Sample records for rate cell density

  1. Lipopolysaccharide effects on the proliferation of NRK52E cells via alternations in gap-junction function.

    PubMed

    Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun

    2012-07-01

    Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.

  2. Separation of active and inactive fractions from starved culture of Vibrio parahaemolyticus by density dependent cell sorting.

    PubMed

    Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro

    2005-01-01

    The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.

  3. Regional cell density distribution and oxygen consumption rates in porcine TMJ discs: an explant study.

    PubMed

    Kuo, J; Shi, C; Cisewski, S; Zhang, L; Kern, M J; Yao, H

    2011-07-01

    To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. TMJ discs from pigs aged 6-8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve-fitting of the recorded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. The overall cell density [mean, 95% confidence interval (CI)] was 51.3 (21.3-81.3) × 10(6) cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (P<0.02) and 29.1% higher than the posterior band (P<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (P<0.04) and 25.4% higher than the lateral region (P<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44 (0.44-2.44) μmol/mL wet tissue/h and 28.7 (12.2-45.2)nmol/10(6)cells/h, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (P<0.02) and cell based (P<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Regional Cell Density Distribution and Oxygen Consumption Rates in Porcine TMJ Discs: An Explant Study

    PubMed Central

    Kuo, Jonathan; Shi, Changcheng; Cisewski, Sarah; Zhang, Lixia; Kern, Michael J.; Yao, Hai

    2011-01-01

    Objective To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. Design TMJ discs from pigs aged 6–8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve fitting of the recoded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. Results The overall cell density (mean, 95% CI) was 51.3(21.3–81.3)×106cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (p<0.02) and 29.1% higher than the posterior band (p<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (p<0.04) and 25.4% higher than the lateral region (p<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44(0.44–2.44) μmol/mL wet tissue/hr and 28.7(12.2–45.2) nmol/106 cells/hr, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (p<0.02) and cell based (p<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. Conclusions The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply. PMID:21397032

  5. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  6. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    PubMed

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor types.

  7. On strain and stress in living cells

    NASA Astrophysics Data System (ADS)

    Cox, Brian N.; Smith, David W.

    2014-11-01

    Recent theoretical simulations of amelogenesis and network formation and new, simple analyses of the basic multicellular unit (BMU) allow estimation of the order of magnitude of the strain energy density in populations of living cells in their natural environment. A similar simple calculation translates recent measurements of the force-displacement relation for contacting cells (cell-cell adhesion energy) into equivalent volume energy densities, which are formed by averaging the changes in contact energy caused by a cell's migration over the cell's volume. The rates of change of these mechanical energy densities (energy density rates) are then compared to the order of magnitude of the metabolic activity of a cell, expressed as a rate of production of metabolic energy per unit volume. The mechanical energy density rates are 4-5 orders of magnitude smaller than the metabolic energy density rate in amelogenesis or bone remodeling in the BMU, which involve modest cell migration velocities, and 2-3 orders of magnitude smaller for innervation of the gut or angiogenesis, where migration rates are among the highest for all cell types. For representative cell-cell adhesion gradients, the mechanical energy density rate is 6 orders of magnitude smaller than the metabolic energy density rate. The results call into question the validity of using simple constitutive laws to represent living cells. They also imply that cells need not migrate as inanimate objects of gradients in an energy field, but are better regarded as self-powered automata that may elect to be guided by such gradients or move otherwise. Thus Ġel=d/dt 1/2 >[(C11+C12)ɛ02+2μγ02]=(C11+C12)ɛ0ɛ˙0+2μγ0γ˙0 or Ġel=ηEɛ0ɛ˙0+η‧Eγ0γ˙0 with 1.4≤η≤3.4 and 0.7≤η‧≤0.8 for Poisson's ratio in the range 0.2≤ν≤0.4 and η=1.95 and η‧=0.75 for ν=0.3. The spatial distribution of shear strains arising within an individual cell as cells slide past one another during amelogenesis is not known in detail. However, estimates can be inferred from the known relative velocities of the cells' centers of mass. When averaged over a volume comparable to the cell size, representative values of the strain are, to order of magnitude, ɛ0≈0.1 and γ0≈0.1. The shape distortions of cells seen, for example, in Fig. 1c, imply peak strains in minor segments of a cell of magnitude unity, ɛ0≈1 and γ0≈1; these values represent the upper bound of plausible values and are included for discussion of the extremes of attainable strain energy rates.Given the strain magnitudes, the strain rates follow from the fact that a cell switches from one contacting neighbor in the adjacent row to the next in approximately 0.25 d, during which motion the strains might vary from zero to their maximum values and back again. Thus the most probable shear strain rate is inferred to be γ˙0=10-6 s-1 and the most probable tensile strain rate is inferred to be ɛ˙0≈10-6 s-1, with high bounds γ˙0=10-5 s-1 and ɛ˙0=10-5 s-1.

  8. Measurement of OH, O, and NO densities and their correlations with mouse melanoma cell death rate treated by a nanosecond pulsed streamer discharge

    NASA Astrophysics Data System (ADS)

    Yagi, Ippei; Shirakawa, Yuki; Hirakata, Kenta; Akiyama, Taketoshi; Yonemori, Seiya; Mizuno, Kazue; Ono, Ryo; Oda, Tetsuji

    2015-10-01

    Mouse melanoma cells in a culture medium are treated using a nanosecond pulsed streamer discharge plasma and the correlations between the rate of cell death and the densities of reactive species (OH, O, and NO) in the plasma are measured. The plasma is irradiated onto the culture medium surface with a vertical gas flow of an O2/N2 mixture from a glass tube at various gas flow rates and O2 concentrations. The densities of the reactive species are measured very close to the culture medium surface, where the reactive species interact with the culture medium, using laser-induced fluorescence. In the case of the N2 discharge (O2 = 0%), an increase in gas flow rate decreases OH density because it lowers the water vapor concentration by diluting the vapor, which is required for OH production. The increase in gas flow rate also leads to a decreased cell death rate. In the case of the O2/N2 discharge, on the other hand, an increase in O2 concentration at a fixed flow rate does not affect the rate of cell death, although it considerably changes the O and NO densities. These findings indicate that some reactive species derived from water vapor such as OH are responsible for the melanoma cell death, whereas those from O2, such as O and NO, are less likely responsible. They also indicate the importance of water evaporation from the culture medium surface in cell treatment.

  9. Carbon nanowall scaffold to control culturing of cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Watanabe, Hitoshi; Kondo, Hiroki; Okamoto, Yukihiro; Hiramatsu, Mineo; Sekine, Makoto; Baba, Yoshinobu; Hori, Masaru

    2014-12-01

    The effect of carbon nanowalls (CNWs) on the culturing rate and morphological control of cervical cancer cells (HeLa cells) was investigated. CNWs with different densities were grown using plasma-enhanced chemical vapor deposition and subjected to post-growth plasma treatment for modification of the surface terminations. Although the surface wettability of the CNWs was not significantly dependent on the CNW densities, the cell culturing rates were significantly dependent. Morphological changes of the cells were not significantly dependent on the density of CNWs. These results indicate that plasma-induced surface morphology and chemical terminations enable nanobio applications using carbon nanomaterials.

  10. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion

    PubMed Central

    Paim, A.; Braghirolli, D.I.; Cardozo, N.S.M.; Pranke, P.; Tessaro, I.C.

    2018-01-01

    Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion. PMID:29590258

  11. Electrical, thermal and abusive tests on lithium thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1980-01-01

    Electrical characterizations, thermal characterizations, and outer limits tests of lithium thionyl chloride cells are discussed. Graphs of energy density vs power density and heat rate vs time are presented along with results of forced reversal and high rate discharge tests.

  12. Electrical, thermal and abusive tests on lithium thionyl chloride cells

    NASA Astrophysics Data System (ADS)

    Frank, H. A.

    1980-04-01

    Electrical characterizations, thermal characterizations, and outer limits tests of lithium thionyl chloride cells are discussed. Graphs of energy density vs power density and heat rate vs time are presented along with results of forced reversal and high rate discharge tests.

  13. Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell.

    PubMed

    Monfredi, Oliver; Tsutsui, Kenta; Ziman, Bruce; Stern, Michael D; Lakatta, Edward G; Maltsev, Victor A

    2018-03-01

    Cardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts. The beating rate was measured at baseline and after inhibition of the Ca 2+ pump with cyclopiazonic acid. Thereafter, in each cell, we consecutively measured the density of funny current ( I f ), delayed rectifier K + current ( I K ) (a surrogate of repolarization capacity), and L-type Ca 2+ current ( I Ca,L ) using whole cell patch clamp . The ionic current densities varied to a greater extent than previously appreciated, with some IPCs demonstrating very small or zero I f . The density of none of the currents was correlated with cell size, while I Ca,L and I f densities were related to baseline beating rates. I f density was correlated with I K density but not with that of I Ca,L . Inhibition of Ca 2+ cycling had a greater beating rate slowing effect in IPCs with lower I f densities. Our numerical model simulation indicated that 1) IPCs with small (or zero) I f or small I Ca,L can operate via a major contribution of Ca 2+ clock, 2) I f -Ca 2+ -clock interplay could be important for robust pacemaking function, and 3) coupled I f - I K function could regulate maximum diastolic potential. Thus, we have demonstrated marked electrophysiological heterogeneity of IPCs. This heterogeneity is manifested in basal beating rate and response to interference of Ca 2+ cycling, which is linked to I f . NEW & NOTEWORTHY In the present study, a hitherto unrecognized range of heterogeneity of ion currents in pacemaker cells from the intercaval region is demonstrated. Relationships between basal beating rate and L-type Ca 2+ current and funny current ( I f ) density are uncovered, along with a positive relationship between I f and delayed rectifier K + current. Links are shown between the response to Ca 2+ cycling blockade and I f density.

  14. Proteolytic and non-proteolytic regulation of collective cell invasion: tuning by ECM density and organization

    PubMed Central

    Kumar, Sandeep; Kapoor, Aastha; Desai, Sejal; Inamdar, Mandar M.; Sen, Shamik

    2016-01-01

    Cancer cells manoeuvre through extracellular matrices (ECMs) using different invasion modes, including single cell and collective cell invasion. These modes rely on MMP-driven ECM proteolysis to make space for cells to move. How cancer-associated alterations in ECM influence the mode of invasion remains unclear. Further, the sensitivity of the two invasion modes to MMP dynamics remains unexplored. In this paper, we address these open questions using a multiscale hybrid computational model combining ECM density-dependent MMP secretion, MMP diffusion, ECM degradation by MMP and active cell motility. Our results demonstrate that in randomly aligned matrices, collective cell invasion is more efficient than single cell invasion. Although increase in MMP secretion rate enhances invasiveness independent of cell–cell adhesion, sustenance of collective invasion in dense matrices requires high MMP secretion rates. However, matrix alignment can sustain both single cell and collective cell invasion even without ECM proteolysis. Similar to our in-silico observations, increase in ECM density and MMP inhibition reduced migration of MCF-7 cells embedded in sandwich gels. Together, our results indicate that apart from cell intrinsic factors (i.e., high cell–cell adhesion and MMP secretion rates), ECM density and organization represent two important extrinsic parameters that govern collective cell invasion and invasion plasticity. PMID:26832069

  15. A continuum mathematical model of endothelial layer maintenance and senescence

    PubMed Central

    Wang, Ying; Aguda, Baltazar D; Friedman, Avner

    2007-01-01

    Background The monolayer of endothelial cells (ECs) lining the inner wall of blood vessels deteriorates as a person ages due to a complex interplay of a variety of causes including cell death arising from shear stress of blood flow and cellular oxidative stress, cellular senescence, and decreased rate of replacement of dead ECs by progenitor stem cells. Results A continuum mathematical model is developed to describe the dynamics of large EC populations of the endothelium using a system of differential equations for the number densities of cells of different generations starting from endothelial progenitors to senescent cells, as well as the densities of dead cells and the holes created upon clearing dead cells. Aging of cells is manifested in three ways, namely, losing the ability to divide when the Hayflick limit of 50 generations is reached, decreasing replication rate parameters and increasing death rate parameters as cells divide; due to the dependence of these rate parameters on cell generation, the model predicts a narrow distribution of cell densities peaking at a particular cell generation. As the chronological age of a person advances, the peak of the distribution – corresponding to the age of the endothelium – moves towards senescence correspondingly. However, computer simulations also demonstrate that sustained and enhanced stem cell homing can halt the aging process of the endothelium by maintaining a stationary cell density distribution that peaks well before the Hayflick limit. The healing rates of damaged endothelia for young, middle-aged, and old persons are compared and are found to be particularly sensitive to the stem cell homing parameter. Conclusion The proposed model describes the aging of the endothelium as being driven by cellular senescence, with a rate that does not necessarily correspond to the chronological aging of a person. It is shown that the age of the endothelium depends sensitively on the homing rates of EC progenitor cells. PMID:17692115

  16. A continuum mathematical model of endothelial layer maintenance and senescence.

    PubMed

    Wang, Ying; Aguda, Baltazar D; Friedman, Avner

    2007-08-10

    The monolayer of endothelial cells (ECs) lining the inner wall of blood vessels deteriorates as a person ages due to a complex interplay of a variety of causes including cell death arising from shear stress of blood flow and cellular oxidative stress, cellular senescence, and decreased rate of replacement of dead ECs by progenitor stem cells. A continuum mathematical model is developed to describe the dynamics of large EC populations of the endothelium using a system of differential equations for the number densities of cells of different generations starting from endothelial progenitors to senescent cells, as well as the densities of dead cells and the holes created upon clearing dead cells. Aging of cells is manifested in three ways, namely, losing the ability to divide when the Hayflick limit of 50 generations is reached, decreasing replication rate parameters and increasing death rate parameters as cells divide; due to the dependence of these rate parameters on cell generation, the model predicts a narrow distribution of cell densities peaking at a particular cell generation. As the chronological age of a person advances, the peak of the distribution - corresponding to the age of the endothelium - moves towards senescence correspondingly. However, computer simulations also demonstrate that sustained and enhanced stem cell homing can halt the aging process of the endothelium by maintaining a stationary cell density distribution that peaks well before the Hayflick limit. The healing rates of damaged endothelia for young, middle-aged, and old persons are compared and are found to be particularly sensitive to the stem cell homing parameter. The proposed model describes the aging of the endothelium as being driven by cellular senescence, with a rate that does not necessarily correspond to the chronological aging of a person. It is shown that the age of the endothelium depends sensitively on the homing rates of EC progenitor cells.

  17. The voltage threshold for arcing for solar cells in Leo - Flight and ground test results

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1986-01-01

    Ground and flight results of solar cell arcing in low earth orbit (LEO) conditions are compared and interpreted. It is shown that an apparent voltage threshold for arcing may be produced by a storage power law dependence of arc rate on voltage, combined with a limited observation time. The change in this apparent threshold with plasma density is a reflection of the density dependence of the arc rate. A nearly linear dependence of arc rate on density is inferred from the data. A real voltage threshold for arcing for 2 by 2 cm solar cells may exist however, independent of plasma density, near -230 V relative to the plasma. Here, arc rates may change by more than an order of magnitude for a change of only 30 V in array potential. For 5.9 by 5.9 solar cells, the voltage dependence of the arc rate is steeper, and the data are insufficient to indicate the existence of an arcing increased by an atomic oxygen plasma, as is found in LEO, and by arcing from the backs of welded-through substrates.

  18. The voltage threshold for arcing for solar cells in LEO: Flight and ground test results

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.

    1986-01-01

    Ground and flight results of solar cell arcing in low Earth orbit (LEO) conditions are compared and interpreted. It is shown that an apparent voltage threshold for arcing may be produced by a strong power law dependence of arc rate on voltage, combined with a limited observation time. The change in this apparent threshold with plasma density is a reflection of the density dependence of the arc rate. A nearly linear dependence of arc rate on density is inferred from the data. A real voltage threshold for arcing for 2 by 2 cm solar cells may exist however, independent of plasma density, near -230 V relative to the plasma. Here, arc rates may change by more than an order of magnitude for a change of only 30 V in array potential. For 5.9 by 5.9 solar cells, the voltage dependence of the arc rate is steeper, and the data are insufficient to indicate the existence of an arcing increased by an atomic oxygen plasma, as is found in LEO, and by arcing from the backs of welded-through substrates.

  19. Problem-Based Test: Replication of Mitochondrial DNA during the Cell Cycle

    ERIC Educational Resources Information Center

    Setalo, Gyorgy, Jr.

    2013-01-01

    Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids,…

  20. Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density

    PubMed Central

    2016-01-01

    High initial cell density is used to increase volumetric productivity and shorten production time in lignocellulosic hydrolysate fermentation. Comparison of physiological parameters in high initial cell density cultivation of Saccharomyces cerevisiae in the presence of acetic, formic, levulinic and cinnamic acids demonstrated general and acid-specific responses of cells. All the acids studied impaired growth and inhibited glycolytic flux, and caused oxidative stress and accumulation of trehalose. However, trehalose may play a role other than protecting yeast cells from acid-induced oxidative stress. Unlike the other acids, cinnamic acid did not cause depletion of cellular ATP, but abolished the growth of yeast on ethanol. Compared with low initial cell density, increasing initial cell density reduced the lag phase and improved the bioconversion yield of cinnamic acid during acid adaptation. In addition, yeast cells were able to grow at elevated concentrations of acid, probable due to the increase in phenotypic cell-to-cell heterogeneity in large inoculum size. Furthermore, the specific growth rate and the specific rates of glucose consumption and metabolite production were significantly lower than at low initial cell density, which was a result of the accumulation of a large fraction of cells that persisted in a viable but non-proliferating state. PMID:27620460

  1. Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture.

    PubMed

    Yoon, D S; Kim, Y H; Jung, H S; Paik, S; Lee, J W

    2011-10-01

    This study has aimed to repopulate 'primitive' cells from late-passage mesenchymal stem cells (MSCs) of poor multipotentiality and low cell proliferation rate, by simply altering plating density. Effects of low density culture compared t high density culture on late-passage bone marrow (BM)-derived MSCs and pluripotency markers of multipotentiality were investigated. Cell proliferation, gene expression, RNA interference and differentiation potential were assayed. We repopulated 'primitive' cells by replating late-passage MSCs at low density (17 cells/cm(2) ) regardless of donor age. Repopulated MSCs from low-density culture were smaller cells with spindle shaped morphology compared to MSCs from high-density culture. The latter had enhanced colony-forming ability, proliferation rate, and adipogenic and chondrogenic potential. Strong expression of osteogenic-related genes (Cbfa1, Dlx5, alkaline phosphatase and type Ι collagen) in late-passage MSCs was reduced by replating at low density, whereas expression of three pluripotency markers (Sox2, Nanog and Oct-4), Osterix and Msx2 reverted to levels of early-passage MSCs. Knockdown of Sox2 and Msx2 but not Nanog, using RNA interference, showed significant decrease in colony-forming ability. Specifically, knockdown of Sox2 significantly inhibited multipotentiality and cell proliferation. Our data suggest that plating density should be considered to be a critical factor for enrichment of 'primitive' cells from heterogeneous BM and that replicative senescence and multipotentiality of MSCs during in vitro expansion may be predominantly regulated through Sox2. © 2011 Blackwell Publishing Ltd.

  2. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production

    PubMed Central

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B.; Igoshin, Oleg A.

    2016-01-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. PMID:27362260

  3. Colony Expansion of Socially Motile Myxococcus xanthus Cells Is Driven by Growth, Motility, and Exopolysaccharide Production.

    PubMed

    Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B; Igoshin, Oleg A

    2016-06-01

    Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.

  4. Clonal variation in proliferation rate of cultures of GPK cells.

    PubMed

    Riley, P A; Hola, M

    1981-09-01

    Pedigrees of twenty-six clones of a line of keratocytes derived from guinea-pig ear epidermis (GPK cells) were analysed from time-lapse film. The mean interdivision time (IDT) for the culture was 1143 +/- 215 (SD) min. The mean generation rates (mean reciprocal interdivision times) of clones varied over a range of 3.93--10.2 x 10(-4)/min and the standard deviation of the clonal mean generation rates was 16.8% of the average value. Transient intraclonal variations in IDT due to mitoses in a plane perpendicular to the substratum were observed. The data were also analysed on the basis of cell location in sixteen equal zones (quadrats) of the filmed area. The mean generation rate of quadrats was 8.73 x 10(-4)/min (SD = 4.9%). The spatial distribution showed some clustering of cells. The mean local density of the clones (2.25 +/- 0.62 cells/10(-4) cm2) was significantly higher than the quadrat density (1.76 +/- 0.8 cells/10(-4) cm2). There was no significant correlation between clonal density and mean generation rates, whereas for quadrats a significant negative correlation was found (P = 2.7%). The results support the proposition that cell lineage is the major determinant of the proliferation rate of subconfluent cultures.

  5. Communication—Electrolysis at High Efficiency with Remarkable Hydrogen Production Rates

    DOE PAGES

    Wood, Anthony; He, Hongpeng; Joia, Tahir; ...

    2016-01-20

    Solid Oxide Electrolysis (SOE) can be used to produce hydrogen with very high efficiencies at remarkable hydrogen production rates. Through microstructural and compositional modification, conventional low cost Solid Oxide Fuel Cell (SOFC) materials have been used to create a Solid Oxide Electrolysis Cell (SOEC) that can achieve remarkable current density at cell voltages allowing higher conversion efficiency than current commercial electrolysers. Current densities in excess of 6 A/cm2 have been achieved at 800°C with a cell voltage of < 1.67 V. This cell shows a more than 3-fold increase in hydrogen production rate at higher efficiency than established commercial electrolysers.

  6. Density-dependent regulation of growth of BSC-1 cells in cell culture: control of growth by serum factors.

    PubMed Central

    Holley, R W; Armour, R; Baldwin, J H; Brown, K D; Yeh, Y C

    1977-01-01

    BSC-1 cells grow slowly, to high cell density, in medium with 0.1% calf serum. An increase in the serum concentration increases both the growth rate of the cells and the final cell density. The serum can be replaced to some extent by epidermal growth factor (EGF). Initiation of DNA synthesis in BSC-1 cells that have spread into a "wound" in a crowded cell layer requires the addition of a trace of serum or EGF, if the cells have previously been deprived of serum. The binding of 125I-labeled EGF to low-density and high-density BSC-1 cells has been studied. Binding is faster to low-density cells. Cells at low cell density also bind much more EGF per cell than cells at high cell density. The fraction of bound 125I-labeled EGF that is present on the cell surface as intact EGF is larger at low than at high cell density. The results indicate that the number of available EGF receptors per cell decreases drastically as the cell density increases. It is suggested that a decrease in the number of available EGF receptor sites per cell, and the accompanying decrease in sensitivity of the cells to EGF, contributes to density-dependent regulation of growth of these cells. Images PMID:303774

  7. Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries

    NASA Astrophysics Data System (ADS)

    Becker, Maik; Bredemeyer, Niels; Tenhumberg, Nils; Turek, Thomas

    2016-03-01

    Potential probes are applied to vanadium redox-flow batteries for determination of effective felt resistance and current density distribution. During the measurement of polarization curves in 100 cm2 cells with different carbon felt compression rates, alternating potential steps at cell voltages between 0.6 V and 2.0 V are applied. Polarization curves are recorded at different flow rates and states of charge of the battery. Increasing compression rates lead to lower effective felt resistances and a more uniform resistance distribution. Low flow rates at high or low state of charge result in non-linear current density distribution with high gradients, while high flow rates give rise to a nearly linear behavior.

  8. Automatic detection and quantitative analysis of cells in the mouse primary motor cortex

    NASA Astrophysics Data System (ADS)

    Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui

    2014-09-01

    Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.

  9. Cell growth, division, and death in cohesive tissues: A thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Yabunaka, Shunsuke; Marcq, Philippe

    2017-08-01

    Cell growth, division, and death are defining features of biological tissues that contribute to morphogenesis. In hydrodynamic descriptions of cohesive tissues, their occurrence implies a nonzero rate of variation of cell density. We show how linear nonequilibrium thermodynamics allows us to express this rate as a combination of relevant thermodynamic forces: chemical potential, velocity divergence, and activity. We illustrate the resulting effects of the nonconservation of cell density on simple examples inspired by recent experiments on cell monolayers, considering first the velocity of a spreading front, and second an instability leading to mechanical waves.

  10. The correlated blanching of synaptic bodies and reduction in afferent firing rates caused by transmitter-depleting agents in the frog semicircular canal

    NASA Technical Reports Server (NTRS)

    Guth, P.; Norris, C.; Fermin, C. D.; Pantoja, M.

    1993-01-01

    Synaptic bodies (SBs) associated with rings of synaptic vesicles and well-defined, pre- and post-synaptic membrane structures are indicators of maturity in most hair cell-afferent nerve junctions. The role of the SBs remains elusive despite several experiments showing that they may be involved in storage of neurotransmitter. Our results demonstrate that SBs of the adult posterior semicircular canal (SCC) cristae hair cells become less electron dense following incubation of the SCC with the transmitter-depleting drug tetrabenazine (TBZ). Objective quantification and comparison of the densities of the SBs in untreated and TBZ-treated frog SCC demonstrated that TBZ significantly decreased the electron density of SBs. This reduction in electron density was accompanied by a reduction in firing rates of afferent fibers innervating the posterior SCC. A second transmitter-depleting drug, guanethidine, previously shown to reduce the electron density of hair cell SBs, also reduced the firing rates of afferent fibers innervating the posterior SCC. In contrast, the electron density of dense granules (DG), similar in size and shape to synaptic bodies (SB) in hair cells, did not change after incubation in TBZ, thus indicating that granules and SBs are not similar in regard to their electron density. The role of SBs in synaptic transmission and the transmitter, if any, stored in the SBs remain unknown. Nonetheless, the association of the lessening of electron density with a reduction in afferent firing rate provides impetus for the further investigation of the SB's role in neurotransmission.

  11. Rate of deoxygenation modulates rheologic behavior of sickle red blood cells at a given mean corpuscular hemoglobin concentration.

    PubMed

    Kaul, D K; Liu, X D

    1999-01-01

    Although the mean corpuscular hemoglobin concentration (MCHC) plays a dominant role in the rheologic behavior of deoxygenated density-defined sickle red blood cells (SS RBCs), previous studies have not explored the relationship between the rate of deoxygenation and the bulk viscosity of SS RBCs at a given MCHC. In the present study, we have subjected density-defined SS classes (i.e., medium-density SS4 and dense SS5 discocytes) to varying deoxygenation rates. This approach has allowed us to minimize the effects of SS RBC heterogeneity and investigate the effect of deoxygenation rates at a given MCHC. The results show that the percentages of granular cells, classic sickle cells and holly leaf forms in deoxygenated samples are significantly influenced by the rate of deoxygenation and the MCHC of a given discocyte subpopulation. Increasing the deoxygenation rate using high K+ medium (pH 6.8), results in a greater percentage of granular cells in SS4 suspensions, accompanied by a pronounced increase in the bulk viscosity of these cells compared with gradually deoxygenated samples (mainly classic sickle cells and holly leaf forms). The effect of MCHC becomes apparent when SS5 dense cells are subjected to varying deoxygenation rates. At a given deoxygenation rate, SS5 dense discocytes show a greater increase in the percentage of granular cells than that observed for SS4 RBCs. Also, at a given deoxygenation rate, SS5 suspensions exhibit a higher viscosity than SS4 suspensions with fast deoxygenation resulting in maximal increase in viscosity. Although MCHC is the main determinant of SS RBC rheologic behavior, these studies demonstrate for the first time that at a given MCHC, the rate of deoxygenation (hence HbS polymerization rates) further modulates the rheologic behavior of SS RBCs. Thus, both MCHC and the deoxygenation rate may contribute to microcirculatory flow behavior of SS RBCs.

  12. Problem-based test: replication of mitochondrial DNA during the cell cycle.

    PubMed

    Sétáló, György

    2013-01-01

    Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids, re-replication block, cell fractionation, Svedberg (sedimentation constant = [ S]), nuclear DNA, mitochondrial DNA, heavy and light mitochondrial DNA chains, heteroplasmy, mitochondrial diseases Copyright © 2013 Wiley Periodicals, Inc.

  13. A Radiochemical Biotechnological Approach: Preliminary Study of Lactose Uptake Rate by Kefir Cells, Using 14C-labeled Lactose, in Anaerobic Fermentation

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, A.; Soupioni, M.; Kanellaki, M.; Koutinas, A. A.

    2008-08-01

    The effect of initial lactose concentration on lactose uptake rate by kefir free cells, during the lactose fermentation, was studied in this work. For the investigation 14C-labelled lactose was used due to the fact that labeled and unlabeled molecules are fermented in the same way. The results illustrated lactose uptake rates are about up to two fold higher at lower initial ∘Bé densities as compared with higher initial ∘Bé densities.

  14. Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics

    PubMed Central

    Skibinski, David O. F.

    2018-01-01

    Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment. PMID:29702650

  15. [Acute toxicity effects of three red tide algae on Brachionus plicatilis].

    PubMed

    Zhou, Wen-Li; Xiao, Hui; Wang, You; Zhai, Hong-Chang; Tang, Xue-Xi

    2008-11-01

    Acute toxicity testing method was used to study effects of different density of Prorocentrum donghaiense, Heterosigma akashiwo and Alexandrium tamarense on mortality rates and population growth parameter of Brachionus plicatilis under controlled experimental conditions. Results showed that 24 h LC50 values of Prorocentrum donghaiense, Heterosigma akashiwo and Alexandrium tamarense treatment to mortality rate of Brachionus plicatilis were 3.56, 1.21 and 0.49 (x 10(4) cells/mL) respectively. Marked density effects were presented when three species of red tide microalga showed their toxicity to Brachionus plicatilis. There were significant inhibitory effects on Brachionus plicatilis when it was exposed to cells of Prorocentrum donghaiense at the concentration of 10(4) cells/mL, filtrate and cell contents of Heterosigma akashiwo at the concentration of 10(5) cells/mL, and cells, filtrate and cell contents of Alexandrium tamarense at the concentration of 10(3) cells/mL respectively. Inhibitory effects of three species of microalga on Brachionus plicatilis were enhanced with increasing of microalgal density.

  16. Increase in Ca2+ current by sustained cAMP levels enhances proliferation rate in GH3 cells.

    PubMed

    Rodrigues, Andréia Laura; Brescia, Marcella; Koschinski, Andreas; Moreira, Thaís Helena; Cameron, Ryan T; Baillie, George; Beirão, Paulo S L; Zaccolo, Manuela; Cruz, Jader S

    2018-01-01

    Ca 2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca 2+ currents and proliferation in pituitary tumor GH3 cells. Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca 2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca 2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca 2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca 2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca 2+ current density and this phenomenon impacts proliferation rate in GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Oxygen consumption rate of cells in 3D culture: the use of experiment and simulation to measure kinetic parameters and optimise culture conditions.

    PubMed

    Streeter, Ian; Cheema, Umber

    2011-10-07

    Understanding the basal O(2) and nutrient requirements of cells is paramount when culturing cells in 3D tissue models. Any scaffold design will need to take such parameters into consideration, especially as the addition of cells introduces gradients of consumption of such molecules from the surface to the core of scaffolds. We have cultured two cell types in 3D native collagen type I scaffolds, and measured the O(2) tension at specific locations within the scaffold. By changing the density of cells, we have established O(2) consumption gradients within these scaffolds and using mathematical modeling have derived rates of consumption for O(2). For human dermal fibroblasts the average rate constant was 1.19 × 10(-17) mol cell(-1) s(-1), and for human bone marrow derived stromal cells the average rate constant was 7.91 × 10(-18) mol cell(-1) s(-1). These values are lower than previously published rates for similar cells cultured in 2D, but the values established in this current study are more representative of rates of consumption measured in vivo. These values will dictate 3D culture parameters, including maximum cell-seeding density and maximum size of the constructs, for long-term viability of tissue models.

  18. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  19. Research on fluorescence detection method of Microcystis aeruginosa

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-xiong

    2017-07-01

    The paper studied the viability determination of Microcystis aeruginosa by FDA and PI staining. The staining results were measured by fluorescence microscopy. The results indicated that viable and dead cells were stained as bright green and red fluorescent respectively by FDA and PI. Through PI-FDA dual color fluorescence staining, the color of green and red distinct obviously by fluorescence microscope. The staining rate has relation with the cell density. If the cell density of M. aeruginosa was 1.0×107-1.0×109 cell·mL-1, the staining rate would be 100.0% or 98.0% by PI and of FDA respectively.

  20. Transient analysis of a solid oxide fuel cell stack with crossflow configuration

    NASA Astrophysics Data System (ADS)

    Yuan, P.; Liu, S. F.

    2018-05-01

    This study investigates the transient response of the cell temperature and current density of a solid oxide fuel cell having 6 stacks with crossflow configuration. A commercial software repeatedly solves the governing equations of each stack, and get the convergent results of the whole SOFC stack. The preliminary results indicate that the average current density of each stack is similar to others, so the power output between different stacks are uniform. Moreover, the average cell temperature among stacks is different, and the central stacks have higher temperature due to its harder heat dissipation. For the operating control, the cell temperature difference among stacks is worth to concern because the temperature difference will be over 10 °C in the analysis case. The increasing of the inlet flow rate of the fuel and air will short the transient state, increase the average current density, and drop the cell temperature difference among the stacks. Therefore, the inlet flow rate is an important factor for transient performance of a SOFC stack.

  1. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour

    PubMed Central

    Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O.; Oredsson, Stina; Prinz, Christelle N.

    2015-01-01

    The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing. PMID:26691936

  2. Optimization of human corneal endothelial cell culture: density dependency of successful cultures in vitro.

    PubMed

    Peh, Gary S L; Toh, Kah-Peng; Ang, Heng-Pei; Seah, Xin-Yi; George, Benjamin L; Mehta, Jodhbir S

    2013-05-03

    Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology. Established primary human corneal endothelial cells were propagated to the second passage (P2) before they were utilized for this study. Confluent P2 cells were dissociated and seeded at four seeding densities: 2,500 cells per cm2 ('LOW'); 5,000 cells per cm2 ('MID'); 10,000 cells per cm2 ('HIGH'); and 20,000 cells per cm2 ('HIGH(×2)'), and subsequently analyzed for their propensity to proliferate. They were also subjected to morphometric analyses comparing cell sizes, coefficient of variance, as well as cell circularity when each culture became confluent. At the two lower densities, proliferation rates were higher than cells seeded at higher densities, though not statistically significant. However, corneal endothelial cells seeded at lower densities were significantly larger in size, heterogeneous in shape and less circular (fibroblastic-like), and remained hypertrophic after one month in culture. Comparatively, cells seeded at higher densities were significantly homogeneous, compact and circular at confluence. Potentially, at an optimal seeding density of 10,000 cells per cm2, it is possible to obtain between 10 million to 25 million cells at the third passage. More importantly, these expanded human corneal endothelial cells retained their unique cellular morphology. Our results demonstrated a density dependency in the culture of primary human corneal endothelial cells. Sub-optimal seeding density results in a decrease in cell saturation density, as well as a loss in their proliferative potential. As such, we propose a seeding density of not less than 10,000 cells per cm2 for regular passage of primary human corneal endothelial cells.

  3. [The application of stem together with visible and infrared light in regenerative medicine (Part 2)].

    PubMed

    Emel'yanov, A N; Kir'yanova, V V

    2015-01-01

    The objective of the present study was to review the experimental studies concerned with in vitro and in vivo visible and infrared light irradiation of human and animal stem cells (SC) to assess the possibilities of using its photobiomodulatory effects for the purpose of regenerative medicine (RM). Despite the long history of photochromotherapy there is thus far no reliable theoretical basis for the choice of such irradiation parameters as power density, radiation dose and exposure time. Nor is there a generally accepted opinion on the light application for the purpose of regenerative medicine. Therefore, the clinical application of light irradiation remains a matter of controversy, in the first place due to the difficulty of the rational choice of irradiation parameters. In laboratory research, the theoretical basis for the choice of irradiation parameters remains a stumbling block too. A relationship between the increased radiation power density and the cell differentiation rate was documented. SC exposure to light in the absence of the factors causing their differentiation failed to induce it. On the contrary, it increased the features characteristic of undifferentiated cells. The maximum differentiation rate of the same cells was achieved by using irradiation parameters different from those needed to achieve the maxi- mum proliferation rate. The increase of SC differentiation rate upon a rise in radiation power density was induced by increasing ir- radiation energy density. The increase of power density and the reduction of either energy density or exposure time were needed to enhance the SC responsiveness to irradiation in the form of either proliferation or differentiation. The effectiveness of phototherapy at all stages of SC treatment was documented especially when it was applied to stimulate the reservoirs of bone marrow lying far from the site of the pathogenic process together with simultaneous light irradiation of the affected site and pre-treatment of stem cells prior to their administration. Based on the results of this analysis we have proposed "a plot showing the dependence of cell response on the generalized photostimulus" and coined two new terms "photostress" and "photoshock".

  4. Experimental study on the interspecific interactions between the two bloom-forming algal species and the rotifer Brachionus plicatilis

    NASA Astrophysics Data System (ADS)

    Xie, Zhihao; Xiao, Hui; Tang, Xuexi; Cai, Hengjiang

    2009-06-01

    The interspecific interactions between the rotifer Brachionus plicatilis and two harmful algal blooms (HAB) species were investigated experimentally by single culture method. B. plicatilis population and the growth of the two algae were compared at different algal cell densities. The results demonstrated that the B. plicatilis obtained sufficient nutrition from Prorocentrum donghaiense to support net population increase. With exposure to 2.5×104 cells mL-1 of P. donghaiense, the number of B. plicatilis increased faster than it did when exposed to other four algal densities (5, 10, 15 and 20 ×104 cells mL-1), and the increase rate of B. plicatilis population ( r) at this algal density was 0.104 ± 0.015 rd-1. Cell densities of P. donghaiense decreased due to the grazing of B. plicatilis. In contrast, Heterosigma akashiwo had an adverse effect on B. plicatilis population and its growth was largely unaffected by rotifer grazing. In this case, B. plicatilis population decreased and H. akashiwo grew at a rate similar to that of the control.

  5. Bone cells in birds show exceptional surface area, a characteristic tracing back to saurischian dinosaurs of the late Triassic.

    PubMed

    Rensberger, John M; Martínez, Ricardo N

    2015-01-01

    Dinosaurs are unique among terrestrial tetrapods in their body sizes, which range from less than 3 gm in hummingbirds to 70,000 kg or more in sauropods. Studies of the microstructure of bone tissue have indicated that large dinosaurs, once believed to be slow growing, attained maturity at rates comparable to or greater than those of large mammals. A number of structural criteria in bone tissue have been used to assess differences in rates of osteogenesis in extinct taxa, including counts of lines of arrested growth and the density of vascular canals. Here, we examine the density of the cytoplasmic surface of bone-producing cells, a feature which may set an upper limit to the rate of osteogenesis. Osteocyte lacunae and canaliculi, the cavities in bone containing osteocytes and their extensions, were measured in thin-sections of primary (woven and parallel fibered) bone in a diversity of tetrapods. The results indicate that bone cell surfaces are more densely organized in the Saurischia (extant birds, extinct Mesozoic Theropoda and Sauropodomorpha) than in other tetrapods, a result of denser branching of the cell extensions. The highest postnatal growth rates among extant tetrapods occur in modern birds, the only surviving saurischians, and the finding of exceptional cytoplasmic surface area of the cells that produce bone in this group suggests a relationship with bone growth rate. In support of this relationship is finding the lowest cell surface density among the saurischians examined in Dinornis, a member of a group of ratites that evolved in New Zealand in isolation from mammalian predators and show other evidence of lowered maturation rates.

  6. Bone Cells in Birds Show Exceptional Surface Area, a Characteristic Tracing Back to Saurischian Dinosaurs of the Late Triassic

    PubMed Central

    Rensberger, John M.; Martínez, Ricardo N.

    2015-01-01

    Background Dinosaurs are unique among terrestrial tetrapods in their body sizes, which range from less than 3 gm in hummingbirds to 70,000 kg or more in sauropods. Studies of the microstructure of bone tissue have indicated that large dinosaurs, once believed to be slow growing, attained maturity at rates comparable to or greater than those of large mammals. A number of structural criteria in bone tissue have been used to assess differences in rates of osteogenesis in extinct taxa, including counts of lines of arrested growth and the density of vascular canals. Methodology/Principal Findings Here, we examine the density of the cytoplasmic surface of bone-producing cells, a feature which may set an upper limit to the rate of osteogenesis. Osteocyte lacunae and canaliculi, the cavities in bone containing osteocytes and their extensions, were measured in thin-sections of primary (woven and parallel fibered) bone in a diversity of tetrapods. The results indicate that bone cell surfaces are more densely organized in the Saurischia (extant birds, extinct Mesozoic Theropoda and Sauropodomorpha) than in other tetrapods, a result of denser branching of the cell extensions. The highest postnatal growth rates among extant tetrapods occur in modern birds, the only surviving saurischians, and the finding of exceptional cytoplasmic surface area of the cells that produce bone in this group suggests a relationship with bone growth rate. In support of this relationship is finding the lowest cell surface density among the saurischians examined in Dinornis, a member of a group of ratites that evolved in New Zealand in isolation from mammalian predators and show other evidence of lowered maturation rates. PMID:25830561

  7. Mycobacterial Cultures Contain Cell Size and Density Specific Sub-populations of Cells with Significant Differential Susceptibility to Antibiotics, Oxidative and Nitrite Stress

    PubMed Central

    Vijay, Srinivasan; Nair, Rashmi Ravindran; Sharan, Deepti; Jakkala, Kishor; Mukkayyan, Nagaraja; Swaminath, Sharmada; Pradhan, Atul; Joshi, Niranjan V.; Ajitkumar, Parthasarathi

    2017-01-01

    The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed from the SCDs of short-sized mother cells and having comparable growth rates, always showed comparable stress-susceptibility. These observations and the presence of M. tuberculosis SCs and NCs in pulmonary tuberculosis patients' sputum earlier reported by us imply a physiological role for the SCs and the NCs under the stress conditions. The plausible reasons for the higher stress susceptibility of SCs and lower stress susceptibility of NCs are discussed. PMID:28377757

  8. Development of a hybrid battery system for an implantable biomedical device, especially a defibrillator/cardioverter (ICD)

    NASA Astrophysics Data System (ADS)

    Drews, Jürgen; Wolf, R.; Fehrmann, G.; Staub, R.

    An implantable defibrillator battery has to provide pulse power capabilities as well as high energy density. Low self-discharge rates are mandatory and a way to check the remaining available capacity is necessary. These requirements are accomplished by a system consisting of a lithium/manganese dioxide 6 V battery, plus a lithium/iodine-cell. The use of a high rate 6 V double-cell design in combination with a high energy density cell reduces the total volume required by the power source within an implantable defibrillator. The design features and performance data of the hybrid system are described.

  9. Cytokines Induce Faster Membrane Diffusion of MHC Class I and the Ly49A Receptor in a Subpopulation of Natural Killer Cells

    PubMed Central

    Bagawath-Singh, Sunitha; Staaf, Elina; Stoppelenburg, Arie Jan; Spielmann, Thiemo; Kambayashi, Taku; Widengren, Jerker; Johansson, Sofia

    2016-01-01

    Cytokines have the potential to drastically augment immune cell activity. Apart from altering the expression of a multitude of proteins, cytokines also affect immune cell dynamics. However, how cytokines affect the molecular dynamics within the cell membrane of immune cells has not been addressed previously. Molecular movement is a vital component of all biological processes, and the rate of motion is, thus, an inherent determining factor for the pace of such processes. Natural killer (NK) cells are cytotoxic lymphocytes, which belong to the innate immune system. By fluorescence correlation spectroscopy, we investigated the influence of cytokine stimulation on the membrane density and molecular dynamics of the inhibitory receptor Ly49A and its ligand, the major histocompatibility complex class I allele H-2Dd, in freshly isolated murine NK cells. H-2Dd was densely expressed and diffused slowly in resting NK cells. Ly49A was expressed at a lower density and diffused faster. The diffusion rate in resting cells was not altered by disrupting the actin cytoskeleton. A short-term stimulation with interleukin-2 or interferon-α + β did not change the surface density of moving H-2Dd or Ly49A, despite a slight upregulation at the cellular level of H-2Dd by interferon-α + β, and of Ly49A by IL-2. However, the molecular diffusion rates of both H-2Dd and Ly49A increased significantly. A multivariate analysis revealed that the increased diffusion was especially marked in a subpopulation of NK cells, where the diffusion rate was increased around fourfold compared to resting NK cells. After IL-2 stimulation, this subpopulation of NK cells also displayed lower density of Ly49A and higher brightness per entity, indicating that Ly49A may homo-cluster to a larger extent in these cells. A faster diffusion of inhibitory receptors could enable a faster accumulation of these molecules at the immune synapse with a target cell, eventually leading to a more efficient NK cell response. It has previously been assumed that cytokines regulate immune cells primarily via alterations of protein expression levels or posttranslational modifications. These findings suggest that cytokines may also modulate immune cell efficiency by increasing the molecular dynamics early on in the response. PMID:26870035

  10. Rheological behaviour of a suspension of microswimmers varying in motor characteristics

    NASA Astrophysics Data System (ADS)

    Tirumkudulu, Mahesh; Karmakar, Richa; Gulvady, Ranjit; Venkatesh, K. V.

    2013-11-01

    A suspension of motile cells exhibits complex rheological properties due to their collective motion. We measure the shear viscosity of suspensions of Escherichia coli strains varying in motor characteristics such as duration of run and tumble. At low cell densities, all strains irrespective of their motor characteristics exhibiting a linear increase in viscosity with cell density suggesting that the cells behave as a suspension of rods with an effective aspect ratio set by the motor characteristics of the bacteria. As the cell density is increased beyond a critical value, the viscosity drops sharply signaling the presence of strongly coordinated motion among bacteria. The critical density depends not only on the magnitude of shear but also the motor characteristics of individual cells. High shear rate disrupts the coordinated motion reducing its behavior, once again, to a suspension of inactive particles. The authors acknowldege financial support from Department of Science and Technology, India.

  11. Motor characteristics determine the rheological behavior of a suspension of microswimmers

    NASA Astrophysics Data System (ADS)

    Karmakar, Richa; Gulvady, Ranjit; Tirumkudulu, Mahesh S.; Venkatesh, K. V.

    2014-07-01

    A suspension of motile cells exhibits complex rheological properties due to their collective motion. We measure the shear viscosity of a suspension of Escherichia coli strains varying in motor characteristics such as duration of run and tumble. At low cell densities, all strains irrespective of their motor characteristics exhibit a linear increase in viscosity with cell density suggesting that the cells behave as a suspension of passive rods with an effective aspect ratio set by the motor characteristics of the bacteria. As the cell density is increased beyond a critical value, the viscosity drops sharply signaling the presence of strongly coordinated motion among bacteria. The critical density depends not only on the magnitude of shear but also the motor characteristics of individual cells. High shear rate disrupts the coordinated motion reducing its behavior, once again, to a suspension of inactive particles.

  12. [Detection of viable metabolically active yeast cells using a colorimetric assay].

    PubMed

    Růzicka, F; Holá, V

    2008-02-01

    The increasing concern of yeasts able to form biofilm brings about the need for susceptibility testing of both planktonic and biofilm cells. Detection of viability or metabolic activity of yeast cells after exposure to antimicrobials plays a key role in the assessment of susceptibility testing results. Colorimetric assays based on the color change of the medium in the presence of metabolically active cells proved suitable for this purpose. In this study, the usability of a colorimetric assay with the resazurin redox indicator for monitoring the effect of yeast inoculum density on the reduction rate was tested. As correlation between the color change rate and inoculum density was observed, approximate quantification of viable cells was possible. The assay would be of relevance to antifungal susceptibility testing in both planktonic and biofilm yeasts.

  13. Effect of dislocations on properties of heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Curtis, H. B.; Brinker, D. J.; Jenkins, P.; Faur, M.

    1991-01-01

    The apparently unrelated phenomena of temperature dependency, carrier removal and photoluminescence are shown to be affected by the high dislocation densities present in heteroepitaxial InP solar cells. Using homoepitaxial InP cells as a baseline, it is found that the relatively high dislocation densities present in heteroepitaxial InP/GaAs cells lead to increased volumes of dVoc/dt and carrier removal rate and substantial decreases in photoluminescence spectral intensities. With respect to dVoc/dt, the observed effect is attributed to the tendency of dislocations to reduce Voc. Although the basic cause for the observed increase in carrier removal rate is unclear, it is speculated that the decreased photoluminescence intensity is attributable to defect levels introduced by dislocations in the heteroepitaxial cells.

  14. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density increase was shown to quickly saturate with cell mass attached on the electrode. Based on recent modelling data that suggested that the electrode currents might be limited by the poor electrical conductivity of the anode, the power density versus electrical conductivity of a yeast-immobilized anode was investigated. Introduction of high aspect ratio carbon fiber filaments to the immobilization matrix increased the electrical conductivity of the anode. Although a higher electrical conductivity clearly led to an increase in power densities, it was shown that the principal limitation to power density increase was coming from proton transfer limitations in the immobilized anode. Partial overcoming of the gradients lead a power density of ca. 250 microW cm-2, which is the highest reported for yeast powered MFCs. A yeast-catalyzed microbial fuel cell was investigated as a power source for low power sensors using raw tree sap. It was shown that yeast can efficiently utilize the sucrose present in the raw tree sap to produce electricity when excess salt is added to the medium. Therefore the salinity of a potential energy source is an important consideration when MFCs are being considered for energy harvesting from natural sources.

  15. Identification of cell density signal molecule

    DOEpatents

    Schwarz, Richard I.

    1998-01-01

    Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.

  16. Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunini, VE; Chiang, YM; Carter, WC

    2012-05-01

    A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid activemore » materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.« less

  17. Strategic enzyme patterning for microfluidic biofuel cells

    NASA Astrophysics Data System (ADS)

    Kjeang, E.; Sinton, D.; Harrington, D. A.

    The specific character of biological enzyme catalysts enables combined fuel and oxidant channels and simplified non-compartmentalized fuel cell assemblies. In this work, a microstructured enzymatic biofuel cell architecture is proposed, and species transport phenomena combined with consecutive chemical reactions are studied computationally in order to provide guidelines for optimization. This is the first computational study of this technology, and a 2D CFD model for species transport coupled with laminar fluid flow and Michaelis-Menten enzyme kinetics is established. It is shown that the system is reaction rate limited, indicating that enzyme specific turnover numbers are key parameters for biofuel cell performance. Separated and mixed enzyme patterns in different proportions are analyzed for various Peclet numbers. High fuel utilization is achieved in the diffusion dominated and mixed species transport regimes with separated enzymes arranged in relation to individual turnover rates. However, the Peclet number has to be above a certain threshold value to obtain satisfying current densities. The mixed transport regime is particularly attractive while current densities are maintained close to maximum levels. Optimum performance is achieved by mixed enzyme patterning tailored with respect to individual turnover rates, enabling high current densities combined with nearly complete fuel utilization.

  18. Deformation behavior of open-cell dry natural rubber foam: Effect of different concentration of blowing agent and compression strain rate

    NASA Astrophysics Data System (ADS)

    Samsudin, M. S. F.; Ariff, Z. M.; Ariffin, A.

    2017-04-01

    Compression and deformation behavior of partially open cell natural rubber (NR) foam produced from dry natural rubber (DNR), were investigated by performing compressive deformation at different strains and strain rates. Different concentrations of sodium bicarbonate as a blowing agent (BA) were utilized, from 4 to 16 phr in order to produce foams with range of cell size and morphology. Overall, increasing of blowing agent concentration had significantly changed relative foam density. Compression stress-strain curves of the foams exhibited that the compression behavior was directly correlated to the foam cells morphology and physical density. Pronounced changes were noticed for foams with bigger cells particularly at 4 phr concentration of BA where the compression stress at plateau region was greater compared to those with higher concentration of BA. Cell deformation progressive images confirmed that the foams demonstrated small degree of struts bending at 15% of strain and followed by continuous severe struts bending and elastic buckling up to 50% of strain. Compression test at different strain rates revealed that the strain rate factor only affected the foams with 4 phr of BA by causing immediate increment in the compression stress value when higher strain rate was applied.

  19. A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization

    NASA Astrophysics Data System (ADS)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-04-01

    Despite the high efficiency and flexibility of fuel cells, which make them an attractive technology for the future energy generation, their economic competitiveness is still penalized by their short lifetime, due to multiple degradation phenomena. As a matter of fact, electrochemical performance of solid oxide fuel cells (SOFCs) is reduced because of different degradation mechanisms, which depend on operating conditions, fuel and air contaminants, impurities in materials, and others. In this work, a real-time, one dimensional (1D) model of a SOFC is used to simulate the effects of voltage degradation in the cell. Different mechanisms are summarized in a simple empirical expression that relates degradation rate to cell operating parameters (current density, fuel utilization and temperature), on a localized basis. Profile distributions of different variables during cell degradation are analyzed. In particular, the effect of degradation on current density, temperature, and total resistance of the cell are investigated. An analysis of localized degradation effects shows how different parts of the cell degrade at a different time rate, and how the various profiles are redistributed along the cell as consequence of different degradation rates.

  20. Hydrostatic factors affect the gravity responses of algae and roots

    NASA Technical Reports Server (NTRS)

    Staves, Mark P.; Wayne, Randy; Leopold, A. C.

    1991-01-01

    The hypothesis of Wayne et al. (1990) that plant cells perceive gravity by sensing a pressure differential between the top and the bottom of the cell was tested by subjecting rice roots and cells of Caracean algae to external solutions of various densities. It was found that increasing the density of the external medium had a profound effect on the polar ratio (PR, the ratio between velocities of the downwardly and upwardly streaming cytoplasm) of the Caracean algae cells. When these cells were placed in solutions of denser compound, the PR decreased to less than 1, as the density of the external medium became higher than that of the cell; thus, the normal gravity-induced polarity was reversed, indicating that the osmotic pressure of the medium affects the cell's ability to respond to gravity. In rice roots, an increase of the density of the solution inhibited the rate of gravitropism. These results agree with predictions of a hydrostatic model for graviperception.

  1. Analysis and comparison of oxygen consumption of HepG2 cells in a monolayer and three-dimensional high density cell culture by use of a matrigrid®.

    PubMed

    Weise, Frank; Fernekorn, Uta; Hampl, Jörg; Klett, Maren; Schober, Andreas

    2013-09-01

    By the use of a MatriGrid® we have established a three-dimensional high density cell culture. The MatriGrid® is a culture medium permeable, polymeric scaffold with 187 microcavities. In these cavities (300 μm diameter and 207 μm deep) the cells can growth three-dimensionally. For these experiments we measured the oxygen consumption of HepG2 cell cultures in order to optimize cultivation conditions. We measured and compared the oxygen consumption, growth rate and vitality under three different cultivation conditions: monolayer, three-dimensional static and three-dimensional actively perfused. The results show that the cells in a three-dimensional cell culture consume less oxygen as in a monolayer cell culture and that the actively perfused three-dimensional cell culture in the MatriGrid® has a similar growth rate and vitality as the monolayer culture. Copyright © 2013 Wiley Periodicals, Inc.

  2. Receptor-mediated binding of IgE-sensitized rat basophilic leukemia cells to antigen-coated substrates under hydrodynamic flow.

    PubMed Central

    Tempelman, L A; Hammer, D A

    1994-01-01

    The physiological function of many cells is dependent on their ability to adhere via receptors to ligand-coated surfaces under fluid flow. We have developed a model experimental system to measure cell adhesion as a function of cell and surface chemistry and fluid flow. Using a parallel-plate flow chamber, we measured the binding of rat basophilic leukemia cells preincubated with anti-dinitrophenol IgE antibody to polyacrylamide gels covalently derivatized with 2,4-dinitrophenol. The rat basophilic leukemia cells' binding behavior is binary: cells are either adherent or continue to travel at their hydrodynamic velocity, and the transition between these two states is abrupt. The spatial location of adherent cells shows cells can adhere many cell diameters down the length of the gel, suggesting that adhesion is a probabilistic process. The majority of experiments were performed in the excess ligand limit in which adhesion depends strongly on the number of receptors but weakly on ligand density. Only 5-fold changes in IgE surface density or in shear rate were necessary to change adhesion from complete to indistinguishable from negative control. Adhesion showed a hyperbolic dependence on shear rate. By performing experiments with two IgE-antigen configurations in which the kinetic rates of receptor-ligand binding are different, we demonstrate that the forward rate of reaction of the receptor-ligand pair is more important than its thermodynamic affinity in the regulation of binding under hydrodynamic flow. In fact, adhesion increases with increasing receptor-ligand reaction rate or decreasing shear rate, and scales with a single dimensionless parameter which compares the relative rates of reaction to fluid shear. Images FIGURE 2 FIGURE 3 FIGURE 6 FIGURE 8 FIGURE 10 PMID:8038394

  3. CD3+/CD8+ T-cell density and tumoral PD-L1 predict survival irrespective of rituximab treatment in Chinese diffuse large B-cell lymphoma patients.

    PubMed

    Shi, Yunfei; Deng, Lijuan; Song, Yuqin; Lin, Dongmei; Lai, Yumei; Zhou, LiXin; Yang, Lei; Li, Xianghong

    2018-05-10

    To investigate the prognostic value of tumor-infiltrating T-cell density and programmed cell death ligand-1 (PD-L1) expression in diffuse large B cell lymphoma (DLBCL). One-hundred-twenty-five Chinese DLBCL patients were enrolled in our study and provided samples; 76 of all cases were treated with rituximab (R). Tumor tissues were immunostained and analyzed for CD3+ and CD8+ tumor-infiltrating T-cell density, tumoral PD-L1, and microenvironmental PD-L1 (mPD-L1). The density of CD3 was rated as high in 33.6% cases, while 64.0% of DLBCLs were classified as high CD8 density. Of all cases, 16.8% were PD-L1+. Of the remaining PD-L1-DLBCLs, 29.8% positively expressed mPD-L1. Both CD3 high density and CD8 high density were associated with mPD-L1 positivity (P = 0.001 and P = 0.0001). In multivariate analysis, independently, high CD3 density predicted better OS (P = 0.023), while CD8 high density and PD-L1 positivity were both associated with prolonged PFS (P = 0.013 and P = 0.036, respectively). Even in the subgroup treated with R, univariate analyses indicated that high CD3 density and PD-L1 positivity were associated with better OS (P = 0.041) and PFS (P = 0.033), respectively. The infiltrating densities of CD3+ T-cells, CD8+ T-cells, and PD-L1 expression are predictive of survival in DLBCLs, irrespective of R usage.

  4. Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.

    2015-09-01

    Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer windmore » (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.« less

  5. Preliminary analysis of osteocyte lacunar density in long bones of tetrapods: all measures are bigger in sauropod dinosaurs.

    PubMed

    Stein, Koen W H; Werner, Jan

    2013-01-01

    Osteocytes harbour much potential for paleobiological studies. Synchrotron radiation and spectroscopic analyses are providing fascinating data on osteocyte density, size and orientation in fossil taxa. However, such studies may be costly and time consuming. Here we describe an uncomplicated and inexpensive method to measure osteocyte lacunar densities in bone thin sections. We report on cell lacunar densities in the long bones of various extant and extinct tetrapods, with a focus on sauropodomorph dinosaurs, and how lacunar densities can help us understand bone formation rates in the iconic sauropod dinosaurs. Ordinary least square and phylogenetic generalized least square regressions suggest that sauropodomorphs have lacunar densities higher than scaled up or comparably sized mammals. We also found normal mammalian-like osteocyte densities for the extinct bovid Myotragus, questioning its crocodilian-like physiology. When accounting for body mass effects and phylogeny, growth rates are a main factor determining the density of the lacunocanalicular network. However, functional aspects most likely play an important role as well. Observed differences in cell strategies between mammals and dinosaurs likely illustrate the convergent nature of fast growing bone tissues in these groups.

  6. Preliminary Analysis of Osteocyte Lacunar Density in Long Bones of Tetrapods: All Measures Are Bigger in Sauropod Dinosaurs

    PubMed Central

    Stein, Koen W. H.; Werner, Jan

    2013-01-01

    Osteocytes harbour much potential for paleobiological studies. Synchrotron radiation and spectroscopic analyses are providing fascinating data on osteocyte density, size and orientation in fossil taxa. However, such studies may be costly and time consuming. Here we describe an uncomplicated and inexpensive method to measure osteocyte lacunar densities in bone thin sections. We report on cell lacunar densities in the long bones of various extant and extinct tetrapods, with a focus on sauropodomorph dinosaurs, and how lacunar densities can help us understand bone formation rates in the iconic sauropod dinosaurs. Ordinary least square and phylogenetic generalized least square regressions suggest that sauropodomorphs have lacunar densities higher than scaled up or comparably sized mammals. We also found normal mammalian-like osteocyte densities for the extinct bovid Myotragus, questioning its crocodilian-like physiology. When accounting for body mass effects and phylogeny, growth rates are a main factor determining the density of the lacunocanalicular network. However, functional aspects most likely play an important role as well. Observed differences in cell strategies between mammals and dinosaurs likely illustrate the convergent nature of fast growing bone tissues in these groups. PMID:24204748

  7. Antibody-immobilized column for quick cell separation based on cell rolling.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-01-01

    Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.

  8. Identification of cell density signal molecule

    DOEpatents

    Schwarz, R.I.

    1998-04-21

    Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use. 2 figs.

  9. High-rate lithium/manganese dioxide batteries; the double cell concept

    NASA Astrophysics Data System (ADS)

    Drews, Jürgen; Wolf, Rüdiger; Fehrmann, Gerd; Staub, Roland

    An implantable defibrillator battery has to provide pulse-power capabilities as well as high energy density. Low self-discharge rates are mandatory and an ability to check the state of charge is required. To accomplish these requirements, a lithium/manganese dioxide battery with a modified active cathode mass has been developed. Usage of a double cell design increases significantly the battery performance within an implantable defibrillator. The design features of a high-rate, pulse-power, manganese dioxide double cell are described.

  10. Alternatively Activated Macrophages Play an Important Role in Vascular Remodeling and Hemorrhaging in Patients with Brain Arteriovenous Malformation.

    PubMed

    Nakamura, Yukihiko; Sugita, Yasuo; Nakashima, Shinji; Okada, Yousuke; Yoshitomi, Munetake; Kimura, Yoshizou; Miyoshi, Hiroaki; Morioka, Motohiro; Ohshima, Koichi

    2016-03-01

    Angiogenic and immunoactive lesions in brain arteriovenous malformation (BAVM) contribute to hemorrhagic events and the growth of BAVMs. However, the detailed mechanism is unclear. Our objective is to clarify the relationship between hemorrhagic events of BAVM and alternatively activated macrophages in the perinidal dilated capillary network (PDCN). We examined microsurgical specimens of BVMs (n = 29) and focused on the PDCN area. Ten autopsied brains without intracranial disease were the controls. We performed immunostaining of the inflammatory and endothelial cell markers, macrophage markers (CD163 and CD68), and vascular endothelial growth factor A (VEGF-A). We evaluated each cell's density and the vessel density in the PDCN and analyzed the relationship to hemorrhagic events of BAVM. The PDCN was involved in all the resected arteriovenous malformations, and these vessels showed a high rate of CD105 expression (72.0 ± 10.64%), indicating newly proliferating vessels. Alternatively activated macrophages were found, with a high rate (85.6%) for all macrophages (controls, 56.6%). In the hemorrhagic cases, the cell density was significantly higher than that in the nonhemorrhagic cases and controls (hemorrhagic group, 290 ± 44 cells/mm(2); nonhemorrhagic group, 180 ± 59 cells/mm(2); and control, 19 ± 8 cells/mm(2)). The cell density of alternatively activated macrophages showed a positive correlation with the vessel density of the PDCN. Double immunostaining showed that VEGF-A was secreted by alternatively activated macrophages. Our data suggest that alternatively activated macrophages may have some relationships with angiogenesis of PDCN and hemorrhagic event of BAVM. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  11. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells.

    PubMed

    Dong, Haodi; Tang, Ya-Jie; Ohashi, Ryo; Hamel, Jean-François P

    2005-01-01

    A novel perfusion culture system for efficient production of IgG2a monoclonal antibody (mAb) by hybridoma cells was developed. A ceramic membrane module was constructed and used as a cell retention device installed in a conventional stirred-tank reactor during the perfusion culture. Furthermore, the significance of the control strategy of perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was investigated. With the highest increasing rate (deltaD, vvd per day, vvdd) of perfusion rate, the maximal viable cell density of 3.5 x 10(7) cells/mL was obtained within 6 days without any limitation and the cell viability was maintained above 95%. At lower deltaD's, the cell growth became limited. Under nutrient-limited condition, the specific cell growth rate (mu) was regulated by deltaD. During the nonlimited growth phase, the specific mAb production rate (qmAb) remained constant at 0.26 +/- 0.02 pg/cell x h in all runs. During the cell growth-limited phase, qmAb was regulated by deltaD within the range of 0.25-0.65 vvdd. Under optimal conditions, qmAb of 0.80 and 2.15 pg/cell x h was obtained during the growth-limited phase and stationary phase, respectively. The overall productivity and yield were 690 mg/L x day and 340 mg/L x medium, respectively. This study demonstrated that this novel perfusion culture system for suspension mammalian cells can support high cell density and efficient mAb production and that deltaD is an important control parameter to regulate and achieve high mAb production.

  12. Arabidopsis thaliana Ei-5: Minor Vein Architecture Adjustment Compensates for Low Vein Density in Support of Photosynthesis.

    PubMed

    Stewart, Jared J; Polutchko, Stephanie K; Demmig-Adams, Barbara; Adams, William W

    2018-01-01

    An Arabidopsis thaliana accession with naturally low vein density, Eifel-5 (Ei-5), was compared to Columbia-0 (Col-0) with respect to rosette growth, foliar vein architecture, photosynthesis, and transpiration. In addition to having to a lower vein density, Ei-5 grew more slowly, with significantly lower rates of rosette expansion, but had similar capacities for photosynthetic oxygen evolution on a leaf area basis compared to Col-0. The individual foliar minor veins were larger in Ei-5, with a greater number of vascular cells per vein, compared to Col-0. This compensation for low vein density resulted in similar values for the product of vein density × phloem cell number per minor vein in Ei-5 and Col-0, which suggests a similar capacity for foliar sugar export to support similar photosynthetic capacities per unit leaf area. In contrast, the product of vein density × xylem cell number per minor vein was significantly greater in Ei-5 compared to Col-0, and was associated not only with a higher ratio of water-transporting tracheary elements versus sugar-transporting sieve elements but also significantly higher foliar transpiration rates per leaf area in Ei-5. In contrast, previous studies in other systems had reported higher ratios of tracheary to sieve elements and higher transpiration rate to be associated with higher - rather than lower - vein densities. The Ei-5 accession thus further underscores the plasticity of the foliar vasculature by illustrating an example where a higher ratio of tracheary to sieve elements is associated with a lower vein density. Establishment of the Ei-5 accession, with a low vein density but an apparent overcapacity for water flux through the foliar xylem network, may have been facilitated by a higher level of precipitation in its habitat of origin compared to that of the Col-0 accession.

  13. Evaluation of advanced high rate Li-SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Ang, V.; Dawson, S.; Frank, H.; Subbarao, S.

    1986-01-01

    Under NASA sponsorship, JPL is developing advanced, high rate Li-SOCl2 cells for future space missions. As part of this effort, Li-SOCl2 cells of various designs were examined for performance and safety. The cells differed from one another in several aspects, such as: nature of carbon cathode, catalysts, cell configuration, case polarity, and safety devices. Performance evaluation included constant-current discharge over a range of currents and temperatures. Abuse-testing consisted of shortcircuiting, charging, and over-discharge. Energy densities greater than 300 Wh/Kg at the C/2 rate were found for some designs. A cell design featuring a high-surface-area carbon cathode was found to deliver nearly 500 Wh/Kg at moderate discharge rates. Temperature influenced the performance significantly.

  14. Dynamics of HIV infection on 2D cellular automata

    NASA Astrophysics Data System (ADS)

    Benyoussef, A.; HafidAllah, N. El; ElKenz, A.; Ez-Zahraouy, H.; Loulidi, M.

    2003-05-01

    We use a cellular automata approach to describe the interactions of the immune system with the human immunodeficiency virus (HIV). We study the evolution of HIV infection, particularly in the clinical latency period. The results we have obtained show the existence of four different behaviours in the plane of death rate of virus-death rate of infected T cell. These regions meet at a critical point, where the virus density and the infected T cell density remain invariant during the evolution of disease. We have introduced two kinds of treatments, the protease inhibitors and the RT inhibitors, in order to study their effects on the evolution of HIV infection. These treatments are powerful in decreasing the density of the virus in the blood and the delay of the AIDS onset.

  15. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  16. Susceptibility of Escherichia coli to Bactericidal Action of Lactoperoxidase, Peroxide, and Iodide or Thiocyanate

    PubMed Central

    Thomas, Edwin L.; Aune, Thomas M.

    1978-01-01

    The bactericidal action that results from lactoperoxidase-catalyzed oxidation of iodide or thiocyanate was studied, using Escherichia coli as the test organism. The susceptibility of intact cells to bactericidal action was compared with that of cells with altered cell envelopes. Exposure to ethylenediaminetetraacetic acid, to lysozyme and ethylenediaminetetraacetic acid, or to osmotic shock were used to alter the cell envelope. Bactericidal action was greatly increased when the cells were exposed to the lactoperoxidase-peroxide-iodide system at low temperatures, low cell density, or after alteration of the cell envelope. When thiocyanate was substituted for iodide, bactericidal activity was observed only at low cell density or after osmotic shock. Low temperature and low cell density lowered the rate of destruction of peroxide by the bacteria. Therefore, competition for peroxide between the bacteria and lactoperoxidase may influence the extent of bactericidal action. Alteration of the cell envelope had only a small effect on the rate of destruction of peroxide. Instead, the increased susceptibility of these altered cells suggested that bactericidal action required permeation of a reagent through the cell envelope. In addition to altering the cell envelope, these procedures partly depleted cells of oxidizable substrates and sulfhydryl components. Adding an oxidizable substrate did not decrease the susceptibility of the altered cells. On the other hand, mild reducing agents such as sulfhydryl compounds did partly reverse bactericidal action when added after exposure of cells to the peroxidase systems. These studies indicate that alteration of the metabolism, structure, or composition of bacterial cells can greatly increase their susceptibility to peroxidase bactericidal action. PMID:348097

  17. Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters.

    PubMed

    Hunt, Megan M; Meng, Guoliang; Rancourt, Derrick E; Gates, Ian D; Kallos, Michael S

    2014-01-01

    Traditional optimization of culture parameters for the large-scale culture of human embryonic stem cells (ESCs) as aggregates is carried out in a stepwise manner whereby the effect of varying each culture parameter is investigated individually. However, as evidenced by the wide range of published protocols and culture performance indicators (growth rates, pluripotency marker expression, etc.), there is a lack of systematic investigation into the true effect of varying culture parameters especially with respect to potential interactions between culture variables. Here we describe the design and execution of a two-parameter, three-level (3(2)) factorial experiment resulting in nine conditions that were run in duplicate 125-mL stirred suspension bioreactors. The two parameters investigated here were inoculation density and agitation rate, which are easily controlled, but currently, poorly characterized. Cell readouts analyzed included fold expansion, maximum density, and exponential growth rate. Our results reveal that the choice of best case culture parameters was dependent on which cell property was chosen as the primary output variable. Subsequent statistical analyses via two-way analysis of variance indicated significant interaction effects between inoculation density and agitation rate specifically in the case of exponential growth rates. Results indicate that stepwise optimization has the potential to miss out on the true optimal case. In addition, choosing an optimum condition for a culture output of interest from the factorial design yielded similar results when repeated with the same cell line indicating reproducibility. We finally validated that human ESCs remain pluripotent in suspension culture as aggregates under our optimal conditions and maintain their differentiation capabilities as well as a stable karyotype and strong expression levels of specific human ESC markers over several passages in suspension bioreactors.

  18. Controlling the migration behaviors of vascular smooth muscle cells by methoxy poly(ethylene glycol) brushes of different molecular weight and density.

    PubMed

    Wu, Jindan; Mao, Zhengwei; Gao, Changyou

    2012-01-01

    Cell migration is an important biological activity. Regulating the migration of vascular smooth muscle cells (VSMCs) is critical in tissue engineering and therapy of cardiovascular disease. In this work, methoxy poly(ethylene glycol) (mPEG) brushes of different molecular weight (Mw 2 kDa, 5 kDa and 10 kDa) and grafting mass (0-859 ng/cm(2)) were prepared on aldehyde-activated glass slides, and were characterized by X-ray photoelectron spectrometer (XPS) and quartz crystal microbalance with dissipation (QCM-d). Adhesion and migration processes of VSMCs were studied as a function of different mPEG Mw and grafting density. We found that these events were mainly regulated by the grafting mass of mPEG regardless of mPEG Mw and grafting density. The VSMCs migrated on the surfaces randomly without a preferential direction. Their migration rates increased initially and then decreased along with the increase of mPEG grafting mass. The fastest rates (~24 μm/h) appeared on the mPEG brushes with grafting mass of 300-500 ng/cm(2) depending on the Mw. Cell adhesion strength, arrangement of cytoskeleton, and gene and protein expression levels of adhesion related proteins were studied to unveil the intrinsic mechanism. It was found that the cell-substrate interaction controlled the cell mobility, and the highest migration rate was achieved on the surfaces with appropriate adhesion force. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton.

    PubMed

    DeLorenzo, Marie E; Danese, Loren E; Baird, Thomas D

    2013-07-01

    Ecological risk assessments are, in part, based on results of toxicity tests conducted under standard exposure conditions. Global climate change will have a wide range of effects on estuarine habitats, including potentially increasing water temperature and salinity, which may alter the risk assessment of estuarine pollutants. We examined the effects of increasing temperature and salinity on the toxicity of common herbicides (irgarol, diuron, atrazine, and ametryn) to the phytoplankton species Dunaliella tertiolecta. Static 96-h algal bioassays were conducted for each herbicide under four exposure scenarios: standard temperature and salinity (25°C, 20 ppt), standard temperature and elevated salinity (25°C, 40 ppt), elevated temperature and standard salinity (35°C, 20 ppt), and elevated temperature and elevated salinity (35°C, 40 ppt). The endpoints assessed were algal cell density at 96 h, growth rate, chlorophyll a content, lipid content, and starch content. Increasing exposure temperature reduced growth rate and 96-h cell density but increased the cellular chlorophyll and lipid concentrations of the control algae. Exposure condition did not alter starch content of control algae. Herbicides were found to decrease growth rate, 96 h cell density, and cellular chlorophyll and lipid concentrations, while starch concentrations increased with herbicide exposure. Herbicide effects under standard test conditions were then compared with those observed under elevated temperature and salinity. Herbicide effects on growth rate, cell density, and starch content were more pronounced under elevated salinity and temperature conditions. To encompass the natural variability in estuarine temperature and salinity, and to account for future changes in climate, toxicity tests should be conducted under a wider range of environmental conditions. Copyright © 2011 Wiley Periodicals, Inc.

  20. Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa.

    PubMed

    Su, Jun-feng; Shao, Si-cheng; Huang, Ting-lin; Ma, Fang; Zhang, Kai; Wen, Gang; Zheng, Sheng-chen

    2016-01-01

    Recently, algicidal bacteria have attracted attention as possible agents for the inhibition of algal water blooms. In this study, an aerobic denitrifying bacterium, R11, with high algicidal activity against the toxic Microcystis aeruginosa was isolated from lake sediments. Based on its physiological characteristics and 16S rRNA gene sequence, it was identified as Raoultella, indicating that the bacterium R11 has a good denitrifying ability at 30 °C and can reduce the concentration of nitrate-N completely within 36 h. Additionally, different algicidal characteristics against Microcystis aeruginosa were tested. The results showed that the initial bacterial cell density and algal cell densities strongly influence the removal rates of chlorophyll a. Algicidal activity increased with an increase in the bacterial cell density. With densities of bacterial culture at over 2.4 × 10(5) cell/mL, algicidal activity of up to 80% was obtained in 4 days. We have demonstrated that, with the low initial algal cell density (OD680 less than 0.220), the algicidal activity reached was higher than 90% after 6 days.

  1. "allometry" Deterministic Approaches in Cell Size, Cell Number and Crude Fiber Content Related to the Physical Quality of Kangkong (Ipomoea reptans) Grown Under Different Plant Density Pressures

    NASA Astrophysics Data System (ADS)

    Selamat, A.; Atiman, S. A.; Puteh, A.; Abdullah, N. A. P.; Mohamed, M. T. M.; Zulkeefli, A. A.; Othman, S.

    Kangkong, especially the upland type (Ipomoea reptans) is popularly consumed as a vegetable dish in the South East Asian countries for its quality related to Vitamins (A and C) and crude fiber contents. Higher fiber contents would prevent from the occurrence of colon cancer and diverticular disease. With young stem edible portion, its cell number and size contribute to the stem crude fiber content. The mathematical approach of allometry of cell size, number, and fiber content of stem could be used in determining the 'best' plant density pressure in producing the quality young stem to be consumed. Basically, allometry is the ratio of relative increment (growth or change) rates of two parameters, or the change rate associated to the log of measured variables relationship. Kangkog grown equal or lower than 55 plants m-2 produced bigger individual plant and good quality (physical) kangkong leafy vegetable, but with lower total yield per unit area as compared to those grown at higher densities.

  2. Very High Density of Chinese Hamster Ovary Cells in Perfusion by Alternating Tangential Flow or Tangential Flow Filtration in WAVE Bioreactor™—Part II: Applications for Antibody Production and Cryopreservation

    PubMed Central

    Clincke, Marie-Françoise; Mölleryd, Carin; Samani, Puneeth K; Lindskog, Eva; Fäldt, Eric; Walsh, Kieron; Chotteau, Véronique

    2013-01-01

    A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor™ using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed-batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell-specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed-batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed-batch and 28× more in a 1-month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013 PMID:23436783

  3. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries

    DOE PAGES

    Du, Zhijia; Wood, David L.; Daniel, Claus; ...

    2017-02-09

    We present that increasing electrode thickness, thus increasing the volume ratio of active materials, is one effective method to enable the development of high energy density Li-ion batteries. In this study, an energy density versus power density optimization of LiNi 0.8Co 0.15Al 0.05O 2 (NCA)/graphite cell stack was conducted via mathematical modeling. The energy density was found to have a maximum point versus electrode thickness (critical thickness) at given discharging C rates. The physics-based factors that limit the energy/power density of thick electrodes were found to be increased cell polarization and underutilization of active materials. The latter is affected bymore » Li-ion diffusion in active materials and Li-ion depletion in the electrolyte phase. Based on those findings, possible approaches were derived to surmount the limiting factors. Finally, the improvement of the energy–power relationship in an 18,650 cell was used to demonstrate how to optimize the thick electrode parameters in cell engineering.« less

  4. Microfluidic engineered high cell density three-dimensional neural cultures

    NASA Astrophysics Data System (ADS)

    Cullen, D. Kacy; Vukasinovic, Jelena; Glezer, Ari; La Placa, Michelle C.

    2007-06-01

    Three-dimensional (3D) neural cultures with cells distributed throughout a thick, bioactive protein scaffold may better represent neurobiological phenomena than planar correlates lacking matrix support. Neural cells in vivo interact within a complex, multicellular environment with tightly coupled 3D cell-cell/cell-matrix interactions; however, thick 3D neural cultures at cell densities approaching that of brain rapidly decay, presumably due to diffusion limited interstitial mass transport. To address this issue, we have developed a novel perfusion platform that utilizes forced intercellular convection to enhance mass transport. First, we demonstrated that in thick (>500 µm) 3D neural cultures supported by passive diffusion, cell densities <=5.0 × 103 cells mm-3 were required for survival. In 3D neuronal and neuronal-astrocytic co-cultures with increased cell density (>=104 cells mm-3), continuous medium perfusion at 2.0-11.0 µL min-1 improved viability compared to non-perfused cultures (p < 0.01), which exhibited widespread cell death and matrix degradation. In perfused cultures, survival was dependent on proximity to the perfusion source at 2.00-6.25 µL min-1 (p < 0.05); however, at perfusion rates of 10.0-11.0 µL min-1 survival did not depend on the distance from the perfusion source, and resulted in a preservation of cell density with >90% viability in both neuronal cultures and neuronal-astrocytic co-cultures. This work demonstrates the utility of forced interstitial convection in improving the survival of high cell density 3D engineered neural constructs and may aid in the development of novel tissue-engineered systems reconstituting 3D cell-cell/cell-matrix interactions.

  5. Extracellular matrix controls tubulin monomer levels in hepatocytes by regulating protein turnover

    NASA Technical Reports Server (NTRS)

    Mooney, D. J.; Hansen, L. K.; Langer, R.; Vacanti, J. P.; Ingber, D. E.

    1994-01-01

    Cells have evolved an autoregulatory mechanism to dampen variations in the concentration of tubulin monomer that is available to polymerize into microtubules (MTs), a process that is known as tubulin autoregulation. However, thermodynamic analysis of MT polymerization predicts that the concentration of free tubulin monomer must vary if MTs are to remain stable under different mechanical loads that result from changes in cell adhesion to the extracellular matrix (ECM). To determine how these seemingly contradictory regulatory mechanisms coexist in cells, we measured changes in the masses of tubulin monomer and polymer that resulted from altering cell-ECM contacts. Primary rat hepatocytes were cultured in chemically defined medium on bacteriological petri dishes that were precoated with different densities of laminin (LM). Increasing the LM density from low to high (1-1000 ng/cm2), promoted cell spreading (average projected cell area increased from 1200 to 6000 microns2) and resulted in formation of a greatly extended MT network. Nevertheless, the steady-state mass of tubulin polymer was similar at 48 h, regardless of cell shape or ECM density. In contrast, round hepatocytes on low LM contained a threefold higher mass of tubulin monomer when compared with spread cells on high LM. Furthermore, similar results were obtained whether LM, fibronectin, or type I collagen were used for cell attachment. Tubulin autoregulation appeared to function normally in these cells because tubulin mRNA levels and protein synthetic rates were greatly depressed in round cells that contained the highest level of free tubulin monomer. However, the rate of tubulin protein degradation slowed, causing the tubulin half-life to increase from approximately 24 to 55 h as the LM density was lowered from high to low and cell rounding was promoted. These results indicate that the set-point for the tubulin monomer mass in hepatocytes can be regulated by altering the density of ECM contacts and changing cell shape. This finding is consistent with a mechanism of MT regulation in which the ECM stabilizes MTs by both accepting transfer of mechanical loads and altering tubulin degradation in cells that continue to autoregulate tubulin synthesis.

  6. Focal high cell density generates a gradient of patterns in self-organizing vascular mesenchymal cells.

    PubMed

    Cheng, Henry; Reddy, Aneela; Sage, Andrew; Lu, Jinxiu; Garfinkel, Alan; Tintut, Yin; Demer, Linda L

    2012-01-01

    In embryogenesis, structural patterns, such as vascular branching, may form via a reaction-diffusion mechanism in which activator and inhibitor morphogens guide cells into periodic aggregates. We previously found that vascular mesenchymal cells (VMCs) spontaneously aggregate into nodular structures and that morphogen pairs regulate the aggregation into patterns of spots and stripes. To test the effect of a focal change in activator morphogen on VMC pattern formation, we created a focal zone of high cell density by plating a second VMC layer within a cloning ring over a confluent monolayer. After 24 h, the ring was removed and pattern formation monitored by phase-contrast microscopy. At days 2-8, the patterns progressed from uniform distributions to swirl, labyrinthine and spot patterns. Within the focal high-density zone (HDZ) and a narrow halo zone, cells aggregated into spot patterns, whilst in the outermost zone of the plate, cells formed a labyrinthine pattern. The area occupied by aggregates was significantly greater in the outermost zone than in the HDZ or halo. The rate of pattern progression within the HDZ increased as a function of its plating density. Thus, focal differences in cell density may drive pattern formation gradients in tissue architecture, such as vascular branching. Copyright © 2012 S. Karger AG, Basel.

  7. Hydrologic disturbance and response of aquatic biota in Big Darby Creek basin, Ohio

    USGS Publications Warehouse

    Hambrook, J.A.; Koltun, G.F.; Palcsak, B.B.; Tertuliani, J.S.

    1997-01-01

    Washout and recolonization of macroinvertebrates and algae associated with a spring and summer storm were measured at three sites in Ohio's Big Darby Creek Basin. Related factors, such as streamflow magnitude, shear stress, and streamed disturbance were considered when interpreting observed changes in densities and community structure of macroinvertebrates and algae. During the study, 184 macroinvertebrate taxa and 202 algal taxa were identified. The major taxonomic groups for macroinvertebrates were midges and other true flies (Diptera), caddisflies (Trichoptera), beetles (Coleoptera), mayflies (Ephemeroptera), and stoneflies (Plecoptera). Diatoms were the dominant algae (in terms of percentage of total taxa found) followed by green algae, blue-green algae, euglenoids, golden flagellates, and freshwater red algae. Streamflows associated with the storm events that occurred during April 6-16 and June 23-July 5, 1994, probably had little effect on streambed elevations, but streambed disturbance was documented in the form of shifts in the median particle-size diameters of the subsurface bed materials. The streamflow magnitudes did not correlate well with the magnitude of observed changes in macroinvertebrate and algal-cell densities, but reductions in macroinvertebrate and algal-cell densities generally did occur. Local minima of macroinvertebrate density did not generally correspond to the first sample after the storms, but instead lagged by about 1 to 3 weeks. Other biotic factors, such as emergence of Diptera, probably affected the observed mid-July depression in macroinvertebrate densities. Evaluation of pre-event macroinvertebrate community structure in terms of functional feeding groups and flow-exposure groups showed that, on the basis of percentage of total taxa found, gatherers were the dominant feeding group and flow-facultative taxa were the dominant flow-exposure group. Densities of gatherers decreased from pre-event levels following all the storm events at all sites, whereas flow-facultative and flow-avoiding taxa were significantly reduced only after the summer event at Big and Little Darby Creeks. Algal-cell densities in the first post-event samples always were lower than pre-event densities; however, the total number of taxa present generally were not statistically different. In four out of five of the first post-event samples, algal-cell densities were only 16 to 26 percent of the pre-event densities. The exception was at Little Darby Creek after the spring event, where only the density of stalked algal cells in the community were significantly reduced. The observed resistance to disturbance of the algal community at Little Darby Creek may have resulted from the relative abundance of the mat-forming blue-green algae Oscillatoria spp. The stalked cells were the most consistently reduced in the post-event-samples, whereas holdfast types (such as Audouinella hermannii) and prostrate epiphytes (such as Cocconeis spp) were the most resistant to washout. Algal recolonization rates, measured as the change in algal-cell densities over a 7-day period after the summer storm event, ranged from 0.05 to 1.51 billion cells per square meter per day. These recolonization rates are expected to be affected by factors such as nutrients, temperature, amount of canopy, initial post-event algal density, and grazing by macroinvertebrates and fish. On the basis of canopy and nutrient data, one would expect the algal recolonization rates for the three sites in this study to sort in the order observed.

  8. AMOBH: Adaptive Multiobjective Black Hole Algorithm.

    PubMed

    Wu, Chong; Wu, Tao; Fu, Kaiyuan; Zhu, Yuan; Li, Yongbo; He, Wangyong; Tang, Shengwen

    2017-01-01

    This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called "adaptive multiobjective black hole algorithm" (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases.

  9. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy.

    PubMed

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  10. The 250AH/90A active lithium-thionyl chloride cell for Centaur-G application

    NASA Technical Reports Server (NTRS)

    Zolla, A. E.; Tura, D. D.

    1987-01-01

    A high rate active Li/SOCl2 cell was designed for use in a 28 volt, 250 amp-hour space battery system. The lithium battery is being considered as a replacement of its heavier silver-zinc counterpart on board the Centaur-G booster rocket which is used to launch payloads from the Space Shuttle cargo bay into deep-space. Basically a feasibility study, this development effort is demonstrating the ability of the lithium cell to deliver up to 90 amps safely at power densities of approximately 25 watts per pound. Test data on 4 prototype units is showing an energy density of 85 watt-hours per pound and 9.0 watt-hours/cu in. The cells tested typically delivered 280 to 300 amp-hours under ambient temperature test conditions using alternating continuous loads of 90, 55, and 20 amperes throughout life. Data from four cells tested are presented to demonstrate the capability of Li/SOCl2 technology for a C/3 discharge rate in active and hermetic cell units.

  11. Effects of the unintentional background concentration, indium composition and defect density on the performance of InGaN p-i-n homojunction solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen; Wang, Qiang

    2018-07-01

    We theoretically investigate the effects of the unintentional background concentration, indium composition and defect density of intrinsic layer (i-layer) on the photovoltaic performance of InGaN p-i-n homojunction solar cells by solving the Poisson and steady-state continuity equations. The built-in electric field and carrier generation rate depend on the position within the i-layer. The collection efficiency, short circuit current density, open circuit voltage, fill factor, and conversion efficiency are found to depend strongly on the background concentration, thickness, indium composition, and defect density of the i-layer. With increasing the background concentration, the maximum thickness of field-bearing i-layer decreases, and the width of depletion region may become even too small to cover the whole i-layer, resulting in a serious decrease of the carrier collection. Some oscillations as a function of indium composition are found in the short circuit current density and conversion efficiency at high indium composition and low defect density due to the interference between the absorbance and the generation rate of carriers. The defect density degrades seriously the overall photovoltaic performance, and its effect on the photovoltaic performance is roughly seven orders of magnitude higher than the previously reported values [Feng et al., J. Appl. Phys. 108 (2010) 093118]. As a result, the high crystalline quality InGaN with high indium composition is a key factor in the device performance of III-nitride based solar cells.

  12. Ingestion of Brachionus plicatilis under different microalgae conditions

    NASA Astrophysics Data System (ADS)

    Zhou, Wenli; Tang, Xuexi; Qiao, Xiuting; Wang, You; Wang, Renjun; Feng, Lei

    2009-09-01

    The effects of four microalgae, Chlorella vulgaris, Platymonas helgolandicavar, Isochrysis galbana, and Nitzschia closterium on the grazing and filtering rates of the marine rotifer, Brachionus plicatilis, were evaluated under laboratory conditions. The grazing rates in separate cultures of the four microalga were as follows: C. vulgaris > P. helgolandicavar > I. galbana > N. closterium. However, the filtering rates occurred in the following order: P. helgolandicavar > N. closterium > C. vulgaris > I. galbana. A mixed diets experiment revealed that P. helgolandicavar was the preferred diet of B. plicatilis. In addition, the grazing rate of B. plicatilis increased gradually as the density of the microalgae increased, until concentrations of 2.5×106 cells mL-1 for C. vulgaris and 1.5×106 cells mL-1 for I. galbana were obtained. Furthermore, the filtering rate increased slightly when the density of the microalgae was low, after which it declined as the microalgal density increased. The grazing rates of B. plicatilis were as follows during the different growth phases: stationary phase > exponential phase > lag phase > decline phase. Additionally, the filtering rates during the growth phases were: exponential phase > lag phase > stationary phase > decline phase. The results of this study provide foundational information that can be used to explore the optimal culture conditions for rotifers and to promote the development of aquaculture.

  13. Fibroblast contractility and growth in plastic compressed collagen gel scaffolds with microstructures correlated with hydraulic permeability.

    PubMed

    Serpooshan, Vahid; Muja, Naser; Marelli, Benedetto; Nazhat, Showan N

    2011-03-15

    Scaffold microstructure is hypothesized to influence physical and mechanical properties of collagen gels, as well as cell function within the matrix. Plastic compression under increasing load was conducted to produce scaffolds with increasing collagen fibrillar densities ranging from 0.3 to above 4.1 wt % with corresponding hydraulic permeability (k) values that ranged from 1.05 to 0.03 μm², as determined using the Happel model. Scanning electron microscopy revealed that increasing the level of collagen gel compression yielded a concomitant reduction in pore size distribution and a slight increase in average fibril bundle diameter. Decreasing k delayed the onset of contraction and significantly reduced both the total extent and the maximum rate of contraction induced by NIH3T3 fibroblasts seeded at a density of either 6.0 x 10⁴ or 1.5 x 10⁵ cells mL⁻¹. At the higher cell density, however, the effect of k reduction on collagen gel contraction was overcome by an accelerated onset of contraction which led to an increase in both the total extent and the maximum rate of contraction. AlamarBlue™ measurements indicated that the metabolic activity of fibroblasts within collagen gels increased as k decreased. Moreover, increasing seeded cell density from 2.0 x 10⁴ to 1.5 x 10⁵ cells mL⁻¹ significantly increased NIH3T3 proliferation. In conclusion, fibroblast-matrix interactions can be optimized by defining the microstructural properties of collagen scaffolds through k adjustment which in turn, is dependent on the cell seeding density. Copyright © 2011 Wiley Periodicals, Inc.

  14. Standardization of the Descemet membrane endothelial keratoplasty technique: Outcomes of the first 450 consecutive cases.

    PubMed

    Satué, M; Rodríguez-Calvo-de-Mora, M; Naveiras, M; Cabrerizo, J; Dapena, I; Melles, G R J

    2015-08-01

    To evaluate the clinical outcome of the first 450 consecutive cases after Descemet membrane endothelial keratoplasty (DMEK), as well as the effect of standardization of the technique. Comparison between 3 groups: Group I: (cases 1-125), as the extended learning curve; Group II: (cases 126-250), transition to technique standardization; Group III: (cases 251-450), surgery with standardized technique. Best corrected visual acuity, endothelial cell density, pachymetry and intra- and postoperative complications were evaluated before, and 1, 3 and 6 months after DMEK. At 6 months after surgery, 79% of eyes reached a best corrected visual acuity of≥0.8 and 43%≥1.0. Mean preoperative endothelial cell density was 2,530±220 cells/mm2 and 1,613±495 at 6 months after surgery. Mean pachymetry measured 668±92 μm and 526±46 μm pre- and (6 months) postoperatively, respectively. There were no significant differences in best corrected visual acuity, endothelial cell density and pachymetry between the 3 groups (P > .05). Graft detachment presented in 17.3% of the eyes. The detachment rate declined from 24% to 12%, and the rate of secondary surgeries from 9.6% to 3.5%, from group I to III respectively. Visual outcomes and endothelial cell density after DMEK are independent of the technique standardization. However, technique standardization may have contributed to a lower graft detachment rate and a relatively low number of secondary interventions required. As such, DMEK may become the first choice of treatment in corneal endothelial disease. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  15. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE PAGES

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; ...

    2017-06-12

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  16. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by ~70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. Here, this article discusses three major aspects formore » cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.« less

  17. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  18. The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella.

    PubMed

    Liang, Fang; Du, Kui; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2015-12-28

    To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m(2); temperature: 30°C; pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R(2) = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golfinopoulos, A.; Soupioni, M.; Kanellaki, M.

    The effect of initial lactose concentration on lactose uptake rate by kefir free cells, during the lactose fermentation, was studied in this work. For the investigation {sup 14}C-labelled lactose was used due to the fact that labeled and unlabeled molecules are fermented in the same way. The results illustrated lactose uptake rates are about up to two fold higher at lower initial (convolution sign)Be densities as compared with higher initial (convolution sign)Be densities.

  20. Hexagon solar power panel

    NASA Technical Reports Server (NTRS)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  1. Hexagon solar power panel

    DOEpatents

    Rubin, Irwin

    1978-01-01

    A solar energy panel comprises a support upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  2. Electrolysis cell stimulation

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.; Phillips, B. R.; Evangelista, J.

    1978-01-01

    Computer program represents attempt to understand and model characteristics of electrolysis cells. It allows user to determine how cell efficiency is affected by temperature, pressure, current density, electrolyte concentration, characteristic dimensions, membrane resistance, and electrolyte circulation rate. It also calculates ratio of bubble velocity to electrolyte velocity for anode and cathode chambers.

  3. Laparoscopic ovarian biopsy pick-up method for goats.

    PubMed

    Brandão, Fabiana A S; Alves, Benner G; Alves, Kele A; Souza, Samara S; Silva, Yago P; Freitas, Vicente J F; Teixeira, Dárcio I A; Gastal, Eduardo L

    2018-02-01

    Biopsy pick-up (BPU) has been considered a safe method to harvest ovarian fragments from live animals. However, no studies have been reported on the use of BPU to collect in vivo ovarian tissue in goats. The goals of this study were: (i) to test different biopsy needle sizes to collect ovarian tissue in situ using the BPU method (Experiment 1), and (ii) to study ovarian tissue features such as preantral follicle density, morphology, class distribution, and stromal cell density in ovarian fragments obtained in vivo through a laparoscopic BPU method (Experiment 2). In Experiment 1, goat ovaries (n = 20) were collected in a slaughterhouse and subjected to in situ BPU. Three needles (16, 18, and 20G) were tested. In Experiment 2, the most efficient biopsy needle from Experiment 1 was used to perform laparoscopic BPU in goats (n = 8). In Experiment 1, the recovery rate was greater (P < 0.05; range 50-62%) with 16G and 18G needles than the 20G (17%) needle. The mean weight of ovarian fragments collected by the 16G needle was greater (P < 0.05) than the 18G and the 20G needle. In Experiment 2, 62 biopsy attempts were performed and 52 ovarian fragments were collected (90% success rate). Overall, 2054 preantral follicles were recorded in 5882 histological sections analyzed. Mean preantral follicular density was 28.4 ± 1.3 follicles per cm 2 . The follicular density differed (P < 0.05) among animals and ovarian fragments within the same animal. The mean stromal cell density in the ovarian fragments was 37.1 ± 0.5 cells per 2500 μm 2 , and differed (P < 0.05) among animals. Moreover, preantral follicle density and stromal cell density were associated (P < 0.001). The percentage of morphologically normal follicles was 70.1 ± 1.2, and differed (P < 0.05) among animals. The majority (79%) of the morphologically normal follicles was classified as primordial follicles, and differed (P < 0.05) among animals and between ovaries. In summary, a laparoscopic BPU method has been developed to harvest ovarian tissue in vivo with a satisfactory success rate in goats. Furthermore, this study described for the first time that goat ovarian biopsy fragments have a high heterogeneity in follicular density, morphology, class distribution, and stromal cell density. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Endothelin-A-receptor antagonism with atrasentan exhibits limited activity on the KU-19-19 bladder cancer cell line in a mouse model.

    PubMed

    Herrmann, Edwin; Tiemann, Arne; Eltze, Elke; Bolenz, Christian; Bremer, Christoph; Persigehl, Thorsten; Hertle, Lothar; Wülfing, Christian

    2009-10-01

    The endothelin axis consists of endothelin-1 (ET-1) and its two receptors, ET(A)- and ET(B)-receptor (ET(A)-R and ET(B)-R). In several tumor entities, the ET(A)-R plays a significant role as a drug target. In our study, we investigated whether inhibition of ET(A)-R with atrasentan leads to an antitumor effect in urinary bladder carcinoma as well. Twenty nude mice with thymic aplasia were subcutaneously administered 2 x 10(6) KU-19-19 bladder cancer cells in the right flank. Starting on the 22nd day after the injection, ten animals were treated with atrasentan (2.5 mg/kg BW intraperitoneally), and another ten animals were treated with placebo. During treatment, absolute tumor growth and relative growth rate over time were determined. After the end of treatment, the mitosis and necrosis rates, microvessel density, and receptor density in the tumor tissue were analyzed by immunohistochemistry. In addition, the expression intensities of ET-1, ET(A)-R, and ET(B)-R were evaluated semiquantitatively and compared between the groups. No significant differences between the active-treatment and placebo groups were detected, either with respect to absolute tumor growth (P = 0.333) or mitosis rate (P = 0.217). In the analysis of the necrosis rate and receptor density for ET(A)-R, a trend toward higher values in the active-treatment group (mean necrosis rate = 63.67%, receptor density: 1.417) than in the placebo group (mean necrosis rate = 46.25%, receptor density: 1.270) was found; however, neither difference was statistically significant (P = 0.08 and 0.219, respectively). ET(A)-R blockade with atrasentan in a bladder cancer xenograft model shows no significant antitumor effect.

  5. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. Themore » test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.« less

  6. Lithium thionyl chloride high rate discharge

    NASA Technical Reports Server (NTRS)

    Klinedinst, K. A.

    1980-01-01

    Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.

  7. An experimental analysis of harmful algae-zooplankton interactions and the ultimate defense

    USGS Publications Warehouse

    Remmel, E.J.; Kohmescher, N.; Larson, J.H.; Hambright, K.D.

    2011-01-01

    We examined effects of the invasive, toxigenic haptophyte Prymnesium parvum on grazing rates, feeding behaviors, and life-history characteristics of clonal lineages of three daphniid zooplankton species. Grazing experiments revealed similar clearance rates for P. parvum and a common green alga. Behavioral observations revealed no significant effects of P. parvum on daphniid feeding behaviors after 30 min, but major declines in appendage beat rates after 1 h. Chronic exposure (10 d) to P. parvum resulted in severe reductions in daphniid growth rates, age at first reproduction, fecundity, and survivorship at densities as low as 7750 cells mL-1. Thus, in addition to direct fish mortality during P. parvum blooms of 50,000-200,000 cells mL-1, the entire food web of an invaded system may be subjected to potentially severe negative consequences even at nonbloom densities of P. parvum. ?? 2011, by the American Society of Limnology and Oceanography, Inc.

  8. Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabaeian, Mohammad, E-mail: sabaiean@scu.ac.ir; Heydari, Mehdi; Ajamgard, Narges

    The effects of Ag nano-strips with triangle, rectangular and trapezoid cross sections on the optical absorption, generation rate, and short-circuit current density of ultra-thin solar cells were investigated. By putting the nano-strips as a grating structure on the top of the solar cells, the waveguide, surface plasmon polariton (SPP), and localized surface plasmon (LSP) modes, which are excited with the assistance of nano-strips, were evaluated in TE and TM polarizations. The results show, firstly, the TM modes are more influential than TE modes in optical and electrical properties enhancement of solar cell, because of plasmonic excitations in TM mode. Secondly,more » the trapezoid nano-strips reveal noticeable impact on the optical absorption, generation rate, and short-circuit current density enhancement than triangle and rectangular ones. In particular, the absorption of long wavelengths which is a challenge in ultra-thin solar cells is significantly improved by using Ag trapezoid nano-strips.« less

  9. Optimization of amino group density on surfaces of titanium dioxide nanoparticles covalently bonded to a silicone substrate for antibacterial and cell adhesion activities.

    PubMed

    Okada, Masahiro; Yasuda, Shoji; Kimura, Tsuyoshi; Iwasaki, Mitsunobu; Ito, Seishiro; Kishida, Akio; Furuzono, Tsutomu

    2006-01-01

    A composite consisting of titanium dioxide (TiO2) particle, the surface of which was modified with amino groups, and a silicone substrate through covalent bonding at their interface was developed, and antibacterial and cell adhesion activities of the composite were evaluated. The density of the amino groups on the TiO2 particle surface was controlled by the reaction time of the modification reaction. The degradation rate of CH3CHO in the presence of the TiO2 particles under UV irradiation decreased with an increase in the amino group density on the TiO2 surface. On the other hand, the number of L929 cells adhering on the TiO2/silicone composite increased with an increase in the amino group density. From the above two results, the optimum density of amino groups for both photoreactivity and cell adhesiveness was estimated to be 2.0-4.0 molecules/nm2. The optimum amino group-modified TiO2/silicone composite sheet (amino group density, 3.0 molecules/nm2) showed an effective antibacterial activity for Escherichia coli bacteria under UV irradiation. (c) 2005 Wiley Periodicals, Inc

  10. Cell Size Clues for the Allee Effect in Vegetative Amoeba Suspension Culture

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Rappazzo, Brendan; Wang, Xiaoning; Segota, Igor

    That cells proliferate at higher rates with increasing density helps us appreciate and understand the development of multicellular behavior through the study of dilute cell systems. However, arduous cell counting with a microscope reveals that in the model eukaryote, Dictyostelium discoideum this transition is difficult to ascertain and thereby further explore despite our earlier progress (Phys. Rev. E 77, 041905, (2008)). Here we report preliminary evidence that the slow proliferation phase is well characterized by reduced cell size compared to the wide distribution of cell sizes in the familiar exponential proliferation phase of moderate densities. This observation is enabled by a new system for characterizing cells in stirred suspension cultures. Our technique relies on quickly acquiring magnitude distributions of detected flashes of laser light scattered in situ by cell targets.

  11. Possible determination of the physical parameters of the first living cells based on the fundamental physical constants

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2016-12-01

    Here is developed the hypothesis that the cell parameters of unicellular organisms (Prokaryotes and Eukaryotes) are determined by the gravitational constant (G, N.m2 /kg2), Planck constant (h, J.s) and growth rate of cells. By scaling analyses it was shown that the growth rate vgr(m/s) of unicellular bacteria and protozoa is relatively constant parameter, ranging in a narrow window of 10-12 - 10-10 m/s, in comparison to the diapason of cell mass, ranging 10 orders of magnitudes from 10-17 kg in bacteria to 10-7 kg in amoebas. By dimensional analyses it was shown that the combination between the growth rate of cells, gravitational constant and Planck constant gives equations with dimension of mass M(vgr)=(h.vgr/G)½ in kg, length L(v gr)=(hṡG/vgr3)1/2 in meter, time T(vgr)=(hṡG/vgr5)1/2 in seconds, and density ρ ((vgr)=vgr.3.5/hG2 in kg/m3 . For growth rate vgr in diapason of 1×10-11 m/s - 1×10-9.5 m/s the calculated numerical values for mass (3×10-18 -1×10-16 kg), length (5×10-8 -1×10-5 m), time (1×102 -1×106 s) and density (1×10-1 - 1×104 kg/m3) overlaps with diapason of experimentally measured values for cell mass (3×10-18 -1×10-15 kg), volume to surface ratio (1×10-7 -1×10-4 m), doubling time (1×103 -1×107 s), and density (1050 - 1300 kg/m3) in bacteria and protozoa. These equations show that appearance of the first living cells could be mutually connected to the physical constants.

  12. Zn/gelled 6 M KOH/O 2 zinc-air battery

    NASA Astrophysics Data System (ADS)

    Mohamad, A. A.

    The gel electrolyte for the zinc-air cell was prepared by mixing hydroponics gel with a 6 M potassium hydroxide aqueous solution. The self-discharge of cells was characterized by measuring the open-circuit voltage. The effect of a discharge rate of 50 mA constant current on cell voltage and plateau hour, as well as the voltage-current and current density-power density were measured and analysed. The electrode degradation after discharge cycling was characterized by structural and surface methods. The oxidation of the electrode surface further blocked the utilization of the Zn anode and was identified as a cause for the failure of the cell.

  13. Preparation of an Arg-Glu-Asp-Val Peptide Density Gradient on Hyaluronic Acid-Coated Poly(ε-caprolactone) Film and Its Influence on the Selective Adhesion and Directional Migration of Endothelial Cells.

    PubMed

    Yu, Shan; Gao, Ying; Mei, Xu; Ren, Tanchen; Liang, Su; Mao, Zhengwei; Gao, Changyou

    2016-11-02

    Selective adhesion and migration of endothelial cells (ECs) over smooth muscle cells (SMCs) is very important in the rapid endothelialization of blood-contacting implants to prevent vascular restenosis. In this study, a uniform cell-resistant layer of methacrylate-functionalized hyaluronic acid (HA) was first immobilized on a poly(ε-caprolactone) (PCL) film via polydopamine coupling. Then, a density gradient of thiol-functionalized Arg-Glu-Asp-Val (REDV) peptide was prepared on the HA layer via thiol-ene click chemistry and the continuous injection method. The REDV gradient selectively enhanced EC adhesion and preferential directional migration toward the region of higher REDV density, reaching 86% directionality in the middle of the gradient. The migration rate of ECs was also significantly enhanced twofold compared with that on tissue culture polystyrene (TCPS). In contrast, the gradient significantly weakened the adhesion of SMCs to 25% of that on TCPS but had no obvious impact on the migration rate and directionality. Successful modulation of the selective adhesion and directional migration of ECs over SMCs on biodegradable polymers serves as an important step toward practical applications for guided tissue regeneration.

  14. Development of ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Dawson, S.; Deligiannis, F.; Taraszkiewicz, J.; Halpert, G.

    1988-01-01

    JPL is developing ambient temperature secondary lithium cells for future spacecraft applications. Prior studies on experimental laboratory type Li-TiS2 cells yielded promising results in terms of cycle life and rate capability. To further assess the performance of this cell, 5 Ah engineering model cells were developed. Initially baseline cells were designed and fabricated. Each cell had 15 cathodes and 16 anodes and the ratio of anode to cathode capacity is 6:1. A solution of 1.5 molar LiAsF6 in 2Me-THF was used as the electrolyte. Cells were evaluated for their cycle life at C/1 and C/5 discharge rates and 100 percent depth of discharge. The cells were cycled between voltage limits 1.7 and 2.8 volts. The rate of charge in all cases is C/10. The results obtained indicate that cells can operate at C/10 to C/2 discharge rates and have an initial energy density of 70 Wh/kg. Cells delivered more than 100 cycles at C/2 discharge rate. The details of cell design, the test program, and the results obtained are described.

  15. Development of ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Dawson, S.; Deligiannis, F.; Taraszkiewicz, J.; Halpert, Gerald

    1987-01-01

    JPL is developing ambient temperature secondary lithium cells for future spacecraft applications. Prior studies on experimental laboratory type Li-TiS2 cells yielded promising results in terms of cycle life and rate capability. To further assess the performance of this cell, 5 Ah engineering model cells were developed. Initially baseline cells were designed and fabricated. Each cell had 15 cathodes and 16 anodes and the ratio of anode to cathode capacity is 6:1. A solution of 1.5 molar LiAsF6 in 2Me-THF was used as the electrolyte. Cells were evaluated for their cycle life at C/1 and C/5 discharge rates and 100 percent depth of discharge. The cells were cycled between voltage limits 1.7 and 2.8 volts. The rate of charge in all cases is C/10. The results obtained indicate that cells can operate at C/10 to C/2 discharge rates and have an initial energy density of 70 Wh/kg. Cells delivered more than 100 cycles at C/2 discharge rate. The details of cell design, the test program, and the results obtained are described.

  16. Influence of substrate diffusion on degradation of dibenzofuran and 3-chlorodibenzofuran by attached and suspended bacteria.

    PubMed Central

    Harms, H; Zehnder, A J

    1994-01-01

    Dibenzofuran uptake-associated kinetic parameters of suspended and attached Sphingomonas sp. strain HH19k cells were compared. The suspended cells were studied in a batch system, whereas glass beads in percolated columns were used as the solid support for attached cells. The maximum specific activities of cells in the two systems were the same. The apparent half-maximum uptake rate-associated concentrations (Kt') of attached cells, however, were considerably greater than those of suspended cells and depended on cell density and on percolation velocity. A mathematical model was developed to explain the observed differences in terms of substrate transport to the cells. This model was based on the assumptions that the intrinsic half-maximum uptake rate-associated concentration (Kt) was unchanged and that deviations of Kt' from Kt resulted from the stereometry and the hydrodynamics around the cells. Our calculations showed that (i) diffusion to suspended cells and to single attached cells is efficient and therefore only slightly affects Kt'; (ii) diffusion to cells located on crowded surfaces is considerably lower than that to single attached cells and greatly increases Kt', which depends on the cell density; (iii) the convective-diffusive transport to attached cells that occurs in a percolated column is influenced by the liquid flow and results in dependency of Kt' on the flow rate; and (iv) higher specific affinity of cells correlates with higher susceptibility to diffusion limitation. Properties of the experimental system which limited quantitative proof of exclusively transport-controlled variations of Kt' are discussed. PMID:8085817

  17. Studies on Methanol Crossover in Liquid-Feed Direct Methanol Pem Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    The performance of liquid feed direct methanol fuel cells using various types of Nafion membranes as the solid polymer electrolyte have been studied. The rate of fuel crossover and electrical performance has been measured for cells with Nafion membranes of various thicknesses and equivalent weights. The crossover rate is found to decrease with increasing thickness and applied current. The dependence of crossover rate on current density can be understood in terms of a simple linear diffusion model which suggests that the crossover rate can be influenced by the electrode structure in addition to the membrane. The studies suggest that Nafion EW 1500 is a very promising alternate to Nafion EW 1100 for direct methanol fuel cells.

  18. Multiple types of data are required to identify the mechanisms influencing the spatial expansion of melanoma cell colonies.

    PubMed

    Treloar, Katrina K; Simpson, Matthew J; Haridas, Parvathi; Manton, Kerry J; Leavesley, David I; McElwain, D L Sean; Baker, Ruth E

    2013-12-12

    The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, λ, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and λ. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D=161-243μm2 hour-1, q=0.3-0.5 (low to moderate strength) and λ=0.0305-0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.

  19. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa

    NASA Astrophysics Data System (ADS)

    Hoogenboom, M.; Beraud, E.; Ferrier-Pagès, C.

    2010-03-01

    This study quantified variation in net photosynthetic carbon gain in response to natural fluctuations in symbiont density for the Mediterranean coral Cladocora caespitosa, and evaluated which density maximized photosynthetic carbon acquisition. To do this, carbon acquisition was modeled as an explicit function of symbiont density. The model was parameterized using measurements of rates of photosynthesis and respiration for small colonies with a broad range of zooxanthella concentrations. Results demonstrate that rates of net photosynthesis increase asymptotically with symbiont density, whereas rates of respiration increase linearly. In combination, these functional responses meant that colony energy acquisition decreased at both low and at very high zooxanthella densities. However, there was a wide range of symbiont densities for which net daily photosynthesis was approximately equivalent. Therefore, significant changes in symbiont density do not necessarily cause a change in autotrophic energy acquisition by the colony. Model estimates of the optimal range of cell densities corresponded well with independent observations of symbiont concentrations obtained from field and laboratory studies of healthy colonies. Overall, this study demonstrates that the seasonal fluctuations, in symbiont numbers observed in healthy colonies of the Mediterranean coral investigated, do not have a strong effect on photosynthetic energy acquisition.

  20. COMPARISON OF ENTEROCCOCUS DENSITIES DETERMINED BY CULTURE AND QPCR ANALYSES IN WATER SAMPLES FROM TWO RECREATION BEACHES

    EPA Science Inventory

    Previous studies conducted by the U.S. Environmental Protection Agency (USEPA) have demonstrated that cell densities of the bacterial genus Enterococcus in water samples are directly correlated with gastroenteritis illness rates in swimmers at both marine and fresh water beaches....

  1. The selection of light emitting diode irradiation parameters for stimulation of human mesenchymal stem cells proliferation

    NASA Astrophysics Data System (ADS)

    Lewandowski, Rafał; Trafny, ElŻbieta A.; Stepińska, Małgorzata; Gietka, Andrzej; Kotowski, Paweł; Dobrzyńska, Monika; Łapiński, Mariusz P.

    2016-12-01

    Human mesenchymal stem cells (hMSCs) with their vast differentiation potential are very useful for cell-based regenerative medicine. To achieve sufficient numbers of cells for tissue engineering, many different methods have been used to reach the effective increase of cell proliferation. Low-energy red light provided by light emitting diodes (LEDs) have been recently introduced as a method that promoted biomodulation and proliferation of hMSCs in vitro. The purpose of this study was to find the optimum stimulatory dosimetric parameters of LED (630 nm) irradiation on the hMSCs proliferation. The energy density was 2, 3, 4, 10, 20 J/cm2 and the power density used was 7, 17 or 30 mW/cm2. Human MSCs were irradiated with single or triple exposures daily at room temperature and the cell proliferation rate was evaluated during nine days after irradiation. The results showed that after irradiation 4 J/cm2 and 17 mW/cm2 at a single dose the proliferation rate of hMSCs increased on day 5 and 9 (13% and 7%, respectively) when compared to nonirradiated cells. However, triple LED irradiation under the same parameters resulted in the decline in the cell proliferation rate on day 5, but the proliferation rate was at the same level on day 9, when compared with the cell proliferation after irradiation with a single dose. The effect of a single dose irradiation with 4 J/cm2 and 17 mW/cm2 on the proliferation of cells was the highest when the cells were irradiated in phosphate-buffered saline (PBS) instead of MSCGM culture medium.

  2. Performances of 250 Amp-hr lithium/thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Goualard, Jacques

    1991-01-01

    A 250 Ah lithium thionyl chloride battery is being developed for a booster rocket engine. Extensive cell testing is running to evaluate functional and safety performances. Some results are presented. The lithium/thionyl chloride batteries were selected for their high energy density (low weight) as compared to other sources. The temperature of a lower weight item will be more sensitive to variations of internal and external heat fluxes than a heavier one. The use of high energy density L/TC batteries is subjected to stringent thermal environments to have benefit of energy density and to stay safe in any conditions. The battery thermal environment and discharge rate have to be adjusted to obtain the right temperature range at cell level, to have the maximum performances. Voltage and capacity are very sensitive to temperature. This temperature is the cell internal actual temperature during discharge. This temperature is directed by external thermal environment and by cell internal heat dissipation, i.e., cell actual voltage.

  3. Photosynthesis and Retention of Zooxanthellae and Zoochlorellae Within the Aeolid Nudibranch Aeolidia papillosa.

    PubMed

    McFarland, F K; Muller-Parker, G

    1993-04-01

    Both zooxanthellae and zoochlorellae are found in the cerata of Aeolidia papillosa after it has ingested symbiotic Anthopleura elegantissima containing these algae. High rates of photosynthesis were found in algae present in the cerata and in algae isolated from nudibranch feces. For algal cells present in the cerata of nudibranchs collected in June 1991, carbon fixation by zooxanthellae (1.18 +/- 0.36 pg C/cell/h) was significantly greater than carbon fixation by zoochlorellae (0.55 +/- 0.32 pg C/cell/h). Algal densities within the cerata of laboratory fed nudibranchs were significantly greater for zoochlorellae (175 +/- 82 cells/μg protein, light treatment; 131 +/- 106 cells/μg protein, dark treatment) than for zooxanthellae (38 +/- 18 cells/μg protein, light; 53 +/- 30 cells/ μg protein, dark). Ceratal densities of zooxanthellae (16 +/- 8 cells/μg protein) in the field during January 1992 were low in comparison to ceratal densities in the laboratory--several of the nudibranchs in the field lacked any symbiotic algae, and zoochlorellae were always absent. Nudibranch algal densities were not stable and dropped rapidly if the nudibranchs were starved. Both zoochlorella and zooxanthella densities dropped to 0 cells/μg protein within 11 days of starvation. While these results show that the relationship between A. papillosa and the two algae is not a stable symbiosis, the photosynthetic activity of the algae in the cerata suggests that the nudibranch and/or the algae may benefit from the association while it lasts.

  4. Physics of ultra-high bioproductivity in algal photobioreactors

    NASA Astrophysics Data System (ADS)

    Greenwald, Efrat; Gordon, Jeffrey M.; Zarmi, Yair

    2012-04-01

    Cultivating algae at high densities in thin photobioreactors engenders time scales for random cell motion that approach photosynthetic rate-limiting time scales. This synchronization allows bioproductivity above that achieved with conventional strategies. We show that a diffusion model for cell motion (1) accounts for high bioproductivity at irradiance values previously deemed restricted by photoinhibition, (2) predicts the existence of optimal culture densities and their dependence on irradiance, consistent with available data, (3) accounts for the observed degree to which mixing improves bioproductivity, and (4) provides an estimate of effective cell diffusion coefficients, in accord with independent hydrodynamic estimates.

  5. Stem cell motility enables a density-dependent rate of fate commitment during scaled resizing of adult organs

    NASA Astrophysics Data System (ADS)

    Du, Xinxin; O'Brien, Lucy; Riedel-Kruse, Ingmar

    Many adult organs grow or shrink to accommodate fluctuating levels of physiological demand. Specifically, the intestine of the fruit fly (the midgut) expands four-fold in the number of mature cells and, proportionally, the number of stem cells when the fly eats. However, the cellular behaviors that give rise to this stem scaling are not well-understood. Here we present a biophysical model of the adult fly midgut. A set of differential equations can recapitulate the physiological kinetics of cells during midgut growth and shrinkage as long as the rate of stem cell fate commitment depends on the stem cell number density in the tissue. To elucidate the source of this dependence, we model the tissue in a 2D simulation with soft spheres, where stem cells choose fate commitment through Delta-Notch pathway interactions with other stem cells, a known process in fly midguts. We find that as long as stem cells exhibit a large enough amplitude of random motion through the tissue (`stem cell motility'), and explore a large enough `territory' in their lifetime, stem cell scaling can occur. These model observations are confirmed through in vivo live-imaging, where we indeed see that stem cells are motile in the fly midgut.

  6. Evaluation of high-energy lithium thionyl chloride primary cells

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1980-01-01

    An advanced commercial primary lithium cell (LiSoCl2) was evaluated in order to establish baseline data for improved lithium batteries for aerospace applications. The cell tested had nominal capacity of 6 Ah. Maximum energy density at low rates (less than C/30, where C is the cell capacity in amp-hrs and 30 corresponds to a 30 hr discharge time) was found to be near 300 Wh/kg. An equation which predicts the operating voltage of these cells as a function of current and state of charge is presented. Heat generation rates of these cells were determined as a function of current in a calorimeter. It was found that heat rates could be theoretically predicted with some degree of accuracy at currents less than 1 amp or the C/6 rate. No explosions were observed in the cells during the condition of overdischarge or reversal nor during high rate discharge. It was found, however, that the cells can vent when overdischarge currents are greater than C/30 and when discharge rates are greater than 1.5C.

  7. Physiological considerations in applying laboratory-determined buoyant densities to predictions of bacterial and protozoan transport in groundwater: Results of in-situ and laboratory tests

    USGS Publications Warehouse

    Harvey, R.W.; Metge, D.W.; Kinner, N.; Mayberry, N.

    1997-01-01

    Buoyant densities were determined for groundwater bacteria and microflagellates (protozoa) from a sandy aquifer (Cape Cod, MA) using two methods: (1) density-gradient centrifugation (DGC) and (2) Stoke's law approximations using sedimentation rates observed during natural-gradient injection and recovery tests. The dwarf (average cell size, 0.3 ??m), unattached bacteria inhabiting a pristine zone just beneath the water table and a majority (~80%) of the morphologically diverse community of free- living bacteria inhabiting a 5-km-long plume of organically-contaminated groundwater had DGC-determined buoyant densities <1.019 g/cm3 before culturing. In the aquifer, sinking rates for the uncultured 2-??m size class of contaminant plume bacteria were comparable to that of the bromide tracer (1.9 x 10-3 M), also suggesting a low buoyant density. Culturing groundwater bacteria resulted in larger (0.8-1.3 ??m), less neutrally- buoyant (1.043-1.081 g/cm3) cells with potential sedimentation rates up to 64-fold higher than those predicted for the uncultured populations. Although sedimentation generally could be neglected in predicting subsurface transport for the community of free-living groundwater bacteria, it appeared to be important for the cultured isolates, at least until they readapt to aquifer conditions. Culturing-induced alterations in size of the contaminant-plume microflagellates (2-3 ??m) were ameliorated by using a lower nutrient, acidic (pH 5) porous growth medium. Buoyant densities of the cultured microflagellates were low, i.e., 1.024-1.034 g/cm3 (using the DGC assay) and 1.017-1.039 g/cm3 (estimated from in-situ sedimentation rates), suggesting good potential for subsurface transport under favorable conditions.

  8. The large-scale correlations of multicell densities and profiles: implications for cosmic variance estimates

    NASA Astrophysics Data System (ADS)

    Codis, Sandrine; Bernardeau, Francis; Pichon, Christophe

    2016-08-01

    In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact `one external leg' cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.

  9. Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low density lipoprotein oxidation by a superoxide-dependent mechanism

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Ehrenwald, E.; Fox, P. L.

    1996-01-01

    Cultured vascular smooth muscle cells (SMC) and endothelial cells (EC) stimulate low density lipoprotein (LDL) oxidation by free radical-mediated, transition metal-dependent mechanisms. The physiological source(s) of metal ions is not known; however, purified ceruloplasmin, a plasma protein containing 7 coppers, oxidizes LDL in vitro. We now show that ceruloplasmin also increases LDL oxidation by vascular cells. In metal ion-free medium, human ceruloplasmin increased bovine aortic SMC- and EC-mediated LDL oxidation by up to 30- and 15-fold, respectively. The maximal response was at 100-300 microg ceruloplasmin/ml, a level at or below the unevoked physiological plasma concentration. Oxidant activity was dependent on protein structure as a specific proteolytic cleavage or removal of one of the seven ceruloplasmin copper atoms inhibited activity. Three lines of evidence indicated a critical role for cellular superoxide (O2.) in ceruloplasmin-stimulated oxidation. First, the rate of production of O2. by cells correlated with their rates of LDL oxidation. Second, superoxide dismutase effectively blocked ceruloplasmin-stimulated oxidation by both cell types. Finally, O2. production by SMC quantitatively accounted for the observed rate of LDL oxidation. To show this, the course of O2. production by SMC was simulated by repeated addition of xanthine and xanthine oxidase to culture medium under cell-free conditions. Neither ceruloplasmin nor O2. alone increased LDL oxidation, but together they completely reconstituted the oxidation rate of ceruloplasmin-stimulated SMC. These results are the first to show that ceruloplasmin stimulates EC- and SMC-mediated oxidation of LDL and that cell-derived O2. accounts quantitatively for metal-dependent, free radical-initiated oxidation of LDL by these cells.

  10. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth.

    PubMed

    Fernandes, Ana Paula; Junqueira, Marina de Azevedo; Marques, Nádia Carolina Teixeira; Machado, Maria Aparecida Andrade Moreira; Santos, Carlos Ferreira; Oliveira, Thais Marchini; Sakai, Vivien Thiemy

    2016-01-01

    This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW - 10 s), II (2.5 J/cm2 - 10 mW - 10 s), III (3.7 J/cm2 - 15 mW - 10 s), IV (5.0 J/cm2 - 20 mW - 10 s), V (6.2 J/cm2 - 25 mW - 10 s), and VI (not irradiated - control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study.

  11. Lithium-Ion Performance and Abuse Evaluation Using Lithium Technologies 9Ah cell

    NASA Technical Reports Server (NTRS)

    Hall, Albert Daniel; Jeevarajan, Judith A.

    2006-01-01

    Lithium-ion batteries in a pouch form offer high energy density and safety in their designs and more recently they are offering performance at higher rates. Lithium Technologies 9Ah high-power pouch cells were studied at different rates, thermal environments, under vacuum and several different conditions of abuse including overcharge, over-discharge and external short circuit. Results of this study will be presented.

  12. Cell death in Tetrahymena thermophila: new observations on culture conditions.

    PubMed

    Christensen, S T; Sørensen, H; Beyer, N H; Kristiansen, K; Rasmussen, L; Rasmussen, M I

    2001-01-01

    We previously suggested that the cell fate of the protozoan ciliate, Tetrahymena thermophila, effectively relates to a quorum-sensing mechanism where cell-released factors support cell survival and proliferation. The cells have to be present above a critical initial density in a chemically defined nutrient medium in order to release a sufficient level of these factors to allow a new colony to flourish. At a relatively high rate of metabolism and/or macromolecular synthesis and below this critical density, cells began to die abruptly within 30 min of inoculation, and this death took the form of an explosive disintegration lasting less than 50 milliseconds. The cells died at any location in the culture, and the frequency of cell death was always lower in well-filled vials than those with medium/air interface. Cell death was inhibited by the addition of Actinomycin D or through modifications of the culture conditions either by reducing the oxygen tension or by decreasing the temperature of the growth medium. In addition, plastic caps in well-filled vials release substances, which promote cell survival. The fate of low-density cultures is related to certain 'physical' conditions, in addition to the availability of oxygen within closed culture systems. Copyright 2001 Academic Press.

  13. High-Density Dielectrophoretic Microwell Array for Detection, Capture, and Single-Cell Analysis of Rare Tumor Cells in Peripheral Blood.

    PubMed

    Morimoto, Atsushi; Mogami, Toshifumi; Watanabe, Masaru; Iijima, Kazuki; Akiyama, Yasuyuki; Katayama, Koji; Futami, Toru; Yamamoto, Nobuyuki; Sawada, Takeshi; Koizumi, Fumiaki; Koh, Yasuhiro

    2015-01-01

    Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technology. Spike-in experiments using lung cancer cell lines were conducted. The microwell array was used to capture spiked cancer cells, and captured single cells were subjected to whole genome amplification followed by sequencing. A high detection rate (70.2%-90.0%) and excellent linear performance (R2 = 0.8189-0.9999) were noted between the observed and expected numbers of tumor cells. The detection rate was markedly higher than that obtained using the CellSearch system in a blinded manner, suggesting the superior sensitivity of our system in detecting EpCAM- tumor cells. Isolation of single captured tumor cells, followed by detection of EGFR mutations, was achieved using Sanger sequencing. Using a microwell array, we established an efficient and convenient platform for the capture and characterization of single CTCs. The results of a proof-of-principle preclinical study indicated that this platform has potential for the molecular characterization of captured CTCs from patients.

  14. [Effects of Oil Pollutants on the Performance of Marine Benthonic Microbial Fuel Cells and Its Acceleration of Degradation].

    PubMed

    Meng, Yao; Fu, Yu-bin; Liang, Sheng-kang; Chen, Wei; Liu, Zhao-hui

    2015-08-01

    Degradation of oil pollutants under the sea is slow for its oxygen-free environment which has caused long-term harm to ocean environment. This paper attempts to accelerate the degradation of the sea oil pollutants through electro catalysis by using the principle of marine benthonic microbial fuel cells (BMFCs). The influence of oil pollutants on the battery performance is innovatively explored by comparing the marine benthonic microbial fuel cells ( BMFCs-A) containing oil and oil-free microbial fuel cells (BMFCs-B). The acceleration effect of BMFCs is investigated by the comparison between the oil-degrading rate and the number of heterotrophic bacteria of the BMFCs-A and BMFCs-B on their anodes. The results show that the exchange current densities in the anode of the BMFCs-A and BMFCs-B are 1. 37 x 10(-2) A x m(-2) and 1.50 x 10(-3) A x m(-2) respectively and the maximum output power densities are 105.79 mW x m(-2) and 83.60 mW x m(-2) respectively. The exchange current densities have increased 9 times and the maximum output power density increased 1. 27 times. The anti-polarization ability of BMFCs-A is improved. The heterotrophic bacteria numbers of BMFCs-A and BMFCs-C on their anodes are (66 +/- 3.61) x 10(7) CFU x g(-1) and (7.3 +/- 2.08) x 10(7) CFU x g(-1) respectively and the former total number has increased 8 times, which accelerates the oil-degrading rate. The degrading rate of the oil in the BMFCs-A is 18.7 times higher than that in its natural conditions. The BMFCs can improve its electrochemical performance, meanwhile, the degradation of oil pollutants can also be accelerated. A new model of the marine benthonic microbial fuel cells on its acceleration of oil degradation is proposed in this article.

  15. Silicon Whisker and Carbon Nanofiber Composite Anode

    NASA Technical Reports Server (NTRS)

    Lang, Christopher M.

    2015-01-01

    Phase II Objectives: Demonstrate production levels of grams per batch; Achieve full cell anode capacity of greater than 1,000 mAh/g at a charge rate of 10 (C/10) and 0 degree C; Establish a full cell cycle life of over 300 cycles; Display an operating temperature of negative 30 degrees C to plus 30 degrees C; Demonstrate a rate capability of C/5 or higher; Deliver to NASA three 2.5 Ah cells (energy density greater than 220 Wh/kg); Exhibit the safety features of the anode and full cells; Design a 1 kWh prismatic battery pack.

  16. Pollen density on the stigma affects endogenous gibberellin metabolism, seed and fruit set, and fruit quality in Pyrus pyrifolia.

    PubMed

    Zhang, Caixi; Tateishi, Naoya; Tanabe, Kenji

    2010-10-01

    To clarify the relationship between pollen density and gametophytic competition in Pyrus pyrifolia, gametophytic performance, gibberellin metabolism, fruit set, and fruit quality were investigated by modifying P. pyrifolia pollen grain number and density with Lycopodium spores. Higher levels of pollen density improved seed viability, fruit set, and fruit quality. Treatments with the highest pollen density showed a significantly increased fruit growth rate and larger fruit at harvest. High pollen density increased germination rate and gave a faster pollen tube growth, both in vivo and in vitro. Endogenous gibberellin (GA) concentrations increased in pollen tubes soon after germination and the concentration of two growth-active GAs, GA(3), and GA(4), was positively correlated to final fruit size, cell numbers in the mesocarp, and pollen tube growth rate. These two GAs appear to be biosynthesized de novo in pollen tube and are the main pollen-derived bioactive GAs found after pollen germination. GA(1) levels in the pollen tube appear to be related to a pollen-style interaction that occurred after the pollen grains landed on the stigma.

  17. Autolysis of Escherichia coli and Bacillus subtilis cells in low gravity

    NASA Technical Reports Server (NTRS)

    Kacena, M. A.; Smith, E. E.; Todd, P.

    1999-01-01

    The role of gravity in the autolysis of Bacillus subtilis and Escherichia coli was studied by growing cells on Earth and in microgravity on Space Station Mir. Autolysis analysis was completed by examining the death phase or exponential decay of cells for approximately 4 months following the stationary phase. Consistent with published findings, the stationary-phase cell population was 170% and 90% higher in flight B. subtilis and E. coli cultures, respectively, than in ground cultures. Although both flight autolysis curves began at higher cell densities than control curves, the rate of autolysis in flight cultures was identical to that of their respective ground control rates.

  18. [Selection of acetate-tolerant mutants from Escherichia coli DH5alpha and the metabolic properties of mutant DA19].

    PubMed

    Zhu, Caiqing; Ye, Qin

    2003-08-01

    Esherichia coli DH5alpha is one of the widely used host strains in genetic engineering. However, foreign gene expression level in this strain is seriously inhibited due to its great sensitivity to the accumulated metabolite, acetate. This study aimed at improving the tolerance of this strain against acetate. Cells of E. coli DH5alpha were irradiated with 60Co, and subsequently continuous culture of the irradiated cells was conducted with gradual increase in the dilution rate and the selective pressure, acetate concentration in the medium. The mutants were picked up on MA plates which contained 5g/L sodium acetate. 5 strains with great improvement in acetate tolerance were obtained, among which DA19 was the best. In cultivation of DA19 in complex media YPS and YPS2G, the cell density, maximum specific growth rate and acetate produced were respectively 1.17 and 1.05, 1.08 and 1.27, and 0.06 and 0.59 times of those of DH5alpha. In a chemically defined medium, the cell density of DA19 was 3.4-fold of that of DH5alpha. The cell density of DA19 in a medium containing 10g/L sodium acetate was comparable to that of DH5alpha in the same medium without the addition of acetate.

  19. Solving the puzzle of yeast survival in ephemeral nectar systems: exponential growth is not enough.

    PubMed

    Hausmann, Sebastian L; Tietjen, Britta; Rillig, Matthias C

    2017-12-01

    Flower nectar is a sugar-rich ephemeral habitat for microorganisms. Nectar-borne yeasts are part of the microbial community and can affect pollination by changing nectar chemistry, attractiveness to pollinators or flower temperature if yeast population densities are high. Pollinators act as dispersal agents in this system; however, pollination events lead potentially to shrinking nectar yeast populations. We here examine how sufficiently high cell densities of nectar yeast can develop in a flower. In laboratory experiments, we determined the remaining fraction of nectar yeast cells after nectar removal, and used honeybees to determine the number of transmitted yeast cells from one flower to the next. The results of these experiments directly fed into a simulation model providing an insight into movement and colonization ecology of nectar yeasts. We found that cell densities only reached an ecologically relevant size for an intermediate pollination probability. Too few pollination events reduce yeast inoculation rate and too many reduce yeast population size strongly. In addition, nectar yeasts need a trait combination of at least an intermediate growth rate and an intermediate remaining fraction to compensate for highly frequent decimations. Our results can be used to predict nectar yeast dispersal, growth and consequently their ecological effects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor.

    PubMed

    Zhang, Ye; Stobbe, Per; Silvander, Christian Orrego; Chotteau, Véronique

    2015-11-10

    Recombinant Chinese Hamster Ovary (CHO) cells producing IgG monoclonal antibody were cultivated in a novel perfusion culture system CellTank, integrating the bioreactor and the cell retention function. In this system, the cells were harbored in a non-woven polyester matrix perfused by the culture medium and immersed in a reservoir. Although adapted to suspension, the CHO cells stayed entrapped in the matrix. The cell-free medium was efficiently circulated from the reservoir into- and through the matrix by a centrifugal pump placed at the bottom of the bioreactor resulting in highly homogenous concentrations of the nutrients and metabolites in the whole system as confirmed by measurements from different sampling locations. A real-time biomass sensor using the dielectric properties of living cells was used to measure the cell density. The performances of the CellTank were studied in three perfusion runs. A very high cell density measured as 200 pF/cm (where 1 pF/cm is equivalent to 1 × 10(6)viable cells/mL) was achieved at a perfusion rate of 10 reactor volumes per day (RV/day) in the first run. In the second run, the effect of cell growth arrest by hypothermia at temperatures lowered gradually from 37 °C to 29 °C was studied during 13 days at cell densities above 100 pF/cm. Finally a production run was performed at high cell densities, where a temperature shift to 31 °C was applied at cell density 100 pF/cm during a production period of 14 days in minimized feeding conditions. The IgG concentrations were comparable in the matrix and in the harvest line in all the runs, indicating no retention of the product of interest. The cell specific productivity was comparable or higher than in Erlenmeyer flask batch culture. During the production run, the final harvested IgG production was 35 times higher in the CellTank compared to a repeated batch culture in the same vessel volume during the same time period. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Microbial Fuel Cell Performance with a Pressurized Cathode Chamber

    USDA-ARS?s Scientific Manuscript database

    Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...

  2. 700 F hybrid capacitors cells composed of activated carbon and Li4Ti5O12 microspheres with ultra-long cycle life

    NASA Astrophysics Data System (ADS)

    Ruan, Dianbo; Kim, Myeong-Seong; Yang, Bin; Qin, Jun; Kim, Kwang-Bum; Lee, Sang-Hyun; Liu, Qiuxiang; Tan, Lei; Qiao, Zhijun

    2017-10-01

    To address the large-scale application demands of high energy density, high power density, and long cycle lifetime, 700-F hybrid capacitor pouch cells have been prepared, comprising ∼240-μm-thick activated carbon cathodes, and ∼60-μm-thick Li4Ti5O12 anodes. Microspherical Li4Ti5O12 (M-LTO) synthesized by spray-drying features 200-400 nm primary particles and interconnected nanopore structures. M-LTO half-cells exhibits high specific capacities (175 mAhh g-1), good rate capabilities (148 mAhh g-1 at 20 C), and ultra-long cycling stabilities (90% specific capacity retention after 10,000 cycles). In addition, the obtained hybrid capacitors comprising activated carbon (AC) and M-LTO shows excellent cell performances, achieving a maximum energy density of 51.65 Wh kg-1, a maximum power density of 2466 W kg-1, and ∼92% capacitance retention after 10,000 cycles, thus meeting the demands for large-scale applications such as trolleybuses.

  3. Titanium-containing Raney nickel catalyst for hydrogen electrodes in alkaline fuel cell systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mund, K.; Richter, G.; von Sturm, F.

    In alkaline hydrogen-oxygen fuel cells Raney nickel is employed as catalyst for hydrogen electrodes. The rate of anodic hydrogen conversion has been increased significantly by using a titanium-containing Raney nickel. The properties of the catalyst powder, the influence of particle diameter, and the behavior of electrodes under load are described. Impedance measurements have been used to characterize the electrodes. In fuel cell systems the supported electrodes are normally operated at current densities up to 0.4 A . cm/sup -2/; the overload current density of 1 A . cm/sup -2/ can be maintained for several hours. (15 fig.)

  4. European Science Notes Information Bulletin Reports on Current European/Middle Eastern Science,

    DTIC Science & Technology

    1989-07-01

    behavior at high rates of strain, and composite materials at high rates of strain. ESNIB 89-07 International Conference on Interaction of Steels with... drug mole-armacology,. ture will be the sterility, energy and mass transfer, shearcults possess N-alkyl functions, usually in saturated struc- tures...tnerapcutic agents. This is usually cell densities and high metabolically active cells, the achieved by N-dcalklyating the parent drug molecule to

  5. Scaling of number, size, and metabolic rate of cells with body size in mammals.

    PubMed

    Savage, Van M; Allen, Andrew P; Brown, James H; Gillooly, James F; Herman, Alexander B; Woodruff, William H; West, Geoffrey B

    2007-03-13

    The size and metabolic rate of cells affect processes from the molecular to the organismal level. We present a quantitative, theoretical framework for studying relationships among cell volume, cellular metabolic rate, body size, and whole-organism metabolic rate that helps reveal the feedback between these levels of organization. We use this framework to show that average cell volume and average cellular metabolic rate cannot both remain constant with changes in body size because of the well known body-size dependence of whole-organism metabolic rate. Based on empirical data compiled for 18 cell types in mammals, we find that many cell types, including erythrocytes, hepatocytes, fibroblasts, and epithelial cells, follow a strategy in which cellular metabolic rate is body size dependent and cell volume is body size invariant. We suggest that this scaling holds for all quickly dividing cells, and conversely, that slowly dividing cells are expected to follow a strategy in which cell volume is body size dependent and cellular metabolic rate is roughly invariant with body size. Data for slowly dividing neurons and adipocytes show that cell volume does indeed scale with body size. From these results, we argue that the particular strategy followed depends on the structural and functional properties of the cell type. We also discuss consequences of these two strategies for cell number and capillary densities. Our results and conceptual framework emphasize fundamental constraints that link the structure and function of cells to that of whole organisms.

  6. Effects of the distant population density on spatial patterns of demographic dynamics

    NASA Astrophysics Data System (ADS)

    Tamura, Kohei; Masuda, Naoki

    2017-08-01

    Spatio-temporal patterns of population changes within and across countries have various implications. Different geographical, demographic and econo-societal factors seem to contribute to migratory decisions made by individual inhabitants. Focusing on internal (i.e. domestic) migration, we ask whether individuals may take into account the information on the population density in distant locations to make migratory decisions. We analyse population census data in Japan recorded with a high spatial resolution (i.e. cells of size 500×500 m) for the entirety of the country, and simulate demographic dynamics induced by the gravity model and its variants. We show that, in the census data, the population growth rate in a cell is positively correlated with the population density in nearby cells up to a distance of 20 km as well as that of the focal cell. The ordinary gravity model does not capture this empirical observation. We then show that the empirical observation is better accounted for by extensions of the gravity model such that individuals are assumed to perceive the attractiveness, approximated by the population density, of the source or destination cell of migration as the spatial average over a circle of radius ≈1 km.

  7. Effects of the distant population density on spatial patterns of demographic dynamics.

    PubMed

    Tamura, Kohei; Masuda, Naoki

    2017-08-01

    Spatio-temporal patterns of population changes within and across countries have various implications. Different geographical, demographic and econo-societal factors seem to contribute to migratory decisions made by individual inhabitants. Focusing on internal (i.e. domestic) migration, we ask whether individuals may take into account the information on the population density in distant locations to make migratory decisions. We analyse population census data in Japan recorded with a high spatial resolution (i.e. cells of size 500×500  m ) for the entirety of the country, and simulate demographic dynamics induced by the gravity model and its variants. We show that, in the census data, the population growth rate in a cell is positively correlated with the population density in nearby cells up to a distance of 20 km as well as that of the focal cell. The ordinary gravity model does not capture this empirical observation. We then show that the empirical observation is better accounted for by extensions of the gravity model such that individuals are assumed to perceive the attractiveness, approximated by the population density, of the source or destination cell of migration as the spatial average over a circle of radius ≈1 km.

  8. Effects of the distant population density on spatial patterns of demographic dynamics

    PubMed Central

    2017-01-01

    Spatio-temporal patterns of population changes within and across countries have various implications. Different geographical, demographic and econo-societal factors seem to contribute to migratory decisions made by individual inhabitants. Focusing on internal (i.e. domestic) migration, we ask whether individuals may take into account the information on the population density in distant locations to make migratory decisions. We analyse population census data in Japan recorded with a high spatial resolution (i.e. cells of size 500×500 m) for the entirety of the country, and simulate demographic dynamics induced by the gravity model and its variants. We show that, in the census data, the population growth rate in a cell is positively correlated with the population density in nearby cells up to a distance of 20 km as well as that of the focal cell. The ordinary gravity model does not capture this empirical observation. We then show that the empirical observation is better accounted for by extensions of the gravity model such that individuals are assumed to perceive the attractiveness, approximated by the population density, of the source or destination cell of migration as the spatial average over a circle of radius ≈1 km. PMID:28878987

  9. Improvement of specific growth rate of Pichia pastoris for effective porcine interferon-α production with an on-line model-based glycerol feeding strategy.

    PubMed

    Gao, Min-Jie; Zheng, Zhi-Yong; Wu, Jian-Rong; Dong, Shi-Juan; Li, Zhen; Jin, Hu; Zhan, Xiao-Bei; Lin, Chi-Chung

    2012-02-01

    Effective expression of porcine interferon-α (pIFN-α) with recombinant Pichia pastoris was conducted in a bench-scale fermentor. The influence of the glycerol feeding strategy on the specific growth rate and protein production was investigated. The traditional DO-stat feeding strategy led to very low cell growth rate resulting in low dry cell weight (DCW) of about 90 g/L during the subsequent induction phase. The previously reported Artificial Neural Network Pattern Recognition (ANNPR) model-based glycerol feeding strategy improved the cell density to 120 g DCW/L, while the specific growth rate decreased from 0.15 to 0.18 to 0.03-0.08 h(-1) during the last 10 h of the glycerol feeding stage leading to a variation of the porcine interferon-α production, as the glycerol feeding scheme had a significant effect on the induction phase. This problem was resolved by an improved ANNPR model-based feeding strategy to maintain the specific growth rate above 0.11 h(-1). With this feeding strategy, the pIFN-α concentration reached a level of 1.43 g/L, more than 1.5-fold higher than that obtained with the previously adopted feeding strategy. Our results showed that increasing the specific growth rate favored the target protein production and the glycerol feeding methods directly influenced the induction stage. Consequently, higher cell density and specific growth rate as well as effective porcine interferon-α production have been achieved by our novel glycerol feeding strategy.

  10. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris

    PubMed Central

    Chioccioli, Maurizio; Hankamer, Ben; Ross, Ian L.

    2014-01-01

    Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth. PMID:24832156

  11. Tunable Volumetric Density and Porous Structure of Spherical Poly-ε-caprolactone Microcarriers, as Applied in Human Mesenchymal Stem Cell Expansion.

    PubMed

    Li, Jian; Lam, Alan Tin-Lun; Toh, Jessica Pei Wen; Reuveny, Shaul; Oh, Steve Kah-Weng; Birch, William R

    2017-03-28

    Polymeric microspheres may serve as microcarrier (MC) matrices, for the expansion of anchorage-dependent stem cells. They require surface properties that promote both initial cell adhesion and the subsequent spreading of cells, which is a prerequisite for successful expansion. When implemented in a three-dimensional culture environment, under agitation, their suspension under low shear rates depends on the MCs having a modest negative buoyancy, with a density of 1.02-1.05 g/cm 3 . Bioresorbable poly-ε-caprolactone (PCL), with a density of 1.14 g/cm 3 , requires a reduction in volumetric density, for the microspheres to achieve high cell viability and yields. Uniform-sized droplets, from solutions of PCL dissolved in dichloromethane (DCM), were generated by coaxial microfluidic geometry. Subsequent exposure to ethanol rapidly extracted the DCM solvent, solidifying the droplets and yielding monodisperse microspheres with a porous structure, which was demonstrated to have tunable porosity and a hollow inner core. The variation in process parameters, including the molecular weight of PCL, its concentration in DCM, and the ethanol concentration, served to effectively alter the diffusion flux between ethanol and DCM, resulting in a broad spectrum of volumetric densities of 1.04-1.11 g/cm 3 . The solidified microspheres are generally covered by a smooth thin skin, which provides a uniform cell culture surface and masks their internal porous structure. When coated with a cationic polyelectrolyte and extracellular matrix protein, monodisperse microspheres with a diameter of approximately 150 μm and densities ranging from 1.05-1.11 g/cm 3 are capable of supporting the expansion of human mesenchymal stem cells (hMSCs). Validation of hMSC expansion was carried out with a positive control of commercial Cytodex 3 MCs and a negative control of uncoated low-density PCL MCs. Static culture conditions generated more than 70% cell attachment and similar yields of sixfold cell expansion on all coated MCs, with poor cell attachment and growth on the negative control. Under agitation, coated porous microspheres, with a low density of 1.05 g/cm 3 , achieved robust cell attachment and resulted in high cell yields of ninefold cell expansion, comparable with those generated by commercial Cytodex 3 MCs.

  12. Nonlinear analysis of a model of vascular tumour growth and treatment

    NASA Astrophysics Data System (ADS)

    Tao, Youshan; Yoshida, Norio; Guo, Qian

    2004-05-01

    We consider a mathematical model describing the evolution of a vascular tumour in response to traditional chemotherapy. The model is a free boundary problem for a system of partial differential equations governing intratumoural drug concentration, cancer cell density and blood vessel density. Tumour cells consist of two types of competitive cells that have different proliferation rates and different sensitivities to drugs. The balance between cell proliferation and death generates a velocity field that drives tumour cell movement. The tumour surface is a moving boundary. The purpose of this paper is to establish a rigorous mathematical analysis of the model for studying the dynamics of intratumoural blood vessels and to explore drug dosage for the successful treatment of a tumour. We also study numerically the competitive effects of the two cell types on tumour growth.

  13. Electricity generation in a membrane-less microbial fuel cell with down-flow feeding onto the cathode.

    PubMed

    Zhu, Feng; Wang, Wancheng; Zhang, Xiaoyan; Tao, Guanhong

    2011-08-01

    A novel membrane-less microbial fuel cell (MFC) with down-flow feeding was constructed to generate electricity. Wastewater was fed directly onto the cathode which was horizontally installed in the upper part of the MFC. Oxygen could be utilized readily from the air. The concentration of dissolved oxygen in the influent wastewater had little effect on the power generation. A saturation-type relationship was observed between the initial COD and the power generation. The influent flow rate could affect greatly the power density. Fed by the synthetic glucose wastewater with a COD value of 3500 mg/L at a flow rate of 4.0 mL/min, the developed MFC could produce a maximum power density of 37.4 mW/m(2). Its applicability was further evaluated by the treatment of brewery wastewater. The system could be scaled up readily due to its simple configuration, easy operation and relatively high power density. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Development of a Space-Rated Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Power systems for human spacecraft have historically included fuel cells due to the superior energy density they offer over battery systems depending on mission length and power consumption. As space exploration focuses on the evolution of reusable spacecraft and also considers planetary exploration power system requirements, fuel cells continue to be a factor in the potential system solutions.

  15. Advances in rechargeable lithium molybdenum disulfide batteries

    NASA Technical Reports Server (NTRS)

    Brandt, K.; Stiles, J. A. R.

    1985-01-01

    The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.

  16. High rate copper and energy recovery in microbial fuel cells

    PubMed Central

    Rodenas Motos, Pau; ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J. N.; Sleutels, Tom H. J. A.

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L-1 Cu2+) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m-2 in combination with a power density of 5.5 W m-2 was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery. PMID:26150802

  17. Production of xylitol from D-xylose by Debaryomyces hansenii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, J.M.; Gong, Cheng S.; Tsao, G.T.

    1997-12-31

    Xylitol, a naturally occurring five-carbon sugar alcohol, can be produced from D-xylose through microbial hydrogenation. Xylitol has found increasing use in the food industries, especially in confectionary. It is the only so-called {open_quotes}second-generation polyol sweeteners{close_quotes} that is allowed to have the specific health claims in some world markets. In this study, the effect of cell density on the xylitol production by the yeast Debaryomyces hansenii NRRL Y-7426 from D-xylose under microaerobic conditions was examined. The rate of xylitol production increased with increasing yeast cell density to 3 g/L. Beyond this amount there was no increase in the xylitol production withmore » increasing cell density. The optimal pH range for xylitol production was between 4.5 and 5.5. The optimal temperature was between 28 and 37{degrees}C, and the optimal shaking speed was 300 rpm. The rate of xylitol production increased linearly with increasing initial xylose concentration. A high concentration of xylose (279 g/L) was converted rapidly and efficiently to produce xylitol with a product concentration of 221 g/L was reached after 48 h of incubation under optimum conditions. 18 refs., 5 figs.« less

  18. A mini-type hydrogen generator from aluminum for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Er-Dong; Shi, Peng-Fei; Du, Chun-Yu; Wang, Xiao-Rui

    A safe and simple hydrogen generator, which produced hydrogen by chemical reaction of aluminum and sodium hydroxide solution, was proposed for proton exchange membrane fuel cells. The effects of concentration, dropping rate and initial temperature of sodium hydroxide solution on hydrogen generation rate were investigated. The results showed that about 38 ml min -1 of hydrogen generation rate was obtained with 25 wt.% concentration and 0.01 ml s -1 dropping rate of sodium hydroxide solution. The cell fueled by hydrogen from the generator exhibited performance improvement at low current densities, which was mainly due to the humidified hydrogen reduced the protonic resistivity of the proton exchange membrane. The hydrogen generator could stably operate a single cell under 500 mA for nearly 5 h with about 77% hydrogen utilization ratio.

  19. Kinetics of Cell Fusion Induced by a Syncytia-Producing Mutant of Herpes Simplex Virus Type I

    PubMed Central

    Person, Stanley; Knowles, Robert W.; Read, G. Sullivan; Warner, Susan C.; Bond, Vincent C.

    1976-01-01

    We have isolated a number of plaque-morphology mutants from a strain of herpes simplex virus type I which, unlike the wild type, cause extensive cell fusion during a productive viral infection. After the onset of fusion, there is an exponential decrease in the number of single cells as a function of time after infection. At a multiplicity of infection (MOI) of 3.8 plaque-forming units per cell, fusion begins 5.3 h after infection with the number of single cells decreasing to 10% of the original number 10.2 h after infection. As the MOI is gradually increased from 0.4 to 8, the onset of fusion occurs earlier during infection. However, when the MOI is increased from 8 to 86, the onset of fusion does not occur any earlier. The rate of fusion is independent of the MOI for an MOI greater than 1. The rate of fusion varies linearly with initial cell density up to 3.5 × 104 cells/cm2 and is independent of initial cell density at higher cell concentrations. To assay cell fusion we have developed a simple quantitative assay using a Coulter counter to measure the number of single cells as a function of time after infection. Data obtained using a Coulter counter are similar to those obtained with a microscope assay. PMID:173881

  20. Improving the aluminum-air battery system for use in electrical vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is not as significant as the increase in the current density away from the entrance. By extending the cathode below the anode, the high local current density can be reduced.

  1. Internal magnesium, 2,3-diphosphoglycerate, and the regulation of the steady-state volume of human red blood cells by the Na/K/2Cl cotransport system

    PubMed Central

    1992-01-01

    This study is concerned with the relationship between the Na/K/Cl cotransport system and the steady-state volume (MCV) of red blood cells. Cotransport rate was determined in unfractionated and density- separated red cells of different MCV from different donors to see whether cotransport differences contribute to the difference in the distribution of MCVs. Cotransport, studied in cells at their original MCVs, was determined as the bumetanide (10 microM)-sensitive 22Na efflux in the presence of ouabain (50 microM) after adjusting cellular Na (Nai) and Ki to achieve near maximal transport rates. This condition was chosen to rule out MCV-related differences in Nai and Ki that might contribute to differences in the net chemical driving force for cotransport. We found that in both unfractionated and density-separated red cells the cotransport rate was inversely correlated with MCV. MCV was correlated directly with red cell 2,3-diphosphoglycerate (DPG), whereas total red cell Mg was only slightly elevated in cells with high MCV. Thus intracellular free Mg (Mgifree) is evidently lower in red cells with high 2,3-DPG (i.e., high MCV) and vice versa. Results from flux measurements at their original MCVs, after altering Mgifree with the ionophore A23187, indicated a high Mgi sensitivity of cotransport: depletion of Mgifree inhibited and an elevation of Mgifree increased the cotransport rate. The apparent K0.5 for Mgifree was approximately 0.4 mM. Maximizing Mgifree at optimum Nai and Ki minimized the differences in cotransport rates among the different donors. It is concluded that the relative cotransport rate is regulated for cells in the steady state at their original cell volume, not by the number of copies of the cotransporter but by differences in Mgifree. The interindividual differences in Mgifree, determined primarily by differences in the 2,3-DPG content, are responsible for the differences in the relative cotransport activity that results in an inverse relationship with in vivo differences in MCV. Indirect evidence indicates that the relative cotransport rate, as indexed by Mgifree, is determined by the phosphorylated level of the cotransport system. PMID:1607852

  2. A dimensionless ordered pull-through model of the mammalian lens epithelium evidences scaling across species and explains the age-dependent changes in cell density in the human lens

    PubMed Central

    Wu, Jun Jie; Wu, Weiju; Tholozan, Frederique M.; Saunter, Christopher D.; Girkin, John M.; Quinlan, Roy A.

    2015-01-01

    We present a mathematical (ordered pull-through; OPT) model of the cell-density profile for the mammalian lens epithelium together with new experimental data. The model is based upon dimensionless parameters, an important criterion for inter-species comparisons where lens sizes can vary greatly (e.g. bovine (approx. 18 mm); mouse (approx. 2 mm)) and confirms that mammalian lenses scale with size. The validated model includes two parameters: β/α, which is the ratio of the proliferation rate in the peripheral and in the central region of the lens; and γGZ, a dimensionless pull-through parameter that accounts for the cell transition and exit from the epithelium into the lens body. Best-fit values were determined for mouse, rat, rabbit, bovine and human lens epithelia. The OPT model accounts for the peak in cell density at the periphery of the lens epithelium, a region where cell proliferation is concentrated and reaches a maximum coincident with the germinative zone. The β/α ratio correlates with the measured FGF-2 gradient, a morphogen critical to lens cell survival, proliferation and differentiation. As proliferation declines with age, the OPT model predicted age-dependent changes in cell-density profiles, which we observed in mouse and human lenses. PMID:26236824

  3. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    NASA Astrophysics Data System (ADS)

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-04-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics.

  4. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data

    PubMed Central

    Min, Junhong; Vonesch, Cédric; Kirshner, Hagai; Carlini, Lina; Olivier, Nicolas; Holden, Seamus; Manley, Suliana; Ye, Jong Chul; Unser, Michael

    2014-01-01

    Super resolution microscopy such as STORM and (F)PALM is now a well known method for biological studies at the nanometer scale. However, conventional imaging schemes based on sparse activation of photo-switchable fluorescent probes have inherently slow temporal resolution which is a serious limitation when investigating live-cell dynamics. Here, we present an algorithm for high-density super-resolution microscopy which combines a sparsity-promoting formulation with a Taylor series approximation of the PSF. Our algorithm is designed to provide unbiased localization on continuous space and high recall rates for high-density imaging, and to have orders-of-magnitude shorter run times compared to previous high-density algorithms. We validated our algorithm on both simulated and experimental data, and demonstrated live-cell imaging with temporal resolution of 2.5 seconds by recovering fast ER dynamics. PMID:24694686

  5. The effect of the external medium on the gravitropic curvature of rice (Oryza sativa, Poaceae) roots

    NASA Technical Reports Server (NTRS)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1997-01-01

    The roots of rice seedlings, growing in artificial pond water, exhibit robust gravitropic curvature when placed perpendicular to the vector of gravity. To determine whether the statolith theory (in which intracellular sedimenting particles are responsible for gravity sensing) or the gravitational pressure theory (in which the entire protoplast acts as the gravity sensor) best accounts for gravity sensing in rice roots, we changed the physical properties of the external medium with impermeant solutes and examined the effect on gravitropism. As the density of the external medium is increased, the rate of gravitropic curvature decreases. The decrease in the rate of gravicurvature cannot be attributed to an inhibition of growth, since rice roots grown in 100 Osm/m3 (0.248 MPa) solutions of different densities all support the same root growth rate but inhibit gravicurvature increasingly with increasing density. By contrast, the sedimentation rate of amyloplasts in the columella cells is unaffected by the external density. These results are consistent with the gravitational pressure theory of gravity sensing, but cannot be explained by the statolith theory.

  6. Physical cell interactions with their surrounding materials: Mechanics and geometrical factors using microfluidic platforms

    NASA Astrophysics Data System (ADS)

    Lopez Garcia, Maria Del Carmen

    Microfluidics platforms are employed in: "sperm motion in a microfluidic device" and "mechanical interactions of mammary gland cells with their surrounding three dimensional extra-cellular matrix". Microfluidics has shown promise as a new platform for assisted reproduction. Sperm and fluid motion in microchannels was studied to understand the flow characteristics in the device, how sperm interacted with this flow, and how sperm-oocyte attachment occurs in the device. A threshold fluid velocity was found where sperm transition from traveling with the fluid to a regime in which they can move independently. A population of sperm remained in the inlet well area. There was also the tendency of sperm to travel along surface contours. These observations provide an improved understanding of sperm motion in microchannels and a basis for improved device designs. The effort to understand the development of breast cancer motivates the study of mammary gland cells and their interactions with the extra-cellular matrix. Mammographic density is a risk factor for breast cancer which correlates with collagen density affects cell behavior. Collagen gels with concentrations of 1.3, 2, and 3 mg/mL, were tensile tested to obtain the Young's modulus, E, at low displacement rates of 0.01, 0.1, and 1 mm/min. Local strain measurement in the gage section were used for both strain and strain rate determination. Local strain rates were on the order of cellular generated strain rate. A power law fitting described the relationship between Young's modulus and local strain rate. Mammary gland cells were seeded with collagen and fluorescent beads into microchannels and observed via four-dimensional imaging. The displacements of the beads were used to calculate strains. The Young's modulus due to the rate at which the cell was straining the collagen was obtained from the aforementioned fittings. Three-dimensional elastic theory for an isotropic material was employed to calculate the stress. The cells in the more compliant gels achieved higher strains. The stresses portrayed a fluctuating behavior. This technique adds to the field of measuring cell generated stresses by providing the capability of measuring 3D stresses locally around the single cell and using physiologically relevant materials properties for analysis.

  7. NASA Redox cell stack shunt current, pumping power, and cell performance tradeoffs

    NASA Technical Reports Server (NTRS)

    Hagedorn, N.; Hoberecht, M. A.; Thaller, L. H.

    1982-01-01

    The NASA Redox energy storage system is under active technology development. The hardware undergoing laboratory testing is either 310 sq. cm. or 929 sq. cm. (0.33 sq. ft. or 1.0 sq. ft. per cell active area with up to 40 individual cells connected to make up a modular cell stack. This size of hardware allows rather accurate projections to be made of the shunt power/pump power tradeoffs. The modeling studies that were completed on the system concept are reviewed along with the approach of mapping the performance of Redox cells over a wide range of flow rates and depths of discharge of the Redox solutions. Methods are outlined for estimating the pumping and shunt current losses for any type of cell and stack combination. These methods are applicable to a variety of pumping options that are present with Redox systems. The results show that a fully developed Redox system has acceptable parasitic losses when using a fixed flow rate adequate to meet the worst conditions of current density and depth of discharge. These losses are reduced by about 65 percent if variable flow schedules are used. The exact value of the overall parasitics will depend on the specific system requirements of current density, voltage limits, charge, discharge time, etc.

  8. Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix

    NASA Technical Reports Server (NTRS)

    Mooney, D. J.; Langer, R.; Ingber, D. E.

    1995-01-01

    This study was undertaken to analyze how cell binding to extracellular matrix produces changes in cell shape. We focused on the initial process of cell spreading that follows cell attachment to matrix and, thus, cell 'shape' changes are defined here in terms of alterations in projected cell areas, as determined by computerized image analysis. Cell spreading kinetics and changes in microtubule and actin microfilament mass were simultaneously quantitated in hepatocytes plated on different extracellular matrix substrata. The initial rate of cell spreading was highly dependent on the matrix coating density and decreased from 740 microns 2/h to 50 microns 2/h as the coating density was lowered from 1000 to 1 ng/cm2. At approximately 4 to 6 hours after plating, this initial rapid spreading rate slowed and became independent of the matrix density regardless of whether laminin, fibronectin, type I collagen or type IV collagen was used for cell attachment. Analysis of F-actin mass revealed that cell adhesion to extracellular matrix resulted in a 20-fold increase in polymerized actin within 30 minutes after plating, before any significant change in cell shape was observed. This was followed by a phase of actin microfilament disassembly which correlated with the most rapid phase of cell extension and ended at about 6 hours; F-actin mass remained relatively constant during the slow matrix-independent spreading phase. Microtubule mass increased more slowly in spreading cells, peaking at 4 hours, the time at which the transition between rapid and slow spreading rates was observed. However, inhibition of this early rise in microtubule mass using either nocodazole or cycloheximide did not prevent this transition. Use of cytochalasin D revealed that microfilament integrity was absolutely required for hepatocyte spreading whereas interference with microtubule assembly (using nocodazole or taxol) or protein synthesis (using cycloheximide) only partially suppressed cell extension. In contrast, cell spreading could be completely inhibited by combining suboptimal doses of cytochalasin D and nocodazole, suggesting that intact microtubules can stabilize cell form when the microfilament lattice is partially compromised. The physiological relevance of the cytoskeleton and cell shape in hepatocyte physiology was highlighted by the finding that a short exposure (6 hour) of cells to nocodazole resulted in production of smaller cells 42 hours later that exhibited enhanced production of a liver-specific product (albumin). These data demonstrate that spreading and flattening of the entire cell body is not driven directly by net polymerization of either microfilaments or microtubules.(ABSTRACT TRUNCATED AT 400 WORDS).

  9. Probing Prokaryotic Social Behaviors with Bacterial “Lobster Traps”

    PubMed Central

    Connell, Jodi L.; Wessel, Aimee K.; Parsek, Matthew R.; Ellington, Andrew D.; Whiteley, Marvin; Shear, Jason B.

    2010-01-01

    Bacteria are social organisms that display distinct behaviors/phenotypes when present in groups. These behaviors include the abilities to construct antibiotic-resistant sessile biofilm communities and to communicate with small signaling molecules (quorum sensing [QS]). Our understanding of biofilms and QS arises primarily from in vitro studies of bacterial communities containing large numbers of cells, often greater than 108 bacteria; however, in nature, bacteria often reside in dense clusters (aggregates) consisting of significantly fewer cells. Indeed, bacterial clusters containing 101 to 105 cells are important for transmission of many bacterial pathogens. Here, we describe a versatile strategy for conducting mechanistic studies to interrogate the molecular processes controlling antibiotic resistance and QS-mediated virulence factor production in high-density bacterial clusters. This strategy involves enclosing a single bacterium within three-dimensional picoliter-scale microcavities (referred to as bacterial “lobster traps”) defined by walls that are permeable to nutrients, waste products, and other bioactive small molecules. Within these traps, bacteria divide normally into extremely dense (1012 cells/ml) clonal populations with final population sizes similar to that observed in naturally occurring bacterial clusters. Using these traps, we provide strong evidence that within low-cell-number/high-density bacterial clusters, QS is modulated not only by bacterial density but also by population size and flow rate of the surrounding medium. We also demonstrate that antibiotic resistance develops as cell density increases, with as few as ~150 confined bacteria exhibiting an antibiotic-resistant phenotype similar to biofilm bacteria. Together, these findings provide key insights into clinically relevant phenotypes in low-cell-number/high-density bacterial populations. PMID:21060734

  10. Correlation of design with performance of primary lithium-sulfur oxyhalide cells

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1982-01-01

    Results and assessments of a focused literature review of primary lithium sulfur oxyhalide cells are presented. Major emphasis is placed on the effect of component materials and designs on performance (energy density and rate capability), safety, and storage life of these cells. This information is a reference guide for the design of high energy batteries for future use on NASA missions.

  11. Development of steel foam processing methods and characterization of metal foam

    NASA Astrophysics Data System (ADS)

    Park, Chanman

    2000-10-01

    Steel foam was synthesized by a powder metallurgical route, resulting in densities less than half that of steel. Process parameters for foam synthesis were investigated, and two standard powder formulations were selected consisting of Fe-2.5% C and 0.2 wt% foaming agent (either MgCO3 or SrCO3). Compression tests were performed on annealed and pre-annealed foam samples of different density to determine mechanical response and energy absorption behavior. The stress-strain response was strongly affected by annealing, which reduced the carbon content and converted much of the pearlitic structure to ferrite. Different powder blending methods and melting times were employed and the effects on the geometric structure of steel foam were examined. Dispersion of the foaming agent affected the pore size distribution of the expanded foams. With increasing melt time, pores coalesced, leading to the eventual collapse of the foam. Inserting interlayer membranes in the powder compacts inhibited coalescence of pores and produced foams with more uniform cell size and distribution. The closed-cell foam samples exhibited anisotropy in compression, a phenomenon that was caused primarily by the ellipsoidal cell shapes within the foam. Yield strengths were 3x higher in the transverse direction than in the longitudinal direction. Yield strength also showed a power-law dependence on relative density (n ≅ 1.8). Compressive strain was highly localized and occurred in discrete bands that extended transverse to the loading direction. The yield strength of foam samples showed stronger strain rate dependence at higher strain rates. The increased strain rate dependence was attributed to microinertial hardening. Energy absorption was also observed to increase with strain rate. Measurements of cell wall curvature showed that an increased mean curvature correlated with a reduced yield strength, and foam strengths generally fell below predictions of Gibson-Ashby theory. Morphological defects reduced yield strength and altered the dependence on density. Microstructural analysis was performed on a porous Mg and AZ31 Mg alloy synthesized by the GASAR process. The pore distribution depended on the distance from the chill end of ingots. TEM observations revealed apparent gas tracks neat the pores and ternary intermetallic phases in the alloy.

  12. Rate limiting mechanisms in lithium-molybdenum disulfide batteries

    NASA Astrophysics Data System (ADS)

    Laman, F. C.; Stiles, J. A. R.; Brandt, K.; Shank, R. J.

    1985-03-01

    One limitation of secondary lithium batteries using intercalation cathodes is generally related to relatively low power densities. Significant advances towards overcoming this limitation have been made in cells based on a utilization of lithium-molybdenum disulfide technology. Rate limiting mechanisms in cells of the lithium-molybdenum disulfide system have been studied with the aid of a frequency response analysis. It was found that diffusion-related contributions to cell impedance, and interfacial and resistive contributions to cell impedance, can be readily segregated by virtue of the fact that the diffusion-controlled mechanisms dominate the low frequency end of the impedance spectra, while the other mechanisms dominate the high frequency end. The present investigation is concerned with rate limitations at the high end of the frequency spectrum in lithium-molybdenum disulfide cathodes.

  13. High energy density micro-fiber based nickel electrode for aerospace batteries

    NASA Technical Reports Server (NTRS)

    Francisco, Jennifer; Chiappetti, Dennis; Coates, Dwaine

    1996-01-01

    The nickel electrode is the specific energy limiting component in battery systems such as nickel-hydrogen, nickel-metal hydride and nickel-zinc. Lightweight, high energy density nickel electrodes have been developed which deliver in excess of 180 mAh/g at the one-hour discharge rate. These electrodes are based on a highly porous, nickel micro-fiber (less than 10 micron diameter) substrate, electrochemically impregnated with nickel-hydroxide active material. Electrodes are being tested both as a flooded half-cell and in full nickel-hydrogen and nickel-metal hydride cells. The electrode technology developed is applicable to commercial nickel-based batteries for applications such as electric vehicles, cellular telephones and laptop computers and for low-cost, high energy density military and aerospace applications.

  14. Cell size, genome size and the dominance of Angiosperms

    NASA Astrophysics Data System (ADS)

    Simonin, K. A.; Roddy, A. B.

    2016-12-01

    Angiosperms are capable of maintaining the highest rates of photosynthetic gas exchange of all land plants. High rates of photosynthesis depends mechanistically both on efficiently transporting water to the sites of evaporation in the leaf and on regulating the loss of that water to the atmosphere as CO2 diffuses into the leaf. Angiosperm leaves are unique in their ability to sustain high fluxes of liquid and vapor phase water transport due to high vein densities and numerous, small stomata. Despite the ubiquity of studies characterizing the anatomical and physiological adaptations that enable angiosperms to maintain high rates of photosynthesis, the underlying mechanism explaining why they have been able to develop such high leaf vein densities, and such small and abundant stomata, is still incomplete. Here we ask whether the scaling of genome size and cell size places a fundamental constraint on the photosynthetic metabolism of land plants, and whether genome downsizing among the angiosperms directly contributed to their greater potential and realized primary productivity relative to the other major groups of terrestrial plants. Using previously published data we show that a single relationship can predict guard cell size from genome size across the major groups of terrestrial land plants (e.g. angiosperms, conifers, cycads and ferns). Similarly, a strong positive correlation exists between genome size and both stomatal density and vein density that together ultimately constrains maximum potential (gs, max) and operational stomatal conductance (gs, op). Further the difference in the slopes describing the covariation between genome size and both gs, max and gs, op suggests that genome downsizing brings gs, op closer to gs, max. Taken together the data presented here suggests that the smaller genomes of angiosperms allow their final cell sizes to vary more widely and respond more directly to environmental conditions and in doing so bring operational photosynthetic metabolism closer to maximum potential photosynthesis.EndFragment

  15. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate

    NASA Astrophysics Data System (ADS)

    Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.

    2017-03-01

    The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.

  16. Studying the rapid bioconversion of lignocellulosic sugars into ethanol using high cell density fermentations with cell recycle

    PubMed Central

    2014-01-01

    Background The Rapid Bioconversion with Integrated recycle Technology (RaBIT) process reduces capital costs, processing times, and biocatalyst cost for biochemical conversion of cellulosic biomass to biofuels by reducing total bioprocessing time (enzymatic hydrolysis plus fermentation) to 48 h, increasing biofuel productivity (g/L/h) twofold, and recycling biocatalysts (enzymes and microbes) to the next cycle. To achieve these results, RaBIT utilizes 24-h high cell density fermentations along with cell recycling to solve the slow/incomplete xylose fermentation issue, which is critical for lignocellulosic biofuel fermentations. Previous studies utilizing similar fermentation conditions showed a decrease in xylose consumption when recycling cells into the next fermentation cycle. Eliminating this decrease is critical for RaBIT process effectiveness for high cycle counts. Results Nine different engineered microbial strains (including Saccharomyces cerevisiae strains, Scheffersomyces (Pichia) stipitis strains, Zymomonas mobilis 8b, and Escherichia coli KO11) were tested under RaBIT platform fermentations to determine their suitability for this platform. Fermentation conditions were then optimized for S. cerevisiae GLBRCY128. Three different nutrient sources (corn steep liquor, yeast extract, and wheat germ) were evaluated to improve xylose consumption by recycled cells. Capacitance readings were used to accurately measure viable cell mass profiles over five cycles. Conclusion The results showed that not all strains are capable of effectively performing the RaBIT process. Acceptable performance is largely correlated to the specific xylose consumption rate. Corn steep liquor was found to reduce the deleterious impacts of cell recycle and improve specific xylose consumption rates. The viable cell mass profiles indicated that reduction in specific xylose consumption rate, not a drop in viable cell mass, was the main cause for decreasing xylose consumption. PMID:24847379

  17. Characterization of perovskite solar cells: Towards a reliable measurement protocol

    NASA Astrophysics Data System (ADS)

    Zimmermann, Eugen; Wong, Ka Kan; Müller, Michael; Hu, Hao; Ehrenreich, Philipp; Kohlstädt, Markus; Würfel, Uli; Mastroianni, Simone; Mathiazhagan, Gayathri; Hinsch, Andreas; Gujar, Tanaji P.; Thelakkat, Mukundan; Pfadler, Thomas; Schmidt-Mende, Lukas

    2016-09-01

    Lead halide perovskite solar cells have shown a tremendous rise in power conversion efficiency with reported record efficiencies of over 20% making this material very promising as a low cost alternative to conventional inorganic solar cells. However, due to a differently severe "hysteretic" behaviour during current density-voltage measurements, which strongly depends on scan rate, device and measurement history, preparation method, device architecture, etc., commonly used solar cell measurements do not give reliable or even reproducible results. For the aspect of commercialization and the possibility to compare results of different devices among different laboratories, it is necessary to establish a measurement protocol which gives reproducible results. Therefore, we compare device characteristics derived from standard current density-voltage measurements with stabilized values obtained from an adaptive tracking of the maximum power point and the open circuit voltage as well as characteristics extracted from time resolved current density-voltage measurements. Our results provide insight into the challenges of a correct determination of device performance and propose a measurement protocol for a reliable characterisation which is easy to implement and has been tested on varying perovskite solar cells fabricated in different laboratories.

  18. [The proliferative characteristics of cells in culture during perfusion of the medium].

    PubMed

    Akatov, V S; Lavrovskaia, V P; Lezhnev, E I

    1991-01-01

    The proliferation of Chinese hamster fibroblasts (CHF) and NIH 3T3 cells was studied at different flow rates immediately above the cells. It is shown that there is a limiting density of saturation of the perfused culture that accounts for 1.7 x 10(6) - 2.0 x 10(6) cells/cm2 for NIH 3T3 cells, and for 6 x 10(6) - 7 x 10(6) cells/cm2 for CHF. The growth curves and the distribution of cells with respect to the phases of the cell cycle during cultivation with and without perfusion are presented. Based on the results obtained it is assumed that the limit of saturation density of perfused CHF culture is due to the mass transfer of the growth-inhibiting metabolites inside the multilayer structures. The assumption seems to hold true for NIH 3T3 cells, too, even though the multilayer character of growth of this culture is less pronounced than in CHF.

  19. Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms

    PubMed Central

    Jordan, Gregory J.; Brodribb, Timothy J.

    2017-01-01

    Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by “passive dilution” via expansion of surrounding cells. However, it is not known whether this ‘passive dilution’ mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms’ evolutionary success. Consequently, we sought to determine whether the ‘passive dilution’ mechanism is; (i) exclusive to the angiosperms, (ii) a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii) has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms) appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas exchange. PMID:28953931

  20. Production of interferon-alpha in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins.

    PubMed

    Babu, K R; Swaminathan, S; Marten, S; Khanna, N; Rinas, U

    2000-06-01

    Escherichia coli TG1 transformed with a temperature-regulated interferon-alpha expression vector was grown to high cell density in defined medium containing glucose as the sole carbon and energy source, utilizing a simple fed-batch process. Feeding was carried out to achieve an exponential increase in biomass at growth rates which minimized acetate production. Thermal induction of such high cell density cultures resulted in the production of approximately 4 g interferon-alpha/l culture broth. Interferon-alpha was produced exclusively in the form of insoluble inclusion bodies and was solubilized under denaturing conditions, refolded in the presence of arginine and purified to near homogeneity, utilizing single-step ion-exchange chromatography on Q-Sepharose. The yield of purified interferon-alpha was approximately 300 mg/l with respect to the original high cell density culture broth (overall yield of approximately 7.5% active interferon-alpha). The purified recombinant interferon-alpha was found by different criteria to be predominantly monomeric and possessed a specific bioactivity of approximately 2.5 x 10(8) IU/mg based on viral cytopathic assay.

  1. Process development for production of human granulocyte-colony stimulating factor by high cell density cultivation of recombinant Escherichia coli.

    PubMed

    Khalilzadeh, Rasoul; Mohammadian-Mosaabadi, Jafar; Bahrami, Ali; Nazak-Tabbar, Ahmad; Nasiri-Khalili, Mohammad Ali; Amouheidari, Alireza

    2008-12-01

    The fed-batch process using glucose as the sole source of carbon and energy with exponential feeding rate was carried out for high cell density cultivation of recombinant Escherichia coli BL21 (DE3) expressing human granulocyte-colony stimulating factor (hG-CSF). IPTG was used to induce the expression of hG-CSF at 48 g dry cell wt l(-1) during high cell density culture of recombinant E. coli BL21 (DE3) [pET23a-g-csf]. The final cell density, specific yield and overall productivity of hG-CSF were obtained as approximately 64 g dry cell wt l(-1), 223 mg hG-CSF g(-1) dry cell wt and 775 mg hG-CSF l(-1) h(-1), respectively. The resulting purification process used cell lysis, inclusion body (IB) preparation, refolding, DEAE and Butyl-Sepharose. Effects of different process conditions such as cell lysis and washing of IB were evaluated. The results reveal that the cells lyzed at 1,200 bar, 99.9% and Triton removed about 64% of the LPS but sarcosyl had no effect on removal of nucleic acids and LPS. Further analysis show that DEAE column removes DNA about 84%. Cupper concentration was identified as parameter that could have a significant impact on aggregation, as an unacceptable pharmaceutical form that decrease process yields. The purity of purified hG-CSF was more than 99%. Also the comparison of activity between purified hG-CSF and commercial form do not show valuable decrease in activity in purified form.

  2. Enrichment of undifferentiated type a spermatogonia from goat testis using discontinuous percoll density gradient and differential plating.

    PubMed

    Heidari, Banafsheh; Gifani, Minoo; Shirazi, Abolfazl; Zarnani, Amir-Hassan; Baradaran, Behzad; Naderi, Mohammad Mehdi; Behzadi, Bahareh; Borjian-Boroujeni, Sara; Sarvari, Ali; Lakpour, Niknam; Akhondi, Mohammad Mehdi

    2014-04-01

    The well documented source for adult multipotent stem cells is Spermatogonial Stem Cells (SSCs). They are the foundation of spermatogenesis in the testis throughout adult life by balancing self-renewal and differentiation. The aim of this study was to assess the effect of percoll density gradient and differential plating on enrichment of undifferentiated type A spermatogonia in dissociated cellular suspension of goat testes. Additionally, we evaluated the separated fractions of the gradients in percoll and samples in differential plating at different times for cell number, viability and purification rate of goat SSCs in culture. Testicular cells were successfully isolated from one month old goat testis using two-step enzymatic digestion and followed by two purification protocols, differential plating with different times of culture (3, 4, 5, and 6 hr) and discontinuous percoll density with different gradients (20, 28, 30, and 32%). The difference of percentage of undifferentiated SSCs (PGP9.5 positive) in each method was compared using ANOVA and comparison between the highest percentage of corresponding value between two methods was carried out by t-test using Sigma Stat (ver. 3.5). The highest PGP9.5 (94.6±0.4) and the lowest c-Kit positive (25.1±0.7) in Percoll method was significantly (p ≤ 0.001) achieved in 32% percoll gradient. While the corresponding rates in differential plating method for the highest PGP9.5 positive cells (81.3±1.1) and lowest c-Kit (17.1±1.4) was achieved after 5 hr culturing (p < 0.001). The enrichment of undifferentiated type A spermatogonia using Percoll was more efficient than differential plating method (p < 0.001). Percoll density gradient and differential plating were efficient and fast methods for enrichment of type A spermatogonial stem cells from goat testes.

  3. Enrichment of Undifferentiated Type A Spermatogonia from Goat Testis Using Discontinuous Percoll Density Gradient and Differential Plating

    PubMed Central

    Heidari, Banafsheh; Gifani, Minoo; Shirazi, Abolfazl; Zarnani, Amir-Hassan; Baradaran, Behzad; Naderi, Mohammad Mehdi; Behzadi, Bahareh; Borjian-Boroujeni, Sara; Sarvari, Ali; Lakpour, Niknam; Akhondi, Mohammad Mehdi

    2014-01-01

    Background The well documented source for adult multipotent stem cells is Spermatogonial Stem Cells (SSCs). They are the foundation of spermatogenesis in the testis throughout adult life by balancing self-renewal and differentiation. The aim of this study was to assess the effect of percoll density gradient and differential plating on enrichment of undifferentiated type A spermatogonia in dissociated cellular suspension of goat testes. Additionally, we evaluated the separated fractions of the gradients in percoll and samples in differential plating at different times for cell number, viability and purification rate of goat SSCs in culture. Methods Testicular cells were successfully isolated from one month old goat testis using two-step enzymatic digestion and followed by two purification protocols, differential plating with different times of culture (3, 4, 5, and 6 hr) and discontinuous percoll density with different gradients (20, 28, 30, and 32%). The difference of percentage of undifferentiated SSCs (PGP9.5 positive) in each method was compared using ANOVA and comparison between the highest percentage of corresponding value between two methods was carried out by t-test using Sigma Stat (ver. 3.5). Results The highest PGP9.5 (94.6±0.4) and the lowest c-Kit positive (25.1±0.7) in Percoll method was significantly (p ≤ 0.001) achieved in 32% percoll gradient. While the corresponding rates in differential plating method for the highest PGP9.5 positive cells (81.3±1.1) and lowest c-Kit (17.1±1.4) was achieved after 5 hr culturing (p < 0.001). The enrichment of undifferentiated type A spermatogonia using Percoll was more efficient than differential plating method (p < 0.001). Conclusion Percoll density gradient and differential plating were efficient and fast methods for enrichment of type A spermatogonial stem cells from goat testes. PMID:24834311

  4. Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.

    PubMed

    Prats, Clara; Giró, Antoni; Ferrer, Jordi; López, Daniel; Vives-Rego, Josep

    2008-05-07

    The lag phase is the initial phase of a culture that precedes exponential growth and occurs when the conditions of the culture medium differ from the pre-inoculation conditions. It is usually defined by means of cell density because the number of individuals remains approximately constant or slowly increases, and it is quantified with the lag parameter lambda. The lag phase has been studied through mathematical modelling and by means of specific experiments. In recent years, Individual-based Modelling (IbM) has provided helpful insights into lag phase studies. In this paper, the definition of lag phase is thoroughly examined. Evolution of the total biomass and the total number of bacteria during lag phase is tackled separately. The lag phase lasts until the culture reaches a maximum growth rate both in biomass and cell density. Once in the exponential phase, both rates are constant over time and equal to each other. Both evolutions are split into an initial phase and a transition phase, according to their growth rates. A population-level mathematical model is presented to describe the transitional phase in cell density. INDividual DIScrete SIMulation (INDISIM) is used to check the outcomes of this analysis. Simulations allow the separate study of the evolution of cell density and total biomass in a batch culture, they provide a depiction of different observed cases in lag evolution at the individual-cell level, and are used to test the population-level model. The results show that the geometrical lag parameter lambda is not appropriate as a universal definition for the lag phase. Moreover, the lag phase cannot be characterized by a single parameter. For the studied cases, the lag phases of both the total biomass and the population are required to fully characterize the evolution of bacterial cultures. The results presented prove once more that the lag phase is a complex process that requires a more complete definition. This will be possible only after the phenomena governing the population dynamics at an individual level of description, and occurring during the lag and exponential growth phases, are well understood.

  5. Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth

    PubMed Central

    FERNANDES, Ana Paula; JUNQUEIRA, Marina de Azevedo; MARQUES, Nádia Carolina Teixeira; MACHADO, Maria Aparecida Andrade Moreira; SANTOS, Carlos Ferreira; OLIVEIRA, Thais Marchini; SAKAI, Vivien Thiemy

    2016-01-01

    ABSTRACT Low-Level Laser Therapy stimulates the proliferation of a variety of types of cells. However, very little is known about its effect on stem cells from human exfoliated deciduous teeth (SHED). Objective This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. Material and Methods SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW – 10 s), II (2.5 J/cm2 – 10 mW – 10 s), III (3.7 J/cm2 – 15 mW – 10 s), IV (5.0 J/cm2 – 20 mW – 10 s), V (6.2 J/cm2 – 25 mW – 10 s), and VI (not irradiated – control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. Results MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. Conclusions The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study. PMID:27556203

  6. Regional Differences in Tropical Lightning Distributions.

    NASA Astrophysics Data System (ADS)

    Boccippio, Dennis J.; Goodman, Steven J.; Heckman, Stan

    2000-12-01

    Observations from the National Aeronautics and Space Administration Optical Transient Detector (OTD) and Tropical Rainfall Measuring Mission (TRMM)-based Lightning Imaging Sensor (LIS) are analyzed for variability between land and ocean, various geographic regions, and different (objectively defined) convective `regimes.' The bulk of the order-of-magnitude differences between land and ocean regional flash rates are accounted for by differences in storm spacing (density) and/or frequency of occurrence, rather than differences in storm instantaneous flash rates, which only vary by a factor of 2 on average. Regional variability in cell density and cell flash rates closely tracks differences in 85-GHz microwave brightness temperatures. Monotonic relationships are found with the gross moist stability of the tropical atmosphere, a large-scale `adjusted state' parameter. This result strongly suggests that it will be possible, using TRMM observations, to objectively test numerical or theoretical predictions of how mesoscale convective organization interacts with the larger-scale environment. Further parameters are suggested for a complete objective definition of tropical convective regimes.

  7. Inflating bacterial cells by increased protein synthesis

    PubMed Central

    Basan, Markus; Zhu, Manlu; Dai, Xiongfeng; Warren, Mya; Sévin, Daniel; Wang, Yi-Ping; Hwa, Terence

    2015-01-01

    Understanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations. We report that cell size and mass exhibit positive or negative dependences with growth rate depending on the growth limitation applied. In particular, synthesizing large amounts of “useless” proteins led to an inversion of the canonical, positive relation, with slow growing cells enlarged 7- to 8-fold compared to cells growing at similar rates under nutrient limitation. Strikingly, this increase in cell size was accompanied by a 3- to 4-fold increase in cellular DNA content at slow growth, reaching up to an amount equivalent to ∼8 chromosomes per cell. Despite drastic changes in cell mass and macromolecular composition, cellular dry mass density remained constant. Our findings reveal an important role of protein synthesis in cell division control. PMID:26519362

  8. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures.

    PubMed

    Hiller, Gregory W; Ovalle, Ana Maria; Gagnon, Matthew P; Curran, Meredith L; Wang, Wenge

    2017-07-01

    A simple method originally designed to control lactate accumulation in fed-batch cultures of Chinese Hamster Ovary (CHO) cells has been modified and extended to allow cells in culture to control their own rate of perfusion to precisely deliver nutritional requirements. The method allows for very fast expansion of cells to high density while using a minimal volume of concentrated perfusion medium. When the short-duration cell-controlled perfusion is performed in the production bioreactor and is immediately followed by a conventional fed-batch culture using highly concentrated feeds, the overall productivity of the culture is approximately doubled when compared with a highly optimized state-of-the-art fed-batch process. The technology was applied with near uniform success to five CHO cell processes producing five different humanized monoclonal antibodies. The increases in productivity were due to the increases in sustained viable cell densities. Biotechnol. Bioeng. 2017;114: 1438-1447. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells.

    PubMed

    Avgerinos, G C; Drapeau, D; Socolow, J S; Mao, J I; Hsiao, K; Broeze, R J

    1990-01-01

    We have used a 20 liter stirred tank fermentor, equipped with a 127 mesh ethylene-tetrafluoroethylene rotating screen for cell recycle, for the continuous production of recombinant single chain urokinase-type plasminogen activator (rscu-PA) from Chinese hamster ovary (CHO) cells. Viable cell densities between 60 and 74 million per ml were maintained at medium perfusion rates of 3.0 to 4.0 fermentor volumes per day. Cells were retained by the 120 micron nominal opening filter through the formation of "clumped" cell aggregates of 200 to 600 microns in size, which did not foul the filter. In 31 days of culture, a total of 51 grams of rscu-PA were produced in 1,000 liters of medium. The rscu-PA produced over the course of this continuous culture was purified and characterized both in vitro and in vivo and shown to be comparable to natural scu-PA produced from the transformed human kidney cell line, TCL-598.

  10. Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor.

    PubMed

    Cimetta, E; Flaibani, M; Mella, M; Serena, E; Boldrin, L; De Coppi, P; Elvassore, N

    2007-05-01

    The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.

  11. Annealing characteristics of amorphous silicon alloy solar cells irradiated with 1.00 MeV protons

    NASA Technical Reports Server (NTRS)

    Abdulaziz, Salman S.; Woodyard, James R.

    1991-01-01

    Amorphous Si:H and amorphous Si sub x, Ge sub (1-x):H solar cells were irradiated with 1.00 MeV proton fluences in the range of 1.00E14 to 1.25E15 cm (exp -2). Annealing of the short circuit current density was studied at 0, 22, 50, 100, and 150 C. Annealing times ranged from an hour to several days. The measurements confirmed that annealing occurs at 0 C and the initial characteristics of the cells are restored by annealing at 200 C. The rate of annealing does not appear to follow a simple nth order reaction rate model. Calculations of the short-circuit current density using quantum efficiency measurements and the standard AM1.5 global spectrum compare favorably with measured values. It is proposed that the degradation in J sub sc with irradiation is due to carrier recombination through the fraction of D (o) states bounded by the quasi-Fermi energies. The time dependence of the rate of annealing of J sub sc does appear to be consistent with the interpretation that there is a thermally activated dispersive transport mechanism which leads to the passivation of the irradiation induced defects.

  12. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boilingmore » points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.« less

  13. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    PubMed

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.

  14. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor.

    PubMed

    Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert

    2014-02-07

    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.

  15. Adaptive Significance of Quorum Sensing-Dependent Regulation of Rhamnolipids by Integration of Growth Rate in Burkholderia glumae: A Trade-Off between Survival and Efficiency.

    PubMed

    Nickzad, Arvin; Déziel, Eric

    2016-01-01

    Quorum sensing (QS) is a cell density-dependent mechanism which enables a population of bacteria to coordinate cooperative behaviors in response to the accumulation of self-produced autoinducer signals in their local environment. An emerging framework is that the adaptive significance of QS in the regulation of production of costly extracellular metabolites ("public goods") is to maintain the homeostasis of cooperation. We investigated this model using the phytopathogenic bacterium Burkholderia glumae, which we have previously demonstrated uses QS to regulate the production of rhamnolipids, extracellular surface-active glycolipids promoting the social behavior called "swarming motility." Using mass spectrometric quantification and chromosomal lux-based gene expression, we made the unexpected finding that when unrestricted nutrient resources are provided, production of rhamnolipids is carried out completely independently of QS regulation. This is a unique observation among known QS-controlled factors in bacteria. On the other hand, under nutrient-limited conditions, QS then becomes the main regulating mechanism, significantly enhancing the specific rhamnolipids yield. Accordingly, decreasing nutrient concentrations amplifies rhamnolipid biosynthesis gene expression, revealing a system where QS-dependent regulation is specifically triggered by the growth rate of the population, rather than by its cell density. Furthermore, a gradual increase in QS signal specific concentration upon decrease of specific growth rate suggests a reduction in quorum threshold, which reflects an increase in cellular demand for production of QS-dependent target gene product at low density populations. Integration of growth rate with QS as a decision-making mechanism for biosynthesis of costly metabolites, such as rhamnolipids, could serve to assess the demand and timing for expanding the carrying capacity of a population through spatial expansion mechanisms, such as swarming motility, thus promoting the chances of survival, even if the cell density might not be high enough for an otherwise efficient production of rhamnolipids. In conclusion, we propose that the adaptive significance of growth rate-dependent functionality of QS in biosynthesis of costly public goods lies within providing a regulatory mechanism for selecting the optimal trade-off between survival and efficiency.

  16. Determination of Charge-Carrier Mobility in Disordered Thin-Film Solar Cells as a Function of Current Density

    NASA Astrophysics Data System (ADS)

    Mäckel, Helmut; MacKenzie, Roderick C. I.

    2018-03-01

    Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.

  17. The deformation and failure response of closed-cell PMDI foams subjected to dynamic impact loading

    DOE PAGES

    Koohbor, Behrad; Mallon, Silas; Kidane, Addis; ...

    2015-04-07

    The present work aims to investigate the bulk deformation and failure response of closed-cell Polymeric Methylene Diphenyl Diisocyanate (PMDI) foams subjected to dynamic impact loading. First, foam specimens of different initial densities are examined and characterized in quasi-static loading conditions, where the deformation behavior of the samples is quantified in terms of the compressive elastic modulus and effective plastic Poisson's ratio. Then, the deformation response of the foam specimens subjected to direct impact loading is examined by taking into account the effects of material compressibility and inertia stresses developed during deformation, using high speed imaging in conjunction with 3D digitalmore » image correlation. The stress-strain response and the energy absorption as a function of strain rate and initial density are presented and the bulk failure mechanisms are discussed. As a result, it is observed that the initial density of the foam and the applied strain rates have a substantial influence on the strength, bulk failure mechanism and the energy dissipation characteristics of the foam specimens.« less

  18. Nitrogen balancing and xylose addition enhances growth capacity and protein content in Chlorella minutissima cultures.

    PubMed

    Freitas, B C B; Esquível, M G; Matos, R G; Arraiano, C M; Morais, M G; Costa, J A V

    2016-10-01

    This study aimed to examine the metabolic changes in Chlorella minutissima cells grown under nitrogen-deficient conditions and with the addition of xylose. The cell density, maximum photochemical efficiency, and chlorophyll and lipid levels were measured. The expression of two photosynthetic proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the beta subunit (AtpB) of adenosine triphosphate synthase, were measured. Comparison of cells grown in medium with a 50% reduction in the nitrogen concentration versus the traditional medium solution revealed that the cells grown under nitrogen-deficient conditions exhibited an increased growth rate, higher maximum cell density (12.7×10(6)cellsmL(-1)), optimal PSII efficiency (0.69) and decreased lipid level (25.08%). This study has taken the first steps toward protein detection in Chlorella minutissima, and the results can be used to optimize the culturing of other microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Prognostic significance of microvessel density and mast cell density for the survival of Thai patients with primary colorectal cancer.

    PubMed

    Yodavudh, Sirisanpang; Tangjitgamol, Siriwan; Puangsa-art, Supalarp

    2008-05-01

    Angiogenesis has been found to be a reliable prognostic indicator for several types of malignancies. In colorectal cancer, however there has been controversy as to whether there is a correlation between this feature and the tumors' behavior. Determine the correlation between microvessel density (MVD) and mast cell density (MCD) in order to evaluate these factors in terms of their prognostic relevance for primary colorectal carcinoma in Thai patients. One hundred and thirty colorectal carcinoma patients diagnosed between January 2002 and December 2004 were identified. Eleven patients were excluded from the present study due to recurrence of colorectal carcinoma in eight cases whereas pathologic blocks were not found in three cases. One hundred and nineteen patients met all inclusion criteria and were included in the present study. Representative paraffin sections obtained by the tissue micro-array technique (9 x 5 arrays per slide) from areas of highest vascular density (hot spots) were prepared. Sections were immuno-stained by monoclonal anti CD 31 for microvessel and antibody mast cell tryptase for mast cell detections, respectively. Three readings at different periods of time under a microscopic examination of high power magnification were examined by a pathologist who was blinded to clinical data. The highest microvessel and mast cell counts were recorded as MVD and MCD. Patients were then divided into groups of high and low MVD and high and low MCD by median values (20.5 and 14.5, respectively). Overall survival of the patients in each group was estimated by the Kaplan-Meier Method while a multivariate Cox regression backward stepwise analysis was employed to find out independent prognostic factors. Significant positive correlation was found to exist between MVD and MCD in the hot spots (R = 0.697, p < 0.0001). Regarding their prognostic role, patients with tumors of low MVD (hypovascular) and low MCD (low mast cell counts) had significantly longer survival rates than those with hypervascular and high mast cell counts (p < 0.0001). The Multivariate Cox hazard showed that MVD and distance metastasis of cancer were independent poor prognostic factors to survival (p = 0.036 and p = 0.024, respectively). The patients with high MVD (hypervascular) tumors and with presence of distant metastasis had 1.9 and 2.5 times higher death rates than the corresponding hypovascular and non-metastatic groups, respectively during the period from January 2002 to September 2007. Assessment of microvessel density in the invasive front of primary colorectal carcinoma could serve as useful prognosis tool of primary colorectal carcinoma in Thai patients.

  20. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Breitinger, Hans G; Lamprecht, Alf

    2015-12-07

    Many recently discovered therapeutic proteins exert their main function in the nucleus, thus requiring both efficient uptake and correct intracellular targeting. Chitosan nanoparticles (NPs) have attracted interest as protein delivery vehicles due to their biocompatibility and ability to escape the endosomes offering high potential for nuclear delivery. Molecular entry into the nucleus occurs through the nuclear pore complexes, the efficiency of which is dependent on NP size and the presence of nuclear localization sequence (NLS). Chitosan nanoparticles of different sizes (S-NPs ≈ 25 nm; L-NP ≈ 150 nm) were formulated, and they were modified with different densities of the octapeptide NLS CPKKKRKV (S-NPs, 0.25, 0.5, 2.0 NLS/nm(2); L-NPs, 0.6, 0.9, 2 NLS/nm(2)). Unmodified and NLS-tagged NPs were evaluated for their protein loading capacity, extent of cell association, cell uptake, cell surface binding, and finally nuclear delivery efficiency in L929 fibroblasts. To avoid errors generated with cell fractionation and nuclear isolation protocols, nuclear delivery was assessed in intact cells utilizing Förster resonance energy transfer (FRET) fluorometry and microscopy. Although L-NPs showed ≈10-fold increase in protein loading per NP when compared to S-NPs, due to higher cell association and uptake S-NPs showed superior protein delivery. NLS exerts a size and density dependent effect on nanoparticle uptake and surface binding, with a general reduction in NP cell surface binding and an increase in cell uptake with the increase in NLS density (up to 8.4-fold increase in uptake of High-NLS-L-NPs (2 NLS/nm(2)) compared to unmodified L-NPs). However, for nuclear delivery, unmodified S-NPs show higher nuclear localization rates when compared to NLS modified NPs (up to 5-fold by FRET microscopy). For L-NPs an intermediate NLS density (0.9 NLS/nm(2)) seems to provide highest nuclear localization (3.7-fold increase in nuclear delivery compared to High-NLS-L-NPs). Results indicate that a higher NLS density does not result in maximum protein nuclear localization and that a universal optimal density for NPs of different sizes does not exist.

  1. Interactions between cells and ionized dendritic biomaterials: Flow cytometry and fluorescence spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Khandare, Jayant; Kannan, Sujatha; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are a new class of macromolecules characterized by large density of "tunable" peripheral functional groups. Therefore dendrimers can serve as a model macromolecular system to study the influence of molecular geometry and charge density on transport across biological barriers, especially cellular interfaces. The effect of size, end-functionality, surface charge (pH), and the nature of the cell surface are expected to play an important role in transport, and are investigated using flow cytometry, fluorescene microscopy and UV/Vis spectroscopy. Our results suggest that at physiological pH, cationic polyamidoamine (PAMAM) dendrimers can enter the A549 cancer lung epithelial cells within 5 minutes, perhaps due to the favorable interaction between anionic surface receptors of cells and cationic PAMAM dendrimer, through adsorptive endocytosis. On the other hand, hyperbranched polyol, which is a neutral polymer at physiological pH, enters cells at a much slower rate. The entry of hyperbranched polyol may be because of fluid-phase pinocytosis. Our results also indicate that the dendritic polymers enter the cell surface much more rapidly than linear polymers, and some small drugs, suggesting that the high density of functional groups plays a key role in the interaction with the cell surface, and the subsequent transport inside.

  2. Influence of Three Contrasting Detrital Carbon Sources on Planktonic Bacterial Metabolism in a Mesotrophic Lake.

    PubMed

    Wehr; Petersen; Findlay

    1999-01-01

    Abstract Lakes receive organic carbon from a diversity of sources which vary in their contribution to planktonic microbial food webs. We conducted a mesocosm study to test the effects of three different detrital carbon sources (algae, aquatic macrophytes, terrestrial leaves) on several measures of microbial metabolism in a small meso-eutrophic lake (DOC approximately 5 mg/L). Small DOC additions (DeltaC < 1 mg/L) affected bacterial numbers, growth, and pathways of carbon acquisition. Macrophyte and leaf detritus significantly increased TDP and color, but bacterial densities initially (+12 h) were unaffected. After 168 h, densities in systems amended with terrestrial detritus were 60% less than in controls, while production rates in mesocosms with macrophyte detritus were 4-fold greater. Detritus treatments resulted in greater per-cell production rates either through stable cell numbers and greater growth rates (macrophyte-C) or lower densities with stable production rates (terrestrial-C). After only 12 h, rates of leucine aminopeptidase (LAPase) activity were 2.5x greater in macrophyte-C systems than in controls, but LAPase and beta-N-acetylglucosamindase activities in systems amended with terrestrial-C were only 50% of rates in controls. After 168 h, beta-xylosidase rates were significantly greater in communities with terrestrial and phytoplankton detritus. Microbial utilization of >20% of 102 carbon sources tested were affected by at least one detritus addition. Macrophyte-C had positive (6% of substrates) and negative (14%) effects on substrate use; terrestrial detritus had mainly positive effects. An ordination based on carbon-use profiles (+12 h) revealed a cluster of macrophyte-amended communities with greater use of psicose, lactulose, and succinamic acid; controls and algal-detritus systems were more effective in metabolizing two common sugars and cellobiose. After 168 h, communities receiving terrestrial detritus were most tightly clustered, exhibiting greater use of raffinose, pyroglutamic acid, and sebacic acid. Results suggest that pelagic bacterial communities respond to changes in organic carbon source rapidly and by different routes, including shifts in per-cell production rates and variations in degradation of a variety of compounds comprising the DOC pool.

  3. How do microalgae perceive light in a high-rate pond? Towards more realistic Lagrangian experiments.

    PubMed

    Demory, David; Combe, Charlotte; Hartmann, Philipp; Talec, Amélie; Pruvost, Eric; Hamouda, Raouf; Souillé, Fabien; Lamare, Pierre-Olivier; Bristeau, Marie-Odile; Sainte-Marie, Jacques; Rabouille, Sophie; Mairet, Francis; Sciandra, Antoine; Bernard, Olivier

    2018-05-01

    Hydrodynamics in a high-rate production reactor for microalgae cultivation affects the light history perceived by cells. The interplay between cell movement and medium turbidity leads to a complex light pattern, whose forcing effects on photosynthesis and photoacclimation dynamics are non-trivial. Hydrodynamics of high density algal ponds mixed by a paddle wheel has been studied recently, although the focus has never been on describing its impact on photosynthetic growth efficiency. In this multidisciplinary downscaling study, we first reconstructed single cell trajectories in an open raceway using an original hydrodynamical model offering a powerful discretization of the Navier-Stokes equations tailored to systems with free surfaces. The trajectory of a particular cell was selected and the associated high-frequency light pattern was computed. This light pattern was then experimentally reproduced in an Arduino-driven computer controlled cultivation system with a low density Dunaliella salina culture. The effect on growth and pigment content was recorded for various frequencies of the light pattern, by setting different paddle wheel velocities. Results show that the frequency of this realistic signal plays a decisive role in the dynamics of photosynthesis, thus revealing an unexpected photosynthetic response compared to that recorded under the on/off signals usually used in the literature. Indeed, the light received by a single cell contains signals from low to high frequencies that nonlinearly interact with the photosynthesis process and differentially stimulate the various time scales associated with photoacclimation and energy dissipation. This study highlights the need for experiments with more realistic light stimuli to better understand microalgal growth at high cell densities. An experimental protocol is also proposed, with simple, yet more realistic, step functions for light fluctuations.

  4. How do microalgae perceive light in a high-rate pond? Towards more realistic Lagrangian experiments

    PubMed Central

    Demory, David; Combe, Charlotte; Hartmann, Philipp; Talec, Amélie; Pruvost, Eric; Hamouda, Raouf; Souillé, Fabien; Lamare, Pierre-Olivier; Bristeau, Marie-Odile; Sainte-Marie, Jacques; Rabouille, Sophie; Mairet, Francis; Sciandra, Antoine

    2018-01-01

    Hydrodynamics in a high-rate production reactor for microalgae cultivation affects the light history perceived by cells. The interplay between cell movement and medium turbidity leads to a complex light pattern, whose forcing effects on photosynthesis and photoacclimation dynamics are non-trivial. Hydrodynamics of high density algal ponds mixed by a paddle wheel has been studied recently, although the focus has never been on describing its impact on photosynthetic growth efficiency. In this multidisciplinary downscaling study, we first reconstructed single cell trajectories in an open raceway using an original hydrodynamical model offering a powerful discretization of the Navier–Stokes equations tailored to systems with free surfaces. The trajectory of a particular cell was selected and the associated high-frequency light pattern was computed. This light pattern was then experimentally reproduced in an Arduino-driven computer controlled cultivation system with a low density Dunaliella salina culture. The effect on growth and pigment content was recorded for various frequencies of the light pattern, by setting different paddle wheel velocities. Results show that the frequency of this realistic signal plays a decisive role in the dynamics of photosynthesis, thus revealing an unexpected photosynthetic response compared to that recorded under the on/off signals usually used in the literature. Indeed, the light received by a single cell contains signals from low to high frequencies that nonlinearly interact with the photosynthesis process and differentially stimulate the various time scales associated with photoacclimation and energy dissipation. This study highlights the need for experiments with more realistic light stimuli to better understand microalgal growth at high cell densities. An experimental protocol is also proposed, with simple, yet more realistic, step functions for light fluctuations. PMID:29892466

  5. High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepler, Keith D.; Slater, Michael

    This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less

  6. Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode

    NASA Astrophysics Data System (ADS)

    Lamy, Claude; Jaubert, Thomas; Baranton, Stève; Coutanceau, Christophe

    2014-01-01

    The electrocatalytic oxidation of ethanol was investigated in a Proton Exchange Membrane Electrolysis Cell (PEMEC) working at low temperature (20°C) on several Pt-based catalysts (Pt/C, PtSn/C, PtSnRu/C) in order to produce very clean hydrogen by electrolysis of a biomass compound. The electrocatalytic activity was determined by cyclic voltammetry and the rate of hydrogen evolution was measured for each catalyst at different current densities. The cell voltages UEtOH were recorded as a function of time for each current density. At 100 mA cm-2, i.e. 0.5 A with the 5 cm2 surface area PEMEC used, the cell voltage did not exceed 0.9 V for an evolution rate of about 220 cm3 of hydrogen per hour and the electrical energy consumed was less than 2.3 kWh (Nm3)-1, i.e. less than one half of the energy needed for water electrolysis (4.7 kWh (Nm3)-1 at UH2O = 2 V). This result is valid for the decomposition of any organic compound, particularly those originated from biomass resource, provided that their electro-oxidation rate is sufficient (>100 mA cm-2) at a relatively low cell voltage (Ucell < 1 V) which necessitates the development of efficient electrocatalysts for the electrochemical decomposition of this compound.

  7. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.

    PubMed

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina

    2017-07-01

    Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3  h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.

  8. Growth of juvenile Arctica islandica under experimental conditions

    NASA Astrophysics Data System (ADS)

    Witbaard, R.; Franken, R.; Visser, B.

    1998-02-01

    In two laboratory experiments, the effects of temperature and food availability on the growth of 10- to 23-mm high specimens of the bivalve Arctica islandica were estimated. Each experimental set-up consisted of 5 treatments in which either the food supply or the temperature differed. It was demonstrated that Arctica is able to grow at temperatures as low as 1°C. A tenfold increase of shell growth was observed at temperatures between 1° and 12°C. The greatest change in growth rate took place between 1° and 6°C. Average instantaneous shell growth varies between 0.0003 at 1°C to 0.0032/day at 12°C. The results suggest that temperature hardly affects the time spent in filtration, whereas particle density strongly influences that response. Starved animals at 9°C have their siphons open during only 12% of the time, whereas the siphons of optimally fed animals were open on average during 76% of the observations. Increased siphon activity corresponded to high shell and tissue growth. At 9°C, average shell growth at the optimum cell density of 20×106 cell/l was 3.1 mm corresponding to an instantaneous rate of 0.0026/day. An algal cell density ( Isochrysis galbana, Dunaliella marina) ranging between 5 and 7×106 cell/l is just enough to keep shells alive at 9°C. Carbon conversion efficiency at 9°C is estimated to vary between 11 and 14%.

  9. Effect of culture density on biomass production and light utilization efficiency of Synechocystis sp. PCC 6803.

    PubMed

    Straka, Levi; Rittmann, Bruce E

    2018-02-01

    The viability of large-scale microalgae cultivation depends on providing optimal growth conditions, for which a key operational parameter is culture density. Using Synechocystis sp. PCC 6803, we conducted a series of fixed-density, steady-state experiments and one batch-growth experiment to investigate the role of culture density on biomass production and light utilization efficiency. In all cases, the fixed-density, steady-state experiments and batch-growth experiment showed good agreement. The highest biomass production rates (260 mg L -1  d -1 ) and efficiency for converting light energy to biomass (0.80 μg (μmol photons) -1 ) occurred together at a culture density near 760 mg L -1 , which approximately corresponded to the lowest culture density where almost all incident light was absorbed. The ratio of OD 680 /OD 735 increased with culture density up to the point of maximum productivity, where it plateaued (at a value of 2.4) for higher culture densities. This change in OD 680 /OD 735 indicates a photoacclimation effect that depended on culture density. Very high culture densities led to a sharp decline in efficiency of biomass production per photons absorbed, likely due to a combination of increased decay relative to growth, metabolic changes due to cell-cell interactions, and photodamage due to mixing between regions with high light intensity and zero light intensity. © 2017 Wiley Periodicals, Inc.

  10. Distinct contributions of replication and transcription to mutation rate variation of human genomes.

    PubMed

    Cui, Peng; Ding, Feng; Lin, Qiang; Zhang, Lingfang; Li, Ang; Zhang, Zhang; Hu, Songnian; Yu, Jun

    2012-02-01

    Here, we evaluate the contribution of two major biological processes--DNA replication and transcription--to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes. Copyright © 2012 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.

  11. [The expression of IDH1 (R132H) is positively correlated with cell proliferation and angiogenesis in glioma samples].

    PubMed

    Shi, Jiankuan; Zhao, Yuanlin; Yuan, Yuan; Wang, Chao; Xie, Zhonglin; Gao, Xing; Xiao, Liming; Ye, Jing

    2016-03-01

    To explore the correlations of the expression of mutant isocitrate dehydrogenase (IDH1) (R132H) protein with angiogenesis and cell proliferation in glioma. We performed polymerase chain reaction-based IDH gene mutation screening in 385 glioma samples, and the subcellular localization and expression levels of IDH1 (R132H) was examined by immunohistochemistry (IHC). Ki-67 labeling index was introduced to determine the proliferation of glioma cells, and the microvessel density was measured through CD34 staining. Statistical analyses were performed to show the correlations of IDH1 mutation with cell proliferation and microvessel density. The mutant rates of IDH1 were about 50%-60% in grade II-III gliomas and secondary glioblastomas, which were significantly higher than those in pilocytic astrocytoma (grade I) and primary glioblastoma (grade IV). Moreover, the level of IDH1 (R132H) protein was positively correlated with Ki-67 labeling index and microvessel density. IDH mutation was common in grade II-III glioma and secondary glioblastoma, and the mutant IDH1 (R132H) might play a critical role in the cell proliferation and angiogenesis of glioma.

  12. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells.

    PubMed

    Le, M; Mothersill, C E; Seymour, C B; Ahmad, S B; Armstrong, A; Rainbow, A J; McNeill, F E

    2015-08-21

    The luminescence intensity of 340±5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to (90)Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1 x 10(4) cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8 x 10(3)±2.5 x 10(3) counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for (90)Y activities 14 to 703 μCi where a positive relationship between photoemission and (90)Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1 x 10(4) cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.

  13. THE SEDIMENTATION PROPERTIES OF THE SKIN-SENSITIZING ANTIBODIES OF RAGWEED-SENSITIVE PATIENTS

    PubMed Central

    Andersen, Burton R.; Vannier, Wilton E.

    1964-01-01

    The sedimentation coefficients of the skin-sensitizing antibodies to ragweed were evaluated by the moving partition cell method and the sucrose density gradient method. The most reliable results were obtained by sucrose density gradient ultracentrifugation which showed that the major portion of skin-sensitizing antibodies to ragweed sediment with an average value of 7.7S (7.4 to 7.9S). This is about one S unit faster than γ-globulins (6.8S). The data from the moving partition cell method are in agreement with these results. Our studies failed to demonstrate heterogeneity of the skin-sensitizing antibodies with regard to sedimentation rate. PMID:14194391

  14. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam.

    PubMed

    Feng, Y; Schafer, D W; Song, S; Sun, Y; Zhu, D; Krzywinski, J; Robert, A; Wu, J; Decker, F J

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the second pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. This measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.

  15. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam

    DOE PAGES

    Feng, Y.; Schafer, D. W.; Song, S.; ...

    2018-01-01

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the secondmore » pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. Furthermore, this measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.« less

  16. Direct experimental observation of the gas density depression effect using a two-bunch X-ray FEL beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Y.; Schafer, D. W.; Song, S.

    The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the secondmore » pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. Furthermore, this measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.« less

  17. Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition.

    PubMed

    Richmond, Amos; Cheng-Wu, Zhang; Zarmi, Yair

    2003-07-01

    The interrelationships between the optical path in flat plate reactors and photosynthetic productivity were elucidated. In preliminary works, a great surge in photosynthetic productivity was attained in flat plate photoreactors with an ultra short (e.g. 1.0 cm) optical path, in which extremely high culture density was facilitated by vigorous stirring and strong light. This surge in net photosynthetic efficiency was associated with a very significant increase in the optimal population density facilitated by the very short optical path (OP). A salient feature of these findings concerns the necessity to address growth inhibition (GI) which becomes increasingly manifested as cell concentration rises above a certain, species-specific, threshold (e.g. 1-2 billion cells of Nannochloropsis sp. ml(-1)). Indeed, ultrahigh cell density cultures may be established and sustained only if growth inhibition is continuously, or at least frequently, removed. Nannochloropsis culture from which GI was not removed, yielded 60 mg(-1) h(-1), yielding 260 mg l(-1) h(-1) when GI was removed. Two basic factors crucial for obtaining maximal photosynthetic productivity and efficiency in strong photon irradiance are defined: (1) areal cell density must be optimal, as high as possible (cell growth inhibition having been eliminated), insuring the average photon irradiance (I(av)) available per cell is falling at the end of the linear phase of the PI(av) curve, relating rate of photosynthesis to I(av), i.e. approximately photon irradiance per cell. (2) The light-dark (L-D) cycle period, which is determined by travel time of cells between the dark and the light volumes along the optical path, should be made as short as practically feasible, so as to approach, as much as possible the photosynthetic unit turnover time. This is obtainable in flat plate reactors by reducing the OP to as small a magnitude as is practically feasible.

  18. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402.

    PubMed

    Nopcharoenkul, Wannarak; Netsakulnee, Parichat; Pinyakong, Onruthai

    2013-06-01

    Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 10(8) most probable number (MPN) g(-1) of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l(-1) day(-1). Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.

  19. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures.

    PubMed

    Ding, ZuFeng; Fan, YuBo; Deng, XiaoYan

    2009-11-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Phi); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Phi mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Phi mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  20. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions

    NASA Astrophysics Data System (ADS)

    Fraley, Stephanie I.; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D.; Wirtz, Denis

    2015-10-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.

  1. Synthesis, characterization and rate capability performance of the micro-porous MnO{sub 2} nanowires as cathode material in lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R, Ranjusha; S, Sonia T.; S, Roshny

    Graphical abstract: Translating MnO{sub 2} nanowires as cathode materials in coin cell and studying their discharge behavior and cycling stability at different C-rates. - Highlights: • MnO{sub 2} nanowires have been synthesized via hydrothermal route. • The nanowires were employed as cathode materials in Li-batteries. • Discharge and cycling stability were studied at different C-rates. • Specific capacity and power density of 251 mAh g{sup −1} and 200 W kg{sup −1} were attained. - Abstract: A peculiar architecture of one-dimensional MnO{sub 2} nanowires was synthesized by an optimized hydrothermal route and has been lucratively exploited to fabricate highly efficient microporousmore » electrode overlays for lithium batteries. These fabricated electrodes comprised of interconnected nanoscale units with wire-shaped profile which exhibits high aspect ratio in the order of 10{sup 2}. Their outstanding intercalation/de-intercalation prerogatives have also been studied to fabricate lithium coin cells which revealed a significant specific capacity and power density of 251 mAh g{sup −1} and 200 W kg{sup −1}, respectively. A detailed electrochemical study was performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes influence the cyclic behavior of the electrode. Rate capability tests at different C-rates were performed to evaluate the capacity and cycling performance of these coin cells.« less

  2. Spatio-temporal variations in bloom of the red-tide dinoflagellate Karenia mikimotoi in Imari Bay, Japan, in 2014: Factors controlling horizontal and vertical distribution.

    PubMed

    Aoki, Kazuhiro; Kameda, Takahiko; Yamatogi, Toshifumi; Ishida, Naoya; Hirae, Sou; Kawaguchi, Mayumi; Syutou, Toshio

    2017-11-15

    A massive bloom of the dinoflagellate Karenia mikimotoi appeared in 2014 in Imari Bay, Japan. Bloom dynamics and hydrographical conditions were examined by field survey. The bloom initially developed in the eastern area of Imari Bay, subsequently after rainfall during the neap tides, cell density exceeded over 10,000cellsml. Vertical distribution of K. mikimotoi was primarily controlled by the light intensity and secondarily by the water quality during the daytime. Almost all cell-density maxima occurred in depths with weak daytime light intensities of <300μmolm -2 s -1 . In some cases of weak light intensity, cell-density maxima occurred in depths with favorable hydrodynamic conditions for the growth. Spatially classified areas were identified by cluster analysis using the growth rate calculated from seawater temperature and salinity. This study quantitatively evaluated the environmental factors of the eastern area, where the bloom initially occurred, during the development of the bloom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Oxygen reduction on a Pt(111) catalyst in HT-PEM fuel cells by density functional theory

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Li, Jie; Almheiri, Saif; Xiao, Jianyu

    2017-08-01

    The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM) fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system's energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn-Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111) surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system's energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.

  4. Vapor feed direct methanol fuel cells with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm -2 at current density of 60 mA cm -2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.

  5. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheetsmore » and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.« less

  6. Corneal endothelial cell density and morphology in normal Iranian eyes

    PubMed Central

    Hashemian, Mohammad Nasser; Moghimi, Sasan; Fard, Masood Aghsaie; Fallah, Mohammad Reza; Mansouri, Mohammad Reza

    2006-01-01

    Background We describe corneal endothelial cell density and morphology in normal Iranian eyes and compare endothelial cell characteristics in the Iranian population with data available in the literature for American and Indian populations. Methods Specular microscopy was performed in 525 eyes of normal Iranian people aged 20 to 85 years old. The studied parameters including mean endothelial cell density (MCD), mean cell area (MCA) and coefficient of variation (CV) in cell area were analyzed in all of the 525 eyes. Results MCD was 1961 ± 457 cell/mm2 and MCA was 537.0 ± 137.4 μm2. There was no statistically significant difference in MCD, MCA and CV between genders (Student t-test, P = 0.85, P = 0.97 and P = 0.15 respectively). There was a statistically significant decrease in MCD with age (P < 0.001, r = -0.64). The rate of cell loss was 0.6% per year. There was also a statistically significant increase in MCA (P < 0.001,r = 0.56) and CV (P < 0.001, r = 0.30) from 20 to 85 years of age. Conclusion The first normative data for the endothelium of Iranian eyes seems to confirm that there are no differences in MCD, MCA and CV between genders. Nevertheless, the values obtained in Iranian eyes seem to be different to those reported by the literature in Indian and American populations. PMID:16519812

  7. Corneal endothelial cell density and morphology in normal Iranian eyes.

    PubMed

    Hashemian, Mohammad Nasser; Moghimi, Sasan; Fard, Masood Aghsaie; Fallah, Mohammad Reza; Mansouri, Mohammad Reza

    2006-03-06

    We describe corneal endothelial cell density and morphology in normal Iranian eyes and compare endothelial cell characteristics in the Iranian population with data available in the literature for American and Indian populations. Specular microscopy was performed in 525 eyes of normal Iranian people aged 20 to 85 years old. The studied parameters including mean endothelial cell density (MCD), mean cell area (MCA) and coefficient of variation (CV) in cell area were analyzed in all of the 525 eyes. MCD was 1961 +/- 457 cell/mm2 and MCA was 537.0 +/- 137.4 microm2. There was no statistically significant difference in MCD, MCA and CV between genders (Student t-test, P = 0.85, P = 0.97 and P = 0.15 respectively). There was a statistically significant decrease in MCD with age (P < 0.001, r = -0.64). The rate of cell loss was 0.6% per year. There was also a statistically significant increase in MCA (P < 0.001,r = 0.56) and CV (P < 0.001, r = 0.30) from 20 to 85 years of age. The first normative data for the endothelium of Iranian eyes seems to confirm that there are no differences in MCD, MCA and CV between genders. Nevertheless, the values obtained in Iranian eyes seem to be different to those reported by the literature in Indian and American populations.

  8. Cell proliferation of Paramecium tetraurelia on a slow rotating clinostat

    NASA Astrophysics Data System (ADS)

    Sawai, Satoe; Mogami, Yoshihiro; Baba, Shoji A.

    Paramecium is known to proliferate faster under microgravity conditions, and slower under hypergravity. Experiments using axenic culture medium have demonstrated that hypergravity affected directly on the proliferation of Paramecium itself. In order to assess the mechanisms underlying the physiological effects of gravity on cell proliferation, Paramecium tetraurelia was grown under clinorotation (2.5 rpm) and the time course of the proliferation was investigated in detail on the basis of the logistic analysis. On the basis of the mechanical properties of Paramecium, this slow rate of the rotation appears to be enough to simulate microgravity in terms of the randomization of the cell orientation with respect to gravity. P. tetraurelia was cultivated in a closed chamber in which cells were confined without air bubbles, reducing the shear forces and turbulences under clinorotation. The chamber is made of quartz and silicone rubber film; the former is for the optically-flat walls for the measurement of cell density by means of a non-invasive laser optical-slice method, and the latter for gas exchange. Because of the small dimension for culture space, Paramecium does not accumulate at the top of the chamber in spite of its known negative gravitactic behavior. We measured the cell density at regular time intervals without breaking the configuration of the chamber, and analyzed the proliferation parameters by fitting the data to a logistic equation. As a result, P. tetraurelia showed reduced proliferation under slow clinorotation. The saturation of the cell density as well as the maximum proliferation rate decreased, although we found no significant changes on the half maximal time for proliferation. We also found that the mean swimming velocity decreased under slow clinorotation. These results were not consistent with those under microgravity and fast rotating clinostat. This may suggest that randomization of the cell orientation performed by slow rotating clinostat has not the same effect on Paramecium as that under microgravity that may affect the proliferation as the result of the reduced cost of propulsion.

  9. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    PubMed

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  10. Time-dependent cell disintegration kinetics in lung tumors after irradiation

    NASA Astrophysics Data System (ADS)

    Chvetsov, Alexei V.; Palta, Jatinder J.; Nagata, Yasushi

    2008-05-01

    We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T1/2. The half-life T1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.

  11. Measurement of filtration rates by infaunal bivalves in a recirculating flume

    USGS Publications Warehouse

    Cole, B.E.; Thompson, J.K.; Cloern, J.E.

    1992-01-01

    A flume system and protocol for measuring the filtration rate of infaunal bivalves is described. Assemblages of multi-sized clams, at natural densities and in normal filter-feeding positions, removed phytoplankton suspended in a unidirectional flow of water. The free-stream velocity and friction velocity of the flow, and bottom roughness height were similar to those in natural estuarine waters. Continuous variations in phytoplankton (Chroomonas salinay) cell density were used to measure the filtration rate of the suspension-feeding clam Potamocorbula amurensis for periods of 2 to 28 h. Filtration rates of P. amurensis varied from 100 to 580 liters (gd)-1 over a free-stream velocity range of 9 to 25 cm s-1. Phytoplankton loss rates were usually constant throughout the experiments. Our results suggest that suspension-feeding by infaunal bivalves is sensitive to flow velocity. ?? 1992 Springer-Verlag.

  12. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.

    2017-06-01

    To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.

  13. Fermentation and oxygen transfer in microgravity

    NASA Technical Reports Server (NTRS)

    Dunlop, Eric H.

    1989-01-01

    The need for high rate oxygen transfer in microgravity for a Controlled Ecological Life Support System (CELSS) environment offers a number of difficulties and challenges. The use of a phase separated bioreactor appears to provide a way of overcoming these problems resulting in a system capable of providing high cell densities with rapid fermentation rates. Some of the key design elements are discussed.

  14. Further studies of the anodic dissolution in sodium chloride electrolyte of aluminium alloys containing tin and gallium

    NASA Astrophysics Data System (ADS)

    Nestoridi, Maria; Pletcher, Derek; Wharton, Julian A.; Wood, Robert J. K.

    As part of a programme to develop a high power density, Al/air battery with a NaCl brine electrolyte, the high rate dissolution of an aluminium alloy containing tin and gallium was investigated in a small volume cell. The objective was to define the factors that limit aluminium dissolution in condition that mimic a high power density battery. In a cell with a large ratio of aluminium alloy to electrolyte, over a range of current densities the extent of dissolution was limited to ∼1000 C cm -2 of anode surface by a thick layer of loosely bound, crystalline deposit on the Al alloy anode formed by precipitation from solution. This leads to a large increase in impedance and acts as a barrier to transport of ions.

  15. Three-dimensional anode engineering for the direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Oloman, C. W.; Gyenge, E. L.

    Catalyzed graphite felt three-dimensional anodes were investigated in direct methanol fuel cells (DMFCs) operated with sulfuric acid supporting electrolyte. With a conventional serpentine channel flow field the preferred anode thickness was 100 μm, while a novel flow-by anode showed the best performance with a thickness of 200-300 μm. The effects of altering the methanol concentration, anolyte flow rate and operating temperature on the fuel cell superficial power density were studied by full (2 3 + 1) factorial experiments on a cell with anode area of 5 cm 2 and excess oxidant O 2 at 200 kPa(abs). For operation in the flow-by mode with 2 M methanol at 2 cm 3 min -1 and 353 K the peak power density was 2380 W m -2 with a PtRuMo anode catalyst, while a PtRu catalyst yielded 2240 W m -2 under the same conditions.

  16. Multistage carcinogenesis in cell culture.

    PubMed

    Rubin, H

    2001-01-01

    Rodent fibroblasts explanted from embryos to culture undergo a period of declining growth rate in serial passages leading to crisis, followed by the appearance of variants which can multiply indefinitely. If the "immortal" cell line was established by low density passage, i.e., 3T3 cells, it has a low saturation density and is non-tumorigenic. If it was established by high density passage, it has a high saturation density and is tumorigenic. The establishment of cells goes through successive stages, including increased capacity to multiply in low serum concentration, growth to high saturation density, growth in suspension, assisted tumour formation in susceptible hosts and unassisted tumour formation. Chromosome aberrations and aneuploidy occur long before the capacity to produce tumours appears. Contrary to conventional belief, human fibroblast populations also undergo a continuous loss of capacity to multiply from the time of explantation, with only the longest surviving clone reaching the Hayflick limit. Neoplastic transformation of rodent cells is strongly favoured by maintaining them in a quiescent state at confluence for prolonged periods, which results in genetic damage to the cells. It also produces a large variety of chromosomal aberrations in human cells and extends their replicative lifespan. Individual clones are more susceptible to spontaneous transformation than their heterogeneous parental cultures. The implications of these results for tumour development in vivo are that oncogenic genetic changes may be common under stressful conditions which restrict replication, and that such changes are maximized when a rogue clone reaches a critical size that reduces stabilizing interactions with neighbouring clones. An alternative explanation, described in the Addendum, which we retrospectively favor is that the easily transformed clones are a minority in the uncloned parental population. The reason they transform before the parental population is that when they are expanded, they have more transformable cells available under the selective condition of confluence than the uncloned parental population from which they are derived.

  17. High current densities enable exoelectrogens to outcompete aerobic heterotrophs for substrate.

    PubMed

    Ren, Lijiao; Zhang, Xiaoyuan; He, Weihua; Logan, Bruce E

    2014-11-01

    In mixed-culture microbial fuel cells (MFCs), exoelectrogens and other microorganisms compete for substrate. It has previously been assumed that substrate losses to other terminal electron acceptors over a fed-batch cycle, such as dissolved oxygen, are constant. However, a constant rate of substrate loss would only explain small increases in coulombic efficiencies (CEs, the fraction of substrate recovered as electrical current) with shorter cycle times, but not the large increases in CE that are usually observed with higher current densities and reduced cycle times. To better understand changes in CEs, COD concentrations were measured over time in fed-batch, single-chamber, air-cathode MFCs at different current densities (external resistances). COD degradation rates were all found to be first-order with respect to COD concentration, even under open circuit conditions with no current generation (first-order rate constant of 0.14 ± 0.01 h(-1) ). The rate of COD removal increased when there was current generation, with the highest rate constant (0.33 ± 0.02 h(-1) ) obtained at the lowest external resistance (100 Ω). Therefore, as the substrate concentration was reduced more quickly due to current generation, the rate of loss of substrate to non-exoelectrogens decreased due to this first-order substrate-concentration dependence. As a result, coulombic efficiencies rapidly increased due to decreased, and not constant, removal rates of substrate by non-exoelectrogens. These results show that higher current densities (lower resistances) redirect a greater percentage of substrate into current generation, enabling large increase in CEs with increased current densities. Biotechnol. Bioeng. 2014;111: 2163-2169. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  18. Mitomycin C, 5-fluorouracil, and cyclosporin A prevent epidural fibrosis in an experimental laminectomy model.

    PubMed

    Yildiz, Kartal Hakan; Gezen, Ferruh; Is, Merih; Cukur, Selma; Dosoglu, Murat

    2007-09-01

    This study examined the preventive effects of the local application of mitomycin C (MMC), 5-fluorouracil (5-FU), and cyclosporine A (CsA) in minimizing spinal epidural fibrosis in a rat laminectomy model. Thirty-two 2-year-old male Wistar albino rats, each weighing 400 +/- 50 g, were divided into four equal groups: sham, MMC, 5-FU, and CsA. Each rat underwent laminectomy at the L5-L6 lumbar level. Cotton pads (4 x 4 mm2) soaked with MMC (0.5 mg/ml), 5-FU (5 ml/mg), or CsA (5 mg/ml) were placed on the exposed dura for 5 min. Thirty days after surgery, the rats were killed and the epidural fibrosis, fibroblast density, inflammatory cell density, and arachnoid fibrosis were quantified. The epidural and arachnoid fibroses were reduced significantly in the treatment groups compared to the sham group. Fibroblast cell density and inflammatory cell density were decreased significantly in the MMC and 5-FU groups, but were similar in the sham and CsA groups. The decreased rate of epidural fibrosis was promising. Further studies in humans are needed to determine the short- and long-term complications of the agents used here.

  19. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells.

    PubMed

    Sim, Junyoung; An, Junyeong; Elbeshbishy, Elsayed; Ryu, Hodon; Lee, Hyung-Sool

    2015-11-01

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2O2 conversion efficiency was negligible at 0.3-12%. Current density decreased for passive O2 diffusion to the cathode, but H2O2 conversion efficiency increased by 65%. An MEC equipped with a gas diffusion cathode was operated with acetate medium and domestic wastewater, which presented relatively high H2O2 conversion efficiency from 36% to 47%, although cathode overpotential was fluctuated. Due to different current densities, the maximum H2O2 production rate was 141 mg H2O2/L-h in the MEC fed with acetate medium, but it became low at 6 mg H2O2/L-h in the MEC fed with the wastewater. Our study clearly indicates that improving anodic current density and mitigating membrane fouling would be key parameters for large-scale H2O2-MECs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Regulation and control of intracellular algae (= zooxanthellae) in hard corals

    PubMed Central

    Jones, R. J.; Yellowlees, D.

    1997-01-01

    To examine algal (= zooxanthellae) regulation and control, and the factors determining algal densities in hard corals, the zooxanthellae mitotic index and release rates were regularly determined in branch tips from a colony of a staghorn coral, Acropora formosa, recovering from a coral 'bleaching' event (the stress-related dissociation of the coral–algal symbiosis). Mathematical models based upon density-dependent decreases in the algal division frequency and increases in algal release rates during the post-bleaching recovery period accurately predict the observed recovery period (ca. 20 weeks). The models suggest that (i) the colony recovered its algal population from the division of the remaining zooxanthellae, and (ii) the continual loss of zooxanthellae significantly slowed the recovery of the coral. Possible reasons for the 'paradoxical' loss of healthy zooxanthellae from the bleached coral are discussed in terms of endodermal processes occurring in the recovering coral and the redistribution of newly formed zooxanthellae to aposymbiotic host cells. At a steady-state algal density of 2.1 x 106 zooxanthellae cm-2 at the end of the recovery period, the zooxanthellae would have to form a double layer of cells in the coral tissues, consistent with microscopic observations. Neighbouring colonies of A. formosa with inherently higher algal densities possess proportionately smaller zooxanthellae. Results suggest that space availability and the size of the algal symbionts determines the algal densities in the coral colonies. The large increases in the algal densities reported in corals exposed to elevated nutrient concentrations (i.e between a two- and five-fold increase in the algal standing stock) are not consistent with this theory. We suggest that increases of this magnitude are a product of the experimental conditions: reasons for this statement are discussed. We propose that the stability of the coral–algal symbiosis under non-stress conditions, and the constancy of zooxanthellae densities in corals reported across growth form, depth and geographic range, are related to space availability limiting algal densities. However, at these densities, zooxanthellae have attributes consistent with nutrient limitation.

  1. [Prevention of Inonotus obliquus polysaccharides for high power microwave radiation induced testicular injury in rats: an experimental research].

    PubMed

    Zhao, Li-Wei; Zhong, Xiu-Hong; Sun, Yan-Mei; Yang, Shu-Yan; Shen, Nan; Zhang, Yi-Zhong; Yang, Ning-Jiang; Ren, Kuang; Lu, Shi-Jie

    2014-07-01

    To investigate the effect of Inonotus obliquus polysaccharides on testicular injury induced by exposure to high power microwave (HPM) in rats. A total of 30 male Wistar rats were randomly divided into 5 groups, i.e., the normal control group, the microwave radiation model group, the treatment group, the new microwave radiation model group, and the prevention group, 6 in each group. All rats, except those in the normal control group, were exposed to microwave at an average power density of 200 mW/cm2 for 6 min. Rats in the control group and the model group were administered with normal saline by gastrogavage, once a day. Rats in the treatment group and the prevention group were given with Inonotus obliquus polysaccharides by gastrogavage, 2 mL each time (400 mg/kg body weight), once a day. All rats were sacrificed on the 11th day.The sperm density and the rate of sperm deformity were determined. Pathological changes of testis were observed by light microscope and transmission electron microscope. Short-term HPM irradiation could significantly reduce the sperm density and increase the sperm deformity rate (P < 0.05). Meanwhile, obvious pathological changes of testes occurred. Compared with the two model groups, the sperm density increased and the sperm deformity rate decreased in the treatment group and the prevention group (P < 0.05). Under the light microscope, injuries of spermatogenic cells and stromal cells, as well as vascular dilatation and congestion were obviously alleviated in the treatment group and the prevention group. Mitochondrial swelling and endoplasmic reticulum expansion shown by ultrastructural observation were also significantly alleviated. Of them, injuries of spermatogenic cells and inflammation response were milder in the treatment group than in the prevention group. Inonotus obliquus polysaccharides had significant protective effect on microwave radiation induced testicular injury. Better effect was obtained by therapeutic medication than preventive medication.

  2. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.

    PubMed

    Xu, Zhenzhu; Zhou, Guangsheng

    2008-01-01

    Responses of plant leaf stomatal conductance and photosynthesis to water deficit have been extensively reported; however, little is known concerning the relationships of stomatal density with regard to water status and gas exchange. The responses of stomatal density to leaf water status were determined, and correlation with specific leaf area (SLA) in a photosynthetic study of a perennial grass, Leymus chinensis, subjected to different soil moisture contents. Moderate water deficits had positive effects on stomatal number, but more severe deficits led to a reduction, described in a quadratic parabolic curve. The stomatal size obviously decreased with water deficit, and stomatal density was positively correlated with stomatal conductance (g(s)), net CO(2) assimilation rate (A(n)), and water use efficiency (WUE). A significantly negative correlation of SLA with stomatal density was also observed, suggesting that the balance between leaf area and its matter may be associated with the guard cell number. The present results indicate that high flexibilities in stomatal density and guard cell size will change in response to water status, and this process may be closely associated with photosynthesis and water use efficiency.

  3. Compact Cell Settlers for Perfusion Cultures of Microbial (and Mammalian) Cells.

    PubMed

    Freeman, Cassandra A; Samuel, Premsingh S D; Kompala, Dhinakar S

    2017-07-01

    As microbial secretory expression systems have become well developed for microbial yeast cells, such as Saccharomyces cerevisiae and Pichia pastoris, it is advantageous to develop high cell density continuous perfusion cultures of microbial yeast cells to retain the live and productive yeast cells inside the perfusion bioreactor while removing the dead cells and cell debris along with the secreted product protein in the harvest stream. While the previously demonstrated inclined or lamellar settlers can be used for such perfusion bioreactors for microbial cells, the size and footprint requirements of such inefficiently scaled up devices can be quite large in comparison to the bioreactor size. Faced with this constraint, we have now developed novel, patent-pending compact cell settlers that can be used more efficiently with microbial perfusion bioreactors to achieve high cell densities and bioreactor productivities. Reproducible results from numerous month-long perfusion culture experiments using these devices attached to the 5 L perfusion bioreactor demonstrate very high cell densities due to substantial sedimentation of the larger live yeast cells which are returned to the bioreactor, while the harvest stream from the top of these cell settlers is a significantly clarified liquid, containing less than 30% and more typically less than 10% of the bioreactor cell concentration. Size of cells in the harvest is smaller than that of the cells in the bioreactor. Accumulated protein collected from the harvest and rate of protein accumulation is significantly (> 6x) higher than the protein produced in repeated fed-batch cultures over the same culture duration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:913-922, 2017. © 2017 American Institute of Chemical Engineers.

  4. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneafsey, T.; Pruess, K.

    2009-09-01

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers confined by low-permeability cap rock will result in a layer of CO{sub 2} overlying the brine. Dissolution of CO{sub 2} into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO{sub 2} storage security because it accelerates the transfer of buoyant CO{sub 2} into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualizationmore » tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO{sub 2} solute-driven convection (CSC). Upon introduction of CO{sub 2} into the system, a layer of CO{sub 2}-laden brine forms at the CO{sub 2}-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO{sub 2} uptake of the convection system indicates that the CO{sub 2} dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments is probably initiated by a small temperature gradient induced by the cell illumination.« less

  5. Methanol induction optimization for scFv antibody fragment production in Pichia pastoris.

    PubMed

    Cunha, A E; Clemente, J J; Gomes, R; Pinto, F; Thomaz, M; Miranda, S; Pinto, R; Moosmayer, D; Donner, P; Carrondo, M J T

    2004-05-20

    Fibronectin splice variant ED B (extracellular domain B) is a promising marker for angiogenesis in growing solid tumors. Currently, recombinant antibodies against ED B are being investigated concerning their potential use, for either therapeutic or diagnostic purposes. Single-chain antibody fragments directed against the ED B can be efficiently expressed in Pichia pastoris; thus, a recombinant strain of the methylotropic yeast P. pastoris was used for this work. Three different forms of scFv antibody fragment are found in the supernatant from this fermentation: covalent homodimer, associative homodimer, and monomer. Both homodimeric forms can be converted to the monomeric form (under reducing conditions) and be efficiently radiolabeled, whereas the monomeric form of scFv already present in the supernatant cannot. It was also found that the fraction of protein in the monomeric form is highly dependent on the mode of induction rather than scFv concentration. This suggests that the monomeric form of the scFv present in the supernatant might be a result of events occurring at the expression, secretion, or folding level. A high cell density fermentation protocol was developed by optimizing methanol induction, yielding the highest scFv antibody fragment production rate and product quality; cell concentration at the induction point and specific methanol uptake rate were found to be the most important control variables. A decrease in specific methanol uptake rate led to a higher specific production rate for the scFv antibody fragment (5.4 microg g(cell) h(-1)). Product quality, i.e., percentage of product in a homodimeric form, also increased with the decrease in methanol uptake rate. Furthermore, the volumetric productivity depended on cell concentration at the induction point, increasing with the increase of cell concentration up to 320 g L(-1) wet cell weight (WCW). The reduction of the methanol feeding rate for induction, and consequently of the oxygen uptake rate, have important consequences for optimizing product titers and quality and thus on the scale-up of this production process; hence one of the major limitations upon high cell density cultivation in bioreactors is keeping the high oxygen transfer rate required. From the results obtained, a scale-up strategy was developed based on the available oxygen transfer rates at larger scales, allowing the definition of the optimum biomass concentration for induction and methanol feeding strategy for maximization of product titer and quality. Copyright 2004 Wiley Periodicals, Inc.

  6. Reactivities of Substituted α-Phenyl-N-tert-butyl Nitrones

    PubMed Central

    2015-01-01

    In this work, a series of α-phenyl-N-tert-butyl nitrones bearing one, two, or three substituents on the tert-butyl group was synthesized. Cyclic voltammetry (CV) was used to investigate their electrochemical properties and showed a more pronounced substituent effect for oxidation than for reduction. Rate constants of superoxide radical (O2•–) reactions with nitrones were determined using a UV–vis stopped-flow method, and phenyl radical (Ph•) trapping rate constants were measured by EPR spectroscopy. The effect of N-tert-butyl substitution on the charge density and electron density localization of the nitronyl carbon as well as on the free energies of nitrone reactivity with O2•– and HO2• were computationally rationalized at the PCM/B3LYP/6-31+G**//B3LYP/6-31G* level of theory. Theoretical and experimental data showed that the rates of the reaction correlate with the nitronyl carbon charge density, suggesting a nucleophilic nature of O2•– and Ph• addition to the nitronyl carbon atom. Finally, the substituent effect was investigated in cell cultures exposed to hydrogen peroxide and a correlation between the cell viability and the oxidation potential of the nitrones was observed. Through a combination of computational methodologies and experimental methods, new insights into the reactivity of free radicals with nitrone derivatives have been proposed. PMID:24968285

  7. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    PubMed

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x10<sup>6</sup> cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a variety of applications such as drug development or cell therapies. . © 2018 IOP Publishing Ltd.

  8. Can quantum coherent solar cells break detailed balance?

    NASA Astrophysics Data System (ADS)

    Kirk, Alexander P.

    2015-07-01

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.

  9. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window.

    PubMed

    Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Wang, Chih-Cheng; Lee, Li-Wen; Lin, Jing-Jenn

    2011-10-01

    A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.

  10. Theileria parva infection induces autocrine growth of bovine lymphocytes.

    PubMed Central

    Dobbelaere, D A; Coquerelle, T M; Roditi, I J; Eichhorn, M; Williams, R O

    1988-01-01

    Bovine lymphocytes infected with the parasite Theileria parva continuously secrete a growth factor that is essential for their proliferation in vitro and also constitutively express interleukin 2 receptors on their surface. Dilution of the secreted growth factor, caused by culturing cells at low density, results in retardation of culture growth. Human recombinant interleukin 2, however, effectively substitutes for the diluted growth factor by restoring normal growth rates and also allows Theileria-infected cells to be grown at low density without the use of feeder layers. Secretion of the growth factor and expression of the interleukin 2 receptor depend on the presence of the parasite in the cytoplasm of the host cell. Elimination of the parasite from the cell cytoplasm by the specific antitheilerial drug BW 720c results in the arrest of growth factor secretion and the disappearance of interleukin 2 receptors from the cell surface. This is accompanied by growth arrest and reversion of the infected cells to the morphology of resting lymphocytes. We propose that the continuous proliferation of infected cells in vitro is mediated by autocrine receptor activation. Images PMID:3133661

  11. Mobile electric power. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomfield, D.P.; Bloomfield, V.J.; Grosjean, P.D.

    1995-12-01

    The objective of this program was to develop a mobile fuel cell power supply for use by soldiers. The Century Series of 100 through 500 watt fuel cell power supplies was developed. The Century Series fuel cell power supplies are made up of a fuel cell stack, chemical hydride hydrogen supply, a fan and a controller. The FC-200, the 200 watt Century Series power supply, weighs 8.8 ib. and has a volume of 322 in.3. The operating point is 0.7 volt/cell at 125 ASF; a power density of 22.7 watts/lb. or 0.62 watts/in.3 and an energy density of 110 whr/lb.more » The prototype 750 whr hydrogen supply weighs 7 lbs. and has a volume of 193 in.3. The fuel elements weigh 0.45 lb. and require 0.79 lbs. of water. The FC-200 has powered a scooter requiring a starting current of three times the rated current of the stack. It has also powered a microclimate cooler. (KAR) P. 1.« less

  12. Mobile electric power

    NASA Astrophysics Data System (ADS)

    Bloomfield, David P.; Bloomfield, Valerie J.; Grosjean, Paul D.; Kelland, James W.

    1995-02-01

    The objective of this program was to develop a mobile fuel cell power supply for use by soldiers. The Century Series of 100 through 500 watt fuel cell power supplies was developed. The Century Series fuel cell power supplies are made up of a fuel cell stack, chemical hydride hydrogen supply, a fan and a controller. The FC-200, the 200 watt Century Series power supply, weighs 8.8 lb. and has a volume of 322 cu in. The operating point is 0.7 volt/cell at 125 ASF; a power density of 22.7 watts/cu in. or 0.62 watts/cu in. and an energy density of 110 whr/lb. The prototype 750 whr hydrogen supply weighs 7 lbs. and has a volume of 193 cu in. The fuel elements weigh 0.45 lb. and require 0.79 lbs. of water. The FC-200 has powered a scooter requiring a starting current of three times the rated current of the stack. It has also powered a microclimate cooler.

  13. A study on parameter variation effects on battery packs for electric vehicles

    NASA Astrophysics Data System (ADS)

    Zhou, Long; Zheng, Yuejiu; Ouyang, Minggao; Lu, Languang

    2017-10-01

    As one single cell cannot meet power and driving range requirement in an electric vehicle, the battery packs with hundreds of single cells connected in parallel and series should be constructed. The most significant difference between a single cell and a battery pack is cell variation. Not only does cell variation affect pack energy density and power density, but also it causes early degradation of battery and potential safety issues. The cell variation effects on battery packs are studied, which are of great significant to battery pack screening and management scheme. In this study, the description for the consistency characteristics of battery packs was first proposed and a pack model with 96 cells connected in series was established. A set of parameters are introduced to study the cell variation and their impacts on battery packs are analyzed through the battery pack capacity loss simulation and experiments. Meanwhile, the capacity loss composition of the battery pack is obtained and verified by the temperature variation experiment. The results from this research can demonstrate that the temperature, self-discharge rate and coulombic efficiency are the major affecting parameters of cell variation and indicate the dissipative cell equalization is sufficient for the battery pack.

  14. Maximizing Immune Response to Carbohydrate Antigens on Breast Tumors

    DTIC Science & Technology

    2004-08-01

    selectin binding. In vitro phenotyping of the tumor cells suggests that both KM93-Neg and Pos cells grow at the same rate; however, KM-93Neg cells are...and Figure 2. ABL ( Agaricus bisporus, mushroom, lectin) and ACA (Amaranthus caudatus, lectin) do not react with either the KM93-Pos or KM93-Neg...is different (Figure 6B). The KM93-Pos variant, which is similar to the original 4T1, tends to grow in clusters with high densities. While clusters are

  15. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression

    NASA Astrophysics Data System (ADS)

    Linul, E.; Marsavina, L.; Voiconi, T.; Sadowski, T.

    2013-07-01

    Effect of density, loading rate, material orientation and temperature on dynamic compression behavior of rigid polyurethane foams are investigated in this paper. These parameters have a very important role, taking into account that foams are used as packing materials or dampers which require high energy impact absorption. The experimental study was carried out on closed-cell rigid polyurethane (PUR) foam specimens of different densities (100, 160 respectively 300 kg/m3), having a cubic shape. The specimens were subjected to uniaxial dynamic compression with loading rate in range of 1.37-3.25 m/s, using four different temperatures (20, 60, 90, 110°C) and two loading planes (direction (3) - rise direction and direction (2) - in plane). Experimental results show that Young's modulus, yield stress and plateau stress values increases with increasing density. One of the most significant effects of mechanical properties in dynamic compression of rigid PUR foams is the density, but also the loading speed, material orientation and temperature influences the behavior in compression

  16. Demonstration-Scale High-Cell-Density Fermentation of Pichia pastoris.

    PubMed

    Liu, Wan-Cang; Zhu, Ping

    2018-01-01

    Pichia pastoris has been one of the most successful heterologous overexpression systems in generating proteins for large-scale production through high-cell-density fermentation. However, optimizing conditions of the large-scale high-cell-density fermentation for biochemistry and industrialization is usually a laborious and time-consuming process. Furthermore, it is often difficult to produce authentic proteins in large quantities, which is a major obstacle for functional and structural features analysis and industrial application. For these reasons, we have developed a protocol for efficient demonstration-scale high-cell-density fermentation of P. pastoris, which employs a new methanol-feeding strategy-biomass-stat strategy and a strategy of increased air pressure instead of pure oxygen supplement. The protocol included three typical stages of glycerol batch fermentation (initial culture phase), glycerol fed-batch fermentation (biomass accumulation phase), and methanol fed-batch fermentation (induction phase), which allows direct online-monitoring of fermentation conditions, including broth pH, temperature, DO, anti-foam generation, and feeding of glycerol and methanol. Using this protocol, production of the recombinant β-xylosidase of Lentinula edodes origin in 1000-L scale fermentation can be up to ~900 mg/L or 9.4 mg/g cells (dry cell weight, intracellular expression), with the specific production rate and average specific production of 0.1 mg/g/h and 0.081 mg/g/h, respectively. The methodology described in this protocol can be easily transferred to other systems, and eligible to scale up for a large number of proteins used in either the scientific studies or commercial purposes.

  17. Cycle life testing of lithium-ion batteries for small satellite LEO space missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, S.T.; Feikert, J.H.; Kaschmitter, J.L.

    1993-08-16

    In 1990, Sony corporation announced their intention to manufacture a rechargeable lithium ion battery, based on the intercalation of lithium ions into a carbonaceous anode. The cells were first introduced for portable telephone use in June, 1991. (1) A 3.6V average cell voltage (4.1-2.75V range); (2) Excellent cycle life (1200 @ 100% DOD); (3) Good capacity retention (70% after 6 months); (4) Wide temperature range performance ({minus}20 to +60{degrees}C); (5) Excellent Discharge rate (82% capacity at 30 min. discharge rate); (6) Excellent Charge rate (100% Charge in <3 hrs); and (7) High energy density (264 W*hr/1 and 120 Whr/kg formore » ``D`` size cell. These specifications show significant promise for application of these batteries in low earth orbit (LEO) small satellites, particularly when compared to existing NiH{sub 2} and NiCd technology. The very high energy density and specific energy will reduce power system volume and weight. The wide temperature range enables simpler thermal design, particularly for new, small, high power satellites. The materials used in the lithium ion batteries are relatively inexpensive and benign, so that we expect costs to come down substantially in the future. The specified cycle life at 100% DOD is also 50% longer than most NiCds, so low DOD (depth of discharge) performance could be substantial. This study was undertaken to: (a) assess the feasibility for using lithium ion cells on small satellite LEO missions and (b) verify the claims of the manufacturer. This was accomplished by performing a detailed autopsy and various depth of discharge and rate tests on the cells. Of special interest was the cycle life performance of these cell at various depths of discharge DOD`s, to get an initial measure of the reduction in capacity fade with cycle conditions. Low DOD`s are used to extend the life of all batteries used in a space application.« less

  18. Study of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique

    NASA Astrophysics Data System (ADS)

    Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Brightman, E.; Hinds, G.

    2016-09-01

    The performance of electrosprayed cathode catalyst layers in a polymer electrolyte membrane fuel cell (PEMFC) is studied using a localized reference electrode technique. Single cells with an electrosprayed cathode catalyst layer show an increase of >20% in maximum power density under standard testing conditions, compared with identical cells assembled with a conventional, state-of-the-art, gas diffusion cathode. When operated at high current density (1.2 A cm-2) the electrosprayed catalyst layers show more homogeneous distribution of the localized cathode potential, with a standard deviation from inlet to outlet of <50 mV, compared with 79 mV for the conventional gas diffusion cathode. Higher performance and homogeneity of cell response is attributed to the superhydrophobic nature of the macroporous electrosprayed catalyst layer structure, which enhances the rate of expulsion of liquid water from the cathode. On the other hand, at low current densities (<0.5 A cm-2), the electrosprayed layers exhibit more heterogeneous distribution of cathode potential than the conventional cathodes; this behavior is attributed to less favorable kinetics for oxygen reduction in very hydrophobic catalyst layers. The optimum performance may be obtained with electrosprayed catalyst layers employing a high Pt/C catalyst ratio.

  19. Impact of Donor Age on Corneal Endothelium-Descemet Membrane Layer Scroll Formation

    PubMed Central

    Bennett, Adam; Mahmoud, Shahira; Drury, Donna; Cavanagh, H. Dwight; McCulley, James P.; Petroll, W. Matthew; Mootha, V. Vinod

    2014-01-01

    Objectives To correlate corneal endothelium-Descemet membrane layer (EDM) parameters of scroll tightness with donor age, endothelial cell density, and history of diabetes. Methods EDM scrolls were harvested from 26 corneoscleral buttons using the SCUBA technique by a cornea-fellowship trained ophthalmologist masked to donor age. Two independent outcome parameters were used to characterize the scrolling severity of successfully harvested tissue: scroll width and tendency for EDM scroll formation (referred to as scroll rating on a 1 to 4 scale: incomplete scroll formation to tightly-scrolled). Results Mean donor age was 59 ± 17years (15–69). Mean endothelial cell density of EDM scroll was 2451 ± 626 cells/mm2 mm (range: 1307 – 3195). Using stepwise linear regression, a significant correlation was found between scroll width and donor age (R = 0.497, P < 0.05). Additionally, a significant inverse correlation was found between scroll width and endothelial cell density (R = −0.605, P < 0.05). There was no statistically significant correlation between a donor history of diabetes and the parameters of scrolling tendency. Conclusions Our data suggests that using older donors reduces EDM scroll tightness. PMID:25603436

  20. Investigation of a chemically regenerative redox cathode polymer electrolyte fuel cell using a phosphomolybdovanadate polyoxoanion catholyte

    NASA Astrophysics Data System (ADS)

    Gunn, Natasha L. O.; Ward, David B.; Menelaou, Constantinos; Herbert, Matthew A.; Davies, Trevor J.

    2017-04-01

    Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells (PEFCs), where the direct reduction of oxygen is replaced by an in-direct mechanism occurring outside of the cell, are attractive to study as they offer a solution to the cost and durability problems faced by conventional PEFCs. This study reports the first detailed characterization of a high performance complete CRRC PEFC system, where catholyte is circulated between the cathode side of the cell and an air-liquid oxidation reactor called the "regenerator". The catholyte is an aqueous solution of phosphomolybdovanadate polyoxoanion and is assessed in terms of its performance within both a small single cell and corresponding regenerator over a range of redox states. Two methods for determining regeneration rate are proposed and explored. Expressing the regeneration rate as a "chemical" current is suggested as a useful means of measuring re-oxidation rate with respect to the cell. The analysis highlights the present limitations to the technology and provides an indication of the maximum power density achievable, which is highly competitive with conventional PEFC systems.

  1. Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light.

    PubMed

    Klueter, Anke; Trapani, Jennifer; Archer, Frederick I; McIlroy, Shelby E; Coffroth, Mary Alice

    2017-01-01

    Many dinoflagellate microalgae of the genus Symbiodinium form successful symbioses with a large group of metazoans and selected protists. Yet knowledge of growth kinetics of these endosymbionts and their ecological and evolutionary implications is limited. We used a Bayesian biphasic generalized logistic model to estimate key parameters of the growth of five strains of cultured Symbiodinium, S. microadriaticum (cp-type A194; strain 04-503), S. microadriaticum (cp-type A194; strain CassKB8), S. minutum (cp-type B184; strain Mf 1.05b.01.SCI.01), S. psygmophilum (cp-type B224; strain Mf 11.05b.01) and S. trenchii (cp-type D206; strain Mf 2.2b), grown in four different combinations of temperature and light. Growth kinetics varied among Symbiodinium strains and across treatments. Biphasic growth was especially evident for S. minutum and S. psygmophilum across all treatments. Monophasic growth was more common when final asymptotic densities were relatively low (~ 200 million cells ml-1). All species tended to grow faster and / or reached a higher asymptote at 26°C than at 18°C. The fastest growth was exhibited by S. minutum, with an approximate four-fold increase in estimated cell density after 60 days. The strongest effect of light was seen in S. trenchii, in which increasing light levels resulted in a decrease in initial growth rate, and an increase in asymptotic density, time when growth rate was at its maximum, final growth rate, and maximum growth rate. Results suggest that Symbiodinium species have different photokinetic and thermal optima, which may affect their growth-related nutritional physiology and allow them to modify their response to environmental changes.

  2. Formation of novel hydrogel bio-anode by immobilization of biocatalyst in alginate/polyaniline/titanium-dioxide/graphite composites and its electrical performance.

    PubMed

    Szöllősi, Attila; Hoschke, Ágoston; Rezessy-Szabó, Judit M; Bujna, Erika; Kun, Szilárd; Nguyen, Quang D

    2017-05-01

    A new bio-anode containing gel-entrapped bacteria in alginate/polyaniline/TiO 2 /graphite composites was constructed and electrically investigated. Alginate as dopant and template as well as entrapped gel was used for immobilization of microorganism cells. Increase of polyaniline concentration resulted an increase in the conductivity in gels. Addition of 0.01 and 0.02 g/mL polyaniline caused 6-fold and 10-fold higher conductivity, respectively. Furthermore, addition of 0.05 g/mL graphite powder caused 10-fold higher conductivity and 4-fold higher power density, respectively. The combination of polyaniline and graphite resulted 105-fold higher conductivity and 7-fold higher power-density output. Optimized concentrations of polyaniline and graphite powder were determined to be 0.02 g/mL and 0.05 g/mL, respectively. Modified hydrogel anode was successfully used in microbial fuel cell systems both in semi- and continuous operations modes. In semi-continuous mode, about 7.88 W/m 3 power density was obtained after 13 h of fermentation. The glucose consumption rate was calculated to be about 7 mg glucose/h/1.2·10 7  CFU immobilized cells. Similar power density was observed in the continuous operation mode of the microbial fuel cell, and it was operated stably for more than 7 days. Our results are very promising for development of an improved microbial fuel cell with new type of bio-anode that have higher power density and can operate for long term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A reduced graphene oxide/Co 3O 4 composite for supercapacitor electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Chengcheng; Li, Ming; Zhi, Mingjia

    2013-03-01

    20 nm sized Co 3O 4 nanoparticles are in-situ grown on the chemically reduced graphene oxide (rGO) sheets to form a rGO-Co 3O 4 composite during hydrothermal processing. The rGO-Co 3O 4 composite is employed as the pseudocapacitor electrode in the 2 M KOH aqueous electrolyte solution. The rGOCo 3O 4 composite electrode exhibits a specific capacitance of 472 F/g at a scan rate of 2 mV/s in a two-electrode cell. 82.6% of capacitance is retained when the scan rate increases to 100 mV/s. The rGOCo 3O 4 composite electrode shows high rate capability and excellent long-term stability. It alsomore » exhibits high energy density at relatively high power density. The energy density reaches 39.0 Wh/kg at a power density of 8.3 kW/kg. The super performance of the composite electrode is attributed to the synergistic effects of small size and good redox activity of the Co 3O 4 particles combined with high electronic conductivity of the rGO sheets.« less

  4. Nucleation of ordered solid phases of proteins via a disordered high-density state: Phenomenological approach

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Kolomeisky, Anatoly B.; Vekilov, Peter G.

    2005-05-01

    Nucleation of ordered solid phases of proteins triggers numerous phenomena in laboratory, industry, and in healthy and sick organisms. Recent simulations and experiments with protein crystals suggest that the formation of an ordered crystalline nucleus is preceded by a disordered high-density cluster, akin to a droplet of high-density liquid that has been observed with some proteins; this mechanism allowed a qualitative explanation of recorded complex nucleation kinetics curves. Here, we present a simple phenomenological theory that takes into account intermediate high-density metastable states in the nucleation process. Nucleation rate data at varying temperature and protein concentration are reproduced with high fidelity using literature values of the thermodynamic and kinetic parameters of the system. Our calculations show that the growth rate of the near-critical and supercritical ordered clusters within the dense intermediate is a major factor for the overall nucleation rate. This highlights the role of viscosity within the dense intermediate for the formation of the ordered nucleus. The model provides an understanding of the action of additives that delay or accelerate nucleation and presents a framework within which the nucleation of other ordered protein solid phases, e.g., the sickle cell hemoglobin polymers, can be analyzed.

  5. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties.

    PubMed

    Cigan, Alexander D; Roach, Brendan L; Nims, Robert J; Tan, Andrea R; Albro, Michael B; Stoker, Aaron M; Cook, James L; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-06-14

    Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Multi-stage high cell continuous fermentation for high productivity and titer.

    PubMed

    Chang, Ho Nam; Kim, Nag-Jong; Kang, Jongwon; Jeong, Chang Moon; Choi, Jin-dal-rae; Fei, Qiang; Kim, Byoung Jin; Kwon, Sunhoon; Lee, Sang Yup; Kim, Jungbae

    2011-05-01

    We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.

  7. [Continuously perfused cultivation of genetically-engineered CHO cells producing prothrombin in a modified Super-Spinner].

    PubMed

    Chen, Z L; Iding, K; Lütkemeyer, D; Lehmann, J

    2001-01-01

    A Super-Spinner was Modified by mounting a stainless steel filter(pore size 75 microns) to the impeller shaft to retain cells while fresh nutrient is perfused. Using Macroporous microcarrier Cytopore 1, continuously perfused cultivation of a recombinant CHO cell line, CHO2DS producing prothrombin was performed with the perfusion of a protein-free medium DF6S. The cell retention rate was more than 90% during the 24 days continuously perfused cultivation. The viable cell density of CHO2DS and prothrombin concentration reached 4.62 x 10(6)(cells.m/L) and 11.3(mg/L) respectively after 9 days culture.

  8. Growth rate dependence of boron incorporation into BxGa1-xAs layers

    NASA Astrophysics Data System (ADS)

    Detz, H.; MacFarland, D.; Zederbauer, T.; Lancaster, S.; Andrews, A. M.; Schrenk, W.; Strasser, G.

    2017-11-01

    This work provides a comprehensive study of the incorporation behavior of B in growing GaAs under molecular beam epitaxy conditions. Structural characterization of superlattices revealed a strong dependence of the BAs growth rate on the GaAs growth rate used. In general, higher GaAs growth rates lead to a higher apparent BAs growth rate, although lower B cell temperatures showed saturation behavior. Each B cell temperature requires a minimum GaAs growth rate for producing smooth films. The B incorporation into single thick layers was found to be reduced to 75-80% compared to superlattice structures. The p-type carrier densities in 1000 nm thick layers were found to be indirectly proportional to the B content. Furthermore, 500 nm thick BxGa1-xAs layers showed significantly lower carrier concentrations, indicating B segregation on the surface during growth of thicker layers.

  9. Hawaii Energy and Environmental Technologies (HEET) Initiative

    DTIC Science & Technology

    2009-05-01

    current density measured in a PEM fuel cell ( PEMFC ) represents the average of the local reaction rates. Depending on cell design and operating...loss mechanisms determine the spatial and overall performance of a PEMFC : activation, concentration, ohmic, and mass transfer losses. Activation losses...distribution of these various losses in a PEMFC using a six-channel serpentine flow-field. Voltage losses were attributed to each of the mechanisms at each

  10. The beneficial effects of straight open large pores in the support on steam electrolysis performance of electrode-supported solid oxide electrolysis cell

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Chen, Long; Liu, Tong; Xia, Changrong; Chen, Chusheng; Zhan, Zhongliang

    2018-01-01

    This study is aimed at improving the electrochemical performance of electrode-supported solid oxide electrolysis cells (SOECs) by optimizing the pore structure of the supports. Two planar NiO-8 mol% yttria-stabilized zirconia supports are prepared, one by the phase-inversion tape casting, and the other by conventional tape casting method using graphite as the pore former. The former contains finger-like straight open large pores, while the latter contains randomly distributed and tortuous pores. The steam electrolysis of the cells with different microstructure cathode supports is measured. The cell supported on the cathode with straight pores shows a high current density of 1.42 A cm-2 and a H2 production rate of 9.89 mL (STP) cm-2 min-1 at 1.3 V and 50 vol % humidity and 750 °C, while the cell supported on the cathode with tortuous pores shows a current density of only 0.91 A cm-2 and a H2 production rate of 6.34 mL cm-2min-1. It is concluded that the introduction of large straight open pores into the cathode support allows fast gas phase transport and thus minimizes the concentration polarization. Furthermore, the straight pores could provide better access to the reaction site (the electrode functional layer), thereby reducing the activation polarization as well.

  11. Implications of scaling on static RAM bit cell stability and reliability

    NASA Astrophysics Data System (ADS)

    Coones, Mary Ann; Herr, Norm; Bormann, Al; Erington, Kent; Soorholtz, Vince; Sweeney, John; Phillips, Michael

    1993-01-01

    In order to lower manufacturing costs and increase performance, static random access memory (SRAM) bit cells are scaled progressively toward submicron geometries. The reliability of an SRAM is highly dependent on the bit cell stability. Smaller memory cells with less capacitance and restoring current make the array more susceptible to failures from defectivity, alpha hits, and other instabilities and leakage mechanisms. Improving long term reliability while migrating to higher density devices makes the task of building in and improving reliability increasingly difficult. Reliability requirements for high density SRAMs are very demanding with failure rates of less than 100 failures per billion device hours (100 FITs) being a common criteria. Design techniques for increasing bit cell stability and manufacturability must be implemented in order to build in this level of reliability. Several types of analyses are performed to benchmark the performance of the SRAM device. Examples of these analysis techniques which are presented here include DC parametric measurements of test structures, functional bit mapping of the circuit used to characterize the entire distribution of bits, electrical microprobing of weak and/or failing bits, and system and accelerated soft error rate measurements. These tests allow process and design improvements to be evaluated prior to implementation on the final product. These results are used to provide comprehensive bit cell characterization which can then be compared to device models and adjusted accordingly to provide optimized cell stability versus cell size for a particular technology. The result is designed in reliability which can be accomplished during the early stages of product development.

  12. Persistent random walk of cells involving anomalous effects and random death

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Tan, Abby; Zubarev, Andrey

    2015-04-01

    The purpose of this paper is to implement a random death process into a persistent random walk model which produces sub-ballistic superdiffusion (Lévy walk). We develop a stochastic two-velocity jump model of cell motility for which the switching rate depends upon the time which the cell has spent moving in one direction. It is assumed that the switching rate is a decreasing function of residence (running) time. This assumption leads to the power law for the velocity switching time distribution. This describes the anomalous persistence of cell motility: the longer the cell moves in one direction, the smaller the switching probability to another direction becomes. We derive master equations for the cell densities with the generalized switching terms involving the tempered fractional material derivatives. We show that the random death of cells has an important implication for the transport process through tempering of the superdiffusive process. In the long-time limit we write stationary master equations in terms of exponentially truncated fractional derivatives in which the rate of death plays the role of tempering of a Lévy jump distribution. We find the upper and lower bounds for the stationary profiles corresponding to the ballistic transport and diffusion with the death-rate-dependent diffusion coefficient. Monte Carlo simulations confirm these bounds.

  13. Local cellular neighborhood controls proliferation in cell competition

    PubMed Central

    Bove, Anna; Gradeci, Daniel; Fujita, Yasuyuki; Banerjee, Shiladitya; Charras, Guillaume; Lowe, Alan R.

    2017-01-01

    Cell competition is a quality-control mechanism through which tissues eliminate unfit cells. Cell competition can result from short-range biochemical inductions or long-range mechanical cues. However, little is known about how cell-scale interactions give rise to population shifts in tissues, due to the lack of experimental and computational tools to efficiently characterize interactions at the single-cell level. Here, we address these challenges by combining long-term automated microscopy with deep-learning image analysis to decipher how single-cell behavior determines tissue makeup during competition. Using our high-throughput analysis pipeline, we show that competitive interactions between MDCK wild-type cells and cells depleted of the polarity protein scribble are governed by differential sensitivity to local density and the cell type of each cell’s neighbors. We find that local density has a dramatic effect on the rate of division and apoptosis under competitive conditions. Strikingly, our analysis reveals that proliferation of the winner cells is up-regulated in neighborhoods mostly populated by loser cells. These data suggest that tissue-scale population shifts are strongly affected by cellular-scale tissue organization. We present a quantitative mathematical model that demonstrates the effect of neighbor cell–type dependence of apoptosis and division in determining the fitness of competing cell lines. PMID:28931601

  14. Vascular density of superficial esophageal squamous cell carcinoma determined by direct observation of resected specimen using narrow band imaging with magnifying endoscopy.

    PubMed

    Kikuchi, D; Iizuka, T; Hoteya, S; Nomura, K; Kuribayashi, Y; Toba, T; Tanaka, M; Yamashita, S; Furuhata, T; Matsui, A; Mitani, T; Inoshita, N; Kaise, M

    2017-11-01

    Observation of the microvasculature using narrow band imaging (NBI) with magnifying endoscopy is useful for diagnosing superficial squamous cell carcinoma. Increased vascular density is indicative of cancer, but not many studies have reported differences between cancerous and noncancerous areas based on an objective comparison. We observed specimens of endoscopic submucosal dissection (ESD) using NBI magnification, and determined the vascular density of cancerous and noncancerous areas. A total of 25 lesions of esophageal squamous cell carcinoma that were dissected en bloc by ESD between July 2013 and December 2013 were subjected to NBI magnification. We constructed a device that holds an endoscope and precisely controls the movement along the vertical axis in order to observe submerged specimens by NBI magnification. NBI image files of both cancerous (pathologically determined invasion depth, m1/2) and surrounding noncancerous areas were created and subjected to vascular density assessment by two endoscopists who were blinded to clinical information. The invasion depth was m1/2 in 20, m3/sm1 in four and sm2 in one esophageal cancer lesion. Mean vascular density was significantly increased in cancerous areas (37.6 ± 16.3 vessels/mm2) compared with noncancerous areas (17.6 ± 10.0 vessels/mm2) (P < 0.05). The correlation coefficients between vascular density determined by two endoscopists were 0.86 and 0.81 in cancerous and noncancerous areas, respectively. Receiver operating curve (ROC) analysis revealed that the area under the curve (AUC) of vascular density was 0.895 (95% CI, 0.804-0.986). For this ROC curve, sensitivity was 78.3% and specificity was 87.0% when the cutoff value of vascular density was 26 vessels/mm2. NBI magnification confirmed significant increases in vascular density in cancerous areas compared with noncancerous areas in esophageal squamous cell carcinoma. The rates of agreement between vascular density values determined by two independent operators were high. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Possible roles of mechanical cell elimination intrinsic to growing tissues from the perspective of tissue growth efficiency and homeostasis.

    PubMed

    Lee, Sang-Woo; Morishita, Yoshihiro

    2017-07-01

    Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue "evolution". Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that approximates cell competition dynamics, by which the time evolution of tissue fitness and cellular trait distribution can be predicted without directly simulating a cell-based mechanical model.

  16. Possible roles of mechanical cell elimination intrinsic to growing tissues from the perspective of tissue growth efficiency and homeostasis

    PubMed Central

    2017-01-01

    Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue “evolution”. Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that approximates cell competition dynamics, by which the time evolution of tissue fitness and cellular trait distribution can be predicted without directly simulating a cell-based mechanical model. PMID:28704373

  17. Cell proliferation of Paramecium tetraurelia under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Sawai, S.; Mogami, Y.; Baba, S. A.

    Paramecium is known to proliferate faster under microgravity in space and slower under hypergravity Experiments using axenic culture medium have demonstrated that the hypergravity affected directly on the proliferation of Paramecium itself Kato et al 2003 In order to assess the mechanisms underlying the physiological effects of gravity on cell proliferation Paramecium tetraurelia was grown under simulated microgravity performed by clinorotation and the time course of the proliferation was investigated in detail on the basis of the logistic analysis P tetraurelia was cultivated in a closed chamber in which cells were confined without air babbles reducing the shear stresses and turbulence under the rotation The chamber is made of quartz and silicone rubber film the former is for the optically-flat walls for the measurement of cell density by means of a non-invasive laser optical-slice method and the latter for gas exchange Because the closed chamber has an inner dimension of 3 times 3 times 60 mm Paramecium does not accumulate at the top of the chamber despite its negative gravitactic behavior We measured the cell density at regular time intervals without breaking the configuration of the chamber and analyzed the proliferation parameters by fitting the data to a logistic equation Clinorotation had the effects of reducing the proliferation of P tetraurelia It reduced both the saturation cell density and the maximum proliferation rate although it had little effect on the

  18. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified formore » this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.« less

  19. Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell.

    PubMed

    Call, Douglas F; Wagner, Rachel C; Logan, Bruce E

    2009-12-01

    A hydrogen utilizing exoelectrogenic bacterium (Geobacter sulfurreducens) was compared to both a nonhydrogen oxidizer (Geobacter metallireducens) and a mixed consortium in order to compare the hydrogen production rates and hydrogen recoveries of pure and mixed cultures in microbial electrolysis cells (MECs). At an applied voltage of 0.7 V, both G. sulfurreducens and the mixed culture generated similar current densities (ca. 160 A/m3), resulting in hydrogen production rates of ca. 1.9 m(3) H2/m3/day, whereas G. metallireducens exhibited lower current densities and production rates of 110 +/- 7 A/m3 and 1.3 +/- 0.1 m3 H2/m3/day, respectively. Before methane was detected in the mixed-culture MEC, the mixed consortium achieved the highest overall energy recovery (relative to both electricity and substrate energy inputs) of 82% +/- 8% compared to G. sulfurreducens (77% +/- 2%) and G. metallireducens (78% +/- 5%), due to the higher coulombic efficiency of the mixed consortium. At an applied voltage of 0.4 V, methane production increased in the mixed-culture MEC and, as a result, the hydrogen recovery decreased and the overall energy recovery dropped to 38% +/- 16% compared to 80% +/- 5% for G. sulfurreducens and 76% +/- 0% for G. metallireducens. Internal hydrogen recycling was confirmed since the mixed culture generated a stable current density of 31 +/- 0 A/m3 when fed hydrogen gas, whereas G. sulfurreducens exhibited a steady decrease in current production. Community analysis suggested that G. sulfurreducens was predominant in the mixed-culture MEC (72% of clones) despite its relative absence in the mixed-culture inoculum obtained from a microbial fuel cell reactor (2% of clones). These results demonstrate that Geobacter species are capable of obtaining similar hydrogen production rates and energy recoveries as mixed cultures in an MEC and that high coulombic efficiencies in mixed culture MECs can be attributed in part to the recycling of hydrogen into current.

  20. Effect of cell density and HLA-DR incompatibility on T-cell proliferation and forkhead box P3 expression in human mixed lymphocyte reaction.

    PubMed

    Song, E Y; Han, S; Yang, B; Morris, G P; Bui, J D

    2015-04-01

    The proliferation rates of human T cells in vitro are affected by some factors such as initial T-cell number, dose of stimulating cells, and duration of culture. The transcription factor forkhead box P3 (FoxP3) has been used to identify regulatory T cells in humans and is thought to correlate with tolerance to allogeneic organ transplant. Thus, it is important to optimize conditions to expand FoxP3 cell proliferation to improve engraftment of allogeneic organ transplants. We studied proliferative responses and FoxP3 expression in divided T cells with the use of flow cytometric analysis of Ki-67 in culture of different concentrations of responding cells (6 × 10(6), 4 × 10(6), 2 × 10(6), 1 × 10(6), and 0.5 × 10(6)cells/mL), different types of stimulating cells (lymphocytes and low density cells), and different numbers of HLA mismatches. The proportion of CD3(+) cells, CD4(+)CD25(+) cells, and CD4(+)CD25(+)FoxP3(+) cells among mononuclear cells were highest at initial cell concentration of 2 × 10(6) responder cells/mL with lymphocytes as stimulators at day-5 mixed lymphocyte reaction (MLR). They were highest at a concentration of 4 × 10(6) responder cells/mL with low density cells as stimulators. The recovery (%), proportion of CD3(+) cells, CD4(+)CD25(+) cells, and CD4(+)CD25(+)FoxP3(+) cells with 2 HLA-DR incompatibility were significantly higher than those of 1 HLA-DR incompatibility at day-5 MLR. Initial cell concentration and HLA-DR incompatibility can affect the generation of FoxP3+ T cells in human MLR. These factors could be considered for efficient generation of Tregs for clinical trials in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Study on the water flooding in the cathode of direct methanol fuel cells.

    PubMed

    Im, Hun Suk; Kim, Sang-Kyung; Lim, Seongyop; Peck, Dong-Hyun; Jung, Doohwan; Hong, Won Hi

    2011-07-01

    Water flooding phenomena in the cathode of direct methanol fuel cells were analyzed by using electrochemical impedance spectroscopy. Two kinds of commercial gas diffusion layers with different PTFE contents of 5 wt% (GDL A5) and 20 wt% (GDL B20) were used to investigate the water flooding under various operating conditions. Water flooding was divided into two types: catalyst flooding and backing flooding. The cathode impedance spectra of each gas diffusion layer was obtained and compared under the same conditions. The diameter of the capacitive semicircle became larger with increasing current density for both, and this increase was greater for GDL B20 than GDL A5. Catalyst flooding is dominant and backing flooding is negligible when the air flow rate is high and current density is low. An equivalent model was suggested and fitted to the experimental data. Parameters for catalyst flooding and backing flooding were individually obtained. The capacitance of the catalyst layer decreases as the air flow rate decreases when the catalyst flooding is dominant.

  2. The Effects of Microalgae as Live Food for Brachionus plicatilis (Rotifer) in Intensive Culture System

    PubMed Central

    Rahman, Abdull Razak Abd; Cob, Zaidi Che; Jamari, Zainoddin; Mohamed, Abdul Majid; Toda, Tatsuki; Ross, Othman Haji

    2018-01-01

    Brachionus plicatilis is used to feed fish and crustacean larvae in the aquaculture industry. It is well established that the type of microalgae may influence rotifer production. This experiment was conducted to determine the effect of five different locally available microalgae species at Fisheries Research Institute (FRI), Kampung Pulau Sayak, Kedah, Malaysia on the instantaneous growth rate (μ) of rotifer. Nannochloris sp., Tetraselmis sp., Isochrysis sp., Chlorella sp., and Nannochloropsis sp. were used as feed at different algae densities (0.1, 0.3, 0.7 and 1.5 × 106 cells/ml) and culture volumes (20, 70 and 210 ml). At algae densities ranging from 0.3 to 1.5 × 106 cells/ml, an average μ value of more than 0.90 per day were recorded for all algae species. However, at density of 0.1 × 106 cells/ml, only Tetraselmis sp. resulted in the significantly highest μ value compared with others (p < 0.05). In terms of volume, smaller culture volume of Tetraselmis sp. (20 ml) showed significantly higher μ compared with higher volume (70 and 210 ml cultures). PMID:29644020

  3. Technical note: a noninvasive method for measuring mammary apoptosis and epithelial cell activation in dairy animals using microparticles extracted from milk.

    PubMed

    Pollott, G E; Wilson, K; Jerram, L; Fowkes, R C; Lawson, C

    2014-01-01

    Milk production from dairy animals has been described in terms of 3 processes: the increase in secretory cell numbers in late pregnancy and early lactation, secretion rate of milk per cell, and the decline in cell numbers as lactation progresses. This latter process is thought to be determined by the level of programmed cell death (apoptosis) found in the animal. Until now, apoptosis has been measured by taking udder biopsies, using magnetic resonance imaging scans, or using animals postmortem. This paper describes an alternative, noninvasive method for estimating apoptosis by measuring microparticles in milk samples. Microparticles are the product of several processes in dairy animals, including apoptosis. Milk samples from 12 Holstein cows, at or past peak lactation, were collected at 5 monthly samplings. The samples (n=57) were used to measure the number of microparticles and calculate microparticle density for 4 metrics: annexin V positive and merocyanine 540 dye positive, for both and total particles, in both whole milk (WM) and spun milk. Various measures of milk production were also recorded for the 12 cows, including daily milk yield, fat and protein percentage in the milk, somatic cell count, and the days in milk when the samples were taken. A high correlation was found between the 4 WM microparticle densities and days in milk (0.46 to 0.64), and a moderate correlation between WM microparticle densities and daily milk yield (-0.33 to -0.44). No significant relationships were found involving spun milk samples, somatic cell count, or fat and protein percentage. General linear model analyses revealed differences between cows for both level of microparticle density and its rate of change in late lactation. Persistency of lactation was also found to be correlated with the WM microparticle traits (-0.65 to -0.32). As apoptosis is likely to be the major contributor to microparticle numbers in late lactation, this work found a noninvasive method for estimating apoptosis that gave promising results. Further investigation is required to find out the factors affecting microparticle production and how it changes throughout lactation. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. [Studies on the relationship between beta-adrenergic receptor density on cell wall lymphocytes, total serum catecholamine level and heart rate in patients with hyperthyroidism].

    PubMed

    Gajek, J; Zieba, I; Zyśko, D

    2000-08-01

    Hyperthyreosis mimics the hyperadrenergic state and its symptoms were though to be dependent on increased level of catecholamines. Another reason for the symptoms could be the increased density or affinity of beta-adrenergic receptors to catecholamines. The aim of the study was to examine the elements of sympathetic nervous system, thyroid hormones level and their influence on heart rate control in patients with hyperthyreosis. The study was carried out in 18 women, mean age 48.9 +/- 8.7 yrs and 6 men, mean age 54.2 +/- 8.7 yrs. The control group consisted of 30 healthy persons matched for age and sex. We examined the density of beta-adrenergic receptors using radioligand labelling method with 125I-cyanopindolol, serum total catecholamines level with radioenzymatic assay kit, the levels of free thyroid hormones using radioimmunoassays and thyreotropine level with immunoradiometric assay. Maximal, minimal and mean heart rate were studied using Holter monitoring system. The density of beta-adrenergic receptors in hyperthyreosis was 37.3 +/- 21.7 vs 37.2 +/- 18.1 fmol/mg in the control group (p = NS). Total catecholamines level was significantly decreased in hyperthyreosis group: 1.5 +/- 0.89 vs 1.9 +/- 0.73 pmol/ml (p < 0.05). There was significantly higher minimal, maximal and mean heart rate in hyperthyreosis group (p < 0.0001, p < 0.0001 and p < 0.05 respectively). There was a weak inverse correlation between minimum heart rate and triiodothyronine level (r = -0.38, p < 0.05). An inverse correlation between triiodothyronine and catecholamines level (r = -0.49, p < 0.05) was observed. Beta-adrenergic receptors density is unchanged and catecholamines level is decreased in hyperthyreosis when compared to normal subjects. There is no correlation between minimal heart rate and adrenergic receptors density or catecholamines level in hyperthyreosis.

  5. Enhancing gas-liquid mass transfer rates in non-newtonian fermentations by confining mycelial growth to microbeads in a bubble column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gbewonyo, K.; Wang, D.I.C.

    The performance of a penicillin fermentation was assessed in a laboratory-scale bubble column fermentor, with mycelial growth confined to the pore matrix of celite beads. Final cell densities of 29 g/L and penicillin titres of 5.5 g/L were obtained in the confined cell cultures. In comparison, cultures of free mycelial cells grown in the absence of beads experienced dissolved oxygen limitations in the bubble column, giving only 17 g/L final cell concentrations with equally low penicillin titres of 2 g/L. The better performance of the confined cell cultures was attributed to enhanced gas liquid mass transfer rates, with mass transfermore » coefficients (k /SUB L/ a) two to three times higher than those determined in the free cell cultures. Furthermore, the confined cell cultures showed more efficient utilization of power input for mass transfer, providing up to 50% reduction in energy requirements for aeration.« less

  6. Life, performance and safety of Grace rechargeable lithium-titanium disulfide cells

    NASA Astrophysics Data System (ADS)

    Zuckerbrod, D.; Giovannoni, R. T.; Grossman, K. R.

    The development of rechargeable Li-TiS2 cells is discussed. This proprietary process produces thin, flexible TiS2 cathodes with a life in excess of 500 cycles. TiS2 utilization of 93 percent is typically achieved at a C/5 discharge rate. A life of 200 cycles has been achieved for AA-size cells at a C/5 discharge rate and 60 cycles at the C rate. The practical energy density is 115 Wh/kg. Safety testing is underway. Vibration and high altitude did not cause venting. Crushing did not result in ignition or temperature rise. Forced overcharge and overdischarge did not result in skin temperatures above 40 C. The peak skin temperature during the short-circuit test was 120 C. Safety analyses point to the need for careful control of electrolyte volume and the benefits of a fusible separator. Grace is developing such a separator, which would shut down the electrochemical cell reaction at a temperature of 130 C.

  7. Enhancing biodegradation and energy generation via roughened surface graphite electrode in microbial desalination cell.

    PubMed

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Najafpour Darzi, Ghasem

    2017-09-01

    The microbial desalination cell (MDC) is known as a newly developed technology for water and wastewater treatment. In this study, desalination rate, organic matter removal and energy production in the reactors with and without desalination function were compared. Herein, a new design of plain graphite called roughened surface graphite (RSG) was used as the anode electrode in both microbial fuel cell (MFC) and MDC reactors for the first time. Among the three type of anode electrodes investigated in this study, RSG electrode produced the highest power density and salt removal rate of 10.81 W/m 3 and 77.6%, respectively. Such a power density was 2.33 times higher than the MFC reactor due to the junction potential effect. In addition, adding the desalination function to the MFC reactor enhanced columbic efficiency from 21.8 to 31.4%. These results provided a proof-of-concept that the use of MDC instead of MFC would improve wastewater treatment efficiency and power generation, with an added benefit of water desalination. Furthermore, RSG can successfully be employed in an MDC or MFC, enhancing the bio-electricity generation and salt removal.

  8. Effect of cell density on adipogenic differentiation of mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hongxu; Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044; Guo, Likun

    2009-04-10

    The effect of cell density on the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) was investigated by using a patterning technique to induce the formation of a cell density gradient on a micropatterned surface. The adipogenic differentiation of MSCs at a density gradient from 5 x 10{sup 3} to 3 x 10{sup 4} cells/cm{sup 2} was examined. Lipid vacuoles were observed at all cell densities after 1-3 weeks of culture in adipogenic differentiation medium although the lipid vacuoles were scarce at the low cell density and abundant at the high cell density. Real-time RT-PCR analysis showed thatmore » adipogenesis marker genes encoding peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), lipoprotein lipase (LPL), and fatty acid binding protein-4 (FABP4) were detected in the MSCs cultured at all cell densities. The results suggest that there was no apparent effect of cell density on the adipogenic differentiation of human MSCs.« less

  9. Relaxation rates of low-field gas-phase ^129Xe storage cells

    NASA Astrophysics Data System (ADS)

    Limes, Mark; Saam, Brian

    2010-10-01

    A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.

  10. The prisoner's dilemma as a cancer model.

    PubMed

    West, Jeffrey; Hasnain, Zaki; Mason, Jeremy; Newton, Paul K

    2016-09-01

    Tumor development is an evolutionary process in which a heterogeneous population of cells with different growth capabilities compete for resources in order to gain a proliferative advantage. What are the minimal ingredients needed to recreate some of the emergent features of such a developing complex ecosystem? What is a tumor doing before we can detect it? We outline a mathematical model, driven by a stochastic Moran process, in which cancer cells and healthy cells compete for dominance in the population. Each are assigned payoffs according to a Prisoner's Dilemma evolutionary game where the healthy cells are the cooperators and the cancer cells are the defectors. With point mutational dynamics, heredity, and a fitness landscape controlling birth and death rates, natural selection acts on the cell population and simulated 'cancer-like' features emerge, such as Gompertzian tumor growth driven by heterogeneity, the log-kill law which (linearly) relates therapeutic dose density to the (log) probability of cancer cell survival, and the Norton-Simon hypothesis which (linearly) relates tumor regression rates to tumor growth rates. We highlight the utility, clarity, and power that such models provide, despite (and because of) their simplicity and built-in assumptions.

  11. Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production.

    PubMed

    Kick, Benjamin; Hensler, Samantha; Praetorius, Florian; Dietz, Hendrik; Weuster-Botz, Dirk

    2017-04-01

    The bacteriophage M13 has found frequent applications in nanobiotechnology due to its chemically and genetically tunable protein surface and its ability to self-assemble into colloidal membranes. Additionally, its single-stranded (ss) genome is commonly used as scaffold for DNA origami. Despite the manifold uses of M13, upstream production methods for phage and scaffold ssDNA are underexamined with respect to future industrial usage. Here, the high-cell-density phage production with Escherichia coli as host organism was studied in respect of medium composition, infection time, multiplicity of infection, and specific growth rate. The specific growth rate and the multiplicity of infection were identified as the crucial state variables that influence phage amplification rate on one hand and the concentration of produced ssDNA on the other hand. Using a growth rate of 0.15 h -1 and a multiplicity of infection of 0.05 pfu cfu -1 in the fed-batch production process, the concentration of pure isolated M13 ssDNA usable for scaffolded DNA origami could be enhanced by 54% to 590 mg L -1 . Thus, our results help enabling M13 production for industrial uses in nanobiotechnology. Biotechnol. Bioeng. 2017;114: 777-784. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power

    NASA Astrophysics Data System (ADS)

    Rakousky, Christoph; Reimer, Uwe; Wippermann, Klaus; Kuhri, Susanne; Carmo, Marcelo; Lueke, Wiebke; Stolten, Detlef

    2017-02-01

    Polymer electrolyte membrane (PEM) water electrolysis generates 'green' hydrogen when conducted with electricity from renewable - but fluctuating - sources like wind or solar photovoltaic. Unfortunately, the long-term stability of the electrolyzer performance is still not fully understood under these input power profiles. In this study, we contrast the degradation behavior of our PEM water electrolysis single cells that occurs under operation with constant and intermittent power and derive preferable operating states. For this purpose, five different current density profiles are used, of which two were constant and three dynamic. Cells operated at 1 A cm-2 show no degradation. However, degradation was observed for the remaining four profiles, all of which underwent periods of high current density (2 A cm-2). Hereby, constant operation at 2 A cm-2 led to the highest degradation rate (194 μV h-1). Degradation can be greatly reduced when the cells are operated with an intermittent profile. Current density switching has a positive effect on durability, as it causes reversible parts of degradation to recover and results in a substantially reduced degradation per mole of hydrogen produced. Two general degradation phenomena were identified, a decreased anode exchange current density and an increased contact resistance at the titanium porous transport layer (Ti-PTL).

  13. Review on α-Fe2O3 based negative electrode for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Nithya, V. D.; Arul, N. Sabari

    2016-09-01

    Supercapacitor is an electrochemical energy storage device which has drawn attention of the researchers in recent years due to its high power density and long cycle life. Recently, an enormous effort has been imposed to improve the energy density of supercapacitor and might be attained through asymmetric cell configuration that offer wider potential window. Until now, a significant advancement has been achieved in the fabrication of positive electrodes for asymmetric cell. Nevertheless, the electrochemical performance of negative electrode materials is less explored, especially Hematite (α-Fe2O3). The α-Fe2O3 has been proved to be a promising negative electrode in supercapacitor application due to its wide operating potential, high redox activity, low cost, abundant availability and eco-friendliness. In this review, we have chosen α-Fe2O3 as the negative electrode and discussed its latest research progress with emphasis on various surface engineering synthesis strategies such as, carbon, polymer, metal-metal oxide, and ternary based α-Fe2O3 composites for supercapacitor. Besides, the importance of their synergistic effects over the supercapacitive performance in terms of specific capacitance, energy density, power density, cycling life and rate capability are highlighted. Also, an extensive analysis of the literature about its symmetric/asymmetric cell performance is explored.

  14. Mitomycin C, 5-fluorouracil, and cyclosporin A prevent epidural fibrosis in an experimental laminectomy model

    PubMed Central

    Yildiz, Kartal Hakan; Gezen, Ferruh; Cukur, Selma; Dosoglu, Murat

    2007-01-01

    This study examined the preventive effects of the local application of mitomycin C (MMC), 5-fluorouracil (5-FU), and cyclosporine A (CsA) in minimizing spinal epidural fibrosis in a rat laminectomy model. Thirty-two 2-year-old male Wistar albino rats, each weighing 400 ± 50 g, were divided into four equal groups: sham, MMC, 5-FU, and CsA. Each rat underwent laminectomy at the L5–L6 lumbar level. Cotton pads (4 × 4 mm2) soaked with MMC (0.5 mg/ml), 5-FU (5 ml/mg), or CsA (5 mg/ml) were placed on the exposed dura for 5 min. Thirty days after surgery, the rats were killed and the epidural fibrosis, fibroblast density, inflammatory cell density, and arachnoid fibrosis were quantified. The epidural and arachnoid fibroses were reduced significantly in the treatment groups compared to the sham group. Fibroblast cell density and inflammatory cell density were decreased significantly in the MMC and 5-FU groups, but were similar in the sham and CsA groups. The decreased rate of epidural fibrosis was promising. Further studies in humans are needed to determine the short- and long-term complications of the agents used here. PMID:17387523

  15. Damage and recovery characteristics of lithium-containing solar cells.

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1971-01-01

    Damage and recovery characteristics were measured on lithium-containing solar cells irradiated by 1-MeV electrons. Empirical expressions for cell recovery time, diffusion-length damage coefficient immediately after irradiation, and diffusion-length damage coefficient after recovery were derived using results of short-circuit current, diffusion-length, and reverse-bias capacitance measurements. The damage coefficients were expressed in terms of a single lithium density parameter, the lithium gradient. A fluence dependence was also established, this dependence being the same for both the immediate-post-irradiation and post-recovery cases. Cell recovery rates were found to increase linearly with lithium gradient.

  16. The Effect of Initial Cell Concentration on Xylose Fermentation by Pichia stipitis

    NASA Astrophysics Data System (ADS)

    Agbogbo, Frank K.; Coward-Kelly, Guillermo; Torry-Smith, Mads; Wenger, Kevin; Jeffries, Thomas W.

    Xylose was fermented using Pichia stipitis CBS 6054 at different initial cell concentrations. A high initial cell concentration increased the rate of xylose utilization, ethanol formation, and the ethanol yield. The highest ethanol concentration of 41.0 g/L and a yield of 0.38 g/g was obtained using an initial cell concentration of 6.5 g/L. Even though more xylitol was produced when the initial cell concentrations were high, cell density had no effect on the final ethanol yield. A two-parameter mathematical model was used to predict the cell population dynamics at the different initial cell concentrations. The model parameters, a and b correlate with the initial cell concentrations used with an R 2 of 0.99.

  17. IN VITRO AND IN VIVO TOXICITY: A COMPARISON OF ACRYLAMIDE, CYCLOPHOSPHAMIDE, CHLORDECONE, AND DIETHYLSTILBESTROL

    EPA Science Inventory

    Four chemicals that had been tested in an in vivo toxicological screen were tested in a Chinese hamster ovary (CHO) cytotoxicity assay. Cell density, viability, ATP concentration, rate of protein synthesis, and cellular protein concentration were decreased by exposure to acrylami...

  18. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini; Hendriksen, Peter Vang; Wiik, Kjell; Lein, Hilde Lea

    2017-06-01

    Manganese cobalt spinel oxides are promising materials for protective coatings for solid oxide fuel cell (SOFC) interconnects. To achieve high density such coatings are often sintered in a two-step procedure, involving heat treatment first in reducing and then in oxidizing atmospheres. Sintering the coating inside the SOFC stack during heating would reduce production costs, but may result in a lower coating density. The importance of coating density is here assessed by characterization of the oxidation kinetics and Cr evaporation of Crofer 22 APU with MnCo1.7Fe0.3O4 spinel coatings of different density. The coating density is shown to have minor influence on the long-term oxidation behavior in air at 800 °C, evaluated over 5000 h. Sintering the spinel coating in air at 900 °C, equivalent to an in-situ heat treatment, leads to an 88% reduction of the Cr evaporation rate of Crofer 22 APU in air-3% H2O at 800 °C. The air sintered spinel coating is initially highly porous, however, densifies with time in interaction with the alloy. A two-step reduction and re-oxidation heat treatment results in a denser coating, which reduces Cr evaporation by 97%.

  19. Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice.

    PubMed

    Chinnery, Holly R; Ruitenberg, Marc J; McMenamin, Paul G

    2010-09-01

    The mouse dura mater, pia mater, and choroid plexus contain resident macrophages and dendritic cells (DCs). These cells participate in immune surveillance, phagocytosis of cellular debris, uptake of antigens from the surrounding cerebrospinal fluid and immune regulation in many pathologic processes. We used Cx3cr1 knock-in, CD11c-eYFP transgenic and bone marrow chimeric mice to characterize the phenotype, density and replenishment rate of monocyte-derived cells in the meninges and choroid plexus and to assess the role of the chemokine receptor CX3CR1 on their number and tissue distribution. Iba-1 major histocompatibility complex (MHC) Class II CD169 CD68 macrophages and CD11c putative DCs were identified in meningeal and choroid plexus whole mounts. Comparison of homozygous and heterozygous Cx3cr1 mice did not reveal CX3CR1-dependancy on density, distribution or phenotype of monocyte-derived cells. In turnover studies, wild type lethally irradiated mice were reconstituted with Cx3cr1/-positive bone marrow and were analyzed at 3 days, 1, 2, 4 and 8 weeks after transplantation. There was a rapid replenishment of CX3CR1-positive cells in the dura mater (at 4 weeks) and the choroid plexus was fully reconstituted by 8 weeks. These data provide the foundation for future studies on the role of resident macrophages and DCs in conditions such as meningitis, autoimmune inflammatory disease and in therapies involving irradiation and hematopoietic or stem cell transplantation.

  20. Effect of density gradient centrifugation on reactive oxygen species in human semen.

    PubMed

    Takeshima, Teppei; Yumura, Yasushi; Kuroda, Shinnosuke; Kawahara, Takashi; Uemura, Hiroji; Iwasaki, Akira

    2017-06-01

    Density gradient centrifugation can separate motile sperm from immotile sperm and other cells for assisted reproduction, but may also remove antioxidants from seminal plasma, resulting in oxidative stress. Therefore, we investigated reactive oxygen species (ROS) concentrations and distribution in semen before and after density gradient centrifugation. We assessed semen volume, sperm concentration, sperm motility, and ROS levels before and after density gradient centrifugation (300 x g for 20 minutes) in 143 semen samples from 118 patients. The ROS removal rate was evaluated in ROS-positive samples and ROS formation rate in ROS-negative samples. Thirty-eight of 143 untreated samples (26.6%) were ROS-positive; sperm motility was significantly lower in these samples than in ROS-negative samples (p < 0.05). After density gradient centrifugation, only seven of the 38 ROS-positive samples (18.42%) exhibited a ROS-positive lower layer (containing motile sperm) with a ROS removal rate of 81.58%, whereas the upper layer was ROS-positive in 24 samples (63.16%). In the ROS-negative group (n = 105), ROS was detected in 19 samples after centrifugation (18.10%, ROS generation rate), of which 18 were ROS-positive only in the upper layer or interface and the other was ROS-positive in both layers. Density gradient centrifugation can separate motile sperm from immotile sperm as well as remove ROS (including newly generated ROS). This data supports the view that density gradient centrifugation can select motile spermatozoa without enhancing oxidative stress. ROS: reactive oxygen species; SOD: superoxide dismutase; GPx: glutathione peroxidase; DNA: deoxyribonucleic acid; DGC: density gradient centrifugation; IUI: intrauterine insemination; IVF: in vitro fertilization; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; EDTA: ethylenediaminetetraacetic acid; HTF: HEPES-buffered human tubal fluid; IMSI: intracytoplasmic morphologically selected sperm injection; SMAS: sperm motility analyzing system; CASA: computer-assisted semen analyzer; WHO: World Health Organization.

  1. Asexual and sexual replication in sporulating organisms

    NASA Astrophysics Data System (ADS)

    Lee, Bohyun; Tannenbaum, Emmanuel

    2007-08-01

    Replication via sporulation is the replication strategy for all multicellular life, and may even be observed in unicellular life (such as with budding yeast). We consider diploid populations replicating via one of two possible sporulation mechanisms. (1) Asexual sporulation, whereby adult organisms produce single-celled diploid spores that grow into adults themselves. (2) Sexual sporulation, whereby adult organisms produce single-celled diploid spores that divide into haploid gametes. The haploid gametes enter a haploid “pool,” where they may recombine with other haploids to form a diploid spore that then grows into an adult. We consider a haploid fusion rate given by second-order reaction kinetics. We work with a simplified model where the diploid genome consists of only two chromosomes, each of which may be rendered defective with a single point mutation of the wild-type. We find that the asexual strategy is favored when the rate of spore production is high compared to the characteristic growth rate from a spore to a reproducing adult. Conversely, the sexual strategy is favored when the rate of spore production is low compared to the characteristic growth rate from a spore to a reproducing adult. As the characteristic growth time increases, or as the population density increases, the critical ratio of spore production rate to organism growth rate at which the asexual strategy overtakes the sexual one is pushed to higher values. Therefore, the results of this model suggest that, for complex multicellular organisms, sexual replication is favored at high population densities and low growth and sporulation rates.

  2. Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals

    NASA Astrophysics Data System (ADS)

    Xia, Shengxu; El-Azab, Anter

    2015-07-01

    We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.

  3. Effects of granulocyte colony stimulating factor on retinal leukocyte and erythrocyte flux in the human retina.

    PubMed

    Fuchsjäger-Mayrl, Gabriele; Malec, Magdalena; Polska, Elzbieta; Jilma, Bernd; Wolzt, Michael; Schmetterer, Leopold

    2002-05-01

    The blue-field entoptic technique was introduced more than 20 years ago to quantify perimacular white blood cell flux. However, a final confirmation that the perceived corpuscles represent leukocytes is still unavailable. The study design was randomized, placebo-controlled, and double masked with two parallel groups. Fifteen healthy male subjects received a single dose of granulocyte colony stimulating factor (G-CSF, 300 microg) and 15 other subjects received placebo. The following parameters were assessed at baseline and at 12 minutes and 8 hours after administration: retinal white blood cell flux, with the blue-field entoptic technique; retinal blood velocities, with bidirectional laser Doppler velocimetry; retinal venous diameter determined with a retinal vessel analyzer; and blood pressure and pulse rate determined by automated oscillometry and pulse oxymetry, respectively. After 12 minutes, G-CSF reduced total leukocyte count from 5.5 +/- 1.4 10(9)/L at baseline to 1.9 +/- 0.4 10(9)/L. This was paralleled by a 35% +/- 11% decrease in retinal white blood cell density. After 8 hours G-CSF increased total leukocyte counts to 20.0 +/- 4.4 10(9)/L. Again, this increase in circulating leukocytes was reflected by an increase in retinal white blood cell density (110% +/- 48%). All effects were significant at P < 0.001. By contrast, none of the other hemodynamic parameters was changed by administration of G-CSF. The results clearly indicate that the blue-field entoptic technique assesses leukocyte movement in the perimacular capillaries of the retina. Moreover, white blood cell density appears to adequately reflect the number of circulating leukocytes within the retinal microvasculature. Hence, an increase in retinal white blood cell density does not necessarily reflect retinal vasodilatation.

  4. Mutual facilitations of food waste treatment, microbial fuel cell bioelectricity generation and Chlorella vulgaris lipid production.

    PubMed

    Hou, Qingjie; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Yu, Ze

    2016-03-01

    Food waste contains large amount of organic matter that may be troublesome for handing, storage and transportation. A microbial fuel cell (MFC) was successfully constructed with different inoculum densities of Chlorella vulgaris for promoting food waste treatment. Maximum COD removal efficiency was registered with 44% and 25 g CODL(-1)d(-1) of substrate degradation rate when inoculated with the optimal initial density (150 mg L(-1)) of C. vulgaris, which were 2.9 times and 3.1 times higher than that of the abiotic cathode. With the optimum inoculum density of C. vulgaris, the highest open circuit voltage, working voltage and power density of MFC were 260 mV, 170 mV and 19151 mW m(-3), respectively. Besides the high biodiesel quality, promoted by MFC stimulation the biomass productivity and highest total lipid content of C. vulgaris were 207 mg L(-1)d(-1) and 31%, which were roughly 2.7 times and 1.2 times higher than the control group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats.

    PubMed

    Türk, Gaffari; Sönmez, Mustafa; Aydin, Muhterem; Yüce, Abdurrauf; Gür, Seyfettin; Yüksel, Murat; Aksu, Emrah Hicazi; Aksoy, Hakan

    2008-04-01

    Pomegranate fruit is inescapably linked with fertility, birth and eternal life because of its many seeds. The aim of this study was to investigate the effects of pomegranate juice (PJ) consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level of male healthy rats. Twenty-eight healthy adult male Wistar rats were divided into four groups; each group containing seven rats. One milliliter distilled water, 0.25 mL PJ plus 0.75 mL distilled water, 0.50 mL PJ plus 0.50 mL distilled water and 1 mL PJ were given daily for seven weeks by gavage to rats in the first, second, third and fourth groups, respectively. Body and reproductive organ weights, spermatogenic cell density, sperm characteristics, levels of antioxidant vitamins, testosterone, and lipid peroxidation and, antioxidant enzyme activities were investigated. All analyses were done only once at the end of the seven week study period. Data were compared by analysis of variance (ANOVA) and the degree of significance was set at P<0.05. A significant decrease in malondialdehyde (MDA) level and marked increases in glutathione (GSH), glutathione peroxidase (GSH-Px) and catalase (CAT) activities, and vitamin C level were observed in rats treated with different doses of PJ. PJ consumption provided an increase in epididymal sperm concentration, sperm motility, spermatogenic cell density and diameter of seminiferous tubules and germinal cell layer thickness, and it decreased abnormal sperm rate when compared to the control group. The results suggest that PJ consumption improves sperm quality and antioxidant activity of rats.

  6. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    NASA Astrophysics Data System (ADS)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  7. Vortex Structures in the Shock-deformed Armor Steels

    NASA Astrophysics Data System (ADS)

    Atroshenko, Svetlana; Meshcheryakov, Yuri; Natalia, Naumova

    2009-06-01

    Several kinds of armor steel were tested under uniaxial strain conditions within impact velocity range from 250 to 400 m/s. Using optical and REM microscopy, the post shocked specimens were studied to reveal the kinematical mechanisms of dynamic deformation at the mesoscale. In all the specimens, the cross-section of specimens was found to be filled with rotational cells of very complex space morphology. Each rotation cell consists of central core of 1-2 μm in diameter and family of petals surrounding the core, so the space configuration of eddy is closely remands a fan of total size 6-7 μm. During the deformation, the petals move around the core providing the vortical motion of rotation as a whole. Dependence of rotational cell density on the strain rate changes non-monotonously, maximum density corresponds to maximum macrohardness and maximum of spall-strength of steel.

  8. Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JaeHwa Koh; DuckJoo Yoon; Chang H. Oh

    2010-07-01

    An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.

  9. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells

    PubMed Central

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  10. Dynamic Adhesion of Umbilical Cord Blood Endothelial Progenitor Cells under Laminar Shear Stress

    PubMed Central

    Angelos, Mathew G.; Brown, Melissa A.; Satterwhite, Lisa L.; Levering, Vrad W.; Shaked, Natan T.; Truskey, George A.

    2010-01-01

    Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to α5β1 integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of α5β1 with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress. PMID:21112278

  11. Effect of cell size and shear stress on bacterium growth rate

    NASA Astrophysics Data System (ADS)

    Fadlallah, Hadi; Jarrahi, Mojtaba; Herbert, Éric; Peerhossaini, Hassan; PEF Team

    2015-11-01

    Effect of shear stress on the growth rate of Synechocystis and Chlamydomonas cells is studied. An experimental setup was prepared to monitor the growth rate of the microorganisms versus the shear rate inside a clean room, under atmospheric pressure and 20 °C temperature. Digital magnetic agitators are placed inside a closed chamber provided with airflow, under a continuous uniform light intensity over 4 weeks. In order to study the effect of shear stress on the growth rate, different frequencies of agitation are tested, 2 vessels filled with 150 ml of each specie were placed on different agitating system at the desired frequency. The growth rate is monitored daily by measuring the optical density and then correlate it to the cellular concentration. The PH was adjusted to 7 in order to maintain the photosynthetic activity. Furthermore, to measure the shear stress distribution, the flow velocity field was measured using PIV. Zones of high and low shear stress were identified. Results show that the growth rate is independent of the shear stress magnitude, mostly for Synechocystis, and with lower independency for Chlamydomonas depending on the cell size for each species.

  12. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  13. New insights into the rate dependence of sulfur isotope fractionation during dissimilatory sulfate reduction

    NASA Astrophysics Data System (ADS)

    Giannetta, M.; Druhan, J. L.; Sanford, R. A.

    2016-12-01

    The vast majority of experiments concerning the isotope partitioning of sulfate reducing bacteria (SRB) are conducted under artificially optimized growth conditions. In contrast, many natural environments supporting SRB reflect limited nutrient availability. In this study, we couple the cell-specific reduction rate of a common SRB to the characteristic partitioning of stable sulfur isotopes. However, our method is novel in that we regulate the addition of electron donor such that cell growth is minimized and cell-specific reduction rates are constant, thus simulating the low reactivity characteristic of natural conditions. Anoxic bioreactors containing equal amounts of Desulfovibrio vulgariswere continuously injected with formate to control the rate of dissimilatory sulfate reduction (DSR). Cell growth was minimized through two means, (1) a high initial culture density ensured the ratio of nutrients per cell was low; (2) the oxidation state of carbon in formate is unfavorable to cell biomass accumulation. Negligible cell growth was verified by flow cytometry. Four controlled DSR rates ranging from 0.32 to 1.8 µmole/hour exhibited fractionation factor (ɛ) values ranging from 9‰ to 4‰ over 1200 to 300 hours, respectively. These results demonstrate a unique value of ɛ for each rate of DSR, where larger S isotope partitioning is characteristic of a slower cell-specific rate of sulfate reduction. The results of this study provide a unique dataset that can be used to constrain variations in ɛ as a function of DSR rate. Specifically, the dataset offers a foundation to test recently proposed analytical models and predict variations in observed ɛ as a result of a multi-step reactive pathway. Based on these results, we suggest a novel rate expression for incorporation into reactive transport models. Such a rate law supports extrapolation of experimental behavior into natural conditions over modern to geologic timescales.

  14. Simulations of molecular diffusion in lattices of cells: insights for NMR of red blood cells.

    PubMed Central

    Regan, David G; Kuchel, Philip W

    2002-01-01

    The pulsed field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiment, conducted on a suspension of red blood cells (RBC) in a strong magnetic field yields a q-space plot consisting of a series of maxima and minima. This is mathematically analogous to a classical optical diffraction pattern. The method provides a noninvasive and novel means of characterizing cell suspensions that is sensitive to changes in cell shape and packing density. The positions of the features in a q-space plot characterize the rate of exchange across the membrane, cell dimensions, and packing density. A diffusion tensor, containing information regarding the diffusion anisotropy of the system, can also be derived from the PGSE NMR data. In this study, we carried out Monte Carlo simulations of diffusion in suspensions of "virtual" cells that had either biconcave disc (as in RBC) or oblate spheroid geometry. The simulations were performed in a PGSE NMR context thus enabling predictions of q-space and diffusion tensor data. The simulated data were compared with those from real PGSE NMR diffusion experiments on RBC suspensions that had a range of hematocrit values. Methods that facilitate the processing of q-space data were also developed. PMID:12080109

  15. Simulations of molecular diffusion in lattices of cells: insights for NMR of red blood cells.

    PubMed

    Regan, David G; Kuchel, Philip W

    2002-07-01

    The pulsed field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR) experiment, conducted on a suspension of red blood cells (RBC) in a strong magnetic field yields a q-space plot consisting of a series of maxima and minima. This is mathematically analogous to a classical optical diffraction pattern. The method provides a noninvasive and novel means of characterizing cell suspensions that is sensitive to changes in cell shape and packing density. The positions of the features in a q-space plot characterize the rate of exchange across the membrane, cell dimensions, and packing density. A diffusion tensor, containing information regarding the diffusion anisotropy of the system, can also be derived from the PGSE NMR data. In this study, we carried out Monte Carlo simulations of diffusion in suspensions of "virtual" cells that had either biconcave disc (as in RBC) or oblate spheroid geometry. The simulations were performed in a PGSE NMR context thus enabling predictions of q-space and diffusion tensor data. The simulated data were compared with those from real PGSE NMR diffusion experiments on RBC suspensions that had a range of hematocrit values. Methods that facilitate the processing of q-space data were also developed.

  16. CO Metabolism in the Acetogen Acetobacterium woodii

    PubMed Central

    Bertsch, Johannes

    2015-01-01

    The Wood-Ljungdahl pathway allows acetogenic bacteria to grow on a number of one-carbon substrates, such as carbon dioxide, formate, methyl groups, or even carbon monoxide. Since carbon monoxide alone or in combination with hydrogen and carbon dioxide (synthesis gas) is an increasingly important feedstock for third-generation biotechnology, we studied CO metabolism in the model acetogen Acetobacterium woodii. When cells grew on H2-CO2, addition of 5 to 15% CO led to higher final optical densities, indicating the utilization of CO as a cosubstrate. However, the growth rate was decreased by the presence of small amounts of CO, which correlated with an inhibition of H2 consumption. Experiments with resting cells revealed that the degree of inhibition of H2 consumption was a function of the CO concentration. Since the hydrogen-dependent CO2 reductase (HDCR) of A. woodii is known to be very sensitive to CO, we speculated that cells may be more tolerant toward CO when growing on formate, the product of the HDCR reaction. Indeed, addition of up to 25% CO did not influence growth rates on formate, while the final optical densities and the production of acetate increased. Higher concentrations (75 and 100%) led to a slight inhibition of growth and to decreasing rates of formate and CO consumption. Experiments with resting cells revealed that the HDCR is a site of CO inhibition. In contrast, A. woodii was not able to grow on CO as a sole carbon and energy source, and growth on fructose-CO or methanol-CO was not observed. PMID:26092462

  17. An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study.

    PubMed

    Lass, Jonathan H; Gal, Robin L; Ruedy, Katrina J; Benetz, Beth Ann; Beck, Roy W; Baratz, Keith H; Holland, Edward J; Kalajian, Andrea; Kollman, Craig; Manning, Francis J; Mannis, Mark J; McCoy, Kristen; Montoya, Monty; Stulting, Doyle; Xing, Dongyuan

    2005-03-01

    The Specular Microscopy Ancillary Study was designed to examine donor corneal endothelial specular image quality, compare the central endothelial cell density determined by eye banks with the endothelial cell density determined by a central specular microscopy reading center, and evaluate donor factors that may have an impact on specular image quality and endothelial cell density accuracy. Nonrandomized comparative trial. Endothelial specular images of donor corneas assigned in the Cornea Donor Study. Certified readers assessed donor image quality (analyzable from fair to excellent vs. unanalyzable) and determined the central endothelial cell density. Independent adjudication was performed if there was a difference in the quality of grading or if the endothelial cell density varied by > or =5.0% between readers. Average reading center-determined endothelial cell density was compared with the endothelial cell density determined by each eye bank. Evaluation of image quality and accuracy of endothelial cell density. Of 688 donor endothelial images submitted by 23 eye banks, 663 (96%) were analyzable (excellent, 40 [6%]; good, 302 [44%]; fair, 321 [47%]), and 25 (4%) were unanalyzable by reading center standards. In situ retrieval and greater epithelial exposure correlated with a higher image quality grading. The eye bank-determined endothelial cell density of 434 of the 663 (65%) analyzable images were within 10% of the endothelial cell density determined by the reading center, whereas 185 (28%) were more than 10% higher and 44 (7%) were more than 10% lower. Greater variation in endothelial cell density between the eye banks and the reading center was observed with shorter time of death to preservation, presence of an epithelial defect, folds in Descemet's membrane, lower image quality, and the use of fixed-frame or center method endothelial cell density analysis. Overall, donor endothelial specular image quality and accuracy of endothelial cell density determination were good. However, the data suggest that factors that may affect image quality and contribute to variation in interpretation of the endothelial cell density should be addressed, because the donor endothelial cell density is an important parameter for assessing long-term corneal graft survival.

  18. Force dependent internalization of magnetic nanoparticles results in highly loaded endothelial cells for use as potential therapy delivery vectors.

    PubMed

    MacDonald, Cristin; Barbee, Kenneth; Polyak, Boris

    2012-05-01

    To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems.

  19. Cell growth and differentiation on feeder layers is predicted to be influenced by bioreactor geometry.

    PubMed

    Peng, C A; Palsson, B Ø

    1996-06-05

    Tissue function is comprised of a complex interplay between biological and physicochemical rate processes. The design of bioreactors for tissue engineering must account for these processes simultaneously in order to obtain a bioreactor that provides a uniform environment for tissue growth and development. In the present study we consider the effects of fluid flow and mass transfer on the growth of a tissue in a parallel-plate bioreactor configuration. The parenchymal cells grow on a preformed stromal (feeder) layer that secretes a growth factor that stimulates parenchymal stem cell replication and differentiation. The biological dynamics are described by a unilineage model that describes the replication and differentiation of the tissue stem cell. The physicochemical rates are described by the Navier-Stokes and convective-diffusion equations. The model equations are solved by a finite element method. Two dimensionless groups govern the behavior of the solution. One is the Graetz number (Gz) that describes the relative rates of convection and diffusion, and the other a new dimensionless ratio (designated by P) that describes the interplay of the growth factor production, diffusion, and stimulation. Four geometries (slab, gondola, diamond, and radial shapes) for the parallel-plate bioreactor are analyzed. The uniformity of cell growth is measured by a two-dimensional coefficient of variance. The concentration distribution of the stroma-derived growth factor was computed first based on fluid flow and bioreactor geometry. Then the concomitant cell density distribution was obtained by integrating the calculated growth factor concentration with the parenchymal cell growth and unilineage differentiation process. The spatiotemporal cell growth patterns in four different bioreactor configurations were investigated under a variety of combinations of Gz (10(-1), 10(0), and 10(1)) and P(10(-2), 10(-1), 10(0), 10(1), and 10(2)). The results indicate high cell density and uniformity can be achieved for parameter values of P = 0.01, ..., 0.1 and Gz = 0.1, ..., 1.0. Among the four geometries investigated the radial-flow-type bioreactor provides the most uniform environment in which parenchymal cells can grow and differentiate ex vivo due to the absence of walls that are parallel to the flow paths creating slow flowing regions.

  20. Cancerous tumor: the high frequency of a rare event.

    PubMed

    Galam, S; Radomski, J P

    2001-05-01

    A simple model for cancer growth is presented using cellular automata. Cells diffuse randomly on a two-dimensional square lattice. Individual cells can turn cancerous at a very low rate. During each diffusive step, local fights may occur between healthy and cancerous cells. Associated outcomes depend on some biased local rules, which are independent of the overall cancerous cell density. The models unique ingredients are the frequency of local fights and the bias amplitude. While each isolated cancerous cell is eventually destroyed, an initial two-cell tumor cluster is found to have a nonzero probabilty to spread over the whole system. The associated phase diagram for survival or death is obtained as a function of both the rate of fight and the bias distribution. Within the model, although the occurrence of a killing cluster is a very rare event, it turns out to happen almost systematically over long periods of time, e.g., on the order of an adults life span. Thus, after some age, survival from tumorous cancer becomes random.

  1. Safer Electrolytes for Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Kejha, Joe; Smith, Novis; McCloseky, Joel

    2004-01-01

    A number of nonvolatile, low-flammability liquid oligomers and polymers based on aliphatic organic carbonate molecular structures have been found to be suitable to be blended with ethylene carbonate to make electrolytes for lithium-ion electrochemical cells. Heretofore, such electrolytes have often been made by blending ethylene carbonate with volatile, flammable organic carbonates. The present nonvolatile electrolytes have been found to have adequate conductivity (about 2 mS/cm) for lithium ions and to remain liquid at temperatures down to -5 C. At normal charge and discharge rates, lithiumion cells containing these nonvolatile electrolytes but otherwise of standard design have been found to operate at current and energy densities comparable to those of cells now in common use. They do not perform well at high charge and discharge rates -- an effect probably attributable to electrolyte viscosity. Cells containing the nonvolatile electrolytes have also been found to be, variously, nonflammable or at least self-extinguishing. Hence, there appears to be a basis for the development of safer high-performance lithium-ion cells.

  2. Thermal modeling of the lithium/polymer battery

    NASA Astrophysics Data System (ADS)

    Pals, C. R.

    1994-10-01

    Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.

  3. BMP4 density gradient in disk-shaped confinement

    NASA Astrophysics Data System (ADS)

    Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.

    We present a quantitative model that explains the scaling of BMP4 gradients during gastrulation and the recent experimental observation that geometric confinement of human embryonic stem cells is sufficient to recapitulate much of germ layer patterning. Based on a assumption that BMP4 diffusion rate is much smaller than the diffusion rate of it's inhibitor molecules, our results confirm that the length-scale which defines germ layer territories does not depend on system size.

  4. Assembly of high-density lipoprotein.

    PubMed

    Yokoyama, Shinji

    2006-01-01

    Mammalian somatic cells do not catabolize cholesterol and need to export it for its homeostasis at the levels of cells and whole bodies. This reaction may reduce intracellularly accumulated cholesterol in excess and would contribute to prevention or regression of the initial stage of atherosclerosis. High-density lipoprotein (HDL) is thought to play a main role in this reaction, and 2 independent mechanisms are proposed for this reaction. First, cholesterol is exchanged in a nonspecific physicochemical manner between cell surface and extracellular lipoproteins, and cholesterol esterification on HDL provides a driving force for net removal of cell cholesterol. Second, apolipoproteins directly interact with cells and generate HDL by removing cellular phospholipid and cholesterol. This reaction is a major source of plasma HDL and is mediated by a membrane protein, ABCA1. Lipid-free or lipid-poor helical apolipoproteins primarily recruit cellular phospholipid to assemble HDL particles, and cholesterol enrichment in these particles is regulated independently. ABCA1 is a rate-limiting factor of the HDL assembly and is regulated by transcriptional factors and posttranscriptional factors. Posttranscriptional regulation of ABCA1 includes modulation of its calpain-mediated degradation.

  5. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.

    PubMed

    Ajayi, Folusho Francis; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Chang, In Seop; Kim, In S

    2010-03-01

    Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (V(OC) approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m(-2) was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m(-2), as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

  6. Outcomes of cataract surgery in eyes with a low corneal endothelial cell density.

    PubMed

    Yamazoe, Katsuya; Yamaguchi, Takefumi; Hotta, Kazuki; Satake, Yoshiyuki; Konomi, Kenji; Den, Seika; Shimazaki, Jun

    2011-12-01

    To evaluate the surgical outcomes of cataract surgery in eyes with a low preoperative corneal endothelial cell density (ECD) and analyze factors affecting the prognosis. Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan. Noncomparative case series. Eyes with a preoperative ECD of less than 1000 cells/mm(2) that had cataract surgery between 2006 and 2010 were identified. Standard phacoemulsification with intraocular lenses was performed using the soft-shell technique. The rate of endothelial cell loss, incidence of bullous keratopathy, and risk factors were retrospectively assessed. Sixty-one eyes (53 patients) with a low preoperative ECD were identified. Preoperative diagnoses or factors regarded as causing endothelial cell loss included Fuchs dystrophy (20 eyes), laser iridotomy (16 eyes), keratoplasty (10 eyes), traumatic injury (3 eyes), trabeculectomy (3 eyes), corneal endotheliitis (2 eyes), and other (7 eyes). The corrected distance visual acuity improved from 0.59 ± 0.49 logMAR preoperatively to 0.32 ± 0.48 logMAR postoperatively (P<.001). The mean ECD was 693 ± 172 cells/mm(2) and 611 ± 203 cells/mm(2), respectively (P=.001). The mean rate of endothelial cell loss was 11.5% ± 23.4%. Greater ECD loss was associated with a shorter axial length (AL) (<23.0 mm) and diabetes mellitus. Bullous keratopathy developed in 9 eyes (14.8%) and was associated with posterior capsule rupture. The results suggest that modern techniques for cataract surgery provide excellent visual rehabilitation in many patients with a low preoperative ECD. Shorter AL, diabetes mellitus, and posterior capsule rupture were risk factors for greater ECD loss and bullous keratopathy. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production

    PubMed Central

    Fan, Rong; Ebrahimi, Mehrdad; Quitmann, Hendrich; Aden, Matthias; Czermak, Peter

    2016-01-01

    Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L−1. The specific cell growth rate (µ) during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L−1). The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µmax was measured under different filtration conditions (transmembrane pressure 0.3–1.2 bar, crossflow velocity 0.5–1.5 m·s−1), showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems. PMID:27007380

  8. Bioenergetic Profile Experiment using C2C12 Myoblast Cells

    PubMed Central

    Nicholls, David G.; Darley-Usmar, Victor M.; Wu, Min; Jensen, Per Bo; Rogers, George W.; Ferrick, David A.

    2010-01-01

    The ability to measure cellular metabolism and understand mitochondrial dysfunction, has enabled scientists worldwide to advance their research in understanding the role of mitochondrial function in obesity, diabetes, aging, cancer, cardiovascular function and safety toxicity. Cellular metabolism is the process of substrate uptake, such as oxygen, glucose, fatty acids, and glutamine, and subsequent energy conversion through a series of enzymatically controlled oxidation and reduction reactions. These intracellular biochemical reactions result in the production of ATP, the release of heat and chemical byproducts, such as lactate and CO2 into the extracellular environment. Valuable insight into the physiological state of cells, and the alteration of the state of those cells, can be gained through measuring the rate of oxygen consumed by the cells, an indicator of mitochondrial respiration - the Oxygen Consumption Rate - or OCR. Cells also generate ATP through glycolysis, i.e.: the conversion of glucose to lactate, independent of oxygen. In cultured wells, lactate is the primary source of protons. Measuring the lactic acid produced indirectly via protons released into the extracellular medium surrounding the cells, which causes acidification of the medium provides the Extra-Cellular Acidification Rate - or ECAR. In this experiment, C2C12 myoblast cells are seeded at a given density in Seahorse cell culture plates. The basal oxygen consumption (OCR) and extracellular acidification (ECAR) rates are measured to establish baseline rates. The cells are then metabolically perturbed by three additions of different compounds (in succession) that shift the bioenergetic profile of the cell. This assay is derived from a classic experiment to assess mitochondria and serves as a framework with which to build more complex experiments aimed at understanding both physiologic and pathophysiologic function of mitochondria and to predict the ability of cells to respond to stress and/or insults. PMID:21189469

  9. Metabolism of native and naturally occurring multiple modified low density lipoprotein in smooth muscle cells of human aortic intima.

    PubMed

    Tertov, V V; Orekhov, A N

    1997-01-01

    The subfraction of low density lipoprotein (LDL) with low sialic acid content that caused accumulation of cholesterol esters in human aortic smooth muscle cells has been found in the blood of coronary atherosclerosis patients. It was demonstrated that this subfraction consists of LDL with small size, high electronegative charge, reduced lipid content, altered tertiary structure of apolipoprotein B, etc. LDL of this subfraction is naturally occurring multiple-modified LDL (nomLDL). In this study we compared the binding, uptake and proteolytic degradation of native LDL and nomLDL by smooth muscle cells cultured from human grossly normal intima, fatty streaks, and atherosclerotic plaques. Uptake of nomLDL by normal and atherosclerotic cells was 3.5- and 6-fold, respectively, higher than uptake of native LDL. Increased uptake of nomLDL was due to increased binding of this LDL by intimal smooth muscle cells. The enhanced binding is explained by the interaction of nomLDL with cellular receptors other than LDL-receptor. Modified LDL interacted with the scavenger receptor, asialoglycoprotein receptor, and also with cell surface proteoglycans. Rates of degradation of nomLDL were 1.5- and 5-fold lower than degradation of native LDL by normal and atherosclerotic cells, respectively. A low rate of nomLDL degradation was also demonstrated in homogenates of intimal cells. Activities of lysosomal proteinases of atherosclerotic cells were decreased compared with normal cells. Pepstatin A, a cathepsin D inhibitor, completely inhibited lipoprotein degradation, while serine, thiol, or metallo-proteinase inhibitors had partial effect. This fact reveals that cathepsin D is involved in initial stages of apoB degradation by intimal smooth muscle cells. Obtained data show that increased uptake and decreased lysosomal degradation of nomLDL may be the main cause of LDL accumulation in human aortic smooth muscle cells, leading to foam cell formation.

  10. Studies on an ultrasonic atomization feed direct methanol fuel cell.

    PubMed

    Wu, Chaoqun; Liu, Linghao; Tang, Kai; Chen, Tao

    2017-01-01

    Direct methanol fuel cell (DMFC) is promising as an energy conversion device for the replacement of conventional chemical cell in future, owing to its convenient fuel storage, high energy density and low working temperature. The development of DMFC technology is currently limited by catalyst poison and methanol crossover. To alleviate the methanol crossover, a novel fuel supply system based on ultrasonic atomization is proposed. Experimental investigations on this fuel supply system to evaluate methanol permeation rates, open circuit voltages (OCVs) and polarization curves under a series of conditions have been carried out and reported in this paper. In comparison with the traditional liquid feed DMFC system, it can be found that the methanol crossover under the ultrasonic atomization feed system was significantly reduced because the DMFC reaches a large stable OCV value. Moreover, the polarization performance does not vary significantly with the liquid feed style. Therefore, the cell fed by ultrasonic atomization can be operated with a high concentration methanol to improve the energy density of DMFC. Under the supply condition of relatively high concentration methanol such as 4M and 8M, the maximum power density fed by ultrasonic atomization is higher than liquid by 6.05% and 12.94% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Performance of an annular solid-oxide fuel cell micro-stack array operating in single-chamber conditions

    NASA Astrophysics Data System (ADS)

    Liu, Mingliang; Lü, Zhe; Wei, Bo; Huang, Xiqiang; Zhang, Yaohui; Su, Wenhui

    An annular micro-stack array consisting of four fuel cells has been fabricated and operated successfully in single-chamber conditions using a nitrogen-diluted oxygen-methane mixture as the operating gas. The single cells consist of a state-of-the-art porous NiO/Y 2O 3-stabilized ZrO 2 (YSZ) anode support, a YSZ electrolyte membrane and a modified La 0.7Sr 0.3MnO 3 (LSM) cathode. The annular configuration of the array is favorable for utilizing the heating effect. The maximum power output of the annular stack decreases with increasingCH 4/O 2 ratio. Its performance increases with increasing CH 4 flow rate and decreases with increasing N 2 flow rate. The power output of the stack is ∼380 mW at CH 4/O 2 = 1 and an N 2 flow rate of 100 sccm and the average maximum power density of each cell is ∼190 mW cm -2. The average performance of each cell in the annular micro-stack array is higher than that of an additional single cell placed next to the stack.

  12. Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction

    NASA Astrophysics Data System (ADS)

    El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J. C.

    2016-11-01

    Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.

  13. Correlating measured transient temperature rises with damage rate processes in cultured cells

    NASA Astrophysics Data System (ADS)

    Denton, Michael L.; Tijerina, Amanda J.; Gonzalez, Cherry C.; Gamboa, B. Giovana; Noojin, Gary D.; Ahmed, Elharith M.; Rickman, John M.; Dyer, Phillip H.; Rockwell, Benjamin A.

    2017-02-01

    Thermal damage rate processes in biological tissues are usually characterized by a kinetics approach. This stems from experimental data that show how the transformation of a specified biological property of cells or biomolecule (plating efficiency for viability, change in birefringence, tensile strength, etc.) is dependent upon both time and temperature. Here, two disparate approaches were used to study thermal damage rate processes in cultured retinal pigment epithelial cells. Laser exposure (photothermal) parameters included 2-μm laser exposure of non-pigmented cells and 532-nm exposures of cells possessing a variety of melanosome particle densities. Photothermal experiments used a mid-IR camera to record temperature histories with spatial resolution of about 8 μm, while fluorescence microscopy of the cell monolayers identified threshold damage at the boundary between live and dead cells. Photothermal exposure durations ranged from 0.05-20 s, and the effects of varying ambient temperature were investigated. Temperature during heat transfer using a water-jacketed cuvette was recorded with a fast microthermister, while damage and viability of the suspended cells were determined as percentages. Exposure durations for the heat transfer experiments ranged from 50- 60 s. Empirically-determined kinetic parameters for the two heating methods were compared with each other, and with values found in the literature.

  14. Implications of the formation of small polarons in Li2O2 for Li-air batteries

    NASA Astrophysics Data System (ADS)

    Kang, Joongoo; Jung, Yoon Seok; Wei, Su-Huai; Dillon, Anne C.

    2012-01-01

    Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of ˜11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility μ = 10-10-10-9 cm2/V s contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.

  15. Generation of murine induced pluripotent stem cells by using high-density distributed electrodes network.

    PubMed

    Lu, Ming-Yu; Li, Zhihong; Hwang, Shiaw-Min; Linju Yen, B; Lee, Gwo-Bin

    2015-09-01

    This study reports a robust method of gene transfection in a murine primary cell model by using a high-density electrodes network (HDEN). By demonstrating high cell viability after gene transfection and successful expression of transgenes including fluorescent proteins, the HDEN device shows great promise as a solution in which reprogramming efficiency using non-viral induction for generation of murine induced pluripotent stem cells (iPSCs) is optimized. High and steady transgene expression levels in host cells of iPSCs can be demonstrated using this method. Moreover, the HDEN device achieved successful gene transfection with a low voltage of less than 180 V while requiring relatively low cell numbers (less than 1.5 × 10(4) cells). The results are comparable to current conventional methods, demonstrating a reasonable fluorescent-plasmid transfection rate (42.4% in single transfection and 24.5% in triple transfection) and high cell viability of over 95%. The gene expression levels of each iPSC factor was measured to be over 10-fold higher than that reported in previous studies using a single mouse embryonic fibroblast cell. Our results demonstrate that the generation of iPSCs using HDEN transfection of plasmid DNA may be a feasible and safe alternative to using viral transfection methods in the near future.

  16. Intercellular Variation in Signaling through the TGF-β Pathway and Its Relation to Cell Density and Cell Cycle Phase*

    PubMed Central

    Zieba, Agata; Pardali, Katerina; Söderberg, Ola; Lindbom, Lena; Nyström, Erik; Moustakas, Aristidis; Heldin, Carl-Henrik; Landegren, Ulf

    2012-01-01

    Fundamental open questions in signal transduction remain concerning the sequence and distribution of molecular signaling events among individual cells. In this work, we have characterized the intercellular variability of transforming growth factor β-induced Smad interactions, providing essential information about TGF-β signaling and its dependence on the density of cell populations and the cell cycle phase. By employing the recently developed in situ proximity ligation assay, we investigated the dynamics of interactions and modifications of Smad proteins and their partners under native and physiological conditions. We analyzed the kinetics of assembly of Smad complexes and the influence of cellular environment and relation to mitosis. We report rapid kinetics of formation of Smad complexes, including native Smad2-Smad3-Smad4 trimeric complexes, in a manner influenced by the rate of proteasomal degradation of these proteins, and we found a striking cell to cell variation of signaling complexes. The single-cell analysis of TGF-β signaling in genetically unmodified cells revealed previously unknown aspects of regulation of this pathway, and it provided a basis for analysis of these signaling events to diagnose pathological perturbations in patient samples and to evaluate their susceptibility to drug treatment. PMID:22442258

  17. Temperature-Induced Remodeling of the Photosynthetic Machinery Tunes Photosynthesis in the Thermophilic Alga Cyanidioschyzon merolae1

    PubMed Central

    Nikolova, Denitsa; Weber, Dieter; Scholz, Martin

    2017-01-01

    The thermophilic alga C. merolae thrives in extreme environments (low pH and temperature between 40°C and 56°C). In this study, we investigated the acclimation process of the alga to a colder temperature (25°C). A long-term cell growth experiment revealed an extensive remodeling of the photosynthetic apparatus in the first 250 h of acclimation, which was followed by cell growth to an even higher density than the control (grown at 42°C) cell density. Once the cells were shifted to the lower temperature, the proteins of the light-harvesting antenna were greatly down-regulated and the phycobilisome composition was altered. The amount of PSI and PSII subunits was also decreased, but the chlorophyll to photosystems ratio remained unchanged. The 25°C cells possessed a less efficient photon-to-oxygen conversion rate and require a 2.5 times higher light intensity to reach maximum photosynthetic efficiency. With respect to chlorophyll, however, the photosynthetic oxygen evolution rate of the 25°C culture was 2 times higher than the control. Quantitative proteomics revealed that acclimation requires, besides remodeling of the photosynthetic apparatus, also adjustment of the machinery for protein folding, degradation, and homeostasis. In summary, these remodeling processes tuned photosynthesis according to the demands placed on the system and revealed the capability of C. merolae to grow under a broad range of temperatures. PMID:28270628

  18. Investigation of low temperature solid oxide fuel cells for air-independent UUV applications

    NASA Astrophysics Data System (ADS)

    Moton, Jennie Mariko

    Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (< 400 Wh/L), which motivate development of alternative power systems such as solid oxide fuel cells (SOFCs). SOFC-based power systems have the potential to achieve the required UUV energy densities, and the current study explores how SOFCs based on gadolinia-doped ceria (GDC) electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average current densities over the length of a low-temperature SOFC stack were estimated and used to size a UUV power system based on Al/H 2O oxidation for fuel and H2O2 decomposition for O2. The resulting system design suggested that energy densities above 300 Wh/L may be achieved at neutral buoyancy with seawater if the cell is operated at high reactant utilizations in the SOFC stack for missions longer than 20 hours.

  19. Domain model for Ca2(+)-inactivation of Ca2+ channels at low channel density.

    PubMed Central

    Sherman, A; Keizer, J; Rinzel, J

    1990-01-01

    The "shell" model for Ca2(+)-inactivation of Ca2+ channels is based on the accumulation of Ca2+ in a macroscopic shell beneath the plasma membrane. The shell is filled by Ca2+ entering through open channels, with the elevated Ca2+ concentration inactivating both open and closed channels at a rate determined by how fast the shell is filled. In cells with low channel density, the high concentration Ca2+ "shell" degenerates into a collection of nonoverlapping "domains" localized near open channels. These domains form rapidly when channels open and disappear rapidly when channels close. We use this idea to develop a "domain" model for Ca2(+)-inactivation of Ca2+ channels. In this model the kinetics of formation of an inactivated state resulting from Ca2+ binding to open channels determines the inactivation rate, a mechanism identical with that which explains single-channel recordings on rabbit-mesenteric artery Ca2+ channels (Huang Y., J. M. Quayle, J. F. Worley, N. B. Standen, and M. T. Nelson. 1989. Biophys. J. 56:1023-1028). We show that the model correctly predicts five important features of the whole-cell Ca2(+)-inactivation for mouse pancreatic beta-cells (Plants, T. D. 1988. J. Physiol. 404:731-747) and that Ca2(+)-inactivation has only minor effects on the bursting electrical activity of these cells. PMID:2174274

  20. Morphometric analysis of primary graft non-function in liver transplantation.

    PubMed

    Vertemati, M; Sabatella, G; Minola, E; Gambacorta, M; Goffredi, M; Vizzotto, L

    2005-04-01

    Primary graft non-function (PNF) is a life-threatening condition that is thought to be the consequence of microcirculation injury. The aim of the present study was to assess, with a computerized morphometric model, the morphological changes at reperfusion in liver biopsy specimens from patients who developed PNF after liver transplantation. Biopsy specimens were obtained at maximum ischaemia and at the end of reperfusion. Morphology included many stereological parameters, such as volumes of all parenchymal components, surface density, size distribution and mean diameter of hepatocytes. Other variables examined were intensive care unit stay, degree of steatosis, serum liver function tests and ischaemic time. In the postoperative period, the PNF group showed elevated serum levels of alanine transferase, decreased daily rate of bile production and prothrombin activity. Blood lactates were significantly higher in the PNF group than in a control group. When comparing groups, the volumetric parameters related to hepatocytes and sinusoids and the surface densities of the hepatic cells showed an inverse relationship. At the end of reperfusion, in PNF group the volume fraction of hepatocyte cytoplasm was decreased; in contrast, the volume fraction of sinusoidal lumen was markedly increased. The cell profiles showed the same inverse trend: the surface density of the parenchymal border of hepatocytes was decreased in PNF when compared with the control group, while the surface density of the vascular border was increased. In the PNF group, the surface density of the sinusoidal bed was directly correlated with alanine transferase, daily rate of bile production, prothrombin activity and cold ischaemic time. The alterations in hepatic architecture, as demonstrated by morphometric analysis in liver transplant recipients that developed PNF, provide additional information that may represent useful viability markers of the graft to complement conventional histological analysis.

  1. Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen; Xia, Chang-rong

    2009-08-01

    A porous NiO/yttria-stabilized zirconia anode substrate for tubular solid oxide fuel cells was prepared by gel casting technique. Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm2 when it was fed with H2 fuel at 700 °C, but the power density increased to 400 mW/cm2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 °C. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Adam R.; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas; Atkinson, Rachel L.

    Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines in vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation in vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL),more » or high-density lipoproteins (HDL) for 24 hours prior to irradiation (0-6 Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients with primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared to untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL values (>30 mg/dL) predicted a lower 5-year overall survival rate than normal values (hazard ratio [HR] = 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60 mg/dL) predicted a lower 5-year overall survival rate than values higher than 60 mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients and IBC patient-derived cell lines. A more expansive study is needed to verify these observations.« less

  3. Effect of zinc supplementation on neuronal precursor proliferation in the rat hippocampus after traumatic brain injury.

    PubMed

    Cope, Elise C; Morris, Deborah R; Gower-Winter, Shannon D; Brownstein, Naomi C; Levenson, Cathy W

    2016-05-01

    There is great deal of debate about the possible role of adult-born hippocampal cells in the prevention of depression and related mood disorders. We first showed that zinc supplementation prevents the development of the depression-like behavior anhedonia associated with an animal model of traumatic brain injury (TBI). This work then examined the effect of zinc supplementation on the proliferation of new cells in the hippocampus that have the potential to participate in neurogenesis. Rats were fed a zinc adequate (ZA, 30ppm) or zinc supplemented (ZS, 180ppm) diet for 4wk followed by TBI using controlled cortical impact. Stereological counts of EdU-positive cells showed that TBI doubled the density of proliferating cells 24h post-injury (p<0.05), and supplemental zinc significantly increased this by an additional 2-fold (p<0.0001). While the survival of these proliferating cells decreased at the same rate in ZA and in ZS rats after injury, the total density of newly born cells was approximately 60% higher in supplemented rats 1wk after TBI. Furthermore, chronic zinc supplementation resulted in significant increases in the density of new doublecortin-positive neurons one week post-TBI that were maintained for 4wk after injury (p<0.01). While the effect of zinc supplementation on neuronal precursor cells in the hippocampus was robust, use of targeted irradiation to eliminate these cells after zinc supplementation and TBI revealed that these cells are not the sole mechanism through which zinc acts to prevent depression associated with brain injury, and suggest that other zinc dependent mechanisms are needed for the anti-depressant effect of zinc in this model of TBI. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Study of electromagnetic radiation pollution in an Indian city.

    PubMed

    Dhami, A K

    2012-11-01

    Electromagnetic radiation emitted by cell phone towers is a form of environmental pollution and is a new health hazard, especially to children and patients. The present studies were taken to estimate the microwave/RF pollution by measuring radiation power densities near schools and hospitals of Chandigarh city in India. The cell phone radiations were measured using a handheld portable power density meter TES 593 and specific absorption rates were estimated from the measured values. These values of electromagnetic radiation in the environment were compared with the levels at which biological system of humans and animals starts getting affected. The values were also compared with the international exposure limits set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The highest measured power density was 11.48 mW/m(2) which is 1,148% of the biological limit. The results indicated that the exposure levels in the city were below the ICNIRP limit, but much above the biological limit.

  5. Characterization of wastewater treatment by two microbial fuel cells in continuous flow operation.

    PubMed

    Kubota, Keiichi; Watanabe, Tomohide; Yamaguchi, Takashi; Syutsubo, Kazuaki

    2016-01-01

    A two serially connected single-chamber microbial fuel cell (MFC) was applied to the treatment of diluted molasses wastewater in a continuous operation mode. In addition, the effect of series and parallel connection between the anodes and the cathode on power generation was investigated experimentally. The two serially connected MFC process achieved 79.8% of chemical oxygen demand removal and 11.6% of Coulombic efficiency when the hydraulic retention time of the whole process was 26 h. The power densities were 0.54, 0.34 and 0.40 W m(-3) when electrodes were in individual connection, serial connection and parallel connection modes, respectively. A high open circuit voltage was obtained in the serial connection. Power density decreased at low organic loading rates (OLR) due to the shortage of organic matter. Power generation efficiency tended to decrease as a result of enhancement of methane fermentation at high OLRs. Therefore, high power density and efficiency can be achieved by using a suitable OLR range.

  6. Growth, metabolic activity, and productivity of immobilized and freely suspended CHO cells in perfusion culture.

    PubMed

    Hilal-Alnaqbi, Ali; Hu, Alan Y C; Zhang, Zhibing; Al-Rubeai, Mohamed

    2013-01-01

    Chinese hamster ovary (CHO) cells producing β-galactosidase (β-gal) were successfully cultured on silicone-based porous microcarriers (ImmobaSil FS) in a 1 L stirred-tank perfusion bioreactor. We studied the growth, metabolism, and productivity of free and immobilized cells to understand cellular activity in immobilized conditions. CHO cells attached to ImmobaSil FS significantly better than to other microcarriers. Scanning electron microscope images showed that the CHO cells thoroughly colonized the porous surfaces of the ImmobaSil FS, exhibiting a spherical morphology with microvilli that extended to anchorage cells on the silicone surface. In perfusion culture, the concentration of the attached cells reached 8 × 10(8) cells/mL of carrier, whereas those that remained freely suspended reached 2 × 10(7) cells/mL medium. The β-gal concentration reached more than 5 unit/mL in perfusion culture, more than fivefold that of batch culture. The maximum concentration per microcarrier was proportional to the initial cell density. The specific growth rate, the specific β-gal production rate, the percentage of S phase, and the oxygen uptake rate were all relatively lower for immobilized cells than freely suspended cells in the same bioreactor, indicating that not only do cells survive and grow to a greater extent in a free suspension state, but they are also metabolically more active than viable cells inside the pores of the microcarriers. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  7. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge

    PubMed Central

    Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret L.; Mogilner, Alex

    2015-01-01

    Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction. PMID:25969948

  8. Receptor density balances signal stimulation and attenuation in membrane-assembled complexes of bacterial chemotaxis signaling proteins

    PubMed Central

    Besschetnova, Tatiana Y.; Montefusco, David J.; Asinas, Abdalin E.; Shrout, Anthony L.; Antommattei, Frances M.; Weis, Robert M.

    2008-01-01

    All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation—a slower process that restores kinase activity. These two opposing effects lead to robust adaptation toward stimuli through a physical mechanism that is not understood. Here, we provide evidence of a counterbalancing influence exerted by receptor density on kinase stimulation and receptor methylation. Receptor signaling complexes were reconstituted over a range of defined surface concentrations by using a template-directed assembly method, and the kinase and receptor methylation activities were measured. Kinase activity and methylation rates were both found to vary significantly with surface concentration—yet in opposite ways: samples prepared at high surface densities stimulated kinase activity more effectively than low-density samples, whereas lower surface densities produced greater methylation rates than higher densities. FRET experiments demonstrated that the cooperative change in kinase activity coincided with a change in the arrangement of the membrane-associated receptor domains. The counterbalancing influence of density on receptor methylation and kinase stimulation leads naturally to a model for signal regulation that is compatible with the known logic of the E. coli pathway. Density-dependent mechanisms are likely to be general and may operate when two or more membrane-related processes are influenced differently by the two-dimensional concentration of pathway elements. PMID:18711126

  9. Optimization of the lithium/thionyl chloride battery

    NASA Technical Reports Server (NTRS)

    White, Ralph E.

    1989-01-01

    A 1-D math model for the lithium/thionyl chloride primary cell is used in conjunction with a parameter estimation technique in order to estimate the electro-kinetic parameters of this electrochemical system. The electro-kinetic parameters include the anodic transfer coefficient and exchange current density of the lithium oxidation, alpha sub a,1 and i sub o,i,ref, the cathodic transfer coefficient and the effective exchange current density of the thionyl chloride reduction, alpha sub c,2 and a sup o i sub o,2,ref, and a morphology parameter, Xi. The parameter estimation is performed on simulated data first in order to gain confidence in the method. Data, reported in the literature, for a high rate discharge of an experimental lithium/thionyl chloride cell is used for an analysis.

  10. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA

    PubMed Central

    Hitchcock, Gary L.; Kirkpatrick, Gary; Minnett, Peter; Palubok, Valeriy

    2013-01-01

    Oxygen-based productivity and respiration rates were determined in West Florida coastal waters to evaluate the proportion of community respiration demands met by autotrophic production within a harmful algal bloom dominated by Karenia brevis. The field program was adaptive in that sampling during the 2006 bloom occurred where surveys by the Florida Wildlife Research Institute indicated locations with high cell abundances. Net community production (NCP) rates from light-dark bottle incubations during the bloom ranged from 10 to 42 µmole O2 L−1 day−1 with highest rates in bloom waters where abundances exceeded 105 cells L−1. Community dark respiration (R) rates in dark bottles ranged from <10 to 70 µmole O2 L−1 day−1 over 24 h. Gross primary production derived from the sum of NCP and R varied from ca. 20 to 120 µmole O2 L−1 day−1. The proportion of GPP attributed to NCP varied with the magnitude of R during day and night periods. Most surface communities exhibited net autotrophic production (NCP > R) over 24 h, although heterotrophy (NCP < R) characterized the densest sample where K. brevis cell densities exceed 106 cells L−1. PMID:24179460

  11. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA.

    PubMed

    Hitchcock, Gary L; Kirkpatrick, Gary; Minnett, Peter; Palubok, Valeriy

    2010-05-01

    Oxygen-based productivity and respiration rates were determined in West Florida coastal waters to evaluate the proportion of community respiration demands met by autotrophic production within a harmful algal bloom dominated by Karenia brevis . The field program was adaptive in that sampling during the 2006 bloom occurred where surveys by the Florida Wildlife Research Institute indicated locations with high cell abundances. Net community production (NCP) rates from light-dark bottle incubations during the bloom ranged from 10 to 42 µmole O 2 L -1 day -1 with highest rates in bloom waters where abundances exceeded 10 5 cells L -1 . Community dark respiration ( R ) rates in dark bottles ranged from <10 to 70 µmole O 2 L -1 day -1 over 24 h. Gross primary production derived from the sum of NCP and R varied from ca. 20 to 120 µmole O 2 L -1 day -1 . The proportion of GPP attributed to NCP varied with the magnitude of R during day and night periods. Most surface communities exhibited net autotrophic production (NCP > R ) over 24 h, although heterotrophy (NCP < R ) characterized the densest sample where K. brevis cell densities exceed 10 6 cells L -1 .

  12. The Effects of Microalgae as Live Food for Brachionus plicatilis (Rotifer) in Intensive Culture System.

    PubMed

    Rahman, Abdull Razak Abd; Cob, Zaidi Che; Jamari, Zainoddin; Mohamed, Abdul Majid; Toda, Tatsuki; Ross, Othman Haji

    2018-03-01

    Brachionus plicatilis is used to feed fish and crustacean larvae in the aquaculture industry. It is well established that the type of microalgae may influence rotifer production. This experiment was conducted to determine the effect of five different locally available microalgae species at Fisheries Research Institute (FRI), Kampung Pulau Sayak, Kedah, Malaysia on the instantaneous growth rate (μ) of rotifer. Nannochloris sp., Tetraselmis sp., Isochrysis sp., Chlorella sp., and Nannochloropsis sp. were used as feed at different algae densities (0.1, 0.3, 0.7 and 1.5 × 10 6 cells/ml) and culture volumes (20, 70 and 210 ml). At algae densities ranging from 0.3 to 1.5 × 10 6 cells/ml, an average μ value of more than 0.90 per day were recorded for all algae species. However, at density of 0.1 × 10 6 cells/ml, only Tetraselmis sp. resulted in the significantly highest μ value compared with others ( p < 0.05). In terms of volume, smaller culture volume of Tetraselmis sp. (20 ml) showed significantly higher μ compared with higher volume (70 and 210 ml cultures).

  13. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    NASA Astrophysics Data System (ADS)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  14. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  15. Ocular anatomy, ganglion cell distribution and retinal resolution of a killer whale (Orcinus orca).

    PubMed

    Mass, Alla M; Supin, Alexander Y; Abramov, Andrey V; Mukhametov, Lev M; Rozanova, Elena I

    2013-01-01

    Retinal topography, cell density and sizes of ganglion cells in the killer whale (Orcinus orca) were analyzed in retinal whole mounts stained with cresyl violet. A distinctive feature of the killer whale's retina is the large size of ganglion cells and low cell density compared to terrestrial mammals. The ganglion cell diameter ranged from 8 to 100 µm, with the majority of cells within a range of 20-40 µm. The topographic distribution of ganglion cells displayed two spots of high cell density located in the temporal and nasal quadrants, 20 mm from the optic disk. The high-density areas were connected by a horizontal belt-like area passing below the optic disk of the retina. Peak cell densities in these areas were evaluated. Mean peak cell densities were 334 and 288 cells/mm(2) in the temporal and nasal high-density areas, respectively. With a posterior nodal distance of 19.5 mm, these high-density data predict a retinal resolution of 9.6' (3.1 cycles/deg.) and 12.6' (2.4 cycles/deg.) in the temporal and nasal areas, respectively, in water. Copyright © 2012 S. Karger AG, Basel.

  16. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Haoxiang; He, Aiqin; Lu, Jidian; Sun, Minghao; He, Jiarong; Zhang, Lingzhi

    2016-12-01

    A water-soluble conductive composite binder consisting of carboxymethyl chitosan (CCTS) as a binder and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as a conduction-promoting agent is reported for the LiFePO4 (LFP) cathode in Li-ion batteries. The introduction of conductive PEDOT:PSS as a conductive composite binder facilitates the formation of homogeneous and continuous conducting bridges throughout the electrode and raises the compaction density of the electrode sheet by decreasing the amounts of the commonly used conducting agent of acetylene black. The optimized replacement ratios of acetylene black with PEDOT:PSS (acetylene black/PEDOT:PSS = 1:1, by weight) are obtained by measuring electrical conductivity, peel strength and compaction density of the electrode sheets. The LFP half-cell with the optimized conductive binder exhibits better cycling and rate performance and more favorable electrochemical kinetics than that using only acetylene black conducting agent. The pilot application of PEDOT:PSS/CCTS binder in 10 Ah CCTS-LFP prismatic cell exhibits a comparable cycling performance, retaining 89.7% of capacity at 1 C/2 C (charge/discharge) rate as compared with 90% for commercial PVDF-LFP over 1000 cycles, and better rate capability than that of commercial PVDF-LFP, retaining 98% capacity of 1 C at 7 C rate as compared with 95.4% for PVDF-LFP.

  17. Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finegan, Donal; Robinson, James B.; Heenan, Thomas M. M.

    Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed inmore » Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.« less

  18. Growth rates of the buoyancy-driven instability of an autocatalytic reaction front in a narrow cell

    PubMed

    Bockmann; Muller

    2000-09-18

    Experimental studies were performed on the buoyancy-driven instability of an autocatalytic reaction front in a quasi-2D cell. The unstable density stratification at an ascending front leads to convection that results in a fingerlike front deformation. The growth rates of the spatial modes of the instability are determined at the initial stage. A stabilization is found at higher wave numbers, while the system is unstable against low wave number perturbations. Whereas comparison with a reported model governed by Hele-Shaw flow fails, a two-dimensional Navier-Stokes model yields more satisfactory results. Still, present deviations suggest the presence of an additional mechanism that suppresses the growth.

  19. Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment.

    PubMed

    Lee, Carson O; Boe-Hansen, Rasmus; Musovic, Sanin; Smets, Barth; Albrechtsen, Hans-Jørgen; Binning, Philip

    2014-11-01

    Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot and the full-scale filter. Nitrification rates and ammonia-oxidizing bacteria and archaea were quantified throughout the depth of the filter. The ammonium removal capacity of the filter was determined to be 3.4 g NH4-N m(-3) h(-1), which was 5 times greater than the average ammonium loading rate under reference operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal and ammonia-oxidizing bacteria density were strongly stratified, with the highest removal and ammonia-oxidizing bacteria densities at the top of the filter. Cell specific ammonium oxidation rates were on average 0.6 × 10(2) ± 0.2 × 10(2) fg NH4-N h(-1) cell(-1). Our findings indicate that these rapid sand filters can safely remove both nitrite and ammonium over a larger range of loading rates than previously assumed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi

    2017-02-01

    The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.

  1. Experimental and numerical studies of micro PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Peng, Rong-Gui; Chung, Chen-Chung; Chen, Chiun-Hsun

    2011-10-01

    A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm2 and channel depth of about 500 µm. A theoretical analysis is performed in this study for a novel MEMS-based design of amicro PEMFC. Themodel consists of the conservation equations of mass, momentum, species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code. The polarization curves of simulation are well correlated with experimental data. Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature, current density and water distributions in two different fuel flow rates (15 cm3/min and 40 cm3/min). Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4V operating voltage. Model predictions are well within those known for experimental mechanism phenomena.

  2. Effects of Ammonia and Density on Filtering of Commensal and Pathogenic Escherichia coli by the Cladoceran Daphnia magna.

    PubMed

    Nørgaard, Louise Solveig; Roslev, Peter

    2016-12-01

    Grazing by cladocerans can reduce the survival of enteric bacteria associated with fecal pollution. This study examined the potential of Daphnia magna to filter commensal and pathogenic Escherichia coli of human origin. Grazing on commensal and pathogenic bacteria was comparable, but slightly greater at 20 compared to 15 and 25°C. Filtering activity was strongly dependent on D. magna and E. coli densities at environmentally relevant bacterial concentrations. Maximum feeding rates were >10 7 cells h -1  daphnid -1 , clearance rates were 1-6 mL h -1  daphnid -1 , and filtering was independent of bacterial cell sizes between 0.7 and 1.8 µm. Filtering and ingestion of E. coli by D. magna was susceptible to acute inhibition by unionized ammonia with a 24 h EC50 of 0.18 mg L -1 NH 3 -N, and a LOEC of 0.09 mg L -1 NH 3 -N. The study indicated that biological and chemical constraints should be considered when applying Daphnia for attenuation of fecal pollution.

  3. A Single Regulator Mediates Strategic Switching between Attachment/Spread and Growth/Virulence in the Plant Pathogen Ralstonia solanacearum

    PubMed Central

    Khokhani, Devanshi; Lowe-Power, Tiffany M.; Tran, Tuan Minh

    2017-01-01

    ABSTRACT The PhcA virulence regulator in the vascular wilt pathogen Ralstonia solanacearum responds to cell density via quorum sensing. To understand the timing of traits that enable R. solanacearum to establish itself inside host plants, we created a ΔphcA mutant that is genetically locked in a low-cell-density condition. Comparing levels of gene expression of wild-type R. solanacearum and the ΔphcA mutant during tomato colonization revealed that the PhcA transcriptome includes an impressive 620 genes (>2-fold differentially expressed; false-discovery rate [FDR], ≤0.005). Many core metabolic pathways and nutrient transporters were upregulated in the ΔphcA mutant, which grew faster than the wild-type strain in tomato xylem sap and on dozens of specific metabolites, including 36 found in xylem. This suggests that PhcA helps R. solanacearum to survive in nutrient-poor environmental habitats and to grow rapidly during early pathogenesis. However, after R. solanacearum reaches high cell densities in planta, PhcA mediates a trade-off from maximizing growth to producing costly virulence factors. R. solanacearum infects through roots, and low-cell-density-mode-mimicking ΔphcA cells attached to tomato roots better than the wild-type cells, consistent with their increased expression of several adhesins. Inside xylem vessels, ΔphcA cells formed aberrantly dense mats. Possibly as a result, the mutant could not spread up or down tomato stems as well as the wild type. This suggests that aggregating improves R. solanacearum survival in soil and facilitates infection and that it reduces pathogenic fitness later in disease. Thus, PhcA mediates a second strategic switch between initial pathogen attachment and subsequent dispersal inside the host. PhcA helps R. solanacearum optimally invest resources and correctly sequence multiple steps in the bacterial wilt disease cycle. PMID:28951474

  4. Two-dimensional simulation of GaAsSb/GaAs quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Kunrugsa, Maetee

    2018-06-01

    Two-dimensional (2D) simulation of GaAsSb/GaAs quantum dot (QD) solar cells is presented. The effects of As mole fraction in GaAsSb QDs on the performance of the solar cell are investigated. The solar cell is designed as a p-i-n GaAs structure where a single layer of GaAsSb QDs is introduced into the intrinsic region. The current density–voltage characteristics of QD solar cells are derived from Poisson’s equation, continuity equations, and the drift-diffusion transport equations, which are numerically solved by a finite element method. Furthermore, the transition energy of a single GaAsSb QD and its corresponding wavelength for each As mole fraction are calculated by a six-band k · p model to validate the position of the absorption edge in the external quantum efficiency curve. A GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4 provides the best power conversion efficiency. The overlap between electron and hole wave functions becomes larger as the As mole fraction increases, leading to a higher optical absorption probability which is confirmed by the enhanced photogeneration rates within and around the QDs. However, further increasing the As mole fraction results in a reduction in the efficiency because the absorption edge moves towards shorter wavelengths, lowering the short-circuit current density. The influences of the QD size and density on the efficiency are also examined. For the GaAsSb/GaAs QD solar cell with an As mole fraction of 0.4, the efficiency can be improved to 26.2% by utilizing the optimum QD size and density. A decrease in the efficiency is observed at high QD densities, which is attributed to the increased carrier recombination and strain-modified band structures affecting the absorption edges.

  5. Analysis of stationary fuel cell dynamic ramping capabilities and ultra capacitor energy storage using high resolution demand data

    NASA Astrophysics Data System (ADS)

    Meacham, James R.; Jabbari, Faryar; Brouwer, Jacob; Mauzey, Josh L.; Samuelsen, G. Scott

    Current high temperature fuel cell (HTFC) systems used for stationary power applications (in the 200-300 kW size range) have very limited dynamic load following capability or are simply base load devices. Considering the economics of existing electric utility rate structures, there is little incentive to increase HTFC ramping capability beyond 1 kWs -1 (0.4% s -1). However, in order to ease concerns about grid instabilities from utility companies and increase market adoption, HTFC systems will have to increase their ramping abilities, and will likely have to incorporate electrical energy storage (EES). Because batteries have low power densities and limited lifetimes in highly cyclic applications, ultra capacitors may be the EES medium of choice. The current analyses show that, because ultra capacitors have a very low energy storage density, their integration with HTFC systems may not be feasible unless the fuel cell has a ramp rate approaching 10 kWs -1 (4% s -1) when using a worst-case design analysis. This requirement for fast dynamic load response characteristics can be reduced to 1 kWs -1 by utilizing high resolution demand data to properly size ultra capacitor systems and through demand management techniques that reduce load volatility.

  6. Effect of laser peripheral iridotomy using argon and neodymium-YAG lasers on corneal endothelial cell density: 7-year longitudinal evaluation.

    PubMed

    Ono, Takashi; Iida, Masaharu; Sakisaka, Toshihiro; Minami, Keiichiro; Miyata, Kazunori

    2018-03-01

    To evaluate the changes in corneal endothelial cell density (ECD) over a 7-year period after laser peripheral iridotomy (LPI) using argon and neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers. Retrospective case series. Eyes that underwent prophylactic LPI using argon and Nd:YAG lasers were followed up for 7 years. Central corneal endothelial cells were observed by use of noncontact specular microscopy preoperatively and at 1 and 7 years postoperatively. Changes in ECD and the associations between preoperative ECD and the total energy of the Nd:YAG laser were evaluated. Fifty-one eyes of 51 patients were followed up for 7 years. The ECD significantly decreased after LPI (P < 0.049), and the reduction rate at 1 year after the surgery (1.69 ± 4.80%, 95% CI: 0.34%-3.04%) was significantly higher than the annual reduction rates after 1 year (0.17 ± 0.85%/y, P = 0.036, 95% CI: -0.07% to 0.41%). No association was found between the preoperative ECD and the total laser energy. Long-term evaluation indicated that the reduction in ECD after argon-Nd:YAG laser LPI was present but small during the initial year and was negligible after 1 year.

  7. Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens.

    PubMed

    Ernst, Bernhard; Hoeger, Stefan J; O'brien, Evelyn; Dietrich, Daniel R

    2007-04-20

    Planktothrix rubescens belongs to the most ubiquitous cyanobacterial species in mesotrophic and oligotrophic lakes in the pre-alpine regions. In most of these lakes, coregonids are among the dominant species of the ichthyofauna with great importance for the professional fishery. A possible link between the occurrence of toxic Planktothrix blooms and the recurrent slumps in coregonid yields has been suggested. Indeed, acute toxic effects of microcystins and other cyanobacterial toxins have been shown for various fish species. However, chronic exposure scenarios appear to be more common and thus more environmentally realistic than acute intoxications. The aim of this study was therefore to investigate the physiological stress response and organ pathology in coregonids sub-chronically exposed to ambient water containing low, medium and high P. rubescens densities, known to be typical of pre-alpine lakes. Coregonid hatchlings were exposed in four tanks containing 0 (sham-control) and approximately 1500 (low), 15,000 (medium) and 55,000 (high) P. rubescens cells/ml for up to 28 days. Temperature, oxygen concentration, pH-value, P. rubescens cell density and microcystin concentration were recorded and the fish were observed for behavioural changes and examined for parasite infestations. Gill ventilation rates, general condition factors and mortalities were determined and liver, kidney, gut and gill were assessed histopathologically and immunhistologically. Depending on the cell density, exposed fish showed behavioural changes, including increased ventilation rates possibly representing a physiological stress response. Susceptibility to ectoparasitic infestation and increased mortality in exposed fish suggested P. rubescens associated effects on fish fitness. Histopathological alterations in liver, gastrointestinal tract and kidney, which were also immunopositive for microcystin suggested causality of tissue damage and the presence of microcystins. In contrast, observed gill pathology appeared to result primarily from mechanical abrasion and irritation due to ectoparasitic infestation. The current exposure experiment confirmed the hypothesis that subchronic and chronic exposure to low cyanobacterial cell densities and hence microcystins can exacerbate physiological stress and sustained pathological alterations in exposed coregonids. The study therefore supports the theory that P. rubescens blooms may be causal to the observed weight reduction and hence fitness of coregonids in pre-alpine lakes such as Lake Ammersee (Germany).

  8. Effect of clinostat rotation on differentiation of embryonic bone in vitro

    NASA Astrophysics Data System (ADS)

    Al-Ajmi, N.; Braidman, I. P.; Moore, D.

    We have investigated the effect of changes in the gravity vector on osteoblast behaviour, using the clinostat set at 8 rpm. Two sources of osteoblasts were used: secondary cultures of fetal rat bone cells, and the rat osteosarcoma line 17/2.8 (ROS). Cell number was determined by incubation with 3-(4,dimethyl-2yl)-2,3 diphenyl) tetrazolium bromide (MTT) and measurement of optical density at 570 nm (OD). Alkaline phosphatase activity was detected by standard cytochemical methods. Dividing cells were localised by labelling dividing nuclei with Bromodeoxyuridine (BrdU), detected by immunofluorescence. Cell culture was initiated at densities between 1-4x10^4 cells ml^-1. Growth rates in all cultures during the first 48 hours exposure to clinostat rotation were less than in stationary controls. After 3 days, ROS cell numbers were 35% lower, and calvarial cells 39% lower than their respective controls. Alkaline phosphatase activity in calvarial control cultures was uniformly present in characteristically polygonal cells, but after culture in the clinostat the enzyme was present sporadically, and the cells were cuboid. There was also no BrdU uptake in nuclei, but it was present in cell cytoplasms. We conclude that the clinostat decreases cell numbers and cell division. Both cell shape and the distribution of alkaline phosphatase activity in calvarial cell cultures were also affected. This implies that changes in the gravity vector can affect osteoblasts directly, without interaction with other cell types.

  9. Collective and single cell behavior in epithelial contact inhibition.

    PubMed

    Puliafito, Alberto; Hufnagel, Lars; Neveu, Pierre; Streichan, Sebastian; Sigal, Alex; Fygenson, D Kuchnir; Shraiman, Boris I

    2012-01-17

    Control of cell proliferation is a fundamental aspect of tissue physiology central to morphogenesis, wound healing, and cancer. Although many of the molecular genetic factors are now known, the system level regulation of growth is still poorly understood. A simple form of inhibition of cell proliferation is encountered in vitro in normally differentiating epithelial cell cultures and is known as "contact inhibition." The study presented here provides a quantitative characterization of contact inhibition dynamics on tissue-wide and single cell levels. Using long-term tracking of cultured Madin-Darby canine kidney cells we demonstrate that inhibition of cell division in a confluent monolayer follows inhibition of cell motility and sets in when mechanical constraint on local expansion causes divisions to reduce cell area. We quantify cell motility and cell cycle statistics in the low density confluent regime and their change across the transition to epithelial morphology which occurs with increasing cell density. We then study the dynamics of cell area distribution arising through reductive division, determine the average mitotic rate as a function of cell size, and demonstrate that complete arrest of mitosis occurs when cell area falls below a critical value. We also present a simple computational model of growth mechanics which captures all aspects of the observed behavior. Our measurements and analysis show that contact inhibition is a consequence of mechanical interaction and constraint rather than interfacial contact alone, and define quantitative phenotypes that can guide future studies of molecular mechanisms underlying contact inhibition.

  10. Regeneration of Murine Hair Follicles is Inhibited by Low-Dose-Rate Gamma Irradiation.

    PubMed

    Sugaya, Kimihiko; Hirobe, Tomohisa; Ishihara, Yoshie; Inoue, Sonoe

    2016-10-01

    To determine whether the effects of low-dose-rate gamma (γ) irradiation are identifiable in the regeneration of murine hair follicles, we irradiated whole bodies of C57BL/10JHir mice in the first telogen phase of the hair cycle with 137 Cs γ-rays. The mice were examined for effects on hair follicles, including number, morphology, and pigmentation in the second anagen phase. Effects of γ-radiation on melanocyte stem cells were also investigated by the indirect immunolabeling of tyrosinase-related protein 2 (TRP2). Irradiated skin showed a decrease in hair follicle density and the induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs. There was a small, but not significant, change in the number of TRP2-positive melanocyte stem cells in the hair bulge region of the irradiated skin. These results suggest that low-dose rate γ-irradiation does not deplete melanocyte stem cells, but can damage stem cells and progenitors for both keratinocytes and melanocytes, thereby affecting the structure and pigmentation of regenerated hair follicles in the 2 nd anagen phase.

  11. High-Energy/Power and Low-Temperature Cathode for Sodium-Ion Batteries: In Situ XRD Study and Superior Full-Cell Performance.

    PubMed

    Guo, Jin-Zhi; Wang, Peng-Fei; Wu, Xing-Long; Zhang, Xiao-Hua; Yan, Qingyu; Chen, Hong; Zhang, Jing-Ping; Guo, Yu-Guo

    2017-09-01

    Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na 3 V 2 (PO 4 ) 2 O 2 F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na + /Na with a specific capacity of 127.8 mA h g -1 . The energy density of NVPF-NTP reaches up to 486 W h kg -1 , which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Discernment of Possible Organic Magnetic Field Effect Mechanisms Using Polymer Light-Emitting Electrochemical Cells

    NASA Astrophysics Data System (ADS)

    Geng, R.; Subedi, R. C.; Liang, S.; Nguyen, T. D.

    2014-07-01

    We report studies of magnetic field effect (MFE) in polymer light-emitting electrochemical cells (PLEC) using the "super-yellow" poly-(phenylene vynilene) (SY-PPV) polymer in vertical and planar device configurations. The purpose is to discern the existing MFE mechanisms in organic light emitting diodes (OLEDs) where the current and electroluminescence are strongly modulated by a small applied magnetic field. In particular, we investigate the mutual relationship between magneto-conductance (MC) and magneto-electroluminescence (MEL) by studying the role of polaron density dissociated from polaron pairs (PP) on these magnetic responses. In general, the dissociated polaron density is determined by the PP dissociation rate and the PP density. For the planar PLEC, which possesses a small dissociation rate, we observe small and negative MC at all applied voltages regardless of the emission intensity, while MEL becomes positive when electroluminescence quantum efficiency increases. The MC has a much narrower width than the MEL, indicating that the MC and MEL do not share a common origin. However, MC reverses and has the same width as MEL when the device is exposed to a threshold laser power. For the vertical PLEC, characterized by a large dissociation rate, MC and MEL are positive and have the same width. We discuss the results using the existing MFE mechanism in OLEDs. We show that the PP model can explain the positive MEL and MC, while the negative MC can be explained by the bipolaron model. Finally, we present a possibility to complete an all-organic PLEC magnetic sensor by using an inkjet printer.

  13. Reduction of Fe(III) colloids by Shewanella putrefaciens: A kinetic model

    NASA Astrophysics Data System (ADS)

    Bonneville, Steeve; Behrends, Thilo; van Cappellen, Philippe; Hyacinthe, Christelle; Röling, Wilfred F. M.

    2006-12-01

    A kinetic model for the microbial reduction of Fe(III) oxyhydroxide colloids in the presence of excess electron donor is presented. The model assumes a two-step mechanism: (1) attachment of Fe(III) colloids to the cell surface and (2) reduction of Fe(III) centers at the surface of attached colloids. The validity of the model is tested using Shewanella putrefaciens and nanohematite as model dissimilatory iron reducing bacteria and Fe(III) colloidal particles, respectively. Attachment of nanohematite to the bacteria is formally described by a Langmuir isotherm. Initial iron reduction rates are shown to correlate linearly with the relative coverage of the cell surface by nanohematite particles, hence supporting a direct electron transfer from membrane-bound reductases to mineral particles attached to the cells. Using internally consistent parameter values for the maximum attachment capacity of Fe(III) colloids to the cells, Mmax, the attachment constant, KP, and the first-order Fe(III) reduction rate constant, k, the model reproduces the initial reduction rates of a variety of fine-grained Fe(III) oxyhydroxides by S. putrefaciens. The model explains the observed dependency of the apparent Fe(III) half-saturation constant, Km∗, on the solid to cell ratio, and it predicts that initial iron reduction rates exhibit saturation with respect to both the cell density and the abundance of the Fe(III) oxyhydroxide substrate.

  14. Wood formation from the base to the crown in Pinus radiata: gradients of tracheid wall thickness, wood density, radial growth rate and gene expression

    Treesearch

    Sheree Cato; Lisa McMillan; Lloyd Donaldson; Thomas Richardson; Craig Echt; Richard Gardner

    2006-01-01

    Wood formation was investigated at five heights along the bole for two unrelated trees of Pinus radiataBoth trees showed clear gradients in wood properties from the base to the crown. Cambial cells at the base of the tree were dividing 3.3-fold slower than those at the crown, while the average thickness of cell walls in wood was highest at the base....

  15. Fuel cell power plants for automotive applications

    NASA Astrophysics Data System (ADS)

    McElroy, J. F.

    1983-02-01

    While the Solid Polymer Electrolyte (SPE) fuel cell has until recently not been considered competitive with such commercial and industrial energy systems as gas turbine generators and internal combustion engines, electrical current density improvements have markedly improved the capital cost/kW output rating performance of SPE systems. Recent studies of SPE fuel cell applicability to vehicular propulsion have indicated that with adequate development, a powerplant may be produced which will satisfy the performance, size and weight objectives required for viable electric vehicles, and that the cost for such a system would be competitive with alternative advanced power systems.

  16. Improved Performance of Ionic Liquid Supercapacitors by using Tetracyanoborate Anions.

    PubMed

    Martins, Vitor L; Rennie, Anthony J R; Sanchez-Ramirez, Nedher; Torresi, Roberto M; Hall, Peter J

    2018-02-01

    Supercapacitors are energy storage devices designed to operate at higher power densities than conventional batteries, but their energy density is still too low for many applications. Efforts are made to design new electrolytes with wider electrochemical windows than aqueous or conventional organic electrolytes in order to increase energy density. Ionic liquids (ILs) with wide electrochemical stability windows are excellent candidates to be employed as supercapacitor electrolytes. ILs containing tetracyanoborate anions [B(CN) 4 ] offer wider electrochemical stability than conventional electrolytes and maintain a high ionic conductivity (6.9 mS cm -1 ). Herein, we report the use of ILs containing the [B(CN) 4 ] anion for such an application. They presented a high maximum operating voltage of 3.7 V, and two-electrode devices demonstrate high specific capacitances even when operating at relatively high rates (ca. 20 F g -1 @ 15 A g -1 ). This supercapacitor stored more energy and operated at a higher power at all rates studied when compared with cells using a commonly studied ILs.

  17. High-rate nano-crystalline Li 4Ti 5O 12 attached on carbon nano-fibers for hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Naoi, Katsuhiko; Ishimoto, Shuichi; Isobe, Yusaku; Aoyagi, Shintaro

    A lithium titanate (Li 4Ti 5O 12)-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li 4Ti 5O 12 electrode has a unique nano-structure consisting of unusually small nano-crystalline Li 4Ti 5O 12 (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li 4Ti 5O 12/CNF). This nano-structured nc-Li 4Ti 5O 12/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 °C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li 4Ti 5O 12/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L -1 and high power density of 7.5 kW L -1 comparable to conventional EDLCs.

  18. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.

    PubMed

    Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu

    2016-07-20

    Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.

  19. ALK5 inhibition maintains islet endothelial cell survival but does not enhance islet graft revascularisation or function.

    PubMed

    King, A J F; Clarkin, C E; Austin, A L F; Ajram, L; Dhunna, J K; Jamil, M O; Ditta, S I; Ibrahim, S; Raza, Z; Jones, P M

    2015-01-01

    Islet transplantation is a potential treatment for Type 1 diabetes but long term graft function is suboptimal. The rich supply of intraislet endothelial cells diminishes rapidly after islet isolation and culture, which affects the revascularisation rate of islets after transplantation. The ALK5 pathway inhibits endothelial cell proliferation and thus inhibiting ALK5 is a potential target for improving endothelial cell survival. The aim of the study was to establish whether ALK5 inhibition prevents the loss of intraislet endothelial cells during islet culture and thus improves the functional survival of transplanted islets by enhancing their subsequent revascularisation after implantation. Islets were cultured for 48 h in the absence or presence of 2 different ALK inhibitors: SB-431542 or A-83-01. Their vascular density after culture was analysed using immunohistochemistry. Islets pre-cultured with the ALK5 inhibitors were implanted into streptozotocin-diabetic mice for either 3 or 7 days and blood glucose concentrations were monitored and vascular densities of the grafts were analysed. Islets cultured with ALK5 inhibitors had higher vascular densities than control-cultured islets. Three days after implantation, endothelial cell numbers in islet grafts were minimal, irrespective of treatment during culture. Seven days after implantation, endothelial cells were evident within the islet grafts but there was no difference between control-cultured islets and islets pre-treated with an ALK5 inhibitor. Blood glucose concentrations were no different between the treatment groups. In conclusion, inhibition of ALK5 improved intraislet endothelial cell numbers after islet culture, but this effect was lost in the early post-transplantation period. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Curcumin Chemosensitizes 5-Fluorouracil Resistant MMR-Deficient Human Colon Cancer Cells in High Density Cultures

    PubMed Central

    Shakibaei, Mehdi; Buhrmann, Constanze; Kraehe, Patricia; Shayan, Parviz; Lueders, Cora; Goel, Ajay

    2014-01-01

    Objective Treatment of colorectal cancer (CRC) remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU)-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50–60%. Cancer stem cells (CSC) are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin) in context of DNA mismatch repair (MMR) status and CSC activity in 3D cultures of CRC cells. Methods High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3) and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R) were treated with 5-FU either without or with curcumin in time- and dose-dependent assays. Results Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting. Conclusion Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population. (246 words in abstract). PMID:24404205

  1. Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures.

    PubMed

    Shakibaei, Mehdi; Buhrmann, Constanze; Kraehe, Patricia; Shayan, Parviz; Lueders, Cora; Goel, Ajay

    2014-01-01

    Treatment of colorectal cancer (CRC) remains a clinical challenge, as more than 15% of patients are resistant to 5-Fluorouracil (5-FU)-based chemotherapeutic regimens, and tumor recurrence rates can be as high as 50-60%. Cancer stem cells (CSC) are capable of surviving conventional chemotherapies that permits regeneration of original tumors. Therefore, we investigated the effectiveness of 5-FU and plant polyphenol (curcumin) in context of DNA mismatch repair (MMR) status and CSC activity in 3D cultures of CRC cells. High density 3D cultures of CRC cell lines HCT116, HCT116+ch3 (complemented with chromosome 3) and their corresponding isogenic 5-FU-chemo-resistant derivative clones (HCT116R, HCT116+ch3R) were treated with 5-FU either without or with curcumin in time- and dose-dependent assays. Pre-treatment with curcumin significantly enhanced the effect of 5-FU on HCT116R and HCR116+ch3R cells, in contrast to 5-FU alone as evidenced by increased disintegration of colonospheres, enhanced apoptosis and by inhibiting their growth. Curcumin and/or 5-FU strongly affected MMR-deficient CRC cells in high density cultures, however MMR-proficient CRC cells were more sensitive. These effects of curcumin in enhancing chemosensitivity to 5-FU were further supported by its ability to effectively suppress CSC pools as evidenced by decreased number of CSC marker positive cells, highlighting the suitability of this 3D culture model for evaluating CSC marker expression in a close to vivo setting. Our results illustrate novel and previously unrecognized effects of curcumin in enhancing chemosensitization to 5-FU-based chemotherapy on DNA MMR-deficient and their chemo-resistant counterparts by targeting the CSC sub-population. (246 words in abstract).

  2. Effects of Microcystis on development of early life stage Japanese medaka (Oryzias latipes): Comparative toxicity of natural blooms, cultured Microcystis and microcystin-LR.

    PubMed

    Saraf, Spencer R; Frenkel, Amy; Harke, Matthew J; Jankowiak, Jennifer G; Gobler, Christopher J; McElroy, Anne E

    2018-01-01

    Freshwater cyanobacterial harmful algal blooms (CyanoHABs) caused by algae in the genus Microcystis have been increasing in frequency and severity in recent decades. Microcystis blooms threaten aquatic organisms through effects associated with the rapid increase of biomass and the production of the hepatotoxin microcystin (MC) by toxic strains. Among fish, effects of blooms are likely to be more severe for early life stages, and physiological impacts on this life stage could significantly impact recruitment and fish populations. This study explores the effects of Microcystis blooms on the development of fish using the model organism, the Japanese medaka (Oryzias latipes), under realistic exposure conditions. Medaka embryos were exposed to natural blooms collected from New York City (USA) lakes, lab cultures of Microcystis, and MC-LR solutions. Field collected samples were more toxic than lab cultures (even when compared at the same algal density or MC concentration), causing decreased survival, premature time to hatch, reduced body length, yolk sac edema, and decreased heart rate, while lab culture exposures only resulted in bradycardia. Heart rate was the most sensitive endpoint measured, being depressed in embryos exposed to both lab cultures and field collected blooms. Generalized linear model analysis indicated bradycardia was statistically associated with both cell densities of blooms and MC concentrations, while single factor analysis indicated that MC concentrations had a stronger correlation compared to cell densities. However, MC exposure could not fully explain the effects observed, as exposures to MC-LR solutions alone were not able to reduce heart rate as severely as algal exposures. Collectively, these experiments indicate that factors beyond exposure to MC or even isolated Microcystis strains influence heart rate of fish exposed to Microcystis blooms. Enhanced mortality, depressed heart rate, and abnormal development observed in response to environmentally realistic exposures of Microcystis blooms could affect success of fish at both individual or population levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Design and validation of a pulsatile perfusion bioreactor for 3D high cell density cultures.

    PubMed

    Chouinard, Julie A; Gagnon, Serge; Couture, Marc G; Lévesque, Alain; Vermette, Patrick

    2009-12-15

    This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real-time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate. In this bioreactor system, cells are cultured in a gel within a chamber perfused by a culture medium fed by hollow fibers. Human umbilical vein endothelial cells (HUVEC) suspended in fibrin were found to be living, making connections and proliferating up to five to six times their initial seeding number after a 48-h culture period. Cells were uniformly dispersed within the 14.40 mm x 17.46 mm x 6.35 mm chamber. A larger fraction of the cells suspended in 6.35-mm thick gels and cultured in a traditional CO(2) incubator were found to be round and dead [corrected]. In control experiments carried out in a traditional cell culture incubator, the scarcely found living cells were mostly on top of the gels, while cells cultured under perfusion bioreactor conditions were found to be alive and uniformly distributed across the gel. 2009 Wiley Periodicals, Inc.

  4. Degradation behavior of, and tissue response to photo-crosslinked poly(trimethylene carbonate) networks.

    PubMed

    Rongen, Jan J; van Bochove, Bas; Hannink, Gerjon; Grijpma, Dirk W; Buma, Pieter

    2016-11-01

    Photo-crosslinked networks prepared from three-armed methacrylate functionalized PTMC oligomers (PTMC-tMA macromers) are attractive materials for developing an anatomically correct meniscus scaffold. In this study, we evaluated cell specific biocompatibility, in vitro and in vivo degradation behavior of, and tissue response to, such PTMC networks. By evaluating PTMC networks prepared from PTMC-tMA macromers of different molecular weights, we were able to assess the effect of macromer molecular weight on the degradation rate of the PTMC network obtained after photo-crosslinking. Three photo-crosslinked networks with different crosslinking densities were prepared using PTMC-tMA macromers with molecular weights 13.3, 17.8, and 26.7 kg/mol. Good cell biocompatibility was demonstrated in a proliferation assay with synovium derived cells. PTMC networks degraded slowly, but statistically significant, both in vitro as well as subcutaneously in rats. Networks prepared from macromers with higher molecular weights demonstrated increased degradation rates compared to networks prepared from initial macromers of lowest molecular weight. The degradation process took place via surface erosion. The PTMC networks showed good tissue tolerance during subcutaneous implantation, to which the tissue response was characterized by the presence of fibrous tissue and encapsulation of the implants. Concluding, we developed cell and tissue biocompatible, photo-crosslinked PTMC networks using PTMC-tMA macromers with relatively high molecular weights. These photo-crosslinked PTMC networks slowly degrade by a surface erosion process. Increasing the crosslinking density of these networks decreases the rate of surface degradation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2823-2832, 2016. © 2016 Wiley Periodicals, Inc.

  5. Dynamics of Superoxide Production and Decay in Natural Trichodesmium Colonies from the Sargasso Sea: Implications for Cell Signaling

    NASA Astrophysics Data System (ADS)

    Hansel, C. M.; Buchwald, C.; Diaz, J. M.; Dyhrman, S.; Van Mooy, B. A. S.

    2014-12-01

    Reactive oxygen species (ROS) are key players in the biogeochemistry of the ocean, where they serve a critical role in the cycling of carbon and metals. Research in the past decade has introduced phytoplankton and, most recently, heterotrophic bacteria as significant sources of ROS, including superoxide, within both photic and aphotic regions of the ocean. ROS are both beneficial and detrimental to life. For instance, superoxide is a vital inter- and intra-cellular signaling molecule, yet at high concentrations it induces lipid peroxidation and initiates programmed cell death (PCD). In fact, superoxide has been implicated in PCD in the nitrogen-fixing diazotroph Trichodesmium, presumably leading to the demise of blooms within oligotrophic marine systems. Here, we explore the rates of superoxide production and decay by natural Trichodesmium populations obtained from various surface waters in the Sargasso Sea. We investigate also the role of light and colony density and morphology (puff v. raft) on superoxide fluxes. We find that Trichodesmium colonies produce extracellular superoxide at extremely high rates in the dark that are on par with those of the toxic raphidophyte Chattonella. The rates of superoxide production, however, rapidly decline with increasing cell density pointing to a role for superoxide in cell signaling in these organisms. We also find extremely rapid extracellular superoxide degradation by Trichodesmium. Together, this likely reflects a need for these organisms to maintain ROS at levels that will support signaling but below the threshold level that triggers PCD or oxidative damage. We also show differences in the effect of light on superoxide fluxes as a function of Trichodesmium colony morphology, suggesting differences in either colony physiology or associated bacterial symbionts. These findings point to complex physiological, ecological, and physical influences on ROS dynamics in phytoplankton that require further exploration.

  6. Laser processing of thick Li(NiMnCo)O2 electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Rakebrandt, J.-H.; Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.

    2017-02-01

    Lithium-ion batteries became the most promising types of mobile energy storage devices due to their high gravimetric and volumetric capacity, high cycle life-time, and low self-discharge. Nowadays, the cathode material lithium nickel manganese cobalt oxide (NMC) is one of the most widely used cathode material in commercial lithium-ion batteries due to many advantages such as high energy density (>150 Wh kg-1) on cell level, high power density (650 W kg-1 @ 25 °C and 50 % Depth of Discharge) [1], high specific capacity (163 mAh g-1) [2], high rate capability and good thermal stability in the fully charged state. However, in order to meet the requirements for the increasing demand for rechargeable high energy batteries, nickel-rich NMC electrodes with specific capacities up to 210 mAh g-1 seem to be the next generation cathodes which can reach on cell level desired energy densities higher than 250 Wh kg-1 [3]. Laser-structuring now enables to combine both concepts, high power and high energy lithium-ion batteries. For this purpose, lithium nickel manganese cobalt oxide cathodes were produced via tape casting containing 85-90 wt% of active material with a film thickness of 50-260 μm. The specific capacities were measured using galvanostatic measurements for different types of NMC with varying nickel, manganese and cobalt content at different charging/discharging currents ("C-rates"). An improved lithium-ion diffusion kinetics due to an increased active surface area could be achieved by laser-assisted generating of three dimensional architectures. Cells with unstructured and structured cathodes were compared. Ultrafast laser ablation was used in order to avoid a thermal impact to the material. It was shown that laser structuring of electrode materials leads to a significant improvement in electrochemical performance, especially at high charging and discharging C-rates.

  7. EXPERIMENTAL SUBSTANTIATION OF PERMEABILIZED HEPATOCYTES MODEL FOR INVESTIGATION OF MITOCHONDRIA IN SITU RESPIRATION.

    PubMed

    Merlavsky, V M; Manko, B O; Ikkert, O V; Manko, V V

    2015-01-01

    To verify experimentally the model of permeabilized hepatocytes, the degree of cell permeability was assessed using trypan blue and polarographycally determined cell respiration rate upon succinate (0.35 mM) and a-ketoglutarate (1 mM) oxidation. Oxidative phosphorylation was stimulated by ADP (750 μM). Hepatocyte permeabilization depends on digitonin concentraion in medium and on the number of cells in suspension. Thus, the permeabilization of 0.9-1.7 million cells/ml was completed by 25 μg/ml of digitonin, permeabilization of 2.0-3.0 million cells/ml--by 50 μg/ml of digitonin and permeabilization of 4.0-5.6 million cells/ml--by 100 μg/ml. Thus, the higher is the suspension density, the higher digitonin concentration is required. Treatment of hepatocytes with digitonin resulted in a decrease of endogenous respiration rate to a minimum upon 20-22 μg of digitonin per 1 million cells. Supplementation of permeabilized hepatocytes with α-ketoglutarate maintained stable respiration rate, on the level higher than endogenous respiration at the corresponding digitonin concentration, unlike the intact cells. Respiration rate of permeabilized hepatocytes at the simultaneous addition of α-ketoglutarate and ADP increased to the level of intact cell respiration, irrespective of digitonin concentration. Addition of solely succinate and especially succinate plus ADP markedly intensified the respiration of permeabilized hepatocytes to the level higher than that of intact cells. The dependence of succinate-stimulated respiration on digitonin concentration reached maximum at 20-22 αg of digitonin per 1 million cells. Optimal ratio of digitonin amount and the cell number in suspension is expected to be different in various tissues.

  8. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas.

    PubMed Central

    Wiggins, D; Gibbons, G F

    1992-01-01

    In hepatocyte cultures maintained in the absence of extracellular fatty acids, at least 70% of the secreted very-low-density lipoprotein (VLDL) triacylglycerol was derived via lipolysis of intracellular triacylglycerol. This proportion was unchanged when the cells were exposed for 24 h to insulin or glucagon, hormones which decreased the overall secretion of intracellular triacylglycerol, or to chloroquine or tolbutamide, agents which inhibit lysosomal lipolysis. The rate of intracellular lipolysis was 2-3-fold greater than that required to maintain the observed rate of triacylglycerol secretion. Most of the fatty acids released were returned to the intracellular pool. Neither insulin nor glucagon had any significant effect on the overall lipolysis and re-esterification of intracellular triacylglycerol. In these cases a greater proportion of the released fatty acids re-entered the cellular pool, rather than being recruited for VLDL assembly. Tolbutamide inhibited intracellular lipolysis, but suppressed VLDL secretion to a greater extent. 3,5-Dimethylpyrazole did not affect lipolysis or VLDL secretion. The increased secretion of VLDL triacylglycerol observed after exposure of cells to insulin for 3 days was not accompanied by an increased rate of intracellular lipolysis. However, a larger proportion of the triacylglycerol secreted under these conditions may not have undergone prior lipolysis. PMID:1599431

  9. Low-level laser therapy with helium-neon laser improved viability of osteoporotic bone marrow-derived mesenchymal stem cells from ovariectomy-induced osteoporotic rats

    NASA Astrophysics Data System (ADS)

    Fallahnezhad, Somaye; Piryaei, Abbas; Tabeie, Faraj; Nazarian, Hamid; Darbandi, Hasan; Amini, Abdoldllah; Mostafavinia, Ataroalsadat; Ghorishi, Seyed Kamran; Jalalifirouzkouhi, Ali; Bayat, Mohammad

    2016-09-01

    The purpose of this study was to evaluate the influences of helium-neon (He-Ne) and infrared (IR) lasers on the viability and proliferation rate of healthy and ovariectomy-induced osteoporotic (OVX) bone marrow mesenchymal stem cells (BMMSCs) in vitro. MSCs harvested from the BM of healthy and OVX rats were culture expanded. He-Ne and IR lasers were applied three times at energy densities of 0.6, 1.2, and 2.4 J/cm2 for BMMSCs. BMMSCs viability and proliferation rate were evaluated by MTT assay on days 2, 4, 6, 14, and 21. The results showed that healthy BMMSCs responded optimally to 0.6 J/cm2 using an IR laser after three times of laser radiation. Moreover, it was found that OVX-BMMSCs responded optimally to 0.6 J/cm2 with He-Ne laser and one-time laser radiation. It is concluded that the low-level laser therapy (LLLT) effect depends on the physiological state of the BMMSCs, type of the laser, wavelength, and number of laser sessions. The biostimulation efficiency of LLLT also depends on the delivered energy density. LLLT can enhance the viability and proliferation rate of healthy and especially osteoporotic autologous BMMSCs, which could be very useful in regenerative medicine.

  10. Algal culture studies related to a closed ecological life support system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.

    1984-01-01

    Studies on the steady-state long-term (4 month) culture of Scenedesmus obliquus algae, maintained in an annular air-lift column operated as a turbidostat, were carried out to evaluate the life-supporting possibilities of this system. Chlorophyll production and cell number as functions of the dry weight were linear at constant illumination. Productivity (measured as the product of dry weight, mg/ml, and the growth rate, ml/hr) vs. dry weight rose linearly until the cell density reached a level at which light became limiting (89 percent absorption of the photosynthetically active radiation). In the initial, linear portion of the curve, the productivity was limited by cell growth at the given light intensity. The maximum dilution rate of the system corresponded to the doubling time of 13.4 hr, about half the maximum rate, with a productivity of 80 percent of the maximum theoretical productivity. The high light utilization efficiencies were contributed by the low (10 percent of full sunlight) incident intensities.

  11. Time-lapse microscopy and image processing for stem cell research: modeling cell migration

    NASA Astrophysics Data System (ADS)

    Gustavsson, Tomas; Althoff, Karin; Degerman, Johan; Olsson, Torsten; Thoreson, Ann-Catrin; Thorlin, Thorleif; Eriksson, Peter

    2003-05-01

    This paper presents hardware and software procedures for automated cell tracking and migration modeling. A time-lapse microscopy system equipped with a computer controllable motorized stage was developed. The performance of this stage was improved by incorporating software algorithms for stage motion displacement compensation and auto focus. The microscope is suitable for in-vitro stem cell studies and allows for multiple cell culture image sequence acquisition. This enables comparative studies concerning rate of cell splits, average cell motion velocity, cell motion as a function of cell sample density and many more. Several cell segmentation procedures are described as well as a cell tracking algorithm. Statistical methods for describing cell migration patterns are presented. In particular, the Hidden Markov Model (HMM) was investigated. Results indicate that if the cell motion can be described as a non-stationary stochastic process, then the HMM can adequately model aspects of its dynamic behavior.

  12. Changes of buoyant density during the S-phase of the cell cycle. Direct evidence demonstrated in acute myeloid leukemia by flowcytometry.

    PubMed

    Daenen, S; Huiges, W; Modderman, E; Halie, M R

    1993-01-01

    Studies with synchronized or exponentially growing bacteria and mammalian cell lines are not able to demonstrate small changes in buoyant density during the cell cycle. Flowcytometric analysis of density separated acute myeloid leukemia cells, a system not dependent on time-related variables, shows that the cellular buoyant density increases slightly with up to 0.008 g/ml during the S-phase, at least in cryo-preserved cells used in this study. This contrasts with the generally accepted belief that S-phase cells have a lower or constant buoyant density. A practical implication is that separation of cell (sub)populations based on differences in buoyant density could be flawed to the extent that these populations contain S-phase cells.

  13. Sinking towards destiny: High throughput measurement of phytoplankton sinking rates through time-resolved fluorescence plate spectroscopy.

    PubMed

    Bannon, Catherine C; Campbell, Douglas A

    2017-01-01

    Diatoms are marine primary producers that sink in part due to the density of their silica frustules. Sinking of these phytoplankters is crucial for both the biological pump that sequesters carbon to the deep ocean and for the life strategy of the organism. Sinking rates have been previously measured through settling columns, or with fluorimeters or video microscopy arranged perpendicularly to the direction of sinking. These side-view techniques require large volumes of culture, specialized equipment and are difficult to scale up to multiple simultaneous measures for screening. We established a method for parallel, large scale analysis of multiple phytoplankton sinking rates through top-view monitoring of chlorophyll a fluorescence in microtitre well plates. We verified the method through experimental analysis of known factors that influence sinking rates, including exponential versus stationary growth phase in species of different cell sizes; Thalassiosira pseudonana CCMP1335, chain-forming Skeletonema marinoi RO5A and Coscinodiscus radiatus CCMP312. We fit decay curves to an algebraic transform of the decrease in fluorescence signal as cells sank away from the fluorometer detector, and then used minimal mechanistic assumptions to extract a sinking rate (m d-1) using an RStudio script, SinkWORX. We thereby detected significant differences in sinking rates as larger diatom cells sank faster than smaller cells, and cultures in stationary phase sank faster than those in exponential phase. Our sinking rate estimates accord well with literature values from previously established methods. This well plate-based method can operate as a high throughput integrative phenotypic screen for factors that influence sinking rates including macromolecular allocations, nutrient availability or uptake rates, chain-length or cell size, degree of silification and progression through growth stages. Alternately the approach can be used to phenomically screen libraries of mutants.

  14. Force Dependent Internalization of Magnetic Nanoparticles Results in Highly Loaded Endothelial Cells for Use as Potential Therapy Delivery Vectors

    PubMed Central

    MacDonald, Cristin; Barbee, Kenneth

    2015-01-01

    Purpose To investigate the kinetics, mechanism and extent of MNP loading into endothelial cells and the effect of this loading on cell function. Methods MNP uptake was examined under field on/off conditions, utilizing varying magnetite concentration MNPs. MNP-loaded cell viability and functional integrity was assessed using metabolic respiration, cell proliferation and migration assays. Results MNP uptake in endothelial cells significantly increased under the influence of a magnetic field versus non-magnetic conditions. Larger magnetite density of the MNPs led to a higher MNP internalization by cells under application of a magnetic field without compromising cellular respiration activity. Two-dimensional migration assays at no field showed that higher magnetite loading resulted in greater cell migration rates. In a three-dimensional migration assay under magnetic field, the migration rate of MNP-loaded cells was more than twice that of unloaded cells and was comparable to migration stimulated by a serum gradient. Conclusions Our results suggest that endothelial cell uptake of MNPs is a force dependent process. The in vitro assays determined that cell health is not adversely affected by high MNP loadings, allowing these highly magnetically responsive cells to be potentially beneficial therapy (gene, drug or cell) delivery systems. PMID:22234617

  15. Cerebellar stem cells do not produce neurons and astrocytes in adult mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xin; Guan, Wuqiang; Yu, Yong-Chun

    Highlights: • No new neurons and astrocytes are generated in adult mouse cerebellum. • Very few mash1{sup +} or nestin{sup +} stem cells exist, and most of them are quiescent. • Cell proliferation rate is diversified among cerebellar regions and decreases over time. - Abstract: Although previous studies implied that cerebellar stem cells exist in some adult mammals, little is known about whether these stem cells can produce new neurons and astrocytes. In this study by bromodeoxyuridine (BrdU) intraperitoneal (i.p.) injection, we found that there are abundant BrdU{sup +} cells in adult mouse cerebellum, and their quantity and density decreasesmore » significantly over time. We also found cell proliferation rate is diversified in different cerebellar regions. Among these BrdU{sup +} cells, very few are mash1{sup +} or nestin{sup +} stem cells, and the vast majority of cerebellar stem cells are quiescent. Data obtained by in vivo retrovirus injection indicate that stem cells do not produce neurons and astrocytes in adult mouse cerebellum. Instead, some cells labeled by retrovirus are Iba1{sup +} microglia. These results indicate that very few stem cells exist in adult mouse cerebellum, and none of these stem cells contribute to neurogenesis and astrogenesis under physiological condition.« less

  16. Human embryonic and induced pluripotent stem cell-derived cardiomyocytes exhibit beat rate variability and power-law behavior.

    PubMed

    Mandel, Yael; Weissman, Amir; Schick, Revital; Barad, Lili; Novak, Atara; Meiry, Gideon; Goldberg, Stanislav; Lorber, Avraham; Rosen, Michael R; Itskovitz-Eldor, Joseph; Binah, Ofer

    2012-02-21

    The sinoatrial node is the main impulse-generating tissue in the heart. Atrioventricular conduction block and arrhythmias caused by sinoatrial node dysfunction are clinically important and generally treated with electronic pacemakers. Although an excellent solution, electronic pacemakers incorporate limitations that have stimulated research on biological pacing. To assess the suitability of potential biological pacemakers, we tested the hypothesis that the spontaneous electric activity of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) exhibit beat rate variability and power-law behavior comparable to those of human sinoatrial node. We recorded extracellular electrograms from hESC-CMs and iPSC-CMs under stable conditions for up to 15 days. The beat rate time series of the spontaneous activity were examined in terms of their power spectral density and additional methods derived from nonlinear dynamics. The major findings were that the mean beat rate of hESC-CMs and iPSC-CMs was stable throughout the 15-day follow-up period and was similar in both cell types, that hESC-CMs and iPSC-CMs exhibited intrinsic beat rate variability and fractal behavior, and that isoproterenol increased and carbamylcholine decreased the beating rate in both hESC-CMs and iPSC-CMs. This is the first study demonstrating that hESC-CMs and iPSC-CMs exhibit beat rate variability and power-law behavior as in humans, thus supporting the potential capability of these cell sources to serve as biological pacemakers. Our ability to generate sinoatrial-compatible spontaneous cardiomyocytes from the patient's own hair (via keratinocyte-derived iPSCs), thus eliminating the critical need for immunosuppression, renders these myocytes an attractive cell source as biological pacemakers.

  17. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hansen; Lin, Dingchang; Liu, Yayuan

    Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zeromore » volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.« less

  18. Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework

    DOE PAGES

    Wang, Hansen; Lin, Dingchang; Liu, Yayuan; ...

    2017-09-08

    Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zeromore » volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.« less

  19. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  20. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions.

    PubMed

    Fang, Zhou; Song, Hai-Liang; Cang, Ning; Li, Xian-Ning

    2015-06-15

    Microbial fuel cells (MFCs) have got tremendous attention for their capability to enhance the degradation of some recalcitrant pollutants and simultaneous electricity production. A microbial fuel cell coupled constructed wetland (CW-MFC) is a new device to treat the wastewater and produce energy which has more wastewater treatment volume and more easily to maintenance than others MFCs. The studies on the performance of CW-MFCs are necessary. In this work, the effects of hydraulic residence time (HRT), reactive brilliant red X-3B (ABRX3) proportion and COD concentration on the electricity production of CW-MFC and the degradation characteristics of ABRX3 were investigated. The decolorization rate and the electricity production increased to a peak before slowing down with the elongation of HRT. The highest decolorization rate and electricity production were obtained when HRT was 3 days. The ABRX3 proportion (calculated as COD) in the wastewater played an important role in decolorization and electricity production, which may influence the distribution of electrons in the system. The power density of CW-MFC and the decolorization rate decreased concomitantly with an increasing ABRX3 proportion. The COD concentration influenced the CW-MFC performance slightly. The highest decolorization rate and power density reached 95.6% and 0.852 W/m(3), respectively, when the COD concentration was 300 mg/L while the ABRX3 proportion was 30%. The coulombic efficiency of the CW-MFC depended on glucose and ABRX3 proportions in the wastewater. ABRX3 acquired more electrons than the anode. Further investigations are needed to optimize CW-MFC performance and explain the mechanism of biorefractory compounds degradation and electron motion in CW-MFCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Analysis of geometric and electrochemical characteristics of lithium cobalt oxide electrode with different packing densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Cheolwoong; Yan, Bo; Kang, Huixiao

    2016-08-06

    In order to investigate geometric and electrochemical characteristics of Li ion battery electrode with different packing densities, lithium cobalt oxide (LiCoO 2) cathode electrodes were fabricated from a 94:3:3 (wt%) mixture of LiCoO 2, polymeric binder, and super-P carbon black and calendered to different densities. A synchrotron X-ray nano-computed tomography system with a spatial resolution of 58.2 nm at the Advanced Photon Source of the Argonne National Laboratory was employed to obtain three dimensional morphology data of the electrodes. The morphology data were then quantitatively analyzed to characterize their geometric properties, such as porosity, tortuosity, specific surface area, and poremore » size distribution. The geometric and electrochemical analysis reveal that high packing density electrodes have smaller average pore size and narrower pore size distribution, which improves the electrical contact between carbon-binder matrix and LiCoO 2 particles. The better contact improves the capacity and rate capability by reducing the possibility of electrically isolated LiCoO 2 particles and increasing the electrochemically active area. The results show that increase of packing density results in higher tortuosity, but electrochemically active area is more crucial to cell performance than tortuosity at up to 3.6 g/cm 3 packing density and 4 C rate.« less

  2. Detection and quantification of subtle changes in red blood cell density using a cell phone.

    PubMed

    Felton, Edward J; Velasquez, Anthony; Lu, Shulin; Murphy, Ryann O; ElKhal, Abdala; Mazor, Ofer; Gorelik, Pavel; Sharda, Anish; Ghiran, Ionita C

    2016-08-16

    Magnetic levitation has emerged as a technique that offers the ability to differentiate between cells with different densities. We have developed a magnetic levitation system for this purpose that distinguishes not only different cell types but also density differences in cells of the same type. This small-scale system suspends cells in a paramagnetic medium in a capillary placed between two rare earth magnets, and cells levitate to an equilibrium position determined solely by their density. Uniform reference beads of known density are used in conjunction with the cells as a means to quantify their levitation positions. In one implementation images of the levitating cells are acquired with a microscope, but here we also introduce a cell phone-based device that integrates the magnets, capillary, and a lens into a compact and portable unit that acquires images with the phone's camera. To demonstrate the effectiveness of magnetic levitation in cell density analysis we carried out levitation experiments using red blood cells with artificially altered densities, and also levitated those from donors. We observed that we can distinguish red blood cells of an anemic donor from those that are healthy. Since a plethora of disease states are characterized by changes in cell density magnetic cell levitation promises to be an effective tool in identifying and analyzing pathologic states. Furthermore, the low cost, portability, and ease of use of the cell phone-based system may potentially lead to its deployment in low-resource environments.

  3. A High-Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C.

    PubMed

    Wu, Wei; Zhang, Yunya; Ding, Dong; He, Ting

    2018-01-01

    Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple-phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result in poor fuel utilization. To address the challenges of low carbon oxidation activity and low carbon utilization, a highly efficient, 3D solid-state architected anode is developed to enhance the performance of DCFCs below 600 °C. The cell with the 3D textile anode framework, Gd:CeO 2 -Li/Na 2 CO 3 composite electrolyte, and Sm 0.5 Sr 0.5 CoO 3 cathode demonstrates excellent performance with maximum power densities of 143, 196, and 325 mW cm -2 at 500, 550, and 600 °C, respectively. At 500 °C, the cells can be operated steadily with a rated power density of ≈0.13 W cm -2 at a constant current density of 0.15 A cm -2 with a carbon utilization over 85.5%. These results, for the first time, demonstrate the feasibility of directly electrochemical oxidation of solid carbon at 500-600 °C, representing a promising strategy in developing high-performing fuel cells and other electrochemical systems via the integration of 3D architected electrodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bio-energy generation in an affordable, single-chamber microbial fuel cell integrated with adsorption hybrid system: effects of temperature and comparison study.

    PubMed

    Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy A W; Amin, Mohamed A M; Nolasco-Hipolito, Cirilo; Bujang, Kopli

    2018-04-01

    A microbial fuel cell (MFC) integrated with adsorption system (MFC-AHS) is tested under various operating temperatures with palm oil mill effluent as the substrate. The optimum operating temperature for such system is found to be at ∼35°C with current, power density, internal resistance (R in ), Coulombic efficiency (CE) and maximum chemical oxygen demand (COD) removal of 2.51 ± 0.2 mA, 74 ± 6 mW m -3 , 25.4 Ω, 10.65 ± 0.5% and 93.57 ± 1.2%, respectively. Maximum current density increases linearly with temperature at a rate of 0.1772 mA m -2  °C -1 , whereas maximum power density was in a polynomial function. The temperature coefficient (Q 10 ) is found to be 1.20 between 15°C and 35°C. Present studies have demonstrated better CE performance when compared to other MFC-AHSs. Generally, MFC-AHS has demonstrated higher COD removals when compared to standalone MFC regardless of operating temperatures. ACFF: activated carbon fiber felt; APHA: American Public Health Association; CE: Coulombic efficiency; COD: chemical oxygen demand; ECG: electrocardiogram; GAC: granular activated carbon; GFB: graphite fiber brush; MFC: microbial fuel cell; MFC-AHS: microbial fuel cell integrated with adsorption hybrid system; MFC-GG: microbial fuel cell integrated with graphite granules; POME: palm oil mill effluent; PTFE: polytetrafluoroethylene; SEM: scanning electron microscope.

  5. Planar Diamond-Based Multiarrays to Monitor Neurotransmitter Release and Action Potential Firing: New Perspectives in Cellular Neuroscience.

    PubMed

    Carabelli, Valentina; Marcantoni, Andrea; Picollo, Federico; Battiato, Alfio; Bernardi, Ettore; Pasquarelli, Alberto; Olivero, Paolo; Carbone, Emilio

    2017-02-15

    High biocompatibility, outstanding electrochemical responsiveness, inertness, and transparency make diamond-based multiarrays (DBMs) first-rate biosensors for in vitro detection of electrochemical and electrical signals from excitable cells together, with potential for in vivo applications as neural interfaces and prostheses. Here, we will review the electrochemical and physical properties of various DBMs and how these devices have been employed for recording released neurotransmitter molecules and all-or-none action potentials from living cells. Specifically, we will overview how DBMs can resolve localized exocytotic events from subcellular compartments using high-density microelectrode arrays (MEAs), or monitoring oxidizable neurotransmitter release from populations of cells in culture and tissue slices using low-density MEAs. Interfacing DBMs with excitable cells is currently leading to the promising opportunity of recording electrical signals as well as creating neuronal interfaces through the same device. Given the recent increasingly growing development of newly available DBMs of various geometries to monitor electrical activity and neurotransmitter release in a variety of excitable and neuronal tissues, the discussion will be limited to planar DBMs.

  6. Slow hot carrier cooling in cesium lead iodide perovskites

    NASA Astrophysics Data System (ADS)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi

    2017-10-01

    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  7. Kinetic Monte Carlo Simulations and Molecular Conductance Measurements of the Bacterial Decaheme Cytochrome MtrF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, H. S.; Pirbadian, S.; Nakano, Aiichiro

    2014-09-05

    Microorganisms overcome the considerable hurdle of respiring extracellular solid substrates by deploying large multiheme cytochrome complexes that form 20 nanometer conduits to traffic electrons through the periplasm and across the cellular outer membrane. Here we report the first kinetic Monte Carlo simulations and single-molecule scanning tunneling microscopy (STM) measurements of the Shewanella oneidensis MR-1 outer membrane decaheme cytochrome MtrF, which can perform the final electron transfer step from cells to minerals and microbial fuel cell anodes. We find that the calculated electron transport rate through MtrF is consistent with previously reported in vitro measurements of the Shewanella Mtr complex, asmore » well as in vivo respiration rates on electrode surfaces assuming a reasonable (experimentally verified) coverage of cytochromes on the cell surface. The simulations also reveal a rich phase diagram in the overall electron occupation density of the hemes as a function of electron injection and ejection rates. Single molecule tunneling spectroscopy confirms MtrF's ability to mediate electron transport between an STM tip and an underlying Au(111) surface, but at rates higher than expected from previously calculated heme-heme electron transfer rates for solvated molecules.« less

  8. Role of dissolved oxygen on the degradation mechanism of Reactive Green 19 and electricity generation in photocatalytic fuel cell.

    PubMed

    Lee, Sin-Li; Ho, Li-Ngee; Ong, Soon-An; Wong, Yee-Shian; Voon, Chun-Hong; Khalik, Wan Fadhilah; Yusoff, Nik Athirah; Nordin, Noradiba

    2018-03-01

    In this study, a membraneless photocatalytic fuel cell with zinc oxide loaded carbon photoanode and platinum loaded carbon cathode was constructed to investigate the impact of dissolved oxygen on the mechanism of dye degradation and electricity generation of photocatalytic fuel cell. The photocatalytic fuel cell with high and low aeration rate, no aeration and nitrogen purged were investigated, respectively. The degradation rate of diazo dye Reactive Green 19 and the electricity generation was enhanced in photocatalytic fuel cell with higher dissolved oxygen concentration. However, the photocatalytic fuel cell was still able to perform 37% of decolorization in a slow rate (k = 0.033 h -1 ) under extremely low dissolved oxygen concentration (approximately 0.2 mg L -1 ) when nitrogen gas was introduced into the fuel cell throughout the 8 h. However, the change of the UV-Vis spectrum indicates that the intermediates of the dye could not be mineralized under insufficient dissolved oxygen level. In the aspect of electricity generation, the maximum short circuit current (0.0041 mA cm -2 ) and power density (0.00028 mW cm -2 ) of the air purged photocatalytic fuel cell was obviously higher than that with nitrogen purging (0.0015 mA cm -2 and 0.00008 mW cm -2 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Permeability structure and its influence on microbial activity at off-Shimokita basin, Japan

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Yamada, Y.; Sanada, Y.; Kubo, Y.; Inagaki, F.

    2016-12-01

    The microbial populations and the limit of microbial life are probably limited by chemical, physical, and geological conditions, such as temperature, pore water chemistry, pH, and water activity; however, the key parameters affecting growth in deep subseafloor sediments remain unclarified (Hinrichs and Inagaki 2012). IODP expedition 337 was conducted near a continental margin basin off Shimokita Peninsula, Japan to investigate the microbial activity under deep marine coalbed sediments down to 2500 mbsf. Inagaki et al. (2015) discovered that microbial abundance decreased markedly with depth (the lowest cell density of <1 cell/cm3 was recorded below 2000 mbsf), and that the coal bed layers had relatively higher cell densities. In this study, permeability was measured on core samples from IODP Expedition 337 and Expedition CK06-06 in the D/V Chikyu shakedown cruise. Permeability was measured at in-situ effective pressure condition. Permeability was calculated by the steady state flow method by keeping differential pore pressure from 0.1 to 0.8 MPa.Our results show that the permeability for core samples decreases with depth from 10-16 m2 on the seafloor to 10-20 m2 at the bottom of hole. However, permeability is highly scattered within the coal bed unit (1900 to 2000 mbsf). Permeabilities for sandstone and coal is higher than those for siltstone and shale, therefore the scatter of the permeabilities at the same unit is due to the high variation of lithology. The highest permeability was observed in coal samples and this is probably due to formation of micro cracks (cleats). Permeability estimated from the NMR logging using the empirical parameters is around two orders of magnitude higher than permeability of core samples, even though the relative permeability variation at vertical direction is quite similar between core and logging data.The higher cell density is observed in the relatively permeable formation. On the other hand, the correlation between cell density, water activity, and porosity is not clear. On the assumption that pressure gradient is constant through the depth, flow rate can be proportional to permeability of sediments. Flow rate probably restricts the availability of energy and nutrient for microorganism, therefore permeability might have influenced on the microbial activity in the coalbed basin.

  10. Density-Gradient Mediated Band Extraction of Leukocytes from Whole Blood Using Centrifugo-Pneumatic Siphon Valving on Centrifugal Microfluidic Discs

    PubMed Central

    Kearney, Sinéad M.; Kilcawley, Niamh A.; Early, Philip L.; Glynn, Macdara T.; Ducrée, Jens

    2016-01-01

    Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic “Lab-on-a-Disc” cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are ‘low-pass’, i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both ‘hydrostatically’ and ‘hydrodynamically’ triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, ‘dual siphon’ configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction. PMID:27167376

  11. Rapid determination of cell mass and density using digitally controlled electric field in a microfluidic chip.

    PubMed

    Zhao, Yuliang; Lai, Hok Sum Sam; Zhang, Guanglie; Lee, Gwo-Bin; Li, Wen Jung

    2014-11-21

    The density of a single cell is a fundamental property of cells. Cells in the same cycle phase have similar volume, but the differences in their mass and density could elucidate each cell's physiological state. Here we report a novel technique to rapidly measure the density and mass of a single cell using an optically induced electrokinetics (OEK) microfluidic platform. Presently, single cellular mass and density measurement devices require a complicated fabrication process and their output is not scalable, i.e., it is extremely difficult to measure the mass and density of a large quantity of cells rapidly. The technique reported here operates on a principle combining sedimentation theory, computer vision, and microparticle manipulation techniques in an OEK microfluidic platform. We will show in this paper that this technique enables the measurement of single-cell volume, density, and mass rapidly and accurately in a repeatable manner. The technique is also scalable - it allows simultaneous measurement of volume, density, and mass of multiple cells. Essentially, a simple time-controlled projected light pattern is used to illuminate the selected area on the OEK microfluidic chip that contains cells to lift the cells to a particular height above the chip's surface. Then, the cells are allowed to "free fall" to the chip's surface, with competing buoyancy, gravitational, and fluidic drag forces acting on the cells. By using a computer vision algorithm to accurately track the motion of the cells and then relate the cells' motion trajectory to sedimentation theory, the volume, mass, and density of each cell can be rapidly determined. A theoretical model of micro-sized spheres settling towards an infinite plane in a microfluidic environment is first derived and validated experimentally using standard micropolystyrene beads to demonstrate the viability and accuracy of this new technique. Next, we show that the yeast cell volume, mass, and density could be rapidly determined using this technology, with results comparable to those using the existing method suspended microchannel resonator.

  12. Clonal nature of spontaneously immortalized 3T3 cells.

    PubMed

    Rittling, S R

    1996-11-25

    Mouse embryo fibroblasts (MEFs), when plated at appropriate densities, proliferate vigorously for several passages, and then the growth rate of the culture slows considerably. If the cells are plated at a high enough density and continuously passed, the cultures will eventually overcome this "crisis" period and resume rapid growth. Here, we have addressed the question of what the changes are that cells undergo in overcoming the growth restraints of crisis. Primary MEF cells were infected with a retrovirus which confers G418 resistance and selected in G418. The resultant pre-crisis population comprised cells which each contained a retrovirus integrated at a unique genomic location. These cells were then passed according to the 3T3 protocol until immortal, rapidly growing cells emerged. The integration pattern of the retrovirus in the immortal population was examined. In two independent experiments, the immortal population of cells grown in the presence of G418 comprised two independent clones of cells, with additional clones undetectable at the level of detection of the assays used. The integration pattern was also examined in parallel infected cultures grown in the absence of selection. In one experiment the unselected immortal population contained the same labeled clone that appeared in the sister infected culture, indicating that an immortal precursor was present in the precrisis population. These results are consistent with the idea that a mutation is responsible for the immortal phenotype.

  13. Quantifying T Lymphocyte Turnover

    PubMed Central

    De Boer, Rob J.; Perelson, Alan S.

    2013-01-01

    Peripheral T cell populations are maintained by production of naive T cells in the thymus, clonal expansion of activated cells, cellular self-renewal (or homeostatic proliferation), and density dependent cell life spans. A variety of experimental techniques have been employed to quantify the relative contributions of these processes. In modern studies lymphocytes are typically labeled with 5-bromo-2′-deoxyuridine (BrdU), deuterium, or the fluorescent dye carboxy-fluorescein diacetate succinimidyl ester (CFSE), their division history has been studied by monitoring telomere shortening and the dilution of T cell receptor excision circles (TRECs) or the dye CFSE, and clonal expansion has been documented by recording changes in the population densities of antigen specific cells. Proper interpretation of such data in terms of the underlying rates of T cell production, division, and death has proven to be notoriously difficult and involves mathematical modeling. We review the various models that have been developed for each of these techniques, discuss which models seem most appropriate for what type of data, reveal open problems that require better models, and pinpoint how the assumptions underlying a mathematical model may influence the interpretation of data. Elaborating various successful cases where modeling has delivered new insights in T cell population dynamics, this review provides quantitative estimates of several processes involved in the maintenance of naive and memory, CD4+ and CD8+ T cell pools in mice and men. PMID:23313150

  14. The density of apical cells of dark-grown protonemata of the moss Ceratodon purpureus

    NASA Technical Reports Server (NTRS)

    Schwuchow, J. M.; Kern, V. D.; Wagner, T.; Sack, F. D.

    2000-01-01

    Determinations of plant or algal cell density (cell mass divided by volume) have rarely accounted for the extracellular matrix or shrinkage during isolation. Three techniques were used to indirectly estimate the density of intact apical cells from protonemata of the moss Ceratodon purpureus. First, the volume fraction of each cell component was determined by stereology, and published values for component density were used to extrapolate to the entire cell. Second, protonemal tips were immersed in bovine serum albumin solutions of different densities, and then the equilibrium density was corrected for the mass of the cell wall. Third, apical cell protoplasts were centrifuged in low-osmolarity gradients, and values were corrected for shrinkage during protoplast isolation. Values from centrifugation (1.004 to 1.015 g/cm3) were considerably lower than from other methods (1.046 to 1.085 g/cm3). This work appears to provide the first corrected estimates of the density of any plant cell. It also documents a method for the isolation of protoplasts specifically from apical cells of protonemal filaments.

  15. Complexity of tumor vasculature in clear cell renal cell carcinoma.

    PubMed

    Qian, Chao-Nan; Huang, Dan; Wondergem, Bill; Teh, Bin Tean

    2009-05-15

    Clear cell renal cell carcinoma (CCRCC) is a highly vascularized cancer resistant to conventional chemotherapy and radiotherapy. Antiangiogenic therapy has achieved some effectiveness against this unique malignancy. The complexity of the tumor vasculature in CCRCC has led to differences in correlating tumor microvessel density with patient prognosis. The authors' recent findings demonstrated that there were at least 2 major categories of tumor vessels in CCRCC-namely, undifferentiated and differentiated-correlating with patient prognosis in contrasting ways, with higher undifferentiated vessel density indicating poorer prognosis, and higher differentiated vessel density correlating with better prognosis. Furthermore, the presence of pericytes supporting the differentiated vessels varied in CCRCC. The distributions of pericyte coverage and differentiated vessels in CCRCC were uneven. The tumor margin had a higher pericyte coverage rate for differentiated vessels than did the inner tumor area. The uneven distributions of pericyte coverage and differentiated vessels in CCRCC prompted the authors to revisit the mechanism of tumor central necrosis, which was also known to be a prognostic indicator for CCRCC. The discrepancy of prognostic correlation between protein and messenger RNA levels of vascular endothelial growth factor in CCRCC was discussed. The complexity of the tumor vasculature in CCRCC also led the authors to begin to re-evaluate the therapeutic effects of antiangiogenic agents for each type of tumor vessel, which will in turn significantly broaden understanding of tumor angiogenesis and improve therapeutic effect. (c) 2009 American Cancer Society.

  16. NaK-ATPase pump sites in cultured bovine corneal endothelium of varying cell density at confluence.

    PubMed

    Crawford, K M; Ernst, S A; Meyer, R F; MacCallum, D K

    1995-06-01

    The driving force for ion and water flow necessary for efficient deturgesence of the corneal stroma resides in the ouabain-sensitive sodium (Na) pump of corneal endothelial cells. Using a cell culture model of corneal endothelial cell hypertrophy, the authors examined the expression of Na pumps at the cell surface to see how this central element of the endothelial pump changed as corneal endothelial cell density decreased to a level associated with corneal decompensation in vivo. 3H-ouabain binding to NaK-ATPase at saturating conditions was used to quantitate the number of Na pump sites on cultured bovine corneal endothelial cells as the confluent density decreased from approximately 2750 cells/mm2 to approximately 275 cells/mm2. The mean number of Na pump sites per cell at confluence (1.92 +/- 0.07 x 10(6)) did not change as the cell density decreased 2.7-fold from 2763 cells/mm2 to 1000 cells/mm2. However, pump site expression doubled to approximately 4 x 10(6) sites/cell as the cell density decreased from 1000 cells/mm2 to 275 cells/mm2. Despite the incremental increase in Na pump site expression that occurred as the cells hypertrophied below a density of 1000/mm2 to achieve confluence, this increase was insufficient to prevent a decrease in Na pump site density of the intact monolayer, expressed as pump sites/mm2. The confluent cell density of cultured bovine corneal endothelial cells can be varied from that found in the normal native cornea to that associated with corneal decompensation. In confluent cultures with cell densities ranging from 2750 cells/mm2 to 1000 cells/mm2, the number of pump sites per cell remains relatively unchanged. Below cell densities of 1000 cells/mm2, the number of pump sites per cell progressively increases. The increased Na pump site abundance in markedly hypertrophied endothelial cells cannot adequately compensate for the progressive reduction in the number of transporting cells per unit area within the intact monolayer. Even when considered with the decrease in the size of the paracellular ion conductive pathway that is a consequence of progressive endothelial hypertrophy, the overall pumping capacity of the intact endothelial monolayer declines.

  17. Socializing makes thick-skinned individuals: on the density of epidermal alarm substance cells in cyprinid fish, the crucian carp (Carassius carassius).

    PubMed

    Stabell, Ole B; Vegusdal, Anne

    2010-09-01

    In cyprinid fish, density of epidermal club cells (i.e. alarm substance cells) has been found to vary between lakes with different predator fauna. Because predators can be labelled with chemical cues from prey, we questioned if club cell density could be controlled indirectly by predators releasing prey cues. In particular, we suspected a possible feedback mechanism between chemical alarm signals and their cellular source. We raised crucian carp singly and in groups of four. For both rearing types, fish were exposed to skin extracts of either conspecifics or brown trout (without club cells), and provided either low or high food rations. Independent of rearing type, condition factor and club cell density increased with food ration size, but no change was found in club cell density following exposure to conspecific alarm signals. However, the density of club cells was found significantly higher for fish raised in groups than for fish raised alone. We conclude that an increased condition factor results in more club cells, but crucian carp may also possess an awareness of conspecific presence, given by higher club cell densities when raised in groups. This increase in club cell density may be induced by unknown chemical factors released by conspecifics.

  18. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells.

    PubMed

    Ledezma, Pablo; Greenman, John; Ieropoulos, Ioannis

    2012-08-01

    The aim of this work is to study the relationship between growth rate and electricity production in perfusion-electrode microbial fuel cells (MFCs), across a wide range of flow rates by co-measurement of electrical output and changes in population numbers by viable counts and optical density. The experiments hereby presented demonstrate, for the first time to the authors' knowledge, that the anodic biofilm specific growth rate can be determined and controlled in common with other loose matrix perfusion systems. Feeding with nutrient-limiting conditions at a critical flow rate (50.8 mL h(-1)) resulted in the first experimental determination of maximum specific growth rate μ(max) (19.8 day(-1)) for Shewanella spp. MFC biofilms, which is considerably higher than those predicted or assumed via mathematical modelling. It is also shown that, under carbon-energy limiting conditions there is a strong direct relationship between growth rate and electrical power output, with μ(max) coinciding with maximum electrical power production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. High shear enrichment improves the performance of the anodophilic microbial consortium in a microbial fuel cell

    PubMed Central

    Pham, Hai The; Boon, Nico; Aelterman, Peter; Clauwaert, Peter; De Schamphelaire, Liesje; Van Oostveldt, Patrick; Verbeken, Kim; Rabaey, Korneel; Verstraete, Willy

    2008-01-01

    Summary In many microbial bioreactors, high shear rates result in strong attachment of microbes and dense biofilms. In this study, high shear rates were applied to enrich an anodophilic microbial consortium in a microbial fuel cell (MFC). Enrichment at a shear rate of about 120 s−1 resulted in the production of a current and power output two to three times higher than those in the case of low shear rates (around 0.3 s−1). Biomass and biofilm analyses showed that the anodic biofilm from the MFC enriched under high shear rate conditions, in comparison with that under low shear rate conditions, had a doubled average thickness and the biomass density increased with a factor 5. The microbial community of the former, as analysed by DGGE, was significantly different from that of the latter. The results showed that enrichment by applying high shear rates in an MFC can result in a specific electrochemically active biofilm that is thicker and denser and attaches better, and hence has a better performance. PMID:21261869

  20. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model.

    PubMed

    Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J

    2014-09-06

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.

  1. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  2. Sea water magnesium fuel cell power supply

    NASA Astrophysics Data System (ADS)

    Hahn, Robert; Mainert, Jan; Glaw, Fabian; Lang, K.-D.

    2015-08-01

    An environmentally friendly magnesium fuel cell system using seawater electrolyte and atmospheric oxygen was tested under practical considerations for use as maritime power supply. The hydrogen rate and therefore the power density of the system were increased by a factor of two by using hydrogen evolution cathodes with a gas separation membrane instead of submerged cathodes without gas separation. Commercial magnesium AZ31 rolled sheet anodes can be dissolved in seawater for hydrogen production, down to a thickness below 100 μm thickness, resulting in hydrogen generation efficiency of the anode of over 80%. A practical specific energy/energy density of the alloy of more than 1200 Wh/kg/3000 Wh/l was achieved when coupled to a fuel cell with atmospheric air breathing cathode. The performance of several AZ31 alloy anodes was tested as well as the influence of temperature, electrolyte concentration and anode - cathode separation. The excess hydrogen produced by the magnesium hydrogen evolving cell, due to the negative difference effect, is proportional to the cell current in case of the AZ31 alloys, which simplifies system control considerably. Stable long-term operation of the system was demonstrated at low pressures which can be maintained in an open-seawater-submerged hydrogen generator.

  3. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.

    PubMed

    Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan

    2015-04-01

    Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.

  4. Alteration by prolactin of surface charge and membrane fluidity of rat 13762 mammary ascites tumor cells.

    PubMed

    Zarkower, D A; Plank, L D; Kunze, E; Keith, A; Todd, P; Hymer, W C

    1984-03-01

    Intraperitoneal injection of ovine prolactin (100 micrograms/d) in Fischer 344 rats bearing transplantable 13762 mammary ascites tumor (MAT) cells modifies the surface charge density and membrane fluidity of the tumor cells. In each of five experiments the mean electrophoretic mobility (epm) of MAT cells taken from prolactin-treated rats was significantly lower than that of cells from nonhormone-treated controls. Prolactin concentrations were increased in vivo by (a) direct intraperitoneal injection of ovine prolactin; (b) subcutaneous implantation of diethylstilbestrol-containing silastic capsules to produce pituitary prolactin secreting tumors; or (c) a single subcutaneous injection of polyestradiol phosphate, a long-acting estrogen. In an effort to establish that the prolactin effect was a direct one, two in vivo protocols were used: (a) MAT cells were coincubated with anterior pituitary halves obtained from nontumor-bearing littermates; or (b) rat or ovine prolactin was added to serum-free culture media containing MAT cells. In both protocols, the epm of the prolactin-treated cells was significantly lower. The isoelectric focusing pH of whole cells was increased by prolactin treatment from 4.93 to 5.12, consistent with a reduction in the number of surface carboxyl groups. The fluidity of membranes of treated cells was drastically increased, as measured by spin-label probe rotation rates. These combined results imply that the hormone exerts its effect by stimulating events in the cell that lead to a reduction of the average density of carboxylic acid residues on the tumor cell surface.

  5. [Morphological characteristics of cornea in patients with vernal keratoconjunctivitis by in vivo laser scanning confocal microscopy].

    PubMed

    Le, Qi-hua; Hong, Jia-xu; Zhu, Wen-qing; Sun, Xing-huai; Xu, Jian-jiang

    2011-05-01

    To explore the morphological characteristics on cornea in patients with vernal keratoconjunctivitis (VKC) by the application of in vivo laser scanning confocal microscopy (LSCM). The experimental design was retrospective observation case series (case control study). Twenty-six patients, each diagnosed as bilateral VKC, were enrolled in the study, among which 13 were tarsal form, 5 were bulbar form and the rest were mixed form. Nine patients had the clinical course less than one year, eight subjects longer than three years, and the rest between them. Another twenty-six healthy volunteers with matching age and gender were selected as normal control. All participants had their right eyes examined with the in vivo confocal microscopy (HRT II/RCM). Central cornea and superior peripheral cornea were chosen as the examination points. The images were recorded automatically and cellular density of each layer was analyzed by installed software. Software ImageJ was utilized to analyze the density, diameter, branch number and tortuosity of subbasal nerve fiber in VKC patients. Independent t test was performed to assess the differences on cellular density between VKC patients and normal control, as well as those between central and peripheral cornea in VKC patients. Fisher chi-square test was used to compare the infiltration rate of Langerhans cells in corneal epithelium between VKC patients and controls. ANOVA was applied to assess the differences in cellular density among three subtypes, as well as among different duration of VKC. Independent t-test and chi-square test were applied to analyze the parameters of subbasal nerve fiber. The morphological changes in cornea included the absence of superficial hyperreflective polygonal epithelial cells, infiltration of Langerhans cells in and(or) underneath corneal epithelium and activation of keratocytes in anterior stroma. Corneal epithelium conjunctivalization and stromal neovascularization could be identified in patients with corneal neovascular epithelium. Longitudinal or oblique dark striae could be found in the posterior stroma in patients with complicated keratoconus. The density of epithelial cells at central and peripheral cornea in healthy controls were (6033.1 ± 998.7) cells/mm(2) and (6098.4 ± 298.3) cells/mm(2), while that in VKC patients were (5972.2 ± 1148.2) cells/mm(2) and (6178.5 ± 318.9) cells/mm(2) respectively, the differences being no statistical significant between them (t = 1.191, 1.011; P = 0.238, 0.318). However, it's found in VKC patients that cellular density at peripheral cornea was significantly higher than that at central area (t = 2.249, P = 0.03). The density of anterior stromal cells at central and peripheral cornea in healthy controls was (1001.4 ± 125.3) cells/mm(2) and (924.6 ± 201.4) cells/mm(2), while that in VKC patients was (1184.5 ± 115.3) cells/mm(2) and (1101.4 ± 151.1) cells/mm(2), the difference bearing no statistical significance (t = 6.617, 3.439; P = 0.001). The density of posterior stromal cells in normal subjects and VKC patients was (537.7 ± 42.6) cells/mm(2) and (548.7 ± 79.8) cells/mm(2), that of endothelial cells was (2985.7 ± 401.2) cells/mm(2) and (3021.5 ± 383.3) cells/mm(2), respectively, neither difference had statistical significance (t = 0.174, 1.112; P = 0.864, 0.282). Langerhans cell infiltration could be identified in 61.5% (16 cases) VKC patients, which was significantly higher than normal control (2 cases, 7.7%) (χ(2) = 12.49, P = 0.001). Furthermore, much intense Langerhans cells infiltration was found in bulbar form and mix form than tarsal form. (t = 6.617, P = 0.001). The density and diameter of subbasal nerve fiber in VKC patients decreased significantly than those in normal subjects, whereas the tortuosity increased significantly. The morphological changes of cornea in VKC patients mainly involve corneal epithelium, subbasal nerve fiber and anterior stroma. In vivo LSCM is helpful in discriminating the subtypes of VKC.

  6. Enrichment of human bone marrow aspirates for low-density mononuclear cells using a haemonetics discontinuous blood cell separator.

    PubMed

    Raijmakers, R; de Witte, T; Koekman, E; Wessels, J; Haanen, C

    1986-01-01

    Isopycnic density floatation centrifugation has been proven to be a suitable technique to enrich bone marrow aspirates for clonogenic cells on a small scale. We have tested a Haemonetics semicontinuous blood cell separator in order to process large volumes of bone marrow with minimal bone marrow manipulation. The efficacy of isopycnic density floatation was tested in a one and a two-step procedure. Both procedures showed a recovery of about 20% of the nucleated cells and 1-2% of the erythrocytes. The enrichment of clonogenic cells in the one-step procedure appeared superior to the two-step enrichment, first separating buffy coat cells. The recovery of clonogenic cells was 70 and 50%, respectively. Repopulation capacity of the low-density cell fraction containing the clonogenic cells was excellent after autologous reinfusion (6 cases) and allogeneic bone marrow transplantation (3 cases). Fast enrichment of large volumes of bone marrow aspirates with low-density cells containing the clonogenic cells by isopycnic density floatation centrifugation can be done safely using a Haemonetics blood cell separator.

  7. Effect of lattice defects on Hele-Shaw flow over an etched lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, E.L.; Ignes-Mullol, J.; Baratt, A.

    We examine the patterns formed by injecting nitrogen gas into the center of a horizontal, radial Hele-Shaw cell filled with paraffin oil. We use smooth plates and etched plates with lattices having different amounts of defects (0{endash}10&hthinsp;{percent}). In all cases, a quantitative measure of the pattern ramification shows a regular trend with injection rate and cell gap, such that the dimensionless perimeter scales with the dimensionless time. By adding defects to the lattice, we observe increased branching in the pattern morphologies. However, even in this case, the scaling behavior persists. Only the prefactor of the scaling function shows a dependencemore » on the defect density. For different lattice defect densities, we examine the nature of the different morphology phases. {copyright} {ital 1999} {ital The American Physical Society}« less

  8. Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai

    2016-09-01

    Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and themore » abnormal high capacity associated with these high energy cathode materials.« less

  9. Non-thermal effects of 94 GHz radiation on bacterial metabolism

    NASA Astrophysics Data System (ADS)

    Raitt, Brittany J.

    Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae were used to investigate the non-thermal effects of terahertz (THz) radiation exposure on bacterial cells. The THz source used was a 94 GHz (0.94 THz) Millitech Gunn Diode Oscillator with a power density of 1.3 mW/cm2. The cultures were placed in the middle sixty wells of two 96-well microplates, one serving as the experimental plate and one serving as a control. The experimental plate was placed on the radiation source for either two, eighteen, or twenty-four hours and the metabolism of the cells was measured in a spectrophotometer using the tetrazolium dye XTT. The results showed no consistent significant differences in either the growth rates or the metabolism of any of the bacterial species at this frequency and power density.

  10. Polybenzimidazole membranes for direct methanol fuel cell: Acid-doped or alkali-doped?

    NASA Astrophysics Data System (ADS)

    Li, Long-Yun; Yu, Bor-Chern; Shih, Chao-Ming; Lue, Shingjiang Jessie

    2015-08-01

    Polybenzimidazole (PBI) films immersed in 2 M phosphoric acid (H3PO4) or 6 M potassium hydroxide (KOH) solution form electrolytes for conducting proton or hydroxide, respectively. A direct methanol fuel cell (DMFC) with the alkali-KOH doped PBI gives 117.9 mW cm-2 of power output which is more than 2 times greater than the power density of 46.5 mW cm-2 with the H3PO4-doped PBI (vs.) when both of the DMFCs use a micro porous layer (MPL) in a gas-fed cathode and a MPL-free anode and are operated at 90 °C. When the MPL-free anode and cathode are used and the fuel flow rate is tripled, the peak power density of alkaline DMFC reaches 158.9 mW cm-2.

  11. Nanodisperse transition metal electrodes (NTME) for electrochemical cells

    DOEpatents

    Striebel, Kathryn A.; Wen, Shi-Jie

    2000-01-01

    Disclosed are transition metal electrodes for electrochemical cells using gel-state and solid-state polymers. The electrodes are suitable for use in primary and secondary cells. The electrodes (either negative electrode or positive electrode) are characterized by uniform dispersion of the transition metal at the nanoscale in the polymer. The transition metal moiety is structurally amorphous, so no capacity fade should occur due to lattice expansion/contraction mechanisms. The small grain size, amorphous structure and homogeneous distribution provide improved charge/discharge cycling performance, and a higher initial discharge rate capability. The cells can be cycled at high current densities, limited only by the electrolyte conductivity. A method of making the electrodes (positive and negative), and their usage in electrochemical cells are disclosed.

  12. Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater.

    PubMed

    Wang, Dawei; Li, Yi; Li Puma, Gianluca; Lianos, Panagiotis; Wang, Chao; Wang, Peifang

    2017-02-05

    The feasibility of simultaneous recovery of heavy metals from wastewater (e.g., acid mining and electroplating) and production of electricity is demonstrated in a novel photoelectrochemical cell (PEC). The photoanode of the cell bears a nanoparticulate titania (TiO 2 ) film capped with the block copolymer [poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)] hole scavenger, which consumed photogenerated holes, while the photogenerated electrons transferred to a copper cathode reducing dissolved metal ions and produced electricity. Dissolved silver Ag + , copper Cu 2+ , hexavalent chromium as dichromate Cr 2 O 7 2- and lead Pb 2+ ions in a mixture (0.2mM each) were removed at different rates, according to their reduction potentials. Reduced Ag + , Cu 2+ and Pb 2+ ions produced metal deposits on the cathode electrode which were mechanically recovered, while Cr 2 O 7 2- reduced to the less toxic Cr 3+ in solution. The cell produced a current density J sc of 0.23mA/cm 2 , an open circuit voltage V oc of 0.63V and a maximum power density of 0.084mW/cm 2 . A satisfactory performance of this PEC for the treatment of lead-acid battery wastewater was observed. The cathodic reduction of heavy metals was limited by the rate of electron-hole generation at the photoanode. The PEC performance decreased by 30% after 9 consecutive runs, caused by the photoanode progressive degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Manufacturing of Dysprosium-Iron Alloys by Electrolysis in Fluoride-Based Electrolytes. Electrolysis in a Laboratory-Scale Cell

    NASA Astrophysics Data System (ADS)

    Martinez, Ana Maria; Osen, Karen Sende; Støre, Anne; Gudbrandsen, Henrik; Kjos, Ole Sigmund; Solheim, Asbjørn; Wang, Zhaohui; Oury, Alexandre; Namy, Patrick

    2018-04-01

    Electrolytic production of light rare earth elements and rare earth alloys with transition elements takes place in a fluoride-based electrolyte using rare earth oxides as raw material. The optimization of this method, mainly in terms of the energy efficiency and environmental impact control, is rather challenging. Anode effects, evolution of fluorine-containing compounds and side cathode reactions could largely be minimized by good control of the amount of rare earth oxide species dissolved in the fluoride-based electrolyte and their dissolution rate. The Dy2O3 feed rate needed for stable cell operation was studied by following up the anode voltage and gas analysis. On-line analysis of the cell off-gases by FTIR showed that the electrochemical reaction for the formation of Dy-Fe alloy gives mainly CO gas and that CF4 is starting to evolve gradually at anode voltages of ca. 3.25 V. The limiting current density for the discharge of the oxide ions at the graphite anode was in the range of 0.1 to 0.18 A cm-2 at dissolved Dy2O3 contents of ca. 1 wt pct. Modeling of the laboratory cell reactor was also carried out by implementing two models, i.e., an electrical model simulating the current density distribution at the electrodes and a laminal bubbly flow model that explains the electrolyte velocity induced by gas bubble production at the anode.

  14. Evaluating the B-cell density with various activation functions using White Noise Path Integral Approach

    NASA Astrophysics Data System (ADS)

    Aban, C. J. G.; Bacolod, R. O.; Confesor, M. N. P.

    2015-06-01

    A The White Noise Path Integral Approach is used in evaluating the B-cell density or the number of B-cell per unit volume for a basic type of immune system response based on the modeling done by Perelson and Wiegel. From the scaling principles of Perelson [1], the B- cell density is obtained where antigens and antibodies mutates and activation function f(|S-SA|) is defined describing the interaction between a specific antigen and a B-cell. If the activation function f(|S-SA|) is held constant, the major form of the B-cell density evaluated using white noise analysis is similar to the form of the B-cell density obtained by Perelson and Wiegel using a differential approach.A piecewise linear functionis also used to describe the activation f(|S-SA|). If f(|S-SA|) is zero, the density decreases exponentially. If f(|S-SA|) = S-SA-SB, the B- cell density increases exponentially until it reaches a certain maximum value. For f(|S-SA|) = 2SA-SB-S, the behavior of B-cell density is oscillating and remains to be in small values.

  15. LIF Density Measurement Calibration Using a Reference Cell

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Williams, George J., Jr.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. A pulsed UV laser was used to pump the ground state molybdenum at 345.64nm, and the non-resonant fluorescence at 550-nm was collected using a bandpass filter and a photomultiplier tube or intensified CCD array. The sensitivity of the fluorescence was evaluated to determine the limitations of the calibration technique. The suitability of the diagnostic calibration technique was assessed for application to ion engine erosion rate measurements.

  16. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong

    2017-02-01

    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  17. Hydrogen and Sulfur from Hydrogen Sulfide. 5. Anodic Oxidation of Sulfur on Activated Glassy Carbon

    DTIC Science & Technology

    1988-12-05

    electrolyses of H S can probably be carried out at high rates with modest cell voltages in the range 1-1.5 V. The variation in anode current densities...of H2S from solutions of NaSH in aqueous NaOH was achieved using suitably ac- tivated glassy carbon anodes. Thus electrolyses of H2S can probably be...passivation by using a basic solvent at 850C. Using an H2S-saturated 6M NaOH solution, they conducted electrolyses for extended periods at current densities

  18. Surfactant-Free Aqueous Synthesis of Pure Single-Crystalline SnSe Nanosheet Clusters as Anode for High Energy- and Power-Density Sodium-Ion Batteries.

    PubMed

    Yuan, Shuang; Zhu, Yun-Hai; Li, Wang; Wang, Sai; Xu, Dan; Li, Lin; Zhang, Yu; Zhang, Xin-Bo

    2017-01-01

    SnSe with 3D hierarchical nanostructure composed of interconnected single-crystal SnSe nanosheets is synthesized via a fast and effective strategy. Unexpectedly, when used as the anode material for Na-ion batteries (NIBs), the SnSe exhibits a high capacity (738 mA h g -1 ), superior rate capability (40 A g -1 ), and high energy density in a full cell. These results provide the possibility of SnSe use as NIBs anodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage

    NASA Astrophysics Data System (ADS)

    Tao, Jiayou; Liu, Nishuang; Rao, Jiangyu; Ding, Longwei; Al Bahrani, Majid Raissan; Li, Luying; Su, Jun; Gao, Yihua

    2014-11-01

    Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage.Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04819a

  20. Mechanical stretch triggers rapid epithelial cell division through Piezo1.

    PubMed

    Gudipaty, S A; Lindblom, J; Loftus, P D; Redd, M J; Edes, K; Davey, C F; Krishnegowda, V; Rosenblatt, J

    2017-03-02

    Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.

  1. Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input

    PubMed Central

    Tahon, Koen; Wijnants, Mike; De Schutter, Erik

    2011-01-01

    The overall circuitry of the cerebellar cortex has been known for over a century, but the function of many synaptic connections remains poorly characterized in vivo. We used a one-dimensional multielectrode probe to estimate the current source density (CSD) of Crus IIa in response to perioral tactile stimuli in anesthetized rats and to correlate current sinks and sources to changes in the spike rate of corecorded Golgi and Purkinje cells. The punctate stimuli evoked two distinct early waves of excitation (at <10 and ∼20 ms) associated with current sinks in the granular layer. The second wave was putatively of corticopontine origin, and its associated sink was located higher in the granular layer than the first trigeminal sink. The distinctive patterns of granular-layer sinks correlated with the spike responses of corecorded Golgi cells. In general, Golgi cell spike responses could be linearly reconstructed from the CSD profile. A dip in simple-spike activity of coregistered Purkinje cells correlated with a current source deep in the molecular layer, probably generated by basket cell synapses, interspersed between sparse early sinks presumably generated by synapses from granule cells. The late (>30 ms) enhancement of simple-spike activity in Purkinje cells was characterized by the absence of simultaneous sinks in the granular layer and by the suppression of corecorded Golgi cell activity, pointing at inhibition of Golgi cells by Purkinje axon collaterals as a likely mechanism of late Purkinje cell excitation. PMID:21228303

  2. Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    NASA Technical Reports Server (NTRS)

    Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.

    1989-01-01

    Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density.

  3. Influence of excitons interaction with charge carriers on photovoltaic parameters in organic solar cells

    NASA Astrophysics Data System (ADS)

    Głowienka, Damian; Szmytkowski, Jędrzej

    2018-03-01

    We report on theoretical analysis of excitons annihilation on charge carriers in organic solar cells. Numerical calculations based on transient one-dimensional drift-diffusion model have been carried out. An impact of three quantities (an annihilation rate constant, an exciton mobility and a recombination reduction factor) on current density and concentrations of charge carriers and excitons is investigated. Finally, we discuss the influence of excitons interaction with electrons and holes on four photovoltaic parameters (a short-circuit current, an open-circuit voltage, a fill factor and a power conversion efficiency). The conclusion is that the annihilation process visibly decreases the efficiency of organic photocells, if the annihilation rate constant is greater than 10-15m3s-1 .

  4. Simplifying the complexity of resistance heterogeneity in metastasis

    PubMed Central

    Lavi, Orit; Greene, James M.; Levy, Doron; Gottesman, Michael M.

    2014-01-01

    The main goal of treatment regimens for metastasis is to control growth rates, not eradicate all cancer cells. Mathematical models offer methodologies that incorporate high-throughput data with dynamic effects on net growth. The ideal approach would simplify, but not over-simplify, a complex problem into meaningful and manageable estimators that predict a patient’s response to specific treatments. Here, we explore three fundamental approaches with different assumptions concerning resistance mechanisms, in which the cells are categorized into either discrete compartments or described by a continuous range of resistance levels. We argue in favor of modeling resistance as a continuum and demonstrate how integrating cellular growth rates, density-dependent versus exponential growth, and intratumoral heterogeneity improves predictions concerning the resistance heterogeneity of metastases. PMID:24491979

  5. A theoretical framework for jamming in confluent biological tissues

    NASA Astrophysics Data System (ADS)

    Manning, M. Lisa

    2015-03-01

    For important biological functions such as wound healing, embryonic development, and cancer tumorogenesis, cells must initially rearrange and move over relatively large distances, like a liquid. Subsequently, these same tissues must undergo buckling and support shear stresses, like a solid. Our work suggests that biological tissues can accommodate these disparate requirements because the tissues are close to glass or jamming transition. While recent self propelled particle models generically predict a glass/jamming transition that is driven by packing density φ and happens at some critical φc less than unity, many biological tissues that are confluent with no gaps between cells appear to undergo a jamming transition at a constant density (φ = 1). I will discuss a new theoretical framework for predicting energy barriers and rates of cell migration in 2D tissue monolayers, and show that this model predicts a novel type of rigidity transition, which takes place at constant φ = 1 and depends only on single cell properties such as cell-cell adhesion, cortical tension and cell elasticity. This model additionally predicts that an experimentally observable parameter, the ratio between a cell's perimeter and the square root of its cross-sectional area, attains a specific, critical value at the jamming transition. We show that this prediction is precisely realized in primary epithelial cultures from human patients, with implications for asthma pathology.

  6. Microfluidic devices, systems, and methods for quantifying particles using centrifugal force

    DOEpatents

    Schaff, Ulrich Y.; Sommer, Gregory J.; Singh, Anup K.

    2015-11-17

    Embodiments of the present invention are directed toward microfluidic systems, apparatus, and methods for measuring a quantity of cells in a fluid. Examples include a differential white blood cell measurement using a centrifugal microfluidic system. A method may include introducing a fluid sample containing a quantity of cells into a microfluidic channel defined in part by a substrate. The quantity of cells may be transported toward a detection region defined in part by the substrate, wherein the detection region contains a density media, and wherein the density media has a density lower than a density of the cells and higher than a density of the fluid sample. The substrate may be spun such that at least a portion of the quantity of cells are transported through the density media. Signals may be detected from label moieties affixed to the cells.

  7. Effect of oxygen on the per‐cell extracellular electron transfer rate of Shewanella oneidensis MR‐1 explored in bioelectrochemical systems

    PubMed Central

    Lu, Mengqian; Chan, Shirley; Babanova, Sofia

    2016-01-01

    ABSTRACT Extracellular electron transfer (EET) is a mechanism that enables microbes to respire solid‐phase electron acceptors. These EET reactions most often occur in the absence of oxygen, since oxygen can act as a competitive electron acceptor for many facultative microbes. However, for Shewanella oneidensis MR‐1, oxygen may increase biomass development, which could result in an overall increase in EET activity. Here, we studied the effect of oxygen on S. oneidensis MR‐1 EET rates using bioelectrochemical systems (BESs). We utilized optically accessible BESs to monitor real‐time biomass growth, and studied the per‐cell EET rate as a function of oxygen and riboflavin concentrations in BESs of different design and operational conditions. Our results show that oxygen exposure promotes biomass development on the electrode, but significantly impairs per‐cell EET rates even though current production does not always decrease with oxygen exposure. Additionally, our results indicated that oxygen can affect the role of riboflavin in EET. Under anaerobic conditions, both current density and per‐cell EET rate increase with the riboflavin concentration. However, as the dissolved oxygen (DO) value increased to 0.42 mg/L, riboflavin showed very limited enhancement on per‐cell EET rate and current generation. Since it is known that oxygen can promote flavins secretion in S. oneidensis, the role of riboflavin may change under anaerobic and aerobic conditions. Biotechnol. Bioeng. 2017;114: 96–105. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:27399911

  8. Cell surface expression of beta 2-microglobulin (beta 2m) correlates with stages of differentiation in B cell tumours.

    PubMed Central

    Jones, R A; Scott, C S; Norfolk, D R; Stark, A N; Child, J A

    1987-01-01

    Cell surface beta 2-microglobulin (beta 2m) densities of malignant B cells were determined by enzyme immunoassay in 97 cases of immunologically defined lymphoproliferative disease. Absolute beta 2m densities were found to depend on disease category with the lowest levels found on cells from chronic lymphocytic leukaemia (mean = 5.6 ng/10(6) cells, n = 27); atypical chronic lymphocytic leukaemia (mean = 5.9 ng/10(6) cells, n = 8); and prolymphocytoid chronic lymphocytic leukaemia variant (mean = 6.0 ng/10(6) cells, n = 16). beta 2m densities for B non-Hodgkin's lymphoma (n = 14) and B prolymphocytic leukaemia (n = 17) cases were 8.1 and 10.0 ng/10(6) cells, respectively, and the highest densities were found on cells from "late-B cell" tumours (mean = 14.3 ng/10(6) cells). Plasma cells from cases of Ig secreting tumours expressed unexpectedly low beta 2m densities (mean = 9.3 ng/10(6) cells; n = 6). PMID:3108331

  9. Subtle Differences in Symbiont Cell Surface Glycan Profiles Do Not Explain Species-Specific Colonization Rates in a Model Cnidarian-Algal Symbiosis

    PubMed Central

    Parkinson, John E.; Tivey, Trevor R.; Mandelare, Paige E.; Adpressa, Donovon A.; Loesgen, Sandra; Weis, Virginia M.

    2018-01-01

    Mutualisms between cnidarian hosts and dinoflagellate endosymbionts are foundational to coral reef ecosystems. These symbioses are often re-established every generation with high specificity, but gaps remain in our understanding of the cellular mechanisms that control symbiont recognition and uptake dynamics. Here, we tested whether differences in glycan profiles among different symbiont species account for the different rates at which they initially colonize aposymbiotic polyps of the model sea anemone Aiptasia (Exaiptasia pallida). First, we used a lectin array to characterize the glycan profiles of colonizing Symbiodinium minutum (ITS2 type B1) and noncolonizing Symbiodinium pilosum (ITS2 type A2), finding subtle differences in the binding of lectins Euonymus europaeus lectin (EEL) and Urtica dioica agglutinin lectin (UDA) that distinguish between high-mannoside and hybrid-type protein linked glycans. Next, we enzymatically cleaved glycans from the surfaces of S. minutum cultures and followed their recovery using flow cytometry, establishing a 48–72 h glycan turnover rate for this species. Finally, we exposed aposymbiotic host polyps to cultured S. minutum cells masked by EEL or UDA lectins for 48 h, then measured cell densities the following day. We found no effect of glycan masking on symbiont density, providing further support to the hypothesis that glycan-lectin interactions are more important for post-phagocytic persistence of specific symbionts than they are for initial uptake. We also identified several methodological and biological factors that may limit the utility of studying glycan masking in the Aiptasia system. PMID:29765363

  10. Improved clonality detection in Hodgkin lymphoma using a semi-nested modification of the BIOMED-2 PCR assay for IGH and IGK rearrangements: A paraffin-embedded tissue study.

    PubMed

    Han, Shusen; Masaki, Ayako; Sakamoto, Yuma; Takino, Hisashi; Murase, Takayuki; Iida, Shinsuke; Inagaki, Hiroshi

    2018-05-01

    The BIOMED-2 PCR protocols targeting IGH and IGK genes may be useful for detecting clonality in Hodgkin lymphoma (HL). The clonality detection rates, however, have not been very high with these methods using paraffin-embedded tumor sections. We previously described the usefulness of the semi-nested BIOMED-2 IGH assay in B-cell malignancies. In this study, we devised a novel semi-nested BIOMED-2 IGK assay. Employing 58 cases of classical HL, we carried out the standard BIOMED-2, BIOMED-2 followed by BIOMED-2 re-amplification, and BIOMED-2 followed by semi-nested BIOMED-2, all targeting IGH and IGK, using paraffin-embedded tissues. In both IGH and IGK assays, semi-nested assays yielded significantly higher clonality detection rates than the standard assays and re-amplification assays. Clonality was detected in 13/58 (22.4%) classical HL cases using the standard IGH/IGK assays while it was detected in 38/58 (65.5%) cases using semi-nested IGH/IGK assays. The detection rates were not associated with the HL subtypes, CD30-positive cell density, CD20-positive cell density, or Epstein-Barr virus (EBV) positivity. In conclusion, tumor clonality was detected in nearly two-thirds of classical HL cases using semi-nested BIOMED-2 IGH/IGK assays using paraffin tumor sections. These semi-nested assays may be useful when the standard IGH/IGK assays fail to detect clonality in histopathologically suspected HLs. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  11. Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L.; Setlock, John A.; Farmer, Serene C.; Eckel, Andy J.

    2009-01-01

    The NASA Glenn Research Center is developing both a novel cell design (BSC) and a novel ceramic fabrication technique to produce fuel cells predicted to exceed a specific power density of 1.0 kW/kg. The NASA Glenn cell design has taken a completely different approach among planar designs by removing the metal interconnect and returning to the use of a thin, doped LaCrO3 interconnect. The cell is structurally symmetrical. Both electrodes support the thin electrolyte and contain micro-channels for gas flow-- a geometry referred to as a bi-electrode supported cell or BSC. The cell characteristics have been demonstrated under both SOFC and SOE conditions. Electrolysis tests verify that this cell design operates at very high electrochemical voltage efficiencies (EVE) and high H2O conversion percentages, even at the low flow rates predicted for closed loop systems encountered in unmanned aerial vehicle (UAV) applications. For UAVs the volume, weight and the efficiency are critical as they determine the size of the water tank, the solar panel size, and other system requirements. For UAVs, regenerative solid oxide fuel cell stacks (RSOFC) use solar panels during daylight to generate power for electrolysis and then operate in fuel cell mode during the night to power the UAV and electronics. Recent studies, performed by NASA for a more electric commercial aircraft, evaluated SOFCs for auxiliary power units (APUs). System studies were also conducted for regenerative RSOFC systems. One common requirement for aerospace SOFCs and RSOFCs, determined independently in each application study, was the need for high specific power density and volume density, on the order of 1.0 kW/kg and greater than 1.0 kW/L. Until recently the best reported performance for SOFCs was 0.2 kW/kg or less for stacks. NASA Glenn is working to prototype the light weight, low volume BSC design for such high specific power aerospace applications.

  12. Sorting cells by their density

    PubMed Central

    Norouzi, Nazila; Bhakta, Heran C.

    2017-01-01

    Sorting cells by their type is an important capability in biological research and medical diagnostics. However, most cell sorting techniques rely on labels or tags, which may have limited availability and specificity. Sorting different cell types by their different physical properties is an attractive alternative to labels because all cells intrinsically have these physical properties. But some physical properties, like cell size, vary significantly from cell to cell within a cell type; this makes it difficult to identify and sort cells based on their sizes alone. In this work we continuously sort different cells types by their density, a physical property with much lower cell-to-cell variation within a cell type (and therefore greater potential to discriminate different cell types) than other physical properties. We accomplish this using a 3D-printed microfluidic chip containing a horizontal flowing micron-scale density gradient. As cells flow through the chip, Earth’s gravity makes each cell move vertically to the point where the cell’s density matches the surrounding fluid’s density. When the horizontal channel then splits, cells with different densities are routed to different outlets. As a proof of concept, we use our density sorter chip to sort polymer microbeads by their material (polyethylene and polystyrene) and blood cells by their type (white blood cells and red blood cells). The chip enriches the fraction of white blood cells in a blood sample from 0.1% (in whole blood) to nearly 98% (in the output of the chip), a 1000x enrichment. Any researcher with access to a 3D printer can easily replicate our density sorter chip and use it in their own research using the design files provided as online Supporting Information. Additionally, researchers can simulate the performance of a density sorter chip in their own applications using the Python-based simulation software that accompanies this work. The simplicity, resolution, and throughput of this technique make it suitable for isolating even rare cell types in complex biological samples, in a wide variety of different research and clinical applications. PMID:28723908

  13. PGC1α is required for the induction of contact inhibition by suppressing ROS.

    PubMed

    Yang, Seungyeon; Hwang, Sunsook; Jang, Jiho; Kim, Minjoong; Gwak, Jihye; Jeong, Seung Min

    2018-05-16

    Contact inhibition (CI) is an important tumor-suppressive mechanism that arrests cell cycle when cells reach high density. Indeed, CI is aberrantly absent in cancer cells and the dysregulation of this can contribute to tumorigenesis. Previously, it has been shown that reactive oxygen species (ROS) levels are repressed at high cell density, which is required for CI, but no molecular mechanism of this ROS regulation has been reported. Here, we show that PGC1α regulates cell density-dependent CI. PGC1α is markedly induced in response to high cell density and suppresses ROS production. Although cellular ROS levels are progressively decreased with increasing cell density, knockdown of PGC1α results in a defect of density-dependent ROS suppression. Importantly, PGC1α knockdown cells become less sensitive to high cell density and exhibit loss of CI. Mechanistically, PGC1α represses ROS production by inducing mitochondrial SIRT3, and thus SIRT3 overexpression rescues the defects of CI by PGC1α knockdown. These results demonstrate that mitochondrial ROS production is a crucial regulator of cell proliferation and identify a new role of PGC1α in CI. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation.

    PubMed

    Cotillas, Salvador; Llanos, Javier; Cañizares, Pablo; Mateo, Sara; Rodrigo, Manuel A

    2013-04-01

    In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells.

    PubMed

    Morris, Brett A; Burkel, Brian; Ponik, Suzanne M; Fan, Jing; Condeelis, John S; Aguirre-Ghiso, Julio A; Castracane, James; Denu, John M; Keely, Patricia J

    2016-11-01

    Increased breast density attributed to collagen I deposition is associated with a 4-6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA) cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Oxygen Consumption Rates of Bacteria under Nutrient-Limited Conditions

    PubMed Central

    Riedel, Timothy E.; Nealson, Kenneth H.; Finkel, Steven E.

    2013-01-01

    Many environments on Earth experience nutrient limitation and as a result have nongrowing or very slowly growing bacterial populations. To better understand bacterial respiration under environmentally relevant conditions, the effect of nutrient limitation on respiration rates of heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures of Escherichia coli K-12, Shewanella oneidensis MR-1, and Marinobacter aquaeolei VT8 were tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than 2 orders of magnitude for all three strains as they transitioned from nutrient-abundant log-phase growth to the nutrient-limited early stationary phase. The large reduction in QO2 from growth to stationary phase suggests that nutrient availability is an important factor in considering environmental respiration rates. Following the death phase, during the long-term stationary phase (LTSP), QO2 values of the surviving population increased with time and more cells were respiring than formed colonies. Within the respiring population, a subpopulation of highly respiring cells increased in abundance with time. Apparently, as cells enter LTSP, there is a viable but not culturable population whose bulk community and per cell respiration rates are dynamic. This result has a bearing on how minimal energy requirements are met, especially in nutrient-limited environments. The minimal QO2 rates support the extension of Kleiber's law to the mass of a bacterium (100-fg range). PMID:23770901

  17. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    NASA Astrophysics Data System (ADS)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  18. Effect of Microstructural Parameters on the Relative Densities of Metal Foams

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Kerr, Jacob A.

    2010-01-01

    A detailed quantitative microstructural analyses of primarily open cell FeCrAlY and 314 stainless steel metal foams with different relative densities and pores per inch (p.p.i.) were undertaken in the present investigation to determine the effect of microstructural parameters on the relative densities of metal foams. Several elements of the microstructure, such as longitudinal and transverse cell sizes, cell areas and perimeters, ligament dimensions, cell shapes and volume fractions of closed and open cells, were measured. The cross-sections of the foam ligaments showed a large number of shrinkage cavities, and their circularity factors and average sizes were determined. The volume fractions of closed cells increased linearly with increasing relative density. In contrast, the volume fractions of the open cells and ligaments decreased with increasing relative density. The relative densities and p.p.i. were not significantly dependent on cell size, cell perimeter and ligament dimensions within the limits of experimental scatter. A phenomenological model is proposed to rationalize the present microstructural observations.

  19. Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes

    NASA Astrophysics Data System (ADS)

    Klose, Carolin; Breitwieser, Matthias; Vierrath, Severin; Klingele, Matthias; Cho, Hyeongrae; Büchler, Andreas; Kerres, Jochen; Thiele, Simon

    2017-09-01

    We show that the combination of direct membrane deposition with proton conductive nanofiber reinforcement yields highly durable and high power density fuel cells. Sulfonated poly(ether ketone) (SPEK) was directly electrospun onto gas diffusion electrodes and then filled with Nafion by inkjet-printing resulting in a 12 μm thin membrane. The ionic membrane resistance (30 mΩ*cm2) was well below that of a directly deposited membrane reinforced with chemically inert (PVDF-HFP) nanofibers (47 mΩ*cm2) of comparable thickness. The power density of the fuel cell with SPEK reinforced membrane (2.04 W/cm2) is 30% higher than that of the PVDF-HFP reinforced reference sample (1.57 W/cm2). During humidity cycling and open circuit voltage (OCV) hold, the SPEK reinforced Nafion membrane showed no measurable degradation in terms of H2 crossover current density, thus fulfilling the target of 2 mA/cm2 of the DOE after degradation. The chemical accelerated stress test (100 h OCV hold at 90 °C, 30% RH, H2/air, 50/50 kPa) revealed a degradation rate of about 0.8 mV/h for the fuel cell with SPEK reinforced membrane, compared to 1.0 mV/h for the PVDF-HFP reinforced membrane.

  20. Intermittent pressure decreases human keratinocyte proliferation in vitro.

    PubMed

    Nasca, Maria R; Shih, Alan T; West, Dennis P; Martinez, Wanda M; Micali, Giuseppe; Landsman, Adam S

    2007-01-01

    The aim of this study was to investigate the correlation between pressure changes and keratinocyte proliferation by determining whether keratinocytes exposed to altered mechanical pressures would proliferate at different rates compared to control cells not subjected to pressure changes. Tissue culture flasks of human keratinocytes plated at an approximate density of 15,000 cells/cm(2) undergoing an intermittent cyclic pressure of 362 mm Hg at a frequency of 2.28 or 5.16 cycles/min (0.038 or 0.086 Hz) for 8 h were compared to control flasks grown at ambient room pressure. An in-line pressure transducer was used to monitor and adjust pressure within the cell chambers, using a solenoid valve. A thymidine incorporation assay assessed the amount of cell proliferation in each set of experiments. Differences in proliferation between keratinocytes subjected to cyclic pressure changes and control cells were found to be statistically significant (p < 0.05) in 4 out of 5 proliferation assays. Also, a higher frequency of pressure changes consistently generated a reduced proliferation rate compared to that seen in cells exposed to a lower frequency of pressure changes. These data indicate that keratinocytes undergoing intermittent pressure changes exhibit decreased proliferation rates compared to controls. Furthermore, an increased frequency rate seems to have a greater effect on proliferation than low-frequency rate pressure changes, suggesting that the stress caused by frequently changed pressure may play a greater role in reducing keratinocyte proliferation than the actual magnitude of load applied to the cells. Our results support the current treatment protocol of reducing speed and duration of walking on the site of the wound to promote healing of foot ulcers. (c) 2007 S. Karger AG, Basel.

  1. Is Urografin density gradient centrifugation suitable to separate nonculturable cells from Escherichia coli populations?

    PubMed

    Arana, Inés; Orruño, Maite; Seco, Carolina; Muela, Alicia; Barcina, Isabel

    2008-03-01

    The ability of Urografin or Percoll density gradient centrifugations to separate nonculturable subpopulations from heterogeneous Escherichia coli populations was analysed. Bacterial counts (total, active and culturable cells) and flow cytometric analyses were carried out in all recovered bands. After Urografin centrifugation, and despite the different origin of E. coli populations, a common pattern was obtained. High-density bands were formed mainly by nonculturable cells. However, the increase in cell density would not be common to all nonculturable cells, since part of this subpopulations banded in low-density zones, mixed with culturable cells. Bands obtained after Percoll centrifugation were heterogeneous and culturable and nonculturable cells were recovered along the gradient. Thus, fractionation in Urografin cannot be only attributed to changes in buoyant densities during the transition from culturable to nonculturable state. Urografin density gradients allow us to obtain enriched fractions in nonculturable subpopulations from a heterogeneous population, but working conditions should be carefully chosen to avoid Urografin toxicity.

  2. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    PubMed

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cadmium recovery by coupling double microbial fuel cells.

    PubMed

    Choi, Chansoo; Hu, Naixu; Lim, Bongsu

    2014-10-01

    Cr(VI)-MFC of the double microbial fuel cell (d-MFC) arrangement could successfully complement the insufficient voltage and power needed to recover cadmium metal from Cd(II)-MFC, which operated as a redox-flow battery. It was also possible to drain electrical energy from the d-MFC by an additional passage. The highest maximum utilization power density (22.5Wm(-2)) of Cr(VI)-MFC, with the cathode optimized with sulfate buffer, was 11.3times higher than the highest power density directly supplied to Cd(II)-MFC (2.0Wm(-2)). Cr(VI)-MFC could generate 3times higher power with the additional passage than without it; and the current density for the former was 4.2times higher than the latter at the same maximum power point (38.0Am(-2) vs. 9.0Am(-2)). This boosting phenomenon could be explained by the Le Chatelier's principle, which addresses the rate of electron-hole pair formation that can be accelerated by quickly removing electrons generated by microorganisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    PubMed

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A Thermally-Regenerative Ammonia-Based Flow Battery for Electrical Energy Recovery from Waste Heat.

    PubMed

    Zhu, Xiuping; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce

    2016-04-21

    Large amounts of low-grade waste heat (temperatures <130 °C) are released during many industrial, geothermal, and solar-based processes. Using thermally-regenerative ammonia solutions, low-grade thermal energy can be converted to electricity in battery systems. To improve reactor efficiency, a compact, ammonia-based flow battery (AFB) was developed and tested at different solution concentrations, flow rates, cell pairs, and circuit connections. The AFB achieved a maximum power density of 45 W m(-2) (15 kW m(-3) ) and an energy density of 1260 Wh manolyte (-3) , with a thermal energy efficiency of 0.7 % (5 % relative to the Carnot efficiency). The power and energy densities of the AFB were greater than those previously reported for thermoelectrochemical and salinity-gradient technologies, and the voltage or current could be increased using stacked cells. These results demonstrated that an ammonia-based flow battery is a promising technology to convert low-grade thermal energy to electricity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Interstitial flow influences direction of tumor cell migration through competing mechanisms

    PubMed Central

    Polacheck, William J.; Charest, Joseph L.; Kamm, Roger D.

    2011-01-01

    Interstitial flow is the convective transport of fluid through tissue extracellular matrix. This creeping fluid flow has been shown to affect the morphology and migration of cells such as fibroblasts, cancer cells, endothelial cells, and mesenchymal stem cells. A microfluidic cell culture system was designed to apply stable pressure gradients and fluid flow and allow direct visualization of transient responses of cells seeded in a 3D collagen type I scaffold. We used this system to examine the effects of interstitial flow on cancer cell morphology and migration and to extend previous studies showing that interstitial flow increases the metastatic potential of MDA-MB-435S melanoma cells [Shields J, et al. (2007) Cancer Cell 11:526–538]. Using a breast carcinoma line (MDA-MB-231) we also observed cell migration along streamlines in the presence of flow; however, we further demonstrated that the strength of the flow as well as the cell density determined directional bias of migration along the streamline. In particular, we found that cells either at high seeding density or with the CCR-7 receptor inhibited migration against, rather than with the flow. We provide further evidence that CCR7-dependent autologous chemotaxis is the mechanism that leads to migration with the flow, but also demonstrate a competing CCR7-independent mechanism that causes migration against the flow. Data from experiments investigating the effects of cell concentration, interstitial flow rate, receptor activity, and focal adhesion kinase phosphorylation support our hypothesis that the competing stimulus is integrin mediated. This mechanism may play an important role in development of metastatic disease. PMID:21690404

  7. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.

    PubMed

    Xing, Zizhuo; Lewis, Amanda M; Borys, Michael C; Li, Zheng Jian

    2017-06-01

    Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO 2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 10 6  cells mL -1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide profiles for process development, scale up, and characterization. Biotechnol. Bioeng. 2017;114: 1184-1194. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. The Storage Cell for the Tri-Experiment at COSY-JÜLICH

    NASA Astrophysics Data System (ADS)

    Felden, O.; Gebel, R.; Glende, M.; Lehrach, A.; Maier, R.; Prasuhn, D.; von Rossen, P.; Bisplinghoff, J.; Eversheim, P. D.; Hinterberger, F.

    2002-04-01

    At the EDDA experiment in the cooler synchrotron COSY in Jülich an atomic beam target is used which provides the designed polarization and density distribution. To increase the target density significantly a storage cell has been developed and implemented. This will contribute to a higher accuracy for the test of Time Reversal Invariance (TRI) which will be performed at the EDDA target place. To obtain the higher luminosity the target density and the transmission of the COSY beam through the cell were determined in their dependence on the cell aperture. Low storage cell apertures increase the target density in the cell but reduce the transmission of the circulating proton beam. To find the optimal cell design the transmission of the COSY beam was measured with movable scrapers and tested with an aperture at EDDA simulating the storage cell. The target density was calculated by Monte Carlo simulations for several cell geometries. An additional gain in target density is achieved by cooling the cell. A Teflon coating of the cell reduces depolarization of the target gas. First measurements with the EDDA detector have shown that the target density as well as the polarization are within the range of the expected values.

  9. Energy Storage: Batteries and Fuel Cells for Exploration

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Miller, Thomas B.; Hoberecht, Mark A.; Baumann, Eric D.

    2007-01-01

    NASA's Vision for Exploration requires safe, human-rated, energy storage technologies with high energy density, high specific energy and the ability to perform in a variety of unique environments. The Exploration Technology Development Program is currently supporting the development of battery and fuel cell systems that address these critical technology areas. Specific technology efforts that advance these systems and optimize their operation in various space environments are addressed in this overview of the Energy Storage Technology Development Project. These technologies will support a new generation of more affordable, more reliable, and more effective space systems.

  10. Low-Earth-Orbit (LEO) Life Cycle Evaluation of Nickel-Zinc Batteries

    NASA Technical Reports Server (NTRS)

    Coates, D.; Ferreira, E.; Nyce, M.; Charkey, A.

    1997-01-01

    The conclusion of the Low-Earth-Orbit (LEO) life cycle evaluation of nickel-zinc batteries are: that composite nickel electrode provide excellent performance at a reduced weight and lower cost; calcium / zinc electrode minimizes shape change; unioptimized cell designs yield 60 Wh/kg; nickel-zinc delivers 600 cycles at 80% DOD; long cycle life obtainable at low DOD; high rate capability power density; long-term failure mechanism is stack dry; and anomalous overcharge (1120%) greatly affected cell performance but did not induce failure and was recoverable.

  11. A microfluidic fuel cell with flow-through porous electrodes.

    PubMed

    Kjeang, Erik; Michel, Raphaelle; Harrington, David A; Djilali, Ned; Sinton, David

    2008-03-26

    A microfluidic fuel cell architecture incorporating flow-through porous electrodes is demonstrated. The design is based on cross-flow of aqueous vanadium redox species through the electrodes into an orthogonally arranged co-laminar exit channel, where the waste solutions provide ionic charge transfer in a membraneless configuration. This flow-through architecture enables improved utilization of the three-dimensional active area inside the porous electrodes and provides enhanced rates of convective/diffusive transport without increasing the parasitic loss required to drive the flow. Prototype fuel cells are fabricated by rapid prototyping with total material cost estimated at 2 USD/unit. Improved performance as compared to previous microfluidic fuel cells is demonstrated, including power densities at room temperature up to 131 mW cm-2. In addition, high overall energy conversion efficiency is obtained through a combination of relatively high levels of fuel utilization and cell voltage. When operated at 1 microL min-1 flow rate, the fuel cell produced 20 mW cm-2 at 0.8 V combined with an active fuel utilization of 94%. Finally, we demonstrate in situ fuel and oxidant regeneration by running the flow-through architecture fuel cell in reverse.

  12. Light as an Energy Source in Continuous Cultures of Bacteriorhodopsin-Containing Halobacteria

    PubMed Central

    Rodriguez-Valera, F.; Nieto, J. J.; Ruiz-Berraquero, F.

    1983-01-01

    The role of light as an energy source for slightly aereated cultures of halobacteria was studied, using continuous cultures with low nutrient concentrations and a low oxygen supply. A series of experiments were carried out with non-illuminated and differently illuminated cultures and with different oxygen transfer rates. Under low oxygen availability, light proved to be a decisively important energy source that allowed the populations to reach higher growth rates and much higher population densities. Oxygen influenced the growth over only a minimal level, below which neither the illuminated nor the dark cultures were affected by the oxygen transfer rate. From these results, it appears that the bacteriorhodopsin-mediated energy supply could have a very important role for the ecology of halobacteria in their microaerophilic habitats. In the illuminated cultures, cells that originated purple colonies on plates appeared. These cells, which could be bacteriorhodopsin-constitutive mutants, are now being studied. PMID:16346250

  13. Response and adaptation of Beagle dogs to hypergravity

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1975-01-01

    Eight male Beagle dogs, five months old, were centrifuged continuously for three months at progressively increasing loads. Heart rate and deep body temperature were monitored continuously by implant biotelemetry. Initially, centrifuged dogs showed transient decreases in heart rate and body temperature along with changes in their diurnal rhythm patterns. Compared with normal gravity controls, exposed dogs showed a slower growth rate and a reduced amount of body fat. Blood protein, total lipids, cholesterol, calcium, packed cell volume, red blood cell count, and hemoglobin were also decreased significantly. Absolute weights of the leg bones of centrifuged dogs were significantly greater than controls. Photon absorptiometry revealed significant density increases in selective regions of the femur and humerus of centrifuged dogs. In spite of the various changes noted, results from this and other studies affirm the view that dogs can tolerate and adapt to sustained loads as high as 2.5 g without serious impairment of their body structure and function.

  14. Larger late sodium current density as well as greater sensitivities to ATX II and ranolazine in rabbit left atrial than left ventricular myocytes.

    PubMed

    Luo, Antao; Ma, Jihua; Song, Yejia; Qian, Chunping; Wu, Ying; Zhang, Peihua; Wang, Leilei; Fu, Chen; Cao, Zhenzhen; Shryock, John C

    2014-02-01

    An increase of cardiac late sodium current (INa.L) is arrhythmogenic in atrial and ventricular tissues, but the densities of INa.L and thus the potential relative contributions of this current to sodium ion (Na(+)) influx and arrhythmogenesis in atria and ventricles are unclear. In this study, whole-cell and cell-attached patch-clamp techniques were used to measure INa.L in rabbit left atrial and ventricular myocytes under identical conditions. The density of INa.L was 67% greater in left atrial (0.50 ± 0.09 pA/pF, n = 20) than in left ventricular cells (0.30 ± 0.07 pA/pF, n = 27, P < 0.01) when elicited by step pulses from -120 to -20 mV at a rate of 0.2 Hz. Similar results were obtained using step pulses from -90 to -20 mV. Anemone toxin II (ATX II) increased INa.L with an EC50 value of 14 ± 2 nM and a Hill slope of 1.4 ± 0.1 (n = 9) in atrial myocytes and with an EC50 of 21 ± 5 nM and a Hill slope of 1.2 ± 0.1 (n = 12) in ventricular myocytes. Na(+) channel open probability (but not mean open time) was greater in atrial than in ventricular cells in the absence and presence of ATX II. The INa.L inhibitor ranolazine (3, 6, and 9 μM) reduced INa.L more in atrial than ventricular myocytes in the presence of 40 nM ATX II. In summary, rabbit left atrial myocytes have a greater density of INa.L and higher sensitivities to ATX II and ranolazine than rabbit left ventricular myocytes.

  15. Differential adaptation of two varieties of common bean to abiotic stress: II. Acclimation of photosynthesis.

    PubMed

    Wentworth, Mark; Murchie, Erik H; Gray, Julie E; Villegas, Daniel; Pastenes, Claudio; Pinto, Manuel; Horton, Peter

    2006-01-01

    The photosynthetic characteristics of two contrasting varieties of common bean (Phaseolus vulgaris) have been determined. These varieties, Arroz and Orfeo, differ in their productivity under stress conditions, resistance to drought stress, and have distinctly different stomatal behaviour. When grown under conditions of high irradiance and high temperature, both varieties displayed evidence of photosynthetic acclimation at the chloroplast level-there was an increase in chlorophyll a/b ratio, a decreased content of Lhcb proteins, and an increased xanthophyll cycle pool size. Both varieties also showed reduced chlorophyll content on a leaf area basis and a decrease in leaf area. Both varieties showed an increase in leaf thickness but only Arroz showed the characteristic elongated palisade cells in the high light-grown plants; Orfeo instead had a larger number of smaller, rounded cells. Differences were found in stomatal development: whereas Arroz showed very little change in stomatal density, Orfeo exhibited a large increase, particularly on the upper leaf surface. It is suggested that these differences in leaf cell structure and stomatal density give rise to altered rates of photosynthesis and stomatal conductance. Whereas, Arroz had the same photosynthetic rate in plants grown at both low and high irradiance, Orfeo showed a higher photosynthetic capacity at high irradiance. It is suggested that the higher yield of Orfeo compared with Arroz under stress conditions can be explained, in part, by these cellular differences.

  16. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell.

    PubMed

    Bunton, Patrick H; Tullier, Michael P; Meiburg, Eckart; Pojman, John A

    2017-10-01

    Viscous fingering can occur in fluid motion whenever a high mobility fluid displaces a low mobility fluid in a Darcy type flow. When the mobility difference is primarily attributable to viscosity (e.g., flow between the two horizontal plates of a Hele-Shaw cell), viscous fingering (VF) occurs, which is sometimes termed the Saffman-Taylor instability. Alternatively, in the presence of differences in density in a gravity field, buoyancy-driven convection can occur. These instabilities have been studied for decades, in part because of their many applications in pollutant dispersal, ocean currents, enhanced petroleum recovery, and so on. More recent interest has emerged regarding the effects of chemical reactions on fingering instabilities. As chemical reactions change the key flow parameters (densities, viscosities, and concentrations), they may have either a destabilizing or stabilizing effect on the flow. Hence, new flow patterns can emerge; moreover, one can then hope to gain some control over flow instabilities through reaction rates, flow rates, and reaction products. We report effects of chemical reactions on VF in a Hele-Shaw cell for a reactive step-growth cross-linking polymerization system. The cross-linked reaction product results in a non-monotonic viscosity profile at the interface, which affects flow stability. Furthermore, three-dimensional internal flows influence the long-term pattern that results.

  17. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.

    PubMed

    Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S

    2000-12-08

    The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.

  18. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Bunton, Patrick H.; Tullier, Michael P.; Meiburg, Eckart; Pojman, John A.

    2017-10-01

    Viscous fingering can occur in fluid motion whenever a high mobility fluid displaces a low mobility fluid in a Darcy type flow. When the mobility difference is primarily attributable to viscosity (e.g., flow between the two horizontal plates of a Hele-Shaw cell), viscous fingering (VF) occurs, which is sometimes termed the Saffman-Taylor instability. Alternatively, in the presence of differences in density in a gravity field, buoyancy-driven convection can occur. These instabilities have been studied for decades, in part because of their many applications in pollutant dispersal, ocean currents, enhanced petroleum recovery, and so on. More recent interest has emerged regarding the effects of chemical reactions on fingering instabilities. As chemical reactions change the key flow parameters (densities, viscosities, and concentrations), they may have either a destabilizing or stabilizing effect on the flow. Hence, new flow patterns can emerge; moreover, one can then hope to gain some control over flow instabilities through reaction rates, flow rates, and reaction products. We report effects of chemical reactions on VF in a Hele-Shaw cell for a reactive step-growth cross-linking polymerization system. The cross-linked reaction product results in a non-monotonic viscosity profile at the interface, which affects flow stability. Furthermore, three-dimensional internal flows influence the long-term pattern that results.

  19. Gas-Driven Fracturing of Saturated Granular Media

    NASA Astrophysics Data System (ADS)

    Campbell, James M.; Ozturk, Deren; Sandnes, Bjørnar

    2017-12-01

    Multiphase flows in deformable porous materials are important in numerous geological and geotechnical applications; however, the complex flow behavior makes subsurface transport processes difficult to control—or even characterize. Here, we study gas-driven (pneumatic) fracturing of a wet unconsolidated granular packing confined in a Hele-Shaw cell, and we present an in-depth analysis of both pore-scale phenomena and large-scale pattern formation. The process is governed by a complex interplay among pressure, capillary, frictional, and viscous forces. At low gas-injection rates, fractures grow in a stick-slip fashion and branch out to form a simply connected network. We observe the emergence of a characteristic length scale—the separation distance between fracture branches—creating an apparent uniform spatial fracture density. We conclude that the well-defined separation distance is the result of local compaction fronts surrounding fractures and keeping them apart. A scaling argument is presented that predicts fracture density as a function of granular friction, grain size, and capillary interactions. We study the influence of the gas-injection rate and find that the system undergoes a fluidization transition above a critical injection rate, resulting in directional growth of the fractures, and a fracture density that increases with an increasing rate. A dimensionless fluidization number F is defined as the ratio of viscous to frictional forces, and our experiments reveal a frictional regime for F <1 characterized by stick-slip, rate-independent growth, with a transition to a viscous regime (F >1 ) characterized by continuous growth in several fracture branches simultaneously.

  20. Phage-Bacterial Dynamics with Spatial Structure: Self Organization around Phage Sinks Can Promote Increased Cell Densities

    PubMed Central

    Bull, James J.; Christensen, Kelly A.; Scott, Carly; Crandall, Cameron J.; Krone, Stephen M.

    2018-01-01

    Bacteria growing on surfaces appear to be profoundly more resistant to control by lytic bacteriophages than do the same cells grown in liquid. Here, we use simulation models to investigate whether spatial structure per se can account for this increased cell density in the presence of phages. A measure is derived for comparing cell densities between growth in spatially structured environments versus well mixed environments (known as mass action). Maintenance of sensitive cells requires some form of phage death; we invoke death mechanisms that are spatially fixed, as if produced by cells. Spatially structured phage death provides cells with a means of protection that can boost cell densities an order of magnitude above that attained under mass action, although the effect is sometimes in the opposite direction. Phage and bacteria self organize into separate refuges, and spatial structure operates so that the phage progeny from a single burst do not have independent fates (as they do with mass action). Phage incur a high loss when invading protected areas that have high cell densities, resulting in greater protection for the cells. By the same metric, mass action dynamics either show no sustained bacterial elevation or oscillate between states of low and high cell densities and an elevated average. The elevated cell densities observed in models with spatial structure do not approach the empirically observed increased density of cells in structured environments with phages (which can be many orders of magnitude), so the empirical phenomenon likely requires additional mechanisms than those analyzed here. PMID:29382134

  1. Heterotypic interactions regulate cell shape and density during color pattern formation in zebrafish.

    PubMed

    Mahalwar, Prateek; Singh, Ajeet Pratap; Fadeev, Andrey; Nüsslein-Volhard, Christiane; Irion, Uwe

    2016-11-15

    The conspicuous striped coloration of zebrafish is produced by cell-cell interactions among three different types of chromatophores: black melanophores, orange/yellow xanthophores and silvery/blue iridophores. During color pattern formation xanthophores undergo dramatic cell shape transitions and acquire different densities, leading to compact and orange xanthophores at high density in the light stripes, and stellate, faintly pigmented xanthophores at low density in the dark stripes. Here, we investigate the mechanistic basis of these cell behaviors in vivo, and show that local, heterotypic interactions with dense iridophores regulate xanthophore cell shape transition and density. Genetic analysis reveals a cell-autonomous requirement of gap junctions composed of Cx41.8 and Cx39.4 in xanthophores for their iridophore-dependent cell shape transition and increase in density in light-stripe regions. Initial melanophore-xanthophore interactions are independent of these gap junctions; however, subsequently they are also required to induce the acquisition of stellate shapes in xanthophores of the dark stripes. In summary, we conclude that, whereas homotypic interactions regulate xanthophore coverage in the skin, their cell shape transitions and density is regulated by gap junction-mediated, heterotypic interactions with iridophores and melanophores. © 2016. Published by The Company of Biologists Ltd.

  2. Predicted energy densitites for nickel-hydrogen and silver-hydrogen cells embodying metallic hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Easter, R. W.

    1974-01-01

    Simplified design concepts were used to estimate gravimetric and volumetric energy densities for metal hydrogen battery cells for assessing the characteristics of cells containing metal hydrides as compared to gaseous storage cells, and for comparing nickel cathode and silver cathode systems. The silver cathode was found to yield superior energy densities in all cases considered. The inclusion of hydride forming materials yields cells with very high volumetric energy densities that also retain gravimetric energy densities nearly as high as those of gaseous storage cells.

  3. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors

    PubMed Central

    Almatouq, Abdullah; Babatunde, Akintunde O.

    2016-01-01

    This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, −550 ± 10 mV and 50 mL/min respectively, for COD, pHcathode, ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m2 power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value. PMID:27043584

  4. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors.

    PubMed

    Almatouq, Abdullah; Babatunde, Akintunde O

    2016-03-29

    This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, -550 ± 10 mV and 50 mL/min respectively, for COD, pH(cathode), ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m² power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value.

  5. Dysregulated B Cell Expression of RANKL and OPG Correlates with Loss of Bone Mineral Density in HIV Infection

    PubMed Central

    Titanji, Kehmia; Vunnava, Aswani; Sheth, Anandi N.; Delille, Cecile; Lennox, Jeffrey L.; Sanford, Sara E.; Foster, Antonina; Knezevic, Andrea; Easley, Kirk A.

    2014-01-01

    HIV infection is associated with high rates of osteopenia and osteoporosis, but the mechanisms involved are unclear. We recently reported that bone loss in the HIV transgenic rat model was associated with upregulation of B cell expression of the key osteoclastogenic cytokine receptor-activator of NF-κB ligand (RANKL), compounded by a simultaneous decline in expression of its physiological moderator, osteoprotegerin (OPG). To clinically translate these findings we performed cross-sectional immuno-skeletal profiling of HIV-uninfected and antiretroviral therapy-naïve HIV-infected individuals. Bone resorption and osteopenia were significantly higher in HIV-infected individuals. B cell expression of RANKL was significantly increased, while B cell expression of OPG was significantly diminished, conditions favoring osteoclastic bone resorption. The B cell RANKL/OPG ratio correlated significantly with total hip and femoral neck bone mineral density (BMD), T- and/or Z-scores in HIV infected subjects, but revealed no association at the lumbar spine. B cell subset analyses revealed significant HIV-related increases in RANKL-expressing naïve, resting memory and exhausted tissue-like memory B cells. By contrast, the net B cell OPG decrease in HIV-infected individuals resulted from a significant decline in resting memory B cells, a population containing a high frequency of OPG-expressing cells, concurrent with a significant increase in exhausted tissue-like memory B cells, a population with a lower frequency of OPG-expressing cells. These data validate our pre-clinical findings of an immuno-centric mechanism for accelerated HIV-induced bone loss, aligned with B cell dysfunction. PMID:25393853

  6. Shielding analyses for repetitive high energy pulsed power accelerators

    NASA Astrophysics Data System (ADS)

    Jow, H. N.; Rao, D. V.

    Sandia National Laboratories (SNL) designs, tests and operates a variety of accelerators that generate large amounts of high energy Bremsstrahlung radiation over an extended time. Typically, groups of similar accelerators are housed in a large building that is inaccessible to the general public. To facilitate independent operation of each accelerator, test cells are constructed around each accelerator to shield it from the radiation workers occupying surrounding test cells and work-areas. These test cells, about 9 ft. high, are constructed of high density concrete block walls that provide direct radiation shielding. Above the target areas (radiation sources), lead or steel plates are used to minimize skyshine radiation. Space, accessibility and cost considerations impose certain restrictions on the design of these test cells. SNL Health Physics division is tasked to evaluate the adequacy of each test cell design and compare resultant dose rates with the design criteria stated in DOE Order 5480.11. In response, SNL Health Physics has undertaken an intensive effort to assess existing radiation shielding codes and compare their predictions against measured dose rates. This paper provides a summary of the effort and its results.

  7. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.

    PubMed

    Huang, Liping; Chen, Jingwen; Quan, Xie; Yang, Fenglin

    2010-10-01

    Enhancement of Cr (VI) reduction rate and power production from biocathode microbial fuel cells (MFCs) was achieved using indigenous bacteria from Cr (VI)-contaminated site as inoculum and MFC architecture with a relatively large cathode-specific surface area of 340-900 m2 m(-3). A specific Cr (VI) reduction rate of 2.4 ± 0.2 mg g(-1)VSS h(-1) and a power production of 2.4 ± 0.1 W m(-3) at a current density of 6.9 A m(-3) were simultaneously achieved at an initial Cr (VI) concentration of 39.2 mg L(-1). Initial Cr (VI) concentration and solution conductivity affected Cr (VI) reduction rate, power production and coulombic efficiency. These findings demonstrate the importance of inoculation and MFC architecture in the enhancement of Cr (VI) reduction rate and power production. This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.

  8. Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells.

    PubMed

    Kim, Kyoung-Yeol; Yang, Wulin; Evans, Patrick J; Logan, Bruce E

    2016-12-01

    Treatment of low strength wastewaters using microbial fuel cells (MFCs) has been effective at hydraulic retention times (HRTs) similar to aerobic processes, but treatment of high strength wastewaters can require longer HRTs. The use of two air-cathode MFCs hydraulically connected in series was examined to continuously treat high strength swine wastewater (7-8g/L of chemical oxygen demand) at an HRT of 16.7h. The maximum power density of 750±70mW/m 2 was produced after 12daysof operation. However, power decreased by 85% after 185d of operation due to serious cathode fouling. COD removal was improved by using a lower external resistance, and COD removal rates were substantially higher than those previously reported for a low strength wastewater. However, removal rates were inconsistent with first order kinetics as the calculated rate constant was an order of magnitude lower than rate constant for the low strength wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Interrelationship of clinical, histomorphometric and immunohistochemical features of oral lesions in chronic paracoccidioidomycosis.

    PubMed

    de Abreu E Silva, Mariana À; Salum, Fernanda G; Figueiredo, Maria A; Lopes, Tiago G; da Silva, Vinicius D; Cherubini, Karen

    2013-03-01

    This study aimed to analyze the oral lesions of chronic paracoccidioidomycosis concerning their histomorphometric, immunohistochemical, and clinical features in a standardized sample. Fifty biopsy specimens of oral lesions of chronic paracoccidioidomycosis were submitted to hematoxylin and eosin (H&E), Grocott-Gomori and immunohistochemical staining. Data regarding disease duration and size and number of oral lesions, as well as erythrocytes, leukocytes, lymphocytes, hematocrit, hemoglobin, and erythrocyte sedimentation rate, were collected from medical charts. Granuloma density and number and diameter of buds and fungal cells, and IL-2, TNF-alpha and IFN-gamma expression, as well as clinical and hematological features, were quantified and correlated. Bud diameter was significantly greater in intermediate density granulomas compared to higher density granulomas. The other variables (number of buds, number and diameter of fungi, expression of IL-2, TNF-alpha and IFN-gamma, and clinical and hematological features) did not significantly change with the density of granulomas. There was a positive correlation between bud number and fungal cell number (r = 0.834), bud diameter and fungal cell diameter (r = 0.496), erythrocytes and number of fungi (r = 0.420), erythrocytes and bud number (r = 0.408), and leukocytes and bud number (r = 0.396). Negative correlation occurred between number and diameter of fungi (r = -0.419), bud diameter and granuloma density (r = -0.367), TNF-alpha expression and number of fungi (r = -0.372), and TNF-alpha expression and bud number (r = -0.300). The histological, immunological, and clinical features of oral lesions evaluated did not differ significantly between patients in our sample of chronic paracoccidioidomycosis. TNF-alpha levels were inversely correlated with intensity of infection. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  10. The development, distribution and density of the PMCA2 calcium pump in rat cochlear hair cells

    PubMed Central

    Chen, Qingguo; Mahendrasingam, Shanthini; Tickle, Jacqueline A.; Hackney, Carole M.; Furness, David N.; Fettiplace, Robert

    2012-01-01

    Calcium is tightly regulated in cochlear outer hair cells (OHCs). It enters mainly via mechanotransducer (MT) channels and is extruded by the PMCA2 isoform of the plasma membrane calcium ATPase, mutations in which cause hearing loss. To assess how pump expression matches the demands of Ca2+ homeostasis, the distribution of PMCA2 at different cochlear locations during development was quantified using immunofluorescence and post-embedding immunogold labeling. The PMCA2 isoform was confined to stereociliary bundles, first appearing at the base of the cochlea around post-natal day 0 (P0) followed by the middle and then the apex by P3, and was unchanged after P8. The developmental appearance matches maturation of the MT channels in rat OHCs. High-resolution immunogold labeling in adult rats showed PMCA2 was distributed along the membranes of all three rows of OHC stereocilia at similar densities and at about a quarter the density in IHC stereocilia. The difference between OHCs and inner hair cells (IHCs) is similar to the ratio of their MT channel resting open probabilities. Gold particle counts revealed no difference in PMCA2 density between low- and high-frequency OHC bundles despite larger MT currents in high-frequency OHCs. The PMCA2 density in OHC stereocilia was determined in low- and high-frequency regions from calibration of immunogold particle counts as 2200/μm2 from which an extrusion rate of ~200 ions·s−1 per pump was inferred. The limited ability of PMCA2 to extrude the Ca2+ load through MT channels may constitute a major cause of OHC vulnerability and high-frequency hearing loss. PMID:22672315

  11. Composite Cathodes for Dual-Rate Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  12. A kinetic Monte Carlo model with improved charge injection model for the photocurrent characteristics of organic solar cells

    NASA Astrophysics Data System (ADS)

    Kipp, Dylan; Ganesan, Venkat

    2013-06-01

    We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.

  13. Characterization of Ni-YSZ anodes for solid oxide fuel cells fabricated by suspension plasma spraying with axial feedstock injection

    NASA Astrophysics Data System (ADS)

    Metcalfe, Craig; Kuhn, Joel; Kesler, Olivera

    2013-12-01

    Composite Ni-Y0.15Zr0.85O1.925 anodes were fabricated by axial-injection suspension plasma spraying in open atmosphere conditions. The composition of the anode is controllable by adjustment of the plasma gas composition, stand-off distance, and suspension feed rate. The total porosity is controllable through the addition of carbon black to the suspension as a sacrificial pore-forming material as well as by adjustment of the suspension feed rate. The size of the NiO particles in suspension affects both the composition and total porosity, with larger NiO particles leading to increased Ni content and porosity in the deposited coatings. The surface roughness increases with a decrease of the in-flight droplet momentum, which results from both smaller NiO particles in suspension and the addition of low density pore-forming materials. A solid oxide fuel cell was fabricated with both electrodes and electrolyte fabricated by axial-injection plasma spraying. Peak power densities of 0.718 W cm-2 and 1.13 W cm-2 at 750 °C and 850 °C, respectively, were achieved.

  14. Apoptotic death in cerebral hemisphere cells is density dependent and modulated by transient oxygen and glucose deprivation.

    PubMed

    Yavin, E; Billia, D M

    1997-03-01

    Flow cytometry, light and fluorescence microscopy, and designated biochemical techniques were used to examine the type of death which occurs in cerebral cortex cells when grown under crowded vs. sparse conditions or after brief anoxia/hypoglycemia. A 4 hr episode of anoxia combined with glucose deprivation enhanced apoptotic cell death as assessed by 4',6-diamidino-2-phenylindole (DAPI) staining and reduced neutral red eye uptake. An additional form of cell death involving exclusion of the nucleus was recorded by time lapse cinematography and DAPI stain. The presence of the endonuclease inhibitor aurintricarboxylic acid (0.1 mM) reduced cell death by 56.6%, while the protein and RNA synthesis inhibitors actinomycin D and cycloheximide (each at 5 micrograms/ml) effectively decreased cell death by 83.3% and 90.6%, respectively. In contrast, 5 mM glutamate had no effect on cell death in accord with the immature state of the cells. Growth of cells under crowded conditions improved cell survival; after 2 h or 4 days in culture, cells seeded at high density (34 microgram cellular DNA/cm2) showed a nearly 3-fold decline in the amount of cell death in comparison to cells seeded at low density (5 micrograms cellular DNA/cm2). At high cell density, anoxic episodes enhanced cell death most likely by preventing a cell density-mediated rescue. Neutral red dye uptake, an index for cell viability, was enhanced with increasing cell density and in vitro maturation, but was reduced in dense cultures exposed to anoxic/hypoglycemic conditions. The data suggest that cell density may play a critical role in brain organogenesis and that anoxic stress is more deleterious in dense than sparse cell assemblies.

  15. Programmed death ligand 1 expression and CD8+ tumor-infiltrating lymphocyte density differences between paired primary and brain metastatic lesions in non-small cell lung cancer.

    PubMed

    Zhou, Jie; Gong, Zhihua; Jia, Qingzhu; Wu, Yan; Yang, Zhen-Zhou; Zhu, Bo

    2018-04-15

    Immunotherapy targeting the programmed cell death-1/programmed death ligand 1(PD-L1) pathway has shown promising antitumor activity in brain metastases (BMs) of non-small cell lung cancer (NSCLC) patients with an acceptable safety profile; however, the response rates often differ between primary lesions and intracranial lesions. Studies are necessary to identify detailed characterizations of the response biomarkers. In this study, we aimed to compare the differences of PD-L1 expression and CD8 + tumor-infiltrating lymphocyte (TIL) density, two major response biomarkers of PD-1/PD-L1 blockade, between paired primary and brain metastatic lesions in advanced NSCLC. We observed that among primary lesions or BMs, only a small number of patients harbored common PD-L1 expression on both tumor cells and tumor-infiltrating immune cells. Additionally, we found that the numbers of CD8 + TILs were significantly fewer in BMs than in primary lung cancers. Low stromal CD8 + TIL numbers in BMs were associated with significantly shorter overall survival compared to high stromal CD8 + TIL counts. Notably, we demonstrated a discrepancy in PD-L1 expression and CD8 + TIL density between primary lung cancers and their corresponding BMs. Such heterogeneities are significantly associated with the time at which BMs occurred. Our study emphasizes the spatial and temporal heterogeneity of biomarkers for anti-PD-1/PD-L1 therapy, which should be concerned in clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Growth of cultured corneal endothelial cells onto a vitreous carbon matrix.

    PubMed

    Wickham, M G; Cleveland, P H; Binder, P S; Akers, P H

    1983-01-01

    Fourth passage cells of a rabbit corneal endothelial line were grown for 1 week in flasks containing pieces of a reticulated vitreous carbon matrix. The rate of cell growth in flasks containing the matrix was consistent with that in control flasks. Small fragments of the vitreous carbon material lying on the flask floor were covered by the monolayers as the cells grew to confluency. Vertical growth of cells onto larger pieces of the matrix proceeded in a staged fashion with maximum cell density on pieces of the matrix closest to the floor of the flask. As defined by scanning electron microscopy, cell growth occurred to a level at least 600 microns above the floor of the flask and the confluent monolayer. This novel culture procedure should be a model situation for study of many different aspects of the in vitro capabilities of corneal endothelial cells.

  17. High strain rate behaviour of polypropylene microfoams

    NASA Astrophysics Data System (ADS)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  18. Synthetic high-density lipoprotein nanoconjugate targets neuroblastoma stem cells, blocking migration and self-renewal.

    PubMed

    Subramanian, Chitra; White, Peter T; Kuai, Rui; Kalidindi, Avinaash; Castle, Valerie P; Moon, James J; Timmermann, Barbara N; Schwendeman, Anna; Cohen, Mark S

    2018-05-09

    Pathways critical for neuroblastoma cancer stem cell function are targeted by 4,19,27-triacetyl withalongolide A (WGA-TA). Because neuroblastoma cells and their cancer stem cells highly overexpress the scavenger receptor class B type 1 receptor that binds to synthetic high-density lipoprotein, we hypothesized that a novel mimetic synthetic high-density lipoprotein nanoparticle would be an ideal carrier for the delivery of 4,19,27-triacetyl withalongolide to neuroblastoma and neuroblastoma cancer stem cells. Expression of scavenger receptor class B type 1 in validated human neuroblastoma cells was evaluated by quantitative polymerase chain reaction (qPCR) and Western blot. In vitro cellular uptake of synthetic high-density lipoprotein nanoparticles was observed with a fluorescence microscope. In vivo biodistribution of synthetic high-density lipoprotein nanoparticles was investigated with IVIS imaging. Self-renewal and migration/invasion were assessed by sphere formation and Boyden chamber assays, respectively. Viability was analyzed by CellTiter-Glo assay. Cancer stem cell markers were evaluated by flow cytometry. qPCR and Western blot analysis revealed a higher level of scavenger receptor class B type 1 expression and drug uptake in N-myc amplified neuroblastoma cells. In vitro uptake of synthetic high-density lipoprotein was almost completely blocked by excess synthetic high-density lipoprotein. The synthetic high-density lipoprotein nanoparticles mainly accumulated in the tumor and liver, but not in other organs. Synthetic HDL-4,19,27-triacetyl withalongolide showed a 1,000-fold higher potency than the carrier (synthetic high-density lipoprotein) alone (P < .01) to kill neuroblastoma cells. Additionally, a dose-dependent decrease in sphere formation, invasion, migration, and cancer stem cell markers was observed after treatment of neuroblastoma cells with synthetic high-density lipoprotein-4,19,27-triacetyl withalongolide A. Synthetic high-density lipoprotein is a promising platform to improve the delivery of anticancer drug 4,19,27-triacetyl withalongolide A to neuroblastomas and neuroblastoma cancer stem cells through SR-B1 targeting in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline,more » the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.« less

  20. Lysosomes are involved in induction of steroidogenic acute regulatory protein (StAR) gene expression and progesterone synthesis through low-density lipoprotein in cultured bovine granulosa cells.

    PubMed

    Zhang, Jin-You; Wu, Yi; Zhao, Shuan; Liu, Zhen-Xing; Zeng, Shen-Ming; Zhang, Gui-Xue

    2015-09-15

    Progesterone is an important steroid hormone in the regulation of the bovine estrous cycle. The steroidogenic acute regulatory protein (StAR) is an indispensable component for transporting cholesterol to the inner mitochondrial membrane, which is one of the rate-limiting steps for progesterone synthesis. Low-density lipoprotein (LDL) supplies cholesterol precursors for progesterone formation, and the lysosomal degradation pathway of LDL is essential for progesterone biosynthesis in granulosa cells after ovulation. However, it is currently unknown how LDL and lysosomes coordinate the expression of the StAR gene and progesterone production in bovine granulosa cells. Here, we investigated the role of lysosomes in LDL-treated bovine granulosa cells. Our results reported that LDL induced expression of StAR messenger RNA and protein as well as expression of cholesterol side-chain cleavage cytochrome P-450 (CYP11A1) messenger RNA and progesterone production in cultured bovine granulosa cells. The number of lysosomes in the granulosa cells was also significantly increased by LDL; whereas the lysosomal inhibitor, chloroquine, strikingly abolished these LDL-induced effects. Our results indicate that LDL promotes StAR expression, synthesis of progesterone, and formation of lysosomes in bovine granulosa cells, and lysosomes participate in the process by releasing free cholesterol from hydrolyzed LDL. Copyright © 2015 Elsevier Inc. All rights reserved.

Top