phosphorylation of PLB and expression of Na(+)/Ca(2+) exchangers (NCX). Cardiac hypertrophy and collagen deposition were observed after ND treatment. Regulatory components of cytosolic calcium, such as SERCA2a and p-PLB, play important roles in modulating the contractility and relaxation effects of ND in females. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Laser acupuncture and analgesia: preliminary evidence for a transient and opioid-mediated effect

    NASA Astrophysics Data System (ADS)

    Whittaker, Peter

    2006-02-01

    Acupuncture is frequently used to treat pain. Although human pain quantification is difficult and often subjective, in rodent models the tail-flick test provides a well-established and objective assessment of analgesia. This test measures the time taken before a rat withdraws its tail from a heat source. Needle and electroacupuncture at the acupuncture point Spleen-6, located at the tibia's posterior margin above the medial malleolus, has been found to increase tail-flick time in rats. The aim of the current study was to determine if laser acupuncture had a similar effect. A 550 μm diameter optic fiber was used to irradiate Spleen-6 for 2 minutes (690 nm, 130 mW) in female Sprague-Dawley rats. In addition, control experiments were performed in which rats were subjected to sham treatment (restraint but no irradiation) or irradiation of an non-acupuncture point (the tail's dorsal surface, 1cm from the base) using the same laser parameters. The baseline tail-flick time was measured and 15 minutes later the laser acupuncture or the control protocols were performed and tail-flick time re-measured 10 minutes after treatment. Additional experiments were done in which the opioid-blocker naloxone (20 mg/kg, intraperitoneal injection) was administered one hour before laser acupuncture. Tailflick time increased after laser acupuncture (P = 0.0002), but returned to baseline values one hour later. In contrast, no increase was found after either sham treatment or tail irradiation. Pretreatment with naloxone attenuated the increase in tail-flick time. In summary, laser acupuncture exerts a transient analgesic effect which may act via an opioid-mediated mechanism.

  9. Protective effect of egg yolk peptide on bone metabolism.

    PubMed

    Kim, Hye Kyung; Lee, Sena; Leem, Kang-Hyun

    2011-03-01

    Osteoporosis is a major health problem worldwide, and most current therapy used in osteoporosis treatment acts by either increasing bone formation or decreasing bone resorption. However, the adverse effects of these therapies may preclude their long-term use. We examined the effects of egg yolk water-soluble peptide (YPEP) on bone metabolism as an alternative to current therapeutic agents in ovariectomized (OVX) rats. In the first step, the in vitro effects of YPEP on bone loss were determined. The proliferation, collagen content, and alkaline phosphatase activity of preosteoblastic MC3T3-E1 cells and osteoclastogenesis from bone marrow-derived precursor cells were measured. The in vivo experiment confirmed the positive effect of YPEP on bone tissue. Three-month-old female Sprague-Dawley rats were either sham operated or ovariectomized and fed commercial chow diet or 0.1% YPEP-supplemented diet for 3 month. YPEP increased preosteoblastic MC3T3-E1 cell proliferation and alkaline phosphatase activity in a dose-dependent manner. Collagen content was also increased by YPEP treatment. Furthermore, YPEP potently suppressed osteoclastogenesis from bone marrow-derived precursor cells. YPEP (100 μg/mL) abolished the formation of osteoclasts positive for tartrate-resistant acid phosphatase. OVX rats supplemented with YPEP showed an osteoprotective effect, as the bone mineral density and cortical thickness in the tibia were increased compared with the OVX controls. Moreover, histological data indicate that YPEP prevented the cancellous bone loss induced by ovariectomy. None of these protective effects were observed in casein-treated rats. The present study suggests that YPEP is a promising alternative to current therapeutic agents for the management of osteoporosis.

  10. Effects of the peroxisome proliferator-activated receptor (PPAR)-δ agonist GW501516 on bone and muscle in ovariectomized rats.

    PubMed

    Mosti, M P; Stunes, A K; Ericsson, M; Pullisaar, H; Reseland, J E; Shabestari, M; Eriksen, E F; Syversen, U

    2014-06-01

    Estrogen deficiency promotes bone loss and skeletal muscle dysfunction. Peroxisome proliferator-activated receptors (PPARs) have 3 subtypes (α, δ, and γ). PPARγ agonists induce bone loss, whereas PPARα agonists increase bone mass. Although PPARδ agonists are known to influence skeletal muscle metabolism, the skeletal effects are unsettled. This study investigated the musculoskeletal effects of the PPARδ agonist GW501516 in ovariectomized (OVX) rats. Female Sprague Dawley rats, 12 weeks of age, were allocated to a sham-operated group and 3 OVX groups; high-dose GW501516 (OVX-GW5), low-dose GW501516 (OVX-GW1), and a control group (OVX-CTR), respectively (n = 12 per group). Animals received GW501516 or vehicle (methylcellulose) daily for 4 months by gavage. Bone mineral density (BMD) was assessed by dual x-ray absorptiometry at the femur, spine, and whole body. Bone microarchitecture at the proximal tibia was assessed by microcomputed tomography, and dynamic histomorphometry was performed. Quadriceps muscle morphology and the relative expression of mitochondrial proteins were analyzed. Bone metabolism markers and metabolic markers were measured in plasma. After 4 months, the OVX-GW5 group displayed lower femoral BMD than OVX-CTR. Trabecular separation was higher in the GW-treated groups, compared with OVX-CTR. The OVX-GW5 group also exhibited lower cortical area fraction and a higher structure model index than OVX-CTR. These effects coincided with impaired bone formation in both GW groups. The OVX-GW5 group displayed elevated triglyceride levels and reduced adiponectin levels, whereas no effects on muscle morphology or mitochondrial gene expression appeared. In summary, the PPARδ agonist GW501516 negatively affected bone properties in OVX rats, whereas no effects were detected in skeletal muscle.

  11. Diabetes mellitus affects the biomechanical function of the callus and the expression of TGF-beta1 and BMP2 in an early stage of fracture healing.

    PubMed

    Xu, M T; Sun, S; Zhang, L; Xu, F; Du, S L; Zhang, X D; Wang, D W

    2016-01-01

    Transforming growth factor beta 1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) are important regulators of bone repair and regeneration. In this study, we examined whether TGF-β1 and BMP-2 expressions were delayed during bone healing in type 1 diabetes mellitus. Tibial fractures were created in 95 diabetic and 95 control adult male Wistar rats of 10 weeks of age. At 1, 2, 3, 4, and 5 weeks after fracture induction, five rats were sacrificed from each group. The expressions of TGF-β1 and BMP2 in the fractured tibias were measured by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction, weekly for the first 5 weeks post-fracture. Mechanical parameters (bending rigidity, torsional rigidity, destruction torque) of the healing bones were also assessed at 3, 4, and 5 weeks post-fracture, after the rats were sacrificed. The bending rigidity, torsional rigidity and destruction torque of the two groups increased continuously during the healing process. The diabetes group had lower mean values for bending rigidity, torsional rigidity and destruction torque compared with the control group (P<0.05). TGF-β1 and BMP-2 expression were significantly lower (P<0.05) in the control group than in the diabetes group at postoperative weeks 1, 2, and 3. Peak levels of TGF-β1 and BMP-2 expression were delayed by 1 week in the diabetes group compared with the control group. Our results demonstrate that there was a delayed recovery in the biomechanical function of the fractured bones in diabetic rats. This delay may be associated with a delayed expression of the growth factors TGF-β1 and BMP-2.

  12. Combination therapy with ONO-KK1-300-01, a cathepsin K inhibitor, and parathyroid hormone results in additive beneficial effect on bone mineral density in ovariectomized rats.

    PubMed

    Ochi, Yasuo; Yamada, Hiroyuki; Mori, Hiroshi; Kawada, Naoki; Tanaka, Makoto; Imagawa, Akira; Ohmoto, Kazuyuki; Kawabata, Kazuhito

    2016-01-01

    This study examined the effects of a novel cathepsin K inhibitor, ONO-KK1-300-01 (KK1-300), used concurrently with parathyroid hormone (PTH) in ovariectomized (OVX) rats. KK1-300 (3 mg/kg, twice daily), alendronate (1 mg/kg, once daily) or vehicle were orally administered to OVX rats for 56 days, starting the day after ovariectomy, followed by combination treatment with or without PTH (3 μg/kg, subcutaneously three times a week) for another 28 days. OVX control animals exhibited a significant increase in both bone resorption (urinary deoxypyridinoline; DPD) and formation markers (serum osteocalcin) as well as microstructural changes associated with decreased bone mineral density (BMD). Combination treatment with KK1-300 and PTH significantly decreased urinary DPD and increased serum osteocalcin, indicating a sustained beneficial effect compared to the effect of each mono-therapy. On the other hand, combination therapy with alendronate and PTH weakened the PTH-induced increase in osteocalcin. In proximal tibia, combination treatment with KK1-300 and PTH increased BMD to a level significantly higher than that achieved following single treatment with KK1-300 or PTH alone. On the other hand, combination treatment with alendronate and PTH failed to produce any significant additive effect on BMD following single treatment with alendronate or PTH alone. Microstructural analysis revealed that the PTH-induced increase in bone formation (MS/BS and BFR/BS) was fully maintained following combination treatment with KK1-300 and PTH, but not following combination treatment with alendronate and PTH. These findings indicate that KK1-300, unlike alendronate, has an additive effect on the preventive action of PTH on bone loss in OVX rats.

  13. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.

    1999-01-01

    Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.

  14. Quercetin potentiates transdifferentiation of bone marrow mesenchymal stem cells into the beta cells in vitro.

    PubMed

    Miladpour, B; Rasti, M; Owji, A A; Mostafavipour, Z; Khoshdel, Z; Noorafshan, A; Zal, F

    2017-05-01

    Type 1 diabetes is an autoimmune disease caused by the destruction of β-cells in the pancreas. Bone marrow mesenchymal stem cells are multipotent and easy accessible adult stem cells that may provide options in the treatment of type 1 diabetes. Injured pancreatic extract can promote the differentiation of rat bone marrow mesenchymal stem cells into β-cells. We aimed to observe the effect of quercetin in differentiation and insulin secretion in β-cells. Bone marrow mesenchymal stem cells were obtained from the tibiae of rats. Cell surface markers were analyzed by flow cytometry. The cells were treated with rat injured pancreatic extract and quercetin for 2 weeks. Insulin secretion was measured by ELISA. Insulin expression and some islet factors were evaluated by RT-PCR. PDX1, a marker for β-cell function and differentiation, was evaluated by both immunocytochemistry and Western blot. β-cell count was determined by stereology and cell count assay. ELISA showed significant differences in insulin secretion in the cells treated with RIPE + 20 μM quercetin (0.55 ± 0.01 µg/L) compared with the cells treated with RIPE alone (0.48 ± 0.01 µg/L) (P = 0.026). RT-PCR results confirmed insulin expression in both groups. PDX1 protein was detected in both groups by Western blot and immunocytochemistry. Stereology results showed a significant increase in β-cell number in the RIPE + quercetin-treated cells (47 ± 2.0) when compared with RIPE treatment alone (44 ± 2.5) (P = 0.015). Quercetin has a strengthening effect on the differentiation of rat bone marrow mesenchymal stem cells into β-cells and increases insulin secretion from the differentiated β-cells in vitro.

  15. Nerve growth factor and associated nerve sprouting contribute to local mechanical hyperalgesia in a rat model of bone injury.

    PubMed

    Yasui, M; Shiraishi, Y; Ozaki, N; Hayashi, K; Hori, K; Ichiyanagi, M; Sugiura, Y

    2012-08-01

    To clarify the mechanism of tenderness after bone injury, we investigated changes in the withdrawal threshold to mechanical stimuli, nerve distribution and nerve growth factor (NGF)-expression in a rat model of bone injury without immobilization for bone injury healing. Rats were divided into three groups as follows: (1) rats incised in the skin and periosteum, followed by drilling a hole in the tibia [bone lesion group (BLG)]; (2) those incised in the skin and periosteum without bone drilling [periosteum lesion group (PLG)]; and (3) those incised in the skin [skin lesion group (SLG)]. Mechanical hyperalgesia continued for 28 days at a lesion in the BLG, 21 days in PLG and 5 days in SLG after treatments, respectively. Endochondral ossification was observed on days 5-28 in BLG and on days 5-21 in PLG. Nerve growth appeared in deep connective tissue (DCT) at day 28 in BLG. Nerve fibres increased in both cutaneous tissue and DCT at day 7 in PLG, but they were not found at day 28. Mechanical hyperalgesia accompanied with endochondral ossification and nerve fibres increasing at the lesion in both BLG and PLG. NGF was expressed in bone-regenerating cells during the bone injury healing. Anti-NGF and trk inhibitor K252a inhibited hyperalgesia in the different time course. This study shows that localized tenderness coincides with the bone healing and involves NGF expression and nerve sprouting after bone injury. The findings present underlying mechanisms and provide pathophysiological relevance of local tenderness to determination of bone fracture and its healing. © 2011 European Federation of International Association for the Study of Pain Chapters.

  16. Carboxylated Agarose (CA)-Silk Fibroin (SF) Dual Confluent Matrices Containing Oriented Hydroxyapatite (HA) Crystals: Biomimetic Organic/Inorganic Composites for Tibia Repair.

    PubMed

    Hu, Jing-Xiao; Ran, Jia-Bing; Chen, Si; Jiang, Pei; Shen, Xin-Yu; Tong, Hua

    2016-07-11

    By in situ combining the dual cross-linking matrices of the carboxylated agarose (CA) and the silk fibroin (SF) with the hydroxyapatite (HA) crystals, the CA-SF/HA composites with optimal physicochemical and biological properties were obtained, which were designed to meet the clinical needs of load-bearing bone repair. With the synergistic modulation of the dual organic matrices, the HA nanoparticles presented sheet and rod morphologies due to the preferred orientation, which successfully simulated the biomineralization in nature. The chemical reactivity of the native agarose (NA) was significantly enhanced via carboxylation, and the CA exhibited higher thermal stability than the NA. In the presence of SF, the composites showed optimal mechanical properties that could meet the standard of bone repair. The degradation of the composites in the presence of CA and SF was significantly delayed such that the degradation rate of the implant could satisfy the growth rate of the newly formed bone tissue. The in vitro tests confirmed that the CA-SF/HA composite scaffolds enabled the MG63 cells to proliferate and differentiate well, and the CA/HA composite presented greater capability of promoting the cell behaviors than the NA/HA composite. After 24 days of implantation, newly formed bone was observed at the tibia defect site and around the implant. Extensive osteogenesis was presented in the rats treated with the CA-SF/HA composites. In general, the CA-SF/HA composites prepared in this work had the great potential to be applied for repairing large bone defects.

  17. Physiological joint line total knee arthroplasty designs are especially sensitive to rotational placement - A finite element analysis.

    PubMed

    Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N

    2018-01-01

    Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.

  18. The effects of tibia profile, distraction angle, and knee load on wedge instability and hinge fracture: A finite element study.

    PubMed

    Weng, Pei-Wei; Chen, Chia-Hsien; Luo, Chu-An; Sun, Jui-Sheng; Tsuang, Yang-Hwei; Cheng, Cheng-Kung; Lin, Shang-Chih

    2017-04-01

    Several plate systems for high tibial osteotomy (HTO) have been developed to stabilize the opening wedge of an osteotomized tibia. Among them, the TomoFix system, having a quasi-straight and T-shaped design, has been widely adopted in the literature. However, this system is implemented by inserting a lag (i.e., cortical) screw through the proximal combi-hole, to deform the plate and pull the distal tibia toward the plate. This process potentially induces plate springback and creates an elastic preload on the osteotomized tibia, especially at the lateral hinge of the distracted wedge. Using the finite-element method, this study aims to investigate the contoured effect of lag-screw application on the biomechanical behavior of the tibia-plate construct. Two tibial profiles (normal and more concave), three distraction angles (6°, 9°, and 12°), and three knee loads (intraoperative: contouring plate; postoperative: weight and nonweight bearing) are systematically varied in this study. The wedge instability and fracture risk at the lateral hinge are chosen as the comparison indices. The results show the necessity of preoperative planning for a precontoured procedure, rather than elastic deformation using a lag screw. Within the intraoperative period, a more concave tibial profile and/or reduced distraction angle (i.e., 6° or 9°) necessitate a higher compressive load to elastically deform the plate, thereby deteriorating the lateral-hinge fracture risk. A precontoured plate is recommended in the case that the proximal tibia is highly concave and the distraction angle is insufficient to stretch the tibial profile. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Stunting, adiposity, and the individual-level "dual burden" among urban lowland and rural highland Peruvian children.

    PubMed

    Pomeroy, Emma; Stock, Jay T; Stanojevic, Sanja; Miranda, J Jaime; Cole, Tim J; Wells, Jonathan C K

    2014-01-01

    The causes of the "dual burden" of stunting and obesity remain unclear, and its existence at the individual level varies between populations. We investigate whether the individual dual burden differentially affects low socioeconomic status Peruvian children from contrasting environments (urban lowlands and rural highlands), and whether tibia length can discount the possible autocorrelation between adiposity proxies and height due to height measurement error. Stature, tibia length, weight, and waist circumference were measured in children aged 3-8.5 years (n = 201). Height and body mass index (BMI) z scores were calculated using international reference data. Age-sex-specific centile curves were also calculated for height, BMI, and tibia length. Adiposity proxies (BMI z score, waist circumference-height ratio (WCHtR)) were regressed on height and also on tibia length z scores. Regression model interaction terms between site (highland vs. lowland) and height indicate that relationships between adiposity and linear growth measures differed significantly between samples (P < 0.001). Height was positively associated with BMI among urban lowland children, and more weakly with WCHtR. Among rural highland children, height was negatively associated with WCHtR but unrelated to BMI. Similar results using tibia length rather than stature indicate that stature measurement error was not a major concern. Lowland and rural highland children differ in their patterns of stunting, BMI, and WCHtR. These contrasts likely reflect environmental differences and overall environmental stress exposure. Tibia length or knee height can be used to assess the influence of measurement error in height on the relationship between stature and BMI or WCHtR. Copyright © 2014 Wiley Periodicals, Inc.

  20. Limb lengthening in achondroplasia.

    PubMed

    Chilbule, Sanjay K; Dutt, Vivek; Madhuri, Vrisha

    2016-01-01

    Stature lengthening in skeletal dysplasia is a contentious issue. Specific guidelines regarding the age and sequence of surgery, methods and extent of lengthening at each stage are not uniform around the world. Despite the need for multiple surgeries, with their attendant complications, parents demanding stature lengthening are not rare, due to the social bias and psychological effects experienced by these patients. This study describes the outcome and complications of extensive stature lengthening performed at our center. Eight achondroplasic and one hypochondroplasic patient underwent bilateral transverse lengthening for tibiae, humeri and femora. Tibia lengthening was carried out using a ring fixator and bifocal corticotomy, while a monolateral pediatric limb reconstruction system with unifocal corticotomy was used for the femur and humerus. Lengthening of each bone segment, height gain, healing index and complications were assessed. Subgroup analysis was carried out to assess the effect of age and bone segment on the healing index. Nine patients aged five to 25 years (mean age 10.2 years) underwent limb lengthening procedures for 18 tibiae, 10 femora and 8 humeri. Four patients underwent bilateral lengthening of all three segments. The mean length gain for the tibia, femur and humerus was 15.4 cm (100.7%), 9.9 cm (52.8%) and 9.6 cm (77.9%), respectively. Healing index was 25.7, 25.6 and 20.6 days/cm, respectively, for the tibia, femur and humerus. An average of 33.3% height gain was attained. Lengthening of both tibia and femur added to projected height achieved as the 3(rd) percentile of standard height in three out of four patients. In all, 33 complications were encountered (0.9 complications per segment). Healing index was not affected by age or bone segment. Extensive limb lengthening (more than 50% over initial length) carries significant risk and should be undertaken only after due consideration.

  1. The Anteroposterior Axis of the Proximal Tibia Can Change After Tibial Resection in Total Knee Arthroplasty: Computer Simulation Using Asian Osteoarthritis Knees.

    PubMed

    Ushio, Tetsuro; Mizu-Uchi, Hideki; Okazaki, Ken; Ma, Yuan; Kuwashima, Umito; Iwamoto, Yukihide

    2017-03-01

    We evaluated the effect of cutting surface on the anteroposterior (AP) axis of the proximal tibia using a 3-dimensional (3D) bone model to ensure proper tibial rotational alignment in total knee arthroplasty. 3D bone models were reconstructed from the preoperative computed tomography data of 93 Japanese osteoarthritis knees with varus deformity. The AP axis was defined as the perpendicular bisector of the medial and lateral condylar centers in a 3D coordinate system. Bone cutting of the proximal tibia was performed with various tibial posterior slopes (0°, 3°, 7°) to the mechanical axis, and we compared the AP axes before and after bone cutting. The AP axis before bone cutting crossed a point at about 16% (one-sixth) of the distance from the medial edge of the patellar tendon at its tibial attachment. The AP axis after bone cutting was significantly internally rotated at all posterior slopes: 4.1° at slope 0°, 3.0° at slope 3°, and 2.1° at slope 7°. The percentages of cases with differences of more than 3° or 5° were 66.7% and 34.4% at slope 0°, 53.8% and 24.7% at slope 3°, and 38.3% and 11.8% at slope 7°, respectively. The AP axis of the proximal tibia may be rotated internally after resection of the proximal tibia in total knee arthroplasty. Hence, surgeons should recognize the effect of changes in the cutting surface on rotational alignment of the proximal tibia. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Contribution of SPECT/CT in the Diagnosis of Stress Fracture of the Proximal Tibia.

    PubMed

    Okudan, Berna; Coşkun, Nazım; Arıcan, Pelin

    2018-02-01

    Stress fractures are injuries most commonly seen in the lower limbs and are usually caused by repetitive stress. While the distal and middle third of the tibia is the most frequent site for stress fractures (almost 50%), stress fractures of the proximal tibia is relatively rare and could be confused with other types of tibial fractures, thus altering management plans for the clinician. Early diagnosis of stress fractures is also important to avoid complications. Imaging plays an important role in the diagnosis of stress fractures, especially bone scan. Combined with single-photon emission computed tomography/computed tomography (SPECT/CT) it is an important imaging technique for stress fractures in both upper and lower extremities, and is widely preferred over other imaging techniques. In this case, we present the case of a 39-year-old male patient diagnosed with stress fracture of the proximal tibia and demonstrate the contribution of CT scan fused with SPECT imaging in the early diagnosis of stress fracture prior to other imaging modalities.

  3. The immediate effect of neuromuscular joint facilitation on the rotation of the tibia during walking.

    PubMed

    Li, Desheng; Huang, Qiuchen; Huo, Ming; Hiiragi, Yukinobu; Maruyama, Hitoshi

    2017-01-01

    [Purpose] The aim of this study was to investigate the change in tibial rotation during walking among young adults after neuromuscular joint facilitation therapy. [Subjects and Methods] The subjects were twelve healthy young people (6 males, 6 females). A neuromuscular joint facilitation intervention and nonintervention were performed. The interventions were performed one after the other, separated by a 1-week interval. The order of the interventions was completely randomized. The rotation of the tibia during walking was evaluated before and after treatment. [Results] The neuromuscular joint facilitation group demonstrated increased lateral rotation of the tibia in the overall gait cycle and stance phase, and decreased medial rotation of the tibia in the overall gait cycle, stance phase, and swing phase after the neuromuscular joint facilitation intervention. In the control group, there were no significant differences. [Conclusion] These results suggest neuromuscular joint facilitation intervention has an immediate effect on the rotational function of the knee.

  4. Reanalysis of the Trotter Tibia Quandary and its Continued Effect on Stature Estimation of Past-Conflict Service Members.

    PubMed

    Lynch, Jeffrey James; Brown, Carrie; Palmiotto, Andrea; Maijanen, Heli; Damann, Franklin

    2018-04-23

    Forensic casework from past-conflicts relies on the corrected historical Trotter data for stature estimation in Fordisc. For roughly 10 years', stature estimation using this data has produced point estimates for the tibia that are on average 1.25 inches less than the other long bones. This issue was identified after applying the equations derived from Fordisc to the USS Oklahoma commingled assemblage. Reevaluation of Fordisc revealed that a correction factor of 20 mm, instead of 10 mm, was mistakenly applied to the Trotter tibia data. Historical forensic anthropology reports written at the Defense POW/MIA Accounting Agency were utilized to identify that the overcorrection is isolated to Fordisc 3 with an error rate of 5% of known antemortem statures falling outside of the prediction intervals that relied on the tibia. Further evaluation of the Oklahoma sample indicates the 10 mm correction is still producing point estimates less than the other long bones. © 2018 American Academy of Forensic Sciences.

  5. Combined flurbiprofen and cyclosporin-A does not attenuate bone loss and exaggerates renal impairment.

    PubMed

    Sass, D A; Rucinski, B; Bryer, H P; Mann, G N; Yuan, Z; Ma, Y; Jee, W S; Epstein, S

    1996-10-01

    Cyclosporine (CsA) is a potent immunosuppressant that has revolutionized the success of organ transplantation. Flurbiprofen (FB), a propionic acid derivative NSAID, has been demonstrated in vivo to reduce osteoclast numbers in normal rats. The aim of this experiment was to determine whether addition of FB to CsA-treated rats could prevent the bone changes associated with CsA therapy. Forty-eight 10-12-week-old male Sprague-Dawley rats were randomized to receive, daily for 28 days: (1) CsA vehicle p.o. plus FB vehicle sc; (2) CsA (15 mg/kg) p.o. plus FB vehicle sc, (3) CsA vehicle p.o. plus FB (1.5 mg/kg) sc; and (4) CsA (15 mg/kg) p.o. plus FB (1.5 mg/kg) sc. Rats were weighed and venous blood sampled at baseline, 14 days, and 28 days for determination of glucose, Ca+2, BUN, creatinine, PTH, osteocalcin, and 1,25(OH)2 vitamin D. Tibiae were removed following killing, after double labeling for histomorphometry. Body mass was significantly lower than control in all rats receiving CsA on days 14 and 28 while blood glucose was only elevated in the CsA alone group. Day 28 BUN and creatinine were significantly elevated in the CsA group and the combination of CsA and FB revealed an exacerbation of this trend. Vitamin D and osteocalcin were consistently increased in the CsA and CsA/FB groups. Bone histomorphometry showed evidence of trabecular osteopenia in CsA and CsA/FB groups. CsA alone resulted in elevated bone turnover. FB was unable to prevent the trabecular bone loss induced by CsA therapy. This experiment indicates no role for FB as a therapeutic option in CsA-induced bone disease at the given doses and duration of treatment by virtue of its lack of bone sparing ability and adverse renal effects when the two drugs are administered concurrently.

  6. Substance P Promotes the Proliferation, but Inhibits Differentiation and Mineralization of Osteoblasts from Rats with Spinal Cord Injury via RANKL/OPG System.

    PubMed

    Liu, Hai-Juan; Yan, Hua; Yan, Jun; Li, Hao; Chen, Liang; Han, Li-Ren; Yang, Xiao-Fei

    2016-01-01

    Spinal cord injury (SCI) causes a significant amount of bone loss, which results in osteoporosis (OP). The neuropeptide substance P (SP) and SP receptors may play important roles in the pathogenesis of OP after SCI. To identify the roles of SP in the bone marrow mesenchymal stem cell derived osteoblasts (BMSC-OB) in SCI rats, we investigated the expression of neurokinin-1 receptors (NK1R) in BMSC-OB and the effects of SP on bone formation by development of BMSC-OB cultures. Sixty young male Sprague-Dawley rats were randomized into two groups: SHAM and SCI. The expression of NK1R protein in BMSC-OB was observed using immunohistochemistry and Western blot analysis. The dose- and time-dependent effects of SP on the proliferation, differentiation and mineralization of BMSC-OB and the expression of osteoblastic markers by in vitro experiments. The expression of NK1R in BMSC-OB was observed on plasma membranes and in cytoplasm. One week after osteogenic differentiation, the expression of NK1R was significantly increased after SCI at mRNA and protein levels. However, this difference was gradually attenuated at 2 or 3 weeks later. SP have the function to enhance cell proliferation, inhibite cell differentiation and mineralization at a proper concentration and incubation time, and this effect would be inhibited by adding SP or NK1R antagonist. The expression of RANKL/OPG was significantly increased in tibiae after SCI. Similarly, the RANKL/OPG expression in SCI rats was significantly increased when treating with 10-8 M SP. SP plays a very important role in the pathogenesis of OP after SCI. The direct effect of SP may lead to increased bone resorption through the RANKL/OPG axis after SCI. In addition, high expression of SP also results in the suppression of osteogenesis in SCI rats. Then, the balance between bone resorption and bone formation was broken and finally osteoporosis occurred.

  7. Influence of exercise on bone remodeling-related hormones and cytokines in ovariectomized rats: a model of postmenopausal osteoporosis.

    PubMed

    Li, Lihui; Chen, Xi; Lv, Shuang; Dong, Miaomiao; Zhang, Li; Tu, Jiaheng; Yang, Jie; Zhang, Lingli; Song, Yinan; Xu, Leiting; Zou, Jun

    2014-01-01

    This study aims to explore the effects of exercise on postmenopausal osteoporosis and the mechanisms by which exercise affects bone remodeling. Sixty-three Wistar female rats were randomly divided into five groups: (1) control group, (2) sham-operated group, (3) OVX (Ovariectomy) group, (4) DES-OVX (Diethylstilbestrol-OVX) group, and (5) Ex-OVX (Exercise-OVX) group. The rat osteoporosis model was established through ovariectomy. The Ex-OVX rats were made to run 251.2 meters every day, 6 d/wk for 3 months in a running wheel. Trabecular bone volume (TBV%), total resorption surface (TRS%), trabecular formation surface (TFS%), mineralization rate (MAR), bone cortex mineralization rate (mAR), and osteoid seam width (OSW) were determined by bone histomorphometry. The mRNA and protein levels of interleukin-1β (IL-1β2), interleukin-6 (IL-6), and cyclooxygenase-2 (Cox-2) were determined by in situ hybridization and immunohistochemistry, respectively. Serum levels of estrogen estradiol (E2), calcitonin (CT), osteocalcin (BGP), and parathyroid hormone (PTH) were determined by ELISA assays. The investigation revealed that compared to the control and the sham-operated groups, the OVX group showed significantly lower levels of TBV%, E2, and CT, but much higher levels of TRS%, TFS%, MAR, OSW, BGP, and PTH. The Ex-OVX group showed increased TBV% and serum levels of E2 and CT compared to the OVX group. Ovariectomy also led to a significant increase in IL-1β mRNA and protein levels in the bone marrow and IL-6 and Cox-2 protein levels in tibias. In addition, the Ex-OVX group showed lower levels of IL-1 mRNA and protein, IL-6 mRNA, and Cox-2 mRNA and protein than those in the OVX group. The upshot of the study suggests that exercise can significantly increase bone mass in postmenopausal osteoporosis rat models by inhibiting bone resorption and increasing bone formation, especially in trabecular bones.

  8. Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes during Walking and Running

    PubMed Central

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°–1.30°) and medial aspect (bending angle: 0.38°–0.90°) and that it twists externally (torsion angle: 0.67°–1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase. PMID:24732724

  9. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.

    PubMed

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°-1.30°) and medial aspect (bending angle: 0.38°-0.90°) and that it twists externally (torsion angle: 0.67°-1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.

  10. Dietary non-phytate phosphorus requirement of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age.

    PubMed

    Liu, S B; Liao, X D; Lu, L; Li, S F; Wang, L; Zhang, L Y; Jiang, Y; Luo, X G

    2017-01-01

    An experiment was conducted to investigate the effect of dietary non-phytate phosphorus (NPP) level on growth performance, bone characteristics and phosphorus metabolism-related gene expressions, so as to evaluate the dietary NPP requirement of broiler chicks fed a conventional corn-soybean meal diet from 1 to 21 d of age. A total of 540 day-old Arbor Acres male chicks were randomly allocated to one of nine treatments with six replicate cages of 10 birds per cage in a completely randomized design, and fed a basal corn-soybean meal diet (containing 0.08% of NPP) supplemented with 0.10, 0.15, 0.25, 0.30, 0.35, 0.40, 0.45, or 0.50% of inorganic phosphorus in the form of CaHPO 4 ·2H 2 O, respectively. Each diet contained the constant calcium content of about 1.0%. The results showed that daily weight gain, serum inorganic P, tibia bone strength, tibia ash percentage, tibia bone mineral content (BMC) and density (BMD), middle toe ash percentage, middle toe BMC and BMD were affected (P < 0.0001) by dietary NPP level, and increased linearly (P < 0.0001) and quadraticly (P < 0.004) as dietary NPP levels increased. The gene expression of type IIb sodium-phosphate cotransporter (NaPi-IIb) in the duodenum was affected (P < 0.03) and decreased linearly (P < 0.002) as dietary NPP levels increased. Dietary NPP requirements estimated based on fitted broken-line models (P < 0.0001) of the sensitive indices including daily weight gain, tibia bone strength, tibia ash percentage, tibia BMC and BMD as well as middle toe ash percentage were 0.34∼0.39%. The results from this study indicate that tibia BMC and BMD might be new, sensitive, and noninvasive criteria to evaluate the dietary NPP requirements of broilers, and the dietary NPP requirement is 0.39% for broiler chicks fed a conventional corn-soybean meal diet from 1 to 21 d of age. © 2016 Poultry Science Association Inc.

  11. Epidemiology of open tibia fractures in a population-based database: update on current risk factors and clinical implications.

    PubMed

    Weber, Christian David; Hildebrand, Frank; Kobbe, Philipp; Lefering, Rolf; Sellei, Richard M; Pape, Hans-Christoph

    2018-02-02

    Open tibia fractures usually occur in high-energy mechanisms and are commonly associated with multiple traumas. The purposes of this study were to define the epidemiology of open tibia fractures in severely injured patients and to evaluate risk factors for major complications. A cohort from a nationwide population-based prospective database was analyzed (TraumaRegister DGU ® ). Inclusion criteria were: (1) open or closed tibia fracture, (2) Injury Severity Score (ISS) ≥ 16 points, (3) age ≥ 16 years, and (4) survival until primary admission. According to the soft tissue status, patients were divided either in the closed (CTF) or into the open fracture (OTF) group. The OTF group was subdivided according to the Gustilo/Anderson classification. Demographic data, injury mechanisms, injury severity, surgical fracture management, hospital and ICU length of stay and systemic complications (e.g., multiple organ failure (MOF), sepsis, mortality) were collected and analyzed by SPSS (Version 23, IBM Inc., NY, USA). Out of 148.498 registered patients between 1/2002 and 12/2013; a total of 4.940 met the inclusion criteria (mean age 46.2 ± 19.4 years, ISS 30.4 ± 12.6 points). The CTF group included 2000 patients (40.5%), whereas 2940 patients (59.5%) sustained open tibia fractures (I°: 49.3%, II°: 27.5%, III°: 23.2%). High-energy trauma was the leading mechanism in case of open fractures. Despite comparable ISS and NISS values in patients with closed and open tibia fractures, open fractures were significantly associated with higher volume resuscitation (p < 0.001), more blood (p < 0.001), and mass transfusions (p = 0.006). While the rate of external fixation increased with the severity of soft tissue injury (37.6 to 76.5%), no major effect on mortality and other major complications was observed. Open tibia fractures are common in multiple trauma patients and are therefore associated with increased resuscitation requirements, more surgical procedures and increased in-hospital length of stay. However, increased systemic complications are not observed if a soft tissue adapted surgical protocol is applied.

  12. Ultrasound-Diagnosed Tibia Stress Fracture: A Case Report.

    PubMed

    Amoako, Adae; Abid, Ayesha; Shadiack, Anthony; Monaco, Robert

    2017-01-01

    Stress fractures are a frequent cause of lower extremity pain in athletes, and especially in runners. Plain imaging has a low sensitivity. Magnetic resonance imaging (MRI) or bone scan scintigraphy is the criterion standard, but expensive. We present the case of a young female distance runner with left shin pain. Plain radiography was unremarkable. Ultrasound showed focal hyperechoic elevation of the periosteum with irregularity over the distal tibia and increased flow on Doppler. These findings were consistent with a distal tibia stress fracture and confirmed by MRI. Examination of our case will highlight the utility of considering an ultrasound for diagnosis of tibial stress fracture.

  13. Posttraumatic tibia valga: a case demonstrating asymmetric activity at the proximal growth plate on technetium bone scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zionts, L.E.; Harcke, H.T.; Brooks, K.M.

    1987-07-01

    Posttraumatic tibia valga is a well-recognized complication following fracture of the upper tibial metaphysis in young children. We present a case of a child who developed a valgus deformity following fracture of the proximal tibia and fibula in which quantitative bone scintigraphy at 5 months after injury demonstrated increased uptake at the proximal tibial growth plate with proportionally greater uptake on the medial side. This finding suggests that the valgus deformity in this patient was due to a relative increase in vascularity and consequent overgrowth of the medial portion of the proximal tibial physis.

  14. Outcome of bone recycling using liquid nitrogen as bone reconstruction procedure in malignant and recurrent benign aggressive bone tumour of distal tibia: A report of four cases.

    PubMed

    Gede, Eka Wiratnaya I; Ida Ayu, Arrisna Artha; Setiawan I Gn, Yudhi; Aryana Ign, Wien; I Ketut, Suyasa; I Ketut, Siki Kawiyana; Putu, Astawa

    2017-01-01

    Amputation still considered as primary choice of malignancy treatment in distal tibia. Bone recycling with liquid nitrogen for reconstruction following resection of malignant bone tumours offers many advantages. We presented four patients with osteosarcoma, Ewing sarcoma, adamantinoma and recurrent giant cell tumour over distal tibia. All of the patients underwent wide excision and bone recycling using liquid nitrogen as bone reconstruction. The mean functional Musculoskeletal Tumor Society (MSTS) score was 75% with no infection and local recurrent. The reconstruction provides good local control and functional outcome.

  15. Ultrasound-Diagnosed Tibia Stress Fracture: A Case Report

    PubMed Central

    Amoako, Adae; Abid, Ayesha; Shadiack, Anthony; Monaco, Robert

    2017-01-01

    Stress fractures are a frequent cause of lower extremity pain in athletes, and especially in runners. Plain imaging has a low sensitivity. Magnetic resonance imaging (MRI) or bone scan scintigraphy is the criterion standard, but expensive. We present the case of a young female distance runner with left shin pain. Plain radiography was unremarkable. Ultrasound showed focal hyperechoic elevation of the periosteum with irregularity over the distal tibia and increased flow on Doppler. These findings were consistent with a distal tibia stress fracture and confirmed by MRI. Examination of our case will highlight the utility of considering an ultrasound for diagnosis of tibial stress fracture. PMID:28469488

  16. Effects of stocking density on growth performance, meat quality and tibia development of Pekin ducks.

    PubMed

    Zhang, Ya Ru; Zhang, Lu Shuang; Wang, Zhong; Liu, Yang; Li, Fu Huang; Yuan, Jian Min; Xia, Zhao Fei

    2018-06-01

    This study was performed to investigate the effects of stocking density on performance, meat quality and tibia development in Pekin ducks reared on a plastic wire floor. A total of 372 healthy, 21-day-old, male ducks with similar body weight (BW) were randomly allotted to stocking densities of five (low), eight (medium) and 11 (high) birds/m 2 . Each group had six replicates. Results showed that compared with the low density group, medium and high stocking density caused a decrease in final BW at 42 days old, and in average daily gain, European performance index (p < .01) and meat pH at 45 min postmortem (p < .001), and an increase of meat drip loss (p < .01). High stocking density resulted in an increase of feed/gain ratio (p < .001), but a decrease of tibia calcium (p < .01) and phosphorus content (p < .05). Meat color, shear force values, tibia size (weight, length, and width) and breaking strength were not significantly influenced by stocking density. In conclusion, stocking density over eight birds/m 2 negatively affects growth performance, but meat quality and tibia development are not dramatically influenced. Based on this study, the stocking density of male Pekin ducks should be adjusted between five and eight birds/m 2 . © 2018 Japanese Society of Animal Science.

  17. Molecular development of fibular reduction in birds and its evolution from dinosaurs.

    PubMed

    Botelho, João Francisco; Smith-Paredes, Daniel; Soto-Acuña, Sergio; O'Connor, Jingmai; Palma, Verónica; Vargas, Alexander O

    2016-03-01

    Birds have a distally reduced, splinter-like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid-related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis-like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo-tibial disparity. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  18. The distal tibia of Hispanopithecus laietanus: more evidence for mosaic evolution in Miocene apes.

    PubMed

    Tallman, Melissa; Almécija, Sergio; Reber, Samantha L; Alba, David M; Moyà-Solà, Salvador

    2013-05-01

    IPS18800 is a partial skeleton attributed to the fossil great ape Hispanopithecus laietanus, and dated to 9.6 Ma (millions of years ago). Previous studies on the postcranial anatomy of this taxon have shown that it displayed a derived, extant great ape-like orthograde body plan with suspensory adaptations, uniquely coupled with adaptations for above-branch pronograde locomotion. Here, for the first time, we describe and analyze in detail the distal tibia of the IPS18800 skeleton of Hispanopithecus with the aid of three-dimensional geometric morphometrics based on 53 landmarks and semilandmarks collected on a broad sample of extant catarrhines and fossil hominoids. Results of principal components and canonical variate analyses reveal that the distal tibia of Hispanopithecus occupies a unique position in the morphospace, similar in some respects to pronograde monkeys, and in other respects to extant apes. The IPS18800 distal tibia combines adaptations for above branch quadrupedalism, such as a keeled trochlear surface and strong intercollicular groove, with adaptations for vertical climbing, such as an anteroposteriorly flattened shaft, enlarged fibular facet and a tibial stop. These results on the distal tibia agree with those from other anatomical regions, indicating that this taxon displayed a locomotor repertoire unlike any extant ape, combining vertical climbing and clambering with above-branch quadrupedalism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia.

    PubMed

    Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Oltulu, Ismail; Isyar, Mehmet; Mahirogulları, Mahir

    2014-01-01

    Stress fractures (SF) occur when healthy bone is subjected to cyclic loading, which the normal carrying range capacity is exceeded. Usually, stress fractures occur at the metatarsal bones, calcaneus, proximal or distal tibia and tends to be unilateral. This article presents a 58-year-old male patient with bilateral posterior longitudinal tibial stress fractures. A 58 years old male suffering for persistent left calf pain and decreased walking distance for last one month and after imaging studies posterior longitudinal tibial stress fracture was detected on his left tibia. After six months the patient was admitted to our clinic with the same type of complaints in his right leg. All imaging modalities and blood counts were performed and as a result longitudinal posterior tibial stress fractures were detected on his right tibia. Treatment of tibial stress fracture includes rest and modified activity, followed by a graded return to activity commensurate with bony healing. We have applied the same treatment protocol and our results were acceptable but our follow up time short for this reason our study is restricted for separate stress fractures of the posterior tibia. Although the main localization of tibial stress fractures were unilateral, anterior and transverse pattern, rarely, like in our case, the unusual bilateral posterior localization and longitudinal pattern can be seen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Thermoelastic stress analysis to validate tibial fixation technique in total ankle prostheses - a pilot study.

    PubMed

    Ficklscherer, Andreas; Wegener, Bernd; Niethammer, Thomas; Pietschmann, Matthias F; Müller, Peter E; Jansson, Volkmar; Trouillier, Hans-Heinrich

    2013-03-01

    Recent literature has shown a persistently high rate of aseptic loosening of the tibial component in total ankle prostheses. We analyzed the interface between the tibial bone and tibial component with a thermoelastic stress analysis to demonstrate load transmission onto the distal tibia. In this regard, we used two established ankle prostheses, which were implanted in two human cadaveric and in two third-generation composite tibia bones (Sawbones®, Sweden). Subsequently, the bones were attached to a hydropulser and a sinusoidal load of 700 N was applied. Both prostheses had an inhomogeneous load transmission onto the distal tibia. Instead of distributing load equally to the subarticular bone, forces were focused around the bolting stem, accumulating as stress maxima with forces up to 90 MPa. Furthermore, we were able to demonstrate load transmission into the metaphysis of the bone. As demonstrated in this study, anchoring systems with stems used in all established total ankle prostheses lead to an inhomogeneous load transmission onto the distal tibia, and furthermore, to a distribution of load into the weaker metaphyseal bone. For these reasons, we favor a prosthetic design with minimal bone resection and without any stem or stem-like anchoring system, which facilitates a homogeneous load transmission onto the distal tibia. Thermoelastic stress analysis proved to be a fast and easy-to-perform method to visualize load transmission.

  1. Precision of pQCT-measured total, trabecular and cortical bone area, content, density and estimated bone strength in children

    PubMed Central

    Duff, W.R.D.; Björkman, K.M.; Kawalilak, C.E.; Kehrig, A.M.; Wiebe, S.; Kontulainen, S.

    2017-01-01

    Objectives: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. Methods: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman’s rho to identify associations between CV% and time between measurements, child’s age or anthropometrics. Results: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p <0.05) with CV% at the tibia. Conclusion: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS <5%) in children. PMID:28574412

  2. Patient-Based Outcomes After Tibia Fracture in Children and Adolescents

    PubMed Central

    Sabatini, Coleen S; Curtis, Tracy A; Mahan, Susan T

    2014-01-01

    Introduction : Tibia fractures are common in pediatric patients and time necessary to return to normal function may be underappreciated. The purpose of this study was to assess functional recovery in pediatric patients who sustain tibia fractures, utilizing the Pediatrics Outcome Data Collection Instrument (PODCI), in order to provide evidence-based information on post-injury functional limitations and anticipated recovery times. Methods : 84patients (out of 264 eligible patients, response rate 32%) age 1.5-18 years treated for a tibia fracture at a large children's hospital between 1/07 and 4/08 completed a PODCI questionnaire at 6 and 12 months post-injury. PODCI questionnaires were compared to previously reportednormal controls using Student's t-test in six categories. Results : At 6 months after injury, the Sports functioning PODCI score was significantly less than healthy controls in both the parent reports for adolescent (mean 88.71 versus 95.4) and adolescent self-report (mean 90.44 versus 97.1); these showed no difference at 12 months. Discussion : For adolescents who sustain fractures of the tibia, there remains a negative impact on their sports functioning after 6 months that resolves by 12 months. Physicians can counsel their patients that although they may be limited in their sports function for some time after injury, it is anticipated that this will resolve by one year from the time of injury. Level of Evidence : Level II. PMID:24627732

  3. Ankle arthrodesis with bone graft after distal tibia resection for bone tumors.

    PubMed

    Campanacci, Domenico Andrea; Scoccianti, Guido; Beltrami, Giovanni; Mugnaini, Marco; Capanna, Rodolfo

    2008-10-01

    Treatment of distal tibial tumors is challenging due to the scarce soft tissue coverage of this area. Ankle arthrodesis has proven to be an effective treatment in primary and post-traumatic joint arthritis, but few papers have addressed the feasibility and techniques of ankle arthrodesis in tumor surgery after long bone resections. Resection of the distal tibia and reconstruction by ankle fusion using non-vascularized structural bone grafts was performed in 8 patients affected by malignant (5 patients) or aggressive benign (3 patients) tumors. Resection length of the tibia ranged from 5 to 21 cm. Bone defects were reconstructed with cortical structural autografts (from contralateral tibia) or allografts or both, plus autologous bone chips. Fixation was accomplished by antegrade nailing (6 cases) or plating (2~cases). All the arthrodesis successfully healed. At followup ranging from 23 to 113 months (average 53.5), all patients were alive. One local recurrence was observed with concomitant deep infection (a below-knee amputation was performed). Mean functional MSTS score of the seven available patients was 80.4% (range, 53 to 93). Resection of the distal tibia and arthrodesis of the ankle with non-vascularized structural bone grafts, combined with autologous bone chips, can be an effective procedure in bone tumor surgery with durable and satisfactory functional results. In shorter resections, autologous cortical structural grafts can be used; in longer resections, allograft structural bone grafts are needed.

  4. Maternal Consumption of Hesperidin and Naringin Flavanones Exerts Transient Effects to Tibia Bone Structure in Female CD-1 Offspring

    PubMed Central

    Sacco, Sandra M.; Saint, Caitlin; LeBlanc, Paul J.; Ward, Wendy E.

    2017-01-01

    Hesperidin (HSP) and naringin (NAR), flavanones rich in citrus fruits, support skeletal integrity in adult and aging rodent models. This study determined whether maternal consumption of HSP and NAR favorably programs bone development, resulting in higher bone mineral density (BMD) and greater structure and biomechanical strength (i.e., peak load) in female offspring. Female CD-1 mice were fed a control diet or a HSP + NAR diet five weeks before pregnancy and throughout pregnancy and lactation. At weaning, female offspring were fed a control diet until six months of age. The structure and BMD of the proximal tibia were measured longitudinally using in vivo micro-computed tomography at 2, 4, and 6 months of age. The trabecular bone structure at two and four months and the trabecular BMD at four months were compromised at the proximal tibia in mice exposed to HSP and NAR compared to the control diet (p < 0.001). At six months of age, these differences in trabecular structure and BMD at the proximal tibia had disappeared. At 6 months of age, the tibia midpoint peak load, BMD, structure, and the peak load of lumbar vertebrae and femurs were similar (p > 0.05) between the HSP + NAR and control groups. In conclusion, maternal consumption of HSP and NAR does not enhance bone development in female CD-1 offspring. PMID:28282882

  5. A Novel Shape Memory Plate Osteosynthesis for Noninvasive Modulation of Fixation Stiffness in a Rabbit Tibia Osteotomy Model

    PubMed Central

    Müller, Christian W.; Pfeifer, Ronny; Meier, Karen; Decker, Sebastian; Reifenrath, Janin; Gösling, Thomas; Wesling, Volker; Krettek, Christian; Krämer, Manuel

    2015-01-01

    Nickel-titanium shape memory alloy (NiTi-SMA) implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME). Hypotheses: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization) resulting in increased fixation stiffness and equal or better bony healing. In 14 rabbits, 1.0 mm tibia osteotomies were fixed with our experimental plate. Animals were randomised for control or induction heating at three weeks postoperatively. Repetitive X-ray imaging and in vivo measurements of bending stiffness were performed. After sacrifice at 8 weeks, macroscopic evaluation, µCT, and post mortem bending tests of the tibiae were carried out. One death and one early implant dislocation occurred. Following electromagnetic induction heating, radiographic and macroscopic changes of the implant proved successful SME activation. All osteotomies healed. In the treatment group, bending stiffness increased over time. Differences between groups were not significant. In conclusion, we demonstrated successful healing of rabbit tibia osteotomies using our novel NiTi-SMA plate. We demonstrated shape-changing SME in-vivo through transcutaneous electromagnetic induction heating. Thus, future orthopaedic implants could be modified without additional surgery. PMID:26167493

  6. Auger electron spectroscopy for the determination of sex and age related Ca/P ratio at different bone sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balatsoukas, Ioannis; Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    The Ca/P ratio of normal cortical and trabecular rat bone was measured by Auger electron spectroscopy (AES). Semiquantitative analysis was carried out using ratio techniques to draw conclusions on how age, sex and bone site affect the relative composition of calcium and phosphorus. Results show that Ca/P ratio is not sex dependent; quite the opposite, bone sites exhibit variations in elemental stoichiometry where femoral sections demonstrate higher Ca/P ratio than rear and front tibias. Age-related changes are more distinct for cortical bone in comparison with the trabecular bone. The latter's Ca/P ratio remains unaffected from all the parameters under study.more » This study confirms that AES is able to successfully quantify bone mineral main elements when certain critical points, related to the experimental conditions, are addressed effectively.« less

  7. Building a bone μCT images atlas for micro-architecture recognition

    NASA Astrophysics Data System (ADS)

    Freuchet, E.; Recur, B.; Guédon, Jp.; Kingston, A.; Autrusseau, F.; Amouriq, Y.

    2015-03-01

    Trabecular bone and its micro-architecture are of prime importance for health. Changes of bone micro-architecture are linked to different pathological situations like osteoporosis and begin now to be understood. In a previous paper, we started to investigate the relationships between bone and vessels and we also proposed to build a Bone Atlas. This study describes how to proceed for the elaboration and use of such an atlas. Here, we restricted the Atlas to legs (tibia, femur) of rats in order to work with well known geometry of the bone micro-architecture. From only 6 acquired bone, 132 trabecular bone volumes were generated using simple mathematical morphology tools. The variety and veracity of the created micro-architecture volumes is presented in this paper. Medical application and final goal would be to determinate bone micro-architecture with some angulated radiographs (3 or 4) and to easily diagnose the bone status (healthy, pathological or healing bone...).

  8. Advances in cancer pain from bone metastasis.

    PubMed

    Zhu, Xiao-Cui; Zhang, Jia-Li; Ge, Chen-Tao; Yu, Yuan-Yang; Wang, Pan; Yuan, Ti-Fei; Fu, Cai-Yun

    2015-01-01

    With the technological advances in cancer diagnosis and treatment, the survival rates for patients with cancer are prolonged. The issue of figuring out how to improve the life quality of patients with cancer has become increasingly prominent. Pain, especially bone pain, is the most common symptom in malignancy patients, which seriously affects the life quality of patients with cancer. The research of cancer pain has a breakthrough due to the development of the animal models of cancer pain in recent years, such as the animal models of mouse femur, humerus, calcaneus, and rat tibia. The establishment of several kinds of animal models related to cancer pain provides a new platform in vivo to investigate the molecular mechanisms of cancer pain. In this review, we focus on the advances of cancer pain from bone metastasis, the mechanisms involved in cancer pain, and the drug treatment of cancer pain in the animal models.

  9. Vitex agnus castus as prophylaxis for osteopenia after orchidectomy in rats compared with estradiol and testosterone supplementation.

    PubMed

    Sehmisch, S; Boeckhoff, J; Wille, J; Seidlova-Wuttke, D; Rack, T; Tezval, M; Wuttke, W; Stuermer, K M; Stuermer, E K

    2009-06-01

    Osteoporosis research undertaken in males is rare and there are only a few therapeutic options. Phytoestrogens might be a safe alternative for prophylaxis. Sixty 3-month-old male rats were orchidectomized and divided into five groups. The groups either received soy-free food (C), estradiol (E), testosterone (T) or Vitex agnus castus in different concentrations (AC high/AC low) for 12 weeks. The tibia metaphysis was tested biomechanically and histomorphometrically. The AC high group reached 87% of the biomechanical values of the estradiol group and was significantly superior to the control group. Testosterone supplementation resulted in poor biomechanical properties. The cortical bone parameters of the AC group were similar to the control group, while supplementation with estradiol and testosterone demonstrated a reduction of cortical bone. The AC high group reached 88.4% of trabecular bone area, 80.7% of trabecular number and 66.9% of the number of trabecular nodes compared with estradiol supplementation. Vitex agnus castus demonstrated osteoprotective effects in males. It preserves the cortical as well as the trabecular bone and might be a safe alternative for HRT. Testosterone supplementation has positive effects on trabecular bone, which are concurrently counteracted by the loss of cortical bone. (c) 2008 John Wiley & Sons, Ltd.

  10. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    PubMed Central

    Xu, Weiguo; Ganz, Cornelia; Weber, Ulf; Adam, Martin; Holzhüter, Gerd; Wolter, Daniel; Frerich, Bernhard; Vollmar, Brigitte; Gerber, Thomas

    2011-01-01

    In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS) was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising. PMID:21845044

  11. Differential effects of intermittent and continuous administration of parathyroid hormone on bone histomorphometry and gene expression

    NASA Technical Reports Server (NTRS)

    Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.

    2002-01-01

    A mechanism explaining the differential skeletal effects of intermittent and continuous elevation of serum parathyroid hormone (PTH) remains elusive. Intermittent PTH increases bone formation and bone mass and is being investigated as a therapy for osteoporosis. By contrast, chronic hyperparathyroidism results in the metabolic bone disease osteitis fibrosa characterized by osteomalacia, focal bone resorption, and peritrabecular bone marrow fibrosis. Intermittent and continuous PTH have similar effects on the number of osteoblasts and bone-forming activity. Many of the beneficial as well as detrimental effects of the hormone appear to be mediated by osteoblast-derived growth factors. This hypothesis was tested using cDNA microgene arrays to compare gene expression in tibia of rats treated with continuous and pulsatile administration of PTH. These treatments result in differential expression of many genes, including growth factors. One of the genes whose steady-state mRNA levels was increased by continuous but not pulsatile administration was platelet-derived growth factor-A (PDGF-A). Administration of a PDGF-A antagonist greatly reduced bone resorption, osteomalacia, and bone marrow fibrosis in a rat model for hyperparathyroidism, suggesting that PDGF-A is a causative agent for this disease. These findings suggest that profiling changes in gene expression can help identify the metabolic pathways responsible for the skeletal responses to the hormone.

  12. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli

    NASA Technical Reports Server (NTRS)

    Rubin, C.; Xu, G.; Judex, S.

    2001-01-01

    It is generally believed that mechanical signals must be large in order to be anabolic to bone tissue. Recent evidence indicates, however, that extremely low-magnitude (<10 microstrain) mechanical signals readily stimulate bone formation if induced at a high frequency. We examined the ability of extremely low-magnitude, high-frequency mechanical signals to restore anabolic bone cell activity inhibited by disuse. Adult female rats were randomly assigned to six groups: baseline control, age-matched control, mechanically stimulated for 10 min/day, disuse (hind limb suspension), disuse interrupted by 10 min/day of weight bearing, and disuse interrupted by 10 min/day of mechanical stimulation. After a 28 day protocol, bone formation rates (BFR) in the proximal tibia of mechanically stimulated rats increased compared with age-matched control (+97%). Disuse alone reduced BFR (-92%), a suppression only slightly curbed when disuse was interrupted by 10 min of weight bearing (-61%). In contrast, disuse interrupted by 10 min per day of low-level mechanical intervention normalized BFR to values seen in age-matched controls. This work indicates that this noninvasive, extremely low-level stimulus may provide an effective biomechanical intervention for the bone loss that plagues long-term space flight, bed rest, or immobilization caused by paralysis.

  13. Distribution of type VI collagen in association with osteoblast lineages in the groove of Ranvier during rat postnatal development.

    PubMed

    Kohara, Yukihiro; Soeta, Satoshi; Izu, Yayoi; Arai, Kiyotaka; Amasaki, Hajime

    2016-11-01

    In the groove of Ranvier (GOR), osteoblast lineages form bone bark, which develops into endosteal cortical bone. This ossification process is thought to be regulated by the microenvironment in the GOR. Type VI collagen (Col VI), an extracellular matrix (ECM) protein found in the periosteum/perichondrium, mediates osteoblast differentiation via the cell-surface receptor neural/glial antigen 2 (NG2) chondroitin sulfate proteoglycan. In order to clarify the function of Col VI during osteoblast differentiation in the GOR, in the present study, we examined the distribution of Col VI and osteoblast lineages expressing NG2 in the rat tibia proximal end during postnatal growing periods by immunohistochemistry. Our data revealed that Col VI accumulated in the ECM of the GOR middle layer and that Col VI accumulation was reduced and disappeared in the inner and middle lower regions. Runt-related transcription factor 2-immunoreactive pre-osteoblasts expressed NG2 in Col VI-immunopositive areas. However, Osterix-immunoreactive mature osteoblasts were only found in the Col VI-immunonegative area. These findings indicate that Col VI provided a characteristic microenvironment in the GOR and that NG2-Col VI interactions may regulate the differentiation of osteoblast lineages prior to terminal maturation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate growth of hindlimb bones in the absence of mechanical load.

  15. [Operational mechanism modification of bone mechanostat in an animal model of nutritional stress: effect of propranolol].

    PubMed

    Pintos, Patricia Mabel; Lezón, Christian Esteban; Bozzini, Clarisa; Friedman, Silvia María; Boyer, Patricia Mónica

    2013-01-01

    Propranolol (P) treatment exerts a preventive effect against the detrimental consequences to bone status in mildly chronically food-restricted growing rats (NGR) by an increment in cortical bone and by improving its spatial distribution. To study the effect of beta-blocker on operational mechanism of bone mechanostat in an animal model of nutritional stress. Weanling male Wistar rats were randomly assigned to four groups: control (C), C + P (CP), NGR and NGR + P (NGRP). C and CP rats were fed freely with the standard diet. NGR and NGRP rats received, for 4 weeks, 80% of the amount of food consumed by C and CP respectively, the previous day, corrected by body weight. Propranolol (7 mg/kg/day) was injected ip 5 days per week, for four weeks in CP and NGRP rats. C and NGR received saline injections at an identical dosage regimen. Body weight and length were determined during the experimental period. Dietary intake was registered daily. Animals were sacrificed after 4 weeks of food restriction. Immediately, cuadriceps, femur and tibiae from each animal were dissected and weighed, and histomorphometric and mechanical studies were performed. Serum a-CTX, osteocalcin, intact PTH, calcium and phosphorous were determined. Body protein (% prot) was measured in all groups. Food restriction induced detrimental effects on body and femoral growth, load-bearing capacity (Wf), % prot and cuadriceps weight in NGR us. C (p < 0.01). beta-blocker did not modify anthropometric and bone morphometric parameters in NGRP and CP us. NGR and C, respectively (p > 0.05). However, Wf NGRP vs. NGR was significantly higher (p < 0.01). alpha-CTX was significantly higher in NGR vs. C (p < 0.01). No significant differences were observed in alpha-CTX levels between CP, NGRP and C (p > 0.05). Serum osteocalcin, intact PTH, calcium and phospho- rous showed no significant difference between groups (p > 0.05). These results suggest that modeling increase in bone mass and strength in NGRP rats could be due to an anticatabolic interaction of the beta-blocker propranolol on operational mechanism of bone mechanostat in an animal model of nutritional stress.

  16. [The role of brain-derived neurotrophic factor in pain facilitation and spinal mechanism in rat model of bone cancer pain].

    PubMed

    Wang, Li-na; Yang, Jian-ping; Ji, Fu-hai; Wang, Xiu-yun; Zuo, Jian-ling; Xu, Qi-nian; Jia, Xiao-ming; Zhou, Jing; Ren, Chun-guang; Li, Wei

    2011-05-10

    To investigate the role of brain-derived neurotrophic factor (BDNF) in pain facilitation and spinal mechanisms in the rat model of bone cancer pain. The bone cancer pain model was developed by inoculated Walker 256 mammary gland carcinoma cells into the tibia medullary cavity. Sixty SD female rats were divided into 5 groups (n = 12 each) randomly; group I: control group (sham operation); group II: model group; group III: control group + anti-BDNF intrathecal (i.t.); group IV: model group + control IgG i.t.; group V: model group + anti-BDNF i.t.. Anti-BDNF or control IgG was injected i.t. during 7 to 9th day. Von-Frey threshold was measured one day before operation and every 2 days after operation. On the 9th day after threshold tested, rats were sacrificed after i.t. injection of either anti-BDNF or control IgG, the lumbar 4-6 spinal cord was removed. The expression of the spinal BDNF and the phosphorylation of extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) were detected by immunohistochemistry assay and Western-Blot. Co-expression pattern of BDNF and p-ERK1/2 were determined by double-labeling immunofluorescence. We demonstrated the coexistence of BDNF and p-ERK1/2 in the spinal cord of rats. From the 7 to 9th day after operation, von-Frey threshold in groups II and IV was significantly lower than that in group I and group V (P < 0.01), group V was remarkly higher than that in group IV (P < 0.01). The spinal BDNF and p-ERK1/2 expression in group II or IV were significantly increased compared with that in group I or V (P < 0.01), intrathecal anti-BDNF was significantly suppressed BDNF and p-ERK1/2 expression (P < 0.01). BDNF and p-ERK1/2 was coexistence in the spinal cord of rats, and it maybe involved in the bone cancer pain.

  17. Case report 732. Gout presenting as a large pseudo tumor (tophus) in the proximal end of the tibia.

    PubMed

    Cope, R; Marsan, R; Castelli, M J

    1992-01-01

    A case of a large, lytic, tophaceous defect in the upper end of the tibia has been reported in a 44-year-old man as a solitary lesion. The term "gouty tophus" should not be confused with the geode or subchondral bone cyst.

  18. Extensive limb lengthening in Ollier's disease: 25-year follow-up.

    PubMed

    Märtson, Aare; Haviko, Tiit; Kirjanen, Kaur

    2005-01-01

    A case of extensive lower limb lengthening (32 cm) in a 14-year-old male patient with Ollier's disease is reported. A varus deformity of the femur and a valgus deformity of the tibia were evident. The femur was successfully lengthened 22 cm by metaphyseal distraction, and the tibia was lengthened 10 cm by two-stage distraction-compression method with a cylindrical bone allograft. Ilizarov's distraction device was used. Radiologically, a good bone regenerate was formed. Host bone has incorporated (like sarcophagi) the allograft of tibia. No evidence of vascular or neural disturbances was found. The lengthening indices were counted for femur 22.5 days per centimeter and for tibia 21 days per centimeter, altogether 15.5 days per centimeter. Bone lengthening was performed through the Ollier's disease foci. Fine needle biopsy investigation showed that most embryonic cartilage cells had been replaced with bone tissue. After five years and a 25-year follow-up the patient was satisfied with the result. The function of the knee joint was limited, but the limb was fully weight-bearing. Signs of knee osteoarthritis were found.

  19. Cross-sectional geometry of Pecos Pueblo femora and tibiae--a biomechanical investigation: II. Sex, age, side differences.

    PubMed

    Ruff, C B; Hayes, W C

    1983-03-01

    Intra-populational variation in cross-sectional geometric properties of the femur and tibia are investigated in the Pecos Pueblo skeletal sample. Sex differences in geometric parameters suggest that male lower limb bones are more adapted for A-P bending, females for M-L bending. Proposed explanations for this finding include sexual dimorphism in pelvic structure and culturally prescribed sex-related activities at Pecos. With aging, both males and females undergo endosteal resorption and cortical thinning, greater among females. Both sexes also demonstrate an increase with age in subperiosteal area and second moments of area, supporting results reported in some studies of modern population samples. Sex and site-specific remodeling of the femur and tibia with aging also occur. These localized remodeling changes appear to selectively conserve more compact cortical bone in areas of high mechanical stress. Side differences in cross-sectional geometric properties indicate that left lower limb bones are generally larger than right lower limb bones, with asymmetry greater among females. In particular, left femora and tibiae are relatively stronger in A-P bending, again more so in females.

  20. A quantification strategy for missing bone mass in case of osteolytic bone lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fränzle, Andrea, E-mail: a.fraenzle@dkfz.de; Giske, Kristina; Bretschi, Maren

    Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approachmore » is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way. The mean ratiov{sub r}/v{sub m} of the reconstructed bone volume v{sub r} and the healthy model bone volume v{sub m} is 1.07, which indicates a good reconstruction of the modified bone. Conclusions: The qualitative and quantitative comparison of manual and semi-automated segmentation results have shown that comparing a modified bone structure with a healthy model can be used to identify and measure missing bone mass in a reproducible way.« less

  1. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn; Zhang, Dong-Mei; Yu, Xiao-Jing

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiacmore » atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE attenuates ANG II-induced hypertension and cardiac hypertrophy. • PVN inhibition of ACE attenuates ANG II-induced imbalance of PVN neurotransmitters. • PVN inhibition of ACE attenuates ANG II-induced imbalance of cytokines in the PVN. • PVN blockade of AT1-R attenuates ANG II-induced imbalance of cytokines in the PVN.« less

  2. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model.

    PubMed

    Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas

    2017-01-01

    The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects - one per animal - were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone substitute. This delayed degradation is supposed to be the reason for the observed lower level of bone remodeling and is caused by the irradiation changes (cross links) in the structure in PVP.

  3. Hydrogel-embedded nanocrystalline hydroxyapatite granules (elastic blocks) based on a cross-linked polyvinylpyrrolidone as bone grafting substitute in a rat tibia model

    PubMed Central

    Dau, Michael; Ganz, Cornelia; Zaage, Franziska; Frerich, Bernhard; Gerber, Thomas

    2017-01-01

    Purpose The aim of this study was to examine the in vivo characteristics and levels of integration and degradation of a ready-to-use bone grafting block with elastic properties (elastic block) for the use in surgery. Materials and methods Thirty-six male Wistar rats underwent surgical creation of a well-defined bone defect in the tibia. All created defects – one per animal – were filled with an unsintered nanocrystalline hydroxyapatite embedded either with a non-cross-linked hydrogel carrier (CONT, n=18) or a cross-linked hydrogel carrier (elastic block [EB], n=18) based on polyvinylpyrrolidone (PVP) and silica sol, respectively. The animals were killed after 12 (n=12), 21 (n=12) and 63 days (n=12). The bone formation and defect healing were quantified by histomorphometric measurements made in paraffin sections. Additionally, immunohistochemical (tartrate-resistant acid phosphatase [TRAP] and alkaline phosphatase [aP]), antibody-based examinations (CD68) and energy-dispersive x-ray scattering measurements of silica atom concentration were carried out. Results A larger remaining bone defect area overall was observed in EB after 12 days and 21 days. After 63 days, similar areas of remaining bone defects were found. The amount of the remaining carrier material in EB overall was higher at all times. In CONT no residual carrier material was found at 12 days and later. CD68 analyses showed significantly lower level of CD68-positive marked cells after 21 days in CONT, and nonsignificant differences at 12 and 63 days, respectively. Additionally, a significantly higher level of aP-positive marked cells was observed in CONT after 12 days. Later on, the levels of aP-positive marked cells were slightly higher in EB (21 and 63 days). Furthermore, no significant differences regarding the level of TRAP-positive marked cells in each group were observed. Conclusion The bone substitute (EB) with the cross-linked PVP-based hydrogel carrier leads at the beginning to a higher amount of remaining carrier material and remaining bone substitute. This delayed degradation is supposed to be the reason for the observed lower level of bone remodeling and is caused by the irradiation changes (cross links) in the structure in PVP. PMID:29066890

  4. Uncemented three-dimensional-printed prosthetic reconstruction for massive bone defects of the proximal tibia.

    PubMed

    Lu, Minxun; Li, Yongjiang; Luo, Yi; Zhang, Wenli; Zhou, Yong; Tu, Chongqi

    2018-03-06

    Currently, it is challenging to treat massive bone defects of proximal tibia. Although numerous methods are available for reconstruction with epiphysis preservation, limitations in knee function and complications are noted with these methods. Our paper describes our attempt to reconstruct a marked defect in the proximal tibia with an uncemented three-dimensional (3D)-printed prosthesis and to evaluate the prosthesis design and short-term outcomes. A 15-year-old boy with metaphyseal osteosarcoma of the tibia underwent intercalary allograft reconstruction following wide tumour resection with epiphysis preservation. However, chronic allograft rejection and/or infection occurred after the surgery and a sinus tract was formed. The rejection and/or infection process was successfully stopped by the removal of the graft and implantation of an antibiotic-loaded cement spacer; however, the limb function was poor. Because of the irregular shape of the defect and the excessively short length of the residual proximal tibia, we used the 3D printing technology to design and fabricate a personalised prosthesis to reconstruct the defect, with the preservation of the knee joint. At the last follow-up at 26 months, the patient had satisfactory limb function. The 3D-printed prosthesis may be a feasible option in the reconstruction of tibial metaphyseal defects with the preservation of the knee joint. Moreover, it can result in good postoperative function and low complication rates. However, a long-term follow-up is required to clarify its long-term outcomes.

  5. Limb Lengthening in Patients with Achondroplasia

    PubMed Central

    Park, Kwang-Won; Garcia, Rey-an Niño; Rejuso, Chastity Amor; Choi, Jung-Woo

    2015-01-01

    Purpose Although bilateral lower-limb lengthening has been performed on patients with achondroplasia, the outcomes for the tibia and femur in terms of radiographic parameters, clinical results, and complications have not been compared with each other. We proposed 1) to compare the radiological outcomes of femoral and tibial lengthening and 2) to investigate the differences of complications related to lengthening. Materials and Methods We retrospectively reviewed 28 patients (average age, 14 years 4 months) with achondroplasia who underwent bilateral limb lengthening between 2004 and 2012. All patients first underwent bilateral tibial lengthening, and at 9-48 months (average, 17.8 months) after this procedure, bilateral femoral lengthening was performed. We analyzed the pixel value ratio (PVR) and characteristics of the callus of the lengthened area on serial radiographs. The external fixation index (EFI) and healing index (HI) were computed to compare tibial and femoral lengthening. The complications related to lengthening were assessed. Results The average gain in length was 8.4 cm for the femur and 9.8 cm for the tibia. The PVR, EFI, and HI of the tibia were significantly better than those of the femur. Fewer complications were found during the lengthening of the tibia than during the lengthening of the femur. Conclusion Tibial lengthening had a significantly lower complication rate and a higher callus formation rate than femoral lengthening. Our findings suggest that bilateral limb lengthening (tibia, followed by femur) remains a reasonable option; however, we should be more cautious when performing femoral lengthening in selected patients. PMID:26446651

  6. Limb Lengthening in Patients with Achondroplasia.

    PubMed

    Park, Kwang-Won; Garcia, Rey-an Niño; Rejuso, Chastity Amor; Choi, Jung-Woo; Song, Hae-Ryong

    2015-11-01

    Although bilateral lower-limb lengthening has been performed on patients with achondroplasia, the outcomes for the tibia and femur in terms of radiographic parameters, clinical results, and complications have not been compared with each other. We proposed 1) to compare the radiological outcomes of femoral and tibial lengthening and 2) to investigate the differences of complications related to lengthening. We retrospectively reviewed 28 patients (average age, 14 years 4 months) with achondroplasia who underwent bilateral limb lengthening between 2004 and 2012. All patients first underwent bilateral tibial lengthening, and at 9-48 months (average, 17.8 months) after this procedure, bilateral femoral lengthening was performed. We analyzed the pixel value ratio (PVR) and characteristics of the callus of the lengthened area on serial radiographs. The external fixation index (EFI) and healing index (HI) were computed to compare tibial and femoral lengthening. The complications related to lengthening were assessed. The average gain in length was 8.4 cm for the femur and 9.8 cm for the tibia. The PVR, EFI, and HI of the tibia were significantly better than those of the femur. Fewer complications were found during the lengthening of the tibia than during the lengthening of the femur. Tibial lengthening had a significantly lower complication rate and a higher callus formation rate than femoral lengthening. Our findings suggest that bilateral limb lengthening (tibia, followed by femur) remains a reasonable option; however, we should be more cautious when performing femoral lengthening in selected patients.

  7. External fixation using locking plate in distal tibial fracture: a finite element analysis.

    PubMed

    Zhang, Jingwei; Ebraheim, Nabil; Li, Ming; He, Xianfeng; Schwind, Joshua; Liu, Jiayong; Zhu, Limei

    2015-08-01

    External fixation of tibial fractures using a locking plate has been reported with favorable results in some selected patients. However, the stability of external plate fixation in this fracture pattern has not been previously demonstrated. We investigated the stability of external plate fixation with different plate-bone distances. In this study, the computational processing model of external fixation of a distal tibial metaphyseal fracture utilizing the contralateral femoral less invasive stabilization system plate was analyzed. The plate was placed on the anteromedial aspect of tibia with different plate-bone distances: 1, 10, 20, and 30 mm. Under axial load, the stiffness of construct in all groups was higher than intact tibia. Under axial load with an internal rotational force, the stiffness of construct with 1 and 10 mm plate-bone distances was similar to that of an intact tibia and the stiffness of the construct with 20 and 30 mm distances was lower than that of an intact tibia. Under axial load with an external rotational force, the stiffness of the construct in all groups was lower than that of an intact tibia. The maximum plate stresses were concentrated at the two most distal screws and were highest in the construct with the 10 mm plate-bone distance, and least in the construct with a 1 mm plate-bone distance. To guarantee a stable external plate fixation in distal tibial fracture, the plate-bone distance should be less than 30 mm.

  8. Treatment of open tibial fracture with bone defect caused by high velocity missiles: a case report.

    PubMed

    Golubović, Zoran; Vukajinović, Zoran; Stojiljković, Predrag; Golubović, Ivan; Visnjić, Aleksandar; Radovanović, Zoran; Najman, Stevo

    2013-01-01

    Tibia fracture caused by high velocity missiles is mostly comminuted and followed by bone defect which makes their healing process extremely difficult and prone to numerous complications. A 34-year-old male was wounded at close range by a semi-automatic gun missile. He was wounded in the distal area of the left tibia and suffered a massive defect of the bone and soft tissue. After the primary treatment of the wound, the fracture was stabilized with an external fixator type Mitkovic, with convergent orientation of the pins. The wound in the medial region of the tibia was closed with the secondary stitch, whereas the wound in the lateral area was closed with the skin transplant after Thiersch. Due to massive bone defect in the area of the rifle-missile wound six months after injury, a medical team placed a reconstructive external skeletal fixator type Mitkovic and performed corticotomy in the proximal metaphyseal area of the tibia. By the method of bone transport (distractive osteogenesis), the bone defect of the tibia was replaced. After the fracture healing seven months from the secondary surgery, the fixator was removed and the patient was referred to physical therapy. Surgical treatment of wounds, external fixation, performing necessary debridement, adequate antibiotic treatment and soft and bone tissue reconstruction are essential in achieving good results in patients with the open tibial fracture with bone defect caused by high velocity missiles. Reconstruction of bone defect can be successfully treated by reconstructive external fixator Mitkovic.

  9. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events.

    PubMed

    McKay, Brian J; Bir, Cynthia A

    2009-11-01

    Anti-vehicular (AV) landmines and improvised explosive devices (IED) have accounted for more than half of the United States military hostile casualties and wounded in Operation Iraqi Freedom (OIF) (Department of Defense Personnel & Procurement Statistics, 2009). The lower extremity is the predominantly injured body region following an AV mine or IED blast accounting for 26 percent of all combat injuries in OIF (Owens et al., 2007). Detonations occurring under the vehicle transmit high amplitude and short duration axial loads onto the foot-ankle-tibia region of the occupant causing injuries to the lower leg. The current effort was initiated to develop lower extremity injury criteria for occupants involved in underbelly blast impacts. Eighteen lower extremity post mortem human specimens (PMHS) were instrumented with an implantable load cell and strain gages and impacted at one of three incrementally severe AV axial loading conditions. Twelve of the 18 PMHS specimens sustained fractures of the calcaneus, talus, fibula and/or tibia. The initiation of skeletal injury was precisely detected by strain gages and corresponded with local peak axial tibia force. Survival analysis identified peak axial tibia force and impactor velocity as the two best predictors of incapacitating injury. A tibia axial force of 5,931 N and impactor velocity of 10.8 m/s corresponds with a 50 percent risk of an incapacitating injury. The criteria may be utilized to predict the probability of lower extremity incapacitating injury in underbelly blast impacts.

  10. The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.

    PubMed

    Wilson, J A

    1979-01-01

    Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.

  11. Pes anserinus and anserine bursa: anatomical study

    PubMed Central

    Lee, Je-Hun; Kim, Kyung-Jin; Jeong, Young-Gil; Lee, Nam Seob; Han, Seung Yun; Lee, Chang Gug; Kim, Kyung-Yong

    2014-01-01

    This study investigated the boundary of anserine bursa with the recommended injection site and shape on the insertion area of pes anserinus (PA), with the aim of improving clinical practice. Eighty six legs from 45 Korean cadavers were investigated. The mixed gelatin solution was injected to identify the shape of anserine bursa, and then the insertion site of the PA tendons was exposed completely and carefully dissected to identify the shape of the PA. The sartorius was inserted into the superficial layer and gracilis, and the semitendinosus was inserted into the deep layer on the medial surface of the tibia. The number of the semitendinosus tendons at the insertion site varied: 1 in 66% of specimens, 2 in 31%, and 3 in 3%. The gracilis and semitendinosus tendons were connected to the deep fascia of leg. Overall, the shape of the anserine bursa was irregularly circular. Most of the anserine bursa specimens reached the proximal line of the tibia, and some of the specimens reached above the proximal line of the tibia. In the medial view of the tibia, the anserine bursa was located posteriorly and superiorly from the tibia's midline, and it followed the lines of the sartorius muscle. The injection site for anserine bursa should be carried out at 20° from the vertical line medially and inferiorly, 15 or 20 mm deeply, and at the point of about 20 mm medial and 12 mm superior from inferomedial point of tibial tuberosity. PMID:24987549

  12. Exercise-Induced Changes in the Cortical Bone of Growing Mice Are Bone and Gender Specific

    PubMed Central

    Wallace, Joseph M.; Rajachar, Rupak M.; Allen, Matthew R.; Bloomfield, Susan A.; Robey, Pamela G.; Young, Marian F.; Kohn, David H.

    2009-01-01

    Fracture risk and mechanical competence of bone are functions of bone mass and tissue quality, which in turn are dependent on the bone’s mechanical environment. Male mice have a greater response to non weight-bearing exercise than females, resulting in larger, stronger bones compared with control animals. The aim of this study was to test the hypothesis that short-term weight-bearing running during growth (21 days starting at 8 weeks of age; 30 minutes/day; 12 meters/minute; 5° incline; 7 days/week) would similarly have a greater impact on cross sectional geometry and mechanical competence in the femora and tibiae of male mice versus females. Based on the orientation of the legs during running and the proximity of the tibia to the point of impact, this response was hypothesized to be greatest in the tibia. Exercise-related changes relative to controls were assayed by four-point bending tests, while volumetric bone mineral density and cross-sectional geometry were also assessed. The response to running was bone and gender-specific, with male tibiae demonstrating the greatest effects. In male tibiae, periosteal perimeter, endocortical perimeter, cortical area, medial-lateral width and bending moment of inertia increased versus control mice suggesting that while growth is occurring in these mice between 8 and 11 weeks of age, exercise accelerated this growth resulting in a greater increase in bone tissue over the 3 weeks of the study. Exercise increased tissue-level strain-to-failure and structural post-yield deformation in the male tibiae, but these post-yield benefits came at the expense of decreased yield deformation, structural and tissue-level yield strength and tissue-level ultimate strength. These results suggest that exercise superimposed upon growth accelerated growth-related increases in tibial cross-sectional dimensions. Exercise also influenced the quality of this forming bone, significantly impacting structural and tissue-level mechanical properties. PMID:17240210

  13. Effect of oral monthly ibandronate on bone microarchitecture in women with osteopenia-a randomized placebo-controlled trial.

    PubMed

    Chapurlat, R D; Laroche, M; Thomas, T; Rouanet, S; Delmas, P D; de Vernejoul, M-C

    2013-01-01

    We have examined the effect of oral monthly ibandronate on distal radius and tibia microarchitecture with high-resolution peripheral quantitative tomography compared with placebo, in women with osteopenia, and found that ibandronate did not significantly affect trabecular bone but improved cortical density and thickness at the tibia. We have examined the effect of ibandronate on bone microarchitecture with peripheral high-resolution quantitative computed tomography (HR-pQCT) in a randomized placebo-controlled trial among 148 women with osteopenia. Patients received either oral 150 mg monthly ibandronate or placebo over 24 months. Bone microarchitecture was assessed at baseline, 6, 12, and 24 months, using HR-pQCT at the distal radius and tibia; areal bone mineral density (aBMD) was measured with DXA at the spine, hip, and radius. At 12 months, there was no significant difference in trabecular bone volume at the radius (the primary end point) between women on ibandronate (10.8 ± 2.5%) and placebo (10.5 ± 2.9%), p = 0.25. There was no significant difference in other radius trabecular and cortical microarchitecture parameters at 12 and 24 months. In contrast, at the tibia, cortical vBMD in the ibandronate group was significantly greater than in the placebo group at 6, 12, and 24 months, with better cortical thickness at 6, 12, and 24 months. With ibandronate, aBMD was significantly increased at the hip and spine at 12 and 24 months but at the radius was significantly superior to placebo only at 24 months. Most of the adverse events related to ibandronate were expected with bisphosphonate use, and none of them were serious. We conclude that 12 months of treatment with ibandronate in women with osteopenia did not affect trabecular bone microarchitecture, but improved cortical vBMD at the tibia at 12 and 24 months, and preserved cortical thickness at the tibia.

  14. Effect of Age and Caponization on Blood Parameters and Bone Development of Male Native Chickens in Taiwan

    PubMed Central

    Lin, Cheng-Yung; Hsu, Jenn-Chung; Wan, Tien-Chun

    2012-01-01

    An experiment was carried out to determine the effect of age and caponization on the development blood and bone characteristics development in male country chickens in Taiwan. A total of two hundred 8-wk-old LRI native chicken cockerels, Taishi meat No.13 from LRI-COA, were used as experimental animals. Cockerels were surgically caponized at 8 wks of age. Twelve birds in each group were bled and dressed from 8 wks to 35 wks of age at 1 to 5 wk intervals. The results indicated that the plasma testosterone concentration was significantly (p<0.05) lower in capons after 12 wks of age (caponized treatment after 4 wks) than that of the intact males. The relative tibia weight, bone breaking strength, cortical thickness, bone ash, bone calcium, bone phosphorus and bone magnesium contents were significantly (p<0.05) higher in intact males, while capons had higher (p<0.05) plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. The plasma testosterone concentration, relative tibia weight, tibia length, breaking strength, cortical thickness, bone ash, calcium, and phosphorus contents of intact males chickens increased significantly (p<0.05) with the advance of age. In addition, the relative tibia weight of capons peaked at 18 wks of age, and declined at 35 wks of age. The bone ash, calcium and phosphorus content increased most after 14 wks of age in male native chickens in Taiwan. Also, tibia length and cortical thickness peaked at 22 wks of age. However, the peak of bone strength was found at 26 wks of age. These findings support the assertion that androgens can directly influence bone composition fluxes in male chickens. Caponization caused a significant increase in bone loss at 4 wks post treatment, which reflected bone cell damage, and demonstrated reductions in the relative tibia weight, breaking strength, cortical thickness, bone ash, calcium, phosphorus and magnesium contents, and increases in plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. PMID:25049655

  15. Nutritional Programming of Bone Structure in Male Offspring by Maternal Consumption of Citrus Flavanones.

    PubMed

    Sacco, Sandra M; Saint, Caitlin; LeBlanc, Paul J; Ward, Wendy E

    2018-06-01

    Maternal exposure to hesperidin (HSP) and naringin (NAR) during pregnancy and lactation transiently compromised bone mineral density (BMD) and bone structure at the proximal tibia in female CD-1 offspring. We examined whether maternal consumption of HSP + NAR during pregnancy and lactation compromises BMD, bone structure, and bone strength in male CD-1 offspring. Male CD-1 offspring, from mothers fed a control diet (CON, n = 10) or a 0.5% HSP + 0.25% NAR diet (HSP + NAR, n = 8) for 5 weeks before mating and throughout pregnancy and lactation, were weaned and fed CON until 6 months of age. In vivo micro-computed tomography (µCT) measured tibia BMD and structure at 2, 4, and 6 months of age. Ex vivo µCT measured femur and lumbar vertebrae (LV) structure at age 6 months. Ex vivo BMD (femur, LV) and biomechanical strength (femur and tibia midpoint, femur neck) were assessed at age 6 months by dual energy x-ray absorptiometry and strength testing, respectively. At all ages, HSP + NAR offspring had greater (p < 0.05) proximal tibia cortical structure compared to CON offspring. At age 4 months, proximal tibia trabecular structure was greater (p < 0.05) than CON offspring. At age 6 months, femur neck and LV trabecular structure were greater (p < 0.05) than CON offspring. Our results demonstrate that unlike our previous study of female offspring, maternal consumption of HSP + NAR resulted in greater bone structure at the proximal tibia in male CD-1 offspring that persisted to 6 months of age. Thus, maternal programming of offspring BMD and bone structure from consumption of HSP + NAR occurred as a sex-specific response.

  16. Limb lengthening in achondroplasia

    PubMed Central

    Chilbule, Sanjay K; Dutt, Vivek; Madhuri, Vrisha

    2016-01-01

    Background: Stature lengthening in skeletal dysplasia is a contentious issue. Specific guidelines regarding the age and sequence of surgery, methods and extent of lengthening at each stage are not uniform around the world. Despite the need for multiple surgeries, with their attendant complications, parents demanding stature lengthening are not rare, due to the social bias and psychological effects experienced by these patients. This study describes the outcome and complications of extensive stature lengthening performed at our center. Materials and Methods: Eight achondroplasic and one hypochondroplasic patient underwent bilateral transverse lengthening for tibiae, humeri and femora. Tibia lengthening was carried out using a ring fixator and bifocal corticotomy, while a monolateral pediatric limb reconstruction system with unifocal corticotomy was used for the femur and humerus. Lengthening of each bone segment, height gain, healing index and complications were assessed. Subgroup analysis was carried out to assess the effect of age and bone segment on the healing index. Results: Nine patients aged five to 25 years (mean age 10.2 years) underwent limb lengthening procedures for 18 tibiae, 10 femora and 8 humeri. Four patients underwent bilateral lengthening of all three segments. The mean length gain for the tibia, femur and humerus was 15.4 cm (100.7%), 9.9 cm (52.8%) and 9.6 cm (77.9%), respectively. Healing index was 25.7, 25.6 and 20.6 days/cm, respectively, for the tibia, femur and humerus. An average of 33.3% height gain was attained. Lengthening of both tibia and femur added to projected height achieved as the 3rd percentile of standard height in three out of four patients. In all, 33 complications were encountered (0.9 complications per segment). Healing index was not affected by age or bone segment. Conclusion: Extensive limb lengthening (more than 50% over initial length) carries significant risk and should be undertaken only after due consideration. PMID:27512222

  17. What are the important surgical factors affecting the wound healing after primary total knee arthroplasty?

    PubMed

    Harato, Kengo; Tanikawa, Hidenori; Morishige, Yutaro; Kaneda, Kazuya; Niki, Yasuo

    2016-01-13

    Wound condition after primary total knee arthroplasty (TKA) is an important issue to avoid any postoperative adverse events. Our purpose was to investigate and to clarify the important surgical factors affecting wound score after TKA. A total of 139 knees in 128 patients (mean 73 years) without severe comorbidity were enrolled in the present study. All primary unilateral or bilateral TKAs were done using the same skin incision line, measured resection technique, and wound closure technique using unidirectional barbed suture. In terms of the wound healing, Hollander Wound Evaluation Score (HWES) was assessed on postoperative day 14. We performed multiple regression analysis using stepwise method to identify the factors affecting HWES. Variables considered in the analysis were age, sex, body mass index (kg/m(2)), HbA1C (%), femorotibial angle (degrees) on plain radiographs, intraoperative patella eversion during the cutting phase of the femur and the tibia in knee flexion, intraoperative anterior translation of the tibia, patella resurfacing, surgical time (min), tourniquet time (min), length of skin incision (cm), postoperative drainage (ml), patellar height on postoperative lateral radiographs, and HWES. HWES was treated as a dependent variable, and others were as independent variables. The average HWES was 5.0 ± 0.8 point. According to stepwise forward regression test, patella eversion during the cutting phase of the femur and the tibia in knee flexion and anterior translation of the tibia were entered in this model, while other factors were not entered. Standardized partial regression coefficient was as follows: 0.57 in anterior translation of the tibia and 0.38 in patella eversion. Fortunately, in the present study using the unidirectional barbed suture, major wound healing problem did not occur. As to the surgical technique, intraoperative patella eversion and anterior translation of the tibia should be avoided for quality cosmesis in primary TKA.

  18. Phosphorus utilization in finishing broiler chickens: effects of dietary calcium and microbial phytase.

    PubMed

    Rousseau, X; Létourneau-Montminy, M P; Même, N; Magnin, M; Nys, Y; Narcy, A

    2012-11-01

    A decrease in dietary P, especially in finishing broilers (21 to 38 d old), is a crucial issue in poultry production from an environmental and economic point of view. Nevertheless, P must be considered together with other dietary components such as Ca and microbial phytase. Different corn and soybean meal-based diets varying in Ca [low (LCa) 0.37, medium (MCa) 0.57, and high (HCa) 0.77%], and nonphytate P [nPP; low (LnPP) 0.18 and high (HnPP) 0.32%] content were tested with and without microbial phytase [0 or 500 phytase units (FTU)/kg]. Feed intake, BW gain, bone mineralization, and mineral retention were examined in 144 Ross PM3 broilers (22 to 38 d old) reared in individual cages. Growth performance was not significantly affected by the treatments. Nevertheless, a numerical decrease of ADG and ADFI was observed in HCa-LnPP and LCa-HnPP associated with an increase of feed conversion ratio. Decreased dietary Ca reduced tibia ash content (Ca, linear: P < 0.001; quadratic: P = 0.034) and tibia ash weight for the highest level of nPP (Ca × nPP; P = 0.035). In parallel, increasing dietary Ca reduced the flow of retained P (P = 0.022) but also tibia ash weight in LnPP diets (Ca × nPP; P = 0.035). The responses of the animals in terms of tibia ash content and P retention were improved by the addition of microbial phytase especially for the lowest P diets (nPP × phytase, P = 0.021 and P = 0.009; respectively). Phytase increased dry tibia weight, bone breaking strength, and tibia diameter in broilers fed the highest Ca diets (Ca × phytase; P < 0.05). We conclude that is possible to decrease P levels in finishing broilers, if the Ca content is appropriate. Nevertheless, decreasing the dietary P and Ca cannot allow a maximization of bone mineralization, but the optimal threshold remains to be determined.

  19. Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat.

    PubMed

    Rude, Robert K; Gruber, Helen E; Norton, H James; Wei, Livia Y; Frausto, Angelica; Kilburn, Jeremy

    2005-08-01

    Low dietary magnesium (Mg) may be a risk factor for osteoporosis. In animals, severe Mg deficiency (0.04% of nutrient requirement [NR]) results in bone loss. We have also found that a more moderate dietary Mg restriction (10% of NR) also resulted in loss of bone. We now report the effect of Mg intake of 25% NR on bone and mineral metabolism in the rat. Serum Mg, Ca, PTH, 1,25(OH)2-vitamin D, alkaline phosphatase, osteocalcin, and pyridinoline were measured at 2, 4, and 6 months in control and Mg-deficient animals. Femurs and tibias were collected for mineral content, micro-computerized tomography, histomorphometry, and immunocytochemical localization. Profound Mg deficiency developed as assessed by marked hypomagnesemia and 27% reduction in bone Mg content. Serum calcium was not significantly different between groups. Mg depletion resulted in a significantly lower serum PTH concentrations. Serum 1,25(OH)2-vitamin D was also significantly lower. No difference was noted in markers of bone turnover. Histomorphometry and micro-computerized tomography demonstrated decreased bone volume and trabecular thickness. No difference was observed for osteoclast or osteoblast number. Inflammatory cytokines may contribute to bone loss. We found that immunocytochemical localization of TNFalpha in osteoclasts was increased 138-150%. This increase in TNFalpha may be due to increased substance P as it was found to be elevated from 179% to 432%. These data demonstrate that Mg intake of 25% NR in the rat causes lower bone mass which may be related to increased release of substance P and TNFalpha.

  20. Maternal Dietary Supplementation with Oligofructose-Enriched Inulin in Gestating/Lactating Rats Preserves Maternal Bone and Improves Bone Microarchitecture in Their Offspring

    PubMed Central

    Diaz-Castro, Javier; López-Aliaga, Inmaculada; Rueda, Ricardo

    2016-01-01

    Nutrition during pregnancy and lactation could exert a key role not only on maternal bone, but also could influence the skeletal development of the offspring. This study was performed in rats to assess the relationship between maternal dietary intake of prebiotic oligofructose-enriched inulin and its role in bone turnover during gestation and lactation, as well as its effect on offspring peak bone mass/architecture during early adulthood. Rat dams were fed either with standard rodent diet (CC group), calcium-fortified diet (Ca group), or prebiotic oligofructose-enriched inulin supplemented diet (Pre group), during the second half of gestation and lactation. Bone mineral density (BMD) and content (BMC), as well as micro-structure of dams and offspring at different stages were analysed. Dams in the Pre group had significantly higher trabecular thickness (Tb.Th), trabecular bone volume fraction (BV/TV) and smaller specific bone surface (BS/BV) of the tibia in comparison with CC dams. The Pre group offspring during early adulthood had an increase of the lumbar vertebra BMD when compared with offspring of CC and Ca groups. The Pre group offspring also showed significant increase versus CC in cancellous and cortical structural parameters of the lumbar vertebra 4 such as Tb.Th, cortical BMD and decreased BS/BV. The results indicate that oligofructose-enriched inulin supplementation can be considered as a plausible nutritional option for protecting against maternal bone loss during gestation and lactation preventing bone fragility and for optimizing peak bone mass and architecture of the offspring in order to increase bone strength. PMID:27115490

  1. Changes in chemical composition of bone matrix in ovariectomized (OVX) rats detected by Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi

    2015-02-01

    Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.

  2. Effects of low-level laser therapy on the expression of osteogenic genes related in the initial stages of bone defects in rats

    NASA Astrophysics Data System (ADS)

    Fernandes, Kelly Rossetti; Ribeiro, Daniel Araki; Rodrigues, Natália Camargo; Tim, Carla; Santos, Anderson Amaro; Parizotto, Nivaldo Antônio; de Araujo, Heloisa Selistre; Driusso, Patrícia; Rennó, Ana Claudia Muniz

    2013-03-01

    We evaluate the effects of low-level laser therapy (LLLT) on the histological modifications and temporal osteogenic genes expression during the initial phase of bone healing in a model of bone defect in rats. Sixty-four Wistar rats were divided into control and treated groups. Noncritical size bone defects were surgically created at the upper third of the tibia. Laser irradiation (Ga-Al-As laser 830 nm, 30 mW, 0.028 cm2, 1.071 W/cm2, 1 min and 34 s, 2.8 Joules, 100 J/cm2) was performed for 1, 2, 3, and 5 sessions. Histopathology revealed that treated animals presented higher inflammatory cells recruitment, especially 12 and 36 h postsurgery. Also, a better tissue organization at the site of the injury, with the presence of granulation tissue and new bone formation was observed on days three and five postsurgery in the treated animals. The quantitative real time polymerase chain reaction showed that LLLT produced a significantly increase in mRNA expression of Runx-2, 12 h and three days post-surgery, a significant upregulation of alkaline phosphatase mRNA expression after 36 h and three days post-surgery and a significant increase of osteocalcin mRNA expression after three and five days. We concluded that LLLT modulated the inflammatory process and accelerated bone repair, and this advanced repair pattern in the laser-treated groups may be related to the higher mRNA expression of genes presented by these animals.

  3. Nandrolone decanoate induces cardiac and renal remodeling in female rats, without modification in physiological parameters: The role of ANP system.

    PubMed

    Brasil, Girlandia Alexandre; Lima, Ewelyne Miranda de; Nascimento, Andrews Marques do; Caliman, Izabela Facco; Medeiros, Ana Raquel Santos de; Silva, Mauro Sérgio Batista; Abreu, Gláucia Rodrigues de; Reis, Adelina Martha dos; Andrade, Tadeu Uggere de; Bissoli, Nazaré Souza

    2015-09-15

    Anabolic-androgenic steroids are misused, including women, but little is known about the cardiovascular effects of these drugs on females. Evaluated the effects of nandrolone decanoate (ND), physical exercise and estrogen deficiency on female rats. Female Wistar rats were divided into 8 groups: S and OVX: (SHAM: sham surgery; OVX: ovariectomy, vehicle), SE and OVXE (resistance exercise 5 times a week, vehicle), SD and OVXD (treated with ND, 20 mg/kg/week for 4 weeks); SDE and OVXDE. Treatments were initiated 21 days after surgery. The Bezold–Jarisch reflex was assessed by Phenylbiguanide administration. The right atrium, kidney, and serum were collected for molecular analyses by RT-PCR of atrial natriuretic peptide (ANP), A-type natriuretic peptide receptor (NPR-A) and NPR-C. ELISA assay to estradiol and testosterone concentrations. The gastrocnemius muscle, heart and kidney weights/tibia length were measured.Morphometric analysis of heart was made (H/E) and collagen content of heart and kidney were evaluated using Pirossirius Red. ND treatment increased ANP expression on atrium and decreased NPR-A expression in kidney. Physical exercise and ovariectomy did not alter this parameter. NPR-C level was reduced in the SDE and OVXDE. Renal and cardiac hypertrophy was observed after ND treatment, with collagen deposition. Plasma estrogen concentrations were reduced and serum testosterone concentrations were increased after ND treatment. ANP has an important role in modulating the cardiovascular effects of ND in females. Thismodulating may have occurred by the increasing ANP expression, reducing NPR-A and NPR-C expression levels, and changing sex hormone levels.

  4. Carbon Fiber Biocompatibility for Implants

    PubMed Central

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  5. The healing stages of an intramedullary implanted tibia: A stress strain comparative analysis of the calcification process

    PubMed Central

    Filardi, Vincenzo

    2015-01-01

    Aims The extended usage of unreamed tibial nailing resulted in reports of an increased rate of complications, especially for the distal portion of the tibia. Unreamed nailing favours biology at the expense of the achievable mechanical stability, it is therefore of interest to define the limits of the clinical indications for this method. Extra-articular fractures of the distal tibial metaphysis, meta-diaphyseal junction, and adjacent diaphysis are distinct in their management from impaction derived ‘‘pilon’’ type fractures and mid-diaphyseal fractures. The goals of this work were to gain a thorough understanding of the load-sharing mechanism between unreamed nail and bones in a fractured tibia. With this purpose a complete model of the human leg was realised, simulating a mid-diaphyseal fracture, classified as A2 type 1, according to the AO classification. The analysis of the entire chain allows to have a complete picture of the stress distribution and of the most stressed bones and soft tissues, but, more importantly can overcome problems connected with boundary conditions imposed at single bony components. Methods Model consists of six bony structures: pelvis, femur, patella, fibula, tibia, and a simplified lump of the feet, configured in a standing up position. Their articular cartilage layers, were simulated by 3D membranes of opportune stiffness connecting the different segments. Moreover an unreamed intra-medullary nail Expert Tibial Nail (DePuy Synthes®) stabilized the fractured tibia. A load of 700 N has been applied at the top of pelvis and a part the feet, at the tip, was rigidly fixed. Five different contact interfaces have been imposed at the different bony surfaces in contact. Results Three different conditions were analysed: the initially healthy tibia, the A2 type 1 fractured tibia with the Expert tibial nail implanted, and the follow up stage after complete healing of tibia. Non-linear finite element analysis of the models were performed with Abaqus version 5.4 (Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI) using the geometric non linearity and automatic time stepping options. Conclusion The obtained results reveal interesting consequences deriving by taking into account how the stress shielding can influence the integrity and resistance of bones, in order to identify the mechanical reasons for the unfavourable clinical results, and to identify borderline indications due to biomechanical factors. The evolution of treatment options for these fractures has been closely linked to developments in implant technology and surgical technique. Further developments in this area, particularly with respect to minimally invasive plating techniques and nail design are ongoing. PMID:26719629

  6. Adamantinoma with plasmacytoid features: expanding the spectrum of a diagnostically challenging entity.

    PubMed

    Walters, Matthew P; Baynes, Keith; Carrera, Guillermo F; King, David M; Wang, Dian; Charlson, John; Zambrano, Eduardo

    2011-10-01

    Adamantinoma is a rare neoplasm that characteristically involves the tibia. In many instances, typical location within the tibia, very slow course, and a typical radiographic appearance can strongly suggest the correct diagnosis. We present a case that has both unusual radiographic findings and uncharacteristic histology. In this case, radiologic imaging showed a poorly defined lytic lesion within the distal, lateral tibia extending to the joint with central necrosis, overlying periosteal reaction and possible tumor spread into soft tissue. The histology of this lesion showed pronounced vascularity and surrounding large neoplastic cells with plasmacytoid morphology. The combination of these features led to an initial misdiagnosis as metastatic carcinoma from unknown primary. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Gorham's disease of the proximal tibia successfully treated with local administration of OK-432, followed by reconstruction with distraction osteogenesis: a case report.

    PubMed

    Yamagishi, Eiki; Takeda, Akira; Konno, Shinichi; Takeda, Koichiro; Hagino, Seita; Hakozaki, Michiyuki

    2016-01-01

    Gorham's disease (GD) is a rare and intractable disease characterized by marked progression of osteolysis associated with lymphangioma and/or hemangioma. Here, we describe a case of GD of the proximal tibia occurring in a 10-year-old boy. Although we could not correctly diagnose it at first, we finally diagnosed him as having GD. Progression of osteolysis of the tibia stopped 3 months after the local administration of OK-432. Thereafter, the huge bone defect with varus and extension deformity was reconstructed successfully by distraction osteogenesis using the Ilizarov method. The present case suggests that local administration of OK-432, followed by distraction osteogenesis is a treatment option for GD.

  8. The anabolic effects of vitamin D-binding protein-macrophage activating factor (DBP-MAF) and a novel small peptide on bone.

    PubMed

    Schneider, Gary B; Grecco, Kristina J; Safadi, Fayez F; Popoff, Steven N

    2003-01-01

    Vitamin D-binding protein-macrophage activating factor (DBP-MAF) has previously been shown to stimulate bone resorption and correct the skeletal defects associated with osteopetrosis in two nonallelic mutations in rats. This same protein and a small fragment of the protein have now been shown to demonstrate an anabolic effect on the skeleton of both newborn and young adult, intact rats. The novel peptide fragment was synthetically produced based on the human amino acid sequence at the site of glycosylation in the third domain of the native protein (DBP). The peptide tested is 14 amino acids in length and demonstrates no homologies other than to that region of DBP. Newborn rats were injected i.p. with saline, peptide (0.4 ng/g body wt.) or DBP-MAF (2 ng/g body wt.) every other day from birth to 14 days of age. On day 16 the rats were euthanized and the long bones collected for bone densitometry by pQCT. After 2 weeks of treatment with either the whole protein (DBP-MAF) or the small peptide, bone density was significantly increased in the treated animals compared to the saline controls. Young adult female rats (180 grams) were given s.c. injections of saline or peptide (0.4 ng/g body wt. or 5 ng/g body wt.) every other day for 2 weeks; 2 days after the final injections, the rats were euthanized and the femurs and tibias collected for bone densitometry. Both doses of the peptide resulted in significant increases in bone density as determined by pQCT. Young adult rats were injected locally with a single dose of the peptide (1 microg) or saline into the marrow cavity of the distal femur. One week after the single injection, the bones were collected for radiographic and histological evaluation. The saline controls showed no evidence of new bone formation, whereas the peptide-treated animals demonstrated osteoinduction in the marrow cavity and osteogenesis of surrounding cortical and metaphyseal bone. These data suggest that DBP-MAF and the synthetic peptide represent therapeutic opportunities for the treatment of a number of bone diseases and skeletal disorders. Systemic administration could be used to treat osteoporosis and a number of other osteopenias, and local administration could be effective in fractures, bony defect repairs, spinal surgery, and joint replacement.

  9. Effect of GaAs Laser at 904 nm in the Pain Threshold in Tibia and Tolerance in Deltoid Evaluated by Pressure Algometry

    NASA Astrophysics Data System (ADS)

    Soares, Luiz G. P.; Sato, Sidney K.; Silveira, Landulfo; Aimbire, Flávio; Moreira, Leonardo M.; Pinheiro, Antônio L. B.

    2011-08-01

    The use of LLLT in pain relief is a controversial issue in Physiotherapy, with the efficacy of LLLT associated to pain relief still requiring significant study. Objective. This work focuses on the evaluation of the effect of low power GaAs laser at 904 nm in pressure pain threshold and tolerance in tibia and deltoid muscle, respectively. A total of 17 subjects were divided in two groups: active and sham laser. Measurements were taken before and after laser irradiation in healthy individuals using a pressure algometry, first verifying the viability of algometry to evaluate the pain threshold and tolerance inter individuals and comparing the differences of right and left sides in the same patients, and finally evaluating the pain threshold and tolerance before and after a single laser application. Laser energy density was of 4.0 J/cm2 with power density of 137 mW/cm2. Comparing algometry values of active laser group and the sham group, the pain tolerance in the deltoid muscle did not change among groups after laser irradiation, while it was also encountered a statistically significant difference in the pain threshold in tibia when comparing the laser active and sham laser (p<0.05). It was found that the active laser was effective in maintaining the pain threshold in tibia. The effective laser action in raising the pain threshold in tibia upon healthy individuals can suggest that the laser could be applied not only as curative but also with preventive purpose.

  10. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  11. Tibiotalocalcaneal arthrodesis with a retrograde intramedullary nail: a biomechanical analysis of the effect of nail length.

    PubMed

    Noonan, Timothy; Pinzur, Michael; Paxinos, Odysseas; Havey, Robert; Patwardhin, Avinash

    2005-04-01

    Fatigue fractures of the tibia have been observed at the level of the proximal end of the nail after successful tibiocalcaneal arthrodesis with a retrograde intramedullary device. To study the effect of nail length, five matched pairs of cadaver tibiae were instrumented with strain gauges and potted in methylmethacrylate from a level 3 cm proximal to the distal medial malleolus to simulate a successful tibiocalcaneal arthrodesis. A standard length (15 cm) ankle arthrodesis nail and an identical longer device terminating in the proximal tibial metaphysis were inserted in each paired tibia using appropriate technique. The strain of the posterior cortex of the tibia was recorded under bending moments of up to 50 Nm for each intact specimen after nail insertion and after proximal locking of the nail. The nails were then exchanged between the specimens of the same pairs and the experiment was repeated to insure uniformity. The standard length locked nail increased the principal strain of the posterior cortex of the tibia at the level of the proximal screw holes 5.3 times more than the locked long nail (353 and 67 microstrains), respectively. This stress concentration was not observed when the proximal extent of the nail terminated within the proximal tibial metaphysis. A successful tibiocalcaneal arthrodesis with a standard length locked intramedullary nail creates stress concentration around the proximal screw holes that may be responsible for the fractures observed clinically. This study supports the use of a "long" retrograde locked intramedullary nail for tibiocalcaneal arthrodesis in patients with systemic or localized osteopenia.

  12. Distal tibia fractures: locked or non-locked plating? A systematic review of outcomes.

    PubMed

    Khalsa, Amrit S; Toossi, Nader; Tabb, Loni P; Amin, Nirav H; Donohue, Kenneth W; Cerynik, Douglas L

    2014-06-01

    Although plating is considered to be the treatment of choice in distal tibia fractures, controversies abound regarding the type of plating for optimal fixation. We conducted a systematic review to evaluate and compare the outcomes of locked plating and non-locked plating in treatment of distal tibia fractures. A systematic review was conducted using PubMed to identify articles on the outcomes of plating in distal tibia fractures that were published up to June 2012. We included English language articles involving a minimum of 10 adult cases with acute fractures treated using single-plate, minimally invasive techniques. Study-level binomial regression on the pooled data was conducted to determine the effect of locking status on different outcomes, adjusted for age, sex, and other independent variables. 27 studies met the inclusion criteria and were included in the final analysis of 764 cases (499 locking, 265 non-locking). Based on descriptive analysis only, delayed union was reported in 6% of cases with locked plating and in 4% of cases with non-locked plating. Non-union was reported in 2% of cases with locked plating and 3% of cases with non-locked plating. Comparing locked and non-locked plating, the odds ratio (OR) for reoperation was 0.13 (95% CI: 0.03-0.57) and for malalignment it was 0.10 (95% CI: 0.02-0.42). Both values were statistically significant. This study showed that locked plating reduces the odds of reoperation and malalignment after treatment for acute distal tibia fracture. Future studies should accurately assess causality and the clinical and economic impact of these findings.

  13. Bone Implant Interface Investigation by Synchrotron Radiation X-Ray Microfluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calasans-Maia, M.; Sales, E.; Lopes, R. T.

    2010-04-06

    Zinc is known to play a relevant role in growth and development; it has stimulatory effects on in vitro and in vivo bone formation and an inhibitory effect on in vitro osteoclastic bone resorption. The inorganic component of the bone tissue is nonstoichiometric apatite; changes in the composition of hidroxyapatite are subject of studies in order to improve the tissue response after implantation. The objective of this study was to investigate the effect of 0.5% zinc-containing hydroxyapatite in comparison to hydroxyapatite on osseous repair of rabbit's tibia. Cylinders (2x6 mm) of both materials were produced according to the specification ofmore » the International Organization for Standardization. Ethics Commission on Teaching and Research in Animals approved this project (HUAP-195/06). Fifteen White New Zealand rabbits were submitted to general anesthesia and two perforations (2 mm) were made in each tibia for implantation of zinc-containing hydroxyapatite cylinders (left tibia) and hydroxyapatite cylinders (right tibia). After 1, 2 and 4 weeks, the animals were killed and one fragment of each tibia with the cylinder was collected and embedded in a methacrylate-based resin and cut into slices (approx200 {mu}m thickness), parallel to the implant's long axis with a precision diamond saw for Synchrotron Radiation X-ray Microfluorescence investigation. The accomplishment of the standard procedures helped the planning, execution and the comparative analysis of the results. The chemical and physical properties of the biomaterials were modified after its implantation and the incorporation of zinc. Both materials are biocompatible and promote osteoconduction and favored bone repair.« less

  14. Studies on magnetocaloric and magnetic coupling effects =

    NASA Astrophysics Data System (ADS)

    Amaral, Joao Cunha de Sequeira

    O presente trabalho apresenta novas metodologias desenvolvidas para a analise das propriedades magneticas e magnetocaloricas de materiais, sustentadas em consideracoes teoricas a partir de modelos, nomeadamente a teoria de transicoes de fase de Landau, o modelo de campo medio molecular e a teoria de fenomeno critico. Sao propostos novos metodos de escala, permitindo a interpretacao de dados de magnetizacao de materiais numa perspectiva de campo medio molecular ou teoria de fenomeno critico. E apresentado um metodo de estimar a magnetizacao espontanea de um material ferromagnetico a partir de relacoes entropia/magnetizacao estabelecidas pelo modelo de campo medio molecular. A termodinamica das transicoes de fase magneticas de primeira ordem e estudada usando a teoria de Landau e de campo medio molecular (modelo de Bean-Rodbell), avaliando os efeitos de fenomenos fora de equilibrio e de condicoes de mistura de fase em estimativas do efeito magnetocalorico a partir de medidas magneticas. Efeitos de desordem, interpretados como uma distribuicao na interaccao magnetica entre ioes, estabelecem os efeitos de distribuicoes quimicas/estruturais nas propriedades magneticas e magnetocaloricas de materiais com transicoes de fase de segunda e de primeira ordem. O uso das metodologias apresentadas na interpretacao das propriedades magneticas de variados materiais ferromagneticos permitiu obter: 1) uma analise quantitativa da variacao de spin por iao Gadolinio devido a transicao estrutural do composto Gd5Si2Ge2, 2) a descricao da configuracao de cluster magnetico de ioes Mn na fase ferromagnetica em manganites da familia La-Sr e La-Ca, 3) a determinacao dos expoentes criticos β e δ do Niquel por metodos de escala, 4) a descricao do efeito da pressao nas propriedades magneticas e magnetocaloricas do composto LaFe11.5Si1.5 atraves do modelo de Bean-Rodbell, 5) uma estimativa da desordem em manganites ferromagneticas com transicoes de segunda e primeira ordem, 6) uma descricao de campo medio das propriedades magneticas da liga Fe23Cu77, 7) o estudo de efeitos de separacao de fase na familia de compostos La0.70-xErxSr0.30MnO3 e 8) a determinacao realista da variacao de entropia magnetica na familia de compostos de efeito magnetocalorico colossal Mn1-x-yFexCryAs.

  15. Computer-assisted oblique single-cut rotation osteotomy to reduce a multidirectional tibia deformity: case report.

    PubMed

    Dobbe, J G G; du Pré, K J; Blankevoort, L; Streekstra, G J; Kloen, P

    2017-08-01

    The correction of multiplanar deformity is challenging. We describe preoperative 3-D planning and treatment of a complex tibia malunion using an oblique single-cut rotation osteotomy to correct deformity parameters in the sagittal, coronal and transverse plane. At 5 years postoperatively, the patient ambulates without pain with a well-aligned leg.

  16. Evaluation of the Mangled Extremity Severity Score in Combat-Related Type III Tibia Fracture

    DTIC Science & Technology

    2014-09-01

    Return to duty rates of amputee soldiers in the current conflicts in Afghanistan and Iraq. J Trauma. 2010; 68:1476–1479. 5. Johansen K, Daines M, Howey T...severity score (MESS) in combat related type III tibia fracture. J Orthop Trauma. 2013. 4. Johansen K, Daines M, Howey T, et al. Objective criteria

  17. Joint angles of the ankle, knee, and hip and loading conditions during split squats.

    PubMed

    Schütz, Pascal; List, Renate; Zemp, Roland; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2014-06-01

    The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject's movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed < 25% when split squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.

  18. Autologous platelet lysates local injections for treatment of tibia non-union with breakage of the nickelclad: a case report.

    PubMed

    Jiang, Hong-Jiang; Tan, Xun-Xiang; Ju, Hai-Yang; Su, Jin-Ping; Yan, Wei; Song, Xiu-Gang; Qin, Li-Wu; Ju, Chang-Jun; Wang, Ling-Shuang; Zou, De-Bao

    2016-01-01

    Nonunions of the tibia represent challenging orthopedic problems, which require the surgeon to analyze numerous factors and choose an appropriate treatment. This article presents a case report of tibia and fibula fracture patient who failed the internal fixation surgery and successfully recovered after one course of percutaneous autologous platelet lysates injection. The patient received an internal nickelclad breakage at 9 months post-surgery but reluctant to accept a second surgery, then autologous platelet lysates (APL) injection which is a less invasive method was recommended. The injections were carried once a week for three times. Radiologic evaluation was conducted every month until recovery. To the best of our knowledge, this is the first reported case of tibia delayed union with breakage of the plate resolved with APL injection. Improved clinical evidence was observed at 4 and 6 months after injection. The patient got good bony union at 8 months post-injection. The patient didn't feel any discomfort postinjection, no complications such as infection, refracture etc. were observed. APL percutaneous injection could be a new therapeutic option for the treatment of nonunion or delayed healing fractures.

  19. Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples.

    PubMed

    Tarniţă, Daniela; Tarniţă, D N; Popa, D; Grecu, D; Tarniţă, Roxana; Niculescu, D; Cismaru, F

    2010-01-01

    The shape memory alloys exhibit a number of remarkable properties, which open new possibilities in engineering and more specifically in biomedical engineering. The most important alloy used in biomedical applications is NiTi. This alloy combines the characteristics of the shape memory effect and superelasticity with excellent corrosion resistance, wear characteristics, mechanical properties and a good biocompatibility. These properties make it an ideal biological engineering material, especially in orthopedic surgery and orthodontics. In this work, modular plates for the osteosynthesis of the long bones fractures are presented. The proposed modular plates are realized from identical modules, completely interchangeable, made of titanium or stainless steel having as connecting elements U-shaped staples made of Nitinol. Using computed tomography (CT) images to provide three-dimensional geometric details and SolidWorks software package, the three dimensional virtual models of the tibia bone and of the modular plates are obtained. The finite element models of the tibia bone and of the modular plate are generated. For numerical simulation, VisualNastran software is used. Finally, displacements diagram, von Misses strain diagram, for the modular plate and for the fractured tibia and modular plate ensemble are obtained.

  20. [Tibia reconstruction using cross-leg pedicled fibular flaps: report of two cases].

    PubMed

    Molski, M

    2000-01-01

    The paper presents the results of treatment of two children with cross-leg pedicle fibular flaps. A boy (10 years old) was operated because of an extensive defect of the proximal tibial shaft (15 cm) and soft tissue deficit due to osteosarcoma. He had been previously operated several times: tumor resection with chemiotherapy, bone reconstruction using allografts and two other procedures because of inflammatory complications. The second case was a 9-year old girl who underwent an extensive excision of congenital pseudoarthrosis of the tibia due to neurofibroma and reconstruction of the further fragment of the tibia. Vascularized fibula was nailed deep into the tibial shaft, beyond the previously implanted metal elements. This allowed to maintain a correct axis of the limb, a firm stabilization of the transplant and probably evoked a quick periosteal reaction of the tibia. Plaster of Paris was used to immobilize the limb. Postoperative course showed no complications. The flap pedicle was cut off after 3-4 weeks. Progressive bone healing followed by bony hypertrophy was observed after 8 weeks. The children were able to fully load the operated extremities and ambulate without crutches (the boys 12 months post-surgery and the girl 6 months post-surgery).

  1. Synchronous symmetrical atypical osteoid osteoma of tibia: a case report.

    PubMed

    Sreenivas, T; Menon, Jagdish; Nataraj, A R

    2012-11-01

    We report a case of synchronous symmetrical osteoid osteoma of tibia which was atypical in its appearance on imaging. Our patient was a 30-year-old woman presented with 2 years history of bilateral leg pain more on the right side. The pain was more during night and relieved on taking salicylates. Laboratory investigations were within normal limits. Radiographs and computed tomography revealed bilateral focal irregular cortical sclerosis with narrowing of medullary canal of mid tibia. The lesion on right side was excised enbloc followed by the lesion on left side 3 months later and histologically confirmed as osteoid osteoma. Initially, we thought it was stress fracture or subacute osteomyelitis but it was in fact histopathology which showed osteoid osteoma. Patient was completely asymptomatic postoperatively.

  2. The effects of chronic alcohol consumption and exercise on the skeleton of adult male rats

    NASA Technical Reports Server (NTRS)

    Reed, Adam H.; McCarty, Heidi L.; Evans, Glenda L.; Turner, Russell T.; Westerlind, Kim C.

    2002-01-01

    BACKGROUND: Lifestyle factors are known to affect skeletal development and integrity. Specifically, running has been reported to increase risk of fatigue fractures, whereas chronic alcohol consumption has been shown to reduce bone formation and bone mass. The combined effect of exercise and alcohol on the skeleton has yet to be explored, although alcohol consumption is common among certain physically active populations (e.g., military recruits, college athletes). It was hypothesized that chronic alcohol consumption would accentuate the inherent risk associated with endurance running exercise. METHODS: Six-month-old male Sprague Dawley rats were assigned to one of five groups: baseline, exercise-alcohol diet, exercise-normal diet, sham-alcohol diet, and sham-normal diet. Alcohol-fed rats (35% caloric intake) received a liquid diet ad libitum. Normal animals were pair-fed the identical diet with a maltose dextrin caloric substitute. Exercise was conducted on a motorized treadmill 5 days/wk for 16 weeks. Sham rats were placed on a stationary treadmill for matching time periods. Fluorochrome labels were administered 3 days before baseline and at 10 and 2 days before animals were killed. Heart, soleus, and rectus femoris muscles were wet weighed to assess the effects of training. Tibiae were collected for static and dynamic histomorphometric measurements on cancellous and cortical bone. RESULTS: Muscle weights were larger in the exercised rats versus the sham rats. Alcohol had no significant effect on skeletal muscle weight but did result in larger heart weights in both alcohol-treated groups. Cancellous and periosteal bone formation rates were significantly decreased in the alcohol-fed rats versus rats on the normal diet and were associated with a significant reduction in trabecular thickness in the tibial metaphysis. Cortical and cross-sectional areas were also significantly lower in the alcohol-fed groups compared with the non-alcohol-fed groups. Exercise had no significant effect on cancellous or cortical bone measurements. CONCLUSIONS: Chronic alcohol consumption significantly reduced bone formation. Exercise had no effect on the bone and did not attenuate any of the negative effects of alcohol. The results suggest that alcohol consumption weakens the skeleton and increases the incidence of endurance-exercise-related bone injuries. Thus, individuals who are participating in endurance exercise and consuming alcohol may be at greater risk for exercise-related skeletal injuries. Further investigation of the potential for alcohol to induce detrimental effects on the hearts of individuals participating in endurance exercise is indicated.

  3. Tibial tunnel aperture irregularity after drilling with 5 reamer designs: a qualitative micro-computed tomography analysis.

    PubMed

    Geeslin, Andrew G; Jansson, Kyle S; Wijdicks, Coen A; Chapman, Mark A; Fok, Alex S; LaPrade, Robert F

    2011-04-01

    There is limited information in the literature on comparisons of antegrade versus retrograde reaming techniques and the effect on the creation of anterior cruciate ligament (ACL) tibial tunnel entry and exit apertures. Proximal and distal apertures of ACL tibial tunnels, as created with different reamers, will be affected by type of reamer design. Controlled laboratory study. Forty skeletally mature porcine tibias with bone mineral density values comparable with a young athletic population were included in this study. Five 9-mm reamer models were used (3 antegrade: A1, smooth-bore reamer; A2, acorn-head reamer; A3, flat-head reamer; 2 retrograde: R1, retrograde acorn reamer; R2, single-blade retrograde reamer), and a new reamer was used for each tibia (8 reamer-tibia pairs per reamer model). All specimens underwent micro-computed tomography scanning, and images were reconstructed and analyzed using 3-dimensional image analysis software. Aperture rim fractures were graded on a 0-IV scale that described the proportion of the fractured aperture circumference. Specimens with incomplete apertures were also recorded. Because of the unique characteristics of various tunnels, intratunnel characteristics were observed and recorded. In sum, 1 proximal and 7 distal aperture rim fractures were found; 3, 0, and 4 distal aperture rim fractures were found with groups A1, A2, and A3, respectively. Incomplete apertures were more commonly found at the distal aperture (n = 15) than the proximal aperture (n = 8); there were no tibias with this finding at both apertures. All incomplete distal apertures occurred with the retrograde technique, and all incomplete proximal apertures occurred with the antegrade technique, most commonly with reamer design A3. An added finding of tunnel curvature at the distal aspect of the tunnel was observed in all 8 tibias with R1 reamers and 5 tibias with R2 reamers. This phenomenon was not observed in any of the tibias reamed with the antegrade technique. Anterior cruciate ligament tibial tunnel aperture characteristics were highly dependent on reamer design. Optimal proximal aperture characteristics were produced by the retrograde reamers, whereas optimal distal aperture characteristics were obtained with the antegrade reamers. In addition, a phenomenon of tunnel curvature in retrograde-type reamers was found, which may have effects on ACL graft or screw fixation. Differences in tunnel aperture shapes and fractures depend on reamer design. This information is important for the creation of ACL reconstruction tunnels with different reamer designs.

  4. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    PubMed

    Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity exercised a positive effect in healthy control joints, which increased cartilage sGAG content. More research on this topic might lead to novel insights as to improve cartilage quality. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The wakefulness promoting drug Modafinil causes adenosine receptor-mediated upregulation of receptor activator of nuclear factor κB ligand in osteoblasts: Negative impact of the drug on peak bone accrual in rats.

    PubMed

    Pal China, Shyamsundar; Pal, Subhashis; Chattopadhyay, Sourav; Porwal, Konica; Mittal, Monika; Sanyal, Sabyasachi; Chattopadhyay, Naibedya

    2018-06-01

    Modafinil is primarily prescribed for treatment of narcolepsy and other sleep-associated disorders. However, its off-prescription use as a cognition enhancer increased considerably, specially among youths. Given its increasing use in young adults the effect of modafinil on peak bone accrual is an important issue but has never been investigated. Modafinil treatment to young male rats caused trabecular and cortical bone loss in tibia and femur, and reduction in biomechanical strength. Co-treatment of modafinil with alendronate (a drug that suppresses bone resorption) reversed the trabecular bone loss but failed to prevent cortical loss. Modafinil increased serum type 1 pro-collagen N-terminal protein (P1NP) and collagen type 1 cross-linked C-telopeptide (CTX-1) indicating a high turnover bone loss. The drug also increased receptor activator of nuclear factor κB ligand (RANKL) to osteoprotegerin (OPG) ratio in serum which likely resulted in increased osteoclast number per bone surface. Furthermore, conditioned medium from modafinil treated osteoblasts increased the expression of osteoclastogenic genes in bone marrow-derived macrophages and the effect was blocked by RANKL neutralizing antibody. In primary osteoblasts, modafinil stimulated cAMP production and using pharmacological approach, we showed that modafinil signalled via adenosine receptors (A 2A R and A 2B R) which resulted in increased RANKL expression. ZM-241,385 (an A 2A R inhibitor) and MRS 1754 (an A 2B R inhibitor) suppressed modafinil-induced upregulation of RANKL/OPG ratio in the calvarium of new born rat pups. Our data suggests that by activating osteoblast adenosine receptors modafinil increases the production of osteoclastogenic cytokine, RANKL that in turn results in high turnover bone loss in young rats. Copyright © 2018. Published by Elsevier Inc.

  6. Description of osteomyelitis lesions associated with Actinomyces pyogenes infection in the proximal tibia of adult male turkeys.

    PubMed

    Brinton, M K; Schellberg, L C; Johnson, J B; Frank, R K; Halvorson, D A; Newman, J A

    1993-01-01

    Actinomyces pyogenes was isolated from osteomyelitis lesions from the proximal tibia of mature tom turkeys. Gram-stained impression smears of the lesions resulted in bacteria that appeared as club-shaped, gram-positive pleomorphic rods. The bacteria grew better in a reduced-oxygen environment. The lesions were well demarcated and cavernous, ranging from purulent to caseous in consistency.

  7. Feedback Control for Functional Electrical Stimulation of Paralyzed Muscle.

    DTIC Science & Technology

    1981-03-01

    and pubic symphysis. Insertion - tibia and fascia of shank. Action - adducts the leg. 3. Iliopsoas - a triangular shaped muscle which is caudal to the...first caudal vertebrae. Insertion - fascia lata and greater throchanter of femur. Action - abducts thigh. 6. Caudofemoralis - band of muscle posterior...and extends shank. 7. Biceps femoris - very broad mscle posterior to the fascia lata. Origin - tiiherositv of ishium. Insertion - patella, tibia, and

  8. Development of a Novel Synthetic Drug for Osteoporosis and Fracture Healing

    DTIC Science & Technology

    2015-11-01

    Four-point bending setup for mechanical testing. (C & D) X-ray images of the fractured tibiae. Of note, a stainless steel rod was inserted in the...respectively. Figure 15. Mechanical strength 4 weeks after fracture induction for experiment 1. (A) Force- displacement relationship for the hydrogel...University Purdue University Indianapolis, Indianapolis, IN 46202, USA Keywords: bone fracture , tibia, salubrinal, hydrogel, mechanical test Running

  9. Bilateral trampoline fracture of the proximal tibia in a child.

    PubMed

    Arkink, Enrico B; van der Plas, Annelies; Sneep, Ruth W; Reijnierse, Monique

    2017-12-01

    Trampoline fractures are transversely oriented impaction fractures of the proximal tibia sustained by young children jumping on a trampoline. Unaware of the mechanism of this specific nontraumatic fracture, physicians may fail to detect these fractures on plain radiographs, as radiological findings may be very subtle. In this case report, we present a rare case of bilateral trampoline fractures with an explanation of the trauma mechanism.

  10. Loss of bone sialoprotein leads to impaired endochondral bone development and mineralization.

    PubMed

    Holm, Erik; Aubin, Jane E; Hunter, Graeme K; Beier, Frank; Goldberg, Harvey A

    2015-02-01

    Bone sialoprotein (BSP) is an anionic phosphoprotein in the extracellular matrix of mineralized tissues, and a promoter of biomineralization and osteoblast development. Previous studies on the Bsp-deficient mouse (Bsp(-/-)) have demonstrated a significant bone and periodontal tissue phenotype in adulthood. However, the role of BSP during early long bone development is not known. To address this, early endochondral ossification in the Bsp(-/-) mouse was studied. Embryonic day 15.5 (E15.5) wild-type (WT) tibiae showed early stages of ossification that were absent in Bsp(-/-) mice. At E16.5, mineralization had commenced in the Bsp(-/-) mice, but staining for mineral was less intense and more dispersed compared with that in WT controls. Tibiae from Bsp(-/-) mice also demonstrated decreased mineralization and shortened length at postnatal day 0.5 (P0.5) compared to WT bones. There was no detectable difference in the number of tartrate-resistant acid phosphatase-positive foci at P0.5, although the P0.5 Bsp(-/-) tibiae had decreased Vegfα expression compared with WT tissue. Due to the shortened tibiae the growth plates were examined and determined to be of normal overall length. However, the length of the resting zone was increased in P0.5 Bsp(-/-) tibiae whereas that of the proliferative zone was decreased, with no change in the hypertrophic zone length of Bsp(-/-) mice. A reduction in cells positive for Ki-67, an S-phase cell-cycle marker, was noted in the proliferative zone. Decreased numbers of TUNEL-positive hypertrophic chondrocytes were also apparent in the Bsp(-/-) tibial growth plates, suggesting decreased apoptosis. Expression of the osteogenic markers Alp1, Col1a1, Sp7, Runx2, and Bglap was reduced in the endochondral bone of the neonatal Bsp(-/-) compared to WT tibiae. These results suggest that BSP is an important and multifaceted protein that regulates both chondrocyte proliferation and apoptosis as well as transition from cartilage to bone during development of endochondral bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Loading-related regulation of gene expression in bone in the contexts of estrogen deficiency, lack of estrogen receptor α and disuse

    PubMed Central

    Zaman, Gul; Saxon, Leanne K.; Sunters, Andrew; Hilton, Helen; Underhill, Peter; Williams, Debbie; Price, Joanna S.; Lanyon, Lance E.

    2010-01-01

    Loading-related changes in gene expression in resident cells in the tibia of female mice in the contexts of normality (WT), estrogen deficiency (WT-OVX), absence of estrogen receptor α (ERα−/−) and disuse due to sciatic neurectomy (WT-SN) were established by microarray. Total RNA was extracted from loaded and contra-lateral non-loaded tibiae at selected time points after a single, short period of dynamic loading sufficient to engender an osteogenic response. There were marked changes in the expression of many genes according to context as well as in response to loading within those contexts. In WT mice at 3, 8, 12 and 24 h after loading the expression of 642, 341, 171 and 24 genes, respectively, were differentially regulated compared with contra-lateral bones which were not loaded. Only a few of the genes differentially regulated by loading in the tibiae of WT mice have recognized roles in bone metabolism or have been linked previously to osteogenesis (Opn, Sost, Esr1, Tgfb1, Lrp1, Ostn, Timp, Mmp, Ctgf, Postn and Irs1, BMP and DLX5). The canonical pathways showing the greatest loading-related regulation were those involving pyruvate metabolism, mitochondrial dysfunction, calcium-induced apoptosis, glycolysis/gluconeogenesis, aryl hydrocarbon receptor and oxidative phosphorylation. In the tibiae from WT-OVX, ERα−/− and WT-SN mice, 440, 439 and 987 genes respectively were differentially regulated by context alone compared to WT. The early response to loading in tibiae of WT-OVX mice involved differential regulation compared to their contra-lateral non-loaded pair of fewer genes than in WT, more down-regulation than up-regulation and a later response. This was shared by WT-SN. In tibiae of ERα−/− mice, the number of genes differentially regulated by loading was markedly reduced at all time points. These data indicate that in resident bone cells, both basal and loading-related gene expression is substantially modified by context. Many of the genes differentially regulated by the earliest loading-related response were primarily involved in energy metabolism and were not specific to bone. PMID:19857613

  12. Platelet derived growth factor secretion and bone healing after Er:YAG laser bone irradiation.

    PubMed

    Kesler, Gavriel; Shvero, Dana Kesler; Tov, Yariv Siman; Romanos, George

    2011-03-01

    Er:YAG laser irradiation has been reported to enhance wound healing. However, no studies have evaluated the synthesis of growth factors after laser irradiation. The present study investigated the effects of laser irradiation on the amount of secretion of platelet derived growth factor (PDGF) in the wound, clarifying the effects of the Er:YAG laser on the bone healing. Osteotomies were prepared in the tibiae of 28 rats using an Er:YAG laser (test group). Maximum power of 8 watts, energy per pulse of 700 mJ, and frequency up to 50 Hz were used. The laser was used with external water irrigation, a spot size of 2 mm, energy per pulse of 500 to 1000 mJ/pulse, and energy density of 32 J/cm(2). Twenty eight additional rats served as a control group and their osteotomies were prepared with a drill 1.3 mm in diameter at 1000 rpm, with simultaneous saline irrigation. Two rats from the tested group and 2 from the control group were sacrificed on each day following surgery (1-14 days), and the tissue specimens were prepared for histologic evaluation. Immunohistochemical staining with anti-PDGF was performed after histologic examination. The difference between the PDGF staining intensities of the 2 treatment groups was analyzed using a multivariate logistic regression test. A significant rise in PDGF staining occurred in both groups 2-3 days following surgery. However, while high PDGF counts remained for the 2-week experimental period in the laser group, PDGF levels in the control group returned to baseline levels 8 days post surgery. The 2 groups (laser and control) were found to be different throughout the experiment, and the rat type was found to be a significant predictor (P  =  .000011). The present study demonstrated that Er:YAG laser irradiation seems to stimulate the secretion of PDGF in osteotomy sites in a rat model. It is possible that the high levels of PDGF are part of the mechanism that Er:YAG irradiation enhances and improves the healing of osteotomy sites.

  13. Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.

    1994-01-01

    Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.

  14. Analysis of Dextromethorphan and Dextrorphan in Skeletal Remains Following Decomposition in Different Microclimate Conditions.

    PubMed

    Unger, K A; Watterson, J H

    2016-10-01

    The effects of decomposition microclimate on the distribution of dextromethorphan (DXM) and dextrorphan (DXT) in skeletonized remains of rats acutely exposed to DXM were examined. Animals (n = 10) received DXM (75 mg/kg, i.p.), were euthanized 30 min post-dose and immediately allowed to decompose at either Site A (shaded forest microenvironment on a grass-covered soil substrate) or Site B (rocky substrate exposed to direct sunlight, 600 m from Site A). Ambient temperature and relative humidity were automatically recorded 3 cm above rats at each site. Skeletal elements (vertebral columns, ribs, pelvic girdles, femora, tibiae, humeri and scapulae) were harvested, and analyzed using microwave assisted extraction, microplate solid phase extraction, and GC/MS. Drug levels, expressed as mass-normalized response ratios, and the ratios of DXT and DXM levels were compared across bones and between microclimate sites. No significant differences in DXT levels or metabolite/parent ratios were observed between sites or across bones. Only femoral DXM levels differed significantly between microclimate sites. For pooled data, microclimate was not observed to significantly affect analyte levels, nor the ratio of levels of DXT and DXM. These data suggest that microclimate conditions do not influence DXM and metabolite distribution in skeletal remains. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The influence of body position and microclimate on ketamine and metabolite distribution in decomposed skeletal remains.

    PubMed

    Cornthwaite, H M; Watterson, J H

    2014-10-01

    The influence of body position and microclimate on ketamine (KET) and metabolite distribution in decomposed bone tissue was examined. Rats received 75 mg/kg (i.p.) KET (n = 30) or remained drug-free (controls, n = 4). Following euthanasia, rats were divided into two groups and placed outdoors to decompose in one of the three positions: supine (SUP), prone (PRO) or upright (UPR). One group decomposed in a shaded, wooded microclimate (Site 1) while the other decomposed in an exposed sunlit microclimate with gravel substrate (Site 2), roughly 500 m from Site 1. Following decomposition, bones (lumbar vertebrae, thoracic vertebra, cervical vertebrae, rib, pelvis, femora, tibiae, humeri and scapulae) were collected and sorted for analysis. Clean, ground bones underwent microwave-assisted extraction using acetone : hexane mixture (1 : 1, v/v), followed by solid-phase extraction and analysis using GC-MS. Drug levels, expressed as mass normalized response ratios, were compared across all bone types between body position and microclimates. Bone type was a main effect (P < 0.05) for drug level and drug/metabolite level ratio for all body positions and microclimates examined. Microclimate and body position significantly influenced observed drug levels: higher levels were observed in carcasses decomposing in direct sunlight, where reduced entomological activity led to slowed decomposition. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Systemic Treatment with Strontium Ranelate Accelerates the Filling of a Bone Defect and Improves the Material Level Properties of the Healing Bone

    PubMed Central

    Zacchetti, Giovanna; Rizzoli, René

    2014-01-01

    Rapid bone defect filling with normal bone is a challenge in orthopaedics and dentistry. Strontium ranelate (SrRan) has been shown to in vitro decrease bone resorption and increase bone formation, and represents a potential agent with the capacity to accelerate bone defect filling. In this study, bone tibial defects of 2.5 mm in diameter were created in 6-month-old female rats orally fed SrRan (625 mg/kg/d; 5/7 days) or vehicle for 4, 8, or 12 weeks (10 rats per group per time point) from the time of surgery. Tibias were removed. Micro-architecture was determined by micro-computed tomography (µCT) and material level properties by nanoindentation analysis. µCT analysis showed that SrRan administration significantly improved microarchitecture of trabecular bone growing into the defect after 8 and 12 weeks of treatment compared to vehicle. SrRan treatment also accelerated the growth of cortical bone over the defect, but with different kinetics compared to trabecular bone, as the effects were already significant after 4 weeks. Nanoindentation analysis demonstrated that SrRan treatment significantly increased material level properties of both trabecular bone and cortical bone filling the defect compared to vehicle. SrRan accelerates the filling of bone defect by improving cortical and trabecular bone microarchitecture both quantitatively and qualitatively. PMID:25243150

  17. Bone assessment via thermal photoacoustic measurements

    NASA Astrophysics Data System (ADS)

    Feng, Ting; Kozloff, Kenneth M.; Hsiao, Yi-Sing; Tian, Chao; Perosky, Joseph; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-03-01

    The feasibility of an innovative biomedical diagnostic technique, thermal photoacoustic (TPA) measurement, for nonionizing and non-invasive assessment of bone health is investigated. Unlike conventional photoacoustic PA methods which are mostly focused on the measurement of absolute signal intensity, TPA targets the change in PA signal intensity as a function of the sample temperature, i.e. the temperature dependent Grueneisen parameter which is closely relevant to the chemical and molecular properties in the sample. Based on the differentiation measurement, the results from TPA technique is less susceptible to the variations associated with sample and system, and could be quantified with improved accurately. Due to the fact that the PA signal intensity from organic components such as blood changes faster than that from non-organic mineral under the same modulation of temperature, TPA measurement is able to objectively evaluate bone mineral density (BMD) and its loss as a result of osteoporosis. In an experiment on well established rat models of bone loss and preservation, PA measurements of rat tibia bones were conducted over a temperature range from 370 C to 440 C. The slope of PA signal intensity verses temperature was quantified for each specimen. The comparison among three groups of specimens with different BMD shows that bones with lower BMD have higher slopes, demonstrating the potential of the proposed TPA technique in future clinical management of osteoporosis.

  18. Infection after fracture fixation of the tibia: Analysis of healthcare utilization and related costs.

    PubMed

    Metsemakers, Willem-Jan; Smeets, Bart; Nijs, Stefaan; Hoekstra, Harm

    2017-06-01

    One of the most challenging complications in musculoskeletal trauma surgery is the development of infection after fracture fixation (IAFF). It can delay healing, lead to permanent functional loss, or even amputation of the affected limb. The main goal of this study was to investigate the total healthcare costs and length-of-stay (LOS) related to the surgical treatment of tibia fractures and furthermore identify the subset of clinical variables driving these costs within the Belgian healthcare system. The hypothesis was that deep infection would be the most important driver for total healthcare costs. Overall, 358 patients treated operatively for AO/OTA type 41, 42, and 43 tibia fractures between January 1, 2009 and January 1, 2014 were included in this study. A total of 26 clinical and process variables were defined. Calculated costs were limited to hospital care covered by the Belgian healthcare financing system. The five main cost categories studied were: honoraria, materials, hospitalization, day care admission, and pharmaceuticals. Multivariate analysis showed that deep infection was the most significant characteristic driving total healthcare costs and LOS related to the surgical treatment of tibia fractures. Furthermore, this complication resulted in the highest overall increase in total healthcare costs and LOS. Treatment costs were approximately 6.5-times higher compared to uninfected patients. This study shows the enormous hospital-related healthcare costs associated with IAFF of the tibia. Treatment costs for patients with deep infection are higher than previously mentioned in the literature. Therefore, future research should focus more on prevention rather than treatment strategies, not only to reduce patient morbidity but also to reduce the socio-economic impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect on dynamic mechanical stability and interfragmentary movement of angle-stable locking of intramedullary nails in unstable distal tibia fractures: a biomechanical study.

    PubMed

    Gueorguiev, Boyko; Wähnert, Dirk; Albrecht, Daniel; Ockert, Ben; Windolf, Markus; Schwieger, Karsten

    2011-02-01

    Unstable distal tibia fractures are challenging injuries that require surgery. Increasingly, intramedullary nails are being used. However, fracture site anatomy may cause distal-fragment stabilization and fixation problems and lead to malunion/nonunion. We studied the influence of angle-stable nail locking on fracture gap movement and other biomechanical parameters. Eight pairs of fresh human cadaver tibiae were used. The bone mineral density (BMD) was determined. All tibiae were nailed with a Synthes Expert tibial nail. Within each pair, one tibia was randomized to receive conventional locking screws; the other, angle-stable screws with sleeves. A 7-mm osteotomy was created 10 mm above the upper distal locking screw, to simulate an AO 42-A3 fracture. Biomechanical testing involved nondestructive mediolateral and anteroposterior pure bending, followed by cyclic combined axial and torsional loading to catastrophic failure. The neutral zone was determined. Fracture gap movement was monitored with 3-D motion tracking. The angle-stable locked constructs had a significantly smaller mediolateral neutral zone (mean: 0.04 degree; p=0.039) and significantly smaller fracture gap angulation (p=0.043). The number of cycles to failure did not differ significantly between the locking configurations. BMD was a significant covariate affecting the number of cycles to failure (p=0.008). However, over the first 20,000 cycles, there was no significant correlation in the angle-stable construct. Angle-stable locking of the Expert tibial nail was associated with a significant reduction in the mediolateral neutral zone and in fracture gap movement. Angle-stable fixation also reduced the influence of BMD over the first 20,000 cycles.

  20. [Ankle arthrodesis for congenital absence of the fibula].

    PubMed

    Exner, G Ulrich

    2005-10-01

    Bilateral congenital absence of the fibula in a 10-year-old boy. A marked valgus malalignment at the left ankle and a foot with three rays caused pain during standing and walking. Ortheses did not help. Therefore, various treatment options were considered such as amputation of the foot, a supramalleolar correction osteotomy, and a tibiotalar arthrodesis. Correction of malalignment and ankle arthrodesis stabilized with an external mini-fixator while sparing the distal tibial physis. Two skin incisions: one on the medial side visualizing the flexor tendons and the neurovascular bundle while sparing the sural nerve and the small saphenous vein. Exposure of the medial malleolus after division of its ligamentous and capsular attachments. Localization of the ankle joint. The second incision on the lateral side. Z-lengthening of the sole peroneal tendon. Opening of the ankle joint at the lateral and anterior aspect. Resection of the articular surfaces of tibia and talus based on a preoperatively made drawing that showed an alignment of the hindfoot with the longitudinal axis of the tibia and the foot in 90 degrees in relation to the leg. Temporary insertion of a Kirschner wire from the sole of the foot into the tibia to maintain the obtained correction. Placement of a mini-fixator: one threaded Kirschner wire crosses the talocalcaneal synostosis, the second the distal tibial epiphysis, and the third one the proximal third of the tibia. Once the frame is mounted, compression of the resection surfaces and slight distraction between the proximal and middle Kirschner wires. At the age of 16 years the boy is able to use a regular shoe with an orthotic insert; he is pain-free and can participate in all daily activities. The growth of the tibia has not been affected.

  1. Impact of oral ibandronate 150 mg once monthly on bone structure and density in post-menopausal osteoporosis or osteopenia derived from in vivo μCT.

    PubMed

    Bock, Oliver; Börst, Hendrikje; Beller, Gisela; Armbrecht, Gabriele; Degner, Corina; Martus, Peter; Roth, Heinz-Jürgen; Felsenberg, Dieter

    2012-01-01

    The effect of ibandronate 150 mg/once monthly in the treatment of post-menopausal osteopenia and osteoporosis on bone micro-structure at the distal tibia and radius has not been considered to date. Seventy post-menopausal women with osteoporosis or osteopenia were recruited. All subjects received calcium and vitamin D supplementation and were randomized to either a group which took 150 mg ibandronate oral monthly or a placebo group over a 12-month period. μCT measures of the distal tibia and radius were conducted every three months, with DXA lumbar spine and hip measurements conducted only pre and post and serum markers of bone formation and resorption measured every 6 months. After 12-months no significant impact of ibandronate on the primary outcome measures bone-volume to tissue-volume and trabecular separation at the distal tibia (p≥0.15) was found. Further multiple regression analyses of the primary end-points indicated a significant effect favoring the ibandronate intervention (p=0.045). Analysis of secondary end-points showed greater increases in distal tibia cortical thickness, cortical density and total density (p≤0.043) with ibandronate and no significant effects at the distal radius, but greater increases of hip DXA-BMD and lumbar spine DXA-BMD (p≤0.017). Ibandronate use resulted in a marked reduction in bone turnover (p<0.001). While ibandronate resulted in greater mineralization of bone, this effect differed from one body region to another. There was some impact of ibandronate on bone structure (cortical thickness) at the distal tibia, but not on bone-volume to tissue-volume or trabecular separation. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Differences in Mechanical Properties of the Human and Monkey Tibia

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Hutchinson, T. M.; Bakulin, A. V.; Rahkmanov, A. S.; Steele, C. R.; Hargens, Alan R. (Technical Monitor)

    1996-01-01

    A method which uses an instrument that detects the response of a long bone to a vibratory stimulus to quantify mechanical properties non-invasively was revised and validated for use in the tibia. Stored data from healthy men was reanalyzed and compared with values from non-human primates. The analysis uses the relationship K(sub b) = 48 EI/L(sup 3) where K(sub b) is the lateral stiffness of a beam with force applied midspan, E is the elastic modulus, I the geometric moment of inertia and L, the limb length. Values for stiffness (EI, Nm(sup2)), the Euler buckling load (P(sub cr) = EI (pi/L)(sup 2)), and bone sufficiency (S) which represents the axial load the bone can support, adjusted to BW (S=P(sub cr)/BW) were obtained. The interest precision of the method in relaxed men, 5.8%, and in sedated male monkeys, 4.3%, was based on repeated measures in the same subjects at 1 month intervals. The R tibias of 40 men, aged 38.6 +/- 7.3 yrs with BW 78.9 +/- 7.9 kg, showed average (+/- SD) L to be 35 +/- 2 cm, EI 222 +/- 71 Nm(sup 2), P(sub cr) 18.1 +/- 4.9 kN, and S 23.4 +/- 5.7 N. The R tibias of 24 Rhesus monkeys ranging in age from 2-12 years, BW 4.9 +/- 3 kg, showed L to be 14.7 +/- 1.9 cm, EI 6.0 +/- 4.8 Nm(sup 2), P(sub cr) 2.51 +/- 1.2 kN and S 57.3 N. These measurements indicate that the tibia of a terrestrial non-human primate, M. mulatta, has higher load carrying capacity for the level of body weights in the species than the human bone.

  3. Lower Trabecular Volumetric BMD at Metaphyseal Regions of Weight-Bearing Bones is Associated With Prior Fracture in Young Girls

    PubMed Central

    Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2011-01-01

    Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1–1.9) and 1.3 (1.0–1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. © 2011 American Society for Bone and Mineral Research. PMID:20721933

  4. [Disruption of the arteria nutricia tibiae by reamed and unreamed intramedullary nailing. Study of the vascular architecture of the human tibial intramedullary cavity].

    PubMed

    Paar, O; mon O'Dey, D; Magin, M N; Prescher, A

    2000-01-01

    By reason of the pseudarthrotic healing of fractures due to vascular complications after reamed and unreamed intramedullary nailing, the intraosseous course and branching of the tibial nutrient artery and its impairment by nailing procedures needs an actual analysis. The nutrient vessel of 24 tibiae taken from fresh corpses were prepared by injection of Technovit and lead oxide. After this procedure the medullary cavities of 12 bones were opened by a frontal cut. These specimens were subjected to routine maceration. The other 12 tibiae were naed with the unreamed (6) and the reamed nailing (6) techniques. X-rays were also taken routinely. After penetration of the tibial compact bone the main trunk of the nutrient vessel runs through a perforated osseous tunnel (pars tecta arteriae nutriciae tibiae). At its end the vessel divides into a descending branch (obligate) and two ascending branches (facultative). The descending branch lies near to the centromedial region of the medullary cavity which is termed as the pars liberal arteriae nutriciae tibiae. All branches pass through supporting horizontal osseous lamellas. Due to this topography the reamed nailing technique destroyed the nutrient vessel completely in all specimens. In contrast to this observation the unreamed nailing destroyed the vessel completely only in 1 (16.7%) and partially in 3 (50%) bones; 2 (33.3%) specimens exhibited no destruction of the vessel. The unreamed as well as the reamed nailing technique can destroy the intramedullary course of the tibial nutrient artery. Fractures as well as displacement osteotomies or corticotomies are able to diminish the medullary blood supply seriously, if they are localised within the area of the tactic an of the tibial nutrient artery.

  5. Is bone tenderness, as measured by manual algometry, associated with vitamin D deficiency?

    PubMed Central

    Dresser, Jocelyn; MacIntyre, Mike; Chisholm, Brittney; Lawson, G.E.

    2014-01-01

    Objective: To explore the relationship between serum 25-hydroxycholecalciferol (25[OH]D3) and pressure-pain thresholds, as measured by algometer, in advance of a main study to determine whether PPT is a potentially cost-effective proxy measure of 25[OH]D3 status in the general population. Methods: The cross-sectional pilot study involved a convenience sample of twenty-two subjects (10 males, 12 females), aged 18 to 67 years. All subjects consented to three trials of pressure-pain threshold readings on both tibiae and the manubrium. Serum 25[OH]D3 levels were determined from blood samples drawn post-algometry. Results: The average pressure pain thresholds were 14.92 (±6.03), 15.07(±6.07), 11.10 (±6.68) for the left and right tibia and sternum, respectively. The stability between the measurements was very high with the interclass correlation coefficient (95% CI) calculated as 0.94 (0.62–1.00), 0.9 (0.81–1.00), 0.96(0.93–1.00). The Pearson correlation coefficients were 0.03 for the left tibia, 0.17 for the right tibia and 0.20 for the sternum, J Dresser, M MacIntyre, B Chisholm, GE Lawson showing a negligible correlation for the left and right tibia, but a low positive correlation for the sternum. Conclusion: We did not find preliminary evidence of a strong or otherwise clinically meaningful correlation between bone tenderness and manual algometry in this pilot study. Only a weak linear relationship between PPT in the sternum and serum 25[OH]D3 concentrations was found. Replication of this study is warranted in larger and more representative study populations of interest. Discussion on a number of feasibility issues is provided to inform those future studies. PMID:25202161

  6. Is bone tenderness, as measured by manual algometry, associated with vitamin D deficiency?

    PubMed

    Dresser, Jocelyn; MacIntyre, Mike; Chisholm, Brittney; Lawson, G E

    2014-09-01

    To explore the relationship between serum 25-hydroxycholecalciferol (25[OH]D3) and pressure-pain thresholds, as measured by algometer, in advance of a main study to determine whether PPT is a potentially cost-effective proxy measure of 25[OH]D3 status in the general population. The cross-sectional pilot study involved a convenience sample of twenty-two subjects (10 males, 12 females), aged 18 to 67 years. All subjects consented to three trials of pressure-pain threshold readings on both tibiae and the manubrium. Serum 25[OH]D3 levels were determined from blood samples drawn post-algometry. The average pressure pain thresholds were 14.92 (±6.03), 15.07(±6.07), 11.10 (±6.68) for the left and right tibia and sternum, respectively. The stability between the measurements was very high with the interclass correlation coefficient (95% CI) calculated as 0.94 (0.62-1.00), 0.9 (0.81-1.00), 0.96(0.93-1.00). The Pearson correlation coefficients were 0.03 for the left tibia, 0.17 for the right tibia and 0.20 for the sternum, J Dresser, M MacIntyre, B Chisholm, GE Lawson showing a negligible correlation for the left and right tibia, but a low positive correlation for the sternum. We did not find preliminary evidence of a strong or otherwise clinically meaningful correlation between bone tenderness and manual algometry in this pilot study. Only a weak linear relationship between PPT in the sternum and serum 25[OH]D3 concentrations was found. Replication of this study is warranted in larger and more representative study populations of interest. Discussion on a number of feasibility issues is provided to inform those future studies.

  7. Distal tibia fractures: locked or non-locked plating?

    PubMed Central

    Khalsa, Amrit S; Toossi, Nader; Tabb, Loni P; Amin, Nirav H; Donohue, Kenneth W; Cerynik, Douglas L

    2014-01-01

    Background and purpose Although plating is considered to be the treatment of choice in distal tibia fractures, controversies abound regarding the type of plating for optimal fixation. We conducted a systematic review to evaluate and compare the outcomes of locked plating and non-locked plating in treatment of distal tibia fractures. Patients and methods A systematic review was conducted using PubMed to identify articles on the outcomes of plating in distal tibia fractures that were published up to June 2012. We included English language articles involving a minimum of 10 adult cases with acute fractures treated using single-plate, minimally invasive techniques. Study-level binomial regression on the pooled data was conducted to determine the effect of locking status on different outcomes, adjusted for age, sex, and other independent variables. Results 27 studies met the inclusion criteria and were included in the final analysis of 764 cases (499 locking, 265 non-locking). Based on descriptive analysis only, delayed union was reported in 6% of cases with locked plating and in 4% of cases with non-locked plating. Non-union was reported in 2% of cases with locked plating and 3% of cases with non-locked plating. Comparing locked and non-locked plating, the odds ratio (OR) for reoperation was 0.13 (95% CI: 0.03–0.57) and for malalignment it was 0.10 (95% CI: 0.02–0.42). Both values were statistically significant. Interpretation This study showed that locked plating reduces the odds of reoperation and malalignment after treatment for acute distal tibia fracture. Future studies should accurately assess causality and the clinical and economic impact of these findings. PMID:24758325

  8. Site-specific transmission of a floor-based, high-frequency, low-magnitude vibration stimulus in children with spastic cerebral palsy

    PubMed Central

    Singh, Harshvardhan; Whitney, Daniel G; Knight, Christopher A; Miller, Freeman; Manal, Kurt; Kolm, Paul; Modlesky, Christopher M

    2016-01-01

    Objective To determine the degree to which a high-frequency, low-magnitude vibration (HLV) signal emitted by a floor-based platform transmits to the distal tibia and distal femur of children with spastic cerebral palsy (CP) during standing. Design Cross-sectional study Setting University research laboratory Participants 4 to 12 year-old children with spastic CP who could stand independently (n=18) and typically developing children (n=10) participated in the study. Intervention Not applicable Main outcome measures The vibration signal at the HLV platform (~33 Hz and 0.3 g), distal tibia and distal femur was measured using accelerometers. Degree of plantar flexor spasticity was assessed using the Modified Ashworth Scale. Results The HLV signal was greater (p<0.001) at the distal tibia than at the platform in children with CP (0.36±0.06 vs. 0.29±0.05 g) and controls (0.40 ± 0.09 vs. 0.24 ± 0.07 g). Although the HLV signal was also higher at the distal femur (0.35±0.09 g, p<0.001) than at the platform in controls, it was lower in children with CP (0.20±0.07 g, p<0.001). The degree of spasticity was negatively related to the HLV signal transmitted to the distal tibia (rs=−0.547) and distal femur (rs=−0.566) in children with CP (both p<0.05). Conclusions An HLV signal from a floor-based platform was amplified at the distal tibia, attenuated at the distal femur and inversely related to the degree of muscle spasticity in children with spastic CP. Whether this transmission pattern affects the adaptation of their bones to HLV requires further investigation. PMID:26392035

  9. Measurement of bone adjacent to tibial shaft fracture.

    PubMed

    Findlay, S C; Eastell, R; Ingle, B M

    2002-12-01

    Delayed union and non-union are common complications after fracture of the tibial shaft. Response of the surrounding bone as a fracture heals could be monitored using techniques currently used in the study of osteoporosis. The aims of our study were to: (1) evaluate the decrement in bone measurements made close to the fracture using dual-energy X-ray absorptiometry (DXA), quantitative ultrasound (QUS) and peripheral quantitative computed tomography (pQCT); (2) compare values for fractured versus non-fractured leg to determine the duration of decrement in bone measurements; and (3) calculate short-term precision in DXA, QUS and pQCT in order to calculate the ratio of decrement to precision (response ratio, RR) to determine the optimal test for monitoring changes after tibial fracture. The biggest decrement in bone measurements at the ipsilateral limb of 28 patients with tibial shaft fracture was observed at the pQCT tibial trabecular sites (distal = 19%, p<0.0001; proximal 5% = 21%, p<0.001; proximal 10% = 28%, p<0.001) and the ultradistal tibia/fibula measured by DXA (19%, p<0.0001). When comparing Z-scores, the magnitude of decrements at the ipsilateral limb was bigger for variables measured directly at the tibia, both proximal and distal to the fracture. The magnitude of the decrement in ultradistal tibia/fibula BMD decreased as the time since fracture increased ( r = 0.55). When response ratios are considered, pQCT measurements at the distal tibia (RR 6-8) and proximal 5% and 10% trabecular sites (RR 5 and 9 respectively) were found to be the most sensitive to change. Therefore, pQCT of the trabecular regions of either the proximal or distal tibia should prove the most sensitive measurement for monitoring changes in bone adjacent to a tibial shaft fracture.

  10. Lower trabecular volumetric BMD at metaphyseal regions of weight-bearing bones is associated with prior fracture in young girls.

    PubMed

    Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B

    2011-02-01

    Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1-1.9) and 1.3 (1.0-1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. Copyright © 2011 American Society for Bone and Mineral Research.

  11. Efficacies of Ceftobiprole Medocaril and Comparators in a Rabbit Model of Osteomyelitis Due to Methicillin-Resistant Staphylococcus aureus▿

    PubMed Central

    Yin, Li-Yan; Calhoun, Jason H.; Thomas, Jacob K.; Shapiro, Stuart; Schmitt-Hoffmann, Anne

    2008-01-01

    The pharmacokinetics and distribution into bone tissue of ceftobiprole in uninfected New Zealand White rabbits were determined after subcutaneous administration of the prodrug ceftobiprole medocaril. Serum exposure (maximum concentration of the drug in serum, trough concentration, area under the concentration-time curve) to ceftobiprole at 20 and 80 mg/kg was dose proportional, and there was no accumulation of ceftobiprole following repeated (every 6 h [q6h]) injections of the antibiotic. Ceftobiprole titers in the tibial matrix and marrow were 3.2 ± 1.3 μg/g and 11.2 ± 6.5 μg/g, respectively, in uninfected animals treated with 20 mg/kg of the antibiotic and 13.4 ± 7.3 μg/g and 66.3 ± 43.2 μg/g, respectively, in uninfected animals treated with 80 mg/kg of the antibiotic. No differences in ceftobiprole titers were observed between right and left tibiae for either bone matrix or marrow. The efficacies of 4 weeks of treatment with ceftobiprole (40 mg/kg administered subcutaneously [s.c.] q6h), vancomycin (30 mg/kg administered s.c. q12h), or linezolid (60 mg/kg administered orally q8h) were compared, using a rabbit model of methicillin-resistant Staphylococcus aureus tibial osteomyelitis. After treatment with ceftobiprole, the bacterial titers in all infected left tibiae from evaluable rabbits were below the level of detection, whereas only 73% of infected left tibiae from vancomycin- or linezolid-treated animals had bacterial titers below the level of detection; the mean titers of ceftobiprole were 3 to 5 times higher in infected left tibiae than in uninfected right tibiae. These results indicate that ceftobiprole provided effective parenteral treatment of osteomyelitis in this rabbit model. PMID:18332175

  12. Efficacies of ceftobiprole medocaril and comparators in a rabbit model of osteomyelitis due to methicillin-resistant Staphylococcus aureus.

    PubMed

    Yin, Li-Yan; Calhoun, Jason H; Thomas, Jacob K; Shapiro, Stuart; Schmitt-Hoffmann, Anne

    2008-05-01

    The pharmacokinetics and distribution into bone tissue of ceftobiprole in uninfected New Zealand White rabbits were determined after subcutaneous administration of the prodrug ceftobiprole medocaril. Serum exposure (maximum concentration of the drug in serum, trough concentration, area under the concentration-time curve) to ceftobiprole at 20 and 80 mg/kg was dose proportional, and there was no accumulation of ceftobiprole following repeated (every 6 h [q6h]) injections of the antibiotic. Ceftobiprole titers in the tibial matrix and marrow were 3.2 +/- 1.3 microg/g and 11.2 +/- 6.5 microg/g, respectively, in uninfected animals treated with 20 mg/kg of the antibiotic and 13.4 +/- 7.3 microg/g and 66.3 +/- 43.2 microg/g, respectively, in uninfected animals treated with 80 mg/kg of the antibiotic. No differences in ceftobiprole titers were observed between right and left tibiae for either bone matrix or marrow. The efficacies of 4 weeks of treatment with ceftobiprole (40 mg/kg administered subcutaneously [s.c.] q6h), vancomycin (30 mg/kg administered s.c. q12h), or linezolid (60 mg/kg administered orally q8h) were compared, using a rabbit model of methicillin-resistant Staphylococcus aureus tibial osteomyelitis. After treatment with ceftobiprole, the bacterial titers in all infected left tibiae from evaluable rabbits were below the level of detection, whereas only 73% of infected left tibiae from vancomycin- or linezolid-treated animals had bacterial titers below the level of detection; the mean titers of ceftobiprole were 3 to 5 times higher in infected left tibiae than in uninfected right tibiae. These results indicate that ceftobiprole provided effective parenteral treatment of osteomyelitis in this rabbit model.

  13. Intraoperative study on anthropometry and gender differences of the proximal tibial plateau at the arthroplasty resection surface.

    PubMed

    Yang, Bo; Yu, Jiakuo; Gong, Xi; Chen, Lianxu; Wang, Yongjian; Wang, Jian; Wang, Haijun; Zhang, Jiying

    2014-01-01

    The tibial plateau is asymmetric with a larger medial plateau. We observed from clinical practice that the shape of the tibial plateau does not always present a larger medial plateau. Tibial plateau also showed other shapes. The purpose of this study was to analyze the anthropometric data of the proximal tibia in a large group of Chinese patients undergoing total knee arthroplasty and to investigate the morphology of the resected proximal tibial surface and its gender differences. A total of 822 knees (164 males, 658 females) from the Chinese population were measured intraoperatively for medial anteroposterior (MAP) and lateral anteroposterior (LAP) dimensions of the resected proximal tibial surface. The difference of MAP and LAP (DML) was also calculated as MAP minus LAP. We then classified the data into three groups based on the DML (<-2, -2 to 2, and >2 mm) to analyze the morphology of the proximal tibia and its distribution between male and female. The shape of proximal tibial plateau was of three types: larger medial plateau type, symmetric type, and larger lateral plateau type. There were significant differences between males and females in relation to the shape distribution of the proximal tibial plateau (P < 0.05). Most of the proximal tibial plateau was asymmetric, with 517 of 822 (62.9%) tibia having a DML >2 mm and 120 of 822 (14.6%) tibia having a DML<-2 mm. Only 185 of 822 (22.5%) tibia had a DML between -2 and 2 mm. The results of this study can be used as a guideline to design tibial components with different DMLs to better match the different anthropometry of the resected tibial surface.

  14. Synergistic antiosteoporotic effect of Lepidium sativum and alendronate in glucocorticoid-induced osteoporosis in Wistar rats.

    PubMed

    Elshal, Mohamed F; Almalki, Abdulrahman L; Hussein, Hussein K; Khan, Jalal A

    2013-01-01

    Alendronate belongs to a class of drugs called bisphosphonates. Bisphosphonates (BP) therapy is a vital option to reduce the risk of bone fracture in people who suffer from osteoporosis. Yet, bisphosphonate have displayed several side effects. Lepidium sativum (LS) seeds have been used in traditional folk medicine to heal fractured bones. However, there is a dearth of information on the impact of LS on bone metabolism especially in cases of glucocorticoids induced osteoporosis. Therefore, the aim of the study was to compare the biochemical bone markers and histological responses of LS alone (6 g of LS seeds in diet daily, n=8), ALD (alendronate, 70 mg/kg s.c.; n=8) alone, or LS and ALD combined in a rat model of glucocorticoid-induced osteoporosis (GIO) by injecting rats with methylprednisolone 3.5 mg/kg per day for 4 weeks. Serum calcium (Ca), albumin, phosphorus (P), bone-specific alkaline phosphatase (b-ALP), and tartrate-resistant acid phosphatase (TRAP) were measured 4 weeks after induction of GIO. GIO-group showed significantly increased serum TRAP and decreased b-ALP. GIO-group also showed significantly decreased serum P and unaltered Ca concentrations. Histological examination of GIO-group tibia bones indicated an osteoporotic change and a concomitant decrease in percentage of trabecular area or bone marrow area (PTB) in the proximal femoral epiphysis. Treatment with either LS and/or ALD ameliorated the above mentioned changes with variable degrees, with a net results of enhanced serum calcium, bone architecture, PTB, b-ALP and decreased TRAP in LS and LS+ALD groups compared to that of animals treated with alendronate alone. In conclusion, our findings present evidence supporting the potential benefits of LS in reducing the burden of GCs on bone health.

  15. Visualization of small lesions in rat cartilage by means of laboratory-based x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Marenzana, Massimo; Hagen, Charlotte K.; Das Neves Borges, Patricia; Endrizzi, Marco; Szafraniec, Magdalena B.; Ignatyev, Konstantin; Olivo, Alessandro

    2012-12-01

    Being able to quantitatively assess articular cartilage in three-dimensions (3D) in small rodent animal models, with a simple laboratory set-up, would prove extremely important for the development of pre-clinical research focusing on cartilage pathologies such as osteoarthritis (OA). These models are becoming essential tools for the development of new drugs for OA, a disease affecting up to 1/3 of the population older than 50 years for which there is no cure except prosthetic surgery. However, due to limitations in imaging technology, high-throughput 3D structural imaging has not been achievable in small rodent models, thereby limiting their translational potential and their efficiency as research tools. We show that a simple laboratory system based on coded-aperture x-ray phase contrast imaging (CAXPCi) can correctly visualize the cartilage layer in slices of an excised rat tibia imaged both in air and in saline solution. Moreover, we show that small, surgically induced lesions are also correctly detected by the CAXPCi system, and we support this finding with histopathology examination. Following these successful proof-of-concept results in rat cartilage, we expect that an upgrade of the system to higher resolutions (currently underway) will enable extending the method to the imaging of mouse cartilage as well. From a technological standpoint, by showing the capability of the system to detect cartilage also in water, we demonstrate phase sensitivity comparable to other lab-based phase methods (e.g. grating interferometry). In conclusion, CAXPCi holds a strong potential for being adopted as a routine laboratory tool for non-destructive, high throughput assessment of 3D structural changes in murine articular cartilage, with a possible impact in the field similar to the revolution that conventional microCT brought into bone research.

  16. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on the expression of ubiquitin ligases, protein synthesis pathways and contractile function in extensor digitorum longus (EDL) of fed and fasting rats.

    PubMed

    Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; Yonamine, Caio Yogi; Salgueiro, Rafael Barrera; Nunes, Maria Tereza

    2018-03-01

    Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.

  17. Effect of celastrol on bone structure and mechanics in arthritic rats.

    PubMed

    Cascão, Rita; Vidal, Bruno; Jalmari Finnilä, Mikko Arttu; Lopes, Inês Pascoal; Teixeira, Rui Lourenço; Saarakkala, Simo; Moita, Luis Ferreira; Fonseca, João Eurico

    2017-01-01

    Rheumatoid arthritis (RA) is characterised by chronic inflammation leading to articular bone and cartilage damage. Despite recent progress in RA management, adverse effects, lack of efficacy and economic barriers to treatment access still limit therapeutic success. Therefore, safer and less expensive treatments that control inflammation and bone resorption are needed. We have previously shown that celastrol is a candidate for RA treatment. We have observed that it inhibits both interleukin (IL)-1β and tumor necrosis factor (TNF) in vitro, and that it has anti-inflammatory properties and ability to decrease synovial CD68+ macrophages in vivo. Herein our goal was to evaluate the effect of celastrol in local and systemic bone loss. Celastrol was administrated intraperitoneally at a dose of 1 µg/g/day to female Wistar adjuvant-induced arthritic rats. Rats were sacrificed after 22 days of disease progression, and blood, femurs, tibiae and paw samples were collected for bone remodelling markers quantification, 3-point bending test, micro-CT analysis, nanoindentation and Fourier transform infrared spectroscopy measurements, and immunohistochemical evaluation. We have observed that celastrol preserved articular structures and decreased the number of osteoclasts and osteoblasts present in arthritic joints. Moreover, celastrol reduced tartrate-resistant acid phosphatase 5b, procollagen type 1 amino-terminal propeptide and C terminal crosslinked telopeptide of type II collagen serum levels. Importantly, celastrol prevented bone loss and bone microarchitecture degradation. Celastrol also preserved bone nanoproperties and mineral content. Additionally, animals treated with celastrol had less fragile bones, as depicted by an increase in maximum load and yield displacement. These results suggest that celastrol reduces both bone resorption and cartilage degradation, and preserves bone structural properties.

  18. Fructose Consumption Does Not Worsen Bone Deficits Resulting From High-Fat Feeding in Young Male Rats

    PubMed Central

    Yarrow, Joshua F.; Toklu, Hale Z.; Balaez, Alex; Phillips, Ean G.; Otzel, Dana M.; Chen, Cong; Wronski, Thomas J.; Aguirre, J. Ignacio; Sakarya, Yasemin; Tümer, Nihal; Scarpace, Philip J.

    2016-01-01

    Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12 weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8 weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23–34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that “westernized” HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development. PMID:26855373

  19. Fructose consumption does not worsen bone deficits resulting from high-fat feeding in young male rats.

    PubMed

    Yarrow, Joshua F; Toklu, Hale Z; Balaez, Alex; Phillips, Ean G; Otzel, Dana M; Chen, Cong; Wronski, Thomas J; Aguirre, J Ignacio; Sakarya, Yasemin; Tümer, Nihal; Scarpace, Philip J

    2016-04-01

    Dietary-induced obesity (DIO) resulting from high-fat (HF) or high-sugar diets produces a host of deleterious metabolic consequences including adverse bone development. We compared the effects of feeding standard rodent chow (Control), a 30% moderately HF (starch-based/sugar-free) diet, or a combined 30%/40% HF/high-fructose (HF/F) diet for 12weeks on cancellous/cortical bone development in male Sprague-Dawley rats aged 8weeks. Both HF feeding regimens reduced the lean/fat mass ratio, elevated circulating leptin, and reduced serum total antioxidant capacity (tAOC) when compared with Controls. Distal femur cancellous bone mineral density (BMD) was 23-34% lower in both HF groups (p<0.001) and was characterized by lower cancellous bone volume (BV/TV, p<0.01), lower trabecular number (Tb.N, p<0.001), and increased trabecular separation versus Controls (p<0.001). Cancellous BMD, BV/TV, and Tb.N were negatively associated with leptin and positively associated with tAOC at the distal femur. Similar cancellous bone deficits were observed at the proximal tibia, along with increased bone marrow adipocyte density (p<0.05), which was negatively associated with BV/TV and Tb.N. HF/F animals also exhibited lower osteoblast surface and reduced circulating osteocalcin (p<0.05). Cortical thickness (p<0.01) and tissue mineral density (p<0.05) were higher in both HF-fed groups versus Controls, while whole bone biomechanical characteristics were not different among groups. These results demonstrate that "westernized" HF diets worsen cancellous, but not cortical, bone parameters in skeletally-immature male rats and that fructose incorporation into HF diets does not exacerbate bone loss. In addition, they suggest that leptin and/or oxidative stress may influence DIO-induced alterations in adolescent bone development. Published by Elsevier Inc.

  20. Bone marrow mesenchymal stem cells repair the hippocampal neurons and increase the expression of IGF-1 after cardiac arrest in rats.

    PubMed

    Tang, Xiahong; Chen, Feng; Lin, Qinming; You, Yan; Ke, Jun; Zhao, Shen

    2017-11-01

    The present study aimed to investigate the beneficial effects and underlying mechanisms of bone marrow mesenchymal stem cells (BMSCs) on global ischemic hypoxic brain injury. Cells collected from the femurs and tibias of male Sprague Dawley rats were used to generate BMSCs following three culture passages. A rate model of cardiac arrest (CA) was induced by asphyxia. One hour following return of spontaneous circulation (ROSC), BMSCs were transplanted through injection into the tail vein. Neurological status was assessed using modified neurological severity score (mNSS) tests 1, 3 and 7 days following ROSC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining were used to detect insulin-like growth factor 1 (IGF-1) expression in the hippocampus. Furthermore, double-fluorescent labeling of green fluorescent protein (GFP) and IGF-1 was used to detect the IGF-1 expression in transplanted BMSCs. Serum levels of protein S100-B were examined using ELISA. GFP-labeled BMSCs were observed in the hippocampus at 1, 3 and 7 days post transplantation through fluorescent microscopy. BMSC transplantation resulted in reduced protein S100-B levels. The mNSS of the BMSC-treatment group was significantly reduced compared with that of the CA group. The RT-qPCR analysis and immunohistochemistry results demonstrated that BMSC treatment significantly increased IGF-1 expression in the hippocampus. In addition, the double-fluorescent labeling results demonstrated that transplanted BMSCs expressed IGF-1 in the hippocampus. The results of the present study suggest that BMSC treatment promotes the recovery of cerebral function following CA in rats possibly through the secretion of IGF-1.

  1. Biodistribution of strontium and barium in the developing and mature skeleton of rats.

    PubMed

    Panahifar, Arash; Chapman, L Dean; Weber, Lynn; Samadi, Nazanin; Cooper, David M L

    2018-06-19

    Bone acts as a reservoir for many trace elements. Understanding the extent and pattern of elemental accumulation in the skeleton is important from diagnostic, therapeutic, and toxicological perspectives. Some elements are simply adsorbed to bone surfaces by electric force and are buried under bone mineral, while others can replace calcium atoms in the hydroxyapatite structure. In this article, we investigated the extent and pattern of skeletal uptake of barium and strontium in two different age groups, growing, and skeletally mature, in healthy rats. Animals were dosed orally for 4 weeks with either strontium chloride or barium chloride or combined. The distribution of trace elements was imaged in 3D using synchrotron K-edge subtraction micro-CT at 13.5 µm resolution and 2D electron probe microanalysis (EPMA). Bulk concentration of the elements in serum and bone (tibiae) was also measured by mass spectrometry to study the extent of uptake. Toxicological evaluation did not show any cardiotoxicity or nephrotoxicity. Both elements were primarily deposited in the areas of active bone turnover such as growth plates and trabecular bone. Barium and strontium concentration in the bones of juvenile rats was 2.3 times higher, while serum levels were 1.4 and 1.5 times lower than adults. In all treatment and age groups, strontium was preferred to barium even though equal molar concentrations were dosed. This study displayed spatial co-localization of barium and strontium in bone for the first time. Barium and strontium can be used as surrogates for calcium to study the pathological changes in animal models of bone disease and to study the effects of pharmaceutical compounds on bone micro-architecture and bone remodeling in high spatial sensitivity and precision.

  2. AKT Pathway Affects Bone Regeneration in Nonunion Treated with Umbilical Cord-Derived Mesenchymal Stem Cells.

    PubMed

    Qu, Zhiguo; Guo, Shengnan; Fang, Guojun; Cui, Zhenghong; Liu, Ying

    2015-04-01

    We have previously grafted human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with blood plasma to treat rat tibia nonunion. To further examine the biological characteristics of this process, we applied an established hUC-MSCs-treated rat nonunion model with the addition of an inhibitor of AKT. SD rats (80) were randomly divided into four groups: a fracture group (positive control); a nonunion group (negative control); a hUC-MSCs grafting with blood plasma group; and a hUC-MSCs grafting with blood plasma & AKT blocker group. The animals were sacrificed under deep anesthesia at 4 and 8 weeks post fracture for analysis. The fracture line became less defined at 4 weeks and disappeared at 8 weeks postoperatively in both the hUC-MSCs grafting with blood plasma and grafting with blood plasma & the AKT blocker, which is similar to the fracture group. Histological immunofluorescence studies showed that the numbers of hUC-MSCs in the calluses were significantly higher in the hUC-MSCs grafting with blood plasma than those in group with the AKT blocker. More bone morphogenetic protein 2 and bone sialoprotein expression and less osteoprotegerin and bone gla protein expression were observed in the AKT blocker group compared to the hUC-MSCs grafting with blood plasma. AKT gene expression in the AKT blocker group was decreased 50% compared to the hUC-MSCs with plasma group and decreased 70% compared to the fracture group, while the elastic modulus was decreased. In summary, our work demonstrates that AKT may play a role in modulating osteogenesis induced by hUC-MSCs.

  3. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance.

    PubMed

    Bosse, John D; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E Dale; Pereira, Troy J; Dolinsky, Vernon W; Symons, J David; Jalili, Thunder

    2013-06-15

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower (P < 0.05) mean arterial pressure than SHR-C (148 ± 3 vs. 159 ± 3 mmHg) but a similar degree of cardiac hypertrophy (33.4 ± 0.4 vs. 33.1 ± 0.4 heart weight/tibia length, mg/mm). Mesenteric arteries and the entire aorta were used to assess vascular function and endothelial nitric oxide synthase (eNOS) signaling, respectively. Endothelium-dependent (acetylcholine) relaxation of mesenteric arteries was improved (P < 0.05) in SHR-HF vs. SHR-C, whereas contraction (potassium chloride, phenylephrine) was reduced (P < 0.05). Phosphorylation of eNOSSer1177 increased (P < 0.05) in arteries from SHR-HF vs. SHR-C. Plasma glucose, insulin, and homoeostatic model of insulin assessment were lower (P < 0.05) in SHR-HF vs. SHR-C, whereas peripheral insulin sensitivity (insulin tolerance test) was similar. After a 10-h fast, insulin stimulation (2 U/kg ip) increased (P < 0.05) phosphorylation of AktSer473 and S6 in heart and gastrocnemius similarly in SHR-C vs. SHR-HF. In conclusion, a low-carbohydrate/high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature.

  4. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance

    PubMed Central

    Bosse, John D.; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E. Dale; Pereira, Troy J.; Dolinsky, Vernon W.; Symons, J. David

    2013-01-01

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower (P < 0.05) mean arterial pressure than SHR-C (148 ± 3 vs. 159 ± 3 mmHg) but a similar degree of cardiac hypertrophy (33.4 ± 0.4 vs. 33.1 ± 0.4 heart weight/tibia length, mg/mm). Mesenteric arteries and the entire aorta were used to assess vascular function and endothelial nitric oxide synthase (eNOS) signaling, respectively. Endothelium-dependent (acetylcholine) relaxation of mesenteric arteries was improved (P < 0.05) in SHR-HF vs. SHR-C, whereas contraction (potassium chloride, phenylephrine) was reduced (P < 0.05). Phosphorylation of eNOSSer1177 increased (P < 0.05) in arteries from SHR-HF vs. SHR-C. Plasma glucose, insulin, and homoeostatic model of insulin assessment were lower (P < 0.05) in SHR-HF vs. SHR-C, whereas peripheral insulin sensitivity (insulin tolerance test) was similar. After a 10-h fast, insulin stimulation (2 U/kg ip) increased (P < 0.05) phosphorylation of AktSer473 and S6 in heart and gastrocnemius similarly in SHR-C vs. SHR-HF. In conclusion, a low-carbohydrate/high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature. PMID:23604708

  5. μCT-based, in vivo dynamic bone histomorphometry allows 3D evaluation of the early responses of bone resorption and formation to PTH and alendronate combination therapy.

    PubMed

    de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry

    2015-04-01

    Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Serca2a and Na{sup +}/Ca{sup 2+} exchanger are involved in left ventricular function following cardiac remodelling of female rats treated with anabolic androgenic steroid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nascimento, Andrews Marques do; Lima, Ewelyne Mira

    Anabolic-androgenic steroids are misused, including by women, but little is known about the cardiovascular effects of these drugs on women. Aim: To evaluated the effects of nandrolone decanoate (ND) and resistive physical exercise on cardiac contractility in young female rats. Main methods: Female Wistar rats were separated into 4 groups: C (untrained animals); E (animals were submitted to resistance exercise by jumping in water 5 times per week); ND (animals were treated with ND, 20 mg/kg/week for 4 weeks); and NDE (trained and treated). The haemodynamic parameters (+ dP/dt{sub max}, − dP/dt{sub min} and Tau) were assessed in the leftmore » ventricle. The heart was collected for histological analyses and collagen deposition. The gastrocnemius muscle was weighed, and hypertrophy was assessed by the ratio of their weights to gastrocnemius/tibia length. The expression of calcium handling proteins was measured by western blot analysis. Results: ND treatment and physical exercise increased cardiac contractility and relaxation. In addition, ND promoted increases in phospholamban phosphorylated (p-PLB) and isoforms of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, while resistance exercise increased the phosphorylation of PLB and expression of Na{sup +}/Ca{sup 2+} exchangers (NCX). Cardiac hypertrophy and collagen deposition were observed after ND treatment. Conclusion: Regulatory components of cytosolic calcium, such as SERCA2a and p-PLB, play important roles in modulating the contractility and relaxation effects of ND in females. - Highlights: • ND and resistive exercise enhanced the cardiac function and increased expression of cytosolic calcium regulatory components.« less

  7. Fractures of the distal tibia treated with polyaxial locking plating.

    PubMed

    Gao, Hong; Zhang, Chang-Qing; Luo, Cong-Feng; Zhou, Zu-Bin; Zeng, Bing-Fang

    2009-03-01

    We evaluated the healing rate, complications, and functional outcomes in 32 adult patients with very short metaphyseal fragments in fractures of the distal tibia treated with a polyaxial locking system. The average distance from the distal extent of the fracture to the tibial plafond was 11 mm. All fractures healed and the average time to union was 14 weeks. Six patients (19%) reported occasional local disturbance over the medial malleolus. There were two cases of postoperative superficial infections and evidence of delayed wound healing. Using the American Orthopaedic Foot and Ankle Society ankle score, the average functional score was 87.3 points (of 100 total possible points). Our results show the polyaxial locking plates, which offer more fixation versatility, may be a reasonable treatment option for distal tibia fractures with very short metaphyseal segments.

  8. Antiosteoporotic Effect of Combined Extract of Morus alba and Polygonum odoratum

    PubMed Central

    Sungkamanee, Sudarat; Thukham-mee, Wipawee

    2014-01-01

    Due to the limitation of osteoporosis therapy, the alternative therapies from natural sources have been considered. In this study, we aimed to determine the antiosteoporotic effect of the combined extract of Morus alba and Polygonum odoratum leaves. Ovariectomized rats, weighing 200–220 g, were orally given the combined extract at doses of 5, 150, and 300 mg·kg−1 BW for 3 months. At the end of study, blood was collected to determine serum osteocalcin, calcium, and alkaline phosphatase level. In addition, tibia bone was isolated to determine bone oxidative stress markers, cortical bone thickness, and density of osteoblast. The combined extract decreased oxidative stress and osteoclast density but increased osteoblast density and cortical thickness. The elevation of serum calcium, alkaline phosphatase, and osteocalcin was also observed. These results suggested the antiosteoporotic effect of the combined extract via the increased growth formation together with the suppression of bone resorption. However, further studies concerning chronic toxicity and the underlying mechanism are required. PMID:25478061

  9. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications.

    PubMed

    Barreiro, M M; Grana, D R; Kokubu, G A; Luppo, M I; Mintzer, S; Vigna, G

    2010-04-01

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125 microm in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150 microm. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  10. Effect of simulated weightlessness and chronic 1,25-dihydroxyvitamin D administration on bone metabolism

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Globus, R. K.; Levens, M. J.; Wronski, T. J.; Morey-Holton, E.

    1985-01-01

    Weightlessness, as experienced during space flight, and simulated weightlessness induce osteopenia. Using the suspended rat model to simulate weightlessness, a reduction in total tibia Ca and bone formation rate at the tibiofibular junction as well as an inhibition of Ca-45 and H-3-proline uptake by bone within 5-7 days of skeletal unloading was observed. Between days 7 and 15 of unloading, uptake of Ca-45 and H-3-proline, and bone formation rate return to normal, although total bone Ca remains abnormally low. To examine the relationship between these characteristic changes in bone metabolism induced by skeletal unloading and vitamin D metabolism, the serum concentrations of 25-hydroxyvitamin D (25-OH-D), 24, 25-dihydroxyvitamin D (24,25(OH)2D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) at various times after skeletal unloading were measured. The effect of chronic infusion of 1,25(OH)2D3 on the bone changes associated with unloading was also determined.

  11. Characterization of bone microstructure using photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Feng, Ting; Kozloff, Kenneth M.; Xu, Guan; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-03-01

    Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and deterioration in microarchitecture. This study investigates the feasibility of characterizing bone microstructure by analyzing the frequency spectrum of the photoacoustic signals from the bone. Modeling and numerical simulation of photoacoustic signals and their frequency-domain analysis were performed on trabecular bones with different mineral densities. The resulting quasilinear photoacoustic spectra were fit by linear regression, from which spectral parameter slope can be quantified. The modeling demonstrates that, at an optical wavelength of 685 nm, bone specimens with lower mineral densities have higher slope. Preliminary experiment on osteoporosis rat tibia bones with different mineral contents has also been conducted. The finding from the experiment has a good agreement with the modeling, both demonstrating that the frequency-domain analysis of photoacoustic signals can provide objective assessment of bone microstructure and deterioration. Considering that photoacoustic measurement is non-ionizing, non-invasive, and has sufficient penetration in both calcified and noncalcified tissues, this new technology holds unique potential for clinical translation.

  12. Phosphaturic mesenchymal tumor of the tibia with oncogenic osteomalacia in a teenager.

    PubMed

    Farmakis, Shannon G; Siegel, Marilyn J

    2015-08-01

    Phosphaturic mesenchymal tumor is an uncommon cause of a paraneoplastic syndrome that can be associated with osteogenic osteomalacia. This tumor most commonly occurs in middle-aged men and women. We report a rare case of a phosphaturic mesenchymal tumor in a 16-year-old girl with multiple fractures as a result of severe osteoporosis. CT and MRI showed a mass arising from the tibia.

  13. Proceedings of the 2010 AFMS Medical Research Symposium. Volume 3. Enroute Track: Abstracts and Presentations

    DTIC Science & Technology

    2011-03-15

    comparison of proximal tibia, proximal humerus and distal femur infusion rates under high pressure using the EZ-IO Intraosseous device on an adult...contaminated complex musculoskeletal wounds. METHODS: We adapted a previously characterized caprine model. Under anesthesia , complex musculoskeletal...of proximal tibia, proximal humerus and distal femur infusion rates under high pressure using the EZ-IO Intraosseous device on an adult swine model

  14. Predictors of proximal tibia anterior shear force during a vertical stop-jump.

    PubMed

    Sell, Timothy C; Ferris, Cheryl M; Abt, John P; Tsai, Yung-Shen; Myers, Joseph B; Fu, Freddie H; Lephart, Scott M

    2007-12-01

    Anterior cruciate ligament (ACL) continues to be a significant medical issue for athletes participating in sports and recreational activities. Biomechanical analyses have determined that anterior shear force is the most direct loading mechanism of the ACL and a probable component of noncontact ACL injury. The purpose of this study was to examine the biomechanical predictors of proximal tibia anterior shear force during a stop-jump task. A biomechanical and electromyographic (EMG) analysis of the knee was conducted while subjects performed a vertical stop-jump task. The task was chosen to simulate an athletic maneuver that included a landing with a sharp deceleration and a change in direction. The final regression model indicated that posterior ground reaction force, external knee flexion moment, knee flexion angle, integrated EMG activity of the vastus lateralis, and sex (female) would significantly predict proximal tibia anterior shear force (p < 0.0001, R2 = 0.8609). Knee flexion moment had the greatest influence on proximal tibia anterior shear force. The mathematical relationships elucidated in the current study support previous clinical and basic science research examining noncontact ACL injuries. This data provides important evidence for clinicians who are examining the risk factors for these injuries and developing/validating training programs to reduce the incidence of injury. Copyright 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Autogenous cultured growth plate chondrocyte transplantation in the treatment of physeal injury in rabbits.

    PubMed

    Tomaszewski, R; Bohosiewicz, J; Gap, A; Bursig, H; Wysocka, A

    2014-11-01

    The aim of this experimental study on New Zealand's white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics. An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group. Histological examinations showed that the grafted right tibia presented the regular shape of the plate growth with hypertrophic maturation, chondrocyte columniation and endochondral calcification. Radiological study shows that the mean tibial deformity at the left angle was 20.29° (6.25 to 33) and 7.21° (5 to 10) in the right angle. This study has demonstrated that grafting of autogenous cultured growth plate cells into a defect of the medial aspect of the proximal tibial physis can prevent bone bridge formation, growth arrest and the development of varus deformity. Cite this article: Bone Joint Res 2014;3:310-16. ©2014 The British Editorial Society of Bone & Joint Surgery.

  16. Closing wedge retrotubercular tibial osteotomy and TKA for posttraumatic osteoarthritis with angular deformity.

    PubMed

    Meehan, John P; Khadder, Mohammad A; Jamali, Amir A; Trauner, Kenneth B

    2009-05-01

    Posttraumatic osteoarthritis of the knee can be associated with angular deformities and alterations in the joint line as a result of the initial trauma and subsequent surgical procedures. These deformities can be characterized as extra-articular or intra-articular or can involve aspects of both. Conversion to total knee arthroplasty (TKA) may require either a staged or a simultaneous corrective osteotomy to restore the limb alignment and proper knee function. This article describes a closing wedge retrotubercular tibia osteotomy performed concurrently with TKA in an effort to correct an extra-articular varus deformity and to improve the patella tendon height in relation to the reconstructed joint line. A 57-year-old man previously treated for a Schatzker type 6 tibia plateau fracture presented with symptoms of arthritis pain and instability as a result of a varus thrust with weight bearing. Radiographs revealed posttraumatic osteoarthritis, a 35 degrees varus deformity, and patella infera. Maintaining the tibia tubercle continuity with the distal tibia allowed for correction of the varus deformity and improvement in the patella tendon height relative to the joint line. At 5-year follow-up, the patient had osteotomy healing, clinically neutral limb alignment, and improvement in joint line biomechanics with resolution of symptoms of pain and instability.

  17. A New Device for Percutaneous Elevation of the Depressed Fractures of Tibial Condyles

    PubMed Central

    Ravindranath, V.S.; Kumar, Madhusudan; Murthy, G.V.S.

    2012-01-01

    Introduction: Monocondylar tibia plateau fractures with non-comminuted fragments can be treated using percutaneous screws. Currently indirect methods of reduction are used and thus the technique is limited to fragments with less than 5 mm depression. The first author has designed a device for direct elevation and reduction of the fragments thus potentially expanding the indications of percutaneous screws to fragments with >5mm depression Technical Note: A total of ten cases were treated by this method of percutaneous elevation of the depressed fractures of lateral condyles of the Tibia using this device. Device was inserted through a bony window on the anteromedial surface of tibia. The inner piston of the device in slowly hammered inside thus elevating the depressed fragment. Elevation of fragment could be achieved in all the cases. The fractures were fixed with cancellous screws applied percutaneously. There were no cases with loss of fixation or subsidence of the fragment. All cases achieved radiological union and have good knee function at follow up Conclusion: The new device is able to elevate unicondylar tibia plateau fragments with no subsidence or loss of fixation in our series. A longer follow up in a larger sample will be needed to establish the technique. PMID:27298860

  18. Geometry reconstruction method for patient-specific finite element models for the assessment of tibia fracture risk in osteogenesis imperfecta.

    PubMed

    Caouette, Christiane; Ikin, Nicole; Villemure, Isabelle; Arnoux, Pierre-Jean; Rauch, Frank; Aubin, Carl-Éric

    2017-04-01

    Lower limb deformation in children with osteogenesis imperfecta (OI) impairs ambulation and may lead to fracture. Corrective surgery is based on empirical assessment criteria. The objective was to develop a reconstruction method of the tibia for OI patients that could be used as input of a comprehensive finite element model to assess fracture risks. Data were obtained from three children with OI and tibia deformities. Four pQCT scans were registered to biplanar radiographs, and a template mesh was deformed to fit the bone outline. Cortical bone thickness was computed. Sensitivity of the model to missing slices of pQCT was assessed by calculating maximal von Mises stress for a vertical hopping load case. Sensitivity of the model to ±5 % of cortical thickness measurements was assessed by calculating loads at fracture. Difference between the mesh contour and bone outline on the radiographs was below 1 mm. Removal of one pQCT slice increased maximal von Mises stress by up to 10 %. Simulated ±5 % variation of cortical bone thickness leads to variations of up to 4.1 % on predicted fracture loads. Using clinically available tibia imaging from children with OI, the developed reconstruction method allowed the building of patient-specific finite element models.

  19. Bone microarchitecture is more severely affected in patients on hemodialysis than in those receiving peritoneal dialysis.

    PubMed

    Pelletier, Solenne; Vilayphiou, Nicolas; Boutroy, Stéphanie; Bacchetta, Justine; Sornay-Rendu, Elisabeth; Szulc, Pawel; Arkouche, Walid; Guebre-Egziabher, Fitsum; Fouque, Denis; Chapurlat, Roland

    2012-09-01

    We used high-resolution quantitative computed tomography to study the microarchitecture of bone in patients with chronic kidney disease on dialysis. We compared bone characteristics in 56 maintenance hemodialysis (21 women, 14 post-menopausal) and 23 peritoneal dialysis patients (9 women, 6 post-menopausal) to 79 healthy men and women from two cohorts matched for age, body mass index, gender, and menopausal status. All underwent dual-energy X-ray absorptiometry of the spine and hip to measure areal bone mineral density, and high-resolution peripheral quantitative computed tomography of the radius and tibia to measure volumetric bone mineral density and microarchitecture. When compared to their matched healthy controls, patients receiving hemodialysis and peritoneal dialysis had a significantly lower areal bone mineral density in the hip. Hemodialysis patients had significantly lower total, cortical, and trabecular volumetric bone mineral density at both sites. Hemodialysis patients had significantly lower trabecular volumetric bone mineral density and microarchitecture at the tibia than the peritoneal dialysis patients. Overall, peritoneal dialysis patients were less affected, their cortical thickness at the distal tibia being the only significant difference versus controls. Thus, we found more severe trabecular damage at the weight-bearing tibia in hemodialysis compared to peritoneal dialysis patients, but this latter finding needs confirmation in larger cohorts.

  20. Comparison of estrogenic responses in bone and uterus depending on the parity status in Lewis rats.

    PubMed

    Keiler, Annekathrin Martina; Bernhardt, Ricardo; Scharnweber, Dieter; Jarry, Hubertus; Vollmer, Günter; Zierau, Oliver

    2013-01-01

    The reproductive transition of women through peri- to postmenopause is characterized by changes in steroid hormone levels due to the cessation of the ovarian function. Beside several complaints associated with these hormonal changes, the deterioration of the trabecular bone micro-architecture and the loss of skeletal mass can cause osteoporosis. At this life stage, women often have a reproductive history of one to several pregnancies. The ovariectomized skeletally mature rat (>10 months old) is one of the most commonly used animal models for postmenopausal osteoporosis research. Despite the fact that mammals can undergo up to several reproductive cycles (primi-/pluriparous), nulliparous animals are often used and the question whether changes in the hormonal milieu subsequently affect the skeleton and influence the outcome of intervention studies is often neglected in study designs. Therefore, the aim of the present study was to compare the estrogen responsiveness of nulliparous and pluriparous rats. For this purpose, one year old virgin or retired breeder Lewis rats were either sham operated or ovariectomized, whereas half of the ovariectomized animals received subcutaneous 17β-estradiol pellets eight weeks after surgery. After another four weeks, the effects on the uterus were determined by expression analysis of estrogen-dependently regulated steroid receptor genes and well-established marker genes. Moreover, trabecular bone parameters in the tibia were analyzed by micro-computed tomography (μCT). Parity-dependency in estrogen responsiveness was observed with respect to the achieved serum E2 levels in response to similar E2 treatment. This led to differences both on the uterus wet weight and on the expression level of uterine target genes. In addition, a reversal of the ovariectomy-induced changes of the bone architecture after 17β-estradiol substitution was only observed among the nulliparous. In conclusion, the observations of this study support parity-dependent differences in the responses to estrogenic compounds in the uterus and the bone of rats. These results indicate that the parity-status has an impact on the outcome of studies aiming at the investigation of estrogenic effects of compounds potentially used in hormone replacement and thus, this should be taken into consideration for further studies and particularly for the discussion of data obtained with the preclinical ovariectomized rat animal model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. [The Postero-Lateral Approach--An Alternative to Closed Anterior-Posterior Screw Fixation of a Dislocated Postero-Lateral Fragment of the Distal Tibia in Complex Ankle Fractures].

    PubMed

    von Rüden, C; Hackl, S; Woltmann, A; Friederichs, J; Bühren, V; Hierholzer, C

    2015-06-01

    The dislocated posterolateral fragment of the distal tibia is considered as a key fragment for the successful reduction of comminuted ankle fractures. The reduction of this fragment can either be achieved indirectly by joint reduction using the technique of closed anterior-posterior screw fixation, or directly using the open posterolateral approach followed by plate fixation. The aim of this study was to compare the outcome after stabilization of the dislocated posterolateral tibia fragment using either closed reduction and screw fixation, or open reduction and plate fixation via the posterolateral approach in complex ankle fractures. In a prospective study between 01/2010 and 12/2012, all mono-injured patients with closed ankle fractures and dislocated posterolateral tibia fragments were assessed 12 months after osteosynthesis. Parameters included: size of the posterolateral tibia fragment relative to the tibial joint surface (CT scan, in %) as an indicator of injury severity, unreduced area of tibial joint surface postoperatively, treatment outcome assessed by using the "Ankle Fracture Scoring System" (AFSS), as well as epidemiological data and duration of the initial hospital treatment. In 11 patients (10 female, 1 male; age 51.6 ± 2.6 years [mean ± SEM], size of tibia fragment 42.1 ± 2.5 %) the fragment fixation was performed using a posterolateral approach. Impaired postoperative wound healing occurred in 2 patients of this group. In the comparison group, 12 patients were treated using the technique of closed anterior-posterior screw fixation (10 female, 2 male; age 59.5 ± 6.7 years, size of tibia fragment 45.9 ± 1.5 %). One patient of this group suffered an incomplete lesion of the superficial peroneal nerve. Radiological evaluation of the joint surface using CT scan imaging demonstrated significantly less dislocation of the tibial joint surface following the open posterolateral approach (0.60 ± 0.20 mm) compared to the closed anterior-posterior screw fixation (1.03 ± 0.08 mm; p < 0.05). Assessment of the treatment outcome using the AFSS demonstrated a significantly higher score of 97.4 ± 6.4 in the group with a posterolateral approach compared to a score of 74.4 ± 12.1 (p < 0.05) in the group with an anterior-posterior screw fixation. In comparison to the anterior-posterior screw fixation, open reduction and fixation of the dislocated, posterolateral key fragment of the distal tibia using a posterolateral approach resulted in a more accurate fracture reduction and significantly better functional outcome 12 months after surgery. In addition, no increased rate of postoperative complications, or extended hospital stay was observed but there was less severe post-traumatic joint arthritis. The results of this study suggest that in complex ankle factures the open fixation of the dislocated posterolateral fragment is recommended as an alternative surgical procedure and may be beneficial for both clinical and radiological long-term outcomes. Georg Thieme Verlag KG Stuttgart · New York.

  2. [Effect of low dose aspirin on osseointegration around titanium implants in osteoporotic rats].

    PubMed

    Yang, Q; Li, F L

    2018-02-09

    Objective: To investigate the effect of aspirin on osseointegration around titanium implants in ostoeporotic rats and to provide evidence for future researches and clinical application. Methods: A total of 60 female SD rats, aged 3-4 months, were divided into ovariectomy group (Ovx group, n= 48) and sham-ovariectomy group (Sham group, n= 12). The rats in Ovx group received ovariectomy and those in Sham group underwent sham-ovariectomy. Twelve weeks later, six rats in each group were randomly selected to confirm the osteoporosis models. The Ovx group was divided into 4 subgroups with 12 rats in each group, namely the osteoporosis group (OP group), and Aspirin groups (A1, A2, A3 group). Pure screw titanium implants were placed in the right tibia near metaphysis of all rats. Three days after implant surgery, aspirin groups were intragastrically administered aspirin at a dose of 2.06, 4.11, 8.21 mg·kg(-1)·d(-1) (A1, A2, A3), and OP group and Sham group were fed the same amount of normal saline. Four and 12 weeks following implantations surgery, half of the rats in each group were randomly chosen and sacrificed. Implant bone contact rate (IBCR), combined bone lamella width (CBLW) and trabercular width (TW) were observed and calculated using histomorphometric measurement. Results: Four weeks after implantations surgery, the TW and CBLW of rats in A1 group [(39.60±2.77) and (27.56±4.14) μm] and the IBCR, TW and CBLW of rats in A2 group and A3 group [A2: (47.21±4.19)%, (48.74±3.20) and (35.91±3.79) μm; A3: (47.35±6.07)%, (50.27±5.25) and (40.66±2.11) μm] were much higher than those in OP group [(33.89±7.17)%, (32.20±6.10) and (19.77±6.80) μm]( P< 0.05). In term of CBLW, there were no difference between A3 group and Sham group [(46.11±5.87) μm]( P> 0.05). Twelve weeks after implantations surgery, the IBCR and CBLW of rats in A1 group [ (85.86±3.64) %, (53.12±8.68) μm], and the IBCR, TW and CBLW of rats in A2 group and A3 group [A2: (85.64±3.97)%, (69.42±6.78) and (54.19±3.12) μm; A3: (86.22±3.48)%, (75.43±3.50) and (55.79±5.60) μm] were much higher than those in OP group [(77.20±7.14)%, (55.10±2.26) and (41.77±3.13) μm]( P< 0.05). In term of IBCR, there were no difference among A1 group, A2 group, A3 group and Sham group [(90.09±2.21)%]( P> 0.05). Conclusions: The low dose aspirin could promote IBCR, CBLW and TW of osteoporotic rats implants.

  3. Aseptic nonunion of the tibia treated by intramedullary osteosynthesis.

    PubMed

    Gualdrini, G; Rollo, G; Montanari, A; Zinghi, G F

    1996-01-01

    The authors report 52 cases of aseptic nonunion of the tibia treated by intramedullary osteosynthesis. The means of synthesis used were the Küntscher nail, the Eiffel Tower Rush nail, and the Grosse-Kempf nail. Which means of synthesis was used depended on the site and the features of the nonunion. Healing occurred in all of the cases after an average of 5 months. Mean follow-up was 4.5 years.

  4. Influences of Nutrition and Physical Forces on Bone Structure/Function Properties

    DTIC Science & Technology

    2005-10-01

    weeks old. The mice were humanely euthanized at 20 wks of age, the left femur and eighth caudal vertebrae were dissected free of soft tissue and...regime, mice were humanely euthanized and the right tibiae were removed and dissected free of soft tissue and frozen in LRS. The right tibiae...Feld MS (1998) Histopathology of human coronary artherosclerosis by quantifying its chemical composition with Raman spectr- oscopy. Circulation 97:878

  5. Insufficiency fractures of the distal tibia misdiagnosed as cellulitis in three patients with rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straaton, K.V.; Lopez-Mendez, A.; Alarcon, G.S.

    We describe 3 patients with rheumatoid arthritis who presented with diffuse pain, swelling, and erythema of the distal aspect of the lower extremity, suggestive of either cellulitis or thrombophlebitis, but were found to have insufficiency fractures of the distal tibia. The value of technetium-99m diphosphonate bone scintigraphy in the early recognition of these fractures and a possible explanation for the associated inflammatory symptoms are discussed.

  6. The orientation of the mineral crystals in the radius and tibia of the sheep, and its variation with age.

    PubMed Central

    Bacon, G E; Goodship, A E

    1991-01-01

    The direction of preferred orientation of the hydroxyapatite crystals in both the tibia and radius of the sheep is close to the long axis of the bone, notwithstanding the angle of about 30 degrees which, for the tibia, exists between the long axis and the direction of principal dynamic strain during locomotion. For both bones the orientation of the cranial cortex, which is a tension surface during locomotion, is about 40% larger than the caudal. The variation with age of the magnitude of the preferred orientation for the sheep bones is contrasted with what has been reported earlier for the human femur. Notably, for the sheep, both bones show substantial orientation at birth--having increased steadily during gestation--so that the animal is able to stand and walk at the outset. PMID:1817133

  7. The uptake by the canine tibia of the bone-scanning agent 99mTc-MDP before and after an osteotomy.

    PubMed

    Hughes, S; Khan, R; Davies, R; Lavender, P

    1978-11-01

    The residue and extraction of technetium-labelled methylene diphosphonate (99mTc-MDP), a substance used in bone scanning, was examined in the canine tibia and found to be low. Examination of washout curves suggested that there were four compartments in cortical bone, a vascular, a perivascular, a bone fluid and a bone compartment. After an osteotomy in the canine tibia the residue of 99mTc-MDP increased. This was believed to be due to an increase in the blood supply to the bone and to an associated increase in new bone available for exchange. Bone scanning in a fracture is therefore a reflection of the vascular status of the bone being examined and of the uptake by bone. This is dependent on there being an adequate blood supply to the bone and an increased number of mineral-binding sites.

  8. Comparison of peri-implant bone formation around injection-molded and machined surface zirconia implants in rabbit tibiae

    PubMed Central

    Kim, Hong-Kyun; Woo, Kyung mi; Shon, Won-Jun; Ahn, Jin-Soo; Cha, Seunghee; Park, Young-Seok

    2017-01-01

    The aim of this study was to compare osseointegration and surface characteristics of zirconia implants made by the powder injection molding (PIM) technique and made by the conventional milling procedure in rabbit tibiae. Surface characteristics of 2 types of implant were evaluated. Sixteeen rabbits received 2 types of external hex implants with similar geometry, machined zirconia implants and PIM zirconia implants, in the tibiae. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined zirconia implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined zirconia implants (P < 0.001). The osseointegration of the PIM zirconia implant is promising, and PIM, using the roughened mold etching technique, can produce substantially rough surfaces on zirconia implants. PMID:26235717

  9. Periosteal ganglion: a report of three new cases including MRI findings and a review of the literature.

    PubMed

    Okada, K; Unoki, E; Kubota, H; Abe, E; Taniwaki, M; Morita, M; Sato, K

    1996-02-01

    To clarify the clinicopathological features of periosteal ganglion. Three patients with periosteal ganglion were studied clinicopathologically. One patient was selected from the files of our institute and two from a consultation file. All three lesions were located over the medial aspect of the tibia. Plain radiographs showed cortical erosions of varying degrees and mild periosteal reaction of the medial side of the tibia. MR images demonstrated well-circumscribed lesions overlying the cortical bone of the tibia, shown as low-intensity areas on T1-weighted images. On T2-weighted images, lesions were homogeneous, lobulated, and showed a characteristic markedly increased signal intensity. These findings are helpful in making a diagnosis of periosteal ganglion. Each patient had an uneventful clinical course after an excision involving the wall of the ganglion, the adjoining periosteum, and the underlying sclerotic cortical bone.

  10. Brown tumours of the tibia and second metacarpal bone in a woman with severe vitamin D deficiency.

    PubMed

    Al-Sharafi, Butheinah A; Al-Imad, Shafiq A; Shamshair, Amani M; Al-Faqeeh, Derhim H

    2015-08-03

    Brown tumours caused by vitamin D deficiency are rare. Most cases are caused by primary hyperparathyroidism, and are rarely caused by secondary hyperparathyroidism in cases of renal failure. We present a case of Brown tumours of the tibia and second metacarpal bone in a 50-year-old woman who had a low dietary intake of vitamin D and had worn a veil for most of her adult life. The Brown tumours were caused by vitamin D deficiency and secondary hyperparathyroidism. The patient improved on treatment with vitamin D3 and calcium supplements. This is a rare case and the first, to our knowledge, with a Brown tumour of the tibia caused by vitamin D deficiency due to decreased dietary intake and decreased exposure to sunlight. The course of treatment and investigations of the patient are described. 2015 BMJ Publishing Group Ltd.

  11. THE ABSCOPAL EFFECT OF X IRRADIATION ON BONE GROWTH IN RATS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, A.M.; Cohen, J.

    1963-06-01

    The abscopal effect of irradiation (that which is evident at a distance from the irradiated volume but within the same organism) was investigated in rats. It was possible to demonstrate the effects on growth locally and abscopally when x-ray doses of 400 and 800 r were delivered to the lower extremity and when 800 r was delivered to the knee alone. A distinction between abscopal effects after local irradiation and systemic effects after whole-body irradiation is discussed. The weights of control and irradiated animals were similar for the first 21 days, during which period they did not exhibit any untowardmore » effects of irradiation. However, after 21 days there was a decrease in weight gain, which persisted until the 72nd day. Group A (controls) was the heaviest group, with a mean weight of 412 g. Group B (800 r to the left hind extremity) had a mean weight of 378. Group C (400 r to the left hind extremity) and Group D (800 r to the left knee) exhibited mean weights of 391 and 394 g, respectively. Roentgenographic measurements revealed that all animals receiving irradiation had retardation in the growth of the irradiated tibiae, which were shorter than both the control and the contralateral (unirradiated) tibiae. Only the animals that had received 800 r to their leff hind extremity showed significant differences in the lengths of their unirradiated bones compared with the bones of the control animals of Group A, that is, a significant abscopal growth retardation. Although the abscopal effect appeared to be associated with the volume of tissue irradiated, the way this effect is mediated is not known. The weight gains of the animals demonstrated a strong association between decrease in weight gain, the volume of tissue irradiated, and the dose administered. The impaired weight gsin roughly paralleled the abscopal retardation of bone growth. The animals which received the highest dose of irradiation, 800 r, to the largest volume of tissue, 10% of the body volume, revealed the greatest deviation from the control group. It is concluded that irradiation effects in animals are composites of the responses of the whole organism to the injury, of the responses of local tissues, and vessels at their level of tissue organization, and of the responses of individual cells. All of these responses may be interdependent. The evidence indicates that a systemic inhibition of all bone growth and weight gain occurs when a sufficient volume of tissue is irradiated at a sufficiently high dosage. (BBB)« less

  12. Opportunities for exercise during pullet rearing, Part II: Long-term effects on bone characteristics of adult laying hens at the end-of-lay.

    PubMed

    Casey-Trott, T M; Korver, D R; Guerin, M T; Sandilands, V; Torrey, S; Widowski, T M

    2017-08-01

    Osteoporosis in laying hens has been a production and welfare concern for several decades. The objective of this study was to determine whether differing opportunities for exercise during pullet rearing influences long-term bone quality characteristics in end-of-lay hens. A secondary objective was to assess whether differing opportunities for exercise in adult housing systems alters bone quality characteristics in end-of-lay hens. Four flock replicates of 588 Lohmann Selected Leghorn-Lite pullets were reared in either conventional cages (Conv) or an aviary rearing system (Avi) and placed into conventional cages (CC), 30-bird furnished cages (FC-S), or 60-bird furnished cages (FC-L) for adult housing. Wing and leg bones were collected at the end-of-lay to quantify bone composition and strength using quantitative computed tomography and bone breaking strength (BBS). At the end-of-lay, Avi hens had greater total and cortical cross-sectional area (P < 0.05) for the radius and tibia, greater total bone mineral content of the radius (P < 0.001), and greater tibial cortical bone mineral content (P = 0.029) than the Conv hens; however, total bone mineral density of the radius (P < 0.001) and cortical bone mineral density of the radius and tibia (P < 0.001) were greater in the Conv hens. Hens in the FC-L had greater total bone mineral density for the radius and tibia (P < 0.05) and greater trabecular bone mineral density for the radius (P = 0.027), compared to hens in the FC-S and CC. Total bone mineral content of the tibia (P = 0.030) and cortical bone mineral content of the radius (P = 0.030) and tibia (P = 0.013) were greater in the FC-L compared to the CC. The humerus of Conv hens had greater BBS than the Avi hens (P < 0.001), and the tibiae of FC-L and FC-S hens had greater BBS than CC hens (P = 0.006). Increased opportunities for exercise offered by the aviary rearing system provided improved bone quality characteristics lasting through to the end-of-lay. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  13. Distraction by a monotube fixator to achieve limb lengthening: predictive factors for tibia trauma

    PubMed Central

    2013-01-01

    Background Management of post trauma tibia bone gap varied with orthopedic surgeons’ experience and tools available. Study aims to determine predictive factors for distraction by a monotube fixator (DMF) outcome in post tibia trauma limb length discrepancy. Methods A prospective descriptive cross sectional study of post traumatized tibia bone gap and limb length discrepancy patients at tertiary hospitals. Patient’s informed consent and institutional ethical committee approval were obtained. Bio-data, clinical and healing indexes were documented. DMF was applied for patient that met inclusion criteria. The Statistic tests used included the Chi-square, the Student’s two-tailed t test, and the Wilcox on rank-sum test when appropriate. Mantel-Haenszel Common Odds Ratio (OR) and 95% confidence intervals for poor outcome potential risk factors were recorded. Bivariate correlation and logistic regression were evaluated. Significance level was set at a p value <0.05. Results Thirty-six patients with mean age, 37.2 ± 10.3 year and male/female ratio of 1:1.25 had DMF applied. Motorcycle accident accounted for 50.0% of patients and diaphyseal segment was most commonly affected 25 (69.4%). The mean bone lengthened was 10.1 ± 4.0 cm (range: 5-21 cm) and mean duration of bone transport was 105.6 ± 38.2 days. The means of rate of distraction, healing index and percentage of lengthening were 0.99 ± 0.14 mm/day, 15.6 ± 4.3 days/cm and 38.0 ± 14.3 respectively. The mean follow up was 9.7 ±4.9 months (range: 2–17.0). Per operative complications varied and outcome was satisfactory in 30 (83.3%). Obesity (p <0.0001), multiple surgery (p = 0.012) and transfusion (p = 0.001) correlated to poor outcome. Percentage lengthening ≥ 50%, bone gap >10 cm, anemia, blood transfusion, general anesthesia administration, distraction rate >1 mm/day, osteomyelitis and prolong partial weight bearing were significant predictive factors for poor outcome in post traumatic tibia distraction. Conclusion Distraction by a monotube fixator appears effective in achieving correction >38.0% original tibia lengthening following traumatic bone gap. Predictive factors for poor outcome were useful for prognostication. PMID:23672599

  14. Appendicular and whole body lean mass outcomes are associated with finite element analysis-derived bone strength at the distal radius and tibia in adults aged 40years and older.

    PubMed

    Gibbs, Jenna C; Giangregorio, Lora M; Wong, Andy K O; Josse, Robert G; Cheung, Angela M

    2017-10-01

    The purpose of this cross-sectional study was to determine how appendicular lean mass index (ALMI), and whole body lean (LMI) and fat mass indices (FMI) associate with estimated bone strength outcomes at the distal radius and tibia in adults aged 40 years and older. Dual energy X-ray absorptiometry (DXA) scans were performed to determine body composition, including whole body lean and fat mass, and appendicular lean mass. ALMI (appendicular lean mass/height 2 ), LMI (lean tissue mass/height 2 ) and FMI (fat mass/height 2 ) were calculated. High-resolution peripheral quantitative computed tomography (HRpQCT) scans were performed to assess bone structural properties at the distal radius and tibia. Using finite element analysis, failure load (N), stiffness (N/mm), ultimate stress (MPa), and cortical-to-trabecular load ratio were estimated from HRpQCT scans. The associations between body composition (ALMI, LMI, FMI) and estimated bone strength were examined using bivariate and multivariable linear regression analyses adjusting for age, sex, and other confounding variables. In 197 participants (127 women; mean±SD, age: 69.5±10.3y, body mass index: 27.95±4.95kg/m 2 , ALMI: 7.31±1.31kg/m 2 ), ALMI and LMI were significantly associated with failure load at the distal radius and tibia (explained 39%-48% of the variance) and remained significant after adjusting for confounding variables and multiple testing (R 2 =0.586-0.645, p<0.001). ALMI, LMI, and FMI did not have significant associations with ultimate stress in our multivariable models. FMI was significantly associated with cortical-to-trabecular load ratio at the distal radius and tibia (explained 6%-12% of the variance) and remained significant after adjusting for confounders and multiple testing (R 2 =0.208-0.243, p<0.001). FMI was no longer significantly associated with failure load after adjusting for confounders. These findings suggest that ALMI and LMI are important determinants of estimated bone strength, particularly failure load, at the distal radius and tibia, and may contribute to preservation of bone strength in middle-to-late adulthood. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Maternal and genetic effects on broiler bone properties during incubation period.

    PubMed

    Yair, R; Cahaner, A; Uni, Z; Shahar, R

    2017-07-01

    In order to examine the differences in bone properties between fast-growing and slow-growing broiler embryos and to understand the effects of genotype and egg size on these differences, fast- and slow-growing hens and males were reciprocally crossed to create 4 egg groups: FST (laid by fast-growing hens, inseminated by fast-growing males), H-FST (fast-growing hens and slow-growing males), H-SLW (slow-growing hens and fast-growing males), and SLW (slow-growing hens and slow-growing males). Embryos (n = 8) from these 4 groups were sacrificed and weighed, and both tibiae were harvested on embryonic d (E) 17, 19, and 21. Left tibiae were tested for their whole-bone mechanical properties using a micromechanical device. Cortical bone structure and bone mineral density (BMD) were examined by micro-computed tomography of the left tibiae. Bone mineralization was evaluated by measuring BMD and ash content, while the rate and location of mineralization were evaluated by fluorochrome labeling. Osteoclastic activity and osteocyte density were evaluated by histological stains [TRAP (Tartrate resistant acid phosphatase) and H&E (Hematoxylin and Eosin), respectively]. Groups with larger eggs (FST and H-FST) had higher BW and tibia weight than groups with smaller eggs (SLW and H-SLW); however, they had a lower ratio of tibia weight to BW. Between groups with similar egg weight, stiffness, maximal load, and yield load of the bones were higher in the SLW than the H-SLW, while no differences were found between the FST and H-FST. Additionally, the tibiae of the SLW were stiffer and their osteocyte density higher than in the FST on E21 and their periosteal mineralization rate was higher between E19 and E21. No differences were found between the groups in cortical bone structure. This study demonstrates that faster growing hatchlings, especially those that hatch from relatively small eggs, have inferior bone mechanical properties in comparison to slower growing hatchlings, and suggests that fast-growing chicks hatching from small eggs are at a higher risk for developing bone pathologies. Accordingly, selection for increased egg size may lead to improved mechanical performance of the skeleton of fast-growing broilers. © 2017 Poultry Science Association Inc.

  16. Validation of Long Bone Mechanical Properties from Densitometry

    NASA Technical Reports Server (NTRS)

    Whalen, R.; Katz, B.; Cleek, T.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    The objective of this study was to assess whether cross-sectional areal properties, calculated from densitometry, correlate to the true flexural properties. Right and left male embalmed tibiae were used in the study. Prior to scanning, the proximal end of each tibia was potted in a fixture with registration pins, flushed thoroughly with water under pressure to remove trapped air, and then placed in a constant thickness water bath attached to a precision indexer. Two sets of three scans of the entire tibia were taken with an Hologic QDR 1000/W densitometer at rotations of 0, 45, and 90 degrees about the tibia long axis. An aluminum step phantom and a bone step phantom, machined from bovine cortical bone, were also in the bath and scanned separately. Pixel attenuation data from the two sets of scans were averaged to reduce noise. Pixel data from the high energy beam were then converted to equivalent thicknesses using calibration equations. Cross-sectional areal properties (centroid, principal area moments and principal angle) along the length were computed from the three registered scans using methods developed in our laboratory. Flexural rigidities. Four strain gages were bonded around the circumference of each of 5 cross-sections encompassing the entire diaphysis. A known transverse load was then applied to the distal end and the bone was rotated 360 degrees in eight increments of 45 degrees each. Strains from the eight orientations were analyzed along with the known applied bending moments at each section to compute section centroids, curvatures, principal flexural rigidities and principal angle. Reference axes between the two methods were maintained within +/- 0.5 degrees using an electronic inclinometer. Principal angles (flexural - areal) differed by -2.0 +/- 4.0 degrees, and 1.0 +/- 2.5 degrees for the right and left tibia, respectively. Section principal flexural rigidities were highly correlated to principal areal moments (right: r(sup 2)= 0.997; left: r(sup 2)= 0.978) indicating a nearly constant effective flexural modulus. Right and left tibia exhibited a very high degree of symmetry when comparing either flexural or areal properties. To our knowledge this is the first study to validate the use of densitometry (DXA) to predict three dimensional structural properties of long bones. Our initial results support the conclusion that bone mineral and its distribution are the primary determinants of flexural modulus and rigidity.

  17. Bone lead (Pb) content at the tibia is associated with thinner distal tibia cortices and lower volumetric bone density in postmenopausal women

    PubMed Central

    Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.

    2016-01-01

    Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but greater partitioning of lead in blood versus bone revealed more dramatic effects on both microstructure and volumetric BMD. PMID:25986335

  18. Tibia shaft fractures: costly burden of nonunions.

    PubMed

    Antonova, Evgeniya; Le, T Kim; Burge, Russel; Mershon, John

    2013-01-26

    Tibia shaft fractures (TSF) are common for men and women and cause substantial morbidity, healthcare use, and costs. The impact of nonunions on healthcare use and costs is poorly described. Our goal was to investigate patient characteristics and healthcare use and costs associated with TSF in patients with and without nonunion. We retrospectively analyzed medical claims in large U.S. managed care claims databases (Thomson Reuters MarketScan®, 16 million lives). We studied patients ≥ 18 years old with a TSF diagnosis (ICD-9 codes: 823.20, 823.22, 823.30, 823.32) in 2006 with continuous pharmaceutical and medical benefit enrollment 1 year prior and 2 years post-fracture. Nonunion was defined by ICD-9 code 733.82 (after the TSF date). Among the 853 patients with TSF, 99 (12%) had nonunion. Patients with nonunion had more comorbidities (30 vs. 21, pre-fracture) and were more likely to have their TSF open (87% vs. 70%) than those without nonunion. Patients with nonunion were more likely to have additional fractures during the 2-year follow-up (of lower limb [88.9% vs. 69.5%, P < 0.001], spine or trunk [16.2% vs. 7.2%, P = 0.002], and skull [5.1% vs. 1.3%, P = 0.008]) than those without nonunion. Nonunion patients were more likely to use various types of surgical care, inpatient care (tibia and non-tibia related: 65% vs. 40%, P < 0.001) and outpatient physical therapy (tibia-related: 60% vs. 42%, P < 0.001) than those without nonunion. All categories of care (except emergency room costs) were more expensive in nonunion patients than in those without nonunion: median total care cost $25,556 vs. $11,686, P < 0.001. Nonunion patients were much more likely to be prescribed pain medications (99% vs. 92%, P = 0.009), especially strong opioids (90% vs. 76.4%, P = 0.002) and had longer length of opioid therapy (5.4 months vs. 2.8 months, P < 0.001) than patients without nonunion. Tibia fracture patterns in men differed from those in women. Nonunions in TSF's are associated with substantial healthcare resource use, common use of strong opioids, and high per-patient costs. Open fractures are associated with higher likelihood of nonunion than closed ones. Effective screening of nonunion risk may decrease this morbidity and subsequent healthcare resource use and costs.

  19. Plain X-ray, computed tomography and magnetic resonance imaging findings of telangiectatic osteosarcoma: a case report.

    PubMed

    Skiadas, Vasilios; Koutoulidis, Vasilios; Koureas, Andreas; Moulopoulos, Lia; Gouliamos, Athanasios

    2009-09-16

    An 18-year-old male patient presented with chronic nonspecific pain of three months located at his left proximal tibia. The patient was admitted to our department for plain X-ray, computed tomography and magnetic resonance imaging examination. Plain X-ray and computed tomography revealed a geographic lytic lesion at the medial aspect of the proximal tibia. Biopsy of the lesion showed telangiectatic osteosarcoma. Image findings of all modalities are presented.

  20. First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs.

    PubMed

    Cubo, Jorge; Woodward, Holly; Wolff, Ewan; Horner, John R

    2015-01-01

    Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.

Top