Mancia, G; Ferrari, A; Gregorini, L; Parati, G; Pomidossi, G; Bertinieri, G; Grassi, G; Zanchetti, A
1980-12-01
1. Intra-arterial blood pressure and heart rate were recorded for 24 h in ambulant hospitalized patients of variable age who had normal blood pressure or essential hypertension. Mean 24 h values, standard deviations and variation coefficient were obtained as the averages of values separately analysed for 48 consecutive half-hour periods. 2. In older subjects standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation aations and variation coefficient were obtained as the averages of values separately analysed for 48 consecurive half-hour periods. 2. In older subjects standard deviation and variation coefficient for mean arterial pressure were greater than in younger subjects with similar pressure values, whereas standard deviation and variation coefficient for heart rate were smaller. 3. In hypertensive subjects standard deviation for mean arterial pressure was greater than in normotensive subjects of similar ages, but this was not the case for variation coefficient, which was slightly smaller in the former than in the latter group. Normotensive and hypertensive subjects showed no difference in standard deviation and variation coefficient for heart rate. 4. In both normotensive and hypertensive subjects standard deviation and even more so variation coefficient were slightly or not related to arterial baroreflex sensitivity as measured by various methods (phenylephrine, neck suction etc.). 5. It is concluded that blood pressure variability increases and heart rate variability decreases with age, but that changes in variability are not so obvious in hypertension. Also, differences in variability among subjects are only marginally explained by differences in baroreflex function.
NASA Technical Reports Server (NTRS)
Torr, D. G.; Orsini, N.
1978-01-01
The Atmosphere Explorer (AE) data are reexamined in the light of new laboratory measurements of the N2(+) recombination rate coefficient alpha. The new measurements support earlier measurements which yielded values of alpha significantly lower than the AE values. It is found that the values for alpha determined from the satellite data can be reconciled with the laboratory measurements, if the charge exchange rate coefficient for O(+)(2D) with N2 is less than one-quarter of that derived in the laboratory by Rutherford and Vroom (1971).
A fractal analysis of pathogen detection by biosensors
NASA Astrophysics Data System (ADS)
Doke, Atul M.; Sadana, Ajit
2006-05-01
A fractal analysis is presented for the detection of pathogens such as Franscisela tularensis, and Yersinia pestis (the bacterium that causes plague) using a CANARY (cellular analysis and notification of antigens risks and yields) biosensor (Rider et al., 2003). In general, the binding and dissociation rate coefficients may be adequately described by either a single- or a dual-fractal analysis. An attempt is made to relate the binding rate coefficient to the degree of heterogeneity (fractal dimension value) present on the biosensor surface. Binding and dissociation rate coefficient values obtained are presented. The kinetics aspects along with the affinity values presented are of interest, and should along with the rate coefficients presented for the binding and the dissociation phase be of significant interest in help designing better biosensors for an application area that is bound to gain increasing importance in the future.
The excitation of OH by H2 revisited - I: fine-structure resolved rate coefficients
NASA Astrophysics Data System (ADS)
Kłos, J.; Ma, Q.; Dagdigian, P. J.; Alexander, M. H.; Faure, A.; Lique, F.
2017-11-01
Observations of OH in molecular clouds provide crucial constraints on both the physical conditions and the oxygen and water chemistry in these clouds. Accurate modelling of the OH emission spectra requires the calculation of rate coefficients for excitation of OH by collisions with the most abundant collisional partner in the molecular clouds, namely the H2 molecule. We report here theoretical calculations for the fine-structure excitation of OH by H2 (both para- and ortho-H2) using a recently developed highly accurate potential energy surface. Full quantum close coupling rate coefficients are provided for temperatures ranging from 10 to 150 K. Propensity rules are discussed and the new OH-H2 rate coefficients are compared to the earlier values that are currently used in astrophysical modelling. Significant differences were found: the new rate coefficients are significantly larger. As a first application, we simulate the excitation of OH in typical cold molecular clouds and star-forming regions. The new rate coefficients predict substantially larger line intensities. As a consequence, OH abundances derived from observations will be reduced from the values predicted by the earlier rate coefficients.
A study of the liquid-vapor phase change of mercury based on irreversible thermodynamics.
NASA Technical Reports Server (NTRS)
Adt, R. R., Jr.; Hatsopoulos, G. N.; Bornhorst, W. J.
1972-01-01
The object of this work is to determine the transport coefficients which appear in linear irreversible-thermodynamic rate equations of a phase change. An experiment which involves the steady-state evaporation of mercury was performed to measure the principal transport coefficient appearing in the mass-rate equation and the coupling transport coefficient appearing in both the mass-rate equation and the energy-rate equation. The principal transport coefficient sigma, usually termed the 'condensation' or 'evaporation' coefficient, is found to be approximately 0.9, which is higher than that measured previously in condensation-of-mercury experiments. The experimental value of the coupling coefficient K does not agree with the value predicted from Schrage's kinetic analysis of the phase change. A modified kinetic analysis in which the Onsager reciprocal law and the conservation laws are invoked is presented which removes this discrepancy but which shows that the use of Schrage's equation for predicting mass rates of phase change is a good approximation.
A review of reaction rates in high temperature air
NASA Technical Reports Server (NTRS)
Park, Chul
1989-01-01
The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.
NASA Astrophysics Data System (ADS)
Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.
2016-09-01
The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.
Assessment of rate of drug release from oil vehicle using a rotating dialysis cell.
Larsen, D H; Fredholt, K; Larsen, C
2000-09-01
The rate constants for transfer of model compounds (naproxen and lidocaine) from oily vehicle (Viscoleo) to aqueous buffer phases were determined by use of the rotating dialysis cell. Release studies were done for the partly ionized compounds at several pH values. A correlation between the overall first-order rate constant related to attainment of equilibrium, k(obs), and the pH-dependent distribution coefficient, D, determined between oil vehicle and aqueous buffer was established according to the equation: logk(obs)=-0.71 logD-0.22 (k(obs) in h(-1)). Based on this correlation it was suggested that the rate constant of a weak electrolyte at a specified D value could be considered equal to the k(obs) value for a non-electrolyte possessing a partition coefficient, P(app), the magnitude of which was equal to D. Specific rate constants k(ow) and k(wo) were calculated from the overall rate constant and the pH-dependent distribution coefficient. The rate constant representing the transport from oily vehicle to aqueous phase, k(ow), was found to be significantly influenced by the magnitude of the partition coefficient P(app) according to: logk(ow)=-0.71 logP(app)-log(P(app)+1)-0.22 (k(ow) in h(-1)).
NASA Astrophysics Data System (ADS)
Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan
2018-03-01
Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.
2016-01-01
We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.
Jiang, Jing; Liu, Wanhua; Ye, Yuanyuan; Wang, Rui; Li, Fengfang; Peng, Chengyu
2014-06-17
To investigate the diagnostic efficiency of decline rate of signal intensity and apparent diffusion coefficient with different b values for differentiating benign and malignant breast lesions on diffusion-weighted 3.0 T magnetic resonance imaging. A total of 152 patients with 162 confirmed histopathologically breast lesions (85 malignant and 77 benign) underwent 3.0 T diffusion-weighted magnetic resonance imaging. Four b values (0, 400, 800 and 1 000 s/mm²) were used. The signal intensity and ADC values of breast lesions were measured respectively. The signal intensity decline rate (SIDR) and apparent diffusion coefficient decline rate (ADCDR) were calculated respectively. SIDR = (signal intensity of lesions with low b value-signal intensity of lesions with high b value)/signal intensity of lesions with low b value, ADCDR = (ADC value of lesions with low b value-ADC value of lesions with high b value) /ADC value of lesions with low b value. The independent sample t-test was employed for statistical analyses and the receiver operating characteristic (ROC) curve for evaluating the diagnosis efficiency of SIDR and ADCDR values. Significant differences were observed in SIDR between benign and malignant breast lesions with b values of 0-400, 400-800 and 800-1 000 s/mm². The sensitivities of SIDR for differentiating benign and malignant breast lesions were 61.2%, 68.2% and 67.1%, the specificities 74.0%, 85.7% and 67.5%, the diagnosis accordance rates 67.3%, 76.5% and 67.3%, the positive predictive values 72.2%, 84.1% and 69.5% and the negative predictive values 63.3%, 71.0% and 65.0% respectively. Significant differences were observed in ADCDR between benign and malignant breast lesions with b values of 400-800 s/mm² and 800-1 000 s/mm². The sensitivities of SDR for differentiating benign and malignant breast lesions were 80.0% and 65.9%, the specificities 72.7% and 65.0%, the diagnostic accordance rates 76.5% and 65.4%, the positive predictive values 76.4% and 67.5% and the negative predictive values 76.7% and 63.3% respectively. The decline rate of signal intensity and apparent diffusion coefficient with different b values may be used for differentiating benign and malignant breast lesions. And the diagnostic efficiency with b values of 400-800 s/mm² is optimal.
Structure dependence of the rate coefficients of hydroxyl radical+aromatic molecule reaction
NASA Astrophysics Data System (ADS)
Wojnárovits, László; Takács, Erzsébet
2013-06-01
The rate coefficients of hydroxyl radical addition to the rings of simple aromatic molecules (kOH) were evaluated based on the literature data. By analyzing the methods of kOH determination and the data obtained the most probable values were selected for the kOH's of individual compounds and thereby the most reliable dataset was created for monosubstituted aromatics and p-substituted phenols. For these compounds the rate coefficients fall in a narrow range between 2×109 mol-1 dm3 s-1 and 1×1010 mol-1 dm3 s-1. Although the values show some regular trend with the electron donating/withdrawing nature of the substituent, the log kOH-σp Hammett substituent constant plots do not give straight lines because these high kOH's are controlled by both, the chemical reactivity and the diffusion. However, the logarithms of the rate coefficients of the chemical reactivity controlled reactions (kchem), are calculated by the equation 1/kOH=1/kchem+1/kdiff, and accepting for the diffusion controlled rate coefficient kdiff=1.1×1010 mol-1 dm3 s-1, show good linear correlation with σp.
Samartsev, V N; Kozhina, O V; Polishchuk, L S
2005-01-01
It is known that mitochondrial respiration in state 3 is due to three simultaneous and independent processes: synthesis of ATP (1), endogenous passive proton leakage (2), and proton leakage by protonophoric uncoupler (3). The total rate of processes (2) and (3) is equal to the product of respiration rate in state 4 and coefficient KR, which is defined as the ratio of the deltamuH+ value in state 3 to that in state 4. It is shown that it is possible to calculate both the rates of processes (1), (2) and (3) separately and the protonophoric activity of uncoupler using the coefficient KR and other coefficients, which are determined as the ratio of deltamuH+ values in state 3 or in state 4 to its maximal value. Simple methods of determination of these coefficients were developed, which are based on the study of the dependence of respiration rate in states 3 and 4 on the concentration of protonophoric uncoupler. It was found that the uncoupling action of palmitate, a natural uncoupler of oxidative phosphorylation, unlike classic uncoupler-protonophores DNP and FCCP, depends not only on its protonophoric activity but also on the inhibition of the process (1).
Seasonal variations of Manning's coefficient depending on vegetation conditions in Tärnsjö, Sweden
NASA Astrophysics Data System (ADS)
Plakane, Rūta; Di Baldassarre, Giuliano; Okoli, Kenechukwu
2017-04-01
Hydrological modelling and water resources management require observations of high and low river flows. To estimate them, rating curves based on the characteristics of the river channel and floodplain are often used. Yet, multiple factors can cause uncertainties in rating curves, one of them being the variability of the Manning's roughness coefficient due to seasonal changes of vegetation. Determining this uncertainty has been a challenge, and depending on vegetation conditions on a stream, values can temporarily show an important deviation from the calibrated rating curve, enhancing the importance to understand changes in Manning's roughness coefficient. Examining the aquatic vegetation on the site throughout different seasonal conditions allows one to observe changes within the channel. By depending on cyclical changes in Manning's roughness coefficient values, different discharges may correspond to the same stage conditions. In this context, we present a combination of field work and modelling exercise to the variation of the rating curve due to vegetation changes in a Swedish stream.
Calculation of equivalent friction coefficient for castor seed by single screw press
NASA Astrophysics Data System (ADS)
Liu, R.; Xiao, Z.; Li, C.; Zhang, L.; Li, P.; Li, H.; Zhang, A.; Tang, S.; Sun, F.
2017-08-01
Based on the traction angle and transportation rate equation, castor beans were pressed by application of single screw under different cake diameter and different screw speed. The results showed that the greater the cake diameter and screw rotation speed, the greater the actual transmission rate was. The equivalent friction coefficient was defined and calculated as 0.4136, and the friction coefficients between press material and screw, bar cage were less than the equivalent friction coefficient value.
Evaluation of generalized heat-transfer coefficients in pilot AFBC units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.
Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.
Evaluation of generalized heat transfer coefficients in pilot AFBC units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.
Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.
Drexler, Judith Z.; Anderson, Frank E.; Snyder, Richard L.
2008-01-01
The surface renewal method was used to estimate evapotranspiration (ET) for a restored marsh on Twitchell Island in the Sacramento–San Joaquin Delta, California, USA. ET estimates for the marsh, together with reference ET measurements from a nearby climate station, were used to determine crop coefficients over a 3‐year period during the growing season. The mean ET rate for the study period was 6 mm day−1, which is high compared with other marshes with similar vegetation. High ET rates at the marsh may be due to the windy, semi‐arid Mediterranean climate of the region, and the permanently flooded nature of the marsh, which results in very low surface resistance of the vegetation. Crop coefficient (Kc) values for the marsh ranged from 0·73 to 1·18. The mean Kc value over the entire study period was 0·95. The daily Kc values for any given month varied from year to year, and the standard deviation of daily Kc values varied between months. Although several climate variables were undoubtedly responsible for this variation, our analysis revealed that wind direction and the temperature of standing water in the wetland were of particular importance in determining ET rates and Kc values.
NASA Technical Reports Server (NTRS)
Jameson, A. R.
1990-01-01
The relationship between the rainfall rate (R) obtained from radiometric brightness temperatures and the extinction coefficient (k sub e) is investigated by computing the values of k sub e over a wide range of rainfall rates, for frequencies from 3 to 25 GHz. The results show that the strength of the relation between the R and the k sub e values exhibits considerable variation for frequencies at this range. Practical suggestions are made concerning the selection of particular frequencies for rain measurements to minimize the error in R determinations.
Turbulence effects on volatilization rates of liquids and solutes
Lee, J.-F.; Chao, H.-P.; Chiou, C.T.; Manes, M.
2004-01-01
Volatilization rates of neat liquids (benzene, toluene, fluorobenzene, bromobenzene, ethylbenzene, m-xylene, o-xylene, o-dichlorobenzene, and 1-methylnaphthalene) and of solutes (phenol, m-cresol, benzene, toluene, ethylbenzene, o-xylene, and ethylene dibromide) from dilute water solutions have been measured in the laboratory over a wide range of air speeds and water-stirring rates. The overall transfer coefficients (KL) for individual solutes are independent of whether they are in single- or multi-solute solutions. The gas-film transfer coefficients (kG) for solutes in the two-film model, which have hitherto been estimated by extrapolation from reference coefficients, can now be determined directly from the volatilization rates of neatliquids through anew algorithm. The associated liquid-film transfer coefficients (KL) can then be obtained from measured KL and kG values and solute Henry law constants (H). This approach provides a novel means for checking the precision of any kL and kG estimation methods for ultimate prediction of KL. The improved kG estimation enables accurate K L predictions for low-volatility (i.e., low-H) solutes where K L and kGH are essentially equal. In addition, the prediction of KL values for high-volatility (i.e., high-H) solutes, where KL ??? kL, is also improved by using appropriate reference kL values.
NASA Astrophysics Data System (ADS)
Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.
2017-11-01
In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.
Determination of the N2 recombination rate coefficient in the ionosphere
NASA Technical Reports Server (NTRS)
Orsini, N.; Torr, D. G.; Brinton, H. C.; Brace, L. H.; Hanson, W. B.; Hoffman, J. H.; Nier, A. O.
1977-01-01
Measurements of aeronomic parameters made by the Atmosphere Explorer-C satellite are used to determine the recombination rate coefficient of N2(+) in the ionosphere. The rate is found to increase significantly with decreasing electron density. Values obtained range from approximately 1.4 x 10 to the -7th to 3.8 x 10 to the -7th cu cm/sec. This variation is explained in a preliminary way in terms of an increase in the rate coefficient with vibrational excitation. Thus, high electron densities depopulate high vibrational levels reducing the effective recombination rate, whereas, low electron densities result in an enhancement in the population of high vibrational levels, thus, increasing the effective recombination rate.
NASA Astrophysics Data System (ADS)
Lenzen, Matthias; Merklein, Marion
2017-10-01
In the automotive sector, a major challenge is the deep-drawing of modern lightweight sheet metals with limited formability. Thus, conventional material models lack in accuracy due to the complex material behavior. A current field of research takes into account the evolution of the Lankford coefficient. Today, changes in anisotropy under increasing degree of deformation are not considered. Only a consolidated average value of the Lankford coefficient is included in conventional material models. This leads to an increasing error in prediction of the flow behavior and therefore to an inaccurate prognosis of the forming behavior. To increase the accuracy of the prediction quality, the strain dependent Lankford coefficient should be respected, because the R-value has a direct effect on the contour of the associated flow rule. Further, the investigated materials show a more or less extinct rate dependency of the yield stress. For this reason, the rate dependency of the Lankford coefficient during uniaxial tension is focused within this contribution. To quantify the influence of strain rate on the Lankford coefficient, tensile tests are performed for three commonly used materials, the aluminum alloy AA6016-T4, the advanced high strength steel DP800 and the deep drawing steel DC06 at three different strain rates. The strain measurement is carried out by an optical strain measurement system. An evolution of the Lankford coefficient was observed for all investigated materials. Also, an influence of the deformation velocity on the anisotropy could be detected.
Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study
NASA Astrophysics Data System (ADS)
Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur
2018-04-01
This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself
VizieR Online Data Catalog: Rate coefficients for H2(v,j)+H2(v',j'
NASA Astrophysics Data System (ADS)
Mandy, M. E.
2016-11-01
State-specific rate coefficients for the dissociation of H2 result of collisions with H2 were calculated for all combinations of (v,j) with an internal energy below 1eV. Full-dimensional quasiclassical trajectories were calculated using the BMKP2 interaction potential with a minimum of 80000 trajectories at each translational energy. Additional large batches of trajectories were carried out to calculate the cross sections near the threshold to dissociation to attain the desired precision of the rate coefficients. A piecewise linear excitation function was used to calculate the rate coefficient between 100 and 100000K. The resulting state-specific rate coefficients, γ, were parametrized as a function of temperature over the range 600-10000K using: log10γ(t)=a+bz+cz2-d(1/t-1) where t=T/4500K and z=log10t. The values of the resulting rate coefficients were sensitive to the internal energy of both molecules, with initial vibrational energy having a slightly greater effect than rotational energy. This effect diminished as temperature increased. (15 data files).
1984-06-01
preceding the corresponding pressure group of the surface thermochemistry deck as described below. The temperature entries within each section must be... pressure group the transfer coefficient values will be ordered. Within each transfer coefficient section, ablation rate entries need not he ordered in any...may not exceed 5 (and may be only I); the number of transfer coefficient values in each pressure group may not exceed 5 but may be only 1. If no
Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut
2010-03-07
The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.
Determination of the Peltier Coefficient of Germanium in a Vertical Bridgeman-Stockbarger Furnace
NASA Technical Reports Server (NTRS)
Weigel, Michaela E. K.; Matthiesen, David H.
1997-01-01
The Peltier effect is the fundamental mechanism that makes interface demarcation through current pulsing possible. If a method for calculating the necessary current density for effective demarcation is to be developed, it will be necessary to know the value of the Peltier coefficient. This study determined experimentally the value of the Peltier coefficient for gallium-doped germanium by comparing the change in average growth rates between current-on and current-off periods. Current-on and current-off layer thickness measurements were made using differential interference contrast microscopy and atomic force microscopy. It was found that the Joule and Thomson effects could not be neglected. Peltier coefficients calculated from the experimental data with an analysis that accounts for Joule, Thomson, and Peltier effects yielded an average value for the Peltier coefficient of 0.076 +/- 0.015 V.
Measurement of diffusion coefficients from solution rates of bubbles
NASA Technical Reports Server (NTRS)
Krieger, I. M.
1979-01-01
The rate of solution of a stationary bubble is limited by the diffusion of dissolved gas molecules away from the bubble surface. Diffusion coefficients computed from measured rates of solution give mean values higher than accepted literature values, with standard errors as high as 10% for a single observation. Better accuracy is achieved with sparingly soluble gases, small bubbles, and highly viscous liquids. Accuracy correlates with the Grashof number, indicating that free convection is the major source of error. Accuracy should, therefore, be greatly increased in a gravity-free environment. The fact that the bubble will need no support is an additional important advantage of Spacelab for this measurement.
Restoration of acidic mine spoils with sewage sludge: II measurement of solids applied
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stucky, D.J.; Zoeller, A.L.
1980-01-01
Sewage sludge was incorporated in acidic strip mine spoils at rates equivalent to 0, 224, 336, and 448 dry metric tons (dmt)/ha and placed in pots in a greenhouse. Spoil parameters were determined 48 hours after sludge incorporation, Time Planting (P), and five months after orchardgrass (Dactylis glomerata L.) was planted, Time Harvest (H), in the pots. Parameters measured were: pH, organic matter content (OM), cation exchange capacity (CEC), electrical conductivity (EC) and yield. Values for each parameter were significantly different at the two sampling times. Correlation coefficient values were calculated for all parameters versus rates of applied sewage sludgemore » and all parameters versus each other. Multiple regressions were performed, stepwise, for all parameters versus rates of applied sewage sludge. Equations to predict amounts of sewage sludge incorporated in spoils were derived for individual and multiple parameters. Generally, measurements made at Time P achieved the highest correlation coefficient and multiple correlation coefficient values; therefore, the authors concluded data from Time P had the greatest predictability value. The most important value measured to predict rate of applied sewage sludge was pH and some additional accuracy was obtained by including CEC in equation. This experiment indicated that soil properties can be used to estimate amounts of sewage sludge solids required to reclaim acidic mine spoils and to estimate quantities incorporated.« less
Variability in heart rate recovery measurements over 1 year in healthy, middle-aged adults.
Mellis, M G; Ingle, L; Carroll, S
2014-02-01
This study assessed the longer-term (12-month) variability in post-exercise heart rate recovery following a submaximal exercise test. Longitudinal data was analysed for 97 healthy middle-aged adults (74 male, 23 female) from 2 occasions, 12 months apart. Participants were retrospectively selected if they had stable physical activity habits, submaximal treadmill fitness and anthropometric measurements between the 2 assessment visits. A submaximal Bruce treadmill test was performed to at least 85% age-predicted maximum heart rate. Absolute heart rate and Δ heart rate recovery (change from peak exercise heart rate) were recorded for 1 and 2 min post-exercise in an immediate supine position. Heart rate recovery at both time-points was shown to be reliable with intra-class correlation coefficient values ≥ 0.714. Absolute heart rate 1-min post-exercise showed the strongest agreement between repeat tests (r = 0.867, P < 0.001). Lower coefficient of variation (≤ 10.2%) and narrower limits of agreement were found for actual heart rate values rather than Δ heart rate recovery, and for 1-min rather than 2-min post-exercise recovery time points. Log-transformed values generated better variability with acceptable coefficient of variation for all measures (2.2-10%). Overall, 1 min post-exercise heart rate recovery data had least variability over the 12-month period in apparently healthy middle-aged adults. © Georg Thieme Verlag KG Stuttgart · New York.
Atomic data on inelastic processes in low-energy manganese-hydrogen collisions
NASA Astrophysics Data System (ADS)
Belyaev, Andrey K.; Voronov, Yaroslav V.
2017-10-01
Aims: The aim of this paper is to calculate cross sections and rate coefficients for inelastic processes in low-energy Mn + H and Mn+ + H- collisions, especially, for processes with high and moderate rate coefficients. These processes are required for non-local thermodynamic equilibrium (non-LTE) modeling of manganese spectra in cool stellar atmospheres, and in particular, for metal-poor stars. Methods: The calculations of the cross sections and the rate coefficients were performed by means of the quantum model approach within the framework of the Born-Oppenheimer formalism, that is, the asymptotic semi-empirical method for the electronic MnH molecular structure calculation followed by the nonadiabatic nuclear dynamical calculation by means of the multichannel analytic formulas. Results: The cross sections and the rate coefficients for low-energy inelastic processes in manganese-hydrogen collisions are calculated for all transitions between 21 low-lying covalent states and one ionic state. We show that the highest values of the cross sections and the rate coefficients correspond to the mutual neutralization processes into the final atomic states Mn(3d54s(7S)5s e 6S), Mn(3d54s(7S)5p y 8P°), Mn(3d54s(7S)5s e 8S), Mn(3d54s(7S)4d e 8D) [the first group], the processes with the rate coefficients (at temperature T = 6000 K) of the values 4.38 × 10-8, 2.72 × 10-8, 1.98 × 10-8, and 1.59 × 10-8 cm3/ s, respectively, that is, with the rate coefficients exceeding 10-8 cm3/ s. The processes with moderate rate coefficients, that is, with values between 10-10 and 10-8 cm3/ s include many excitation, de-excitation, mutual neutralization and ion-pair formation processes. In addition to other processes involving the atomic states from the first group, the processes from the second group include those involving the following atomic states: Mn(3d5(6S)4s4p (1P°) y 6P°), Mn(3d54s(7S)4d e 6D), Mn(3d54s(7S)5p w 6P°), Mn(3d5(4P)4s4p (3P°) y 6D°), Mn(3d5(4G)4s4p (3P°) y 6F°). The processes with the highest and moderate rate coefficients are expected to be important for non-LTE modeling of manganese spectra in stellar atmospheres. Rate coefficients Kif(T) for the excitation, de-excitation, mutual neutralization, and ion-pair formation processes in manganese-hydrogen collisions are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A106
Evaluated kinetic and photochemical data for atmospheric chemistry
NASA Technical Reports Server (NTRS)
Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J.; Watson, R. T.
1980-01-01
This paper contains a critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10-55 km altitude). Data sheets have been prepared for 148 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each reaction a preferred value of the rate coefficient at 298 K is given together with a temperature dependency where possible. The selection of the preferred value is discussed, and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available data on enthalpies of formation of the reactant and product species.
Dissociative charge transfer of H/+/ ions with H2 and D2 molecules from 78 to 330 K
NASA Technical Reports Server (NTRS)
Johnsen, R.; Chen, A.; Biondi, M. A.
1980-01-01
The dissociative charge transfer of He(+) ions with H2 and D2 molecules has been studied using a temperature-variable drift-tube mass-spectrometer apparatus over the temperature range 78 to 330 K. The binary rate coefficients are small at 300 K, approximately 10 to the -13th to 10 to the -14th cu cm/sec, and only slightly larger at 78 K. Termolecular contributions to the binary rate coefficients are found to be small at 330 K but increase substantially with decreasing temperature. Two-body charge transfer with D2 is found to be slower than with H2 by a factor of 10, in good agreement with recent theoretical predictions, although the measured values of the rate coefficients are larger by a factor of about 4 than the predicted values.
Gamma dosimetric parameters in some skeletal muscle relaxants
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2017-09-01
We have studied the attenuation of gamma radiation of energy ranging from 84 keV to 1330 keV (^{170}Tm, ^{22}Na,^{137}Cs, and ^{60}Co) in some commonly used skeletal muscle relaxants such as tubocurarine chloride, gallamine triethiodide, pancuronium bromide, suxamethonium bromide and mephenesin. The mass attenuation coefficient is measured from the attenuation experiment. In the present work, we have also proposed the direct relation between mass attenuation coefficient (μ /ρ ) and mass energy absorption coefficient (μ _{en}/ρ ) based on the nonlinear fitting procedure. The gamma dosimetric parameters such as mass energy absorption coefficient (μ _{en}/ρ ), effective atomic number (Z_{eff}), effective electron density (N_{el}), specific γ-ray constant, air kerma strength and dose rate are evaluated from the measured mass attentuation coefficient. These measured gamma dosimetric parameters are compared with the theoretical values. The measured values agree with the theoretical values. The studied gamma dosimetric values for the relaxants are useful in medical physics and radiation medicine.
Photolysis of rhodamine-WT dye
Tai, D.Y.; Rathbun, R.E.
1988-01-01
Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.
NASA Astrophysics Data System (ADS)
Doke, Atul M.; Sadana, Ajit
2006-05-01
A fractal analysis is presented for the binding and dissociation of different heart-related compounds in solution to receptors immobilized on biosensor surfaces. The data analyzed include LCAT (lecithin cholesterol acyl transferase) concentrations in solution to egg-white apoA-I rHDL immobilized on a biosensor chip surface.1 Single- and dual- fractal models were employed to fit the data. Values of the binding and the dissociation rate coefficient(s), affinity values, and the fractal dimensions were obtained from the regression analysis provided by Corel Quattro Pro 8.0 (Corel Corporation Limited).2 The binding rate coefficients are quite sensitive to the degree of heterogeneity on the sensor chip surface. Predictive equations are developed for the binding rate coefficient as a function of the degree of heterogeneity present on the sensor chip surface and on the LCAT concentration in solution, and for the affinity as a function of the ratio of fractal dimensions present in the binding and the dissociation phases. The analysis presented provided physical insights into these analyte-receptor reactions occurring on different biosensor surfaces.
NASA Astrophysics Data System (ADS)
Belyaev, Andrey K.; Yakovleva, Svetlana A.
2017-12-01
Aims: A simplified model is derived for estimating rate coefficients for inelastic processes in low-energy collisions of heavy particles with hydrogen, in particular, the rate coefficients with high and moderate values. Such processes are important for non-local thermodynamic equilibrium modeling of cool stellar atmospheres. Methods: The derived method is based on the asymptotic approach for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: It is found that the rate coefficients are expressed via statistical probabilities and reduced rate coefficients. It is shown that the reduced rate coefficients for neutralization and ion-pair formation processes depend on single electronic bound energies of an atomic particle, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to barium-hydrogen ionic collisions. For the first time, rate coefficients are evaluated for inelastic processes in Ba+ + H and Ba2+ + H- collisions for all transitions between the states from the ground and up to and including the ionic state. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A33
Accurate Determination of Tunneling-Affected Rate Coefficients: Theory Assessing Experiment.
Zuo, Junxiang; Xie, Changjian; Guo, Hua; Xie, Daiqian
2017-07-20
The thermal rate coefficients of a prototypical bimolecular reaction are determined on an accurate ab initio potential energy surface (PES) using ring polymer molecular dynamics (RPMD). It is shown that quantum effects such as tunneling and zero-point energy (ZPE) are of critical importance for the HCl + OH reaction at low temperatures, while the heavier deuterium substitution renders tunneling less facile in the DCl + OH reaction. The calculated RPMD rate coefficients are in excellent agreement with experimental data for the HCl + OH reaction in the entire temperature range of 200-1000 K, confirming the accuracy of the PES. On the other hand, the RPMD rate coefficients for the DCl + OH reaction agree with some, but not all, experimental values. The self-consistency of the theoretical results thus allows a quality assessment of the experimental data.
Hiller, Mauritius; Dewji, Shaheen Azim
2017-02-16
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiller, Mauritius; Dewji, Shaheen Azim
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
2012-01-01
In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.
Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K
NASA Astrophysics Data System (ADS)
Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.
2006-12-01
Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...
2016-02-01
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
Daskivich, Timothy J; Houman, Justin; Fuller, Garth; Black, Jeanne T; Kim, Hyung L; Spiegel, Brennan
2018-04-01
Patients use online consumer ratings to identify high-performing physicians, but it is unclear if ratings are valid measures of clinical performance. We sought to determine whether online ratings of specialist physicians from 5 platforms predict quality of care, value of care, and peer-assessed physician performance. We conducted an observational study of 78 physicians representing 8 medical and surgical specialties. We assessed the association of consumer ratings with specialty-specific performance scores (metrics including adherence to Choosing Wisely measures, 30-day readmissions, length of stay, and adjusted cost of care), primary care physician peer-review scores, and administrator peer-review scores. Across ratings platforms, multivariable models showed no significant association between mean consumer ratings and specialty-specific performance scores (β-coefficient range, -0.04, 0.04), primary care physician scores (β-coefficient range, -0.01, 0.3), and administrator scores (β-coefficient range, -0.2, 0.1). There was no association between ratings and score subdomains addressing quality or value-based care. Among physicians in the lowest quartile of specialty-specific performance scores, only 5%-32% had consumer ratings in the lowest quartile across platforms. Ratings were consistent across platforms; a physician's score on one platform significantly predicted his/her score on another in 5 of 10 comparisons. Online ratings of specialist physicians do not predict objective measures of quality of care or peer assessment of clinical performance. Scores are consistent across platforms, suggesting that they jointly measure a latent construct that is unrelated to performance. Online consumer ratings should not be used in isolation to select physicians, given their poor association with clinical performance.
Measurements of ion-molecule reactions of He plus, H plus, HeH plus with H sub 2 and D sub 2
NASA Technical Reports Server (NTRS)
Johnsen, R.; Biondi, M. A.
1974-01-01
A drift tube mass spectrometer apparatus has been used to determine the rate coefficient, energy dependence and product ions of the reaction He(+) +H2. The total rate coefficient at 300 K is 1.1 plus or minus 0.1) 10 to minus 13th power cu cm/sec. The reaction proceeds principally by dissociative charge transfer to produce H(+), with the small remainder going by charge transfer to produce H2(+) and by atom rearrangement to produce HeH(+). The rate coefficient increases slowly with increasing ion mean energy, reaching a value of 2.8 x ten to the minus 13th power cu cm sec at 0.18 eV. The corresponding reaction with deuterium, He(+) + D2, exhibits a value (5 plus or minus 1) x 10 to the minus 14th cu cm/sec at 300K. The reaction rates for conversion of H(+) and HeH(+) to H3(+) on collisions with H2 molecules are found to agree well with results of previous investigations.
Ranade, A K; Pandey, M; Datta, D
2013-01-01
A study was conducted to evaluate the absorbed rate coefficient of (238)U, (232)Th, (40)K and (137)Cs present in soil. A total of 31 soil samples and the corresponding terrestrial dose rates at 1 m from different locations were taken around the Anushaktinagar region, where the litho-logy is dominated by red soil. A linear regression model was developed for the estimation of these factors. The estimated coefficients (nGy h(-1) Bq(-1) kg(-1)) were 0.454, 0.586, 0.035 and 0.392, respectively. The factors calculated were in good agreement with the literature values.
Li, Wei Bo; Höllriegl, Vera; Roth, Paul; Oeh, Uwe
2006-07-01
Intestinal absorption of strontium (Sr) in thirteen healthy adult German volunteers has been investigated by simultaneous oral and intravenous administration of two stable tracer isotopes, i.e. (84)Sr and (86)Sr. The measured Sr tracer concentration in plasma was analyzed using the convolution integral technique to obtain the intestinal absorption rate. The results showed that the Sr labeled in different foodstuffs was absorbed into the body fluids in a large range of difference. The maximum Sr absorption rates were observed within 60-120 min after administration. The rate of absorption is used to evaluate the intestinal absorption fraction, i.e. the f (1) value for various foodstuffs. The equivalent and effective dose coefficients for ingestion of (90)Sr were calculated using these f (1) values, and they were compared with those recommended by the International Commission on Radiological Protection (ICRP). The geometric and arithmetic means of the f (1) values are 0.38 and 0.45 associated with a geometric standard deviation and a standard deviation of 1.88 and 0.22, respectively. The 90% confidence interval of the f (1) values obtained in the present study ranges from 0.13 to 0.98. Expressed as the ratio of the 95 and 50% percentiles of the estimated probability, the uncertainty for the f (1) value corresponds to a factor of 2.58. The effective dose coefficients of (90)Sr after ingestion are 6.1 x 10(-9) Sv Bq(-1) for an f(1) value of 0.05, 1.0 x 10(-8) Sv Bq(-1) for 0.1, 1.9 x 10(-8) Sv Bq(-1) for 0.2, 2.8 x 10(-8) Sv Bq(-1) for 0.3, 3.6 x 10(-8) Sv Bq(-1) for 0.4, 5.3 x 10(-8) Sv Bq(-1) for 0.6, 7.1 x 10(-8) Sv Bq(-1) for 0.8, and 7.9 x 10(-8) Sv Bq(-1) for 0.9, respectively. Taking the effective dose coefficient of 2.8 x 10(-8) Sv Bq(-1) for an f (1) value of 0.3, which is recommended by the ICRP, as a reference, the effective dose coefficient of (90)Sr after ingestion varies by a factor of 2.8 when the f (1) value changes by a factor of 3, i.e. it decreases from 0.3 to 0.1 or increases from 0.3 to 0.9, respectively.
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-24
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J
2018-04-28
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less
NASA Astrophysics Data System (ADS)
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-01
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
2D and 3D impellers of centrifugal compressors - advantages, shortcomings and fields of application
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Reksrin, A.; Drozdov, A.
2017-08-01
The simplified equations are presented for calculation of inlet dimensions and velocity values for impellers with three-dimensional blades located in axial and radial part of an impeller (3D impeller) and with two-dimensional blades in radial part (2D). Considerations concerning loss coefficients of 3D and 2D impellers at different design flow rate coefficients are given. The tendency of reduction of potential advantages of 3D impellers at medium and small design flow rate coefficients is shown. The data on high-efficiency compressors and stages with 2D impellers coefficients designed by the authors are presented. The reached efficiency level of 88 - 90% makes further increase of efficiency by the application of 3D impellers doubtful. CFD-analysis of stage candidates with medium flow rate coefficient with 3D and 2D impellers revealed specific problems. In some cases the constructive advantage of a 2D impeller is smaller hub ratio. It makes possible the reaching of higher efficiency. From other side, there is a positive tendency of gas turbine drive RPM increase. 3D impellers have no alternative for stages with high flow rate coefficients matching high-speed drive.
ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2015-11-01
Graphite is used in the HGTR/VHTR as moderator and it also functions as a barrier to fission product release. Therefore, an elucidation of transport of fission products in reactor-grade graphite is required. We have measured diffusion coefficients of Cs in graphite NBG-18 using the release method, wherein we infused spheres of NBG-18 with Cs and measured the release rates in the temperature range of 1090-1395 K. We have obtained: These seem to be the first reported values of Cs diffusion coefficients in NBG-18. The values are lower than those reported for other graphites in the literature.
Heat transfer coefficient of cryotop during freezing.
Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J
2013-01-01
Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).
Blitz, Mark A; Salter, Robert J; Heard, Dwayne E; Seakins, Paul W
2017-05-04
The kinetics of the reaction OH/OD + SO 2 were studied using a laser flash photolysis/laser-induced fluorescence technique. Evidence for two-photon photolysis of SO 2 at 248 nm is presented and quantified, and which appears to have been evident to some extent in most previous photolysis studies, potentially leading to values for the rate coefficient k 1 that are too large. The kinetics of the reaction OH(v = 0) + SO 2 (T = 295 K, p = 25-300 torr) were measured under conditions where SO 2 photolysis was taken into account. These results, together with literature data, were modeled using a master equation analysis. This analysis highlighted problems with the literature data: the rate coefficients derived from flash photolysis data were generally too high and from the flow tube data too low. Our best estimate of the high-pressure limiting rate coefficient k 1 ∞ was obtained from selected data and gives a value of (7.8 ± 2.2) × 10 -13 cm 3 molecule -1 s -1 , which is lower than that recommended in the literature. A parametrized form of k 1 ([N 2 ],T) is provided. The OD(v = 0) + SO 2 (T = 295 K, p = 25-300 torr) data are reported for the first time, and master equation analysis reinforces our assignment of k 1 ∞ .
NASA Astrophysics Data System (ADS)
Ameen, Sheeraz; Taher, Taha; Ahmed, Thamir M.
2018-06-01
Hydrostatics and hydrodynamics forces are generated and applied on the vertical lift tunnel gates due to the influence of a wide range of dam operating conditions. One of the most important forces is the uplift force resulting from the jet flow issuing below the gate. This force is based mainly upon many hydraulic and geometrical parameters. In this work, the uplift force is studied in terms of bottom pressure coefficient. The investigation is made paying particular attention on the effects of various three discharges and three gate lip angles on values of bottom pressure coefficients in addition to four different tunnel longitudinal slopes whose impact has not been studied in many previous works. Hydraulic model is constructed in this work for the sake of measuring all parameters required for estimating the bottom pressure coefficients, which are all examined against gate openings. The results show that the bottom pressure coefficient is related to the said variables, however, its behaviour and values are not necessary regular with variance of studied variables. The values are seen more significantly related to the flow rates and for some extent to the slopes of tunnel. An attempt by using the nonlinear regression of Statistical package of social sciences (SPSS) is made to set equations relating bottom pressure coefficient with gate openings for several angles of gate lips. The obtained equations are shown in good agreement with the selected cases of experimental results. The results are applicable for design purposes for similar geometrical and flow parameters considered in this study.
Return period adjustment for runoff coefficients based on analysis in undeveloped Texas watersheds
Dhakal, Nirajan; Fang, Xing; Asquith, William H.; Cleveland, Theodore G.; Thompson, David B.
2013-01-01
The rational method for peak discharge (Qp) estimation was introduced in the 1880s. The runoff coefficient (C) is a key parameter for the rational method that has an implicit meaning of rate proportionality, and the C has been declared a function of the annual return period by various researchers. Rate-based runoff coefficients as a function of the return period, C(T), were determined for 36 undeveloped watersheds in Texas using peak discharge frequency from previously published regional regression equations and rainfall intensity frequency for return periods T of 2, 5, 10, 25, 50, and 100 years. The C(T) values and return period adjustments C(T)/C(T=10 year) determined in this study are most applicable to undeveloped watersheds. The return period adjustments determined for the Texas watersheds in this study and those extracted from prior studies of non-Texas data exceed values from well-known literature such as design manuals and textbooks. Most importantly, the return period adjustments exceed values currently recognized in Texas Department of Transportation design guidance when T>10 years.
The importance of alcohol dehydrogenase in regulation of ethanol metabolism in rat liver cells.
Page, R A; Kitson, K E; Hardman, M J
1991-01-01
We used titration with the inhibitors tetramethylene sulphoxide and isobutyramide to assess quantitatively the importance of alcohol dehydrogenase in regulation of ethanol oxidation in rat hepatocytes. In hepatocytes isolated from starved rats the apparent Flux Control Coefficient (calculated assuming a single-substrate irreversible reaction with non-competitive inhibition) of alcohol dehydrogenase is 0.3-0.5. Adjustment of this coefficient to allow for alcohol dehydrogenase being a two-substrate reversible enzyme increases the value by 1.3-1.4-fold. The final value of the Flux Control Coefficient of 0.5-0.7 indicates that alcohol dehydrogenase is a major rate-determining enzyme, but that other factors also have a regulatory role. In hepatocytes from fed rats the Flux Control Coefficient for alcohol dehydrogenase decreases with increasing acetaldehyde concentration. This suggests that, as acetaldehyde concentrations rise, control of the pathway shifts from alcohol dehydrogenase to other enzymes, particularly aldehyde dehydrogenase. There is not a single rate-determining step for the ethanol metabolism pathway and control is shared among several steps. PMID:1898355
Steady and transient sliding under rate-and-state friction
NASA Astrophysics Data System (ADS)
Putelat, Thibaut; Dawes, Jonathan H. P.
2015-05-01
The physics of dry friction is often modelled by assuming that static and kinetic frictional forces can be represented by a pair of coefficients usually referred to as μs and μk, respectively. In this paper we re-examine this discontinuous dichotomy and relate it quantitatively to the more general, and smooth, framework of rate-and-state friction. This is important because it enables us to link the ideas behind the widely used static and dynamic coefficients to the more complex concepts that lie behind the rate-and-state framework. Further, we introduce a generic framework for rate-and-state friction that unifies different approaches found in the literature. We consider specific dynamical models for the motion of a rigid block sliding on an inclined surface. In the Coulomb model with constant dynamic friction coefficient, sliding at constant velocity is not possible. In the rate-and-state formalism steady sliding states exist, and analysing their existence and stability enables us to show that the static friction coefficient μs should be interpreted as the local maximum at very small slip rates of the steady state rate-and-state friction law. Next, we revisit the often-cited experiments of Rabinowicz (J. Appl. Phys., 22:1373-1379, 1951). Rabinowicz further developed the idea of static and kinetic friction by proposing that the friction coefficient maintains its higher and static value μs over a persistence length before dropping to the value μk. We show that there is a natural identification of the persistence length with the distance that the block slips as measured along the stable manifold of the saddle point equilibrium in the phase space of the rate-and-state dynamics. This enables us explicitly to define μs in terms of the rate-and-state variables and hence link Rabinowicz's ideas to rate-and-state friction laws. This stable manifold naturally separates two basins of attraction in the phase space: initial conditions in the first one lead to the block eventually stopping, while in the second basin of attraction the sliding motion continues indefinitely. We show that a second definition of μs is possible, compatible with the first one, as the weighted average of the rate-and-state friction coefficient over the time the block is in motion.
Charge Transfer Between Ground-State Si(3+) and He at Electron-Volt Energies
NASA Technical Reports Server (NTRS)
Fang, Z.; Kwong, Victor H. S.
1997-01-01
The charge-transfer rate coefficient for the reaction Si(3+)(3s(sup 2)S) + He yields products is measured by means of a combined technique of laser ablation and ion storage. A cylindrical radio-frequency ion trap was used to store Si(3+) ions produced by laser ablation of solid silicon targets. The rate coefficient of the reaction was derived from the decay rate of the ion signal. The measured rate coefficient is 6.27(exp +0.68)(sub -0.52) x 10(exp -10)cu cm/s at T(sub equiv) = 3.9 x 10(exp 3)K. This value is about 30% higher than the Landau-Zener calculation of Butler and Dalgarno and is larger by about a factor of 3 than the recent full quantal calculation of Honvault et al.
Bedload and Total Load Sediment Transport Equations for Rough Open-Channel Flow
NASA Astrophysics Data System (ADS)
Abrahams, A. D.; Gao, P.
2001-12-01
The total sediment load transported by an open-channel flow may be divided into bedload and suspended load. Bedload transport occurs by saltation at low shear stress and by sheetflow at high shear stress. Dimensional analysis is used to identify the dimensionless variables that control the transport rate of noncohesive sediments over a plane bed, and regression analysis is employed to isolate the significant variables and determine the values of the coefficients. In the general bedload transport equation (i.e. for saltation and sheetflow) the dimensionless bedload transport rate is a function of the dimensionless shear stress, the friction factor, and an efficiency coefficient. For sheetflow the last term approaches 1, so that the bedload transport rate becomes a function of just the dimensionless shear stress and the friction factor. The dimensional analysis indicates that the dimensionless total load transport rate is a function of the dimensionless bedload transport rate and the dimensionless settling velocity of the sediment. Predicted values of the transport rates are graphed against the computed values of these variables for 505 flume experiments reported in the literature. These graphs indicate that the equations developed in this study give good unbiased predictions of both the bedload transport rate and total load transport rate over a wide range of conditions.
[Surface electromyography signal classification using gray system theory].
Xie, Hongbo; Ma, Congbin; Wang, Zhizhong; Huang, Hai
2004-12-01
A new method based on gray correlation was introduced to improve the identification rate in artificial limb. The electromyography (EMG) signal was first transformed into time-frequency domain by wavelet transform. Singular value decomposition (SVD) was then used to extract feature vector from the wavelet coefficient for pattern recognition. The decision was made according to the maximum gray correlation coefficient. Compared with neural network recognition, this robust method has an almost equivalent recognition rate but much lower computation costs and less training samples.
Innovating patient care delivery: DSRIP's interrupted time series analysis paradigm.
Shenoy, Amrita G; Begley, Charles E; Revere, Lee; Linder, Stephen H; Daiger, Stephen P
2017-12-08
Adoption of Medicaid Section 1115 waiver is one of the many ways of innovating healthcare delivery system. The Delivery System Reform Incentive Payment (DSRIP) pool, one of the two funding pools of the waiver has four categories viz. infrastructure development, program innovation and redesign, quality improvement reporting and lastly, bringing about population health improvement. A metric of the fourth category, preventable hospitalization (PH) rate was analyzed in the context of eight conditions for two time periods, pre-reporting years (2010-2012) and post-reporting years (2013-2015) for two hospital cohorts, DSRIP participating and non-participating hospitals. The study explains how DSRIP impacted Preventable Hospitalization (PH) rates of eight conditions for both hospital cohorts within two time periods. Eight PH rates were regressed as the dependent variable with time, intervention and post-DSRIP Intervention as independent variables. PH rates of eight conditions were then consolidated into one rate for regressing with the above independent variables to evaluate overall impact of DSRIP. An interrupted time series regression was performed after accounting for auto-correlation, stationarity and seasonality in the dataset. In the individual regression model, PH rates showed statistically significant coefficients for seven out of eight conditions in DSRIP participating hospitals. In the combined regression model, the coefficient of the PH rate showed a statistically significant decrease with negative p-values for regression coefficients in DSRIP participating hospitals compared to positive/increased p-values for regression coefficients in DSRIP non-participating hospitals. Several macro- and micro-level factors may have likely contributed DSRIP hospitals outperforming DSRIP non-participating hospitals. Healthcare organization/provider collaboration, support from healthcare professionals, DSRIP's design, state reimbursement and coordination in care delivery methods may have led to likely success of DSRIP. IV, a retrospective cohort study based on longitudinal data. Copyright © 2017 Elsevier Inc. All rights reserved.
Tribological Properties of PVD Ti/C-N Nanocoatnigs
NASA Astrophysics Data System (ADS)
Leitans, A.; Lungevics, J.; Rudzitis, J.; Filipovs, A.
2017-04-01
The present paper discusses and analyses tribological properties of various coatings that increase surface wear resistance. Four Ti/C-N nanocoatings with different coating deposition settings are analysed. Tribological and metrological tests on the samples are performed: 2D and 3D parameters of the surface roughness are measured with modern profilometer, and friction coefficient is measured with CSM Instruments equipment. Roughness parameters Ra, Sa, Sz, Str, Sds, Vmp, Vmc and friction coefficient at 6N load are determined during the experiment. The examined samples have many pores, which is the main reason for relatively large values of roughness parameter. A slight wear is identified in all four samples as well; its friction coefficient values range from 0,.21 to 0.29. Wear rate values are not calculated for the investigated coatings, as no expressed tribotracks are detected on the coating surface.
Data on inelastic processes in low-energy potassium-hydrogen and rubidium-hydrogen collisions
NASA Astrophysics Data System (ADS)
Yakovleva, S. A.; Barklem, P. S.; Belyaev, A. K.
2018-01-01
Two sets of rate coefficients for low-energy inelastic potassium-hydrogen and rubidium-hydrogen collisions were computed for each collisional system based on two model electronic structure calculations, performed by the quantum asymptotic semi-empirical and the quantum asymptotic linear combinations of atomic orbitals (LCAO) approaches, followed by quantum multichannel calculations for the non-adiabatic nuclear dynamics. The rate coefficients for the charge transfer (mutual neutralization, ion-pair formation), excitation and de-excitation processes are calculated for all transitions between the five lowest lying covalent states and the ionic states for each collisional system for the temperature range 1000-10 000 K. The processes involving higher lying states have extremely low rate coefficients and, hence, are neglected. The two model calculations both single out the same partial processes as having large and moderate rate coefficients. The largest rate coefficients correspond to the mutual neutralization processes into the K(5s 2S) and Rb(4d 2D) final states and at temperature 6000 K have values exceeding 3 × 10-8 cm3 s-1 and 4 × 10-8 cm3 s-1, respectively. It is shown that both the semi-empirical and the LCAO approaches perform equally well on average and that both sets of atomic data have roughly the same accuracy. The processes with large and moderate rate coefficients are likely to be important for non-LTE modelling in atmospheres of F, G and K-stars, especially metal-poor stars.
Matsumoto, Masatoshi; Inoue, Kazuo; Bowman, Robert; Kajii, Eiji
2010-08-01
Geographic and specialty maldistributions of physicians are political concerns in Japan. This study examined the associations of physician employment status with the number and geographic distribution of the physicians in each specialty in Japan, in comparison with the US. The number of physicians per unit population, proportion of clinic (Japan) or office (US) based physicians, and Gini coefficient of physicians against population were calculated in each of 20 specialties in Japan, and 21 specialties in the US. The geographic unit of Gini coefficient was municipality in Japan, and county in the US. Correlations among these three variables were also examined. The lower the proportion of clinic-based physicians was, the lower the number of physicians and the higher the Gini coefficient were in Japanese specialties, while there was no association between office-based rate and Gini coefficient in the US specialties. In radiology, anaesthesiology, emergency medicine, and pathology, Japanese clinic-based rates were less than one-tenth, and the numbers of physicians per unit population were less than half of the US values, and the Gini coefficients were substantially higher than the US values. Difficulty in being self-employed created low numbers in some specialties, and highly urban-biased distributions of these specialists in Japan. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.
González, Miguel; Saracibar, Amaia; Garcia, Ernesto
2011-02-28
The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.
The Effects of Methods of Imputation for Missing Values on the Validity and Reliability of Scales
ERIC Educational Resources Information Center
Cokluk, Omay; Kayri, Murat
2011-01-01
The main aim of this study is the comparative examination of the factor structures, corrected item-total correlations, and Cronbach-alpha internal consistency coefficients obtained by different methods used in imputation for missing values in conditions of not having missing values, and having missing values of different rates in terms of testing…
NASA Astrophysics Data System (ADS)
Jakirlić, S.; Hanjalić, K.
2013-10-01
The most challenging task in closing the Reynolds-averaged Navier-Stokes equations at the second-moment closure (SMC) level is to model the pressure-rate-of-strain correlation in the transport equation for the Reynolds-stress tensor. The accurate modelling of this term, commonly denoted as Φij, is the key prerequisite for the correct capturing of the stress anisotropy, which potentially gives SMCs a decisive advantage over the ‘anisotropy-blind’ eddy-viscosity models. A variety of models for Φij proposed in the literature can all be expressed as a function of the stress-anisotropy-, rate-of-strain- and rate-of-rotation second-rank tensors, so that the modelling task is reduced to determining the model coefficients. It is, thus, the coefficients, associated with various terms in the expression, which differ from one model to another. The model coefficients have been traditionally determined with reference to the available data for sets of generic flows while being forced to satisfying the known values at flow boundaries. We evaluated the coefficients up to the second-order terms (in stress-anisotropy aij) directly from the DNS database for Φij and the turbulence variables involved in its modelling. The variations of the coefficients across the flow in a plane channel over a range of Reynolds numbers are compared with several popular models. The analysis provided a reasonable support for the common tensor-expansion representation of both the slow and rapid terms. Apart from the near-wall region and the channel centre, most coefficients for higher Re numbers showed themselves to be reasonably uniform, with the values closest to those proposed by Sarkar et al (1991 J. Fluid Mech. 227 245-72). An illustration of the coefficient variation for the ‘quasi-linear’ model is also presented for flow over a backward-facing step.
Chhantyal-Pun, Rabi; Welz, Oliver; Savee, John D.; ...
2016-10-18
Here, the Criegee intermediate acetone oxide, (CH 3) 2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O 2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO 2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10 –11 cm 3 s –1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10 –10 cm 3 s –1 at 298 K and 10 Torr (He buffer). These values are similar tomore » directly measured rate coefficients of anti-CH 3CHOO with SO 2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N 2 from cavity ring-down decay of the ultraviolet absorption of (CH 3) 2COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10 –10 to (2.29 ± 0.08) × 10 –10 cm 3 s –1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO 2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10 –12 cm 3 s –1 (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH 3CHOO with NO 2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH 3) 2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s –1, is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH 3) 2COO with SO 2 and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH 3) 2COO with NO 2 and with SO 2 suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products.« less
Tangwongsan, Chanchana; Chachati, Louay; Webster, John G; Farrell, Patrick V
2006-01-01
Background We need a sensor to measure the convective heat transfer coefficient during ablation of the heart or liver. Methods We built a minimally invasive instrument to measure the in vivo convective heat transfer coefficient, h in animals, using a Wheatstone-bridge circuit, similar to a hot-wire anemometer circuit. One arm is connected to a steerable catheter sensor whose tip is a 1.9 mm × 3.2 mm thin film resistive temperature detector (RTD) sensor. We used a circulation system to simulate different flow rates at 39°C for in vitro experiments using distilled water, tap water and saline. We heated the sensor approximately 5°C above the fluid temperature. We measured the power consumed by the sensor and the resistance of the sensor during the experiments and analyzed these data to determine the value of the convective heat transfer coefficient at various flow rates. Results From 0 to 5 L/min, experimental values of h in W/(m2·K) were for distilled water 5100 to 13000, for tap water 5500 to 12300, and for saline 5400 to 13600. Theoretical values were 1900 to 10700. Conclusion We believe this system is the smallest, most accurate method of minimally invasive measurement of in vivo h in animals and provides the least disturbance of flow. PMID:17067386
Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow
NASA Technical Reports Server (NTRS)
Bakirov, F. G.; Shaykhutdinov, Z. G.
1985-01-01
An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.
Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop
2017-09-01
A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gardner, L. D.; Kohl, J. L.
2006-01-01
The analysis of absolute spectral line intensities and intensity ratios with spectroscopic diagnostic techniques provides empirical determinations of chemical abundances, electron densities and temperatures in astrophysical objects. Since spectral line intensities and their ratios are controlled by the excitation rate coefficients for the electron temperature of the observed astrophysical structure, it is imperative that one have accurate values for the relevant rate coefficients. Here at the Harvard-Smithsonian Center for Astrophysics, we have been carrying out measurements of electron impact excitation (EIE) for more than 25 years.
Manukovsky, N S; Kovalev, V S; Somova, L A; Gurevich, Yu L; Sadovsky, M G
2005-01-01
Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.
We performed measurements and analyses of the prompt radiation-induced conductivity (RIC) in thin samples of polyurethane foam and glass microballoon foam at the Little Mountain Medusa LINAC facility in Ogden, UT. The RIC coefficient was non-linear with dose rate for polyurethane foam; however, typical values at 1E11 rad(si)/s dose rate was measured as 0.8E-11 mho/m/rad/s for 5 lb./cu ft. foam and 0.3E-11 mho/m/rad/s for 10 lb./cu ft. density polyurethane foam. For encapsulated glass microballoons (GMB) the RIC coefficient was approximately 1E-15 mho/m/rad/s and was not a strong function of dose rate.
AN OPTIMIZED 64X64 POINT TWO-DIMENSIONAL FAST FOURIER TRANSFORM
NASA Technical Reports Server (NTRS)
Miko, J.
1994-01-01
Scientists at Goddard have developed an efficient and powerful program-- An Optimized 64x64 Point Two-Dimensional Fast Fourier Transform-- which combines the performance of real and complex valued one-dimensional Fast Fourier Transforms (FFT's) to execute a two-dimensional FFT and its power spectrum coefficients. These coefficients can be used in many applications, including spectrum analysis, convolution, digital filtering, image processing, and data compression. The program's efficiency results from its technique of expanding all arithmetic operations within one 64-point FFT; its high processing rate results from its operation on a high-speed digital signal processor. For non-real-time analysis, the program requires as input an ASCII data file of 64x64 (4096) real valued data points. As output, this analysis produces an ASCII data file of 64x64 power spectrum coefficients. To generate these coefficients, the program employs a row-column decomposition technique. First, it performs a radix-4 one-dimensional FFT on each row of input, producing complex valued results. Then, it performs a one-dimensional FFT on each column of these results to produce complex valued two-dimensional FFT results. Finally, the program sums the squares of the real and imaginary values to generate the power spectrum coefficients. The program requires a Banshee accelerator board with 128K bytes of memory from Atlanta Signal Processors (404/892-7265) installed on an IBM PC/AT compatible computer (DOS ver. 3.0 or higher) with at least one 16-bit expansion slot. For real-time operation, an ASPI daughter board is also needed. The real-time configuration reads 16-bit integer input data directly into the accelerator board, operating on 64x64 point frames of data. The program's memory management also allows accumulation of the coefficient results. The real-time processing rate to calculate and accumulate the 64x64 power spectrum output coefficients is less than 17.0 mSec. Documentation is included in the price of the program. Source code is written in C, 8086 Assembly, and Texas Instruments TMS320C30 Assembly Languages. This program is available on a 5.25 inch 360K MS-DOS format diskette. IBM and IBM PC are registered trademarks of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation.
Sun, Yi; Arning, Martin; Bochmann, Frank; Börger, Jutta; Heitmann, Thomas
2018-06-01
The Occupational Safety and Health Monitoring and Assessment Tool (OSH-MAT) is a practical instrument that is currently used in the German woodworking and metalworking industries to monitor safety conditions at workplaces. The 12-item scoring system has three subscales rating technical, organizational, and personnel-related conditions in a company. Each item has a rating value ranging from 1 to 9, with higher values indicating higher standard of safety conditions. The reliability of this instrument was evaluated in a cross-sectional survey among 128 companies and its validity among 30,514 companies. The inter-rater reliability of the instrument was examined independently and simultaneously by two well-trained safety engineers. Agreement between the double ratings was quantified by the intraclass correlation coefficient and absolute agreement of the rating values. The content validity of the OSH-MAT was evaluated by quantifying the association between OSH-MAT values and 5-year average injury rates by Poisson regression analysis adjusted for the size of the companies and industrial sectors. The construct validity of OSH-MAT was examined by principle component factor analysis. Our analysis indicated good to very good inter-rater reliability (intraclass correlation coefficient = 0.64-0.74) of OSH-MAT values with an absolute agreement of between 72% and 81%. Factor analysis identified three component subscales that met exactly the structure theory of this instrument. The Poisson regression analysis demonstrated a statistically significant exposure-response relationship between OSH-MAT values and the 5-year average injury rates. These analyses indicate that OSH-MAT is a valid and reliable instrument that can be used effectively to monitor safety conditions at workplaces.
Electron-Ion Recombination Rate Coefficient Measurements in a Flowing Afterglow Plasma
NASA Technical Reports Server (NTRS)
Gougousi, Theodosia; Golde, Michael F.; Johnsen, Rainer
1996-01-01
The flowing-afterglow technique in conjunction with computer modeling of the flowing plasma has been used to determine accurate dissociative-recombination rate coefficients alpha for the ions O2(+), HCO(+), CH5(+), C2H5(+), H3O(+), CO2(+), HCO2(+), HN2O(+), and N2O(+) at 295 K. We find that the simple form of data analysis that was employed in earlier experiments was adequate and we largely confirm earlier results. In the case of HCO(+) ions, published coefficients range from 1.1 X 10(exp -7) to 2.8 x 10(exp -7) cu cm/S, while our measurements give a value of 1.9 x 10(exp -7) cu cm/S.
Atomic Data on Inelastic Processes in Calcium–Hydrogen Collisions
NASA Astrophysics Data System (ADS)
Belyaev, A. K.; Voronov, Y. V.; Yakovleva, S. A.; Mitrushchenkov, A.; Guitou, M.; Feautrier, N.
2017-12-01
Inelastic cross sections and rate coefficients in Ca + H and Ca+ + H‑ collisions for all transitions between the 17 lowest covalent states plus one ionic molecular state are calculated based on the most recent ab initio adiabatic potentials for the 11 lowest molecular states, as well as on the model asymptotic potentials for higher-lying states, including the ground ionic molecular state. Nuclear dynamics is treated by the probability-current method and the multichannel formulas for the collision energy range 0.01–100 eV. The rates are computed for mutual neutralization, ion-pair formation, and (de-)excitation processes for the temperature range T = 1000–10,000 K. The calculations single out the partial processes with large and moderate rate coefficients. The largest rates correspond to the mutual neutralization into the {Ca}(4s5s{}3S), {Ca}(4s5p{}3P^\\circ ), {Ca}(4s5s{}1S), and {Ca}(4s5p{}{1}P^\\circ ) final states; at T = 6000 K the largest value is 5.50 × 10‑8 cm3 s‑1 for {Ca}(4s5s{}3S). Among the (de-)excitation processes, the largest rate coefficient corresponds to the {Ca}(4s5s{}1S)\\to {Ca}(4s5s{}3S) transition; at T = 6000 K, the largest rate has the value of 8.46 × 10‑9 cm3 s‑1.
Nguyen, Minh D; Houwman, Evert P; Dekkers, Matthijn; Rijnders, Guus
2017-03-22
Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO 2 /Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d 31f ) and ferroelectric remanent polarization (P r ), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d 33f ) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average P r and d 33f values become larger. The largest piezoelectric coefficient of d 33f = 408 pm V -1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5-5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V -1 was deduced in the 3.5-4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness.
2017-01-01
Pb(Zr0.52Ti0.48)O3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d31f) and ferroelectric remanent polarization (Pr), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d33f) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average Pr and d33f values become larger. The largest piezoelectric coefficient of d33f = 408 pm V–1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5–5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V–1 was deduced in the 3.5–4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness. PMID:28247756
Repetitively Q-switched Nd:BeL lasers
NASA Technical Reports Server (NTRS)
Degnan, J.; Birnbaum, M.; Deshazer, L. G.
1979-01-01
The thermal and mechanical characteristics which will ultimately limit the performance of Nd:BeL at high average power levels were investigated. The output beam characteristics (pulse width, peak power, beam dimensions and collimation) were determined at high repetition rates for both Nd:BeL and Nd:YAG. The output of Nd:BeL was shown to exceed that of Nd:YAG by a factor of 2.7 at low Q-switched repetition rates (1 Hz). This result follows from the smaller stimulated emission cross section of x-axis Nb:BeL compared to that of NdYAG by the same factor. At high repetition rates (10 Hz) the output of Nd:Bel falls to a level of three-fifths of its low repetition rate value while under similar tests the output of Nd:YAG remains essentially constant. A comparison of the measured values of the elasto-optic coefficients, the dn/dT values and the linear expansion coefficients for BeL and YAG failed to provide an explanation for the performance of BeL; however, thermal lensing was observed in Nd:BeL. Results imply that the output of a high repetition rate Q-switched Nd:BeL laser (high thermal loading) could be dramatically increased by utilization of a resonator design to compensate for the thermal lensing effects.
Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi
2016-01-01
To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.
Kupczewska-Dobecka, Małgorzata; Jakubowski, Marek; Czerczak, Sławomir
2010-09-01
Our objectives included calculating the permeability coefficient and dermal penetration rates (flux value) for 112 chemicals with occupational exposure limits (OELs) according to the LFER (linear free-energy relationship) model developed using published methods. We also attempted to assign skin notations based on each chemical's molecular structure. There are many studies available where formulae for coefficients of permeability from saturated aqueous solutions (K(p)) have been related to physicochemical characteristics of chemicals. The LFER model is based on the solvation equation, which contains five main descriptors predicted from chemical structure: solute excess molar refractivity, dipolarity/polarisability, summation hydrogen bond acidity and basicity, and the McGowan characteristic volume. Descriptor values, available for about 5000 compounds in the Pharma Algorithms Database were used to calculate permeability coefficients. Dermal penetration rate was estimated as a ratio of permeability coefficient and concentration of chemical in saturated aqueous solution. Finally, estimated dermal penetration rates were used to assign the skin notation to chemicals. Defined critical fluxes defined from the literature were recommended as reference values for skin notation. The application of Abraham descriptors predicted from chemical structure and LFER analysis in calculation of permeability coefficients and flux values for chemicals with OELs was successful. Comparison of calculated K(p) values with data obtained earlier from other models showed that LFER predictions were comparable to those obtained by some previously published models, but the differences were much more significant for others. It seems reasonable to conclude that skin should not be characterised as a simple lipophilic barrier alone. Both lipophilic and polar pathways of permeation exist across the stratum corneum. It is feasible to predict skin notation on the basis of the LFER and other published models; from among 112 chemicals 94 (84%) should have the skin notation in the OEL list based on the LFER calculations. The skin notation had been estimated by other published models for almost 94% of the chemicals. Twenty-nine (25.8%) chemicals were identified to have significant absorption and 65 (58%) the potential for dermal toxicity. We found major differences between alternative published analytical models and their ability to determine whether particular chemicals were potentially dermotoxic. Copyright © 2010 Elsevier B.V. All rights reserved.
Affected sib pair tests in inbred populations.
Liu, W; Weir, B S
2004-11-01
The affected-sib-pair (ASP) method for detecting linkage between a disease locus and marker loci was first established 50 years ago, and since then numerous modifications have been made. We modify two identity-by-state (IBS) test statistics of Lange (Lange, 1986a, 1986b) to allow for inbreeding in the population. We evaluate the power and false positive rates of the modified tests under three disease models, using simulated data. Before estimating false positive rates, we demonstrate that IBS tests are tests of both linkage and linkage disequilibrium between marker and disease loci. Therefore, the null hypothesis of IBS tests should be no linkage and no LD. When the population inbreeding coefficient is large, the false positive rates of Lange's tests become much larger than the nominal value, while those of our modified tests remain close to the nominal value. To estimate power with a controlled false positive rate, we choose the cutoff values based on simulated datasets under the null hypothesis, so that both Lange's tests and the modified tests generate same false positive rate. The powers of Lange's z-test and our modified z-test are very close and do not change much with increasing inbreeding. The power of the modified chi-square test also stays stable when the inbreeding coefficient increases. However, the power of Lange's chi-square test increases with increasing inbreeding, and is larger than that of our modified chi-square test for large inbreeding coefficients. The power is high under a recessive disease model for both Lange's tests and the modified tests, though the power is low for additive and dominant disease models. Allowing for inbreeding is therefore appropriate, at least for diseases known to be recessive.
Determination of drying kinetics and convective heat transfer coefficients of ginger slices
NASA Astrophysics Data System (ADS)
Akpinar, Ebru Kavak; Toraman, Seda
2016-10-01
In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient ( R 2), reduced Chi-square ( χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.
On the solar cycle variation in the barometer coefficients of high latitude neutron monitors
NASA Technical Reports Server (NTRS)
Kusunose, M.; Ogita, N.
1985-01-01
Evaluation of barometer coefficients of neutron monitors located at high latitudes has been performed by using the results of the spherical harmonic analysis based on the records from around twenty stations for twelve years from January 1966 to December 1977. The average of data at eight stations, where continuous records are available for twelve years, show that the absolute value of barometer coefficient is in positive correlation with the cosmic ray neutron intensity. The variation rate of the barometer coefficient to the cosmic ray neutron intensity is influenced by the changes in the cutoff rigidity and in the primary spectrum.
NASA Astrophysics Data System (ADS)
Bunkan, Arne; Amédro, Damien; Crowley, John
2017-04-01
The reaction of formaldehyde with HO2 radicals constitutes a minor, but significant sink of formaldehyde in the troposphere as well as a possible interference in other formaldehyde photooxidation experiments. HCHO + HO2 ⇌ HOCH2OO (1) Due to the difficulty of simultaneously monitoring the reactant and product concentrations while preventing interfering secondary chemistry, there is a considerable uncertainty in the literature values for the reaction rate coefficients. We have used two photon, excited fragment spectroscopy (TPEFS), originally developed for monitoring HNO3 formation in kinetic experiments, to monitor the formation of the HOCH2OO radical. Dispersed and single wavelength fluorescence emission following the 193 nm photolysis of HOCH2OO have been recorded and analysed. Characterisation of the method is presented along with rate coefficients for the reaction of HCHO with HO2 radicals at tropospheric temperatures.
Zhou, Nan; Chu, Chen; Dou, Xin; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng
2018-02-08
Radiation-induced parotid damage is a common complication in patients with nasopharyngeal carcinoma (NPC) treated with radiotherapy to head and neck region, which severely reduce the life quality of those patients. The aim of this study was to early evaluate the changes of irradiated parotid glands with T2 mapping and mDIXON Quant imaging. Forty-one patients with NPC underwent conventional magnetic resonance imaging for nasopharynx and neck, and T2 mapping and mDIXON Quant imaging for bilateral parotid glands within 2 weeks before radiotherapy (pre-RT), 5 weeks after the beginning of radiotherapy (mid-RT), and 4 weeks after radiotherapy (post-RT). Parotid volume, T2 values, fat fraction (FF) values, and mean radiation dose were recorded and analyzed. From pre-RT to mid-RT, parotid volume decreased (atrophy rate, 27.0 ± 11.5%), while parotid T2 and FF values increased (change rate, 6.0 ± 6.2% for T2 value and 9.1 ± 9.9% for FF value) significantly. From mid-RT to post-RT, parotid T2 value continuously increased (change rate, 4.6 ± 7.7%), but parotid FF value decreased (change rate, - 9.9 ± 18.2%) significantly. Change rate of parotid T2 value significantly correlated with parotid atrophy rate from pre-RT to post-RT (r = 0.313, P = 0.027). Multiple linear regression analysis showed that parotid T2 value (standardized coefficient [SC] = - 0.259, P = 0.001) and FF value (SC = - 0.320, P = 0.014) negatively correlated with parotid volume, while parotid T2 value positively correlated with MR scan time point (SC = 0.476, P = 0.001) significantly. Parotid T2 and FF values showed excellent reproducibility (intraclass correlation coefficient, 0.935-0.992). T2 mapping and mDIXON Quant imaging is useful for noninvasive evaluation of radiation-induced parotid damage.
Measurement of viscosity of gaseous mixtures at atmospheric pressure
NASA Technical Reports Server (NTRS)
Singh, J. J.; Mall, G. H.; Chegini, H.
1986-01-01
Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.
Diffuse interstellar clouds as a chemical laboratory - The chemistry of diatomic carbon species
NASA Technical Reports Server (NTRS)
Federman, S. R.; Huntress, W. T., Jr.
1989-01-01
The chemistry of C2, CH, and CO in diffuse interstellar clouds is analyzed and compared to absorption line measurements toward background stars. Analytical expressions in terms of column densities are derived for the rate equations. The results indicate that in clouds with 4 mag of visual extinction, the abundance of C+ has to decrease by a factor of about 15 from the value traditionally used for clouds with 1 mag of extinction. The rate coefficients for the reactions C+ + CH - C2+ + H and C+ + H2 - CH2+ + h-nu need to be reduced from previous estimates. Chemical arguments are presented for the revised rate coefficients.
NASA Astrophysics Data System (ADS)
Atuegwu, N. C.; Colvin, D. C.; Loveless, M. E.; Xu, L.; Gore, J. C.; Yankeelov, T. E.
2012-01-01
We build on previous work to show how serial diffusion-weighted MRI (DW-MRI) data can be used to estimate proliferation rates in a rat model of brain cancer. Thirteen rats were inoculated intracranially with 9L tumor cells; eight rats were treated with the chemotherapeutic drug 1,3-bis(2-chloroethyl)-1-nitrosourea and five rats were untreated controls. All animals underwent DW-MRI immediately before, one day and three days after treatment. Values of the apparent diffusion coefficient (ADC) were calculated from the DW-MRI data and then used to estimate the number of cells in each voxel and also for whole tumor regions of interest. The data from the first two imaging time points were then used to estimate the proliferation rate of each tumor. The proliferation rates were used to predict the number of tumor cells at day three, and this was correlated with the corresponding experimental data. The voxel-by-voxel analysis yielded Pearson's correlation coefficients ranging from -0.06 to 0.65, whereas the region of interest analysis provided Pearson's and concordance correlation coefficients of 0.88 and 0.80, respectively. Additionally, the ratio of positive to negative proliferation values was used to separate the treated and control animals (p <0.05) at an earlier point than the mean ADC values. These results further illustrate how quantitative measurements of tumor state obtained non-invasively by imaging can be incorporated into mathematical models that predict tumor growth.
Kim, Han S; Weber, Walter J
2005-04-01
The effects of mechanical mixing on rates of polycyclic aromatic hydrocarbon (PAH) biodegradation in dense geosorbent slurry (67% solids content, w/w) systems were evaluated using laboratory-scale intermittently mixed batch bioreactors. A PAH-contaminated soil and a phenanthrene-sorbed mineral sorbent (alpha-Al2O3) were respectively employed as slurry solids in aerobic and anaerobic biodegradation studies. Both slurries exhibited a characteristic behavior of pseudoplastic non-Newtonian fluids, and the impeller revolution rate and its diameter had dramatic impacts on power and torque requirements in their laminar flow mixing. Rates of phenanthrene biodegradation were markedly enhanced by relatively low-level auger mixing under both aerobic and anaerobic (denitrifying) conditions. Parameters for empirical models correlating biodegradation rate coefficient (k(b)) values to the degree of mixing were similar to those for correlations between mass transfer (desorption) rate coefficient (k(r)) values for rapidly desorbing fractions of soil organic matter and degree of mixing reported in a companion study, supporting a conclusion that performance-efficient and cost-effective enhancements of PAH mass transfer (desorption) and its biodegradation processes can be achieved by the introduction of optimal levels of reactor-scale mechanical mixing.
A systematic study of multiple minerals precipitation modelling in wastewater treatment.
Kazadi Mbamba, Christian; Tait, Stephan; Flores-Alsina, Xavier; Batstone, Damien J
2015-11-15
Mineral solids precipitation is important in wastewater treatment. However approaches to minerals precipitation modelling are varied, often empirical, and mostly focused on single precipitate classes. A common approach, applicable to multi-species precipitates, is needed to integrate into existing wastewater treatment models. The present study systematically tested a semi-mechanistic modelling approach, using various experimental platforms with multiple minerals precipitation. Experiments included dynamic titration with addition of sodium hydroxide to synthetic wastewater, and aeration to progressively increase pH and induce precipitation in real piggery digestate and sewage sludge digestate. The model approach consisted of an equilibrium part for aqueous phase reactions and a kinetic part for minerals precipitation. The model was fitted to dissolved calcium, magnesium, total inorganic carbon and phosphate. Results indicated that precipitation was dominated by the mineral struvite, forming together with varied and minor amounts of calcium phosphate and calcium carbonate. The model approach was noted to have the advantage of requiring a minimal number of fitted parameters, so the model was readily identifiable. Kinetic rate coefficients, which were statistically fitted, were generally in the range 0.35-11.6 h(-1) with confidence intervals of 10-80% relative. Confidence regions for the kinetic rate coefficients were often asymmetric with model-data residuals increasing more gradually with larger coefficient values. This suggests that a large kinetic coefficient could be used when actual measured data is lacking for a particular precipitate-matrix combination. Correlation between the kinetic rate coefficients of different minerals was low, indicating that parameter values for individual minerals could be independently fitted (keeping all other model parameters constant). Implementation was therefore relatively flexible, and would be readily expandable to include other minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor
In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.
Photolysis Rate Coefficient Calculations in Support of SOLVE II
NASA Technical Reports Server (NTRS)
Swartz, William H.
2005-01-01
A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The primary objective of the present effort was the accurate calculation of j-values in the Arctic twilight along NASA DC-8 flight tracks during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II), based in Kiruna, Sweden (68 degrees N, 20 degrees E) during January-February 2003. The JHU/APL radiative transfer model was utilized to produce a large suite of j-values for photolysis processes (over 70 reactions) relevant to the upper troposphere and lower stratosphere. The calculations take into account the actual changes in ozone abundance and apparent albedo of clouds and the Earth surface along the aircraft flight tracks as observed by in situ and remote sensing platforms (e.g., EP-TOMS). A secondary objective was to analyze solar irradiance data from NCAR s Direct beam Irradiance Atmospheric Spectrometer (DIAS) on-board the NASA DC-8 and to start the development of a flexible, multi-species spectral fitting technique for the independent retrieval of O3,O2.02, and aerosol optical properties.
Pernik, Meribeth
1987-01-01
The sensitivity of a multilayer finite-difference regional flow model was tested by changing the calibrated values for five parameters in the steady-state model and one in the transient-state model. The parameters that changed under the steady-state condition were those that had been routinely adjusted during the calibration process as part of the effort to match pre-development potentiometric surfaces, and elements of the water budget. The tested steady-state parameters include: recharge, riverbed conductance, transmissivity, confining unit leakance, and boundary location. In the transient-state model, the storage coefficient was adjusted. The sensitivity of the model to changes in the calibrated values of these parameters was evaluated with respect to the simulated response of net base flow to the rivers, and the mean value of the absolute head residual. To provide a standard measurement of sensitivity from one parameter to another, the standard deviation of the absolute head residual was calculated. The steady-state model was shown to be most sensitive to changes in rates of recharge. When the recharge rate was held constant, the model was more sensitive to variations in transmissivity. Near the rivers, the riverbed conductance becomes the dominant parameter in controlling the heads. Changes in confining unit leakance had little effect on simulated base flow, but greatly affected head residuals. The model was relatively insensitive to changes in the location of no-flow boundaries and to moderate changes in the altitude of constant head boundaries. The storage coefficient was adjusted under transient conditions to illustrate the model 's sensitivity to changes in storativity. The model is less sensitive to an increase in storage coefficient than it is to a decrease in storage coefficient. As the storage coefficient decreased, the aquifer drawdown increases, the base flow decreased. The opposite response occurred when the storage coefficient was increased. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Hadizadeh, Jafar; Foit, Franklin F.
2000-04-01
Cement phases such as calcite or quartz often incorporate trace elements from the parent fluids as they crystallize. Experimental sedimentary diagenesis indicates that trace element partition coefficients reflect rates of cementation. The applicability of these findings to fault zone cementation is examined as we make a preliminary attempt to estimate calcite cementation rate in a brittle fault zone directly from the fault-rock composition data. Samples for this study were collected from the Knoxville outcrop of the Saltville fault in Tennessee. The cementation rates for the fault rock samples range from 1×10 -12 to 3×10 -13 m3/ h per m, in agreement with some experimental rates and the rates reported for samples from the DSDP sites. When applied to a non-responsive pore-system model, these rates result in rapid precipitation sealing indicating the influence exerted by the surface-area/volume ratio of the pore network. We find it feasible to obtain a reasonable range of values for the cementation rate using the trace element partition method. However, the study also indicates the need for relatively accurate values for the trace/carrier element ratio in the fault zone syntectonic pore fluid, and exhumed cement.
Navia, R; Inostroza, X; Diez, M C; Lorber, K E
2006-05-01
An irrigation process through volcanic soil columns was evaluated for bleached Kraft mill effluent pollutants retention. The system was designed to remove color and phenolic compounds and a simple kinetic model for determining the global mass transfer coefficient and the adsorption rate constant was used. The results clearly indicate that the global mass transfer coefficient values (K(c)a) and the adsorption rate constants are higher for the irrigation processes onto acidified soil. This means that the pretreatment of washing the volcanic soil with an acid solution has a positive effect on the adsorption rate for both pollutant groups. The enhanced adsorption capacity is partially explained by the activation of the metal oxides present in the soil matrix during the acid washing process. Increasing the flow rate from 1.5 to 2.5 ml/min yielded higher (K(c)a) values and adsorption rate constants for both pollutant groups. For instance, regarding color adsorption onto acidified soil, there is an increment of 43% in the (K(c)a) value for the experiment with a flow rate of 2.5 ml/min. Increasing the porosity of the column from 0.55 to 0.59, yielded a decrease in the (K(c)a) values for color and phenolic compounds adsorption processes. Onto natural soil for example, these decreases reached 21% and 24%, respectively. Therefore, the (K(c)a) value is dependent on both the liquid-phase velocity (external resistance) and the soil fraction in the column (internal resistance); making forced convection and diffusion to be the main transport mechanisms involved in the adsorption process. Analyzing the adsorption rate constants (K(c)a)/m, phenolic compounds and color adsorption rates onto acidified soil of 2.25 x 10(-6) and 2.62 x 10(-6) l/mg min were achieved for experiment 1. These adsorption rates are comparable with other adsorption systems and adsorbent materials.
NASA Astrophysics Data System (ADS)
Jubb, A. M.; Gierczak, T.; Baasandorj, M.; Waterland, R. L.; Burkholder, J. B.
2013-12-01
Mixtures of methyl-perfluoroheptene-ethers (C7F13OCH3, MPHEs) are currently in use as a replacement for perfluorinated alkane (PFC) and polyether mixtures (both persistent greenhouse gases with atmospheric lifetimes >1000 years) used as heat transfer fluids. Currently, the atmospheric fate of the MPHE isomers are not well characterized, however, reaction with the OH radical is expected to be a dominant tropospheric loss process for these compounds. In order to assess the atmospheric lifetimes and environmental implications of MPHE use, rate coefficients for MPHE isomers' reaction with OH radicals are desired. In the work presented here, rate coefficients, k, for the gas-phase reaction of the OH radical with six MPHEs commonly used in commercial mixtures (isomers and stereoisomers) and their deuterated analogs (d3-MPHE) were determined at 296 K using a relative rate method with combined gas-chromatography/IR spectroscopy detection. A range of OH rate coefficient values was observed, up to a factor of 20× different, between the MPHE isomers with the (E)-stereoisomers exhibiting the greatest reactivity. The measured OH reaction rate coefficients for the d3-MPHE isomers were lower than the observed MPHE values although a large range of k values between isomers was still observed. The reduction in reactivity with deuteration signifies that the MPHE + OH reaction proceeds via both addition to the olefinic C=C bond and H-abstraction from the methyl ester group. OH addition to the C=C bond was determined to be the primary reaction channel. Atmospheric lifetimes with respect to the OH reaction for the six MPHE isomers were found to be in the range of days to months. The short lifetimes indicate that MPHE use will primarily impact tropospheric local and regional air quality. A MPHE atmospheric degradation mechanism will be presented. As part of this work, radiative efficiencies and global warming potentials (GWPs) for the MPHE isomers were estimated based on measured infrared absorption spectra of MPHE mixture samples and infrared spectra calculated theoretically. Here the calculated GWPs for the MPHE isomers are considered to be estimates, as the actual GWPs for short-lived gases will depend greatly on the season and location of their emission. The results presented highlight the importance of quantifying the individual component atmospheric fate for all mixture components when assessing the atmospheric behavior of mixtures.
Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J
2012-05-01
Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kabeel, A. E.; Abdelgaied, Mohamed
2016-08-01
Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.
Time-dependent oral absorption models
NASA Technical Reports Server (NTRS)
Higaki, K.; Yamashita, S.; Amidon, G. L.
2001-01-01
The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
Velocity space scattering coefficients with applications in antihydrogen recombination studies
NASA Astrophysics Data System (ADS)
Chang, Yongbin; Ordonez, C. A.
2000-12-01
An approach for calculating velocity space friction and diffusion coefficients with Maxwellian field particles is developed based on a kernel function derived in a previous paper [Y. Chang and C. A. Ordonez, Phys. Plasmas 6, 2947 (1999)]. The original fivefold integral expressions for the coefficients are reduced to onefold integrals, which can be used for any value of the Coulomb logarithm. The onefold integrals can be further reduced to standard analytical expressions by using a weak coupling approximation. The integral expression for the friction coefficient is used to predict a time scale that describes the rate at which a reflecting antiproton beam slows down within a positron plasma, while both species are simultaneously confined by a nested Penning trap. The time scale is used to consider the possibility of achieving antihydrogen recombination within the trap. The friction and diffusion coefficients are then used to derive an expression for calculating the energy transfer rate between antiprotons and positrons. The expression is employed to illustrate achieving antihydrogen recombination while taking into account positron heating by the antiprotons. The effect of the presence of an electric field on recombination is discussed.
Li, Feng; Li, Wen-Xia; Zhao, Guo-Liang; Tang, Shi-Jun; Li, Xue-Jiao; Wu, Hong-Mei
2014-10-01
A series of 354 polyester-cotton blend fabrics were studied by the near-infrared spectra (NIRS) technology, and a NIR qualitative analysis model for different spectral characteristics was established by partial least squares (PLS) method combined with qualitative identification coefficient. There were two types of spectrum for dying polyester-cotton blend fabrics: normal spectrum and slash spectrum. The slash spectrum loses its spectral characteristics, which are effected by the samples' dyes, pigments, matting agents and other chemical additives. It was in low recognition rate when the model was established by the total sample set, so the samples were divided into two types of sets: normal spectrum sample set and slash spectrum sample set, and two NIR qualitative analysis models were established respectively. After the of models were established the model's spectral region, pretreatment methods and factors were optimized based on the validation results, and the robustness and reliability of the model can be improved lately. The results showed that the model recognition rate was improved greatly when they were established respectively, the recognition rate reached up to 99% when the two models were verified by the internal validation. RC (relation coefficient of calibration) values of the normal spectrum model and slash spectrum model were 0.991 and 0.991 respectively, RP (relation coefficient of prediction) values of them were 0.983 and 0.984 respectively, SEC (standard error of calibration) values of them were 0.887 and 0.453 respectively, SEP (standard error of prediction) values of them were 1.131 and 0.573 respectively. A series of 150 bounds samples reached used to verify the normal spectrum model and slash spectrum model and the recognition rate reached up to 91.33% and 88.00% respectively. It showed that the NIR qualitative analysis model can be used for identification in the recycle site for the polyester-cotton blend fabrics.
NASA Astrophysics Data System (ADS)
Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon
2016-12-01
Among all parameters that affect the friction of rocks, variable normal stress and slip rate are the most important second-order parameters. The shear-rate- and normal-stress-dependent friction behavior of rock discontinuities may significantly influence the dynamic responses of rock mass. In this research, two limestone rock types, which were travertine and onyx marble with slickenside and grinded #80 surfaces, were prepared and CNL direct shear tests were performed on the joints under various shear conditions. The shearing rate varied from 0.1 to 50 mm/min under different normal stresses (from 2 to 30 % of UCS) in both dry and wet conditions. Experiments showed that the friction coefficient of slickensided and ground #80 surfaces of limestone increased with the increasing shear velocity and decreased with the increasing normal stress. Micro-asperity interlocking between ground #80 surfaces showed higher wear and an increase in friction coefficient ( µ) compared to slickensided surfaces. Slickensided samples with moist surfaces showed an increase in the coefficient of friction compared to dry surfaces; however, on ground #80 surfaces, the moisture decreased the coefficient of friction to a smaller value. Slickenside of limestone typically slides stably in a dry condition and by stick-slip on moist surfaces. The observed shear-rate- and normal-stress-dependent friction behavior can be explained by a similar framework to that of the adhesion theory of friction and a friction mechanism that involves the competition between microscopic dilatant slip and surface asperity deformation. The results have important implications for understanding the behavior of basic and residual friction coefficients of limestone rock surfaces.
NASA Technical Reports Server (NTRS)
Gould, R. K.
1978-01-01
Mechanisms for the SiCl4/Na and SiF4/Na reaction systems were examined. Reaction schemes which include 25 elementary reactions were formulated for each system and run to test the sensitivity of the computed concentration and temperature profiles to the values given estimated rate coefficients. It was found that, for SiCl4/Na, the rate of production of free Si is largely mixing-limited for reasonable rate coefficient estimates. For the SiF4/Na system the results indicate that the endothermicities of many of the reactions involved in producing Si from SiF4/Na cause this system to be chemistry-limited rather than mixing-limited.
Khan, Muhammad Zia Ullah; Makreski, Petre; Murtaza, Ghulam
2018-05-02
The aim of present explorative study was to prepare and optimize finasteride loaded topical gel formulations by using three factor [propylene glycol (PG), Tween® 80, and sodium lauryl sulphate (SLS)], five level central composite design. Optimized finasteride topical gel formulation (F4), containing PG, Tween® 80, and SLS in a concentration of 0.8 mg, 0.4 mg and 0.2 mg, respectively, showed 6-fold higher values of cumulative drug release, flux, partition coefficient, input rate, lag time, and diffusion coefficient, when compared to control formulation without permeation enhancer. Finally, it can be concluded that finasteride permeation was enhanced by PG, tween® 80 and SLS individually, while in combination only PG along with tween® 80 had synergistic and more pronounced effect on flux, permeability coefficient and input rate while antagonistic effect on lag time and diffusion coefficient was observed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Permeability of model porous medium formed by random discs
NASA Astrophysics Data System (ADS)
Gubaidullin, A. A.; Gubkin, A. S.; Igoshin, D. E.; Ignatev, P. A.
2018-03-01
Two-dimension model of the porous medium with skeleton of randomly located overlapping discs is proposed. The geometry and computational grid are built in open package Salome. Flow of Newtonian liquid in longitudinal and transverse directions is calculated and its flow rate is defined. The numerical solution of the Navier-Stokes equations for a given pressure drop at the boundaries of the area is realized in the open package OpenFOAM. Calculated value of flow rate is used for defining of permeability coefficient on the base of Darcy law. For evaluating of representativeness of computational domain the permeability coefficients in longitudinal and transverse directions are compered.
Computations of Eisenstein series on Fuchsian groups
NASA Astrophysics Data System (ADS)
Avelin, Helen
2008-09-01
We present numerical investigations of the value distribution and distribution of Fourier coefficients of the Eisenstein series E(z;s) on arithmetic and non-arithmetic Fuchsian groups. Our numerics indicate a Gaussian limit value distribution for a real-valued rotation of E(z;s) as operatorname{Re} sD1/2 , operatorname{Im} sto infty and also, on non-arithmetic groups, a complex Gaussian limit distribution for E(z;s) when operatorname{Re} s>1/2 near 1/2 and operatorname{Im} sto infty , at least if we allow operatorname{Re} sto 1/2 at some rate. Furthermore, on non-arithmetic groups and for fixed s with operatorname{Re} s ge 1/2 near 1/2 , our numerics indicate a Gaussian limit distribution for the appropriately normalized Fourier coefficients.
Nguyen, T B; Cron, G O; Mercier, J F; Foottit, C; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Caudrelier, J M; Sinclair, J; Hogan, M J; Thornhill, R E; Cameron, I G
2015-01-01
The prognostic value of dynamic contrast-enhanced MR imaging-derived plasma volume obtained in tumor and the contrast transfer coefficient has not been well-established in patients with gliomas. We determined whether plasma volume and contrast transfer coefficient in tumor correlated with survival in patients with gliomas in addition to other factors such as age, type of surgery, preoperative Karnofsky score, contrast enhancement, and histopathologic grade. This prospective study included 46 patients with a new pathologically confirmed diagnosis of glioma. The contrast transfer coefficient and plasma volume obtained in tumor maps were calculated directly from the signal-intensity curve without T1 measurements, and values were obtained from multiple small ROIs placed within tumors. Survival curve analysis was performed by dichotomizing patients into groups of high and low contrast transfer coefficient and plasma volume. Univariate analysis was performed by using dynamic contrast-enhanced parameters and clinical factors. Factors that were significant on univariate analysis were entered into multivariate analysis. For all patients with gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). In subgroups of high- and low-grade gliomas, survival was worse for groups of patients with high contrast transfer coefficient and plasma volume obtained in tumor (P < .05). Univariate analysis showed that factors associated with lower survival were age older than 50 years, low Karnofsky score, biopsy-only versus resection, marked contrast enhancement versus no/mild enhancement, high contrast transfer coefficient, and high plasma volume obtained in tumor (P < .05). In multivariate analysis, a low Karnofsky score, biopsy versus resection in combination with marked contrast enhancement, and a high contrast transfer coefficient were associated with lower survival rates (P < .05). In patients with glioma, those with a high contrast transfer coefficient have lower survival than those with low parameters. © 2015 by American Journal of Neuroradiology.
Measurements of the O+ plus N2 and O+ plus O2 reaction rates from 300 to 900 K
NASA Technical Reports Server (NTRS)
Chen, A.; Johnsen, R.; Biondi, M. A.
1977-01-01
Rate coefficients for the O(+) + N2 atom transfer and O(+) + O2 charge transfer reactions are determined at thermal energies between 300 K and 900 K difference in a heated drift tube mass spectrometer apparatus. At 300 K the values K(O(+) + N2) = (1.2 plus or minus 0.1) x 10 to the negative 12 power cubic cm/sec and k(O(+) + O2) = (2.1 plus or minus 0.2) x 10 to the negative 11 power cubic cm/sec were obtained, with a 50% difference decrease in the reaction rates upon heating to 700 K. These results are in good agreement with heated flowing afterglow results, but the O(+) + O2 thermal rate coefficients are systematically lower than equivalent Maxwellian rates inferred by conversion of nonthermal drift tube and flow drift data.
NASA Astrophysics Data System (ADS)
Ari, I. R. D.; Hasyim, A. W.; Pratama, B. A.; Helmy, M.; Sheilla, M. N.
2017-06-01
Poverty is a problem that requires attention from the government especially in developing countries such as Indonesia. This Research takes Place at Kasembon District because it has 53,19% family below poverty line in the region. The purpose of this research is to measure poverty based on 3 poverty indicators published by World Bank and 1 multidimensional poverty index. Furthermore, this research invesitigas the relationship between poverty with social and infrastructure in Kasembon District. This study using social network analysis, hot spots analysis, and regression analysis with ordinary least squares. From the poverty indicators known that Pondokagung Village has the highest poverty rate compared to another region. Results from regression model indicate that social and infrastructure affecting poverty in Kasembon District. Social parameter that affecting poverty is density. Infrastructure parameter that affecting poverty is length of paved road. Coefficient value of density is the largest in the model. Therefore it can be concluded that social factors can give more opportunity to reduce poverty rates in Kasembon District. In the local model of paved road coefficient, it is known that the coefficient for each village has not much different value from the global model.
Tuğcu-Demiröz, Fatmanur; Gonzalez-Alvarez, Isabel; Gonzalez-Alvarez, Marta; Bermejo, Marival
2014-10-01
The aim of the present study was to develop a method for water flux reabsorption measurement in Doluisio's Perfusion Technique based on the use of phenol red as a non-absorbable marker and to validate it by comparison with gravimetric procedure. The compounds selected for the study were metoprolol, atenolol, cimetidine and cefadroxil in order to include low, intermediate and high permeability drugs absorbed by passive diffusion and by carrier mediated mechanism. The intestinal permeabilities (Peff) of the drugs were obtained in male and female Wistar rats and calculated using both methods of water flux correction. The absorption rate coefficients of all the assayed compounds did not show statistically significant differences between male and female rats consequently all the individual values were combined to compare between reabsorption methods. The absorption rate coefficients and permeability values did not show statistically significant differences between the two strategies of concentration correction. The apparent zero order water absorption coefficients were also similar in both correction procedures. In conclusion gravimetric and phenol red method for water reabsorption correction are accurate and interchangeable for permeability estimation in closed loop perfusion method. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Liang; Tinsley, Brian A.
2018-03-01
Simulations and parameterization of collision rate coefficients for aerosol particles with 3 μm radius droplets have been extended to a range of particle densities up to 2,000 kg m-3 for midtropospheric ( 5 km) conditions (540 hPa, -17°C). The increasing weight has no effect on collisions for particle radii less than 0.2 μm, but for greater radii the weight effect becomes significant and usually decreases the collision rate coefficient. When increasing size and density of particles make the fall speed of the particle relative to undisturbed air approach to that of the droplet, the effect of the particle falling away in the stagnation region ahead of the droplet becomes important, and the probability of frontside collisions can decrease to zero. Collisions on the rear side of the droplet can be enhanced as particle weight increases, and for this the weight effect tends to increase the rate coefficients. For charges on the droplet and for large particles with density ρ < 1,000 kg m-3 the predominant effect increases in rate coefficient due to the short-range attractive image electric force. With density ρ above about 1,000 kg m-3, the stagnation region prevents particles moving close to the droplet and reduces the effect of these short-range forces. Together with previous work, it is now possible to obtain collision rate coefficients for realistic combinations of droplet charge, particle charge, droplet radius, particle radius, particle density, and relative humidity in clouds. The parameterization allows rapid access to these values for use in cloud models.
Temperature dependence of the reaction N2(A3Σu+)+O in the terrestrial thermosphere
NASA Astrophysics Data System (ADS)
Hill, Steven M.; Solomon, Stanley C.; Cleary, David D.; Broadfoot, A. Lyle
2000-05-01
Previous models for dayglow and auroral emissions of the N2(A3Σu+->X1Σg+) Vegard-Kaplan (VK) bands and O(1S) lines, when based on laboratory rate coefficients, disagree with observations. The problem has two parts: the overall rate of N2(A)+O and the state-specific yield of O(1S). Resolving these discrepancies should yield more accurate determinations of atomic oxygen density by remote sensing of the 2972 and 5577 Å lines. To solve the problem, the sources and sinks of O(1S) are considered using dayglow observations from 105 to 315 km and a numerical model. Line and band intensities are extracted from the data using a multiple regression fit to synthetic spectra. A photoelectron and photochemical model is used to analyze the resulting vertical emission profiles. N2 Second Positive (2P) altitude profiles indicate that photoelectron excitation of the N2 triplet system is modeled with an absolute uncertainty of +/-23%. The VK/2P intensity ratio suggests that laboratory rate coefficients for the reaction N2(Aν'=0,1,2)+O should be increased by a factor of 1.74 to 2.34. However, the laboratory rates were measured at room temperature. When the effect of high thermospheric temperatures on collision frequency is accounted for the rate coefficients for ν'=0, 1, and 2 are found to be (3.4+/-0.8)×10-11(T/298)1/2, (5.6+/-1.3)×10-11(T/298)1/2, and (4.8+/-1.2)×10-11(T/298)1/2cm3s-1. At 298 K, the ν'=0 and 2 values are within 5% of the laboratory values, but for ν'=1 the value is 40% larger than the laboratory value. The effective quantum yield of O(1S) by N2(A)+O is found to be 0.47+/-0.17. The observations support a photoelectron cross section for O(1S) that is consistent with laboratory measurements, but about 2.0 times larger than theoretical calculations.
Photolysis Rate Coefficient Calculations in Support of SOLVE Campaign
NASA Technical Reports Server (NTRS)
Lloyd, Steven A.; Swartz, William H.
2001-01-01
The objectives for this SOLVE project were 3-fold. First, we sought to calculate a complete set of photolysis rate coefficients (j-values) for the campaign along the ER-2 and DC-8 flight tracks. En route to this goal, it would be necessary to develop a comprehensive set of input geophysical conditions (e.g., ozone profiles), derived from various climatological, aircraft, and remotely sensed datasets, in order to model the radiative transfer of the atmosphere accurately. These j-values would then need validation by comparison with flux-derived j-value measurements. The second objective was to analyze chemistry along back trajectories using the NASA/Goddard chemistry trajectory model initialized with measurements of trace atmospheric constituents. This modeling effort would provide insight into the completeness of current measurements and the chemistry of Arctic wintertime ozone loss. Finally, we sought to coordinate stellar occultation measurements of ozone (and thus ozone loss) during SOLVE using the MSX/UVISI satellite instrument. Such measurements would determine ozone loss during the Arctic polar night and represent the first significant science application of space-based stellar occultation in the Earth's atmosphere.
Taheri, S; Abdullah, T L; Abdullah, N A P; Ahmad, Z; Karimi, E; Shabanimofrad, M R
2014-09-05
The genus Curcuma is a member of the ginger family (Zingiberaceae) that has recently become popular for use as flowering pot plants, both indoors and as patio and landscape plants. We used PCR-based molecular markers (SSRs) to elucidate genetic variation and relationships between five varieties of Curcuma (Curcuma alismatifolia) cultivated in Malaysia. Of the primers tested, 8 (of 17) SSR primers were selected for their reproducibility and high rates of polymorphism. The number of presumed alleles revealed by the SSR analysis ranged from two to six alleles, with a mean value of 3.25 alleles per locus. The values of HO and HE ranged from 0 to 0.8 (mean value of 0.2) and 0.1837 to 0.7755 (mean value of 0.5102), respectively. Eight SSR primers yielded 26 total amplified fragments and revealed high rates of polymorphism among the varieties studied. The polymorphic information content varied from 0.26 to 0.73. Dice's similarity coefficient was calculated for all pairwise comparisons and used to construct an unweighted pair group method with arithmetic average (UPGMA) dendrogram. Similarity coefficient values from 0.2105 to 0.6667 (with an average of 0.4386) were found among the five varieties examined. A cluster analysis of data using a UPGMA algorithm divided the five varieties/hybrids into 2 groups.
Study on drag coefficient of rising bubble in still water
NASA Astrophysics Data System (ADS)
Shi, M. Y.; Qi, Mei; Yi, C. G.; Liu, D. Y.; Zhang, K. X.
2017-09-01
Research on the behavior of a rising bubble in still water is on the basis of Newton's theory of classical mechanics. Develop a calculation analysis and an experimental process of bubble rising behavior in order to search for an appropriate way of valuing drag coefficient, which is the key element toward this issue. Analyze the adaptability of the drag coefficient; compare the theoretical model to the real experimental model of rising bubble behavior. The result turns out that the change rate of radius could be ignored according to the analysis; the acceleration phase is transient; final velocity and the diameter of bubble do relate to the drag coefficient, but have no obvious relation with the depth of water. After series of inference analysis of the bubble behavior and experimental demonstration, a new drag coefficient and computing method is proposed.
Gas-film coefficients for the volatilization of ketones from water
Rathbun, R.E.; Tai, D.Y.
1986-01-01
Volatilization is a significant process in determining the fate of many organic compounds in streams and rivers. Quantifying this process requires knowledge of the mass-transfer coefficient from water, which is a function of the gas-film and liquid-film coefficients. The gas-film coefficient can be determined by measuring the flux for the volatilization of pure organic liquids. Volatilization fluxes for acetone, 2-butanone, 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, 2-heptanone, and 2-octanone were measured in the laboratory over a range of temperatures. Gas-film coefficients were then calculated from these fluxes and from vapor pressure data from the literature. An equation was developed for predicting the volatilization flux of pure liquid ketones as a function of vapor pressure and molecular weight. Large deviations were found for acetone, and these were attributed to the possibility that acetone may be hydrogen bonded. A second equation for predicting the flux as a function of molecular weight and temperature resulted in large deviations for 4methyl-2-pentanone. These deviations were attributed to the branched structure of this ketone. Four factors based on the theory of volatilization and relating the volatilization flux or rate to the vapor pressure, molecular weight, temperature, and molecular diffusion coefficient were not constant as suggested by the literature. The factors generally increased with molecular weight and with temperature. Values for acetone corresponded to ketones with a larger molecular weight, and the acetone factors showed the greatest dependence on temperature. Both of these results are characteristic of compounds that are hydrogen bonded. Relations from the literature commonly used for describing the dependence of the gas-film coefficient on molecular weight and molecular diffusion coefficient were not applicable to the ketone gas-film coefficients. The dependence on molecular weight and molecular diffusion coefficient was in general U-shaped with the largest coefficients observed for acetone, the next largest for 2octanone, and the smallest for 2-pentanone and 3-pentanone. The gas-film coefficient for acetone was much more dependent on temperature than were the coefficients for the other ketones. Such behavior is characteristic of hydrogen-bonded substances. Temperature dependencies of the other ketones were about twice the theoretical value, but were comparable to a literature value for water. Ratios of the ketone gas-film coefficients to the gasfilm coefficients for the evaporation of water were approximately constant for all the ketones except for acetone, whose values were considerably larger. The ratios increased with temperature; however, the increases were small except for acetone. These ratios can be combined with an equation from the literaure for predicting the gasfilm coefficient for evaporation of water from a canal to predict the gas-film coefficients for the volatilization of ketones from streams and rivers.
Fareed, Mohd; Kaisar Ahmad, Mir; Azeem Anwar, Malik; Afzal, Mohammad
2017-01-01
The aim of our study was to understand the relationship between consanguineous marriages and reproductive outcomes. A total of 999 families were recruited from five Muslim populations of Jammu region. Family pedigrees were drawn to access the family history and inbreeding status in terms of coefficient of inbreeding (F). Fertility, mortality, secondary sex ratio, selection intensity, and lethal equivalents were measured using standard methods. The significant differences for gross fertility was found to be higher among inbred groups as compared to the unrelated families (P < 0.05) and higher mortality rates were observed among consanguineous families of all populations in comparison with the non-consanguineous family groups. Moreover, the prenatal and postnatal child mortality rates (i.e., U5MR and U18MR) have presented a persuasive increase with an upsurge in the homozygosity level. The mortality rate was found to be maximum among families with the highest value of coefficient of inbreeding (F). The selection intensity (SI) also showed inflations among families with respect to their increasing inbreeding coefficients. The greater values of lethal equivalents per gamete (LEs/gamete) were observed for autosomal inheritance in comparison with sex-linked inheritance. Our conclusive assessment brings out the deleterious consequence of consanguineous marriages on reproductive outcomes.
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.
2016-08-15
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.
2016-08-01
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.
B-value and slip rate sensitivity analysis for PGA value in Lembang fault and Cimandiri fault area
NASA Astrophysics Data System (ADS)
Pratama, Cecep; Ito, Takeo; Meilano, Irwan; Nugraha, Andri Dian
2017-07-01
We examine slip rate and b-value contribution of Peak Ground Acceleration (PGA), in probabilistic seismic hazard maps (10% probability of exceedence in 50 years or 500 years return period). Hazard curve of PGA have been investigated for Sukabumi and Bandung using a PSHA (Probabilistic Seismic Hazard Analysis). We observe that the most influence in the hazard estimate is crustal fault. Monte Carlo approach has been developed to assess the sensitivity. Uncertainty and coefficient of variation from slip rate and b-value in Lembang and Cimandiri Fault area have been calculated. We observe that seismic hazard estimates are sensitive to fault slip rate and b-value with uncertainty result are 0.25 g dan 0.1-0.2 g, respectively. For specific site, we found seismic hazard estimate are 0.49 + 0.13 g with COV 27% and 0.39 + 0.05 g with COV 13% for Sukabumi and Bandung, respectively.
Rate Coefficients for O-Atom Three-Body Recombination in N2 at Temperatures in the Range 170--320 K
NASA Astrophysics Data System (ADS)
Pejakovic, D. A.; Kalogerakis, K. S.; Copeland, R. A.; Huestis, D. L.; Robertson, R. M.; Smith, G. P.
2005-12-01
Three-body recombination of O-atoms, O + O + M → O_2* + M is one of the most important reactions in the upper atmospheres of Earth, Venus, and Mars. It is the only source for O2 nightglow, and the resulting emissions of electronically excited O2 are key tracers for photochemical and wave activity near the mesopause. Thus, knowledge of the rate coefficient for recombination of atomic oxygen is essential for modeling atmospheric composition. However, there exists a large discrepancy in the published estimates for this rate coefficient. For M = N2, the room temperature coefficient varies between about 3 × 10-33 cm6s-1, which is the value used in the combustion science community, and 5 × 10-33 cm6s-1, a value adopted in the atmospheric modeling community. We report measurements of the rate coefficient for O-atom recombination with N2 as the third body by two different experimental approaches. In the first experiment, we employ the pulsed output of a F2 laser at 157 nm to achieve high levels of photodissociation of molecular oxygen. In a high-pressure (760 Torr) background of N2 the produced O-atoms recombine in a time scale of several milliseconds. Oxygen atom population is monitored by observing fluorescence at 845 nm, induced by the output of a second laser near 226 nm. In the second experiment, the focused output of a KrF excimer laser at 248 nm is used to achieve complete photodissociation of measured amounts of ozone (0.2--0.9 Torr) in a background of ~500 Torr of N2, producing known initial concentrations of O-atoms. Their population decay is monitored by laser-induced fluorescence excited by the 226 nm radiation from a delayed frequency-doubled OPO system. The reaction cell can be cooled by dry ice or liquid nitrogen baths. The preliminary results of the O2 photolysis experiments give a room-temperature value for the rate coefficient of about 2.8 × 10-33 cm6s-1. The ozone photolysis experiments at 316 K (including effects of laser and kinetic heating of the gas) give a preliminary value of ~2.5 × 10-33 cm6s-1, in a good agreement with the O2 photolysis result. Preliminary results show faster recombination at lower temperatures: k(260 K) ~ 4.5 × 10-33 cm6s-1, and k(170 K) ~ 20 × 10-33 cm6s-1. The temperature dependence of k is in a good agreement with the recommendation of Baulch et al. [1], which has been adopted by the combustion modeling community. The O2 photolysis experiments were supported by the NASA Geospace Sciences Program under grant NAG5-12992. The F2 laser was purchased under grant ATM-0216583 from the NSF Major Research Instrumentation Program. The ozone photolysis experiments were supported by the NSF Grant ATM-0233523. [1] D. L. Baulch, D. D. Drysdale, J. Duxbury, and S. J. Grant, Evaluated Kinetic Data for High Temperature Reactions Vol. 3 (Butterworths, London, 1976).
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes
NASA Astrophysics Data System (ADS)
Sadeghi, Gholamreza; Schijven, Jack F.; Behrends, Thilo; Hassanizadeh, S. Majid; van Genuchten, Martinus Th.
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments.
2010-12-27
Erosion Rates and Critical Shear Stress ......................... 45 Erosion Rate Ratio Analysis...inductively coupled plasma – mass spectrometry Kd – partition coefficient Meq – milliequivalents MNR – monitored natural recovery SRNL-STI-2010...186 Figure 82. Critical Shear Stress Comparison among Biopolymer Materials at 2, 10, and 175 Days. Each value is an average of
Hoos, A.B.
1990-01-01
Quantitative information concerning aquifer hydrologic and hydraulic characteristics is needed to manage the development of ground-water resources. These characteristics are poorly defined for the bedrock aquifers in Middle and East Tennessee where demand for water is increasing. This report presents estimates of recharge rate, storage coefficient, diffusivity, and transmissivity for representative drainage basins in Middle and East Tennessee, as determined from analyses of stream-aquifer interactions. The drainage basins have been grouped according to the underlying major aquifer, then statistical descriptions applied to each group, in order to define area1 distribution of these characteristics. Aquifer recharge rates are estimated for representative low, average, and high flow years for 63 drainage basins using hydrograph analysis techniques. Net annual recharge during average flow years for all basins ranges from 4.1 to 16.8 in/yr (inches per year), with a mean value of 7.3 in. In general, recharge rates are highest for basins underlain by the Blue Ridge aquifer (mean value11.7 in/yr) and lowest for basins underlain by the Central Basin aquifer (mean value 5.6 in/yr). Mean recharge values for the Cumberland Plateau, Highland Rim, and Valley and Ridge aquifers are 6.5, 7.4, and 6.6 in/yr, respectively. Gravity drainage characterizes ground-water flow in most surficial bedrock aquifer in Tennessee. Accordingly, a gravity yield analysis, which compares concurrent water-level and streamflow hydrographs, was used to estimate aquifer storage coefficient for nine study basins. The basin estimates range from 0.002 to 0.140; however, most estimates are within a narrow range of values, from 0.01 to 0.025. Accordingly, storage coefficient is estimated to be 0.01 for all aquifers in Middle and East Tennessee, with the exception of the aquifer in the inner part of the Central Basin, for which storage coefficient is estimated to be 0.002. Estimates of aquifer hydraulic diffusivity are derived from estimates of the streamflow recession index and drainage density for 75 drainage basins; values range from 3,300 to 130,000 ft^2/d (feet squared per day). Basin-specific and site-specific estimates of transmissivity are computed from estimates of hydraulic diffusivity and specific-capacity test data, respectively. Basin-specific, or areal, estimates of transmissivity range from 22 to 1,300 ft^2/d, with a mean of 240 ft^2/d In general, areal transmissivity is highest for basins underlain by the Cumberland Plateau aquifer (mean value 480 ft^2/d) and lowest for basins underlain by the Central Basin aquifer (mean value 79 ft^2/d). Mean transmissivity values for the Highland Rim, Valley and Ridge, and Blue Ridge aquifer are 320,140, and 120 ft^2/d respectively. Site-specific estimates of transmissivity, computed from specific-capacity data from 118 test wells in Middle and East Tennessee range from 2 to 93,000 ft^2/d with a mean of 2,600 ft^2/d Mean transmissivity values for the Cumberland Plateau, Highland Rim, Central Basin, Valley and Ridge, and Blue Ridge aquifers are 2,800,1,200, 7,800, 390, and 65Oft Id, respectively.
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
Adam, L; Hack, W; McBane, G C; Zhu, H; Qu, Z-W; Schinke, R
2007-01-21
Experimental rate coefficients for the removal of NH(a (1)Delta) and ND(a (1)Delta) in collisions with H and D atoms are presented; all four isotope combinations are considered: NH+H, NH+D, ND+H, and ND+D. The experiments were performed in a quasistatic laser-flash photolysis/laser-induced fluorescence system at low pressures. NH(a (1)Delta) and ND(a (1)Delta) were generated by photolysis of HN(3) and DN(3), respectively. The total removal rate coefficients at room temperature are in the range of (3-5)x10(13) cm(3) mol(-1) s(-1). For two isotope combinations, NH+H and NH+D, quenching rate coefficients for the production of NH(X (3)Sigma(-)) or ND(X (3)Sigma(-)) were also determined; they are in the range of 1 x 10(13) cm(3) mol(-1) s(-1). The quenching rate coefficients directly reflect the strength of the Renner-Teller coupling between the (2)A(") and (2)A(') electronic states near linearity and so can be used to test theoretical models for describing this nonadiabatic process. The title reaction was modeled with a simple surface-hopping approach including a single parameter, which was adjusted to reproduce the quenching rate for NH+H; the same parameter value was used for all isotope combinations. The agreement with the measured total removal rate is good for all but one isotope combination. However, the quenching rates for the NH+D combination are only in fair (factor of 2) agreement with the corresponding measured data.
NASA Astrophysics Data System (ADS)
Smausz, T.; Kondász, B.; Gera, T.; Ajtai, T.; Utry, N.; Pintér, M.; Kiss-Albert, G.; Budai, J.; Bozóki, Z.; Szabó, G.; Hopp, B.
2017-10-01
Absorption coefficient of graphite bulk pressed from 1 to 5 μm-sized crystalline grains was measured in UV-Vis-NIR range with three different methods: (i) determination of pulsed laser ablation rate as the function of laser fluence for different wavelengths (248, 337, 532, and 1064 nm, respectively); (ii) production of aerosol particles by UV laser ablation of the bulk graphite in inert atmosphere and determination of the mass-specific absorption coefficient with a four-wavelength (266, 355, 532, and 1064 nm, respectively) photoacoustic spectrometer, and (iii) spectroscopic ellipsometry in 250-1000 nm range. Taking into account the wide range of the absorption coefficients of different carbon structures, an overall relatively good agreement was observed for the three methods. The ellipsometric results fit well with the ablation rate measurement, and the data obtained with photoacoustic method are also similar in the UV and NIR region; however, the values were somewhat higher in visible and near-UV range. Taking into account the limitations of the methods, they can be promising candidates for the determination of absorption coefficient when the samples are strongly scattering and there is no possibility to perform transmissivity measurements.
NASA Astrophysics Data System (ADS)
Unal, H.; Mimaroglu, A.; Arda, T.
2006-09-01
Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.
NASA Technical Reports Server (NTRS)
Kartuzova, Olga; Kassemi, Mohammad
2015-01-01
A CFD model for simulating the self-pressurization of a large scale liquid hydrogen storage tank is utilized in this paper to model the MHTB self-pressurization experiment. The kinetics-based Schrage equation is used to account for the evaporative and condensi ng interfacial mass flows in this model. The effect of the accommodation coefficient for calculating the interfacial mass transfer rate on the tank pressure during tank selfpressurization is studied. The values of the accommodation coefficient which were considered in this study vary from 1.0e-3 to 1.0e-1 for the explicit VOF model and from 1.0e-4 to 1.0e-3 for the implicit VOF model. The ullage pressure evolutions are compared against experimental data. A CFD model for controlling pressure in cryogenic storage tanks by spraying cold liquid into the ullage is also presented. The Euler-Lagrange approach is utilized for tracking the spray droplets and for modeling the interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet-ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux, as well as droplets trajectories, size distribution and temperatures predicted by the model are presented. The ul lage pressure and vapor temperature evolutions are compared with experimental data obtained from the MHTB spray bar mixing experiment. The effect of the accommodation coefficient for calculating the interfacial and droplet mass transfer rates on the tank pressure during mixing of the vapor using spray is studied. The values used for the accommodation coefficient at the interface vary from 1.0e-5 to 1.0e-2. The droplet accommodation coefficient values vary from 2.0e-6 to 1.0e-4.
Schüller, Andreas; Meier, Markus; Selbach, Hans-Joachim; Ankerhold, Ulrike
2015-07-01
The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor kQ can be determined in order to measure the reference air kerma rate of (60)Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for (192)Ir HDR sources. The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of (60)Co and (192)Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor kQ was determined as the ratio of the calibration coefficients for (60)Co and (192)Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated. For the PTW Tx33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor kQ is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor kQ is 1.05. Both kQ values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty (k = 2) of kQ is UkQ = 2.1% for both chamber types. The calibration coefficient of a well-type chamber for radiation fields of (60)Co HDR brachytherapy sources can be calculated from a given calibration coefficient for (192)Ir radiation by using a chamber-type-specific radiation quality correction factor kQ. However, the uncertainty of a (60)Co calibration coefficient calculated via kQ is at least twice as large as that for a direct calibration with a (60)Co source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Wenwen, E-mail: wlei@physics.usyd.edu.au; McKenzie, David R., E-mail: d.mckenzie@physics.usyd.edu.au
2014-12-15
Gas flows have been studied quantitatively for more than a hundred years and have relevance in modern fields such as the control of gas inputs to processes, the measurement of leak rates and the separation of gaseous species. Cha and McCoy have derived a convenient formula for the flow of an ideal gas applicable across a wide range of Knudsen numbers (Kn) that approaches the Navier–Stokes equations at small Kn and the Smoluchowski extension of the Knudsen flow equation at large Kn. Smoluchowski’s result relies on the Maxwell definition of the tangential momentum accommodation coefficient α, recently challenged by Aryamore » et al. We measure the flow rate of nitrogen gas in a smooth walled silica tube across a wide range of Knudsen numbers from 0.0048 to 12.4583. We find that the nitrogen flow obeys the Cha and McCoy equation with a large value of α, unlike carbon nanotubes which show flows consistent with a small value of α. Silica capillaries are therefore not atomically smooth. The flow at small Kn has α=0.91 and at large Kn has α close to one, consistent with the redefinition of accommodation coefficient by Arya et al., which also resolves a problem in the literature where there are many observations of α of less than one at small Kn and many equal to one at large Kn. Silica capillaries are an excellent choice for an accurate flow control system. - Highlights: • First experimental study on flow rate across all flow regimes in a well-defined microtube. • Extend Cha and McCoy theory for molecular flow regime. • Demonstrate the Maxwell accommodation coefficient is different in the slip and molecular flow regimes.« less
NASA Astrophysics Data System (ADS)
Manjanaik, N.; Parameshachari, B. D.; Hanumanthappa, S. N.; Banu, Reshma
2017-08-01
Intra prediction process of H.264 video coding standard used to code first frame i.e. Intra frame of video to obtain good coding efficiency compare to previous video coding standard series. More benefit of intra frame coding is to reduce spatial pixel redundancy with in current frame, reduces computational complexity and provides better rate distortion performance. To code Intra frame it use existing process Rate Distortion Optimization (RDO) method. This method increases computational complexity, increases in bit rate and reduces picture quality so it is difficult to implement in real time applications, so the many researcher has been developed fast mode decision algorithm for coding of intra frame. The previous work carried on Intra frame coding in H.264 standard using fast decision mode intra prediction algorithm based on different techniques was achieved increased in bit rate, degradation of picture quality(PSNR) for different quantization parameters. Many previous approaches of fast mode decision algorithms on intra frame coding achieved only reduction of computational complexity or it save encoding time and limitation was increase in bit rate with loss of quality of picture. In order to avoid increase in bit rate and loss of picture quality a better approach was developed. In this paper developed a better approach i.e. Gaussian pulse for Intra frame coding using diagonal down left intra prediction mode to achieve higher coding efficiency in terms of PSNR and bitrate. In proposed method Gaussian pulse is multiplied with each 4x4 frequency domain coefficients of 4x4 sub macro block of macro block of current frame before quantization process. Multiplication of Gaussian pulse for each 4x4 integer transformed coefficients at macro block levels scales the information of the coefficients in a reversible manner. The resulting signal would turn abstract. Frequency samples are abstract in a known and controllable manner without intermixing of coefficients, it avoids picture getting bad hit for higher values of quantization parameters. The proposed work was implemented using MATLAB and JM 18.6 reference software. The proposed work measure the performance parameters PSNR, bit rate and compression of intra frame of yuv video sequences in QCIF resolution under different values of quantization parameter with Gaussian value for diagonal down left intra prediction mode. The simulation results of proposed algorithm are tabulated and compared with previous algorithm i.e. Tian et al method. The proposed algorithm achieved reduced in bit rate averagely 30.98% and maintain consistent picture quality for QCIF sequences compared to previous algorithm i.e. Tian et al method.
Chung, Hoi Sung; Gopich, Irina V; McHale, Kevin; Cellmer, Troy; Louis, John M; Eaton, William A
2011-04-28
Recently developed statistical methods by Gopich and Szabo were used to extract folding and unfolding rate coefficients from single-molecule Förster resonance energy transfer (FRET) data for proteins with kinetics too fast to measure waiting time distributions. Two types of experiments and two different analyses were performed. In one experiment bursts of photons were collected from donor and acceptor fluorophores attached to a 73-residue protein, α(3)D, freely diffusing through the illuminated volume of a confocal microscope system. In the second, the protein was immobilized by linkage to a surface, and photons were collected until one of the fluorophores bleached. Folding and unfolding rate coefficients and mean FRET efficiencies for the folded and unfolded subpopulations were obtained from a photon by photon analysis of the trajectories using a maximum likelihood method. The ability of the method to describe the data in terms of a two-state model was checked by recoloring the photon trajectories with the extracted parameters and comparing the calculated FRET efficiency histograms with the measured histograms. The sum of the rate coefficients for the two-state model agreed to within 30% with the relaxation rate obtained from the decay of the donor-acceptor cross-correlation function, confirming the high accuracy of the method. Interestingly, apparently reliable rate coefficients could be extracted using the maximum likelihood method, even at low (<10%) population of the minor component where the cross-correlation function was too noisy to obtain any useful information. The rate coefficients and mean FRET efficiencies were also obtained in an approximate procedure by simply fitting the FRET efficiency histograms, calculated by binning the donor and acceptor photons, with a sum of three-Gaussian functions. The kinetics are exposed in these histograms by the growth of a FRET efficiency peak at values intermediate between the folded and unfolded peaks as the bin size increases, a phenomenon with similarities to NMR exchange broadening. When comparable populations of folded and unfolded molecules are present, this method yields rate coefficients in very good agreement with those obtained with the maximum likelihood method. As a first step toward characterizing transition paths, the Viterbi algorithm was used to locate the most probable transition points in the photon trajectories.
Phototransformation Rate Constants of PAHs Associated with Soot Particles
Kim, Daekyun; Young, Thomas M.; Anastasio, Cort
2013-01-01
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z0.5 is more sensitive to the soot layer thickness than the k0p value. As the thickness of the soot layer increases, the z0.5 values increase, but the k0p values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k0p and z0.5 in thinner layers, Deff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. PMID:23247292
Estimation of methane emission rate changes using age-defined waste in a landfill site.
Ishii, Kazuei; Furuichi, Toru
2013-09-01
Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample's methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.0501/y and 0.0621/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.35×10(4)m(3)-CH(4), which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.34×10(5)t-CO(2)/y). Copyright © 2013 Elsevier Ltd. All rights reserved.
Koziol, Liz; Bever, James D
2018-01-01
Abstract Many plant species are limited to habitats relatively unaffected by anthropogenic disturbance, so protecting these undisturbed habitats is essential for plant conservation. Coefficients of conservatism (C values) were developed as indicators of a species’ sensitivity to anthropogenic disturbance, and these values are used in Floristic Quality Assessment as a means of assessing natural areas and ecological restoration. However, assigning of these values is subjective and improved quantitative validation of C values is needed. We tested whether there are consistent differences in life histories between species with high and low C values. To do this, we grew 54 species of tallgrass prairie plants in a greenhouse and measured traits that are associated with trade-offs on the fast-slow continuum of life-history strategies. We also grew plants with and without mycorrhizal fungi as a test of these species’ reliance on this mutualism. We compared these traits and mycorrhizal responsiveness to C values. We found that six of the nine traits we measured were correlated with C values, and together, traits predicted up to 50 % of the variation in C values. Traits including fast growth rates and greater investment in reproduction were associated with lower C values, and slow growth rates, long-lived leaves and high root:shoot ratios were associated with higher C values. Additionally, plants with high C values and a slow life history were more responsive to mutualisms with mycorrhizal fungi. Overall, our results connect C values with life-history trade-offs, indicating that high C value species tend to share a suite of traits associated with a slow life history. PMID:29383232
Bauer, Jonathan T; Koziol, Liz; Bever, James D
2018-02-01
Many plant species are limited to habitats relatively unaffected by anthropogenic disturbance, so protecting these undisturbed habitats is essential for plant conservation. Coefficients of conservatism (C values) were developed as indicators of a species' sensitivity to anthropogenic disturbance, and these values are used in Floristic Quality Assessment as a means of assessing natural areas and ecological restoration. However, assigning of these values is subjective and improved quantitative validation of C values is needed. We tested whether there are consistent differences in life histories between species with high and low C values. To do this, we grew 54 species of tallgrass prairie plants in a greenhouse and measured traits that are associated with trade-offs on the fast-slow continuum of life-history strategies. We also grew plants with and without mycorrhizal fungi as a test of these species' reliance on this mutualism. We compared these traits and mycorrhizal responsiveness to C values. We found that six of the nine traits we measured were correlated with C values, and together, traits predicted up to 50 % of the variation in C values. Traits including fast growth rates and greater investment in reproduction were associated with lower C values, and slow growth rates, long-lived leaves and high root:shoot ratios were associated with higher C values. Additionally, plants with high C values and a slow life history were more responsive to mutualisms with mycorrhizal fungi. Overall, our results connect C values with life-history trade-offs, indicating that high C value species tend to share a suite of traits associated with a slow life history.
Saha, Abhijit; Manna, Swarup; Nandi, Arun K
2007-12-18
The riboflavin (R) and melamine (M) supramolecular complex in the mole ratio of 3:1 (RM31) produces a thermoreversible gel in aqueous medium. The gelation mechanism has been elucidated from morphological investigations using optical, electron, and atomic force microscopy together with time-dependent circular dichroism (CD) and photoluminescence (PL) spectroscopy. Optical microscopy indicates spherulitic morphology at lower gelation temperature (
NASA Astrophysics Data System (ADS)
Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.
2016-05-01
A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes, results in lower values of Δ t (the temperature difference between internal and external coolant) for a given heat load.
Chesson, Harrell W; Owusu-Edusei, Kwame; Leichliter, Jami S; Aral, Sevgi O
2013-11-01
Numerous social determinants of health are associated with violent crime rates and sexually transmissible infection (STI) rates. This report aims to illustrate the potential usefulness of violent crime rates as a proxy for the social determinants of STI rates. For each year from 1981 to 2010, we assessed the strength of the association between the violent crime rate and the gonorrhoea (Neisseria gonorrhoeae) rate (number of total reported cases per 100?000) at the state level. Specifically, for each year, we calculated Pearson correlation coefficients (and P-values) between two variables (the violent crime rate and the natural log of the gonorrhoea rate) for all 50 states and Washington, DC. For comparison, we also examined the correlation between gonorrhoea rates, and rates of poverty and unemployment. We repeated the analysis using overall syphilis rates instead of overall gonorrhoea rates. The correlation between gonorrhoea and violent crime was significant at the P<0.001 level for every year from 1981 to 2010. Syphilis rates were also consistently correlated with violent crime rates. In contrast, the P-value for the correlation coefficient exceeded 0.05 in 9 of the 30 years for the association between gonorrhoea and poverty, and in 17 of the 30 years for that between gonorrhoea and unemployment. Because violent crime is associated with many social determinants of STIs and because it is consistently associated with STI rates, violent crime rates can be a useful proxy for the social determinants of health in statistical analyses of STI rates.
Kinetics of styrene biodegradation by Pseudomonas sp. E-93486.
Gąszczak, Agnieszka; Bartelmus, Grażyna; Greń, Izabela
2012-01-01
The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5-90 g m(-3). The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μ (m) = 0.1188 h(-1), K(S) = 5.984 mg l(-1), and K (i) = 156.6 mg l(-1). The yield coefficient mean value [Formula in text] for the batch culture was 0.72 g(dry cells weight) (g(substrate))(-1). The experiments conducted in a chemostat at various dilution rates (D = 0.035-0.1 h(-1)) made it possible to determine the value of the coefficient for maintenance metabolism m (d) = 0.0165 h(-1) and the maximum yield coefficient value [Formula in text]. Chemostat experiments confirmed the high value of yield coefficient [Formula in text] observed in the batch culture. The conducted experiments showed high activity of the examined strain in the styrene biodegradation process and a relatively low sensitivity to inhibition of its growth at higher concentrations of styrene in the solution. Such exceptional features of Pseudomonas sp. E-93486 make this bacterial strain the perfect candidate for technical applications.
Measurement of methionine level with the LC-ESI-MS/MS method in schizophrenic patients.
Kulaksizoglu, S; Kulaksizoglu, B; Ellidag, H Y; Eren, E; Yilmaz, N; Baykal, A
2016-01-01
The purpose of this study was to evaluate plasma methionine levels by using liquid chromatography electrospray ionization-tandem mass spectroscopy (LC-ESI-MS/MS) in schizophrenic patients. A twelve-point standard graph was drawn, and the recovery rate, the intra-day and inter-day coefficients of variation (CV), the limit of detection (LOD), and the limit of quantification (LOQ) were evaluated. The y and R2 values of the standard graph equation were determined as 0.011x + 0.0179 and 0.9989, respectively, and the graph remained linear until the 200 µmol/l level. The intra-day coefficients of variation of the samples (n = 10) containing 8, 28, and 58 µmol/l methionine were determined as 2.68, 3.10, and 3.79%, respectively; while their inter-day coefficients of variation were determined as 2.98, 3.19, and 3.84%. The LOD and LOQ values were determined as 0.04 and 0.1 µmol/l, respectively, while the mean recovery rates were determined as 101.7 and 99.3%. Plasma methionine values were measured as 21.5 (19.5-24,6) µmol/l for the patient group, 17.8 (16.3-20.1) µmol/l for the control group, and the difference between the two groups was statistically significant (p = 0.03). LC-ESI-MS/MS method represents a fairly sensitive, economic, and rapid analysis that requires very little sample and is suitable for measuring methionine levels in schizophrenic patients.
Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay
Hartman, Blayne; Hammond, Douglas E.
1984-01-01
Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.
Analysis of Wind Tunnel Lateral Oscillatory Data of the F-16XL Aircraft
NASA Technical Reports Server (NTRS)
Klein, Vladislav; Murphy, Patrick C.; Szyba, Nathan M.
2004-01-01
Static and dynamic wind tunnel tests were performed on an 18% scale model of the F-16XL aircraft. These tests were performed over a wide range of angles of attack and sideslip with oscillation amplitudes from 5 deg. to 30 deg. and reduced frequencies from 0.073 to 0.269. Harmonic analysis was used to estimate Fourier coefficients and in-phase and out-of-phase components. For frequency dependent data from rolling oscillations, a two-step regression method was used to obtain unsteady models (indicial functions), and derivatives due to sideslip angle, roll rate and yaw rate from in-phase and out-of-phase components. Frequency dependence was found for angles of attack between 20 deg. and 50 deg. Reduced values of coefficient of determination and increased values of fit error were found for angles of attack between 35 deg. and 45 deg. An attempt to estimate model parameters from yaw oscillations failed, probably due to the low number of test cases at different frequencies.
Excitation rate coefficients and line ratios for the optical and ultraviolet transitions in S II
NASA Technical Reports Server (NTRS)
Cai, Wei; Pradhan, Anil K.
1993-01-01
New calculations are reported for electron excitation collision strengths, rate coefficients, transition probabilities, and line ratios for the astrophysically important optical and UV lines in S II. The collision strengths are calculated in the close coupling approximation using the R-matrix method. The present calculations are more extensive than previous ones, including all transitions among the 12 lowest LS terms and the corresponding 28 fine-structure levels in the collisional-radiative model for S II. While the present rate coefficients for electron impact excitation are within 10-30 percent of the previous values for the low-lying optical transitions employed as density diagnostics of H II regions and nebulae, the excitation rates for the UV transitions 4S super 0 sub 3/2 - 4Psub 1/2,3/2,5/2 differ significantly from earlier calculations, by up to factor of 2. We describe temperature and density sensitive flux ratios for a number of UV lines. The present UV results are likely to be of interest in a more accurate interpretation of S II emission from the Io plasma torus in the magnetosphere of Jupiter, as well as other UV sources observed from the IUE, ASTRO 1, and the HST.
Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Geramipanah, Farideh; Safari, Hamed; Paknejad, Mojgan
2015-05-01
To prevent screw loosening, a clear understanding of the factors influencing secure preload is necessary. The purpose of this study was to investigate the effect of coefficient of friction and tightening speed on screw tightening based on energy distribution method with exact geometric modeling and finite element analysis. To simulate the proper boundary conditions of the screw tightening process, the supporting bone of an implant was considered. The exact geometry of the implant complex, including the Straumann dental implant, direct crown attachment, and abutment screw were modeled with Solidworks software. Abutment screw/implant and implant/bone interfaces were designed as spiral thread helixes. The screw-tightening process was simulated with Abaqus software, and to achieve the target torque, an angular displacement was applied to the abutment screw head at different coefficients of friction and tightening speeds. The values of torque, preload, energy distribution, elastic energy, and efficiency were obtained at the target torque of 35 Ncm. Additionally, the torque distribution ratio and preload simulated values were compared to theoretically predicted values. Upon reducing the coefficient of friction and enhancing the tightening speed, the angle of turn increased at the target torque. As the angle of turn increased, the elastic energy and preload also increased. Additionally, by increasing the coefficient of friction, the frictional dissipation energy increased but the efficiency decreased, whereas the increase in tightening speed insignificantly affected efficiency. The results of this study indicate that the coefficient of friction is the most influential factor on efficiency. Increasing the tightening speed lowered the response rate to the frictional resistance, thus diminishing the coefficient of friction and slightly increasing the preload. Increasing the tightening speed has the same result as reducing the coefficient of friction. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Synthesis and characterization of CrCN-DLC composite coatings by cathodic arc ion-plating
NASA Astrophysics Data System (ADS)
Wang, R. Y.; Wang, L. L.; Liu, H. D.; Yan, S. J.; Chen, Y. M.; Fu, D. J.; Yang, B.
2013-07-01
CrCN-DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C2H2 ambient by cathodic arc ion plating system. The influence of C2H2 flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C2H2 flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C2H2 flow rate. The coatings deposited at lower C2H2 flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV0.0252000) and then the hardness decrease with increasing C2H2 flow rate. The friction coefficient also exhibited similar variation trend, when the C2H2 flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure.
NASA Astrophysics Data System (ADS)
Nyoka, M.; Akdogan, G.; Eric, R. H.; Sutcliffe, N.
2003-12-01
The process of mixing and solid-liquid mass transfer in a one-fifth scale water model of a 100-ton Creusot-Loire Uddeholm (CLU) converter was investigated. The modified Froude number was used to relate gas flow rates between the model and its protoype. The influences of gas flow rate between 0.010 and 0.018 m3/s and bath height from 0.50 to 0.70 m on mixing time were examined. The results indicated that mixing time decreased with increasing gas flow rate and increased with increasing bath height. The mixing time results were evaluated in terms of specific energy input and the following correlation was proposed for estimating mixing times in the model CLU converter: T mix=1.08Q -1.05 W 0.35, where Q (m3/s) is the gas flow rate and W (tons) is the model bath weight. Solid-liquid mass-transfer rates from benzoic acid specimens immersed in the gas-agitated liquid phase were assessed by a weight loss measurement technique. The calculated mass-transfer coefficients were highest at the bath surface reaching a value of 6.40 × 10-5 m/s in the sprout region. Mass-transfer coefficients and turbulence parameters decreased with depth, reaching minimum values at the bottom of the vessel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.
A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquidmore » films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.« less
Ha, Yeonjeong; Kwon, Jung-Hwan
2010-04-15
Exact determination of the partition coefficient between 1-octanol and air (K(OA)) is very important because it is a key descriptor for describing the thermodynamic partitioning between the air and organic phases. In spite of its importance, the number and quality of experimental K(OA) values for hydrophobic organic chemicals are limited because of experimental difficulties. Thus, to measure K(OA) values, a high-throughput method was developed that used liquid-phase extraction with 1-octanol drop at the tip of a microsyringe needle. The concentration in the headspace surrounding the 1 muL octanol drop was equilibrated with liquid octanol containing polycyclic aromatic hydrocarbons (PAHs). The change in concentrations of PAHs in the octanol drop was measured to obtain mass transfer rate constants, and these rate constants were then converted into K(OA) values using a film diffusion model. Thirteen polycyclic aromatic hydrocarbons with log K(OA) between 5 and 12 were chosen for the proof of the principle. Experimental determination of log K(OA) was accomplished in 30 h for PAHs with their log K(OA) less than 11. The measured log K(OA) values were very close to those obtained by various experimental and estimation methods in the literature, suggesting that this new method can provide a fast and easy determination of log K(OA) values for many chemicals of environmental interests. In addition, the applicability of the method can be extended to determine Henry's law constant for compounds with low vapor pressure and to estimate gaseous transfer rate of semivolatile compounds for environmental fate modeling.
NASA Astrophysics Data System (ADS)
Accary, J.-B.; Teboul, V.
2013-07-01
We investigate the effect of the isomerization rate f on the microscopic mechanisms at the origin of the massive mass transport found in glass-formers doped with isomerizing azobenzene molecules that result in surface relief gratings formation. To this end we simulate the isomerization of dispersed probe molecules embedded into a molecular host glass-former. The host diffusion coefficient first increases linearly with f and then saturates. The saturated value of the diffusion coefficient and of the viscosity does not depend on f but increases with temperature while the linear response for these transport coefficients depends only slightly on the temperature. We interpret this saturation as arising from the appearance of increasingly soft regions around the probes for high isomerization rates, a result in qualitative agreement with experiments. These two different physical behaviors, linear response and saturation, are reminiscent of the two different unexplained mass transport mechanisms observed for small or large light intensities (for small intensities the molecules move towards the dark regions while for large intensities they move towards the illuminated regions).
On the Development of a New Nonequilibrium Chemistry Model for Mars Entry
NASA Technical Reports Server (NTRS)
Jaffe, R. L.; Schwenke, D. W.; Chaban, G. M.; Prabhu, D. K.; Johnston, C. O.; Panesi, M.
2017-01-01
This paper represents a summary of results to date of an on-going effort at NASA Ames Research Center to develop a physics-based non-equilibrium model for hypersonic entry into the Martian atmosphere. Our approach is to first compute potential energy surfaces based on accurate solutions of the electronic Schroedinger equation and then use quasiclassical trajectory calculations to obtain reaction cross sections and rate coefficients based on these potentials. We have presented new rate coefficients for N2 dissociation and CO dissociation and exchange reactions. These results illustrate shortcomings with some of the rate coefficients in Parks original T-Tv model for Mars entries and with some of the 30-45 year old shock tube data. We observe that the shock tube experiments of CO + O dissociation did not adequately account for the exchange reaction that leads to formation of C + O2. This reaction is actually the primary channel for CO removal in the shock layer at temperatures below 10,000 K, because the reaction enthalpy for exchange is considerably lower than the comparable value for dissociation.
Bozhkova, V P; Budayova, M; Kvasnicka, P; Cigankova, N; Chorvat, D
1994-12-01
Regional differences in lateral diffusion rates of fluorescence-labeled proteins have been studied in the plasma membrane of dividing eggs of the loach (Misgurnus fossilis) by fluorescence recovery after photobleaching (FRAP). Apparent animal-vegetal differences in fluorescence intensity, lateral diffusion coefficients, and fractions of mobile proteins have been found, with all these quantities being higher in the animal pole region than in the yolk region. Cyclic changes in protein diffusion coefficients and mobile fractions during the first few cell cycles have also been recorded. Soon after the end of a cleavage, the diffusion coefficient reaches its minimal value and increases rapidly before the next cleavage.
MTS-6 detectors calibration by using 239Pu-Be neutron source.
Wrzesień, Małgorzata; Albiniak, Łukasz; Al-Hameed, Hiba
2017-10-17
Thermoluminescent detectors, type MTS-6, containing isotope 6Li (lithium) are sensitive in the range of thermal neutron energy; the 239Pu-Be (plutonium-and-beryllium) source emits neutrons in the energy range from 1 to 11 MeV. These seemingly contradictory elements may be combined by using the paraffin moderator, a determined density of thermal neutrons in the paraffin block and a conversion coefficient neutron flux to kerma, not forgetting the simultaneous registration of the photon radiation inseparable from the companion neutron radiation. The main aim of this work is to present the idea of calibration of thermoluminescent detectors that consist of a 6Li isotope, by using 239Pu-Be neutron radiation source. In this work, MTS-6 and MTS-7 thermoluminescent detectors and a plutonium-and-beryllium (239Pu-Be) neutron source were used. Paraffin wax fills the block, acting as a moderator. The calibration idea was based on the determination of dose equivalent rate based on the average kerma rate calculated taking into account the empirically determined function describing the density of thermal neutron flux in the paraffin block and a conversion coefficient neutron flux to kerma. The calculated value of the thermal neutron flux density was 1817.5 neutrons/cm2/s and the average value of kerma rate determined on this basis amounted to 244 μGy/h, and the dose equivalent rate 610 μSv/h. The calculated value allowed for the assessment of the length of time of exposure of the detectors directly in the paraffin block. The calibration coefficient for the used batch of detectors is (6.80±0.42)×10-7 Sv/impulse. Med Pr 2017;68(6):705-710. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Properties of the optimal trajectories for coplanar, aeroassisted orbital transfer
NASA Technical Reports Server (NTRS)
Miele, A.; Wang, T.; Deaton, A. W.
1990-01-01
The optimization of trajectories for coplaner, aeroassisted orbital transfer (AOT) from a high Earth orbit (HEO) to a low Earth orbit (LEO) is examined. In particular, HEO can be a geosynchronous Earth orbit (GEO). It is assumed that the initial and final orbits are circular, that the gravitational field is central and is governed by the inverse square law, and that two impulses are employed, one at HEO exit and one at LEO entry. During the atmospheric pass, the trajectory is controlled via the lift coefficient in such a way that the total characteristic velocity is minimized. First, an ideal optimal trajectory is determined analytically for lift coefficient unbounded. This trajectory is called grazing trajectory, because the atmospheric pass is made by flying at constant altitude along the edge of the atmosphere until the excess velocity is depleted. For the grazing trajectory, the lift coefficient varies in such a way that the lift, the centrifugal force due to the Earth's curvature, the weight, and the Coriolis force due to the Earth's rotation are in static balance. Also, the grazing trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, dynamic pressure, and heating rate. Next, starting from the grazing trajectory results, a real optimal trajectory is determined numerically for the lift coefficient bounded from both below and above. This trajectory is characterized by atmospheric penetration with the smallest possible entry angle, followed by flight at the lift coefficient lower bound. Consistently with the grazing trajectory behavior, the real optimal trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate.
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.
1975-01-01
A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.
Inference of reaction rate parameters based on summary statistics from experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin
Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.« less
Inference of reaction rate parameters based on summary statistics from experiments
Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin; ...
2016-10-15
Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.« less
Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki
2015-01-01
Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387
NASA Technical Reports Server (NTRS)
Feofilov, A. G.; Kutepov, A. A.; She, C.-Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.
2012-01-01
Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.
NASA Astrophysics Data System (ADS)
Obayashi, Takeshi; Kinoshita, Kengo
2013-01-01
Gene coexpression analysis is a powerful approach to elucidate gene function. We have established and developed this approach using vast amount of publicly available gene expression data measured by microarray techniques. The coexpressed genes are used to estimate gene function of the guide gene or to construct gene coexpression networks. In the case to construct gene networks, researchers should introduce an arbitrary threshold of gene coexpression, because gene coexpression value is continuous value. In the viewpoint to introduce common threshold of gene coexpression, we previously reported rank of Pearson's correlation coefficient (PCC) is more useful than the original PCC value. In this manuscript, we re-assessed the measure of gene coexpression to construct gene coexpression network, and found that mutual rank (MR) of PCC showed better performance than rank of PCC and the original PCC in low false positive rate.
Ramonatxo, M; Préfaut, C; Guerrero, H; Moutou, H; Bansard, X; Chardon, G
1982-01-01
The aim of this study was to establish data which would best demonstrate the variations of different tests using Carbon Monoxide as a tracer gas (total and partial functional uptake coefficient and transfer capacity) to establish mean values and lower limits of normal of these tests. Multivariate statistical analysis was used; in the first stage a connection was sought between the fractional uptake coefficient (partial and total) to other parameters, comparing subjects and data. In the second stage the comparison was refined by eliminating the least useful data, trying, despite a small loss of material, to reveal the most important connections, linear or otherwise. The fractional uptake coefficients varied according to sex, also the variation of the partial alveolar-expired fractional uptake equivalent (DuACO) was largely a function of respiratory rate and tidal volume. The alveolar-arterial partial fractional uptake equivalent (DuaCO) depended more on respiratory frequency and age. Finally the total fractional uptake coefficient (DuCO) and the transfer capacity corrected per liter of ventilation (TLCO/V) were functions of these parameters. The last stage of this work, after taking account of the statistical observations consistent with the facts of these physiological hypotheses led to a search for a better way of approaching the laws linking the collected data to the fractional uptake coefficient. The lower limits of normal were arbitrarily defined, separating those 5% of subjects deviating most strongly from the mean. As a result, the relationship between the lower limit of normal and the theoretical mean value was 90% for the partial and total fractional uptake coefficient and 70% for the transfer capacity corrected per liter of ventilation.
Allgayer, H; Sonnenbichler, J; Kruis, W; Paumgartner, G
1985-01-01
Sulphasalazine (SASP), used in the treatment of inflammatory bowel disease, is split into sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) in the colon. Lower plasma levels of SASP and 5-ASA as compared to those of SP may be due to different absorption rates from the colon because of different pK values and pH dependent lipid-water partition coefficients. In this study we determined the pK values of 5-ASA and its major metabolite, N-acetyl amino-salicylic acid (AcASA), by 13C-NMR spectroscopy and compared the pH dependent apparent benzene-water partition coefficients (Papp) of SASP, SP and 5-ASA with respect to their different plasma levels. The COOH group of 5-ASA had a pK value of 3.0, the -NH3+ group had 6.0, the -OH group 13.9; the -COOH group of AcASA had 2.7 and the -OH group 12.9; The Papp of SASP (0.042 +/- 0.004) and 5-ASA (0.059 +/- 0.01) were significantly lower than that of SP (0.092 +/- 0.03) (at pH 5.5).
Chansirinukor, Wunpen; Maher, Christopher G; Latimer, Jane; Hush, Julia
2005-01-01
Retrospective design. To compare the responsiveness and test-retest reliability of the Functional Rating Index and the 18-item version of the Roland-Morris Disability Questionnaire in detecting change in disability in patients with work-related low back pain. Many low back pain-specific disability questionnaires are available, including the Functional Rating Index and the 18-item version of the Roland-Morris Disability Questionnaire. No previous study has compared the responsiveness and reliability of these questionnaires. Files of patients who had been treated for work-related low back pain at a physical therapy clinic were reviewed, and those containing initial and follow-up Functional Rating Index and 18-item Roland-Morris Disability Questionnaires were selected. The responsiveness of both questionnaires was compared using two different methods. First, using the assumption that patients receiving treatment improve over time, various responsiveness coefficients were calculated. Second, using change in work status as an external criterion to identify improved and nonimproved patients, Spearman's rho and receiver operating characteristic curves were calculated. Reliability was estimated from the subset of patients who reported no change in their condition over this period and expressed with the intraclass correlation coefficient and the minimal detectable change. One hundred and forty-three patient files were retrieved. The responsiveness coefficients for the Functional Rating Index were greater than for the 18-item Roland-Morris Disability Questionnaire. The intraclass correlation coefficient values for both questionnaires calculated from 96 patient files were similar, but the minimal detectable change for the Functional Rating Index was less than for the 18-item Roland-Morris Disability Questionnaire. The Functional Rating Index seems preferable to the 18-item Roland-Morris Disability Questionnaire for use in clinical trials and clinical practice.
Yan, Jian-Jun; Wang, Yi-Qin; Guo, Rui; Zhou, Jin-Zhuan; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Yong
2012-01-01
Auscultation signals are nonstationary in nature. Wavelet packet transform (WPT) has currently become a very useful tool in analyzing nonstationary signals. Sample entropy (SampEn) has recently been proposed to act as a measurement for quantifying regularity and complexity of time series data. WPT and SampEn were combined in this paper to analyze auscultation signals in traditional Chinese medicine (TCM). SampEns for WPT coefficients were computed to quantify the signals from qi- and yin-deficient, as well as healthy, subjects. The complexity of the signal can be evaluated with this scheme in different time-frequency resolutions. First, the voice signals were decomposed into approximated and detailed WPT coefficients. Then, SampEn values for approximated and detailed coefficients were calculated. Finally, SampEn values with significant differences in the three kinds of samples were chosen as the feature parameters for the support vector machine to identify the three types of auscultation signals. The recognition accuracy rates were higher than 90%.
Yan, Jian-Jun; Wang, Yi-Qin; Guo, Rui; Zhou, Jin-Zhuan; Yan, Hai-Xia; Xia, Chun-Ming; Shen, Yong
2012-01-01
Auscultation signals are nonstationary in nature. Wavelet packet transform (WPT) has currently become a very useful tool in analyzing nonstationary signals. Sample entropy (SampEn) has recently been proposed to act as a measurement for quantifying regularity and complexity of time series data. WPT and SampEn were combined in this paper to analyze auscultation signals in traditional Chinese medicine (TCM). SampEns for WPT coefficients were computed to quantify the signals from qi- and yin-deficient, as well as healthy, subjects. The complexity of the signal can be evaluated with this scheme in different time-frequency resolutions. First, the voice signals were decomposed into approximated and detailed WPT coefficients. Then, SampEn values for approximated and detailed coefficients were calculated. Finally, SampEn values with significant differences in the three kinds of samples were chosen as the feature parameters for the support vector machine to identify the three types of auscultation signals. The recognition accuracy rates were higher than 90%. PMID:22690242
Photolysis Rate Coefficient Calculations in Support of SOLVE Campaign
NASA Technical Reports Server (NTRS)
Lloyd, Steven A.; Swartz, William H.
2001-01-01
The objectives for this SOLVE project were 3-fold. First, we sought to calculate a complete set of photolysis rate coefficients (j-values) for the campaign along the ER-2 and DC-8 flight tracks. En route to this goal, it would be necessary to develop a comprehensive set of input geophysical conditions (e.g., ozone profiles), derived from various climatological, aircraft, and remotely sensed datasets, in order to model the radiative transfer of the atmosphere accurately. These j-values would then need validation by comparison with flux-derived j-value measurements. The second objective was to analyze chemistry along back trajectories using the NASA/Goddard chemistry trajectory model initialized with measurements of trace atmospheric constituents. This modeling effort would provide insight into the completeness of current measurements and the chemistry of Arctic wintertime ozone loss. Finally, we sought to coordinate stellar occultation measurements of ozone (and thus ozone loss) during SOLVE using the Midcourse Space Experiment(MSX)/Ultraviolet and Visible Imagers and Spectrographic Imagers (UVISI) satellite instrument. Such measurements would determine ozone loss during the Arctic polar night and represent the first significant science application of space-based stellar occultation in the Earth's atmosphere.
Mini-columns for Conducting Breakthrough Experiments. Design and Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas
Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes.
Sadeghi, Gholamreza; Schijven, Jack F; Behrends, Thilo; Hassanizadeh, S Majid; van Genuchten, Martinus Th
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Experimental Investigation of Hysteretic Dynamic Capillarity Effect in Unsaturated Flow
Zhuang, Luwen; Qin, Chao‐Zhong; de Waal, Arjen
2017-01-01
Abstract The difference between average pressures of two immiscible fluids is commonly assumed to be the same as macroscopic capillary pressure, which is considered to be a function of saturation only. However, under transient conditions, a dependence of this pressure difference on the time rate of saturation change has been observed by many researchers. This is commonly referred to as dynamic capillarity effect. As a first‐order approximation, the dynamic term is assumed to be linearly dependent on the time rate of change of saturation, through a material coefficient denoted by τ. In this study, a series of laboratory experiments were carried out to quantify the dynamic capillarity effect in an unsaturated sandy soil. Primary, main, and scanning drainage experiments, under both static and dynamic conditions, were performed on a sandy soil in a small cell. The value of the dynamic capillarity coefficient τ was calculated from the air‐water pressure differences and average saturation values during static and dynamic drainage experiments. We found a dependence of τ on saturation, which showed a similar trend for all drainage conditions. However, at any given saturation, the value of τ for primary drainage was larger than the value for main drainage and that was in turn larger than the value for scanning drainage. Each data set was fit a simple log‐linear equation, with different values of fitting parameters. This nonuniqueness of the relationship between τ and saturation and possible causes is discussed. PMID:29398729
Experimental Investigation of Hysteretic Dynamic Capillarity Effect in Unsaturated Flow
NASA Astrophysics Data System (ADS)
Zhuang, Luwen; Hassanizadeh, S. Majid; Qin, Chao-Zhong; de Waal, Arjen
2017-11-01
The difference between average pressures of two immiscible fluids is commonly assumed to be the same as macroscopic capillary pressure, which is considered to be a function of saturation only. However, under transient conditions, a dependence of this pressure difference on the time rate of saturation change has been observed by many researchers. This is commonly referred to as dynamic capillarity effect. As a first-order approximation, the dynamic term is assumed to be linearly dependent on the time rate of change of saturation, through a material coefficient denoted by τ. In this study, a series of laboratory experiments were carried out to quantify the dynamic capillarity effect in an unsaturated sandy soil. Primary, main, and scanning drainage experiments, under both static and dynamic conditions, were performed on a sandy soil in a small cell. The value of the dynamic capillarity coefficient τ was calculated from the air-water pressure differences and average saturation values during static and dynamic drainage experiments. We found a dependence of τ on saturation, which showed a similar trend for all drainage conditions. However, at any given saturation, the value of τ for primary drainage was larger than the value for main drainage and that was in turn larger than the value for scanning drainage. Each data set was fit a simple log-linear equation, with different values of fitting parameters. This nonuniqueness of the relationship between τ and saturation and possible causes is discussed.
High temperature XRD of Cu2GeSe3
NASA Astrophysics Data System (ADS)
Premkumar D., S.; Chetty, Raju; Malar, P.; Mallik, Ramesh Chandra
2015-06-01
The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.
Charge Transfer Rate in Collisions of H + Ions with Si Atoms
NASA Astrophysics Data System (ADS)
Kimura, M.; Sannigrahi, A. B.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Shimamura, I.
1996-12-01
Charge transfer in Si(3P, 1D) + H+ collisions is studied theoretically by using a semiclassical molecular representation with six molecular channels for the triplet manifold and four channels for the singlet manifold at collision energies above 30 eV, and by using a fully quantum mechanical approach with two molecular channels for both triplet and singlet manifolds below 30 eV. The ab initio potential curves and nonadiabatic coupling matrix elements for the HSi+ system are obtained from multireference single- and double-excitation configuration interaction (MRD-CI) calculations employing a relatively large basis set. The present rate coefficients for charge transfer to Si+(4P) formation resulting from H+ + Si(3P) collisions are found to be large with values from 1 x 10-10 cm-3 s-1 at 1000 K to 1 x 10-8 cm-3 s-1 at 100,000 K. The rate coefficient for Si+(2P) formation, resulting from H+ + Si(3P) collisions, is found to be much smaller because of a larger energy defect from the initial state. These calculated rates are much larger than those reported by Baliunas & Butler, who estimated a value of 10-11 cm-3 s-1 in their coronal plasma study. The present result may be relevant to the description of the silicon ionization equilibrium.
Vibrational energy transfer and relaxation in O2 and H2O.
Huestis, David L
2006-06-01
Near-resonant vibrational energy exchange between oxygen and water molecules is an important process in the Earth's atmosphere, combustion chemistry, and the chemical oxygen iodine laser (COIL). The reactions in question are (1) O2(1) + O2(0) --> O2(0) + O2(0); (2) O2(1) + H2O(000) --> O2(0) + H2O(000); (3) O2(1) + H2O(000) <--> O2(0) + H2O(010); (4) H2O(010) + H2O(000) --> H2O(000) + H2O(000); and (5) H2O(010) + O2(0) --> H2O(000) + O2(0). Reanalysis of the data available in the chemical kinetics literature provides reliable values for rate coefficients for reactions 1 and 4 and strong evidence that reactions 2 and 5 are slow in comparison with reaction 3. Analytical solution of the chemical rate equations shows that previous attempts to measure the rate of reaction 3 are unreliable unless the water mole fraction is higher than 1%. Reanalysis of data from the only experiment satisfying this constraint provides a rate coefficient of (5.5 +/- 0.4) x 10(-13) cm3/s at room temperature, between the values favored by the atmospheric and laser modeling communities.
Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos G; Marin, Guy B
2014-10-09
Hydrogen-abstraction reactions play a significant role in thermal biomass conversion processes, as well as regular gasification, pyrolysis, or combustion. In this work, a group additivity model is constructed that allows prediction of reaction rates and Arrhenius parameters of hydrogen abstractions by hydrogen atoms from alcohols, ethers, esters, peroxides, ketones, aldehydes, acids, and diketones in a broad temperature range (300-2000 K). A training set of 60 reactions was developed with rate coefficients and Arrhenius parameters calculated by the CBS-QB3 method in the high-pressure limit with tunneling corrections using Eckart tunneling coefficients. From this set of reactions, 15 group additive values were derived for the forward and the reverse reaction, 4 referring to primary and 11 to secondary contributions. The accuracy of the model is validated upon an ab initio and an experimental validation set of 19 and 21 reaction rates, respectively, showing that reaction rates can be predicted with a mean factor of deviation of 2 for the ab initio and 3 for the experimental values. Hence, this work illustrates that the developed group additive model can be reliably applied for the accurate prediction of kinetics of α-hydrogen abstractions by hydrogen atoms from a broad range of oxygenates.
Diffusion models for corona formation in metagabbros from the Western Grenville Province, Canada
NASA Astrophysics Data System (ADS)
Grant, Shona M.
1988-01-01
Metagabbro bodies in SW Grenville Province display a variety of disequilibrium corona textures between spinel-clouded plagioclase and primary olivine or opaque oxide. Textural evidence favours a single-stage, subsolidus origin for the olivine coronas and diffusive mass transfer is believed to have been the rate-controlling process. Irreversible thermodynamics have been used to model two different garnet symplectite-bearing corona sequences in terms of steady state diffusion. In the models the flux of each component is related to the chemical potential gradients of all diffusing species by the Onsager or L-coefficients for diffusion. These coefficients are analogous to experimentally determined diffusion coefficients ( d), but relate the flux of components to chemical potential rather than concentration gradients. The major constraint on the relative values of Onsager coefficients comes from the observed mole fraction, X, of garnet in the symplectites; in (amph-gt) symplectites X {Gt/Sym}˜0.80, compared with ˜0.75 in (cpx-gt) symplectites. Several models using simple oxide components, and two different modifications of the reactant plagioclase composition, give the following qualitative results: the very low mobility of aluminium appears to control the rate of corona formation. Mg and Fe have similar mobility, and Mg can be up to 6 8 times more mobile than sodium. Determination of calcium mobility is problematical because of a proposed interaction with cross-coefficient terms reflecting “uphill” Ca-diffusion, i.e., calcium diffusing up its own chemical potential gradient. If these terms are not introduced, it is difficult to generate the required proportions of garnet in the symplectite. However, at moderate values of the cross-coefficient ratios, Mg can be up to 4 6 times more mobile than calcium ( L MgMg/LCaCa<4 6) and calcium must be 3 4 times more mobile than aluminium ( L CaCa/LAlAl>3).
Burström, Kristina; Johannesson, Magnus; Diderichsen, Finn
2006-05-01
This study aimed to compare directly elicited individual time trade-off (TTO) values in a general population sample with the social values derived using the UK EQ-5D index tariff. In the Stockholm County 1998 postal Public Health Survey (n=4950, 20-88 years), the EQ-5D self-classifier, a TTO and a rating scale (RS) question were included (n=2549 for all three questions). The mean TTO (EQ-5D) value was 0.943 (0.890) in the youngest age-group and 0.699 (0.733) in the oldest age-group. The difference between TTO and EQ-5D values was greater in more severe health status groups was. The same equation as for the UK EQ-5D index tariff was estimated for TTO and RS and resulted in significant and consistent coefficients for nearly all dimensions. The coefficients for moderate problems were closer to the EQ-5D index tariff than the coefficients for severe problems. Age was also significant after controlling for the EQ-5D dimensions (p<0.05). The results suggest that individual and social TTO values differ systematically and that the difference is greater the more severe the health status is. The social EQ-5D index tariff may also underestimate the severity in health status at older ages; age appears to correlate with additional health problems not captured by the EQ-5D classification.
NASA Astrophysics Data System (ADS)
Purswell, Jerry L.; Schlegel, Robert E.
1988-06-01
When there is no simple or accurate procedure for measuring the coefficient of friction (COF) at a job site, workers and/or supervisors involved must make subjective judgments about the slipperiness of the walking and climbing surfaces and in turn decide whether the surface presents a safe or an unsafe condition for work. This project was designed to determine whether these subjective judgment calls did in fact agree with the COF measurements obtained using a mechanical device. It was noted that the coatings chosen for study were subject to a polishing factor by the boot soles during the trials, causing the COF values to become lower as the trials continued. Poor correlation was obtained between subjective ratings of slipperiness and the COF values measured before the trials began. A relatively high correlation was obtained between subjective ratings and the COF values measured after the trials had been completed. A difference was noted in the subjective ratings for the effects of water on a coating for column climbing, but not for walking a beam, suggesting the effects of water on a coating are related to the type of task being performed in steel erection. An increase in the measured COF was noted for all of the coatings when they were wet as compared to the dry condition. The importance of clean shoe soles was clearly demonstrated.
Gaspar, A; Strodiot, L; Thonart, P
1998-01-01
To improve xylanase productivity from Penicillium canescens 10-10c culture, an optimization of oxygen supply is required. Because the strain is sensitive to shear forces, leading to lower xylanase productivity as to morphological alteration, vigorous mixing is not desired. The influence of turbine design, agitation speed, and air flow rate on K1a (global mass transfer coefficient, h(-1)) and enzyme production is discussed. K1a values increased with agitation speed and air flow rate, whatever the impeller, in our assay conditions. Agitation had more influence on K1a values than air flow, when a disk-mounted blade's impeller (DT) is used; an opposite result was obtained with a hub-mounted pitched blade's impeller (PBT). Xylanase production appeared as a function of specific power (W/m3), and an optimum was found in 20 and 100 L STRs fitted with DT impellers. On the other hand, the use of a hub-mounted pitched blade impeller (PBT8), instead of a disk-mounted blade impeller (DT4), reduced the lag time of hemicellulase production and increased xylanase productivity 1.3-fold.
Mathematical models for prediction of rheological parameters in vinasses derived from sugar cane
NASA Astrophysics Data System (ADS)
Chacua, Leidy M.; Ayala, Germán; Rojas, Hernán; Agudelo, Ana C.
2016-04-01
The rheological behaviour of vinasses derived from sugar cane was studied as a function of time (0 and 600 s), soluble solids content (44 and 60 °Brix), temperature (10 and 50°C), and shear rate (0.33 and 1.0 s-1). The results indicated that vinasses were time-independent at 25°C, where shear stress values ranged between 0.01 and 0.08 Pa. Flow curves showed a shear-thinning rheological behaviour in vinasses with a flow behaviour index between 0.69 and 0.89, for temperature between 10 and 20°C. With increasing temperature, the flow behaviour index was modified, reaching values close to 1.0. The Arrhenius model described well the thermal activation of shear stress and the consistency coefficient as a function of temperature. Activation energy from the Arrhenius model ranged between 31 and 45 kJ mol-1. Finally, the consistency coefficient as a function of the soluble solids content and temperature was well fitted using an exponential model (R2 = 0.951), showing that the soluble solids content and temperature have an opposite effect on consistency coefficient values.
Determination of the Rate Coefficients of the SO2 plus O plus M yields SO3 plus M Reaction
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Cooke, J. A.; De Witt, K. J.; Rabinowitz, M. J.
2010-01-01
Rate coefficients of the title reaction R(sub 31) (SO2 +O+M yields SO3 +M) and R(sub 56) (SO2 + HO2 yields SO3 +OH), important in the conversion of S(IV) to S(VI),were obtained at T =970-1150 K and rho (sub ave) = 16.2 micro mol/cubic cm behind reflected shock waves by a perturbation method. Shock-heated H2/ O2/Ar mixtures were perturbed by adding small amounts of SO2 (1%, 2%, and 3%) and the OH temporal profiles were then measured using laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the characteristic reaction times acquired from the individual experimental absorption profiles via simultaneous optimization of k(sub 31) and k(sub 56) values in the reaction modeling (for satisfactory matches to the observed characteristic times, it was necessary to take into account R(sub 56)). In the experimental conditions of this study, R(sub 31) is in the low-pressure limit. The rate coefficient expressions fitted using the combined data of this study and the previous experimental results are k(sub 31,0)/[Ar] = 2.9 10(exp 35) T(exp ?6.0) exp(?4780 K/T ) + 6.1 10(exp 24) T(exp ?3.0) exp(?1980 K/T ) cm(sup 6) mol(exp ?2)/ s at T = 300-2500 K; k(sub 56) = 1.36 10(exp 11) exp(?3420 K/T ) cm(exp 3)/mol/s at T = 970-1150 K. Computer simulations of typical aircraft engine environments, using the reaction mechanism with the above k(sub 31,0) and k(sub 56) expressions, gave the maximum S(IV) to S(VI) conversion yield of ca. 3.5% and 2.5% for the constant density and constant pressure flow condition, respectively. Moreover, maximum conversions occur at rather higher temperatures (?1200 K) than that where the maximum k(sub 31,0) value is located (approximately 800 K). This is because the conversion yield is dependent upon not only the k(sup 31,0) and k(sup 56) values (production flux) but also the availability of H, O, and HO2 in the system (consumption flux).
Mahoney, Liam; Fernandez-Alvarez, Jose R; Rojas-Anaya, Hector; Aiton, Neil; Wertheim, David; Seddon, Paul; Rabe, Heike
2018-02-24
To explore the intra- and inter-rater agreement of superior vena cava (SVC) flow and right ventricular (RV) outflow in healthy and unwell late preterm neonates (33-37 weeks' gestational age), term neonates (≥37 weeks' gestational age), and neonates receiving total-body cooling. The intra- and inter-rater agreement (n = 25 and 41 neonates, respectively) rates for SVC flow and RV outflow were determined by echocardiography in healthy and unwell late preterm and term neonates with the use of Bland-Altman plots, the repeatability coefficient, the repeatability index, and intraclass correlation coefficients. The intra-rater repeatability index values were 41% for SVC flow and 31% for RV outflow, with intraclass correlation coefficients indicating good agreement for both measures. The inter-rater repeatability index values for SVC flow and RV outflow were 63% and 51%, respectively, with intraclass correlation coefficients indicating moderate agreement for both measures. If SVC flow or RV outflow is used in the hemodynamic treatment of neonates, sequential measurements should ideally be performed by the same clinician to reduce potential variability. © 2018 by the American Institute of Ultrasound in Medicine.
Impact of Pitot tube calibration on the uncertainty of water flow rate measurement
NASA Astrophysics Data System (ADS)
de Oliveira Buscarini, Icaro; Costa Barsaglini, Andre; Saiz Jabardo, Paulo Jose; Massami Taira, Nilson; Nader, Gilder
2015-10-01
Water utility companies often use Cole type Pitot tubes to map velocity profiles and thus measure flow rate. Frequent monitoring and measurement of flow rate is an important step in identifying leaks and other types of losses. In Brazil losses as high as 42% are common and in some places even higher values are found. When using Cole type Pitot tubes to measure the flow rate, the uncertainty of the calibration coefficient (Cd) is a major component of the overall flow rate measurement uncertainty. A common practice is to employ the usual value Cd = 0.869, in use since Cole proposed his Pitot tube in 1896. Analysis of 414 calibrations of Cole type Pitot tubes show that Cd varies considerably and values as high 0.020 for the expanded uncertainty are common. Combined with other uncertainty sources, the overall velocity measurement uncertainty is 0.02, increasing flowrate measurement uncertainty by 1.5% which, for the Sao Paulo metropolitan area (Brazil) corresponds to 3.5 × 107 m3/year.
Phototransformation rate constants of PAHs associated with soot particles.
Kim, Daekyun; Young, Thomas M; Anastasio, Cort
2013-01-15
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k(p)(0)), the effective diffusion coefficients (D(eff)), and the light penetration depths (z(0.5)) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z(0.5) is more sensitive to the soot layer thickness than the k(p)(0) value. As the thickness of the soot layer increases, the z(0.5) values increase, but the k(p)(0) values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k(p)(0) and z(0.5) in thinner layers, D(eff) should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.
An original method for characterizing internal waves
NASA Astrophysics Data System (ADS)
Casagrande, Gaëlle; Varnas, Alex Warn; Folégot, Thomas; Stéphan, Yann
This study consisted in the characterization of internal waves in the south of the Strait of Messina (Italy). The observational data consisted in thermistor string profiles from the Coastal Ocean Acoustic Changes at High frequencies (COACH06) sea trial. An empirical orthogonal function analysis is applied to the data. The first two spatial empirical modes represent over 99% of the variability, and their corresponding time-dependent expansion coefficients take higher absolute values during internal wave events. In order to check how the expansion coefficients vary during an internal wave event, their time derivative, called here changing rates, are computed. It shows that each wave of an internal wave train is characterized by a double oscillation of the changing rates. At the front of the wave, both changing rates increase in absolute value with opposite sign, and then decrease to become null at the maximum amplitude of the wave. At the rear of the wave, the changing rates describe another period, again with opposite sign. This double oscillation can be used as a detector of internal waves, but it can also give information on the width of the wave, by measuring the length of the oscillation, as this information may sometimes be hard to read straight out of the data. When plotting the changing rates one versus another, the resulting scatter diagram puts on a butterfly shape that illustrates well this behaviour.
Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen
2018-01-01
This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.
NASA Astrophysics Data System (ADS)
Dulitz, Katrin; Amedro, Damien; Dillon, Terry J.; Pozzer, Andrea; Crowley, John N.
2018-02-01
Rate coefficients (k5) for the title reaction were obtained using pulsed laser photolytic generation of OH coupled to its detection by laser-induced fluorescence (PLP-LIF). More than 80 determinations of k5 were carried out in nitrogen or air bath gas at various temperatures and pressures. The accuracy of the rate coefficients obtained was enhanced by in situ measurement of the concentrations of both HNO3 reactant and NO2 impurity. The rate coefficients show both temperature and pressure dependence with a rapid increase in k5 at low temperatures. The pressure dependence was weak at room temperature but increased significantly at low temperatures. The entire data set was combined with selected literature values of k5 and parameterised using a combination of pressure-dependent and -independent terms to give an expression that covers the relevant pressure and temperature range for the atmosphere. A global model, using the new parameterisation for k5 rather than those presently accepted, indicated small but significant latitude- and altitude-dependent changes in the HNO3 / NOx ratio of between -6 and +6 %. Effective HNO3 absorption cross sections (184.95 and 213.86 nm, units of cm2 molecule-1) were obtained as part of this work: σ213.86 = 4.52-0.12+0.23 × 10-19 and σ184.95 = 1.61-0.04+0.08 × 10-17.
Non-steady state simulation of BOM removal in drinking water biofilters: model development.
Hozalski, R M; Bouwer, E J
2001-01-01
A numerical model was developed to simulate the non-steady-state behavior of biologically-active filters used for drinking water treatment. The biofilter simulation model called "BIOFILT" simulates the substrate (biodegradable organic matter or BOM) and biomass (both attached and suspended) profiles in a biofilter as a function of time. One of the innovative features of BIOFILT compared to previous biofilm models is the ability to simulate the effects of a sudden loss in attached biomass or biofilm due to filter backwash on substrate removal performance. A sensitivity analysis of the model input parameters indicated that the model simulations were most sensitive to the values of parameters that controlled substrate degradation and biofilm growth and accumulation including the substrate diffusion coefficient, the maximum rate of substrate degradation, the microbial yield coefficient, and a dimensionless shear loss coefficient. Variation of the hydraulic loading rate or other parameters that controlled the deposition of biomass via filtration did not significantly impact the simulation results.
Research on the Value Evaluation of Used Pure Electric Car Based on the Replacement Cost Method
NASA Astrophysics Data System (ADS)
Tan, zhengping; Cai, yun; Wang, yidong; Mao, pan
2018-03-01
In this paper, the value evaluation of the used pure electric car is carried out by the replacement cost method, which fills the blank of the value evaluation of the electric vehicle. The basic principle of using the replacement cost method, combined with the actual cost of pure electric cars, puts forward the calculation method of second-hand electric car into a new rate based on the use of AHP method to construct the weight matrix comprehensive adjustment coefficient of related factors, the improved method of value evaluation system for second-hand car
Temperature dependence of the Cl atom reaction with deuterated methanes.
Sauer, Frank; Portmann, Robert W; Ravishankara, A R; Burkholder, James B
2015-05-14
Kinetic isotope effect (KIE) and reaction rate coefficients, k1-k4, for the gas-phase reaction of Cl atoms with (12)CH3D (k1), (12)CH2D2 (k2), (12)CHD3 (k3), and (12)CD4 (k4) over the temperature range 223-343 K in 630 Torr of synthetic air are reported. Rate coefficients were measured using a relative rate technique with (12)CH4 as the primary reference compound. Fourier transform infrared spectroscopy was used to monitor the methane isotopologue loss. The obtained KIE values were (12)CH3D: KIE1(T) = (1.227 ± 0.004) exp((43 ± 5)/T); (12)CH2D2: KIE2(T) = (1.14 ± 0.20) exp((191 ± 60)/T); (12)CHD3: KIE3(T) = (1.73 ± 0.34) exp((229 ± 60)/T); and (12)CD4: KIE4(T) = (1.01 ± 0.3) exp((724 ± 19)/T), where KIEx(T) = kCl+(12)CH4(T)/kx(T). The quoted uncertainties are at the 2σ (95% confidence) level and represent the precision of our data. The following Arrhenius expressions and 295 K rate coefficient values (in units of cm(3) molecule(-1) s(-1)) were derived from the above KIE using a rate coefficient of 7.3 × 10(-12) exp(-1280/T) cm(3) molecule(-1) s(-1) for the reaction of Cl with (12)CH4: k1(T) = (5.95 ± 0.70) × 10(-12) exp(-(1323 ± 50)/T), k1(295 K) = (6.7 ± 0.8) × 10(-14); k2(T) = (6.4 ± 1.3) × 10(-12) exp(-(1471 ± 60)/T), k2(295 K) = (4.4 ± 0.9) × 10(-14); k3(T) = (4.2 ± 1.0) × 10(-12) exp(-(1509 ± 60)/T), k3(295 K) = (2.53 ± 0.6) × 10(-14); and k4(T) = (7.13 ± 2.3) × 10(-12) exp(-(2000 ± 120)/T), k4(295 K) = (0.81 ± 0.26) × 10(-14). The reported uncertainties in the pre-exponential factors are 2σ and include estimated systematic errors in our measurements and the uncertainty in the reference reaction rate coefficient. The results from this study are compared with previously reported room-temperature rate coefficients for each of the deuterated methanes as well as the available temperature dependent data for the Cl atom reactions with CH3D and CD4. A two-dimensional atmospheric chemistry model was used to examine the implications of the present results to the atmospheric lifetime and vertical variation in the loss of the deuterated methane isotopologues. The relative contributions of the reactions of OH, Cl, and O((1)D) to the loss of the isotopologues in the stratosphere were also examined. The results of the calculations are described and discussed.
Correlation of heat transfer coefficient in quenching process using ABAQUS
NASA Astrophysics Data System (ADS)
Davare, Sandeep Kedarnath; Balachandran, G.; Singh, R. K. P.
2018-04-01
During the heat treatment by quenching in a liquid medium the convective heat transfer coefficient plays a crucial role in the extraction of heat. The heat extraction ultimately influences the cooling rate and hence the hardness and mechanical properties. A Finite Element analysis of quenching a simple flat copper sample with different orientation of sample and with different quenchant temperatures were carried out to check and verify the results obtained from the experiments. The heat transfer coefficient (HTC) was calculated from temperature history in a simple flat copper disc sample experimentally. This HTC data was further used as input to simulation software and the cooling curves were back calculated. The results obtained from software and using experimentation shows nearly consistent values.
Urdu translation of the Hamilton Rating Scale for Depression: Results of a validation study
Hashmi, Ali M.; Naz, Shahana; Asif, Aftab; Khawaja, Imran S.
2016-01-01
Objective: To develop a standardized validated version of the Hamilton Rating Scale for Depression (HAM-D) in Urdu. Methods: After translation of the HAM-D into the Urdu language following standard guidelines, the final Urdu version (HAM-D-U) was administered to 160 depressed outpatients. Inter-item correlation was assessed by calculating Cronbach alpha. Correlation between HAM-D-U scores at baseline and after a 2-week interval was evaluated for test-retest reliability. Moreover, scores of two clinicians on HAM-D-U were compared for inter-rater reliability. For establishing concurrent validity, scores of HAM-D-U and BDI-U were compared by using Spearman correlation coefficient. The study was conducted at Mayo Hospital, Lahore, from May to December 2014. Results: The Cronbach alpha for HAM-D-U was 0.71. Composite scores for HAM-D-U at baseline and after a 2-week interval were also highly correlated with each other (Spearman correlation coefficient 0.83, p-value < 0.01) indicating good test-retest reliability. Composite scores for HAM-D-U and BDI-U were positively correlated with each other (Spearman correlation coefficient 0.85, p < 0.01) indicating good concurrent validity. Scores of two clinicians for HAM-D-U were also positively correlated (Spearman correlation coefficient 0.82, p-value < 0.01) indicated good inter-rater reliability. Conclusion: The HAM-D-U is a valid and reliable instrument for the assessment of Depression. It shows good inter-rater and test-retest reliability. The HAM-D-U can be a tool either for clinical management or research. PMID:28083049
Urdu translation of the Hamilton Rating Scale for Depression: Results of a validation study.
Hashmi, Ali M; Naz, Shahana; Asif, Aftab; Khawaja, Imran S
2016-01-01
To develop a standardized validated version of the Hamilton Rating Scale for Depression (HAM-D) in Urdu. After translation of the HAM-D into the Urdu language following standard guidelines, the final Urdu version (HAM-D-U) was administered to 160 depressed outpatients. Inter-item correlation was assessed by calculating Cronbach alpha. Correlation between HAM-D-U scores at baseline and after a 2-week interval was evaluated for test-retest reliability. Moreover, scores of two clinicians on HAM-D-U were compared for inter-rater reliability. For establishing concurrent validity, scores of HAM-D-U and BDI-U were compared by using Spearman correlation coefficient. The study was conducted at Mayo Hospital, Lahore, from May to December 2014. The Cronbach alpha for HAM-D-U was 0.71. Composite scores for HAM-D-U at baseline and after a 2-week interval were also highly correlated with each other (Spearman correlation coefficient 0.83, p-value < 0.01) indicating good test-retest reliability. Composite scores for HAM-D-U and BDI-U were positively correlated with each other (Spearman correlation coefficient 0.85, p < 0.01) indicating good concurrent validity. Scores of two clinicians for HAM-D-U were also positively correlated (Spearman correlation coefficient 0.82, p-value < 0.01) indicated good inter-rater reliability. The HAM-D-U is a valid and reliable instrument for the assessment of Depression. It shows good inter-rater and test-retest reliability. The HAM-D-U can be a tool either for clinical management or research.
Bui, Quang M; Huggins, Richard M; Hwang, Wen-Han; White, Victoria; Erbas, Bircan
2010-01-01
Anti-smoking advertisements are an effective population-based smoking reduction strategy. The Quitline telephone service provides a first point of contact for adults considering quitting. Because of data complexity, the relationship between anti-smoking advertising placement, intensity, and time trends in total call volume is poorly understood. In this study we use a recently developed semi-varying coefficient model to elucidate this relationship. Semi-varying coefficient models comprise parametric and nonparametric components. The model is fitted to the daily number of calls to Quitline in Victoria, Australia to estimate a nonparametric long-term trend and parametric terms for day-of-the-week effects and to clarify the relationship with target audience rating points (TARPs) for the Quit and nicotine replacement advertising campaigns. The number of calls to Quitline increased with the TARP value of both the Quit and other smoking cessation advertisement; the TARP values associated with the Quit program were almost twice as effective. The varying coefficient term was statistically significant for peak periods with little or no advertising. Semi-varying coefficient models are useful for modeling public health data when there is little or no information on other factors related to the at-risk population. These models are well suited to modeling call volume to Quitline, because the varying coefficient allowed the underlying time trend to depend on fixed covariates that also vary with time, thereby explaining more of the variation in the call model.
Bui, Quang M.; Huggins, Richard M.; Hwang, Wen-Han; White, Victoria; Erbas, Bircan
2010-01-01
Background Anti-smoking advertisements are an effective population-based smoking reduction strategy. The Quitline telephone service provides a first point of contact for adults considering quitting. Because of data complexity, the relationship between anti-smoking advertising placement, intensity, and time trends in total call volume is poorly understood. In this study we use a recently developed semi-varying coefficient model to elucidate this relationship. Methods Semi-varying coefficient models comprise parametric and nonparametric components. The model is fitted to the daily number of calls to Quitline in Victoria, Australia to estimate a nonparametric long-term trend and parametric terms for day-of-the-week effects and to clarify the relationship with target audience rating points (TARPs) for the Quit and nicotine replacement advertising campaigns. Results The number of calls to Quitline increased with the TARP value of both the Quit and other smoking cessation advertisement; the TARP values associated with the Quit program were almost twice as effective. The varying coefficient term was statistically significant for peak periods with little or no advertising. Conclusions Semi-varying coefficient models are useful for modeling public health data when there is little or no information on other factors related to the at-risk population. These models are well suited to modeling call volume to Quitline, because the varying coefficient allowed the underlying time trend to depend on fixed covariates that also vary with time, thereby explaining more of the variation in the call model. PMID:20827036
Julin, Jan; Shiraiwa, Manabu; Miles, Rachael E H; Reid, Jonathan P; Pöschl, Ulrich; Riipinen, Ilona
2013-01-17
The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268-300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys. 2012, 12, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient can be overestimated, but in the present cases the corrected values were still close to unity with the lowest value at ≈0.99.
2012-01-01
The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268–300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys.2012, 117, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient can be overestimated, but in the present cases the corrected values were still close to unity with the lowest value at ≈0.99. PMID:23253100
Oh-Oka, Hitoshi; Nose, Ryuichiro
2005-09-01
Using a portable three dimensional ultrasound scanning device (The Bladder Scan BVI6100, Diagnostic Ultrasound Corporation), we examined measured values of bladder volume, especially focusing on volume lower than 100 ml. A total of 100 patients (male: 66, female: 34) were enrolled in the study. We made a comparison study between the measured value (the average of three measurements of bladder urine volume after a trial in male and female modes) using BVI6100, and the actual measured value of the sample obtained by urethral catheterization in each patient. We examined the factors which could increase the error rate. We also introduced the effective techniques to reduce measurement errors. The actual measured values in all patients correlated well with the average value of three measurements after a trial in a male mode of the BVI6100. The correlation coefficient was 0.887, the error rate was--4.6 +/- 24.5%, and the average coefficient of variation was 15.2. It was observed that the measurement result using the BVI6100 is influenced by patient side factors (extracted edges between bladder wall and urine, thickened bladder wall, irregular bladder wall, flattened rate of bladder, mistaking prostate for bladder in male, mistaking bladder for uterus in a female mode, etc.) or examiner side factors (angle between BVI and abdominal wall, compatibility between abdominal wall and ultrasound probe, controlling deflection while using probe, etc). When appropriate patients are chosen and proper measurement is performed, BVI6100 provides significantly higher accuracy in determining bladder volume, compared with existing abdominal ultrasound methods. BVI6100 is a convenient and extremely effective device also for the measurement of bladder urine over 100 ml.
Savageau, M A
1998-01-01
Induction of gene expression can be accomplished either by removing a restraining element (negative mode of control) or by providing a stimulatory element (positive mode of control). According to the demand theory of gene regulation, which was first presented in qualitative form in the 1970s, the negative mode will be selected for the control of a gene whose function is in low demand in the organism's natural environment, whereas the positive mode will be selected for the control of a gene whose function is in high demand. This theory has now been further developed in a quantitative form that reveals the importance of two key parameters: cycle time C, which is the average time for a gene to complete an ON/OFF cycle, and demand D, which is the fraction of the cycle time that the gene is ON. Here we estimate nominal values for the relevant mutation rates and growth rates and apply the quantitative demand theory to the lactose and maltose operons of Escherichia coli. The results define regions of the C vs. D plot within which selection for the wild-type regulatory mechanisms is realizable, and these in turn provide the first estimates for the minimum and maximum values of demand that are required for selection of the positive and negative modes of gene control found in these systems. The ratio of mutation rate to selection coefficient is the most relevant determinant of the realizable region for selection, and the most influential parameter is the selection coefficient that reflects the reduction in growth rate when there is superfluous expression of a gene. The quantitative theory predicts the rate and extent of selection for each mode of control. It also predicts three critical values for the cycle time. The predicted maximum value for the cycle time C is consistent with the lifetime of the host. The predicted minimum value for C is consistent with the time for transit through the intestinal tract without colonization. Finally, the theory predicts an optimum value of C that is in agreement with the observed frequency for E. coli colonizing the human intestinal tract. PMID:9691028
Rate coefficients for the gas-phase reaction of the hydroxyl radical with CH2=CHF and CH2=CF2.
Baasandorj, Munkhbayar; Knight, Gary; Papadimitriou, Vassileios C; Talukdar, Ranajit K; Ravishankara, A R; Burkholder, James B
2010-04-08
Rate coefficients, k, for the gas-phase reaction of the OH radical with CH(2)=CHF (k(1)) and CH(2)=CF(2) (k(2)) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH and laser-induced fluorescence (PLP-LIF) to detect it. Rate coefficients were measured over a range of temperature (220-373 K) and bath gas pressure (20-600 Torr; He, N(2)). The rate coefficients were found to be independent of pressure. The measured rate coefficient for reaction 1 at room temperature was k(1)(296 K) = (5.18 +/- 0.50) x 10(-12) cm(3) molecule(-1) s(-1), independent of pressure, and the temperature dependence is given by the Arrhenius expression k(1)(T) = (1.75 +/- 0.20) x 10(-12) exp[(316 +/- 25)/T] cm(3) molecule(-1) s(-1); the rate coefficients for reaction 2 were k(2)(296 K) = (2.79 +/- 0.25) x 10(-12) cm(3) molecule(-1) s(-1) and k(2)(T) = (1.75 +/- 0.20) x 10(-12) exp[(140 +/- 20)/T] cm(3) molecule(-1) s(-1). The quoted uncertainties are 2sigma (95% confidence level) and include estimated systematic errors. The fall-off parameters for reaction 2 of k(infinity) = 3 x 10(-12) cm(3) molecule(-1) s(-1) and k(0)(296 K) = 1.8 x 10(-28) cm(6) molecule(-2) s(-1) with F(c) = 0.6 reproduce the room temperature data obtained in this study combined with the low pressure rate coefficient data from Howard (J. Chem. Phys. 1976, 65, 4771). OH radical formation was observed for reactions 1 and 2 in the presence of O(2), and the mechanism was investigated using (18)OH and OD rate coefficient measurements with CH(2)=CHF and CH(2)=CF(2) over a range of temperature (260-373 K) and pressure (20-100 Torr, He). Quantum chemical calculations using density functional theory (DFT) were used to determine the geometries and energies of the reactants and adducts formed in reactions 1 and 2 and the peroxy radicals formed following the addition of O(2). The atmospheric lifetimes of CH(2)=CHF and CH(2)=CF(2) due to loss by reaction with OH are approximately 2 and 4 days, respectively. Infrared absorption spectra of CH(2)=CHF and CH(2)=CF(2) were measured, and global warming potentials (GWP) values of 0.7 for CH(2)=CHF and 0.9 for CH(2)=CF(2) were obtained for the 100 year time horizon.
Inter-annual and spatial variability of Hamon potential evapotranspiration model coefficients
McCabe, Gregory J.; Hay, Lauren E.; Bock, Andy; Markstrom, Steven L.; Atkinson, R. Dwight
2015-01-01
Monthly calibrated values of the Hamon PET coefficient (C) are determined for 109,951 hydrologic response units (HRUs) across the conterminous United States (U.S.). The calibrated coefficient values are determined by matching calculated mean monthly Hamon PET to mean monthly free-water surface evaporation. For most locations and months the calibrated coefficients are larger than the standard value reported by Hamon. The largest changes in the coefficients were for the late winter/early spring and fall months, whereas the smallest changes were for the summer months. Comparisons of PET computed using the standard value of C and computed using calibrated values of C indicate that for most of the conterminous U.S. PET is underestimated using the standard Hamon PET coefficient, except for the southeastern U.S.
Process Modeling Applied to Metal Forming and Thermomechanical Processing
1984-09-01
the flow stress of structural alloys de- creases with temperature. It is well accepted that the homologous temperature, the ratio of the absolute...hardening coefficient y reducing to the value y = 1. This is simply the well - known Considere condition. The influence of strain rate sensitivity on...obtained by sent, well understood [6]. It is also important to note that no way rate effects explicitly in the Hill theory. Thus, comparisons of the
Detailed Modeling and Analysis of the CPFM Dataset
NASA Technical Reports Server (NTRS)
Swartz, William H.; Lloyd, Steven A.; DeMajistre, Robert
2004-01-01
A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The principal objective of this study is to cross-validate j-values from the Composition and Photodissociative Flux Measurement (CPFM) instrument during the Photochemistry of Ozone Loss in the Arctic Region In Summer (POLARIS) and SAGE I11 Ozone Loss and Validation Experiment (SOLVE) field campaigns with model calculations and other measurements and to use this detailed analysis to improve our ability to determine j-values. Another objective is to analyze the spectral flux from the CPFM (not just the j-values) and, using a multi-wavelength/multi-species spectral fitting technique, determine atmospheric composition.
Diffusive shock acceleration at non-relativistic highly oblique shocks
NASA Astrophysics Data System (ADS)
Meli, Athina; Biermann, P. L.
2004-10-01
Our aim here is to evaluate the rate of the maximum energy and the acceleration rate that Cosmic Rays (CRs) acquire in the non-relativistic diffusive shock acceleration as it could apply during their lifetime in various astrophysical sites. We examine numerically (using Monte Carlo simulations) the effect of the diffusion coefficients on the energy gain and the acceleration rate, by testing the role between the obliquity of the magnetic field at the shock normal, and the significance of both perpendicular cross-field diffusion and parallel diffusion coefficients to the aceleration rate. We find (and justify previous analytical work -Jokipii 1987) that in highly oblique shocks the smaller the perpendicular diffusion gets compared to the parallel diffusion coefficient values, the greater the energy gain of the CRs to be obtained. An explanation of the Cosmic Ray Spectrum in High Energies, between 1015 and 1018eV is claimed, as we estimate the upper limit of energy that CRs could gain in plausible astrophysical regimes; interpreted by the scenario of CRs which are injected by three different kind of sources, (i) supernovae (SN) which explode into the interstellar medium (ISM), (ii) Red Supergiants (RSG), and (iii) Wolf-Rayet stars (WR), where the two latter explode into their pre-SN winds Biermann (2001); Sina (2001).
A quantitative approach to the loading rate of seismogenic sources in Italy
NASA Astrophysics Data System (ADS)
Caporali, Alessandro; Braitenberg, Carla; Montone, Paola; Rossi, Giuliana; Valensise, Gianluca; Viganò, Alfio; Zurutuza, Joaquin
2018-03-01
To investigate the transfer of elastic energy between a regional stress field and a set of localized faults we project the stress rate tensor inferred from the Italian GNSS velocity field onto faults selected from the Database of Individual Seismogenic Sources (DISS 3.2.0). For given Lamé constants and friction coefficient we compute the loading rate on each fault in terms of the Coulomb Failure Function (CFF) rate. By varying the strike, dip and rake angles around the nominal DISS values, we also estimate the geometry of planes that are optimally oriented for maximal CFF rate. Out of 86 Individual Seismogenic Sources (ISSs), all well covered by GNSS data, 78 to 81 (depending on the assumed friction coefficient) load energy at a rate of 0-4 kPa/yr. The faults displaying larger CFF rates (4 to 6 ± 1 kPa/yr) are located in the central Apennines and are all characterized by a significant strike-slip component. We also find that the loading rate of 75 per cent of the examined sources is less than 1 kPa/yr lower than that of optimally oriented faults. We also analyzed the 24 August and 30 October 2016, central Apennines earthquakes (Mw 6.0-6.5 respectively). The strike of their causative faults based on seismological and tectonic data and the geodetically inferred strike differ by < 30°. Some sources exhibit a strike oblique to the direction of maximum strain rate, suggesting that in some instances the present-day stress acts on inherited faults. The choice of the friction coefficient only marginally affects this result.
High temperature XRD of Cu{sub 2}GeSe{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Premkumar, D. S.; Malar, P.; Chetty, Raju
2015-06-24
The Cu{sub 2}GeSe{sub 3} is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu{sub 2}GeSe{sub 3} phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a andmore » c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.« less
Huckins, J.N.; Petty, J.D.; Orazio, C.E.; Lebo, J.A.; Clark, R.C.; Gibson, V.L.; Gala, W.R.; Echols, K.R.
1999-01-01
The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (R(s)s; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery- corrected R(s) values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity- turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (K(ow)); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD R(s) values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26 ??C) on Rs values appeared to be complex but were relatively small.The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but very little sampling rate data are available for the estimation of ambient contaminant concentrations from analyte levels in exposed SPMDs. We determined the aqueous sampling rates (Rss; expressed as effective volumes of water extracted daily) of the standard (commercially available design) 1-g triolein SPMD for 15 of the priority pollutant (PP) polycyclic aromatic hydrocarbons (PAHs) at multiple temperatures and concentrations. Under the experimental conditions of this study, recovery-corrected Rs values for PP PAHs ranged from ???1.0 to 8.0 L/d. These values would be expected to be influenced by significant changes (relative to this study) in water temperature, degree of biofouling, and current velocity-turbulence. Included in this paper is a discussion of the effects of temperature and octanol-water partition coefficient (KOW); the impacts of biofouling and hydrodynamics are reported separately. Overall, SPMDs responded proportionally to aqueous PAH concentrations; i.e., SPMD RS values and SPMD-water concentration factors were independent of aqueous concentrations. Temperature effects (10, 18, and 26??C) on RS values appeared to be complex but were relatively small.
Sanford, R.F.
1982-01-01
Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.
Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness
NASA Astrophysics Data System (ADS)
Tumac, Deniz
2014-03-01
Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.
Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheichl, Robert; Vassilevski, Panayot S.; Zikatanov, Ludmil T.
2012-06-21
We generalize the analysis of classical multigrid and two-level overlapping Schwarz methods for 2nd order elliptic boundary value problems to problems with large discontinuities in the coefficients that are not resolved by the coarse grids or the subdomain partition. The theoretical results provide a recipe for designing hierarchies of standard piecewise linear coarse spaces such that the multigrid convergence rate and the condition number of the Schwarz preconditioned system do not depend on the coefficient variation or on any mesh parameters. One assumption we have to make is that the coarse grids are sufficiently fine in the vicinity of crossmore » points or where regions with large diffusion coefficients are separated by a narrow region where the coefficient is small. We do not need to align them with possible discontinuities in the coefficients. The proofs make use of novel stable splittings based on weighted quasi-interpolants and weighted Poincaré-type inequalities. Finally, numerical experiments are included that illustrate the sharpness of the theoretical bounds and the necessity of the technical assumptions.« less
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
NASA Technical Reports Server (NTRS)
Zipf, E. C.
1979-01-01
The rate coefficient for the quenching of metastable O(1S) atoms by O2 was measured as a function of temperature from 250 to 550 K. The resulting Arrhenius expression correlates well with previous laboratory work. It is suggested that the much larger value of the rate coefficient inferred from an analysis of artificial auroral experiment, Precede, may be explained by overestimation of the contribution of O(1S) production from O2(+) dissociative recombination. The possibility that O(1S) atoms are produced only by the dissociative recombination of vibrationally excited O2(+) ions is examined; such excited ions would not exist in the Precede experiment because of the rapid cooling of the ions by resonant charge transfer processes.
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
2016-04-08
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.
Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less
Measurement of the transition probability of the C III 190.9 nanometer intersystem line
NASA Technical Reports Server (NTRS)
Kwong, Victor H. S.; Fang, Z.; Gibbons, T. T.; Parkinson, W. H.; Smith, Peter L.
1993-01-01
A radio-frequency ion trap has been used to store C(2+) ions created by electron bombardment of CO. The transition probability for the 2s2p 3Po1-2s2 1S0 intersystem line of C m has been measured by recording the radiative decay at 190.9 nm. The measured A-value is 121 +/- 7/s and agrees, within mutual uncertainty limits, with that of Laughlin et al. (1978), but is 20 percent larger than that of Nussbaumer and Storey (1978). The effective collision mixing rate coefficient among the fine structure levels of 3Po and the combined quenching and charge transfer rate coefficients out of the 3Po1 level with the CO source gas have also been measured.
Gonzaga, Carla Castiglia; Cesar, Paulo Francisco; Miranda, Walter Gomes; Yoshimura, Humberto Naoyuki
2011-11-01
This study compared three methods for the determination of the slow crack growth susceptibility coefficient (n) of two veneering ceramics (VM7 and d.Sign), two glass-ceramics (Empress and Empress 2) and a glass-infiltrated alumina composite (In-Ceram Alumina). Discs (n = 10) were prepared according to manufacturers' recommendations and polished. The constant stress-rate test was performed at five constant stress rates to calculate n(d) . For the indentation fracture test to determine n(IF) , Vickers indentations were performed and the crack lengths were measured under an optical microscope. For the constant stress test (performed only for d.Sign for the determination of n(s) ) four constant stresses were applied and held constant until the specimens' fracture and the time to failure was recorded. All tests were performed in artificial saliva at 37°C. The n(d) values were 17.2 for Empress 2, followed by d.Sign (20.5), VM7 (26.5), Empress (30.2), and In-Ceram Alumina (31.1). In-Ceram Alumina and Empress 2 showed the highest n(IF) values, 66.0 and 40.2, respectively. The n(IF) values determined for Empress (25.2), d.Sign (25.6), and VM7 (20.1) were similar. The n(s) value determined for d.Sign was 31.4. It can be concluded that the n values determined for the dental ceramics evaluated were significantly influenced by the test method used. 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlfahrt, G.; Amelynck, C.; Ammann, Christof
2015-07-09
We present field observations made in June 2011 downwind of Dallas-Fort Worth, TX, and evaluate the role of stabilized Criegee radicals (sCIs) in gaseous sulfuric acid (H2SO4) production. Zero-dimensional model calculations show that sCI from BVOCs composed the majority of the sCIs. The main uncertainty associated with an evaluation of H2SO4 production from the sCI reaction channel is the lack of experimentally determined reaction rates for sCIs formed from isoprene ozonolysis with SO2. In general, the maximum of H2SO4 production from the sCI channel is found in the late afternoon as ozone increases towards the late afternoon. The sCI channel,more » however, contributes minor H2SO4 production compared with the conventional OH channel. Finally, The production and the loss rates of H2SO4 are compared. The application of the recommended mass accommodation coefficient causes significant overestimation of H2SO4 loss rates compared with H2SO4 production rates. On the other hand, the application of a lower experimental value for the mass accommodation coefficient provides good agreement between the loss and production rates of H2SO4. The results suggest that the recommended coefficient for the H2O surface may not be suitable for this relatively dry environment.« less
Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S
2017-02-01
The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.
Strength anisotropy of shales deformed under uppermost crustal conditions
NASA Astrophysics Data System (ADS)
Bonnelye, Audrey; Schubnel, Alexandre; David, Christian; Henry, Pierre; Guglielmi, Yves; Gout, Claude; Fauchille, Anne-Laure; Dick, Pierre
2017-01-01
Conventional triaxial tests were performed on three sets of samples of Tournemire shale along different orientations relative to bedding (0°, 45°, and 90°). Experiments were carried out up to failure at increasing confining pressures ranging from 2.5 to 160 MPa, at strain rates ranging between 3 × 10-7s-1 and 3 × 10-5s-1. This allowed us to determine the entire anisotropic elastic compliance matrix as a function of confining pressure. Results show that the orientation of principal stress relative to bedding plays an important role on the brittle strength, with 45° orientation being the weakest. We fit our results with a wing crack micromechanical model and an anisotropic fracture toughness. We found low values of internal friction coefficient and apparent friction coefficient in agreement with friction coefficient of clay minerals (between 0.2 and 0.3) and values of KIc comparable to that already published in the literature. We also showed that strain rate has a strong impact on peak stress and that dilatancy appears right before failure and hence highlighting the importance of plasticity mechanisms. Although brittle failure was systematically observed, stress drops and associated slips were slow and deformation always remained aseismic (no acoustic emission were detected). This confirms that shales are good lithological candidates for shallow crust aseismic creep and slow slip events.
Temperature dependency of virus and nanoparticle transport and retention in saturated porous media
USDA-ARS?s Scientific Manuscript database
The influence of temperature (4 and 20 °C) on virus and nanoparticle attachment in columns packed with quartz sand was studied under various physiochemical conditions. Fitted values of the attachment rate coefficient (katt) and the solid fraction that contributed to attachment (Sf) were found to be...
NASA Astrophysics Data System (ADS)
Seetha, N.; Raoof, Amir; Mohan Kumar, M. S.; Majid Hassanizadeh, S.
2017-05-01
Transport and deposition of nanoparticles in porous media is a multi-scale problem governed by several pore-scale processes, and hence, it is critical to link the processes at pore scale to the Darcy-scale behavior. In this study, using pore network modeling, we develop correlation equations for deposition rate coefficients for nanoparticle transport under unfavorable conditions at the Darcy scale based on pore-scale mechanisms. The upscaling tool is a multi-directional pore-network model consisting of an interconnected network of pores with variable connectivities. Correlation equations describing the pore-averaged deposition rate coefficients under unfavorable conditions in a cylindrical pore, developed in our earlier studies, are employed for each pore element. Pore-network simulations are performed for a wide range of parameter values to obtain the breakthrough curves of nanoparticle concentration. The latter is fitted with macroscopic 1-D advection-dispersion equation with a two-site linear reversible deposition accounting for both equilibrium and kinetic sorption. This leads to the estimation of three Darcy-scale deposition coefficients: distribution coefficient, kinetic rate constant, and the fraction of equilibrium sites. The correlation equations for the Darcy-scale deposition coefficients, under unfavorable conditions, are provided as a function of measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials of the particle and grain surfaces. The correlation equations are found to be consistent with the available experimental results, and in qualitative agreement with Colloid Filtration Theory for all parameters, except for the mean pore water velocity and nanoparticle radius.
NASA Astrophysics Data System (ADS)
Sharma, R. D.
2015-02-01
Accurate knowledge of the rate as well as the mechanism of excitation of the bending mode of CO2 is necessary for reliable modeling of the mesosphere-lower thermosphere (MLT) region of the atmosphere. Assuming the excitation mechanism to be thermal collisions with atomic oxygen, the rate coefficient derived from the observed 15 μm emission by space-based experiments (kATM = 6.0 × 10-12 cm3s-1) differs from the laboratory measurements (kLAB =(1.5-2.5) × 10-12 cm3s-1) by a factor of 2-4. The general circulation models (GCMs) of Earth, Venus, and Mars have chosen to use a median value of kGCM = 3.0 × 10-12 cm3s-1 for this rate coefficient. As a first step to resolve the discrepancies between the three rate coefficients, we attempt to find the source of disagreement between the first two. It is pointed out that a large magnitude of the difference between these two rate coefficients (kx ≡ kATM - kLAB) requires that the unknown mechanism involve one or both major species: N2, O. Because of the rapidly decreasing volume mixing ratio (VMR) of CO2 with altitude, the exciting partner must be long lived and transfer energy efficiently. It is shown that thermal collisions with N2, mediated by a near-resonant rotation-to-vibration (RV) energy transfer process, while giving a reasonable rate coefficient kVR for de-excitation of the bending mode of CO2, lead to vibration-to-translation kVT rate coefficients in the terrestrial atmosphere that are 1-2 orders of magnitude larger than those observed in the laboratory. It is pointed out that the efficient near-resonant rotation-to-vibration (RV) energy transfer process has a chance of being the unknown mechanism if very high rotational levels of N2, produced by the reaction of N and NO and other collisional processes, have a super-thermal population and are long lived. Since atomic oxygen plays a critical role in the mechanisms discussed here, it suggested that its density be determined experimentally by ground- and space-based Raman lidars proposed earlier.
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
BACKGROUND: Dry ice-ethanol bath (-78 degree C) have been widely used in low temperature biological research to attain rapid cooling of samples below freezing temperature. The prediction of cooling rates of biological samples immersed in dry ice-ethanol bath is of practical interest in cryopreservation. The cooling rate can be obtained using mathematical models representing the heat conduction equation in transient state. Additionally, at the solid cryogenic-fluid interface, the knowledge of the surface heat transfer coefficient (h) is necessary for the convective boundary condition in order to correctly establish the mathematical problem. The study was to apply numerical modeling to obtain the surface heat transfer coefficient of a dry ice-ethanol bath. A numerical finite element solution of heat conduction equation was used to obtain surface heat transfer coefficients from measured temperatures at the center of polytetrafluoroethylene and polymethylmetacrylate cylinders immersed in a dry ice-ethanol cooling bath. The numerical model considered the temperature dependence of thermophysical properties of plastic materials used. A negative linear relationship is observed between cylinder diameter and heat transfer coefficient in the liquid bath, the calculated h values were 308, 135 and 62.5 W/(m 2 K) for PMMA 1.3, PTFE 2.59 and 3.14 cm in diameter, respectively. The calculated heat transfer coefficients were consistent among several replicates; h in dry ice-ethanol showed an inverse relationship with cylinder diameter.
NASA Astrophysics Data System (ADS)
Pejaković, Dušan A.; Campbell, Zachary; Kalogerakis, Konstantinos S.; Copeland, Richard A.; Slanger, Tom G.
2011-09-01
Laboratory measurements are reported of the rate coefficient for collisional removal of O2(X^3Σ _g^ -, υ = 1) by O(3P), and the rate coefficients for removal of O2(a1Δg, υ = 1) by O2, CO2, and O(3P). A two-laser method is employed, in which the pulsed output of the first laser at 285 nm photolyzes ozone to produce oxygen atoms and O2(a1Δg, υ = 1), and the output of the second laser detects O2(a1Δg, υ = 1) via resonance-enhanced multiphoton ionization. The kinetics of O2(X^3Σ _g^ -, υ = 1) + O(3P) relaxation is inferred from the temporal evolution of O2(a1Δg, υ = 1), an approach enabled by the rapid collision-induced equilibration of the O2(X^3Σ _g^ -, υ = 1) and O2(a1Δg, υ = 1) populations in the system. The measured O2(X^3Σ _g^ -, υ = 1) + O(3P) rate coefficient is (2.9 ± 0.6) × 10-12 cm3 s-1 at 295 K and (3.4 ± 0.6) × 10-12 cm3 s-1 at 240 K. These values are consistent with the previously reported result of (3.2 ± 1.0) × 10-12 cm3 s-1, which was obtained at 315 K using a different experimental approach [K. S. Kalogerakis, R. A. Copeland, and T. G. Slanger, J. Chem. Phys. 123, 194303 (2005)]. For removal of O2(a1Δg, υ = 1) by O(3P), the upper limits for the rate coefficient are 4 × 10-13 cm3 s-1 at 295 K and 6 × 10-13 cm3 s-1 at 240 K. The rate coefficient for removal of O2(a1Δg, υ = 1) by O2 is (5.6 ± 0.6) × 10-11 cm3 s-1 at 295 K and (5.9 ± 0.5) × 10-11 cm3 s-1 at 240 K. The O2(a1Δg, υ = 1) + CO2 rate coefficient is (1.5 ± 0.2) × 10-14 cm3 s-1 at 295 K and (1.2 ± 0.1) × 10-14 cm3 s-1 at 240 K. The implications of the measured rate coefficients for modeling of atmospheric emissions are discussed.
McGillen, Max R; Baasandorj, Munkhbayar; Burkholder, James B
2013-06-06
Butanol (C4H9OH) is a potential biofuel alternative in fossil fuel gasoline and diesel formulations. The usage of butanol would necessarily lead to direct emissions into the atmosphere; thus, an understanding of its atmospheric processing and environmental impact is desired. Reaction with the OH radical is expected to be the predominant atmospheric removal process for the four aliphatic isomers of butanol. In this work, rate coefficients, k, for the gas-phase reaction of the n-, i-, s-, and t-butanol isomers with the OH radical were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to monitor its temporal profile. Rate coefficients were measured over the temperature range 221-381 K at total pressures between 50 and 200 Torr (He). The reactions exhibited non-Arrhenius behavior over this temperature range and no dependence on total pressure with k(296 K) values of (9.68 ± 0.75), (9.72 ± 0.72), (8.88 ± 0.69), and (1.04 ± 0.08) (in units of 10(-12) cm(3) molecule(-1) s(-1)) for n-, i-, s-, and t-butanol, respectively. The quoted uncertainties are at the 2σ level and include estimated systematic errors. The observed non-Arrhenius behavior is interpreted here to result from a competition between the available H-atom abstraction reactive sites, which have different activation energies and pre-exponential factors. The present results are compared with results from previous kinetic studies, structure-activity relationships (SARs), and theoretical calculations and the discrepancies are discussed. Results from this work were combined with available high temperature (1200-1800 K) rate coefficient data and room temperature reaction end-product yields, where available, to derive a self-consistent site-specific set of reaction rate coefficients of the form AT(n) exp(-E/RT) for use in atmospheric and combustion chemistry modeling.
An assessment of the skid resistance effect on traffic safety under wet-pavement conditions.
Pardillo Mayora, José M; Jurado Piña, Rafael
2009-07-01
Pavement-tire friction provides the grip that is required for maintaining vehicle control and for stopping in emergency situations. Statistically significant negative correlations of skid resistance values and wet-pavement accident rates have been found in previous research. Skid resistance measured with SCRIM and crash data from over 1750km of two-lane rural roads in the Spanish National Road System were analyzed to determine the influence of pavement conditions on safety and to assess the effects of improving pavement friction on safety. Both wet- and dry-pavement crash rates presented a decreasing trend as skid resistance values increased. Thresholds in SCRIM coefficient values associated with significant decreases in wet-pavement crash rates were determined. Pavement friction improvement schemes were found to yield significant reductions in wet-pavement crash rates averaging 68%. The results confirm the importance of maintaining adequate levels of pavement friction to safeguard traffic safety as well as the potential of pavement friction improvement schemes to achieve significant crash reductions.
Chen, Jiajia; Pitchai, Krishnamoorthy; Birla, Sohan; Negahban, Mehrdad; Jones, David; Subbiah, Jeyamkondan
2014-10-01
A 3-dimensional finite-element model coupling electromagnetics and heat and mass transfer was developed to understand the interactions between the microwaves and fresh mashed potato in a 500 mL tray. The model was validated by performing heating of mashed potato from 25 °C on a rotating turntable in a microwave oven, rated at 1200 W, for 3 min. The simulated spatial temperature profiles on the top and bottom layer of the mashed potato showed similar hot and cold spots when compared to the thermal images acquired by an infrared camera. Transient temperature profiles at 6 locations collected by fiber-optic sensors showed good agreement with predicted results, with the root mean square error ranging from 1.6 to 11.7 °C. The predicted total moisture loss matched well with the observed result. Several input parameters, such as the evaporation rate constant, the intrinsic permeability of water and gas, and the diffusion coefficient of water and gas, are not readily available for mashed potato, and they cannot be easily measured experimentally. Reported values for raw potato were used as baseline values. A sensitivity analysis of these input parameters on the temperature profiles and the total moisture loss was evaluated by changing the baseline values to their 10% and 1000%. The sensitivity analysis showed that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant greatly influenced the predicted temperature and total moisture loss, while the intrinsic gas permeability and the water diffusion coefficient had little influence. This model can be used by the food product developers to understand microwave heating of food products spatially and temporally. This tool will allow food product developers to design food package systems that would heat more uniformly in various microwave ovens. The sensitivity analysis of this study will help us determine the most significant parameters that need to be measured accurately for reliable model prediction. © 2014 Institute of Food Technologists®
Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos; Marin, Guy B
2014-06-23
Hydrogen abstractions are important elementary reactions in a variety of reacting media at high temperatures in which oxygenates and hydrocarbon radicals are present. Accurate kinetic data are obtained from CBS-QB3 ab initio (AI) calculations by using conventional transition-state theory within the high-pressure limit, including corrections for hindered rotation and tunneling. From the obtained results, a group-additive (GA) model is developed that allows the Arrhenius parameters and rate coefficients for abstraction of the α-hydrogen from a wide range of oxygenate compounds to be predicted at temperatures ranging from 300 to 1500 K. From a training set of 60 hydrogen abstractions from oxygenates by carbon-centered radicals, 15 GA values (ΔGAV°s) are obtained for both the forward and reverse reactions. Among them, four ΔGAV°s refer to primary contributions, and the remaining 11 ΔGAV°s refer to secondary ones. The accuracy of the model is further improved by introducing seven corrections for cross-resonance stabilization of the transition state from an additional set of 43 reactions. The determined ΔGAV°s are validated upon a test set of AI data for 17 reactions. The mean absolute deviation of the pre-exponential factors (log A) and activation energies (E(a)) for the forward reaction at 300 K are 0.238 log(m(3) mol(-1) s(-1)) and 1.5 kJ mol(-1), respectively, whereas the mean factor of deviation <ρ> between the GA-predicted and the AI-calculated rate coefficients is 1.6. In comparison with a compilation of 33 experimental rate coefficients, the <ρ> between the GA-predicted values and these experimental values is only 2.2. Hence, the constructed GA model can be reliably used in the prediction of the kinetics of α-hydrogen-abstraction reactions between a broad range of oxygenates and oxygenate radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Gray, Vernon H.
1958-01-01
An empirical relation has been obtained by which the change in drag coefficient caused by ice formations on an unswept NACA 65AO04 airfoil section can be determined from the following icing and operating conditions: icing time, airspeed, air total temperature, liquid-water content, cloud droplet impingement efficiencies, airfoil chord length, and angles of attack. The correlation was obtained by use of measured ice heights and ice angles. These measurements were obtained from a variety of ice formations, which were carefully photographed, cross-sectioned, and weighed. Ice weights increased at a constant rate with icing time in a rime icing condition and at progressively increasing rates in glaze icing conditions. Initial rates of ice collection agreed reasonably well with values predicted from droplet impingement data. Experimental droplet impingement rates obtained on this airfoil section agreed with previous theoretical calculations for angles of attack of 40 or less. Disagreement at higher angles of attack was attributed to flow separation from the upper surface of the experimental airfoil model.
Personal values of family physicians, practice satisfaction, and service to the underserved.
Eliason, B C; Guse, C; Gottlieb, M S
2000-03-01
Personal values are defined as "desirable goals varying in importance that serve as guiding principles in people's lives," and have been shown to influence specialty choice and relate to practice satisfaction. We wished to examine further the relationship of personal values to practice satisfaction and also to a physician's willingness to care for the underserved. We also wished to study associations that might exist among personal values, practice satisfaction, and a variety of practice characteristics. We randomly surveyed a stratified probability sample of 1224 practicing family physicians about their personal values (using the Schwartz values questionnaire), practice satisfaction, practice location, breadth of practice, demographics, board certification status, teaching involvement, and the payor mix of the practice. Family physicians rated the benevolence (motivation to help those close to you) value type highest, and the ratings of the benevolence value type were positively associated with practice satisfaction (correlation coefficient = 0.14, P = .002). Those involved in teaching medical trainees were more satisfied than those who were not involved (P = .009). Some value-type ratings were found to be positively associated with caring for the underserved. Those whose practices consisted of more than 40% underserved (underserved defined as Medicare, Medicaid, and indigent populations) rated the tradition (motivation to maintain customs of traditional culture and religion) value type significantly higher (P = .02). Those whose practices consisted of more than 30% indigent care rated the universalism (motivation to enhance and protect the well-being of all people) value type significantly higher (P = .03). Family physicians who viewed benevolence as a guiding principle in their lives reported a higher level of professional satisfaction. Likewise, physicians involved in the teaching of medical trainees were more satisfied with their profession. Family physicians who rate the universalism values highly are more likely to provide care to the indigent.
Reliability and agreement in student ratings of the class environment.
Nelson, Peter M; Christ, Theodore J
2016-09-01
The current study estimated the reliability and agreement of student ratings of the classroom environment obtained using the Responsive Environmental Assessment for Classroom Teaching (REACT; Christ, Nelson, & Demers, 2012; Nelson, Demers, & Christ, 2014). Coefficient alpha, class-level reliability, and class agreement indices were evaluated as each index provides important information for different interpretations and uses of student rating scale data. Data for 84 classes across 29 teachers in a suburban middle school were sampled to derive reliability and agreement indices for the REACT subscales across 4 class sizes: 25, 20, 15, and 10. All participating teachers were White and a larger number of 6th-grade classes were included (42%) relative to 7th- (33%) or 8th- (23%) grade classes. Teachers were responsible for a variety of content areas, including language arts (26%), science (26%), math (20%), social studies (19%), communications (6%), and Spanish (3%). Coefficient alpha estimates were generally high across all subscales and class sizes (α = .70-.95); class-mean estimates were greatly impacted by the number of students sampled from each class, with class-level reliability values generally falling below .70 when class size was reduced from 25 to 20. Further, within-class student agreement varied widely across the REACT subscales (mean agreement = .41-.80). Although coefficient alpha and test-retest reliability are commonly reported in research with student rating scales, class-level reliability and agreement are not. The observed differences across coefficient alpha, class-level reliability, and agreement indices provide evidence for evaluating students' ratings of the class environment according to their intended use (e.g., differentiating between classes, class-level instructional decisions). (PsycINFO Database Record (c) 2016 APA, all rights reserved).
2012-01-01
We compare and contrast measurements of the mass accommodation coefficient of water on a water surface made using ensemble and single particle techniques under conditions of supersaturation and subsaturation, respectively. In particular, we consider measurements made using an expansion chamber, a continuous flow streamwise thermal gradient cloud condensation nuclei chamber, the Leipzig Aerosol Cloud Interaction Simulator, aerosol optical tweezers, and electrodynamic balances. Although this assessment is not intended to be comprehensive, these five techniques are complementary in their approach and give values that span the range from near 0.1 to 1.0 for the mass accommodation coefficient. We use the same semianalytical treatment to assess the sensitivities of the measurements made by the various techniques to thermophysical quantities (diffusion constants, thermal conductivities, saturation pressure of water, latent heat, and solution density) and experimental parameters (saturation value and temperature). This represents the first effort to assess and compare measurements made by different techniques to attempt to reduce the uncertainty in the value of the mass accommodation coefficient. Broadly, we show that the measurements are consistent within the uncertainties inherent to the thermophysical and experimental parameters and that the value of the mass accommodation coefficient should be considered to be larger than 0.5. Accurate control and measurement of the saturation ratio is shown to be critical for a successful investigation of the surface transport kinetics during condensation/evaporation. This invariably requires accurate knowledge of the partial pressure of water, the system temperature, the droplet curvature and the saturation pressure of water. Further, the importance of including and quantifying the transport of heat in interpreting droplet measurements is highlighted; the particular issues associated with interpreting measurements of condensation/evaporation rates with varying pressure are discussed, measurements that are important for resolving the relative importance of gas diffusional transport and surface kinetics. PMID:23057492
NASA Technical Reports Server (NTRS)
Monaghan, R. C.; Friend, E. L.
1973-01-01
Wind-up-turn maneuvers were performed to establish the values of airplane normal force coefficient for buffet onset, wing-rock onset, and buffet loads with various combinations of leading- and trailing-edge flap deflections. Data were gathered at both subsonic and transonic speeds covering a range from Mach 0.64 to Mach 0.92. Buffet onset and buffet loads were obtained from wingtip acceleration and wing-root bending-moment data, and wing-rock onset was obtained from airplane roll rate data. Buffet onset, wing-rock onset, and buffet loads were similarly affected by the various combinations of leading- and training-edge flaps. Subsonically, the 12 deg leading-edge-flap and trailing-edge-flap combination was most effective in delaying buffet onset, wing-rock onset, and equivalent values of buffet loads to a higher value of airplane normal force coefficient. This was the maximum flap deflection investigated. Transonically, however, the optimum leading-edge flap position was generally less than 12 deg.
Spatiotemporal evolution in a (2+1)-dimensional chemotaxis model
NASA Astrophysics Data System (ADS)
Banerjee, Santo; Misra, Amar P.; Rondoni, L.
2012-01-01
Simulations are performed to investigate the nonlinear dynamics of a (2+1)-dimensional chemotaxis model of Keller-Segel (KS) type, with a logistic growth term. Because of its ability to display auto-aggregation, the KS model has been widely used to simulate self-organization in many biological systems. We show that the corresponding dynamics may lead to steady-states, to divergencies in a finite time as well as to the formation of spatiotemporal irregular patterns. The latter, in particular, appears to be chaotic in part of the range of bounded solutions, as demonstrated by the analysis of wavelet power spectra. Steady-states are achieved with sufficiently large values of the chemotactic coefficient (χ) and/or with growth rates r below a critical value rc. For r>rc, the solutions of the differential equations of the model diverge in a finite time. We also report on the pattern formation regime, for different values of χ, r and of the diffusion coefficient D.
Román, Iván P; Mastromichali, Anna; Tyrovola, Konstantina; Canals, Antonio; Psillakis, Elefteria
2014-02-21
Vortex-assisted liquid-liquid microextraction (VALLME) coupled with high-performance liquid chromatography (HPLC) is proposed here for the rapid determination of octanol-water partitioning coefficients (Kow). VALLME uses vortex agitation, a mild emulsification procedure, to disperse microvolumes of octanol in the aqueous phase thus increasing the interfacial contact area and ensuring faster partitioning rates. With VALLME, 2min were enough to achieve equilibrium conditions between the octanolic and aqueous phases. Upon equilibration, separation was achieved using centrifugation and the octanolic microdrop was collected and analyzed in a HPLC system. Six model compounds with logKow values ranging between ∼0.5 and 3.5 were used during the present investigations. The proposed method produced logKow values that were consistent with previously published values and the recorded uncertainty was well within the acceptable log unit range. Overall, the key features of the proposed Kow determination procedure comprised speed, reliability, simplicity, low cost and minimal solvent consumption. Copyright © 2014 Elsevier B.V. All rights reserved.
Vertical eddy diffusion coefficient from the LANDSAT imagery
NASA Technical Reports Server (NTRS)
Viswanadham, Y. (Principal Investigator); Torsani, J. A.
1982-01-01
Analysis of five stable cases of the smoke plumes that originated in eastern Cabo Frio (22 deg 59'S; 42 deg 02'W), Brazil using LANDSAT imagery is presented for different months and years. From these images the lateral standard deviation (sigma sub y) and the lateral eddy diffusion coefficient (K sub y) are obtained from the formula based on Taylor's theory of diffusion by continuous moment. The rate of kinetic energy dissipation (e) is evaluated from the diffusion parameters sigma sub y and K sub y. Then, the vertical diffusion coefficient (K sub z) is estimated using Weinstock's formulation. These results agree well with the previous experimental values obtained over water surfaces by various workers. Values of e and K sub z show the weaker mixing processes in the marine stable boundary layer. The data sample is apparently to small to include representative active turbulent regions because such regions are so intermittent in time and in space. These results form a data base for use in the development and validation of mesoscale atmospheric diffusion models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabas, T.; Panchal, C.; Sasscer, D.
1991-01-01
This paper presents the fouling rates for twelve TVA power-plant condensers, nine of which were retubed with an enhanced tube. The overall heat-transfer coefficients were calculated from logged field data taken over periods from one to ten years. The fouling resistances were calculated with the separate-resistance method and with a bundle correction factor to the condensing, single-tube Nusselt prediction. The fouling rates with the enhanced tubes ranged from about the same as to about twice that of the plain tubes. The thermal performance with the enhanced tubes remained superior to that obtained with plain-tubes for more than a year withoutmore » cleaning. After one year of operation, the enhanced-tube fouling resistance values were less than the minimum value of the TEMA Standards and the plain-tube fouling resistance values were always less than one half of this value. After shutdown cleaning, the thermal performance values for both tubes were restored to essentially the new, clean levels. 28 refs., 9 figs., 2 tabs.« less
Experimental Research on Creep Characteristics of Nansha Soft Soil
Luo, Qingzi; Chen, Xiaoping
2014-01-01
A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility C a/C c is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply. PMID:24526925
Experimental research on creep characteristics of Nansha soft soil.
Luo, Qingzi; Chen, Xiaoping
2014-01-01
A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility (Ca/Cc) is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.
Structure coefficients for different initial metallicities for use in stellar analysis
NASA Astrophysics Data System (ADS)
Inlek, Gulay; Budding, Edwin; Demircan, Osman
2017-09-01
Internal structure coefficients for zero age Main Sequence (ZAMS) model stars with different initial metallicities are presented. A series of (Eggleton) stellar models with masses between 1-40 M_{⊙} and metallicities Z=0.0001, Z=0.001, Z=0.004, Z=0.01, Z=0.02, and Z=0.03 were used. We have also calculated the same coefficients for a recommended solar metallicity value Z=0.0134 (Asplund et al. in Annu. Rev. Astron. Astrophys. 47:481, 2009). For each model, values of the internal structure constants k2, k3, k4 and related coefficients have been derived by numerically integrating Radau's equation with the (FORTRAN) program RADAU. The (Eggleton) stellar models used come from the ` EZ-Web' compilation of the Dept. of Astronomy, University of Wisconsin, Madison. The calculations follow the procedure given by Inlek and Budding (Astrophys. Space Sci. 342:365, 2012). These new results were compared with others in the literature. We deduce that the current state of theoretical evaluation of structure coefficients is generally in sufficient agreement with data obtained from apsidal advance rates of selected well-observed eccentric eclipsing binary stars at the present time, given the probable errors of the latter. However, new results coming from more precise and extensive data sets in the wake of the Kepler Mission, or similar future surveys, may call for further theoretical specification or refinement. The derivation of structure coefficients from observations of apsidal motion in close eccentric binary systems requires specification of relevant parameters from light curve analysis. A self-consistent treatment then implies inclusion of the structure coefficients within the fitting function of such analysis.
Magnetic-time model at off-season germination
NASA Astrophysics Data System (ADS)
Mahajan, Tarlochan Singh; Pandey, Om Prakash
2014-03-01
Effect of static magnetic field on germination of mung beans is described. Seeds of mung beans, were exposed in batches to static magnetic fields of 87 to 226 mT intensity for 100 min. Magnetic time constant - 60.743 Th (Tesla hour) was determined experimentally. High value of magnetic time constant signifies lower effect of magnetic field on germination rate as this germination was carried out at off-season (13°C). Using decay function, germination magnetic constant was calculated. There was a linear increase in germination magnetic constant with increasing intensity of magnetic field. Calculated values of mean germination time, mean germination rate, germination rate coefficient, germination magnetic constant, transition time, water uptake, indicate that the impact of applied static magnetic field improves the germination of mung beans seeds even in off-season
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schüller, Andreas, E-mail: andreas.schueller@ptb.de; Meier, Markus; Selbach, Hans-Joachim
Purpose: The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor k{sub Q} can be determined in order to measure the reference air kerma rate of {sup 60}Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for {sup 192}Ir HDR sources. Methods: The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of {sup 60}Co and {sup 192}Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor k{sub Q} was determined as the ratio of the calibration coefficients for {supmore » 60}Co and {sup 192}Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated. Results: For the PTW Tx33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor k{sub Q} is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor k{sub Q} is 1.05. Both k{sub Q} values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty (k = 2) of k{sub Q} is U{sub k{sub Q}} = 2.1% for both chamber types. Conclusions: The calibration coefficient of a well-type chamber for radiation fields of {sup 60}Co HDR brachytherapy sources can be calculated from a given calibration coefficient for {sup 192}Ir radiation by using a chamber-type-specific radiation quality correction factor k{sub Q}. However, the uncertainty of a {sup 60}Co calibration coefficient calculated via k{sub Q} is at least twice as large as that for a direct calibration with a {sup 60}Co source.« less
An interrater reliability study of the Braden scale in two nursing homes.
Kottner, Jan; Dassen, Theo
2008-10-01
Adequate risk assessment is essential in pressure ulcer prevention. Assessment scales were designed to support practitioners in identifying persons at pressure ulcer risk. The Braden scale is one of the most extensively studied risk assessment instruments, although the majority of studies focused on validity rather than reliability. The first aim was to measure the interrater reliability of the Braden scale and its individual items. The second aim was to study different statistical approaches regarding interrater reliability estimation. An interrater reliability study was conducted in two German nursing homes. Residents (n = 152) from 8 units were assessed twice. The raters were trained nurses with a work experience ranging from 0.5 to 30 years. Data were analysed using an overall percentage of agreement, weighted and unweighted kappa and the intraclass correlation coefficient. Differences between nurses rating the overall Braden score ranged from 0 up to 9 points. Interrater reliability expressed by the intraclass correlation coefficient ranged from 0.73 (95% CI 0.26 - 0.91) to 0.95 (95% CI 0.87 - 0.98). Calculated intraclass correlation coefficients for individual items ranged from 0.06 (95% CI -0.31 to 0.48) to 0.97 (95% CI 0.93-0.99) with the lowest values being measured for the items "sensory perception" and "nutrition". There was no association between work experience and the level of interrater reliability. With two exceptions, simple kappa-values were always lower than weighted kappa-values and intraclass correlation coefficients. Although the calculated interrater reliability coefficients for the total Braden score were high in some cases, several clinically relevant differences occurred between the nurses. Due to interrater reliability being very low for the items "sensory perception" and "nutrition", it is doubtful if their assessment contributes to any valid results. The calculation of weighted kappa or intraclass correlation coefficients is the most appropriate interrater reliability estimates.
Permeability of lipid bilayers to amino acids and phosphate
NASA Technical Reports Server (NTRS)
Chakrabarti, A. C.; Deamer, D. W.
1992-01-01
Permeability coefficients for amino acid classes, including neutral, polar, hydrophobic, and charged species, were measured and compared with values for other ionic solutes such as phosphate. The rates of efflux of glycine, lysine, phenylalanine, serine and tryptophan were determined after they were passively entrapped in large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine (EPC) or dimyristoylphosphatidylcholine (DMPC). The following permeability coefficients were obtained for: glycine, 5.7 x 10(-12) cm s-1 (EPC), 2.0 x 10(-11) cm s-1 (DMPC); serine, 5.5 x 10(-12) cm s-1 (EPC), 1.6 x 10(-11) cm s-1 (DMPC); lysine, 5.1 x 10(-12) cm s-1 (EPC), 1.9 x 10(-11) cm s-1 (DMPC); tryptophan, 4.1 x 10(-10) cm s-1 (EPC); and phenylalanine, 2.5 x 10(-10) cm s-1 (EPC). Decreasing lipid chain length increased permeability slightly, while variations in pH had only minor effects on the permeability coefficients of the amino acids tested. Phosphate permeability was in the range of 10(-12)-10(-13) cm s-1 depending on the pH of the medium. The values for the polar and charged amino acids were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium, which are in the range of 10(-12)-10(-13) cm s-1, depending on conditions and the lipid species used. This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. The results are relevant to the permeation of certain peptides into lipid bilayers during protein translocation and membrane biogenesis.
ERIC Educational Resources Information Center
Young, Phillip; Reimer, Don; Young, Karen Holsey
2010-01-01
Background: Studies addressing pay discrimination for females in education have relied on main effect regression models, mostly examining amount (intercept values) rather than rate of pay (slope coefficients). Purpose: The purpose is to determine if organizational characteristics and human capital endowments purported to influence pay are facially…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, Toshiro, E-mail: ganronbun@amail.plala.or.jp; Seki, Hiroshi; Shiina, Makoto
2009-09-15
The purpose of the present study was to elucidate a method for predicting the intrahepatic arteriovenous shunt rate from computed tomography (CT) images and biochemical data, instead of from arterial perfusion scintigraphy, because adverse exacerbated systemic effects may be induced in cases where a high shunt rate exists. CT and arterial perfusion scintigraphy were performed in patients with liver metastases from gastric or colorectal cancer. Biochemical data and tumor marker levels of 33 enrolled patients were measured. The results were statistically verified by multiple regression analysis. The total metastatic hepatic tumor volume (V{sub metastasized}), residual hepatic parenchyma volume (V{sub residual};more » calculated from CT images), and biochemical data were treated as independent variables; the intrahepatic arteriovenous (IHAV) shunt rate (calculated from scintigraphy) was treated as a dependent variable. The IHAV shunt rate was 15.1 {+-} 11.9%. Based on the correlation matrixes, the best correlation coefficient of 0.84 was established between the IHAV shunt rate and V{sub metastasized} (p < 0.01). In the multiple regression analysis with the IHAV shunt rate as the dependent variable, the coefficient of determination (R{sup 2}) was 0.75, which was significant at the 0.1% level with two significant independent variables (V{sub metastasized} and V{sub residual}). The standardized regression coefficients ({beta}) of V{sub metastasized} and V{sub residual} were significant at the 0.1 and 5% levels, respectively. Based on this result, we can obtain a predicted value of IHAV shunt rate (p < 0.001) using CT images. When a high shunt rate was predicted, beneficial and consistent clinical monitoring can be initiated in, for example, hepatic arterial infusion chemotherapy.« less
A quantitative approach to the loading rate of seismogenic sources in Italy
NASA Astrophysics Data System (ADS)
Caporali, Alessandro; Braitenberg, Carla; Montone, Paola; Rossi, Giuliana; Valensise, Gianluca; Viganò, Alfio; Zurutuza, Joaquin
2018-06-01
To investigate the transfer of elastic energy between a regional stress field and a set of localized faults, we project the stress rate tensor inferred from the Italian GNSS (Global Navigation Satellite Systems) velocity field onto faults selected from the Database of Individual Seismogenic Sources (DISS 3.2.0). For given Lamé constants and friction coefficient, we compute the loading rate on each fault in terms of the Coulomb failure function (CFF) rate. By varying the strike, dip and rake angles around the nominal DISS values, we also estimate the geometry of planes that are optimally oriented for maximal CFF rate. Out of 86 Individual Seismogenic Sources (ISSs), all well covered by GNSS data, 78-81 (depending on the assumed friction coefficient) load energy at a rate of 0-4 kPa yr-1. The faults displaying larger CFF rates (4-6 ± 1 kPa yr-1) are located in the central Apennines and are all characterized by a significant strike-slip component. We also find that the loading rate of 75% of the examined sources is less than 1 kPa yr-1 lower than that of optimally oriented faults. We also analysed 2016 August 24 and October 30 central Apennines earthquakes (Mw 6.0-6.5, respectively). The strike of their causative faults based on seismological and tectonic data and the geodetically inferred strike differ by <30°. Some sources exhibit a strike oblique to the direction of maximum strain rate, suggesting that in some instances the present-day stress acts on inherited faults. The choice of the friction coefficient only marginally affects this result.
Mass attenuation coefficient of chromium and manganese compounds around absorption edge.
Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B
2009-01-01
The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.
Microbial Transformation of Esters of Chlorinated Carboxylic Acids
Paris, D. F.; Wolfe, N. L.; Steen, W. C.
1984-01-01
Two groups of compounds were selected for microbial transformation studies. In the first group were carboxylic acid esters having a fixed aromatic moiety and an increasing length of the alkyl component. Ethyl esters of chlorine-substituted carboxylic acids were in the second group. Microorganisms from environmental waters and a pure culture of Pseudomonas putida U were used. The bacterial populations were monitored by plate counts, and disappearance of the parent compound was followed by gas-liquid chromatography as a function of time. The products of microbial hydrolysis were the respective carboxylic acids. Octanol-water partition coefficients (Kow) for the compounds were measured. These values spanned three orders of magnitude, whereas microbial transformation rate constants (kb) varied only 50-fold. The microbial rate constants of the carboxylic acid esters with a fixed aromatic moiety increased with an increasing length of alkyl substituents. The regression coefficient for the linear relationships between log kb and log Kow was high for group 1 compounds, indicating that these parameters correlated well. The regression coefficient for the linear relationships for group 2 compounds, however, was low, indicating that these parameters correlated poorly. PMID:16346459
Characterization of architectural distortion on mammograms using a linear energy detector
NASA Astrophysics Data System (ADS)
Alvarez, Jorge; Narváez, Fabián.; Poveda, César; Romero, Eduardo
2013-11-01
Architectural distortion is a breast cancer sign, characterized by spiculated patterns that define the disease malignancy level. In this paper, the radial spiculae of a typical architectural distortion were characterized by a new strategy. Firstly, previously selected Regions of Interest are divided into a set of parallel and disjoint bands (4 pixels the ROI length), from which intensity integrals (coefficients) are calculated. This partition is rotated every two degrees, searching in the phase plane the characteristic radial spiculation. Then, these coefficients are used to construct a fully connected graph whose edges correspond to the integral values or coefficients and the nodes to x and y image positions. A centrality measure like the first eigenvector is used to extract a set of discriminant coefficients that represent the locations with higher linear energy. Finally, the approach is trained using a set of 24 Regions of Interest obtained from the MIAS database, namely, 12 Architectural Distortions and 12 controls. The first eigenvector is then used as input to a conventional Support Vector Machine classifier whose optimal parameters were obtained by a leave-one-out cross validation. The whole method was assessed in a set of 12 RoIs with different distribution of breast tissues (normal and abnormal), and the classification results were compared against a ground truth, already provided by the data base, showing a precision rate of 0.583%, a sensitivity rate of 0.833% and a specificity rate of 0.333%.
Estimating rock and slag wool fiber dissolution rate from composition.
Eastes, W; Potter, R M; Hadley, J G
2000-12-01
A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.
Yamamoto, Hiroshi; Nakamura, Yudai; Moriguchi, Shigemi; Nakamura, Yuki; Honda, Yuta; Tamura, Ikumi; Hirata, Yoshiko; Hayashi, Akihide; Sekizawa, Jun
2009-02-01
We selected eight pharmaceuticals with relatively high potential ecological risk and high consumption-namely, acetaminophen, atenolol, carbamazepine, ibuprofen, ifenprodil, indomethacin, mefenamic acid, and propranolol-and conducted laboratory experiments to examine the persistence and partitioning of these compounds in the aquatic environment. In the results of batch sunlight photolysis experiments, three out of eight pharmaceuticals-propranolol, indomethacin, and ifenprodil-were relatively easily photodegraded (i.e., half-life<24h), whereas the other five pharmaceuticals were relatively stable against sunlight. The results of batch biodegradation experiments using river water suggested relatively slow biodegradation (i.e., half-life>24h) for all eight pharmaceuticals, but the rate constant was dependent on sampling site and time. Batch sorption experiments were also conducted to determine the sorption coefficients to river sediments and a model soil sample. The determined coefficients (K(d) values) were much higher for three amines (atenolol, ifenprodil, and propranolol) than for neutral compounds or carboxylic acids; the K(d) values of the amines were comparable to those of a four-ring polycyclic aromatic hydrocarbon (PAH) pyrene. The coefficients were also higher for sediment/soil with higher organic content, and the organic carbon-based sorption coefficient (logK(oc)) showed a poor linear correlation with the octanol-water distribution coefficient (logD(ow)) at neutral pH. These results suggest other sorption mechanisms-such as electrochemical affinity, in addition to hydrophobic interaction-play an important role in sorption to sediment/soil at neutral pH.
Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth System Models
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Abernathey, R.; Pradal, M.-A.
2014-11-01
This paper uses a suite of Earth System models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science. The helium-heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in the earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedi that link it to baroclinic instability project it to be small (of order a few hundred m2 s-1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Because helium isotopes equilibrate rapidly with the atmosphere, but radiocarbon equilibrates slowly, it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the Southeast Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi in the deep ocean than is seen in theoretical parameterizations based on baroclinic growth rates. We argue that a key part of resolving the isopycnal mixing paradox is to abandon the idea that ARedi has a direct relationship to local baroclinic instability and to the so called "thickness" mixing coefficient AGM.
Wu, Y Z; Wang, W J; Feng, N P; Chen, B; Li, G C; Liu, J W; Liu, H L; Yang, Y Y
2016-07-06
To evaluate the validity, reliability, and acceptability of the brief version of the self-management knowledge, attitude, and behavior (KAB) assessment scale for diabetes patients. Diabetes patients who were managed at the Xinkaipu Community Health Service Center of Tianxin in Changsha, Hunan Province were selected for survey by cluster sampling. A total of 350 diabetes patients were surveyed using the brief scale to collect data on knowledge, attitudes, and behaviors of self-management. Content validity was evaluated by Pearson correlation coefficient between the brief scale and subscales of knowledge, attitude, and behavior. Structure validity was evaluated by factor analysis, and discrimination validity was evaluated by an independent sample t-test between the high-score and low-score groups. Reliability was tested by internal consistency reliability and split-half reliability. The evaluation indexes of internal consistency reliability were Cronbach's α coefficients, θ coefficient, and Ω coefficient. Acceptability was evaluated by valid response rate and completion time of the brief scale. A total of 346(98.9%) valid questionnaires were returned, with average survey time of (11.43±3.4) minutes. Average score of the brief scale was 78.85 ± 11.22; scores of the knowledge, attitude, and behavior subscales were 16.45 ± 4.42, 21.33 ± 2.03, and 41.07 ± 8.34, respectively. Pearson correlation coefficients between the brief scale and the knowledge, attitude, and behavior subscales were 0.92, 0.42, and 0.60, respectively; P-values were all less than 0.01, indicating that the face validity and content validity of the brief scale were achieved to a good level. The common factor cumulative variance contribution rate of the brief scale and three subscales was from 53.66% to 61.75%, which achieved more than 50% of the approved standard. There were 11 common factors; 41 of the total 42 items had factor loadings above 0.40 in their relevant common factor, indicating that the brief scale and three subscales had good construct validity. Patients were divided into a high-score group and a low-score group, then scores of the brief scale and three subscales were compared between the groups using a t-test. The results were all significant, indicating that the brief scale and three subscales had good discriminate validity. Mean scores of the brief scale and three subscales of the high-score group were 91.55±6.81, 19.51±2.17, 22.74±1.88, and 49.30±6.20, respectively; these were higher than the low-score group (65.89±5.79, 12.29±4.76, 20.22±1.88, and 33.39±6.17, respectively) with t-values 27.76, 13.31, 9.20, and 17.56 (P-values were less than 0.001). The Cronbach's α coefficient, θ coefficient, Ω coefficient, and split-half reliability of the brief scale were 0.83, 0.87, 0.96, and 0.84, respectively. These values for the three subscales were all above 0.70, except for the θ coefficient of the attitude subscale with 0.64, indicating that the brief scale and three subscales had acceptable internal consistency reliability. The brief version of the diabetes self-management knowledge, attitude, and behavior assessment scale showed good acceptability, validity, and reliability, to responsibly evaluate self-management KAB among patients with diabetes.
NASA Astrophysics Data System (ADS)
Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.
2018-05-01
In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.
Soares, Gabriel Porto; Klein, Carlos Henrique; Silva, Nelson Albuquerque de Souza e; de Oliveira, Glaucia Maria Moraes
2016-01-01
Background Diseases of the circulatory system (DCS) are the major cause of death in Brazil and worldwide. Objective To correlate the compensated and adjusted mortality rates due to DCS in the Rio de Janeiro State municipalities between 1979 and 2010 with the Human Development Index (HDI) from 1970 onwards. Methods Population and death data were obtained in DATASUS/MS database. Mortality rates due to ischemic heart diseases (IHD), cerebrovascular diseases (CBVD) and DCS adjusted by using the direct method and compensated for ill-defined causes. The HDI data were obtained at the Brazilian Institute of Applied Research in Economics. The mortality rates and HDI values were correlated by estimating Pearson linear coefficients. The correlation coefficients between the mortality rates of census years 1991, 2000 and 2010 and HDI data of census years 1970, 1980 and 1991 were calculated with discrepancy of two demographic censuses. The linear regression coefficients were estimated with disease as the dependent variable and HDI as the independent variable. Results In recent decades, there was a reduction in mortality due to DCS in all Rio de Janeiro State municipalities, mainly because of the decline in mortality due to CBVD, which was preceded by an elevation in HDI. There was a strong correlation between the socioeconomic indicator and mortality rates. Conclusion The HDI progression showed a strong correlation with the decline in mortality due to DCS, signaling to the relevance of improvements in life conditions. PMID:27849263
Soares, Gabriel Porto; Klein, Carlos Henrique; Silva, Nelson Albuquerque de Souza E; Oliveira, Glaucia Maria Moraes de
2016-10-01
Diseases of the circulatory system (DCS) are the major cause of death in Brazil and worldwide. To correlate the compensated and adjusted mortality rates due to DCS in the Rio de Janeiro State municipalities between 1979 and 2010 with the Human Development Index (HDI) from 1970 onwards. Population and death data were obtained in DATASUS/MS database. Mortality rates due to ischemic heart diseases (IHD), cerebrovascular diseases (CBVD) and DCS adjusted by using the direct method and compensated for ill-defined causes. The HDI data were obtained at the Brazilian Institute of Applied Research in Economics. The mortality rates and HDI values were correlated by estimating Pearson linear coefficients. The correlation coefficients between the mortality rates of census years 1991, 2000 and 2010 and HDI data of census years 1970, 1980 and 1991 were calculated with discrepancy of two demographic censuses. The linear regression coefficients were estimated with disease as the dependent variable and HDI as the independent variable. In recent decades, there was a reduction in mortality due to DCS in all Rio de Janeiro State municipalities, mainly because of the decline in mortality due to CBVD, which was preceded by an elevation in HDI. There was a strong correlation between the socioeconomic indicator and mortality rates. The HDI progression showed a strong correlation with the decline in mortality due to DCS, signaling to the relevance of improvements in life conditions.
Effect of turbulence on the disintegration rate of flushable consumer products.
Karadagli, Fatih; Rittmann, Bruce E; McAvoy, Drew C; Richardson, John E
2012-05-01
A previously developed model for the physical disintegration of flushable consumer products is expanded by investigating the effects of turbulence on the rate of physical disintegration. Disintegration experiments were conducted with cardboard tampon applicators at 100, 150, and 200 rotations per minute, corresponding to Reynold's numbers of 25,900, 39,400, and 52,900, respectively, which were estimated by using computational fluid dynamics modeling. The experiments were simulated with the disintegration model to obtain best-fit values of the kinetic and distribution parameters. Computed rate coefficients (ki) for all solid sizes (i.e., greater than 8, 4 to 8, 2 to 4, and 1 to 2 mm) increased strongly with Reynold's number or rotational speed. Thus, turbulence strongly affected the disintegration rate of flushable products, and the relationship of the ki values to Reynold's number can be included in mathematical representations of physical disintegration.
Crystallization kinetics of the borax decahydrate
NASA Astrophysics Data System (ADS)
Ceyhan, A. A.; Sahin, Ö.; Bulutcu, A. N.
2007-03-01
The growth and dissolution rates of borax decahydrate have been measured as a function of supersaturation for various particle sizes at different temperature ranges of 13 and 50 °C in a laboratory-scale fluidized bed crystallizer. The values of mass transfer coefficient, K, reaction rate constant, kr and reaction rate order, r were determined. The relative importances of diffusion and integration resistance were described by new terms named integration and diffusion concentration fraction. It was found that the overall growth rate of borax decahydrate is mainly controlled by integration (reaction) steps. It was also estimated that the dissolution region of borax decahydrate, apart from other materials, is controlled by diffusion and surface reaction. Increasing the temperature and particle size cause an increase in the values of kinetic parameters ( Kg, kr and K). The activation energies of overall, reaction and mass transfer steps were determined as 18.07, 18.79 and 8.26 kJmol -1, respectively.
A numerical study on flow and pollutant transport in Singapore coastal waters.
Xu, Ming; Chua, Vivien P
2016-10-15
Intensive economic and shipping activities in Singapore Strait have caused Singapore coastal waters to be under high risk of water pollution. A nested three-dimensional unstructured-grid SUNTANS model is applied to Singapore coastal waters to simulate flow and pollutant transport. The small domain (~50m resolution) Singapore coastal model is nested within a large domain (~200m resolution) regional model. The nested model is able to predict water surface elevations and velocities with high R(2) values of 0.96 and 0.91, respectively. Model results delineate the characteristics of circulation pattern in Singapore coastal waters during the Northeast and Southwest monsoons. The pollutants are modeled as passive tracers, and are released at six key sailing locations Points 1-6 in Singapore coastal waters and are named as Passive Tracers 1-6, respectively. Our results show that the rate of dispersion is twice as large for the Northeast monsoon compared to the Southwest monsoon due to differences in large-scale monsoons and small-scale local winds. The volume averaged concentration (VAC) diminishes faster and the local flushing time is shorter during the Northeast monsoon than the Southwest monsoon. Dispersion coefficients K and the VAC decreasing rate are maximum for Tracers 2 and 3 with shortest local flushing time due to the strong surrounding currents and abrupt bathymetry changes near Senang and St. John Islands. Dispersion coefficients K and the VAC decreasing rate are minimum for Tracer 1 due to weak currents induced by the semi-enclosed coastline near Tuas. It is found that both the lateral dispersion coefficient Ky and the compound dispersion coefficient K obey a "4/3-law", which defines a linear correlation between dispersion coefficients and 4/3-power of selected length scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)
1994-01-01
The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.
Kim, Du Yung; Kwon, Jung-Hwan
2018-05-04
Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (K DOCw ) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain K DOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4'-trichlorobiphenyl (PCB 28), 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (K DOCsw ) were determined using seawater samples from the Korean coast. The log K DOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k 2 ) and their log K DOCsw values were obtained by comparing their k 2 with that of PCB 28. The calculated log K DOCsw values were 6.57-7.35 for PCB 44, 6.23-7.44 for PCB 101, and 6.35-7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the K DOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium. Copyright © 2018 Elsevier Ltd. All rights reserved.
Voidage correction algorithm for unresolved Euler-Lagrange simulations
NASA Astrophysics Data System (ADS)
Askarishahi, Maryam; Salehi, Mohammad-Sadegh; Radl, Stefan
2018-04-01
The effect of grid coarsening on the predicted total drag force and heat exchange rate in dense gas-particle flows is investigated using Euler-Lagrange (EL) approach. We demonstrate that grid coarsening may reduce the predicted total drag force and exchange rate. Surprisingly, exchange coefficients predicted by the EL approach deviate more significantly from the exact value compared to results of Euler-Euler (EE)-based calculations. The voidage gradient is identified as the root cause of this peculiar behavior. Consequently, we propose a correction algorithm based on a sigmoidal function to predict the voidage experienced by individual particles. Our correction algorithm can significantly improve the prediction of exchange coefficients in EL models, which is tested for simulations involving Euler grid cell sizes between 2d_p and 12d_p . It is most relevant in simulations of dense polydisperse particle suspensions featuring steep voidage profiles. For these suspensions, classical approaches may result in an error of the total exchange rate of up to 30%.
Cadmium biosorption rate in protonated Sargassum biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J.; Volesky, B.
1999-03-01
Biosorption of the heavy metal ion Cd{sup 2+} by protonated nonliving brown alga Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake of cadmium and the release of proton matched each other throughout the biosorption process. The end-point titration methodology was used to maintain the constant pH 4.0 for developing the dynamic sorption rate. The sorption isotherm could be well represented by the Langmuir sorption model. A mass transfer model assuming the intraparticle diffusion in a one-dimensional thin plate as a controlling step was developed to describe the overall biosorption rate of cadmiummore » ions in flat seaweed biomass particles. The overall biosorption mathematical model equations were solved numerically yielding the effective diffusion coefficient D{sub e} about 3.5 {times} 10{sup {minus}6} cm{sup 2}/s. This value matches that obtained for the desorption process and is approximately half of that of the molecular diffusion coefficient for cadmium ions in aqueous solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paduano, L.; Sartorio, R.; Vitagliano, V.
Diffusion coefficients in the ternary system {alpha}-cyclodextrin (at one concentration)-L-phenylalanine (at four concentrations)-water have been measured by using the Gouy interferometric technique. The effect of the inclusion equilibrium on the cross-term diffusion coefficients was observed. The measured diffusion coefficients in the ternary systems were used to calculate values of the binding constants. These values are in good agreement with the value obtained from calorimetric studies.
2014-01-01
Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463
On the Reliability of Photovoltaic Short-Circuit Current Temperature Coefficient Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterwald, Carl R.; Campanelli, Mark; Kelly, George J.
2015-06-14
The changes in short-circuit current of photovoltaic (PV) cells and modules with temperature are routinely modeled through a single parameter, the temperature coefficient (TC). This parameter is vital for the translation equations used in system sizing, yet in practice is very difficult to measure. In this paper, we discuss these inherent problems and demonstrate how they can introduce unacceptably large errors in PV ratings. A method for quantifying the spectral dependence of TCs is derived, and then used to demonstrate that databases of module parameters commonly contain values that are physically unreasonable. Possible ways to reduce measurement errors are alsomore » discussed.« less
NASA Astrophysics Data System (ADS)
Rychnovsky, Steve; Gilbreath, G. C.; Zavriyev, A.
1996-10-01
Simultaneous measurements of the photorefractive and the absorptive grating gain components in GaAs:EL2 are made and are shown to display qualitative behavior consistent with linearized solutions of a two-carrier rate equation model. These two components, together with the linear absorption coefficient, permit determination of four independent material parameters, e.g., the ionized and the nonionized EL2 densities, the hole photoionization cross section ( sigma h), and the electro-optic coefficient (r41). Data obtained at optical wavelengths of 0.96 and 1.06 mu m indicate that sigma h and r41 are larger than published values. .
Interaction of evaporating and condensing particles in the free-molecular regime
NASA Astrophysics Data System (ADS)
Kogan, M. N.; Bobrov, I. N.; Cercignani, C.; Frezzotti, A.
1995-07-01
In a previous paper it was shown that repulsive/attractive forces arise between evaporating/ condensing particles in the free-molecular regime. Here we obtain explicit expressions for these forces in the case of spherical particles with equal temperatures. The temperature of the surrounding vapor is, generally speaking, different from that of the particles. Numerical results are obtained for different values of the ratios between particle and vapor temperatures and pressures, of the particles radii and of the evaporation coefficients. In the case when the evaporation coefficient equals unity, an exact expression is obtained for the force between particles of different radii. A simple model describing coagulation processes and taking the above-mentioned forces into account is proposed. It is shown that for large values of the vapor supersaturation, the influence of these forces on the coagulation rate may be very pronounced.
Water permeation through organic materials
NASA Astrophysics Data System (ADS)
Doughty, D. H.; West, I. A.
1981-09-01
Atmospheric moisture is routinely excluded from weapon systems by the use of elastomer seals at assembly joints and electrical feedthroughs while internal moisture is minimized by relying on desiccants and on pre-dried components assembled in special low humidity assembly rooms. Published values of the water permeation coefficient for ethylene-propylene rubber and other o-ring materials are subject to some variability and the effects of aging on water permability are unknown. We have thus devised a new and extremely sensitive method for measuring moisture permeation coefficients in organic materials. This method uses dilute tritiated water as a tracer and it is approximately two orders of magnitude more sensitive than other methods. We are therefore able to make measurements on materials under STS temperature and humidity conditions. Rate data showing the approach to equilibrium and water permeability values for a variety of elastomers are presented. The test apparatus is also described.
Mass transfer coefficient in ginger oil extraction by microwave hydrotropic solution
NASA Astrophysics Data System (ADS)
Handayani, Dwi; Ikhsan, Diyono; Yulianto, Mohamad Endy; Dwisukma, Mandy Ayulia
2015-12-01
This research aims to obtain mass transfer coefficient data on the extraction of ginger oil using microwave hydrotropic solvent as an alternative to increase zingiberene. The innovation of this study is extraction with microwave heater and hydrotropic solvent,which able to shift the phase equilibrium, and the increasing rate of the extraction process and to improve the content of ginger oil zingiberene. The experiment was conducted at the Laboratory of Separation Techniques at Chemical Engineering Department of Diponegoro University. The research activities carried out in two stages, namely experimental and modeling work. Preparation of the model postulated, then lowered to obtain equations that were tested and validated using data obtained from experimental. Measurement of experimental data was performed using microwave power (300 W), extraction temperature of 90 ° C and the independent variable, i.e.: type of hydrotropic, the volume of solvent and concentration in order, to obtain zingiberen levels as a function of time. Measured data was used as a tool to validate the postulation, in order to obtain validation of models and empirical equations. The results showed that the mass transfer coefficient (Kla) on zingiberene mass transfer models ginger oil extraction at various hydrotropic solution attained more 14 ± 2 Kla value than its reported on the extraction with electric heating. The larger value of Kla, the faster rate of mass transfer on the extraction process. To obtain the same yields, the microwave-assisted extraction required one twelfth time shorter.
Hilario, Eric C; Stern, Alan; Wang, Charlie H; Vargas, Yenny W; Morgan, Charles J; Swartz, Trevor E; Patapoff, Thomas W
2017-01-01
Concentration determination is an important method of protein characterization required in the development of protein therapeutics. There are many known methods for determining the concentration of a protein solution, but the easiest to implement in a manufacturing setting is absorption spectroscopy in the ultraviolet region. For typical proteins composed of the standard amino acids, absorption at wavelengths near 280 nm is due to the three amino acid chromophores tryptophan, tyrosine, and phenylalanine in addition to a contribution from disulfide bonds. According to the Beer-Lambert law, absorbance is proportional to concentration and path length, with the proportionality constant being the extinction coefficient. Typically the extinction coefficient of proteins is experimentally determined by measuring a solution absorbance then experimentally determining the concentration, a measurement with some inherent variability depending on the method used. In this study, extinction coefficients were calculated based on the measured absorbance of model compounds of the four amino acid chromophores. These calculated values for an unfolded protein were then compared with an experimental concentration determination based on enzymatic digestion of proteins. The experimentally determined extinction coefficient for the native proteins was consistently found to be 1.05 times the calculated value for the unfolded proteins for a wide range of proteins with good accuracy and precision under well-controlled experimental conditions. The value of 1.05 times the calculated value was termed the predicted extinction coefficient. Statistical analysis shows that the differences between predicted and experimentally determined coefficients are scattered randomly, indicating no systematic bias between the values among the proteins measured. The predicted extinction coefficient was found to be accurate and not subject to the inherent variability of experimental methods. We propose the use of a predicted extinction coefficient for determining the protein concentration of therapeutic proteins starting from early development through the lifecycle of the product. LAY ABSTRACT: Knowing the concentration of a protein in a pharmaceutical solution is important to the drug's development and posology. There are many ways to determine the concentration, but the easiest one to use in a testing lab employs absorption spectroscopy. Absorbance of ultraviolet light by a protein solution is proportional to its concentration and path length; the proportionality constant is the extinction coefficient. The extinction coefficient of a protein therapeutic is usually determined experimentally during early product development and has some inherent method variability. In this study, extinction coefficients of several proteins were calculated based on the measured absorbance of model compounds. These calculated values for an unfolded protein were then compared with experimental concentration determinations based on enzymatic digestion of the proteins. The experimentally determined extinction coefficient for the native protein was 1.05 times the calculated value for the unfolded protein with good accuracy and precision under controlled experimental conditions, so the value of 1.05 times the calculated coefficient was called the predicted extinction coefficient. Comparison of predicted and measured extinction coefficients indicated that the predicted value was very close to the experimentally determined values for the proteins. The predicted extinction coefficient was accurate and removed the variability inherent in experimental methods. © PDA, Inc. 2017.
The Measurement of Sulfur Oxidation Products and Their Role in Homogeneous Nucleation
NASA Technical Reports Server (NTRS)
Eisele, F. L.
1997-01-01
The loss rate of H2SO4 vapor onto submicron particles was measured for three different particle substrates. The experimental technique involved direct flow tube measurements of H2SO4 decay rates onto a polydisperse aerosol using chemical ionization mass spectroscopic detection. The aerosols of this study were partially hydrated crystalline salts with diameters in the size range of 20 to 400 nm. The mass accommodation coefficients, a, were calculated from the first-order rate constants for H2SO4 loss to be 0.73 + 0.21 and 0.79 + 0.23 for loss onto (NH4)2SO4 and NaCl, respectively. Measurements of the loss rate of H2SO4 onto a NaCl aerosol coated with stearic acid resulted in lower mass accommodation coefficients with values of 0.31 and 0.19 for aerosol with high and low stearic acid coverage, respectively. The observed decrease in a on an aerosol with a hydrocarbon coating suggests that aerosol composition is a key factor in H2SO4 adsorption on to a particle surface.
Dimensionless number is central to stress relaxation and expansive growth of the cell wall.
Ortega, Joseph K E
2017-06-07
Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.
Attenuation Coefficient Estimation of the Healthy Human Thyroid In Vivo
NASA Astrophysics Data System (ADS)
Rouyer, J.; Cueva, T.; Portal, A.; Yamamoto, T.; Lavarello, R.
Previous studies have demonstrated that attenuation coefficients can be useful towards characterizing thyroid tissues. In this work, ultrasonic attenuation coefficients were estimated from healthy human thyroids in vivo using a clinical scanner. The selected subjects were five young, healthy volunteers (age: 26 ± 6 years old, gender: three females, two males) with no reported history of thyroid diseases, no palpable thyroid nodules, no smoking habits, and body mass index less than 30 kg/m2. Echographic examinations were conducted by a trained sonographer using a SonixTouch system (Ultrasonix Medical Corporation, Richmond, BC) equipped with an L14-5 linear transducer array (nominal center frequency of 10 MHz, transducer footprint of 3.8 cm). Radiofrequency data corresponding to the collected echographic images in both transverse and longitudinal views were digitized at a sampling rate of 40 MHz and processed with Matlab codes (MathWorks, Natick, MA) to estimate attenuation coefficients using the spectral log difference method. The estimation was performed using an analysis bandwidth spanning from 4.0 to 9.0 MHz. The average value of the estimated ultrasonic attenuation coefficients was equal to 1.34 ± 0.15 dB/(cm.MHz). The standard deviation of the estimated average attenuation coefficient across different volunteers suggests a non-negligible inter-subject variability in the ultrasonic attenuation coefficient of the human thyroid.
Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.
2013-01-01
Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all <2 mm size fractions but differed for the 2–8 mm size fraction. Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved <2 mm size fractions, indicating a link between micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.
Morin, Roger H.; Olsen, Harold W.; Nelson, Karl R.; Gill, James D.
1989-01-01
A graphical method has been developed for determining the coefficient of consolidation from the transient phases of a flow-pump permeability test. The flow pump can be used to infuse fluid into or withdraw fluid from a laboratory sediment specimen at a constant volumetric rate in order to obtain data that can be used to calculate permeability using Darcy's law. Representative type-curve solutions to the associated forced-flow and pressure-decay models are derived. These curves provide the basis for graphically evaluating the permeability k, the coefficient of consolidation cv, and the coefficient of volume change mv. The curve-matching technique is easy and rapid. Values of k, cv and mv for a laterally confined kaolinite specimen were determined by this graphical method and appear to be in reasonably good agreement with numerically derived estimates (within 20%). Discrepancies between the two sets of results seem to be largely a function of data quality.
Optical properties of tissue, experimental results
NASA Astrophysics Data System (ADS)
Beek, Johan F.
1993-08-01
The effective attenuation coefficient of piglet lung was measured in vitro at 632.8 nm. Interstial fibres with isotropic tips were used to measure the fluence rate as a function of the distance from an isotropic light source. In vitro measurements at 632.8 nm on a lung that was insufflated with oxygen from 50 to 150 ml showed that the effective attenuation coefficient decreases as a function of the volume of air in the lung (at 50 ml /Jeff = 0.297 + 0.011 mnf1, at 100 ml lice 0.150 ± 0.007 mm-1, and at 150 ml /Jeff= 0.1136 + 0.015 mm-1). A single in vitro measurement at 790 nm at an insufflated lung volume of 100 ml gave a comparable result (ii ie = 0.175 + 0.004 mm-1). A ff decrease in effective attenuation coefficient with an ncrease in lung volume was explained by Mie-theory. The effective attenuation coefficient, calculated with 11, and g from Mie-theory, showed a deviation < 22% from the measured in vitro values.
NASA Astrophysics Data System (ADS)
Monaghan, Kari L.
The problem addressed was the concern for aircraft safety rates as they relate to the rate of maintenance outsourcing. Data gathered from 14 passenger airlines: AirTran, Alaska, America West, American, Continental, Delta, Frontier, Hawaiian, JetBlue, Midwest, Northwest, Southwest, United, and USAir covered the years 1996 through 2008. A quantitative correlational design, utilizing Pearson's correlation coefficient, and the coefficient of determination were used in the present study to measure the correlation between variables. Elements of passenger airline aircraft maintenance outsourcing and aircraft accidents, incidents, and pilot deviations within domestic passenger airline operations were analyzed, examined, and evaluated. Rates of maintenance outsourcing were analyzed to determine the association with accident, incident, and pilot deviation rates. Maintenance outsourcing rates used in the evaluation were the yearly dollar expenditure of passenger airlines for aircraft maintenance outsourcing as they relate to the total airline aircraft maintenance expenditures. Aircraft accident, incident, and pilot deviation rates used in the evaluation were the yearly number of accidents, incidents, and pilot deviations per miles flown. The Pearson r-values were calculated to measure the linear relationship strength between the variables. There were no statistically significant correlation findings for accidents, r(174)=0.065, p=0.393, and incidents, r(174)=0.020, p=0.793. However, there was a statistically significant correlation for pilot deviation rates, r(174)=0.204, p=0.007 thus indicating a statistically significant correlation between maintenance outsourcing rates and pilot deviation rates. The calculated R square value of 0.042 represents the variance that can be accounted for in aircraft pilot deviation rates by examining the variance in aircraft maintenance outsourcing rates; accordingly, 95.8% of the variance is unexplained. Suggestions for future research include replication of the present study with the inclusion of maintenance outsourcing rate data for all airlines differentiated between domestic and foreign repair station utilization. Replication of the present study every five years is also encouraged to continue evaluating the impact of maintenance outsourcing practices on passenger airline safety.
Zhou, Yu; Pearson, John E; Auerbach, Anthony
2005-12-01
We derive the analytical form of a rate-equilibrium free-energy relationship (with slope Phi) for a bounded, linear chain of coupled reactions having arbitrary connecting rate constants. The results confirm previous simulation studies showing that Phi-values reflect the position of the perturbed reaction within the chain, with reactions occurring earlier in the sequence producing higher Phi-values than those occurring later in the sequence. The derivation includes an expression for the transmission coefficients of the overall reaction based on the rate constants of an arbitrary, discrete, finite Markov chain. The results indicate that experimental Phi-values can be used to calculate the relative heights of the energy barriers between intermediate states of the chain but provide no information about the energies of the wells along the reaction path. Application of the equations to the case of diliganded acetylcholine receptor channel gating suggests that the transition-state ensemble for this reaction is nearly flat. Although this mechanism accounts for many of the basic features of diliganded and unliganded acetylcholine receptor channel gating, the experimental rate-equilibrium free-energy relationships appear to be more linear than those predicted by the theory.
A model for nematode locomotion in soil
Hunt, H. William; Wall, Diana H.; DeCrappeo, Nicole; Brenner, John S.
2001-01-01
Locomotion of nematodes in soil is important for both practical and theoretical reasons. We constructed a model for rate of locomotion. The first model component is a simple simulation of nematode movement among finite cells by both random and directed behaviours. Optimisation procedures were used to fit the simulation output to data from published experiments on movement along columns of soil or washed sand, and thus to estimate the values of the model's movement coefficients. The coefficients then provided an objective means to compare rates of locomotion among studies done under different experimental conditions. The second component of the model is an equation to predict the movement coefficients as a function of controlling factors that have been addressed experimentally: soil texture, bulk density, water potential, temperature, trophic group of nematode, presence of an attractant or physical gradient and the duration of the experiment. Parameters of the equation were estimated by optimisation to achieve a good fit to the estimated movement coefficients. Bulk density, which has been reported in a minority of published studies, is predicted to have an important effect on rate of locomotion, at least in fine-textured soils. Soil sieving, which appears to be a universal practice in laboratory studies of nematode movement, is predicted to negatively affect locomotion. Slower movement in finer textured soils would be expected to increase isolation among local populations, and thus to promote species richness. Future additions to the model that might improve its utility include representing heterogeneity within populations in rate of movement, development of gradients of chemical attractants, trade-offs between random and directed components of movement, species differences in optimal temperature and water potential, and interactions among factors controlling locomotion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, Naduvaluth
The results of accurate quantum reactive scattering calculations for the D + HD(v = 4, j = 0)more » $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$), D + HD(v = 4, j = 0) $$\\to $$ H + D2($$v^{\\prime} $$, $$j^{\\prime} $$) and H + D2(v = 4, j = 0) $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$) reactions are presented for collision energies between $$1\\,\\mu {\\rm{K}}$$ and $$100\\,{\\rm{K}}$$. The ab initio BKMP2 PES for the ground electronic state of H3 is used and all values of total angular momentum between $J=0-4$ are included. The general vector potential approach is used to include the geometric phase. The rotationally resolved, vibrationally resolved, and total reaction rate coefficients are reported as a function of collision energy. Rotationally resolved differential cross sections are also reported as a function of collision energy and scattering angle. Large geometric phase effects appear in the ultracold reaction rate coefficients which result in a significant enhancement or suppression of the rate coefficient (up to 3 orders of magnitude) relative to calculations which ignore the geometric phase. The results are interpreted using a new quantum interference mechanism which is unique to ultracold collisions. Significant effects of the geometric phase also appear in the rotationally resolved differential cross sections which lead to a very different oscillatory structure in both energy and scattering angle. Several shape resonances occur in the 1–$$10\\,{\\rm{K}}$$ energy range and the geometric phase is shown to significantly alter the predicted resonance spectrum. The geometric phase effects and ultracold rate coefficients depend sensitively on the nuclear spin. Furthermore, experimentalists may be able to control the reaction by the selection of a particular nuclear spin state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, W.P.
1990-01-01
Concepts for rate limitation of sorptive uptake of hydrophobic organic solutes by aquifer solids are reviewed, emphasizing physical diffusion models and in the context of effects on contaminant transport. Data for the sorption of tetrachloroethene (PCE) and 1,2,4,5-tetrachlorobenzene (TeCB) on Borden sand are presented, showing that equilibrium is attained very slowly, requiring equilibration times on the order of tens of days for PCE and hundreds of days for TeCB. The rate of approach to equilibrium decreased with increasing particle size and sorption distribution coefficient, in accordance with retarded intragranular diffusion models. Pulverization of the samples significantly decreased the required timemore » to equilibrium without changing the sorption capacity of the solids. Batch sorption methodology was refined to allow accurate measurement of long-term distribution coefficients, using purified {sup 14}C-labelled solute spikes and sealed glass ampules. Sorption isotherms for PCE and TeCB were conducted with size fractions of Borden sand over four to five orders of magnitude in aqueous concentration, and were found to be slightly nonlinear (Freundlich exponent = 0.8). A concentrated set of data in the low concentration range (<50 ug/L) revealed that sorption in this range could be equally well described by a linear isotherm. Distribution coefficients of the two solutes with seven size fractions of Borden sand, measured at low concentration and at full equilibrium, were between seven and sixty times the value predicted on the basis of recent correlations with organic carbon content. Rate results for coarse size fractions support a simple pore diffusion model, with pore diffusion coefficients estimated to be approximately 3 {times} 10{sup {minus}8} cm{sup 2}/sec, more than 200{times} lower than the aqueous diffusivities.« less
Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, Naduvaluth
2016-12-15
The results of accurate quantum reactive scattering calculations for the D + HD(v = 4, j = 0)more » $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$), D + HD(v = 4, j = 0) $$\\to $$ H + D2($$v^{\\prime} $$, $$j^{\\prime} $$) and H + D2(v = 4, j = 0) $$\\to $$ D + HD($$v^{\\prime} $$, $$j^{\\prime} $$) reactions are presented for collision energies between $$1\\,\\mu {\\rm{K}}$$ and $$100\\,{\\rm{K}}$$. The ab initio BKMP2 PES for the ground electronic state of H3 is used and all values of total angular momentum between $J=0-4$ are included. The general vector potential approach is used to include the geometric phase. The rotationally resolved, vibrationally resolved, and total reaction rate coefficients are reported as a function of collision energy. Rotationally resolved differential cross sections are also reported as a function of collision energy and scattering angle. Large geometric phase effects appear in the ultracold reaction rate coefficients which result in a significant enhancement or suppression of the rate coefficient (up to 3 orders of magnitude) relative to calculations which ignore the geometric phase. The results are interpreted using a new quantum interference mechanism which is unique to ultracold collisions. Significant effects of the geometric phase also appear in the rotationally resolved differential cross sections which lead to a very different oscillatory structure in both energy and scattering angle. Several shape resonances occur in the 1–$$10\\,{\\rm{K}}$$ energy range and the geometric phase is shown to significantly alter the predicted resonance spectrum. The geometric phase effects and ultracold rate coefficients depend sensitively on the nuclear spin. Furthermore, experimentalists may be able to control the reaction by the selection of a particular nuclear spin state.« less
Selling blood and gametes during tough economic times: insights from Google search.
Wu, Jonathan A; Ngo, Tin C; Rothman, Cappy; Breyer, Benjamin N; Eisenberg, Michael L
2015-10-01
To use Google Insights search volume and publicly available economic indicators to test the hypothesis that sperm, egg, and blood donations increase during economic downturns and to demonstrate the feasibility of using Google search volume data to predict national trends in actual sperm, egg, and blood donations rates. Cross-correlation statistical analysis comparing Google search data for terms relating to blood, egg, and sperm donations with various economic indicators including the S&P 500 closing values, gross domestic product (GDP), the U.S. Index of Leading Indicators (U.S. Leading Index), gross savings rate, mortgage interest rates, unemployment rate, and consumer price index (CPI) from 2004-2011. A secondary analysis determined the Pearson correlation coefficient between Google search data with actual sperm, egg, and blood donation volume in the U.S. as measured by California Cryobank, the National Assisted Reproductive Technology Surveillance System, and the National Blood Collection and Utilization Survey, respectively. Significance of cross-correlation and Pearson correlation analysis as indicated by p value. There were several highly significant cross-correlation relationships between search volume and various economic indicators. Correlation between Google search volume for the term 'sperm donation,' 'egg donation,' and 'blood donation' with actual number of sperm, egg and blood donations in the United States demonstrated Pearson correlation coefficients of 0.2 (p > 0.10), -0.1 (p > 0.10), and 0.07 (p > 0.10), respectively. Temporal analysis showed an improved correlation coefficient of 0.9 (p < 0.05) for blood donation when shifted 12 months later relative to Google search volume. Google search volume data for search terms relating to sperm, egg, and blood donation increase during economic downturns. This finding suggests gamete and bodily fluid donations are influenced by market forces like other commodities. Google search may be useful for predicting blood donation trends but is more limited in predicting actual semen and oocyte donation patterns.
NASA Astrophysics Data System (ADS)
Crabit, Armand; Colin, François
2016-04-01
Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also provides significant insight into the hydrological processes operating in small ephemeral stream systems and highlights similarities/dissimilarities between catchments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hume, E.E. Jr.
The green line (5577[angstrom]) is a bright, persistent component of the visible airglow produced by an electric quadrupole transition from the meta-stable second excited state ([sup 1]S[sub 0]) to the first excited state ([sup 1]D[sub 2]) of atomic oxygen. In this thesis, production and loss mechanisms important to the F-region dayglow 5577[angstrom] emission are investigated. Four major source reactions need to be incorporated in the modeling of the emission profile, photoelectron impact on atomic oxygen, dissociative recombination of O[sup +][sub 2], quenching of N[sub 2](A[sup 3][Sigma][sub u][sup +]) by atomic oxygen, and photo-dissociation of O[sub 2]. For some of themore » reactions, the properties of the rate coefficients, branching ratios, and cross sections are not well known. Models are used to determine the rate coefficients, branching ratios, and cross sections for these reactions. The impact of photoelectrons on atomic oxygen is the primary source of 5577[angstrom] dayglow emission in the thermosphere. The quenching of N[sub 2](A) by atomic oxygen is an important source of the 5577[angstrom] emission at the peak in the layer. The total quenching rate was determined using a vibrational model and a band model for N[sub 2] to study emissions at 3371[angstrom] from the Atmosphere Explorer satellite. The value of the rate coefficient deduced here agrees well with experimental values by Piper and Caledonia (1981) and Thomas and Kaufman (1985). The effective branching ratio determined by this study tends to support the results from Piper (1982) and De Souza et al. (1985). The effect of the distribution of the vibrational population of the N[sub 2](A[sup 3][Sigma][sub u][sup +]) state on the branching ratio is also discussed. The extension of the dayglow photochemistry into the twilight is also investigated. The model developed for the dayglow can reasonably reproduce the rapidly changing twilight emissions.« less
Rate Coefficient Measurements and Theoretical Analysis of the OH + ( E)-CF3CH═CHCF3 Reaction.
Baasandorj, Munkhbayar; Marshall, Paul; Waterland, Robert L; Ravishankara, A R; Burkholder, James B
2018-05-04
Rate coefficients, k, for the gas-phase reaction of the OH radical with ( E)-CF 3 CH═CHCF 3 (( E)-1,1,1,4,4,4-hexafluoro-2-butene, HFO-1336mzz(E)) were measured over a range of temperatures (211-374 K) and bath gas pressures (20-300 Torr; He, N 2 ) using a pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) technique. k 1 ( T) was independent of pressure over this range of conditions with k 1 (296 K) = (1.31 ± 0.15) × 10 -13 cm 3 molecule -1 s -1 and k 1 ( T) = (6.94 ± 0.80) × 10 -13 exp[-(496 ± 10)/ T] cm 3 molecule -1 s -1 , where the uncertainties are 2σ, and the pre-exponential term includes estimated systematic error. Rate coefficients for the OD reaction were also determined over a range of temperatures (262-374 K) at 100 Torr (He). The OD rate coefficients were ∼15% greater than the OH values and showed similar temperature dependent behavior with k 2 ( T) = (7.52 ± 0.44) × 10 -13 exp[-(476 ± 20)/ T] and k 2 (296 K) = (1.53 ± 0.15) × 10 -13 cm 3 molecule -1 s -1 . The rate coefficients for reaction 1 were also measured using a relative rate technique between 296 and 375 K with k 1 (296 K) measured to be (1.22 ± 0.1) × 10 -13 cm 3 molecule -1 s -1 , in agreement with the PLP-LIF results. In addition, the 296 K rate coefficient for the O 3 + ( E)-CF 3 CH═CHCF 3 reaction was determined to be <5.2 × 10 -22 cm 3 molecule -1 s -1 . A theoretical computational analysis is presented to interpret the observed positive temperature dependence for the addition reaction and the significant decrease in OH reactivity compared to the ( Z)-CF 3 CH═CHCF 3 stereoisomer reaction. The estimated atmospheric lifetime of ( E)-CF 3 CH═CHCF 3 , due to loss by reaction with OH, is estimated to be ∼90 days, while the actual lifetime will depend on the location and season of its emission. Infrared absorption spectra of ( E)-CF 3 CH═CHCF 3 were measured and used to estimate the 100 year time horizon global warming potentials (GWP) of 32 (atmospherically well-mixed) and 14 (lifetime-adjusted).
NASA Astrophysics Data System (ADS)
Lika, Konstadia; Kearney, Michael R.; Kooijman, Sebastiaan A. L. M.
2011-11-01
The covariation method for estimating the parameters of the standard Dynamic Energy Budget (DEB) model provides a single-step method of accessing all the core DEB parameters from commonly available empirical data. In this study, we assess the robustness of this parameter estimation procedure and analyse the role of pseudo-data using elasticity coefficients. In particular, we compare the performance of Maximum Likelihood (ML) vs. Weighted Least Squares (WLS) approaches and find that the two approaches tend to converge in performance as the number of uni-variate data sets increases, but that WLS is more robust when data sets comprise single points (zero-variate data). The efficiency of the approach is shown to be high, and the prior parameter estimates (pseudo-data) have very little influence if the real data contain information about the parameter values. For instance, the effects of the pseudo-value for the allocation fraction κ is reduced when there is information for both growth and reproduction, that for the energy conductance is reduced when information on age at birth and puberty is given, and the effects of the pseudo-value for the maturity maintenance rate coefficient are insignificant. The estimation of some parameters (e.g., the zoom factor and the shape coefficient) requires little information, while that of others (e.g., maturity maintenance rate, puberty threshold and reproduction efficiency) require data at several food levels. The generality of the standard DEB model, in combination with the estimation of all of its parameters, allows comparison of species on the basis of parameter values. We discuss a number of preliminary patterns emerging from the present collection of parameter estimates across a wide variety of taxa. We make the observation that the estimated value of the fraction κ of mobilised reserve that is allocated to soma is far away from the value that maximises reproduction. We recognise this as the reason why two very different parameter sets must exist that fit most data set reasonably well, and give arguments why, in most cases, the set with the large value of κ should be preferred. The continued development of a parameter database through the estimation procedures described here will provide a strong basis for understanding evolutionary patterns in metabolic organisation across the diversity of life.
Spatial correlation of hydrometeor occurrence, reflectivity, and rain rate from CloudSat
NASA Astrophysics Data System (ADS)
Marchand, Roger
2012-03-01
This paper examines the along-track vertical and horizontal structure of hydrometeor occurrence, reflectivity, and column rain rate derived from CloudSat. The analysis assumes hydrometeors statistics in a given region are horizontally invariant, with the probability of hydrometeor co-occurrence obtained simply by determining the relative frequency at which hydrometeors can be found at two points (which may be at different altitudes and offset by a horizontal distance, Δx). A correlation function is introduced (gamma correlation) that normalizes hydrometeor co-occurrence values to the range of 1 to -1, with a value of 0 meaning uncorrelated in the usual sense. This correlation function is a generalization of the alpha overlap parameter that has been used in recent studies to describe the overlap between cloud (or hydrometeor) layers. Examples of joint histograms of reflectivity at two points are also examined. The analysis shows that the traditional linear (or Pearson) correlation coefficient provides a useful one-to-one measure of the strength of the relationship between hydrometeor reflectivity at two points in the horizontal (that is, two points at the same altitude). While also potentially useful in the vertical direction, the relationship between reflectivity values at different altitudes is not as well described by the linear correlation coefficient. The decrease in correlation of hydrometeor occurrence and reflectivity with horizontal distance, as well as precipitation occurrence and column rain rate, can be reasonably well fit with a simple two-parameter exponential model. In this paper, the North Pacific and tropical western Pacific are examined in detail, as is the zonal dependence.
Wang, T; Zhao, G; Tang, H Y; Jiang, Z D
2015-01-01
Cell survival upon cryopreservation is affected by the cooling rate. However, it is difficult to model the heat transfer process or to predict the cooling curve of a cryoprotective agent (CPA) solution due to the uncertainty of its convective heat transfer coefficient (h). To measure the h and to better understand the heat transfer process of cryovials filled with CPA solution being plunged in liquid nitrogen. The temperatures at three locations of the CPA solution in a cryovial were measured. Different h values were selected after the cooling process was modeled as natural convection heat transfer, the film boiling and the nucleate boiling, respectively. And the temperatures of the selected points are simulated based on the selected h values. h was determined when the simulated temperature best fitted the experimental temperature. When the experimental results were best fitted, according to natural convection heat transfer model, h(1) = 120 W/(m(2)·K) while due to film boiling and nucleate boiling regimes h(f) = 5 W/(m(2)·K) followed by h(n) = 245 W/(m(2)·K). These values were verified by the differential cooling rates at the three locations of a cryovial. The heat transfer process during cooling in liquid nitrogen is better modeled as film boiling followed by nucleate boiling.
Automated measurements for individualized heart rate correction of the QT interval.
Mason, Jay W; Moon, Thomas E
2015-04-01
Subject-specific electrocardiographic QT interval correction for heart rate is often used in clinical trials with frequent electrocardiographic recordings. However, in these studies relatively few 10-s, 12-lead electrocardiograms may be available for calculating the individual correction. Highly automated QT and RR measurement tools have made it practical to measure electrocardiographic intervals on large volumes of continuous electrocardiogram data. The purpose of this study was to determine whether an automated method can be used in lieu of a manual method. In 49 subjects who completed all treatments in a four-armed crossover study we compared two methods for derivation of individualized rate-correction coefficients: manual measurement on 10-s electrocardiograms and automated measurement of QT and RR during continuous 24-h electrocardiogram recordings. The four treatments, received by each subject in a latin-square randomization sequence were placebo, moxifloxacin, and two doses of an investigational drug. Analysis of continuous electrocardiogram data yielded a lower standard deviation of QT:RR regression values than the manual method, though the differences were not statistically significant. The within-subject and within-treatment coefficients of variation between the manual and automated methods were not significantly different. Corrected QT values from the two methods had similar rates of true and false positive identification of moxifloxacin's QT prolonging effect. An automated method for individualized rate correction applied to continuous electrocardiogram data could be advantageous in clinical trials, as the automated method is simpler, is based upon a much larger volume of data, yields similar results, and requires no human over-reading of the measurements. © The Author(s) 2015.
Kheirolomoom, Azadeh; Khorasheh, Farhad; Fazelinia, Hossein
2002-01-01
Immobilization of enzymes on nonporous supports provides a suitable model for investigating the effect of external mass transfer limitation on the reaction rate in the absence of internal diffusional resistance. In this study, deacylation of penicillin G was investigated using penicillin acylase immobilized on ultrafine silica particles. Kinetic studies were performed within the low-substrate-concentration region, where the external mass transfer limitation becomes significant. To predict the apparent kinetic parameters and the overall effectiveness factor, knowledge of the external mass transfer coefficient, k(L)a, is necessary. Although various correlations exist for estimation of k(L)a, in this study, an optimization scheme was utilized to obtain this coefficient. Using the optimum values of k(L)a, the initial reaction rates were predicted and found to be in good agreement with the experimental data.
Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina
2018-06-22
Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ménesguen, Y.; Lépy, M.-C.
2010-08-01
This work presents new measurements of mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K-absorption jump-ratios, Kα and Kβ fluorescence yields for Ti, V, Fe, Co, Ni, Cu and Zn. We use the experimental facility SOLEX, a tunable monochromatic X-ray source combined with an energy-dispersive high-purity germanium detector. The results are compared with theoretical values as well as with other experimental data and show a relatively good agreement. However, the derived K-jump-ratios appear larger than those widely used in the XCOM database. The Kα and Kβ fluorescence yields and the corresponding relative emission rates Kβ/Kα are also derived, which was made possible by the use of energy-dispersive detectors with good spectral resolution.
1983-11-30
be large if s is highly negative, which is the Poynting vector, the same singularity function can be case for TeO2 operated in the slow-shear mode...we give the values of the elastic coefficients for PbMoO 4 and TeO2 from which we calculate that s = -0.176 for PbMoO 4 and s = 0.274 for TeO 2. Our...lowest for TeO2 and highest for PbMoO 4; the rate for fused quartz is nearly halfway between these two values. The diffraction patterns produced by
Moradkhani, Hamed; Izadkhah, Mir-Shahabeddin; Anarjan, Navideh
2017-02-01
In this work, gas dispersion in a two-phase partitioning bioreactor is analyzed by calculating volumetric oxygen mass transfer coefficient which is modeled using a commercial computational fluid dynamics (CFD), code FLUENT 6.2. Dispersed oxygen bubbles dynamics is based on standard "k-ε" Reynolds-averaged Navier-Stokes (RANS) model. This paper describes a three-dimensional CFD model coupled with population balance equations (PBE) in order to get more confirming results of experimental measurements. Values of k L a are obtained using dynamic gassing-out method. Using the CFD simulation, the volumetric mass transfer coefficient is calculated based on Higbie's penetration theory. Characteristics of mass transfer coefficient are investigated for five configurations of impeller and three different aeration flow rates. The pitched six blade type, due to the creation of downward flow direction, leads to higher dissolved oxygen (DO) concentrations, thereby, higher values of k L a compared with other impeller compositions. The magnitude of dissolved oxygen percentage in the aqueous phase has direct correlation with impeller speed and any increase of the aeration magnitude leads to faster saturation in shorter periods of time. Agitation speeds of 300 to 800 rpm are found to be the most effective rotational speeds for the mass transfer of oxygen in two-phase partitioning bioreactors (TPPB).
NASA Technical Reports Server (NTRS)
Hoobler, Ray J.; Leone, Stephen R.
1997-01-01
Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution.
Development of a nuclear technique for monitoring water levels in pressurized vehicles
NASA Technical Reports Server (NTRS)
Singh, J. J.; Davis, W. T.; Mall, G. H.
1983-01-01
A new technique for monitoring water levels in pressurized stainless steel cylinders was developed. It is based on differences in attenuation coefficients of water and air for Cs137 (662 keV) gamma rays. Experimentally observed gamma ray counting rates with and without water in model reservoir cylinder were compared with corresponding calculated values for two different gamma ray detection theshold energies. Calculated values include the effects of multiple scattering and attendant gamma ray energy reductions. The agreement between the measured and calculated values is reasonably good. Computer programs for calculating angular and spectral distributions of scattered radition in various media are included.
Balch, J; Guéguen, C
2015-01-01
In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Afacan, Onur; Gholipour, Ali; Mulkern, Robert V; Barnewolt, Carol E; Estroff, Judy A; Connolly, Susan A; Parad, Richard B; Bairdain, Sigrid; Warfield, Simon K
2016-12-01
To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Hua, Junye; Duan, Yuanyuan; Li, Gui; Xu, Qiong; Li, Dong; Wu, Wei; Zhao, Xiaobao; Qiu, Delai
2018-02-01
The experimental studies on heat transfer and flow resistance characteristics of ellipse-shape micro pin fin have been conducted which is drafted with hydrophobic material, holding the various contact angles fulfilled by adjusting the amount of Nano particle. The results show that with the increases of contact angle(83°,99.5°, 119.5°and 151.5°), the bottom wall temperature rises under the same flow rate. Under a certain heating condition with heating power as 100 W, the average convective heat transfer coefficient decreases with the increase of contact angle with the same Re. The value of Nu for ellipse-shape micro pin fin increases with a higher Re, with the maximum value under experimental condition of Nu as 25. Besides, the friction coefficient of micro pin fin experimental section drafted hydrophobicity treatment significantly decreases, compared with the smooth micro pin fin experimental section (θ = 83°). While the higher contact angle has obvious positive influences on friction coefficient under the same Re. Generally, the flow resistance performance of ellipse-shape micro pin fin drafted with hydrophobic material is better than that without any treatment.
Walait, Ahsan; Siddiqui, A M; Rana, M A
2018-02-13
The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.
Resistance formulas in hydraulics-based models for routing debris flows
Chen, Cheng-lung; Ling, Chi-Hai
1997-01-01
The one-dimensional, cross-section-averaged flow equations formulated for routing debris flows down a narrow valley are identical to those for clear-water flow, except for the differences in the values of the flow parameters, such as the momentum (or energy) correction factor, resistance coefficient, and friction slope. Though these flow parameters for debris flow in channels with cross-sections of arbitrary geometric shape can only be determined empirically, the theoretical values of such parameters for debris flow in wide channels exist. This paper aims to derive the theoretical resistance coefficient and friction slope for debris flow in wide channels using a rheological model for highly-concentrated, rapidly-sheared granular flows, such as the generalized viscoplastic fluid (GVF) model. Formulating such resistance coefficient or friction slope is equivalent to developing a generally applicable resistance formula for routing debris flows. Inclusion of a nonuniform term in the expression of the resistance formula proves useful in removing the customary assumption that the spatially varied resistance at any section is equal to what would take place with the same rate of flow passing the same section under conditions of uniformity. This in effect implies an improvement in the accuracy of unsteady debris-flow computation.
Quantified Risk Ranking Model for Condition-Based Risk and Reliability Centered Maintenance
NASA Astrophysics Data System (ADS)
Chattopadhyaya, Pradip Kumar; Basu, Sushil Kumar; Majumdar, Manik Chandra
2017-06-01
In the recent past, risk and reliability centered maintenance (RRCM) framework is introduced with a shift in the methodological focus from reliability and probabilities (expected values) to reliability, uncertainty and risk. In this paper authors explain a novel methodology for risk quantification and ranking the critical items for prioritizing the maintenance actions on the basis of condition-based risk and reliability centered maintenance (CBRRCM). The critical items are identified through criticality analysis of RPN values of items of a system and the maintenance significant precipitating factors (MSPF) of items are evaluated. The criticality of risk is assessed using three risk coefficients. The likelihood risk coefficient treats the probability as a fuzzy number. The abstract risk coefficient deduces risk influenced by uncertainty, sensitivity besides other factors. The third risk coefficient is called hazardous risk coefficient, which is due to anticipated hazards which may occur in the future and the risk is deduced from criteria of consequences on safety, environment, maintenance and economic risks with corresponding cost for consequences. The characteristic values of all the three risk coefficients are obtained with a particular test. With few more tests on the system, the values may change significantly within controlling range of each coefficient, hence `random number simulation' is resorted to obtain one distinctive value for each coefficient. The risk coefficients are statistically added to obtain final risk coefficient of each critical item and then the final rankings of critical items are estimated. The prioritization in ranking of critical items using the developed mathematical model for risk assessment shall be useful in optimization of financial losses and timing of maintenance actions.
Osinga, Rik; Babst, Doris; Bodmer, Elvira S; Link, Bjoern C; Fritsche, Elmar; Hug, Urs
2017-12-01
This work assessed both subjective and objective postoperative parameters after breast reduction surgery and compared between patients and plastic surgeons. After an average postoperative observation period of 6.7 ± 2.7 (2 - 13) years, 159 out of 259 patients (61 %) were examined. The mean age at the time of surgery was 37 ± 14 (15 - 74) years. The postoperative anatomy of the breast and other anthropometric parameters were measured in cm with the patient in an upright position. The visual analogue scale (VAS) values for symmetry, size, shape, type of scar and overall satisfaction both from the patient's and from four plastic surgeons' perspectives were assessed and compared. Patients rated the postoperative result significantly better than surgeons. Good subjective ratings by patients for shape, symmetry and sensitivity correlated with high scores for overall assessment. Shape had the strongest influence on overall satisfaction (regression coefficient 0.357; p < 0.001), followed by symmetry (regression coefficient 0.239; p < 0.001) and sensitivity (regression coefficient 0.109; p = 0.040) of the breast. The better the subjective rating for symmetry by the patient, the smaller the measured difference of the jugulum-mamillary distance between left and right (regression coefficient -0.773; p = 0.002) and the smaller the difference in height of the lowest part of the breast between left and right (regression coefficient -0.465; p = 0.035). There was no significant correlation between age, weight, height, BMI, resected weight of the breast, postoperative breast size or type of scar with overall satisfaction. After breast reduction surgery, long-term outcome is rated significantly better by patients than by plastic surgeons. Good subjective ratings by patients for shape, symmetry and sensitivity correlated with high scores for overall assessment. Shape had the strongest influence on overall satisfaction, followed by symmetry and sensitivity of the breast. Postoperative size of the breast, resection weight, type of scar, age or BMI was not of significant influence. Symmetry was the only assessed subjective parameter of this study that could be objectified by postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.
Directional Solidification and Characterization of Hg(0.89) Mn(0.11)Te
NASA Technical Reports Server (NTRS)
Price, M. W.; Scripa, R. N.; Lehoczky. S. L.; Szofran, F. R.; Su, C.-H.
1998-01-01
Two boules of Hg(0.89)Mn(0.11)Te(MMT) were solidified using the vertical Bridgman-Stockbarger method. Translation rates of 0.09 and 0. 18 microns/s were used. The influence of growth rate on axial compositional homogeneity in the MMT boules was evaluated experimentally by conducting precision density measurements on radial slices taken from each boule. In addition, Plane Front Solidification theory and segregation coefficient (k) data for the Hg(1-x)Mn(x)Te system were used to fit theoretical composition profiles to the measured MMT axial composition profiles. The strong correlation between the measured and calculated MMT axial composition profiles indicates diffusion dominated axial solute redistribution in the boules under the applied growth conditions. The analysis of the MMT axial composition profiles by Plane Front Solidification theory allowed the calculation of the effective diffusion coefficient (D(eff) = 3.5 x l0(exp -5) sq cm/s). The k-values for the Hg(1-x)Mn(x)Te system and the D(sub eff) - value were then used to verify that both boules were solidified under conditions which did not exceed the Constitutional Supercooling Criteria under ideal conditions. Finally, a preliminary examination of the radial compositional variation in each MMT was made using Fourier Transform Infra-Red Spectroscopy (FTIR). The radial homogeneity in the MMT boules was found to be comparable for both translation rates.
Reliability and Validity of Observational Risk Screening in Evaluating Dynamic Knee Valgus
Ekegren, Christina L.; Miller, William C.; Celebrini, Richard G.; Eng, Janice J.; MacIntyre, Donna L.
2012-01-01
Study Design Nonexperimental methodological study. Objectives To determine the interrater and intrarater reliability and validity of using observational risk screening guidelines to evaluate dynamic knee valgus. Background A deficiency in the neuromuscular control of the hip has been identified as a key risk factor for non-contact anterior cruciate ligament (ACL) injury in post pubescent females. This deficiency can manifest itself as a valgus knee alignment during tasks involving hip and knee flexion. There are currently no scientifically tested methods to screen for dynamic knee valgus in the clinic or on the field. Methods Three physiotherapists used observational risk screening guidelines to rate 40 adolescent female soccer players according to their risk of ACL injury. The rating was based on the amount of dynamic knee valgus observed on a drop jump landing. Ratings were evaluated for intrarater and interrater agreement using kappa coefficients. Sensitivity and specificity of ratings were evaluated by comparing observational ratings with measurements obtained using 3-dimensional (3D) motion analysis. Results Kappa coefficients for intrarater and interrater agreement ranged from 0.75 to 0.85, indicating that ratings were reasonably consistent over time and between physiotherapists. Sensitivity values were inadequate, ranging from 67–87%. This indicated that raters failed to detect up to a third of “truly high risk” individuals. Specificity values ranged from 60–72% which was considered adequate for the purposes of the screen. Conclusion Observational risk screening is a practical and cost-effective method of screening for ACL injury risk. Rater agreement and specificity were acceptable for this method but sensitivity was not. To detect a greater proportion of individuals at risk of ACL injury, coaches and clinicians should ensure that they include additional tests for other high risk characteristics in their screening protocols. PMID:19721212
Comparison Analysis among Large Amount of SNS Sites
NASA Astrophysics Data System (ADS)
Toriumi, Fujio; Yamamoto, Hitoshi; Suwa, Hirohiko; Okada, Isamu; Izumi, Kiyoshi; Hashimoto, Yasuhiro
In recent years, application of Social Networking Services (SNS) and Blogs are growing as new communication tools on the Internet. Several large-scale SNS sites are prospering; meanwhile, many sites with relatively small scale are offering services. Such small-scale SNSs realize small-group isolated type of communication while neither mixi nor MySpace can do that. However, the studies on SNS are almost about particular large-scale SNSs and cannot analyze whether their results apply for general features or for special characteristics on the SNSs. From the point of view of comparison analysis on SNS, comparison with just several types of those cannot reach a statistically significant level. We analyze many SNS sites with the aim of classifying them by using some approaches. Our paper classifies 50,000 sites for small-scale SNSs and gives their features from the points of network structure, patterns of communication, and growth rate of SNS. The result of analysis for network structure shows that many SNS sites have small-world attribute with short path lengths and high coefficients of their cluster. Distribution of degrees of the SNS sites is close to power law. This result indicates the small-scale SNS sites raise the percentage of users with many friends than mixi. According to the analysis of their coefficients of assortativity, those SNS sites have negative values of assortativity, and that means users with high degree tend to connect users with small degree. Next, we analyze the patterns of user communication. A friend network of SNS is explicit while users' communication behaviors are defined as an implicit network. What kind of relationships do these networks have? To address this question, we obtain some characteristics of users' communication structure and activation patterns of users on the SNS sites. By using new indexes, friend aggregation rate and friend coverage rate, we show that SNS sites with high value of friend coverage rate activate diary postings and their comments. Besides, they become activated when hub users with high degree do not behave actively on the sites with high value of friend aggregation rate and high value of friend coverage rate. On the other hand, activation emerges when hub users behave actively on the sites with low value of friend aggregation rate and high value of friend coverage rate. Finally, we observe SNS sites which are increasing the number of users considerably, from the viewpoint of network structure, and extract characteristics of high growth SNS sites. As a result of discrimination on the basis of the decision tree analysis, we can recognize the high growth SNS sites with a high degree of accuracy. Besides, this approach suggests mixi and the other small-scale SNS sites have different character trait.
Drewniak, Elizabeth I; Jay, Gregory D; Fleming, Braden C; Zhang, Ling; Warman, Matthew L; Crisco, Joseph J
2012-01-01
Objective To investigate the effects of lubricin gene dosage and cyclic loading on whole joint coefficient of friction and articular cartilage surface integrity in mouse knee joints. Methods Joints from mice with 2 (Prg4+/+), 1 (Prg4+/−), or no (Prg4−/−) functioning lubricin alleles were subjected to 26 hours of cyclic loading using a custom-built pendulum. Coefficient of friction values were measured at multiple time points. Contralateral control joints were left unloaded. Following testing, joints were examined for histologic evidence of damage and cell viability. Results At baseline, the coefficient of friction values in Prg4−/− mice were significantly higher than those in Prg4+/+ and Prg4+/− mice (P < 0.001). Cyclic loading continuously increased the coefficient of friction in Prg4−/− mouse joints. In contrast, Prg4+/− and Prg4+/+ mouse joints had no coefficient of friction increases during the first 4 hours of loading. After 26 hours of loading, joints from all genotypes had increased coefficient of friction values compared to baseline and unloaded controls. Significantly greater increases occurred in Prg4−/− and Prg4+/− mouse joints compared to Prg4+/+ mouse joints. The coefficient of friction values were not significantly associated with histologic evidence of damage or loss of cell viability. Conclusion Our findings indicate that mice lacking lubricin have increased baseline coefficient of friction values and are not protected against further increases caused by loading. Prg4+/− mice are indistinguishable from Prg4+/+ mice at baseline, but have significantly greater coefficient of friction values following 26 hours of loading. Lubricin dosage affects joint properties during loading, and may have clinical implications in patients for whom injury or illness alters lubricin abundance. PMID:21905020
Long-term variability of aerosol optical properties and radiative effects in Northern Finland
NASA Astrophysics Data System (ADS)
Lihavainen, Heikki; Hyvärinen, Antti; Asmi, Eija; Hatakka, Juha; Viisanen, Yrjö
2017-04-01
We introduce long term dataset of aerosol scattering and absorption properties and combined aerosol optical properties measured in Pallas Atmosphere-Ecosystem Supersite in Norhern Finland. The station is located 170 km north of the Arctic Circle. The station is affected by both pristine Arctic air masses as well as long transported air pollution from northern Europe. We studied the optical properties of aerosols and their radiative effects in continental and marine air masses, including seasonal cycles and long-term trends. The average (median) scattering coefficient, backscattering fraction, absorption coefficient and single scattering albedo at the wavelength of 550 nm were 7.9 (4.4) 1/Mm, 0.13 (0.12), 0.74 (0.35) 1/Mm and 0.92 (0.93), respectively. We observed clear seasonal cycles in these variables, the scattering coefficient having high values during summer and low in fall, and absorption coefficient having high values during winter and low in fall. We found that the high values of the absorption coefficient and low values of the single scattering albedo were related to continental air masses from lower latitudes. These aerosols can induce an additional effect on the surface albedo and melting of snow. We observed the signal of the Arctic haze in marine (northern) air masses during March and April. The haze increased the value of the absorption coefficient by almost 80% and that of the scattering coefficient by about 50% compared with the annual-average values. We did not observe any long-term trend in the scattering coefficient, while our analysis showed a clear decreasing trend in the backscattering fraction and scattering Ångström exponent during winter. We also observed clear relationship with temperature and aerosol scattering coefficient. We will present also how these different features affects to aerosol direct radiative forcing.
Association between sarcopenia and osteoporosis in chronic liver disease.
Hayashi, Manabu; Abe, Kazumichi; Fujita, Masashi; Okai, Ken; Takahashi, Atsushi; Ohira, Hiromasa
2018-05-07
Sarcopenia and osteoporosis are important complications in chronic liver disease (CLD). The aim of this study was to investigate the relationship between sarcopenia and osteoporosis in patients with CLD. We retrospectively investigated the relationship between sarcopenia and osteoporosis in 112 CLD patients (57 males and 55 females), including 40 cirrhotic patients (36%), by measuring the appendicular skeletal muscle mass index (ASMI) using bio-impedance analysis. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. The sarcopenia rate was 13% (14/112), and the osteoporosis and osteopenia rates were 17% (19/112) and 65% (73/112), respectively. The rate of osteoporosis was significant and high in patients with sarcopenia or cirrhosis. In linear regression analysis, sarcopenia was significantly associated with the BMD of the lumbar spine (Coefficient = -0.149, P = 0.014) and the femur neck (Coefficient = -0.110, P = 0.003). Cirrhosis was also significantly associated with low BMD of the lumbar spine (Coefficient = -0.160, P < 0.001) and the femur neck (Coefficient = -0.066, P = 0.015). In the logistic analysis, sarcopenia (odds ratio = 6.16, P = 0.039) and cirrhosis (odds ratio = 15.8, P = 0.002) were independent risk factors for osteoporosis. The ASMI cut-off values for osteoporosis were 7.33 kg/m 2 in males and 5.71 kg/m 2 in females. Sarcopenia was closely associated with osteoporosis, and a low ASMI was a potential predictor of osteoporosis in CLD patients. Screening for BMD may be required to detect osteoporosis in cirrhotic patients. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Dillon, Terry J.; Dulitz, Katrin; Groß, Christoph B. M.; Crowley, John N.
2017-12-01
Pulsed laser methods for OH generation and detection were used to study atmospheric degradation reactions for three important biogenic gases: OH + isoprene (Reaction R1), OH +α-pinene (Reaction R2) and OH + Δ-3-carene (Reaction R3). Gas-phase rate coefficients were characterized by non-Arrhenius kinetics for all three reactions. For (R1), k1 (241-356 K) = (1.93±0.08) × 10-11exp{(466±12)/T} cm3 molecule-1 s-1 was determined, with a room temperature value of k1 (297 K) = (9.3±0.4) × 10-11 cm3 molecule-1 s-1, independent of bath-gas pressure (5-200 Torr) and composition (M = N2 or air). Accuracy and precision were enhanced by online optical monitoring of isoprene, with absolute concentrations obtained via an absorption cross section, σisoprene = (1.28±0.06) × 10-17 cm2 molecule-1 at λ = 184.95 nm, determined in this work. These results indicate that significant discrepancies between previous absolute and relative-rate determinations of k1 result in part from σ values used to derive the isoprene concentration in high-precision absolute determinations.
Similar methods were used to determine rate coefficients (in 10-11 cm3 molecule-1 s-1) for (R2)-(R3): k2 (238-357 K) = (1.83±0.04) × exp{(330±6)/T} and k3 (235-357 K) = (2.48±0.14) × exp{(357±17)/T}. This is the first temperature-dependent dataset for (R3) and enables the calculation of reliable atmospheric lifetimes with respect to OH removal for e.g. boreal forest springtime conditions. Room temperature values of k2 (296 K) = (5.4±0.2) × 10-11 cm3 molecule-1 s-1 and k3 (297 K) = (8.1±0.3) × 10-11 cm3 molecule-1 s-1 were independent of bath-gas pressure (7-200 Torr, N2 or air) and in good agreement with previously reported values. In the course of this work, 184.95 nm absorption cross sections were determined: σ = (1.54±0.08) × 10-17 cm2 molecule-1 for α-pinene and (2.40±0.12) × 10-17 cm2 molecule-1 for Δ-3-carene.
Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions
NASA Astrophysics Data System (ADS)
Saurabh, S.; Harpalani, S.
2017-12-01
Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.
Strength of Wet and Dry Montmorillonite
NASA Astrophysics Data System (ADS)
Morrow, C. A.; Lockner, D. A.; Moore, D. E.
2015-12-01
Montmorillonite, an expandable smectite clay, is a common mineral in fault zones to a depth of around 3 km. Its low strength relative to other common fault gouge minerals is important in many models of fault rheology. However, the coefficient of friction is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. For instance, in some reported studies, samples were either partially saturated or possibly over pressured, leading to wide variability in reported shear strength. In this study, the coefficient of friction, μ, of both saturated and oven-dried (at 150°C) Na-montmorillonite was measured at normal stresses up to 680 MPa at room temperature and shortening rates from 1.0 to 0.01 μm/s. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure in the clay layers. Coefficients of friction are reported after 8 mm of axial displacement in a triaxial apparatus on saw-cut samples containing a layer of montmorillonite gouge, with either granite or sandstone driving blocks. For saturated samples, μ increased from around 0.1 at low pressure to 0.25 at the highest test pressures. In contrast, values for oven-dried samples decreased asymptotically from approximately 0.78 at 10 MPa normal stress to around 0.45 at 400-680 MPa. While wet and dry strengths approached each other with increasing effective normal stress, wet strength remained only about half of the dry strength at 600 MPa effective normal stress. The increased coefficient of friction can be correlated with a reduction in the number of loosely bound lubricating surface water layers on the clay platelets due to applied normal stress under saturated conditions. The steady-state rate dependence of friction, a-b, was positive and dependent on normal stress. For saturated samples, a-b increased linearly with applied normal stress from ~0 to 0.004, while for dry samples a-b decreased with increasing normal stress from 0.008 to 0.002. All values were either neutral or rate strengthening, indicating a tendency for stable sliding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen
WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offersmore » the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the frame and divider elements and corresponding edge-of-glass areas (based on generic correlations); The total solar and visible transmittance and reflectances of the glazing system. Color properties, i.e. L*, a*, and b* color coordinates, dominant wavelength, and purity for transmitted and reflected (outdoor) solar radiation; The damage-weighted transmittance of the glazing system between 0.3 an 0.38 microns; The angular dependence of the solar and visible transmittances, solar and visible reflectances, solar absorptance, and solar heat gain coefficient of the glazing system; The percent relative humidity of the inside and outside air for which condensation will occur on the interior and exterior glazing surfaces respectively; The center-of-glass temperature distribution.« less
NASA Astrophysics Data System (ADS)
Giri, Sharmila J.; Swart, Peter K.; Devlin, Quinn B.
2018-02-01
The skeletal composition of calcifying organisms, in particular Mg/Ca and Sr/Ca ratios, have been widely used to understand fluctuations in seawater chemistry throughout the Phanerozoic. While the success of applying these data to the geologic record depends on a knowledge of the distribution coefficients for these elements (DMg and DSr), there are scarcely any studies which have described how these values vary as a result of changing seawater Mg/Ca ratios. To address this, we have cultured the scleractinian coral, Pocillopora damicornis, in seawater with ranges of Mg and Ca concentrations. Here, we demonstrate that Mg/Ca and Sr/Ca ratios of coral skeletons correlate with total seawater Mg/Ca and Sr/Ca molar ratios, but that apparent DMg and DSr values do not remain constant across the range of experimental seawater treatments, with DMg values significantly increasing with seawater Mg/Ca ratios and DSr values significantly increasing with seawater Ca concentrations. These trends are not rate dependent and may be best explained by a Rayleigh distillation model, in which the calcifying space is semi-isolated from seawater during skeletogenesis (i.e. leaky). As there is a slight increase in DMg and decrease in DSr values between our "Jurassic" and "Modern" seawater treatments, the application of a constant distribution coefficient to estimate changes in ancient seawater chemistry may underestimate seawater Mg/Ca ratios and overestimate Sr/Ca throughout the Mesozoic and Cenozoic. We suggest that interpretations of seawater chemistry from fossil corals may be improved by using the relationships derived for skeletal and seawater Mg/Ca and Sr/Ca ratios established by our experiments, as they incorporate the effect of seawater Mg/Ca ratios on skeletal Mg/Ca and Sr/Ca ratios.
Prediction of alpha factor values for fine pore aeration systems.
Gillot, S; Héduit, A
2008-01-01
The objective of this work was to analyse the impact of different geometric and operating parameters on the alpha factor value for fine bubble aeration systems equipped with EPDM membrane diffusers. Measurements have been performed on nitrifying plants operating under extended aeration and treating mainly domestic wastewater. Measurements performed on 14 nitrifying plants showed that, for domestic wastewater treatment under very low F/M ratios, the alpha factor is comprised between 0.44 and 0.98. A new composite variable (the Equivalent Contact Time, ECT) has been defined and makes it possible for a given aeration tank, knowing the MCRT, the clean water oxygen transfer coefficient and the supplied air flow rate, to predict the alpha factor value. ECT combines the effect on mass transfer of all generally accepted factors affecting oxygen transfer performances (air flow rate, diffuser submergence, horizontal flow). (c) IWA Publishing 2008.
Radiation-MHD simulations for the development of a spark discharge channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niederhaus, John Henry; Jorgenson, Roy E.; Warne, Larry K.
The growth of a cylindrical s park discharge channel in water and Lexan is studied using a series of one - dimensional simulations with the finite - element radiation - magnetohydrodynamics code ALEGRA. Computed solutions are analyzed in order to characterize the rate of growth and dynamics of the spark c hannels during the rising - current phase of the drive pulse. The current ramp rate is varied between 0.2 and 3.0 kA/ns, and values of the mechanical coupling coefficient K p are extracted for each case. The simulations predict spark channel expansion veloc ities primarily in the range ofmore » 2000 to 3500 m/s, channel pressures primarily in the range 10 - 40 GPa, and K p values primarily between 1.1 and 1.4. When Lexan is preheated, slightly larger expansion velocities and smaller K p values are predicted , but the o verall behavior is unchanged.« less
Langenbucher, Frieder
2005-01-01
A linear system comprising n compartments is completely defined by the rate constants between any of the compartments and the initial condition in which compartment(s) the drug is present at the beginning. The generalized solution is the time profiles of drug amount in each compartment, described by polyexponential equations. Based on standard matrix operations, an Excel worksheet computes the rate constants and the coefficients, finally the full time profiles for a specified range of time values.
Hood entry coefficients of compound exhaust hoods.
Figueroa, Crescente E
2011-12-01
A traditional method for assessing the flow rate in ventilation systems is based on multiple readings of velocity or velocity pressure (VP) (usually 10 or 20 points) taken in ductwork sections located away from fittings (> seven × diameters of straight duct). This study seeks to eliminate the need for a multiple-point evaluation and replace it with a simplified method that requires only a single measurement of hood static pressure (SP(h)) taken at a more accessible location (< three × diameters of straight duct from the hood entry). The SP(h) method is widely used for the assessment of flow rate in simple hoods. However, industrial applications quite often use compound hoods that are regularly of the slot/plenum type. For these hoods, a "compound coefficient of entry" has not been published, which makes the use of the hood static pressure method unfeasible. This study proposes a model for the computation of a "compound coefficient of entry" and validates the use of this model to assess flow rate in two systems of well-defined geometry (multi-slotted/plenum and single-slotted/tapered or "fish-tail" types). When using a conservative value of the slot loss factor (1.78), the proposed model yielded an estimate of the volumetric flow rate within 10% of that provided by a more comprehensive method of assessment. The simplicity of the hood static pressure method makes it very desirable, even in the upper range of experimental error found in this study.
Bano, Kiran; Kennedy, Gareth F; Zhang, Jie; Bond, Alan M
2012-04-14
The theory for large amplitude Fourier transformed ac voltammetry at a rotating disc electrode is described. Resolution of time domain data into dc and ac harmonic components reveals that the mass transport for the dc component is controlled by convective-diffusion, while the background free higher order harmonic components are flow rate insensitive and mainly governed by linear diffusion. Thus, remarkable versatility is available; Levich behaviour of the dc component limiting current provides diffusion coefficient values and access to higher harmonics allows fast electrode kinetics to be probed. Two series of experiments (dc and ac voltammetry) have been required to extract these parameters; here large amplitude ac voltammetry with RDE methodology is used to demonstrate that kinetics and diffusion coefficient information can be extracted from a single experiment. To demonstrate the power of this approach, theoretical and experimental comparisons of data obtained for the reversible [Ru(NH(3))(6)](3+/2+) and quasi-reversible [Fe(CN)(6)](3-/4-) electron transfer processes are presented over a wide range of electrode rotation rates and with different concentrations and electrode materials. Excellent agreement of experimental and simulated data is achieved, which allows parameters such as electron transfer rate, diffusion coefficient, uncompensated resistance and others to be determined using a strategically applied approach that takes into account the different levels of sensitivity of each parameter to the dc or the ac harmonic.
Aspects of bioenergetics and civilization.
Zotin, A I; Lamprecht, I
1996-06-07
By means of an allometric relation between the oxygen consumption rate and the body mass of an animal a metabolic coefficient is derived that can be used as a measure of standard metabolism in different animal species. This coefficient increased in the course of evolution corresponding to the time of appearance of each class of animal. It reached its highest values in Primates and passerine birds. A further increase across an energetic threshold was only possible with human civilization. A similar approach to evolution is performed through an encephalization coefficient showing that in all phases of evolution, species existed with a much larger relative brain volume than the other members of their class. These species might have established a non-human civilization on Earth if evolution would have taken another path. Finally, social activities of insects and the use of external energy sources by animals are discussed to show further implications of this bioenergetic approach to evolution.
Onel, L; Blitz, M A; Seakins, P W
2012-04-05
Monoethanol amine (H2NCH2CH2OH, MEA) has been proposed for large-scale use in carbon capture and storage. We present the first absolute, temperature-dependent determination of the rate coefficient for the reaction of OH with MEA using laser flash photolysis for OH generation, monitoring OH removal by laser-induced fluorescence. The room-temperature rate coefficient is determined to be (7.61 ± 0.76) × 10(-11) cm(3) molecule(-1) s(-1), and the rate coefficient decreases by about 40% by 510 K. The temperature dependence of the rate coefficient is given by k1= (7.73 ± 0.24) × 10(-11)(T/295)(-(0.79±0.11)) cm(3) molecule(-1) s(-1). The high rate coefficient shows that gas-phase processing in the atmosphere will be competitive with uptake onto aerosols.
Kundu, Pradyut; Pramanik, Arnab; Dasgupta, Arpita; Mukherjee, Somnath; Mukherjee, Joydeep
2014-01-01
A heterotrophic carbon utilizing microbe (R31) capable of simultaneous nitrification and denitrification (SND) was isolated from wastewater of an Indian slaughterhouse. From an initial COD value of 583.0 mg/L, 95.54% was removed whilst, from a starting NH4 +-N concentration of 55.7 mg/L, 95.87% was removed after 48 h contact. The concentrations of the intermediates hydroxylamine, nitrite, and nitrate were low, thus ensuring nitrogen removal. Aerobic denitrification occurring during ammonium removal by R31 was confirmed by utilization of both nitrate and nitrite as nitrogen substrates. Glucose and succinate were superior while acetate and citrate were poor substrates for nitrogen removal. Molecular phylogenetic identification, supported by chemotaxonomic and physiological properties, assigned R31 as a close relative of Chryseobacterium haifense. The NH4 +-N utilization rate and growth of strain R31 were found to be higher at C/N = 10 in comparison to those achieved with C/N ratios of 5 and 20. Monod kinetic coefficients, half saturation concentration (K s), maximum rate of substrate utilization (k), yield coefficient, (Y) and endogenous decay coefficient (K d) indicated potential application of R31 in large-scale SND process. This is the first report on concomitant carbon oxidation, nitrification, and denitrification in the genus Chryseobacterium and the associated kinetic coefficients. PMID:24991552
The DPAC Compensation Model: An Introductory Handbook.
1987-04-01
introductory and advanced economics courses at the US Air Force Academy, he served for four years as an analyst and action officer in the ...introduces new users to the ACOL framework and provides some guidelines for choosing reasonable values for the four long-run parameters required to run the ...regression coefficients for ACOL and the civilian unemployment rate; for pilots, the number of " new " pilot
ERIC Educational Resources Information Center
Pecorella, Patricia A.; Bowers, David G.
Multiple regression in a double cross-validated design was used to predict two performance measures (total variable expense and absence rate) by multi-month period in five industrial firms. The regressions do cross-validate, and produce multiple coefficients which display both concurrent and predictive effects, peaking 18 months to two years…
Streaming potential of superhydrophobic microchannels.
Park, Hung Mok; Kim, Damoa; Kim, Se Young
2017-03-01
For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The efficiency of photodissociation for molecules in interstellar ices
NASA Astrophysics Data System (ADS)
Kalvāns, J.
2018-05-01
Processing by interstellar photons affects the composition of the icy mantles on interstellar grains. The rate of photodissociation in solids differs from that of molecules in the gas phase. The aim of this work was to determine an average, general ratio between photodissociation coefficients for molecules in ice and gas. A 1D astrochemical model was utilized to simulate the chemical composition for a line of sight through a collapsing interstellar cloud core, whose interstellar extinction changes with time. At different extinctions, the calculated column densities of icy carbon oxides and ammonia (relative to water ice) were compared to observations. The latter were taken from literature data of background stars sampling ices in molecular clouds. The best-fit value for the solid/gas photodissociation coefficient ratio was found to be ≈0.3. In other words, gas-phase photodissociation rate coefficients have to be reduced by a factor of 0.3 before applying them to icy species. A crucial part of the model is a proper inclusion of cosmic-ray induced desorption. Observations sampling gas with total extinctions in excess of ≈22 mag were found to be uncorrelated to modelling results, possibly because of grains being covered with non-polar molecules.
The Tribological Properties of Several Silahydrocarbons for Use in Space Mechanisms
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Jansen, M. J.; Gschwender, L. J.; Snyder, C. E., Jr.; Sharma, S. K.; Predmore, R. E.; Dube, M. J.
2001-01-01
Silahydrocarbons are members of a relatively new class of liquid lubricants with great potential for use in space mechanisms. They are unimolecular species consisting of silicon, carbon, and hydrogen. They possess unique wear, viscosity, and volatility properties while retaining the ability to solubilize conventional additives. The tribological properties of several members of this class, including tri, tetra- and penta-compounds, are presented. These properties include: viscosity-temperature (ASTM D446), viscosity-pressure coefficient, vapor pressure, volatility, lubricant lifetimes, traction, reciprocating and four ball wear rates and bearing performance. Lubricant lifetimes were determined using a vacuum ball bearing simulator, the spiral orbit tribometer (SOT). Wear was measured using a Cameron Plint reciprocating tribometer and wear rates with a vacuum four ball tribometer. Conventional viscometry was used for viscosity-temperature measurements and a Knudsen cell for vapor pressure. Vacuum Thermogravimetric Analysis (TGA) was also used for volatility measurements. Pressure viscosity coefficients (a values) were estimated from EHL (elastohydrodynamic lubrication) film thickness measurements. Traction coefficients were measured with a twin disk traction rig. Bearing tests were performed in a vacuum bearing test facility. These properties are compared to existing state-of-the-art space lubricants.
Wang, Shibo; Niu, Chengchao
2016-01-01
In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324
Two-stage model of radon-induced malignant lung tumors in rats: effects of cell killing
NASA Technical Reports Server (NTRS)
Luebeck, E. G.; Curtis, S. B.; Cross, F. T.; Moolgavkar, S. H.
1996-01-01
A two-stage stochastic model of carcinogenesis is used to analyze lung tumor incidence in 3750 rats exposed to varying regimens of radon carried on a constant-concentration uranium ore dust aerosol. New to this analysis is the parameterization of the model such that cell killing by the alpha particles could be included. The model contains parameters characterizing the rate of the first mutation, the net proliferation rate of initiated cells, the ratio of the rates of cell loss (cell killing plus differentiation) and cell division, and the lag time between the appearance of the first malignant cell and the tumor. Data analysis was by standard maximum likelihood estimation techniques. Results indicate that the rate of the first mutation is dependent on radon and consistent with in vitro rates measured experimentally, and that the rate of the second mutation is not dependent on radon. An initial sharp rise in the net proliferation rate of initiated cell was found with increasing exposure rate (denoted model I), which leads to an unrealistically high cell-killing coefficient. A second model (model II) was studied, in which the initial rise was attributed to promotion via a step function, implying that it is due not to radon but to the uranium ore dust. This model resulted in values for the cell-killing coefficient consistent with those found for in vitro cells. An "inverse dose-rate" effect is seen, i.e. an increase in the lifetime probability of tumor with a decrease in exposure rate. This is attributed in large part to promotion of intermediate lesions. Since model II is preferable on biological grounds (it yields a plausible cell-killing coefficient), such as uranium ore dust. This analysis presents evidence that a two-stage model describes the data adequately and generates hypotheses regarding the mechanism of radon-induced carcinogenesis.
Self diffusion of interacting membrane proteins.
Abney, J R; Scalettar, B A; Owicki, J C
1989-01-01
A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The variation in experimental diffusion coefficients of integral membrane proteins is greater than that predicted by the theory, and may also reflect protein-induced perturbations in membrane viscosity. PMID:2720077
Angular circulation speed of tablets in a vibratory tablet coating pan.
Kumar, Rahul; Wassgren, Carl
2013-03-01
In this work, a single tablet model and a discrete element method (DEM) computer simulation are developed to obtain the angular circulation speed of tablets in a vibratory tablet coating pan for range of vibration frequencies and amplitudes. The models identify three important dimensionless parameters that influence the speed of the tablets: the dimensionless amplitude ratio (a/R), the Froude number (aω2/g), and the tablet-wall friction coefficient, where a is the peak vibration amplitude at the drum center, ω is the vibration angular frequency, R is the drum radius, and g is the acceleration due to gravity. The models predict that the angular circulation speed of tablets increases with an increase in each of these parameters. The rate of increase in the angular circulation speed is observed to decrease for larger values of a/R. The angular circulation speed reaches an asymptote beyond a tablet-wall friction coefficient value of about 0.4. Furthermore, it is found that the Froude number should be greater than one for the tablets to start circulating. The angular circulation speed increases as Froude number increases but then does not change significantly at larger values of the Froude number. Period doubling, where the motion of the bed is repeated every two cycles, occurs at a Froude number larger than five. The single tablet model, although much simpler than the DEM model, is able to predict the maximum circulation speed (the limiting case for a large value of tablet-wall friction coefficient) as well as the transition to period doubling.
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less
Coefficients of discharge of fuel-injection nozzles for compression-ignition engines
NASA Technical Reports Server (NTRS)
Gelalles, A G
1932-01-01
This report presents the results of an investigation to determine the coefficients of discharge of nozzles with small, round orifices of the size used with high-speed compression-ignition engines. The injection pressures and chamber back pressures employed were comparable to those existing in compression-ignition engines during injection. The construction of the nozzles was varied to determine the effect of the nozzle design on the coefficient. Tests were also made with nozzles assembled in an automatic injection valve, both with a plain and with a helically grooved stem. It was found that a smooth passage before the orifice is requisite for high flow efficiency. A beveled leading edge before the orifice gave a higher coefficient of discharge than a rounded edge. The results with the nozzles assembled in an automatic injection valve having a plain stem duplicated those with the nozzles assembled at the end of a straight tube of constant diameter. Lower coefficients were obtained with the nozzles assembled in an injection valve having a helically grooved stem. When the coefficients of nozzles of any one geometrical shape were plotted against values of corresponding Reynold's numbers for the orifice diameters and rates of flow tested, it was found that experimental points were distributed along a single curve.
Effect of aperture geometry on heat transfer in tilted partially open cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsayed, M.M.; Chakroun, W.
1999-11-01
Heat transfer in cavities is receiving increasing attention because of the various applications in engineering; e.g., passive solar heating, energy conservation in buildings, solar concentrating receivers, and electronic equipment. Here, convection from a square, tilted partially open cavity was investigated experimentally. The experiment was carried out to study the effect of the aperture geometry on the heat transfer between the cavity and the surrounding air. Four different geometrical arrangements for the opening were investigated: (1) high wall slit, (2) low wall slit, (3) centered wall slit, and (4) uniform wall slots. Each opening arrangement was studied at opening ratios (i.e.,more » ratio of opening height to cavity height) of 0.25, 0.5, and 0.75. The average heat transfer coefficient between the cavity and the surrounding air was estimated for each geometrical arrangement for tilt angles ranging from {minus}90 deg to +90 deg with increments of 15 deg and at a constant heat flux Grashof number of 5.5 x 10{sup 8}. The results showed that for tilt angles between 90 and 75 deg, the heat transfer coefficient has a small value that is independent of the geometrical arrangement of the opening. The value of the heat transfer coefficient increases sharply with decreasing tilt angle until an angle value of zero degrees is reached. The increase in the heat transfer coefficient continues in the negative range of tilt angle but not in the same rate as in the positive range of the tilt angle. The uniform slot arrangement gave in general higher heat transfer coefficient than the other three arrangements of the opening. Large differences in the heat transfer coefficient were observed between the high and the low wall slits where the high wall slit is found to transfer more heat to the surroundings than the low wall slit. Correlations were developed to predict the average Nusselt number of the cavity in terms of the opening ratio and the cavity tilt angle for cavities with high wall slit, low wall slit, centered wall slit, and the uniform wall slots.« less
Obliquity, precession rate, and nutation coefficients for a set of 100 asteroids
NASA Astrophysics Data System (ADS)
Lhotka, C.; Souchay, J.; Shahsavari, A.
2013-08-01
Context. Thanks to various space missions and the progress of ground-based observational techniques, the knowledge of asteroids has considerably increased in the recent years. Aims: Due to this increasing database that accompanies this evolution, we compute for a set of 100 asteroids their rotational parameters: the moments of inertia along the principal axes of the object, the obliquity of the axis of rotation with respect to the orbital plane, the precession rates, and the nutation coefficients. Methods: We select 100 asteroids for which the parameters for the study are well-known from observations or space missions. For each asteroid, we determine the moments of inertia, assuming an ellipsoidal shape. We calculate their obliquity from their orbit (instead of the ecliptic) and the orientation of the spin-pole. Finally, we calculate the precession rates and the largest nutation components. The number of asteroids concerned leads to some statistical studies of the output. Results: We provide a table of rotational parameters for our set of asteroids. The table includes the obliquity, their axes ratio, their dynamical ellipticity Hd, and the scaling factor K. We compute the precession rate ψ˙ and the leading nutation coefficients Δψ and Δɛ. We observe similar characteristics, as observed by previous authors that is, a significantly larger number of asteroids rotates in the prograde mode (≈ 60%) than in the retrograde one with a bimodal distribution. In particular, there is a deficiency of objects with a polar axis close to the orbit. The precession rates have a mean absolute value of 18″/y, and the leading nutation coefficients have an average absolute amplitude of 5.7″ for Δψ and 5.2″ for Δɛ. At last, we identify and characterize some cases with large precession rates, as seen in 25143 Itokawa, with has a precession rate of about - 475''/y. Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A8
Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions
NASA Astrophysics Data System (ADS)
Danaelan, D.; Yousif, B. F.
The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.
The Study of Rain Specific Attenuation for the Prediction of Satellite Propagation in Malaysia
NASA Astrophysics Data System (ADS)
Mandeep, J. S.; Ng, Y. Y.; Abdullah, H.; Abdullah, M.
2010-06-01
Specific attenuation is the fundamental quantity in the calculation of rain attenuation for terrestrial path and slant paths representing as rain attenuation per unit distance (dB/km). Specific attenuation is an important element in developing the predicted rain attenuation model. This paper deals with the empirical determination of the power law coefficients which allow calculating the specific attenuation in dB/km from the knowledge of the rain rate in mm/h. The main purpose of the paper is to obtain the coefficients of k and α of power law relationship between specific attenuation. Three years (from 1st January 2006 until 31st December 2008) rain gauge and beacon data taken from USM, Nibong Tebal have been used to do the empirical procedure analysis of rain specific attenuation. The data presented are semi-empirical in nature. A year-to-year variation of the coefficients has been indicated and the empirical measured data was compared with ITU-R provided regression coefficient. The result indicated that the USM empirical measured data was significantly vary from ITU-R predicted value. Hence, ITU-R recommendation for regression coefficients of rain specific attenuation is not suitable for predicting rain attenuation at Malaysia.
NASA Astrophysics Data System (ADS)
Hariri, A.; Sarikhani, S.
2014-01-01
On the basis of a model of a geometrically dependent gain coefficient, the amplified spontaneous emission (ASE) spectral width was calculated analytically for the nearly resonant transition of ν ˜ ν0, and also numerically for a wide range of transition frequencies. For this purpose, the intensity rate equation was used under unsaturated and saturated conditions. For verifying the proposed model, reported measurements of the ASE energy versus the excitation length for a KrF laser were used. For the excitation length of l = 84 cm corresponding to single-path propagation, the ASE spectral width for the homogeneously broadened transition was calculated to be 6.28 Å, to be compared with the measured 4.1 Å spectral width reported for a KrF oscillator utilizing a two-mirror resonator. With the gain parameters obtained from the ASE energy measurements, the unsaturated and saturated gain coefficients for l = 84 cm were calculated to be 0.042 cm-1 and 0.014 cm-1, respectively. These values of the gain coefficient are comparable to but slightly lower than the measured gain coefficient for laser systems of 80-100 cm excitation lengths reported from different laboratories.
O(1D) kinetic study of key ozone depleting substances and greenhouse gases.
Baasandorj, Munkhbayar; Fleming, Eric L; Jackman, Charles H; Burkholder, James B
2013-03-28
A key stratospheric loss process for ozone depleting substances (ODSs) and greenhouse gases (GHGs) is reaction with the O((1)D) atom. In this study, rate coefficients, k, for the O((1)D) atom reaction were measured for the following key halocarbons: chlorofluorocarbons (CFCs) CFCl3 (CFC-11), CF2Cl2 (CFC-12), CFCl2CF2Cl (CFC-113), CF2ClCF2Cl (CFC-114), CF3CF2Cl (CFC-115); hydrochlorofluorocarbons (HCFCs) CHF2Cl (HCFC-22), CH3CClF2 (HCFC-142b); and hydrofluorocarbons (HFCs) CHF3 (HFC-23), CHF2CF3 (HFC-125), CH3CF3 (HFC-143a), and CF3CHFCF3 (HFC-227ea). Total rate coefficients, kT, corresponding to the loss of the O((1)D) atom, were measured over the temperature range 217-373 K using a competitive reactive technique. kT values for the CFC and HCFC reactions were >1 × 10(-10) cm(3) molecule(-1) s(-1), except for CFC-115, and the rate coefficients for the HFCs were in the range (0.095-0.72) × 10(-10) cm(3) molecule(-1) s(-1). Rate coefficients for the CFC-12, CFC-114, CFC-115, HFC-23, HFC-125, HFC-143a, and HFC-227ea reactions were observed to have a weak negative temperature dependence, E/R ≈ -25 K. Reactive rate coefficients, kR, corresponding to the loss of the halocarbon, were measured for CFC-11, CFC-115, HCFC-22, HCFC-142b, HFC-23, HFC-125, HFC-143a, and HFC-227ea using a relative rate technique. The reactive branching ratio obtained was dependent on the composition of the halocarbon and the trend in O((1)D) reactivity with the extent of hydrogen and chlorine substitution is discussed. The present results are critically compared with previously reported kinetic data and the discrepancies are discussed. 2D atmospheric model calculations were used to evaluate the local and global annually averaged atmospheric lifetimes of the halocarbons and the contribution of O((1)D) chemistry to their atmospheric loss. The O((1)D) reaction was found to be a major global loss process for CFC-114 and CFC-115 and a secondary global loss process for the other molecules included in this study.
Speaking rate effects on locus equation slope.
Berry, Jeff; Weismer, Gary
2013-11-01
A locus equation describes a 1st order regression fit to a scatter of vowel steady-state frequency values predicting vowel onset frequency values. Locus equation coefficients are often interpreted as indices of coarticulation. Speaking rate variations with a constant consonant-vowel form are thought to induce changes in the degree of coarticulation. In the current work, the hypothesis that locus slope is a transparent index of coarticulation is examined through the analysis of acoustic samples of large-scale, nearly continuous variations in speaking rate. Following the methodological conventions for locus equation derivation, data pooled across ten vowels yield locus equation slopes that are mostly consistent with the hypothesis that locus equations vary systematically with coarticulation. Comparable analyses between different four-vowel pools reveal variations in the locus slope range and changes in locus slope sensitivity to rate change. Analyses across rate but within vowels are substantially less consistent with the locus hypothesis. Taken together, these findings suggest that the practice of vowel pooling exerts a non-negligible influence on locus outcomes. Results are discussed within the context of articulatory accounts of locus equations and the effects of speaking rate change.
Quantification of atmospheric methane oxidation in glacier forefields: Initial survey results
NASA Astrophysics Data System (ADS)
Nauer, Philipp A.; Schroth, Martin H.; Pinto, Eric A.; Zeyer, Josef
2010-05-01
The oxidation of CH4 by methanotrophic bacteria is the only known terrestrial sink for atmospheric CH4. Aerobic methanotrophs are active in soils and sediments under various environmental conditions. However, little is known about the activity and abundance of methanotrophs in pioneering ecosystems and their role in succession. In alpine environments, receding glaciers pose a unique opportunity to investigate soil development and ecosystem succession. In an initial survey during summer and autumn 2009 we probed several locations in the forefields of four glaciers in the Swiss Alps to quantify the turnover of atmospheric methane in recently exposed soils. Three glacier forefields (the Stein, Steinlimi and Tiefen) are situated on siliceous bedrock, while one (the Griessen) is situated on calcareous bedrock. We sampled soil air from different depths to generate CH4 concentration profiles for qualitative analysis. At selected locations we applied surface Gas Push-Pull Tests (GPPT) to estimate first-order rate coefficients of CH4 oxidation. The test consists of a controlled injection of the reactants CH4 and O2 and the tracer Ar into and out of the soil at the same location. A top-closed steel cylinder previously emplaced in the soil encloses the injected gas mixture to ensure sufficient reaction times. Rate coefficients can be derived from differences of reactant and tracer breakthrough curves. In one GPPT we employed 13C-CH4 and measured the evolution of δ13C of extracted CO2. To confirm rate coefficients obtained by GPPTs we estimated effective soil diffusivity from soil core samples and fitted a diffusion-consumption model to our profile data. A qualitative analysis of the concentration profiles showed little activity in the forefields on siliceous bedrock, with only one out of fifteen locations exhibiting substantially lower CH4 concentrations in the soil compared to the atmosphere. The surface GPPTs with conventional CH4 at the active location were not sensitive enough to derive meaningful first-order rate coefficients of CH4 oxidation. The more sensitive GPPT with 13C-CH4 resulted in a coefficient of 0.025 h-1, close to the value of 0.011 h-1 estimated from the corresponding concentration profile. Activities in the forefield on calcareous bedrock were substantially higher, with decreased CH4 concentrations in the soil at three out of five locations. Estimated first-order rate coefficients from GPPT and profile at one selected location were 0.6 h-1 and 1.3 h-1, respectively, one to two orders of magnitude higher than values from the siliceous forefield. Additional analysis by quantitative PCR revealed substantially lower numbers of pmoA gene copies per g soil at the active location in the siliceous forefield compared to the selected location in the calcareous forefield. Reasons for these differences in activity and abundance are still unknown and will be subject of further investigations in an upcoming field campaign. The GPPT in combination with δ13C analysis of extracted CO2 appeared to be a functioning approach to sensitively quantify low CH4 turnover.
Influence of water content on degradation rates for ethanol in biofiltration.
Auria, R; Aycaguer, A C; Devinny, J S
1998-01-01
Treatment of ethanol vapor in a peat biofilter with various initial water contents (70%, 59%, 49%, and 35%) was studied. For water contents ranging from 49% to 70%, elimination capacity was about 30 g/m3/h. For a water content of 35%, elimination capacity decreased to 4 g/m3/h. A low mean CO2 yield coefficient (0.35 g CO2 produced per g ethanol consumed) was found for all of the initial water contents. The value was only 20% of the yield coefficient (1.91 g/g) predicted by stoichiometry. When the packing material was dried from 70% to 59% water content during the biofiltration process, elimination capacity dropped from 27 g/m3/h to 4 g/m3/h. After 24 hours of drying, the biofiltration experiment was restarted and run for two more weeks. During this period, the biofilter did not recover. At 59% water content, the rate of water evaporation was estimated at 59.6 g/m3/h. A simplified mass balance permitted calculation of the biological water production rate, approximately 22.1 g/m3/h.
Steady-state wear and friction in boundary lubrication studies
NASA Technical Reports Server (NTRS)
Loomis, W. R.; Jones, W. R., Jr.
1980-01-01
A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.
Helium escape from the Earth's atmosphere - The charge exchange mechanism revisited
NASA Technical Reports Server (NTRS)
Lie-Svendsen, O.; Rees, M. H.; Stamnes, K.
1992-01-01
We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He(+) ions and the major atmospheric constituents N2, O2 and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He(+) ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.
Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction
NASA Astrophysics Data System (ADS)
Rizal Isnanto, R.
2015-06-01
Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)
Sun, Kejun; Mao, Xiaoyun; Lu, Qiming; Jia, Aiping; Liao, Zongwen
2004-12-01
By using static absorption and soil column leaching methods, this paper studied the behaviors of several controlled-release N fertilizers in soil under laboratory conditions. The results showed that under the application rate of 450 mg x kg(-1), total ammonia volatilization from three controlled-release fertilizers decreased by 49.7%, 28.0% and 71.2%, respectively, in comparing with common urea. When the application rate was 600 mg x kg(-1), total ammonia volatilization decreased by 34.6%, 12.3%, 69.9%, respectively. Controlled-release fertilizers could markedly reduce total ammonia volatilization from soil and decrease environment pollution via fertilization. The results also indicated that total ammonia volatilization correlated significantly with soil urease activity, pH value and N leaching rate. The correlation coefficient between total ammonia volatilization and accumulated N leaching rate was 0.9533, and that between total ammonia volatilization and soil urease activity and pH value was 0.9533 and 0.9908, respectively.
NASA Astrophysics Data System (ADS)
Kaur, Rajnish; Kumar, Anil; Osan, Janos; Czyzycki, M.; Karydas, A. G.; Puri, Sanjiv
2017-07-01
The absolute values of the mass attenuation coefficients have been measured at sixty two photon energies across the Li (i=1-3) sub-shell absorption edges of 66Dy covering the region 7.6-14.0 keV in order to investigate the influence of near-edge processes on the attenuation coefficients. The present measured attenuation coefficients are found to be higher by up to 10% than the theoretical values evaluated from the computer code XCOM (Berger et al., 2010) and the self-consistent Dirac-Hartree-Slater (DHS) model based values tabulated by Chantler (1995) over the energy region 7.6-14.0 keV, except at energies in vicinity (few eV) of the Li (i=1-3) sub-shell absorption edge energies where the measured values are significantly higher (up to 37%) than both the sets of theoretical values. Further, the Li (i=1-3) sub-shell photoionization cross sections, (σLiP)exp, deduced from the present measured mass attenuation coefficients are compared with the non-relativistic Hartree-Fock-Slater (HFS) model based values tabulated by Scofield (1973) and those evaluated from the theoretical total photoionization attenuation coefficients tabulated by Chantler (1995). The deduced (σLiP)exp(i=1-3) values are found to be in better agreement with those evaluated from the tabulations given by Chantler (1995) than the values given by Scofield (1973) over the energy region 7.8 - 14.0 keV included in this study. However, at photon energies up to few eV above the Li edges, the deduced (σLiP)exp(i=1-3) values are found to be significantly higher (up to 32%) than both the sets of theoretical values.
Mathematical relationships between metrics of chemical bioaccumulation in fish.
Mackay, Don; Arnot, Jon A; Gobas, Frank A P C; Powell, David E
2013-07-01
Five widely used metrics of bioaccumulation in fish are defined and discussed, namely the octanol-water partition coefficient (KOW ), bioconcentration factor (BCF), bioaccumulation factor (BAF), biomagnification factor (BMF), and trophic magnification factor (TMF). Algebraic relationships between these metrics are developed and discussed using conventional expressions for chemical uptake from water and food and first-order losses by respiration, egestion, biotransformation, and growth dilution. Two BCFs may be defined, namely as an equilibrium partition coefficient KFW or as a nonequilibrium BCFK in which egestion losses are included. Bioaccumulation factors are shown to be the product of the BCFK and a novel equilibrium multiplier M containing 2 ratios, namely, the diet-to-water concentration ratio and the ratio of uptake rate constants for respiration and dietary uptake. Biomagnification factors are shown to be proportional to the lipid-normalized ratio of the predator/prey values of BCFK and the ratio of the equilibrium multipliers. Relationships with TMFs are also discussed. The effects of chemical hydrophobicity, biotransformation, and growth are evaluated by applying the relationships to a range of illustrative chemicals of varying KOW in a linear 4-trophic-level food web with typical values for uptake and loss rate constants. The roles of respiratory and dietary intakes are demonstrated, and even slow rates of biotransformation and growth can significantly affect bioaccumulation. The BCFK s and the values of M can be regarded as the fundamental determinants of bioaccumulation and biomagnification in aquatic food webs. Analyzing data from food webs can be enhanced by plotting logarithmic lipid-normalized concentrations or fugacities as a linear function of trophic level to deduce TMFs. Implications for determining bioaccumulation by laboratory tests for regulatory purposes are discussed. Copyright © 2013 SETAC.
Kumar, Atul; Samadder, S R
2017-10-01
Accurate prediction of the quantity of household solid waste generation is very much essential for effective management of municipal solid waste (MSW). In actual practice, modelling methods are often found useful for precise prediction of MSW generation rate. In this study, two models have been proposed that established the relationships between the household solid waste generation rate and the socioeconomic parameters, such as household size, total family income, education, occupation and fuel used in the kitchen. Multiple linear regression technique was applied to develop the two models, one for the prediction of biodegradable MSW generation rate and the other for non-biodegradable MSW generation rate for individual households of the city Dhanbad, India. The results of the two models showed that the coefficient of determinations (R 2 ) were 0.782 for biodegradable waste generation rate and 0.676 for non-biodegradable waste generation rate using the selected independent variables. The accuracy tests of the developed models showed convincing results, as the predicted values were very close to the observed values. Validation of the developed models with a new set of data indicated a good fit for actual prediction purpose with predicted R 2 values of 0.76 and 0.64 for biodegradable and non-biodegradable MSW generation rate respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gritti, Fabrice; Guiochon, Georges
2015-03-06
Previous data have shown that could deliver a minimum reduced plate height as small as 1.7. Additionally, the reduction of the mesopore size after C18 derivatization and the subsequent restriction for sample diffusivity across the Titan-C18 particles were found responsible for the unusually small value of the experimental optimum reduced velocity (5 versus 10 for conventional particles) and for the large values of the average reduced solid-liquid mass transfer resistance coefficients (0.032 versus 0.016) measured for a series of seven n-alkanophenones. The improvements in column efficiency made by increasing the average mesopore size of the Titan silica from 80 to 120Å are investigated from a quantitative viewpoint based on the accurate measurements of the reduced coefficients (longitudinal diffusion, trans-particle mass transfer resistance, and eddy diffusion) and of the intra-particle diffusivity, pore, and surface diffusion for the same series of n-alkanophenone compounds. The experimental results reveal an increase (from 0% to 30%) of the longitudinal diffusion coefficients for the same sample concentration distribution (from 0.25 to 4) between the particle volume and the external volume of the column, a 40% increase of the intra-particle diffusivity for the same sample distribution (from 1 to 7) between the particle skeleton volume and the bulk phase, and a 15-30% decrease of the solid-liquid mass transfer coefficient for the n-alkanophenone compounds. Pore and surface diffusion are increased by 60% and 20%, respectively. The eddy dispersion term and the maximum column efficiency (295000plates/m) remain virtually unchanged. The rate of increase of the total plate height with increasing the chromatographic speed is reduced by 20% and it is mostly controlled (75% and 70% for 80 and 120Å pore size) by the flow rate dependence of the eddy dispersion term. Copyright © 2015 Elsevier B.V. All rights reserved.
A Study of the Effect of Hysteresis on Transient Seepage in Levees
NASA Astrophysics Data System (ADS)
Tracy, F. T.; Walshire, L. A.; Corcoran, M. K.
2016-12-01
The capability of modeling hysteresis in soils is not often provided in commercial 2-D finite element seepage programs. However, hysteresis can be important in the modeling process. This research shows the effect of hysteresis on transient seepage results for a generic levee common to the southeastern United States where moisture content and hydraulic conductivity curves for the unsaturated zone are modeled using van Genuchten drying curves only, wetting curves only, and hysteresis. Quantities measured are (1) a levee saturation coefficient that is zero when the river is at initial conditions and one when steady-state has been achieved at the maximum river elevation, (2) the pore pressure at the toe of the levee beneath the confining layer, and (3) flow rate through the downstream flux section. A model for switching from the wetting curve to the drying curve and visa versa for hysteresis has been implemented in a 2-D finite element program to perform the described research. The levee system is considered homogeneous in this study. The hydrograph of the river for a 20-foot levee begins at -5 ft, goes up at 1 ft/day until it reaches 17.5 ft, remains for 10 days, and then descends at 1 ft/day until the river reaches -5 ft again, giving a simulation time of 55 days. Saturated hydraulic conductivity values of 0.01, 0.001, and 0.0001 cm/sec were considered. Values of the three output variables for wetting only, drying only, and hysteresis curves for the 55 days were collected, and closeness coefficients in terms of percentages were defined and computed from the collected data. It was found that the closeness coefficient was as high as 24.61% for levee saturation coefficient, 5.15% for pore pressure, and 119.93% for flow rate. Clearly, it is important to consider hysteresis in the modeling process.
Archer, A.W.; Maples, C.G.
1989-01-01
Numerous departures from ideal relationships are revealed by Monte Carlo simulations of widely accepted binomial coefficients. For example, simulations incorporating varying levels of matrix sparseness (presence of zeros indicating lack of data) and computation of expected values reveal that not only are all common coefficients influenced by zero data, but also that some coefficients do not discriminate between sparse or dense matrices (few zero data). Such coefficients computationally merge mutually shared and mutually absent information and do not exploit all the information incorporated within the standard 2 ?? 2 contingency table; therefore, the commonly used formulae for such coefficients are more complicated than the actual range of values produced. Other coefficients do differentiate between mutual presences and absences; however, a number of these coefficients do not demonstrate a linear relationship to matrix sparseness. Finally, simulations using nonrandom matrices with known degrees of row-by-row similarities signify that several coefficients either do not display a reasonable range of values or are nonlinear with respect to known relationships within the data. Analyses with nonrandom matrices yield clues as to the utility of certain coefficients for specific applications. For example, coefficients such as Jaccard, Dice, and Baroni-Urbani and Buser are useful if correction of sparseness is desired, whereas the Russell-Rao coefficient is useful when sparseness correction is not desired. ?? 1989 International Association for Mathematical Geology.
Burbank, J; Kelly, B; Nilsson, J; Power, M
2018-06-06
Otolith δ 18 O and δ 13 C values have been used extensively to reconstruct thermal and diet histories. Researchers have suggested that individual growth rate and size may have an effect on otolith isotope ratios and subsequently confound otolith based thermal and diet reconstructions. As few explicit tests of the effect of fish in freshwater environments exist, here we determine experimentally the potential for related growth rate and size effects on otolith δ 18 O and δ 13 C values. Fifty Arctic charr were raised in identical conditions for two years after which their otoliths were removed and analyzed for their δ 18 O and δ 13 C values. The potential effects of final length and the Thermal Growth Coefficient (TGC) on otolith isotope ratios were tested using correlation and regression analysis to determine if significant effects were present and to quantify effects when present. The analyses indicated that TGC and size had significant and similar positive non-linear relationships with δ 13 C values and explained 35% and 42% of the variability, respectively. Conversely, both TGC and size were found to have no significant correlation with otolith δ 18 O values. There was no significant correlation between δ 18 O and δ 13 C values. The investigation indicated the presence of linked growth rate and size effects on otolith δ 13 C values, the nature of which requires further study. Otolith δ 18 O values were unaffected by individual growth rate and size, confirming the applicability of applying these values to thermal reconstructions of fish habitat. This article is protected by copyright. All rights reserved.
Labocha, Marta K.; Sadowska, Edyta T.; Baliga, Katarzyna; Semer, Aleksandra K.; Koteja, Paweł
2004-01-01
Basal metabolic rate (BMR) is a fundamental energetic trait and has been measured in hundreds of birds and mammals. Nevertheless, little is known about the consistency of the population-average BMR or its repeatability at the level of individual variation. Here, we report that average mass-independent BMR did not differ between two generations of bank voles or between two trials separated by one month. Individual differences in BMR were highly repeatable across the one month interval: the coefficient of intraclass correlation was 0.70 for absolute log-transformed values and 0.56 for mass-independent values. Thus, BMR can be a meaningful measure of an individual physiological characteristic and can be used to test hypotheses concerning relationships between BMR and other traits. On the other hand, mass-independent BMR did not differ significantly across families, and the coefficient of intraclass correlation for full sibs did not differ from zero, which suggests that heritability of BMR in voles is not high. PMID:15101695
Azimuthal anisotropy distributions in high-energy collisions
NASA Astrophysics Data System (ADS)
Yan, Li; Ollitrault, Jean-Yves; Poskanzer, Arthur M.
2015-03-01
Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the spatial anisotropy of the initial density profile. A long-standing problem in the interpretation of flow data is that uncertainties in the initial anisotropy are mingled with uncertainties in the response. We argue that the non-Gaussianity of flow fluctuations in small systems with large fluctuations can be used to disentangle the initial state from the response. We apply this method to recent measurements of anisotropic flow in Pb+Pb and p+Pb collisions at the LHC, assuming linear response to the initial anisotropy. The response coefficient is found to decrease as the system becomes smaller and is consistent with a low value of the ratio of viscosity over entropy of η / s ≃ 0.19. Deviations from linear response are studied. While they significantly change the value of the response coefficient they do not change the rate of decrease with centrality. Thus, we argue that the estimate of η / s is robust against non-linear effects.
Search for selective ion diffusion through membranes
NASA Technical Reports Server (NTRS)
May, C. E.; Philipp, W. H.
1983-01-01
The diffusion rates of several ions through some membranes developed as battery separators were measured. The ions investigated were Li(+), Rb(+), Cl(-), and So4. The members were crosslinked polyvinyl alcohol, crosslinked polyacrylic acid, a copolymer of the two, crosslinked calcium polyacrylate, cellulose, and several microporous polyphenylene oxide based films. No true specificity for diffusion of any of these ions was found for any of the membranes. But the calcium polyacrylate membrane was found to exhibit ion exchange with the diffusing ions giving rise to the leaching of the calcium ion and low reproducibility. These findings contrast earlier work where the calcium polyacrylate membrane did show specificity to the diffusion of the copper ion. In general, Fick's law appeared to be obeyed. Except for the microporous membranes, the coefficients for ion diffusion through the membranes were comparable with their values in water. For the microporous membranes, the values found for the coefficients were much less, due to the tortuosity of the micropores.
Biuw, Martin; McConnell, Bernie; Bradshaw, Corey J A; Burton, Harry; Fedak, Mike
2003-10-01
Elephant seals regularly perform dives during which they spend a large proportion of time drifting passively through the water column. The rate of vertical change in depth during these "drift" dives is largely a result of the proportion of lipid tissue in the body, with fatter seals having higher (more positive or less negative) drift rates compared with leaner seals. We examined the temporal changes in drift rates of 24 newly weaned southern elephant seal (Mirounga leonina) pups during their first trip to sea to determine if this easily recorded dive characteristic can be used to continuously monitor changes in body composition of seals throughout their foraging trips. All seals demonstrated a similar trend over time: drift rates were initially positive but decreased steadily over the first 30-50 days after departure (Phase 1), corresponding to seals becoming gradually less buoyant. Over the following approximately 100 days (Phase 2), drift rates again increased gradually, while during the last approximately 20-45 days (Phase 3) drift rates either remained constant or decreased slightly. The daily rate of change in drift rate was negatively related to the daily rate of horizontal displacement (daily travel rate), and daily travel rates of more than approximately 80 km were almost exclusively associated with negative changes in drift rate. We developed a mechanistic model based on body compositions and morphometrics measured in the field, published values for the density of seawater and various body components, and values of drag coefficients for objects of different shapes. We used this model to examine the theoretical relationships between drift rate and body composition and carried out a sensitivity analysis to quantify errors and biases caused by varying model parameters. While variations in seawater density and uncertainties in estimated body surface area and volume are unlikely to result in errors in estimated lipid content of more than +/-2.5%, variations in drag coefficient can lead to errors of >or =10%. Finally, we compared the lipid contents predicted by our model with the lipid contents measured using isotopically labelled water and found a strong positive correlation. The best-fitting model suggests that the drag coefficient of seals while drifting passively is between approximately 0.49 (roughly corresponding to a sphere-shaped object) and 0.69 (a prolate spheroid), and we were able to estimate relative lipid content to within approximately +/-2% lipid. Our results suggest that this simple method can be used to estimate the changes in lipid content of free-ranging seals while at sea and may help improve our understanding of the foraging strategies of these important marine predators.
Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth system models
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Pradal, M.-A.; Abernathey, R.
2015-07-01
This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium-heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in Earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedi that link it to baroclinic instability project it to be small (of order a few hundred m2 s-1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Helium isotopes equilibrate rapidly with the atmosphere and thus exhibit large gradients along isopycnals while radiocarbon equilibrates slowly and thus exhibits smaller gradients along isopycnals. Thus it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox, by increasing the transport of mantle helium to the surface more than it would radiocarbon. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the southeastern Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi below the thermocline than is seen in theoretical parameterizations based on baroclinic growth rates. We argue that a key part of resolving the isopycnal mixing paradox is to abandon the idea that ARedi has a direct relationship to local baroclinic instability and to the so-called "thickness" mixing coefficient AGM.
Environmental Fate Studies of HMX Screening Studies. Phase 1
1982-12-01
1,3,5,7-octahydro-l,3,5,7-tetranitrotetrazocirne, HMX, sorption and biosorption partition coefficients, photochemical rate constant, biotransformatLion...Holston River sediment was measured at 8.7. Based on an organic carbon con- tent of 1.3% in thc sediment, a K value of 670 was calculated. The biosorption ...27 Table 9 HMX Biosorption by Bacteria .............................. 39 ii -4 I: ’a LIST OF ILLUSTRATIONS
NASA Astrophysics Data System (ADS)
Belyaev, Andrey K.; Yakovleva, Svetlana A.
2017-10-01
Aims: We derive a simplified model for estimating atomic data on inelastic processes in low-energy collisions of heavy-particles with hydrogen, in particular for the inelastic processes with high and moderate rate coefficients. It is known that these processes are important for non-LTE modeling of cool stellar atmospheres. Methods: Rate coefficients are evaluated using a derived method, which is a simplified version of a recently proposed approach based on the asymptotic method for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: The rate coefficients are found to be expressed via statistical probabilities and reduced rate coefficients. It turns out that the reduced rate coefficients for mutual neutralization and ion-pair formation processes depend on single electronic bound energies of an atom, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to potassium-hydrogen collisions. For the first time, rate coefficients are evaluated for inelastic processes in K+H and K++H- collisions for all transitions from ground states up to and including ionic states. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A147
Analysis of the wobbling effect in a lens-shaped body rotation
NASA Astrophysics Data System (ADS)
Kim, Minho
2017-03-01
We discuss the wobbling motion in a lens-shaped body rotation, focusing on the frequencies and the amplitude of nutation by filming the rotational motion and wobbling of the body. The friction coefficient of the surface is altered to examine its influence for two lenses with different curvature radii. MATLAB programs are developed to retrieve the Euler angles, which are graphed according to time. It is shown that the lens with a smaller curvature radius exhibits the wobbling effect in all cases, whereas the lens with a larger curvature radius shows such behaviour in limited circumstances. The study confirms that the friction coefficient has a negative linear correlation with the vertical axis declination amplitude with the R-squared value 0.878, showing that friction gives damping and causes smaller axis declination amplitudes. Negative linear correlation also exists with relation to the number of wobbles before the motion stops, where the R-squared value is 0.938, providing further evidence that friction and wobbling cause higher energy dissipation rates. The frequency of the wobbling motion only has a correlation with the curvature radius of the lens, showing no explicit correlation with the friction coefficient, with its R-squared value being 0.077. No losses of contact were observable in this motion. The overall process does not utilize particularly expensive apparatus and will be applicable for senior undergraduate students to experiment on and analyze the motion of a special situation regarding a rigid body that is both spinning and nutating.
Manjunatha, S S; Ravi, N; Negi, P S; Raju, P S; Bawa, A S
2014-11-01
Investigation was carried out to study kinetics of moisture loss, oil uptake and tristimulus colour during deep fat frying of Gethi (Dioscorea kamoonensis kunth) strips. Deep fat frying of Gethi strips of size 6 × 6 × 40 mm was carried out in a laboratory scale fryer at different temperatures ranging from 120 to 180 °C. The investigation showed that the moisture loss and oil uptake followed the first order kinetics equation (r > 0.95, p < 0.05). The kinetic coefficients for moisture loss and oil uptake increased significantly (p < 0.05) with temperature from 0.166 to 0.889 min(-1) and 0.139 to 0.430 min(-1) respectively. The temperature dependency of rate constants for moisture loss and oil uptake values was described using Arrhenius equation (r > 0.99, p < 0.01). The activation energies for moisture loss and oil uptake were found to be 41.53 KJ/mol and 27.12 KJ/mol respectively. The hunter colour parameters were significantly affected by frying temperature and frying time. The hunter lightness (L) value increased with respect to frying time initially, followed by decline and same trend was observed at higher temperatures of frying with elevated rate, whereas hunter redness (a) value increased significantly (p < 0.01) with time as well as temperature of frying and obeyed zero order rate equation. The temperature dependency kinetic coefficients of Hunter (a) value were described by Arrhenius equation and the energy of activation for change in hunter redness was found to be 42.41 KJ/mol (r > 0.99, p < 0.01). The other hunter colour parameters such as chroma, hue angle and total colour difference were markedly affected by frying temperature as well as frying time.
Yanagisawa, O; Fukubayashi, T
2010-11-01
To evaluate the effect of local cooling on the diffusion of water molecules and perfusion within muscle at different cooling temperatures. Magnetic resonance diffusion-weighted (DW) images of the leg (seven males) were obtained before and after 30 min cooling (0, 10, and 20°C), and after a 30 min recovery period. Two types of apparent diffusion coefficient (ADC; ADC1, reflecting both water diffusion and perfusion within muscle, and ADC2, approximating the true water diffusion coefficient) of the ankle dorsiflexors were calculated from DW images. T2-weighted images were also obtained to calculate T2 values of the ankle dorsiflexors. The skin temperature was measured before, during, and after cooling. Both ADC values significantly decreased after cooling under all cooling conditions; the rate of decrease depended on the cooling temperature used (ADC1: -36% at 0°C, -27.8% at 10°C, and -22.6% at 20°C; ADC2: -26% at 0°C, -21.1% at 10°C, and -14.6% at 20°C). These significant decreases were maintained during the recovery period. Conversely, the T2 value showed no significant changes. Under all cooling conditions, skin temperature significantly decreased during cooling; the rate of decrease depended on the cooling temperature used (-74.8% at 0°C, -51.1% at 10°C, and -26.8% at 20°C). Decreased skin temperatures were not restored to pre-cooling values during the recovery period under any cooling conditions. Local cooling decreased the water diffusion and perfusion within muscle with decreased skin temperature; the rates of decrease depended on the cooling temperature used. These decreases were maintained for 30 min after cooling. Copyright © 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Tribological behaviour and statistical experimental design of sintered iron-copper based composites
NASA Astrophysics Data System (ADS)
Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo
2013-11-01
The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases with increasing applied load and relative speed, but in the same conditions, the frictional coefficients slowly decrease.
Miyata, Hiroshi; Miyata, Satoru
2018-01-01
To speculate on the time-dependent change of FIB4 index in patients with nonalcoholic fatty liver disease (NAFLD) and its increase-decrease rate per year, simply and accurately. In all 23 patients with NAFLD with the value of FIB4 index over 1.30 at the peak, the period from the first to each examination date was calculated and this period (years) was regarded as x . Next, the mean value of FIB4 index during the past year to each examination date was regarded as y . In every y , the minimum and the maximum y value were found out. Between x corresponding to this minimum y and x corresponding to this maximum y , the correlation between x and y was analyzed as the main subject. Then, the slope of each correlation was investigated, because it should indicate increase-decrease rate per year. In all 23 patients, the correlations as the main subject were recognized and the mean absolute value of correlation coefficient ( r ) was 0.91 ± 0.08. As for the slope, the mean absolute value was 0.1371 ± 0.1147 (/year). Simply and accurately, the time-dependent change of FIB4 index and its increase-decrease rate per year could be approximately speculated.
Role of ocean isopycnal mixing in setting the uptake of anthropogenic carbon
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Pradal, M. A. S.; Abernathey, R. P.
2014-12-01
The magnitude of the isopycnal stirring coefficient ARedi is poorly constrained from data and varies greatly across Earth System Models. This paper documents the impact of such uncertainty on the oceanic carbon cycle. We compare six spatial representations of ARedi. Four constant values (400, 800, 1200 and 2400 m2/s) are used to explore the difference between using the low values found in many models and the higher values seen in observational estimates. Models are also run with two spatially dependent values of ARedi based on altimetry, one which captures the fully two-dimensional structure of the mixing coefficient, the other of which looks at the zonally averaged structure alone. Under global warming significant changes are seen in the biological pump in convective regions, but these changes are largely locally compensated by changes in preformed DIC. Instead, differences in anthropogenic uptake of carbon are largely centered in the tropics, and can be well described in terms of a relatively simple diffusive approximation. Using ideal age as a tracer can give insight into the expected behavior of the models. The rate of oceanic mixing represents a quantitatively significant uncertainty in future projections of the global carbon cycle, amounting to about 20% of the oceanic uptake.
Wind-tunnel Tests of the NACA 45-125 Airfoil: A Thick Airfoil for High-Speed Airplanes
NASA Technical Reports Server (NTRS)
Delano, James B.
1940-01-01
Investigations of the pressure distribution, the profile drag, and the location of transition for a 30-inch-chord 25-percent-thick N.A,C.A. 45-125 airfoil were made in the N.A.C.A 8-foot high-speed wind tunnel for the purpose of aiding in the development of a thick wing for high-speed airplanes. The tests were made at a lift coefficient of 0.1 for Reynolds Numbers from 1,750,000 to 8,690,000, corresponding to speeds from 80 to 440 miles per hour at 59 F. The effect on the profile drag of fixing the transition point was also investigated. The effect of compressibility on the rate of increase of pressure coefficients was found to be greater than that predicted by a simplified theoretical expression for thin wings. The results indicated that, for a lift coefficient of 0.1, the critical speed of the N.A.C,A. 45-125 airfoil was about 460 miles per hour at 59 F,. The value of the profile-drag coefficient at a Reynolds Number of 4,500,000 was 0.0058, or about half as large as the value for the N.A,C,A. 0025 airfoil. The increase in the profile-drag coefficient for a given movement of the transition point was about three times as large as the corresponding increase for the N.A.C,A. 0012 airfoil. Transition determinations indicated that, for Reynolds Numbers up to ?,000,000, laminar boundary 1ayers were maintained over approximately 40 percent of the upper and the lower surfaces of the airfoil.
Temporal and spatial variability of aeolian sand transport: Implications for field measurements
NASA Astrophysics Data System (ADS)
Ellis, Jean T.; Sherman, Douglas J.; Farrell, Eugene J.; Li, Bailiang
2012-01-01
Horizontal variability is often cited as one source of disparity between observed and predicted rates of aeolian mass flux, but few studies have quantified the magnitude of this variability. Two field projects were conducted to evaluate meter-scale spatial and temporal in the saltation field. In Shoalhaven Heads, NSW, Australia a horizontal array of passive-style sand traps were deployed on a beach for 600 or 1200 s across a horizontal span of 0.80 m. In Jericoacoara, Brazil, traps spanning 4 m were deployed for 180 and 240 s. Five saltation sensors (miniphones) spaced 1 m apart were also deployed at Jericoacoara. Spatial variation in aeolian transport rates over small spatial and short temporal scales was substantial. The measured transport rates ( Q) obtained from the passive traps ranged from 0.70 to 32.63 g/m/s. When considering all traps, the coefficient of variation ( CoV) values ranged from 16.6% to 67.8%, and minimum and maximum range of variation coefficient ( RVC) values were 106.1% to 152.5% and 75.1% to 90.8%, respectively. The miniphone Q and CoV averaged 47.1% and 4.1% for the 1260 s data series, which was subsequently sub-sampled at 60-630 s intervals to simulate shorter deployment times. A statistically significant ( p < 0.002), inverselinear relationship was found between sample duration and CoV and between Q and CoV, the latter relationship also considering data from previous studies.
Kozyra, Paweł; Góra-Marek, Kinga; Datka, Jerzy
2015-02-05
The values of extinction coefficients of CC and CC IR bands of ethyne and ethene interacting with Cu+ and Ag+ in zeolites were determined in quantitative IR experiments and also by quantumchemical DFT calculations with QM/MM method. Both experimental and calculated values were in very good agreement validating the reliability of calculations. The values of extinction coefficients of ethyne and ethene interacting with bare cations and cations embedded in zeolite-like clusters were calculated. The interaction of organic molecules with Cu+ and Ag+ in zeolites ZSM-5 and especially charge transfers between molecule, cation and zeolite framework was also discussed in relation to the values of extinction coefficients. Copyright © 2014 Elsevier B.V. All rights reserved.
Overuse of short-interval bone densitometry: assessing rates of low-value care.
Morden, N E; Schpero, W L; Zaha, R; Sequist, T D; Colla, C H
2014-09-01
We evaluated the prevalence and geographic variation of short-interval (repeated in under 2 years) dual-energy X-ray absorptiometry tests (DXAs) among Medicare beneficiaries. Short-interval DXA use varied across regions (coefficient of variation = 0.64), and unlike other DXAs, rates decreased with payment cuts. The American College of Rheumatology, through the Choosing Wisely initiative, identified measuring bone density more often than every 2 years as care "physicians and patients should question." We measured the prevalence and described the geographic variation of short-interval (repeated in under 2 years) DXAs among Medicare beneficiaries and estimated the cost of this testing and its responsiveness to payment change. Using 100 % Medicare claims data, 2006-2011, we identified DXAs and short-interval DXAs for female Medicare beneficiaries over age 66. We determined the population rate of DXAs and short-interval DXAs, as well as Medicare spending on short-interval DXAs, nationally and by hospital referral region (HRR). DXA use was stable 2008-2011 (12.4 to 11.5 DXAs per 100 women). DXA use varied across HRRs: in 2011, overall DXA use ranged from 6.3 to 23.0 per 100 women (coefficient of variation = 0.18), and short-interval DXAs ranged from 0.3 to 8.0 per 100 women (coefficient of variation = 0.64). Short-interval DXA use fluctuated substantially with payment changes; other DXAs did not. Short-interval DXAs, which represented 10.1 % of all DXAs, cost Medicare approximately US$16 million in 2011. One out of ten DXAs was administered in a time frame shorter than recommended and at a substantial cost to Medicare. DXA use varied across regions. Short-interval DXA use was responsive to reimbursement changes, suggesting carefully designed policy and payment reform may reduce this care identified by rheumatologists as low value.
NASA Astrophysics Data System (ADS)
Kilb, D.; Rubin, A. M.
2002-11-01
We use seismic waveform cross correlation to determine the relative positions of 2747 microearthquakes near Mount Lewis, California, that have waveforms recorded from 1984 to 1999. These earthquakes include the aftershock sequence of the 1986 ML5.7 Mount Lewis earthquake. Approximately 90% of these aftershocks are located beyond the tips of the approximately north striking main shock, defining an hourglass with the long axis aligned approximately with the main shock. Surprisingly, our relocation demonstrates that many of these aftershocks illuminate a series of near-vertical east-west faults that are ˜0.5-1 km long and separated by as little as ˜200 m. We propose that these structures result from the growth of a relatively young fault in which displacement across a right-lateral approximately north striking fault zone is accommodated by slip on secondary left-lateral approximately east striking faults. We derive the main shock-induced static Coulomb failure function (Δσf) on the dominant fault orientation in our study area using a three-dimensional (3-D) boundary element program. To bound viable friction coefficients, we measure the correlation between the rank ordering of relative amplitudes of Δσf and seismicity rate change. We find that likely friction coefficients are 0.2-0.6 and that the assumed main shock geometry introduces the largest uncertainties in the favored friction values. We obtain similar results from a visual correlation of calculated Δσf contours with the distribution of aftershocks. Viable rate-and-state constitutive parameters bound the observed relationship between magnitude of Δσf and seismicity rate change, and for our favored main shock model a maximum correlation is achieved when Δσf is computed with friction coefficients of 0.3-0.6. These values are below those previously cited for young faults.
Recovery of singularities from a backscattering Born approximation for a biharmonic operator in 3D
NASA Astrophysics Data System (ADS)
Tyni, Teemu
2018-04-01
We consider a backscattering Born approximation for a perturbed biharmonic operator in three space dimensions. Previous results on this approach for biharmonic operator use the fact that the coefficients are real-valued to obtain the reconstruction of singularities in the coefficients. In this text we drop the assumption about real-valued coefficients and also establish the recovery of singularities for complex coefficients. The proof uses mapping properties of the Radon transform.
Rossow, Heidi A; Calvert, C Chris
2014-10-01
The goal of this research was to use a computational model of human metabolism to predict energy metabolism for lean and obese men. The model is composed of 6 state variables representing amino acids, muscle protein, visceral protein, glucose, triglycerides, and fatty acids (FAs). Differential equations represent carbohydrate, amino acid, and FA uptake and output by tissues based on ATP creation and use for both lean and obese men. Model parameterization is based on data from previous studies. Results from sensitivity analyses indicate that model predictions of resting energy expenditure (REE) and respiratory quotient (RQ) are dependent on FA and glucose oxidation rates with the highest sensitivity coefficients (0.6, 0.8 and 0.43, 0.15, respectively, for lean and obese models). Metabolizable energy (ME) is influenced by ingested energy intake with a sensitivity coefficient of 0.98, and a phosphate-to-oxygen ratio by FA oxidation rate and amino acid oxidation rate (0.32, 0.24 and 0.55, 0.65 for lean and obese models, respectively). Simulations of previously published studies showed that the model is able to predict ME ranging from 6.6 to 9.3 with 0% differences between published and model values, and RQ ranging from 0.79 to 0.86 with 1% differences between published and model values. REEs >7 MJ/d are predicted with 6% differences between published and model values. Glucose oxidation increases by ∼0.59 mol/d, RQ increases by 0.03, REE increases by 2 MJ/d, and heat production increases by 1.8 MJ/d in the obese model compared with lean model simulations. Increased FA oxidation results in higher changes in RQ and lower relative changes in REE. These results suggest that because fat mass is directly related to REE and rate of FA oxidation, body fat content could be used as a predictor of RQ. © 2014 American Society for Nutrition.
An efficient indexing scheme for binary feature based biometric database
NASA Astrophysics Data System (ADS)
Gupta, P.; Sana, A.; Mehrotra, H.; Hwang, C. Jinshong
2007-04-01
The paper proposes an efficient indexing scheme for binary feature template using B+ tree. In this scheme the input image is decomposed into approximation, vertical, horizontal and diagonal coefficients using the discrete wavelet transform. The binarized approximation coefficient at second level is divided into four quadrants of equal size and Hamming distance (HD) for each quadrant with respect to sample template of all ones is measured. This HD value of each quadrant is used to generate upper and lower range values which are inserted into B+ tree. The nodes of tree at first level contain the lower and upper range values generated from HD of first quadrant. Similarly, lower and upper range values for the three quadrants are stored in the second, third and fourth level respectively. Finally leaf node contains the set of identifiers. At the time of identification, the test image is used to generate HD for four quadrants. Then the B+ tree is traversed based on the value of HD at every node and terminates to leaf nodes with set of identifiers. The feature vector for each identifier is retrieved from the particular bin of secondary memory and matched with test feature template to get top matches. The proposed scheme is implemented on ear biometric database collected at IIT Kanpur. The system is giving an overall accuracy of 95.8% at penetration rate of 34%.
Atomic Data and Spectral Line Intensities for Ni XI
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Landi, E.
2010-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XI. We include in the calculations the 10 lowest configurations, corresponding to 164 fine structure levels: 3s(sup 2)3p(sup 6), 3s(sup 2)3p(sup 5)3d, 3s(sup 2)3p(sup 4)3d(sup 2), 3s3p(sup 6)3d, 3s(sup 2)3p(sup 5)4l and 3s3p6 4l with l =.s, p, d. Collision strengths are calculated at five incident energies for all transitions: 7.1, 16.8, 30.2, 48.7 and 74.1 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.06 Ry and 0.25 Ry depending on the lower level. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, combined with Close Coupling collision excitation rate coefficient available in the literature for the lowest 17 levels, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14) cu cm range and at an electron temperature of logT(sub c)(K)=6.1, corresponding to the maximum abundance of Ni XI. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.
Choi, Sanghun; Choi, Jiwoong; Lin, Ching-Long
2018-01-01
The aim of this study was to investigate and quantify contributions of kinetic energy and viscous dissipation to airway resistance during inspiration and expiration at various flow rates in airway models of different bifurcation angles. We employed symmetric airway models up to the 20th generation with the following five different bifurcation angles at a tracheal flow rate of 20 L/min: 15 deg, 25 deg, 35 deg, 45 deg, and 55 deg. Thus, a total of ten computational fluid dynamics (CFD) simulations for both inspiration and expiration were conducted. Furthermore, we performed additional four simulations with tracheal flow rate values of 10 and 40 L/min for a bifurcation angle of 35 deg to study the effect of flow rate on inspiration and expiration. Using an energy balance equation, we quantified contributions of the pressure drop associated with kinetic energy and viscous dissipation. Kinetic energy was found to be a key variable that explained the differences in airway resistance on inspiration and expiration. The total pressure drop and airway resistance were larger during expiration than inspiration, whereas wall shear stress and viscous dissipation were larger during inspiration than expiration. The dimensional analysis demonstrated that the coefficients of kinetic energy and viscous dissipation were strongly correlated with generation number. In addition, the viscous dissipation coefficient was significantly correlated with bifurcation angle and tracheal flow rate. We performed multiple linear regressions to determine the coefficients of kinetic energy and viscous dissipation, which could be utilized to better estimate the pressure drop in broader ranges of successive bifurcation structures.
NASA Astrophysics Data System (ADS)
Abunama, Taher; Othman, Faridah
2017-06-01
Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.
Brosseau, Lucie; Laroche, Chantal; Guitard, Paulette; King, Judy; Poitras, Stéphane; Casimiro, Lynn; Barette, Julie Alexandra; Cardinal, Dominique; Cavallo, Sabrina; Laferrière, Lucie; Martini, Rose; Champoux, Nicholas; Taverne, Jennifer; Paquette, Chanyque; Tremblay, Sébastien; Sutton, Ann; Galipeau, Roseline; Tourigny, Jocelyne; Toupin-April, Karine; Loew, Laurianne; Demers, Catrine; Sauvé-Schenk, Katrine; Paquet, Nicole; Savard, Jacinthe; Lagacé, Josée; Pharand, Denyse; Vaillancourt, Véronique
2017-01-01
Objectives: The primary objective was to produce a French-Canadian translation of AMSTAR (a measurement tool to assess systematic reviews) and to examine the validity of the translation's contents. The secondary and tertiary objectives were to assess the inter-rater reliability and factorial construct validity of this French-Canadian version of AMSTAR. Methods: A modified approach to Vallerand's methodology (1989) for cross-cultural validation was used. 1 First, a parallel back-translation of AMSTAR 2 was performed, by both professionals and future professionals. Next, a first committee of experts (P1) examined the translations to create a first draft of the French-Canadian version of the AMSTAR tool. This draft was then evaluated and modified by a second committee of experts (P2). Following that, 18 future professionals (master's students in physiotherapy) rated this second draft of the instrument for clarity using a seven-point scale (1: very clear; 7: very ambiguous). Lastly, the principal co-investigators then reviewed the problematic elements and proposed final changes. Four independent raters used this French-Canadian version of AMSTAR to assess 20 systematic reviews that were published in French after the year 2000. An intraclass correlation coefficient (ICC) and kappa coefficient were calculated to measure the tool's inter-rater reliability. A Cronbach's alpha coefficient was also calculated to measure internal consistency. In addition, factor analysis was used to evaluate construct validity in order to determine the number of dimensions. Results: The statements on the final version of the AMSTAR tool received an average ambiguity rating of between 1.0 and 1.4. No statement received an average rating below 1.4, which indicates a high level of clarity. Inter-rater reliability ( n =4) for the instrument's total score was moderate, with an intraclass correlation coefficient of 0.61 (95% confidence interval [CI]: 0.29, 0.97). Inter-rater reliability for 82% of the individual items was good, according to the kappa values obtained. Internal consistency was excellent, with a Cronbach's alpha coefficient of 0.91 (95% CI: 0.83, 0.99). The French-Canadian version of AMSTAR is a unidimensional tool, as confirmed by factor analysis and community values greater than 0.30. Conclusion: A valid French-Canadian version of AMSTAR was created using this rigorous five-step process. This version is unidimensional, with moderate inter-rater reliability for the elements overall, and with excellent internal consistency. This tool could be valuable to French-Canadian professionals and researchers, and could also be of interest to the international Francophone community.
Theoretical studies of solar-pumped lasers
NASA Technical Reports Server (NTRS)
Harries, W. L.
1982-01-01
Solar-pumped lasers were investigated by comparing experimental results from pulse experiments with steady state calculations. The time varying behavior of an IBr laser is studied. The analysis is only approximate, but indicates that conditions occurring in a pulsed experiment are quite different from those at steady state. The possibility of steady-state lasing in an IBr laser is determined. The effects of high temperatures on the quenching and recombination rates are examined. Although uncertainties in the values of the rate coefficients make it difficult to draw firm conclusions, it seems steady state running may be possible at high temperatures.
Optical properties of hydrogenated amorphous carbon films grown from methane plasma
NASA Technical Reports Server (NTRS)
Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.; Liu, D. C.; Lanford, W. A.
1985-01-01
A 30 kHz ac glow discharge formed from methane gas was used to grow carbon films on InP substrates. Both the growth rate, and the realitive Ar ion sputtering rate at 3 keV varied monotonically with deposition power. Results from the N-15 nuclear reaction profile experiments indicated a slight drop in the hydrogen concentration as more energy was dissipated in the ac discharge. Values for the index of refraction and extinction coefficient ranged from 1.721 to 1.910 and 0 to -0.188, respectively. Optical bandgaps as high as 2.34 eV were determined.
NASA Astrophysics Data System (ADS)
Teng, H.; Xu, Z.
1996-09-01
The authors present a set of accurate formulae for the rapid calculation of dielectronic recombination rate coefficients of H-like ions from Ne (Z = 10) to Ni (Z = 29) with an electron temperature range from 0.6 to 10 keV. This set of formulae are obtained by fitting directly the dielectronic recombination rate coefficients calculated on the basis of the intermediate - coupling multi - configuration Hartree-Fock model made by Karim and Bhalla (1988). The dielectronic recombination rate coefficients from these formulae are in close agreement with the original results of Karim et al. The errors are generally less than 0.1%. The results are also compared with the ones obtained by a set of new rate formulae developed by Hahn. These formulae can be used for generating dielectronic recombination rate coefficients of some H-like ions where the explicit calculations are unavailable. The detailed results are tabulated and discussed.
Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K
2002-07-01
The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.
Direct recovery of mean gravity anomalies from satellite to satellite tracking
NASA Technical Reports Server (NTRS)
Hajela, D. P.
1974-01-01
The direct recovery was investigated of mean gravity anomalies from summed range rate observations, the signal path being ground station to a geosynchronous relay satellite to a close satellite significantly perturbed by the short wave features of the earth's gravitational field. To ensure realistic observations, these were simulated with the nominal orbital elements for the relay satellite corresponding to ATS-6, and for two different close satellites (one at about 250 km height, and the other at about 900 km height) corresponding to the nominal values for GEOS-C. The earth's gravitational field was represented by a reference set of potential coefficients up to degree and order 12, considered as known values, and by residual gravity anomalies obtained by subtracting the anomalies, implied by the potential coefficients, from their terrestrial estimates. It was found that gravity anomalies could be recovered from strong signal without using any a-priori terrestrial information, i.e. considering their initial values as zero and also assigning them a zero weight matrix. While recovering them from weak signal, it was necessary to use the a-priori estimate of the standard deviation of the anomalies to form their a-priori diagonal weight matrix.
Ard, Shaun G; Li, Anyang; Martinez, Oscar; Shuman, Nicholas S; Viggiano, Albert A; Guo, Hua
2014-12-11
Thermal rate coefficients for the title reactions computed using a quasi-classical trajectory method on an accurate global potential energy surface fitted to ∼81,000 high-level ab initio points are compared with experimental values measured between 100 and 600 K using a variable temperature selected ion flow tube instrument. Excellent agreement is found across the entire temperature range, showing a subtle, but unusual temperature dependence of the rate coefficients. For both reactions the temperature dependence has a maximum around 350 K, which is a result of H2O(+) rotations increasing the reactivity, while kinetic energy is decreasing the reactivity. A strong isotope effect is found, although the calculations slightly overestimate the kinetic isotope effect. The good experiment-theory agreement not only validates the accuracy of the potential energy surface but also provides more accurate kinetic data over a large temperature range.
Characterization of adsorption and degradation of diuron in carbonatic and noncarbonatic soils.
Kasozi, Gabriel N; Nkedi-Kizza, Peter; Agyin-Birikorang, Sampson; Zimmerman, Andrew R
2010-01-27
The adsorption and degradation of the pesticide diuron in carbonatic and noncarbonatic soils were investigated to better understand the fate and transport of diuron in the environment. Batch adsorption experiments yielded isotherms that were well-described by the linear model. Adsorption coefficients normalized to soil organic carbon content (K(oc)) were lowest for carbonatic soils, averaging 259 +/- 48 (95% CI), 558 +/- 109, 973 +/- 156, and 2090 +/- 1054 for carbonatic soils, Histosols, Oxisols, and Spodosols, respectively. In addition, marl-carbonatic soils had much lower K(oc) values (197 +/- 27) than nonmarl-carbonatic soils. Diuron degradation data fit a first-order reaction kinetics model, yielding half-lives in soils ranging from 40 to 267 days. There was no significant difference between the average diuron degradation rate coefficients of each of the soil groups studied. Given the low adsorption capacity of carbonatic soils, it may be advisable to lower herbicide application rates in agricultural regions with carbonatic soils such as southern Florida to protect aquatic ecosystems and water quality.
Doubleday, Charles; Armas, Randy; Walker, Dana; Cosgriff, Christopher V; Greer, Edyta M
2017-10-09
Multidimensional tunneling calculations are carried out for 13 reactions, to test the scope of heavy-atom tunneling in organic chemistry, and to check the accuracy of one-dimensional tunneling models. The reactions include pericyclic, cycloaromatization, radical cyclization and ring opening, and S N 2. When compared at the temperatures that give the same effective rate constant of 3×10 -5 s -1 , tunneling accounts for 25-95 % of the rate in 8 of the 13 reactions. Values of transmission coefficients predicted by Bell's formula, κ Bell , agree well with multidimensional tunneling (canonical variational transition state theory with small curvature tunneling), κ SCT . Mean unsigned deviations of κ Bell vs. κ SCT are 0.08, 0.04, 0.02 at 250, 300 and 400 K. This suggests that κ Bell is a useful first choice for predicting transmission coefficients in heavy-atom tunnelling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fedoseev, V. N.; Pisarevsky, M. I.; Balberkina, Y. N.
2018-01-01
This paper presents interconnection of dynamic and average flow rates of the coolant in a channel of complex geometry that is a basis for a generalization model of experimental data on heat transfer in various porous structures. Formulas for calculation of heat transfer of fuel rods in transversal fluid flow are acquired with the use of the abovementioned model. It is shown that the model describes a marginal case of separated flows in twisting channels where coolant constantly changes its flow direction and mixes in the communicating channels with large intensity. Dynamic speed is suggested to be identified by power for pumping. The coefficient of proportionality in general case depends on the geometry of the channel and the Reynolds number (Re). A calculation formula of the coefficient of proportionality for the narrow line rod packages is provided. The paper presents a comparison of experimental data and calculated values, which shows usability of the suggested models and calculation formulas.
NASA Technical Reports Server (NTRS)
Atlas, David; Rosenfeld, Daniel; Wolff, David B.
1993-01-01
The probability matching method (PMM) is used as a basis for estimating attenuation in tropical rains near Darwin, Australia. PMM provides a climatological relationship between measured radar reflectivity and rain rate, which includes the effects of rain and cloud attenuation. When the radar sample is representative, PMM estimates the rainfall without bias. When the data are stratified for greater than average rates, the method no longer compensates for the higher attenuation and the radar rainfall estimates are biased low. The uncompensated attenuation is used to estimate the climatological attenuation coefficient. The two-way attenuation coefficient was found to be 0.0085 dB/km ( mm/h) exp -1.08 for the tropical rains and associated clouds in Darwin for the first two months of the year for horizontally polarized radiation at 5.63 GHz. This unusually large value is discussed. The risks of making real-time corrections for attenuation are also treated.
Experimental and analytical comparison of flowfields in a 110 N (25 lbf) H2/O2 rocket
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Penko, Paul F.; Schneider, Steven J.; Kim, Suk C.
1991-01-01
A gaseous hydrogen/gaseous oxygen 110 N (25 lbf) rocket was examined through the RPLUS code using the full Navier-Stokes equations with finite rate chemistry. Performance tests were conducted on the rocket in an altitude test facility. Preliminary parametric analyses were performed for a range of mixture ratios and fuel film cooling pcts. It is shown that the computed values of specific impulse and characteristic exhaust velocity follow the trend of the experimental data. Specific impulse computed by the code is lower than the comparable test values by about two to three percent. The computed characteristic exhaust velocity values are lower than the comparable test values by three to four pct. Thrust coefficients computed by the code are found to be within two pct. of the measured values. It is concluded that the discrepancy between computed and experimental performance values could not be attributed to experimental uncertainty.
An Analysis on the Unemployment Rate in the Philippines: A Time Series Data Approach
NASA Astrophysics Data System (ADS)
Urrutia, J. D.; Tampis, R. L.; E Atienza, JB
2017-03-01
This study aims to formulate a mathematical model for forecasting and estimating unemployment rate in the Philippines. Also, factors which can predict the unemployment is to be determined among the considered variables namely Labor Force Rate, Population, Inflation Rate, Gross Domestic Product, and Gross National Income. Granger-causal relationship and integration among the dependent and independent variables are also examined using Pairwise Granger-causality test and Johansen Cointegration Test. The data used were acquired from the Philippine Statistics Authority, National Statistics Office, and Bangko Sentral ng Pilipinas. Following the Box-Jenkins method, the formulated model for forecasting the unemployment rate is SARIMA (6, 1, 5) × (0, 1, 1)4 with a coefficient of determination of 0.79. The actual values are 99 percent identical to the predicted values obtained through the model, and are 72 percent closely relative to the forecasted ones. According to the results of the regression analysis, Labor Force Rate and Population are the significant factors of unemployment rate. Among the independent variables, Population, GDP, and GNI showed to have a granger-causal relationship with unemployment. It is also found that there are at least four cointegrating relations between the dependent and independent variables.
NASA Astrophysics Data System (ADS)
Tanaka, Hiroaki; Takahashi, Sachiko; Yamanaka, Mari; Yoshizaki, Izumi; Sato, Masaru; Sano, Satoshi; Motohara, Moritoshi; Kobayashi, Tomoyuki; Yoshitomi, Susumu; Tanaka, Tetsuo; Fukuyama, Seijiro
2006-09-01
The diffusion coefficients of lysozyme and alpha-amylase were measured in the various polyethylene glycol (PEG) solutions. Obtained diffusion coefficients were studied with the viscosity coefficient of the solution. It was found that the diffusion process of the protein was suppressed with a factor of vγ, where ν is a relative viscosity coefficient of the PEG solution. The value of γ is -0.64 at PEG1500 for both proteins. The value increased to -0.48 at PEG8000 for lysozyme, while decreased to -0.72 for alpha-amylase. The equation of an approximate diffusion coefficient at certain PEG molecular weight and concentration was roughly obtained.
Laboratory investigation and simulation of breakthrough curves in karst conduits with pools
NASA Astrophysics Data System (ADS)
Zhao, Xiaoer; Chang, Yong; Wu, Jichun; Peng, Fu
2017-12-01
A series of laboratory experiments are performed under various hydrological conditions to analyze the effect of pools in pipes on breakthrough curves (BTCs). The BTCs are generated after instantaneous injections of NaCl tracer solution. In order to test the feasibility of reproducing the BTCs and obtain transport parameters, three modeling approaches have been applied: the equilibrium model, the linear graphical method and the two-region nonequilibrium model. The investigation results show that pools induce tailing of the BTCs, and the shapes of BTCs depend on pool geometries and hydrological conditions. The simulations reveal that the two-region nonequilibrium model yields the best fits to experimental BTCs because the model can describe the transient storage in pools by the partition coefficient and the mass transfer coefficient. The model parameters indicate that pools produce high dispersion. The increased tailing occurs mainly because the partition coefficient decreases, as the number of pools increases. When comparing the tracer BTCs obtained using the two types of pools with the same size, the more appreciable BTC tails that occur for symmetrical pools likely result mainly from the less intense exchange between the water in the pools and the water in the pipe, because the partition coefficients for the two types of pools are virtually identical. Dispersivity values decrease as flow rates increase; however, the trend in dispersion is not clear. The reduced tailing is attributed to a decrease in immobile water with increasing flow rate. It provides evidence for hydrodynamically controlled tailing effects.
NASA Technical Reports Server (NTRS)
Anicich, Vincent G.; Wilson, Paul; McEwan, Murray J.
2003-01-01
The results of a study of ion-molecule reactions occurring in pure methane, acetylene, ethylene, ethane, propyne, propene, propane, and diacetylene at pressures up to 40 microns of pressure are reported. A variety of experimental methods are used: The standard double resonance in an ICR, for determination of the precursor ions and the modulated double resonance ejection in an ICR, for the determination of the daughter ions. The FA-SIFT technique was used for validation and examination of termolecular reactions with rate coefficients that are less than 10(-26) cm(6) s(-1). An extensive database of reaction kinetics already exists for many of these reactions. The main point of this study was the determination of the accuracy of this database and to search for any missing reactions and reaction channels that may have been omitted from earlier investigations. A specific objective of this work was to extend the study to the highest pressures possible to find out if there were any important termolecular reaction channels occurring. A new approach was used here. In the pure hydrocarbon gases the mass spectra were followed as a function of the pressure changes of the gas. An initial guess was first made using the current literature as a source of the reaction kinetics that were expected. A model of the ion abundances was produced from the solution of the partial differential equations in terms of reaction rate coefficients and initial abundances. The experimental data was fitted to the model for all of the pressures by a least squares minimization to the reaction rate coefficients and initial abundances. The reaction rate coefficients obtained from the model were then compared to the literature values. Several new channels and reactions were discovered when the modeled fits were compared to the actual data. This is all explained in the text and the implications of these results are discussed for the Titan atmosphere.
Studies of spin-exchange optical pumping
NASA Astrophysics Data System (ADS)
Chann, Bien
Although we still do not understand fully the alkali-alkali relaxation at pressures of an atmosphere or more, an important part of the spin-relaxation comes from the classical dipole-dipole anisotropic spin-axis interaction acting in triplet dimer molecules. The key observation is the existence of magnetic resonances in the magnetic decoupling curves which are predicted from the spin-axis interaction. We identified a new gas-phase, room temperature spin relaxation that is due to the spin-rotation coupling in bound 129Xe-Xe van der Waals molecules. This 129Xe-Xe molecular spin-relaxation is more than an order of magnitude stronger than the well-known 129 Xe-Xe binary spin-relaxation and is the fundamental spin-relaxation process at gas densities below 14 amagat. With external cavity diode laser array bar, we find, based on tests of several cells, that the power required to reach the same polarization is typically three times lower for the spectrally narrowed laser as compared to the unnarrowed diode array bar. This last result indicates that spectrally narrowed lasers are critical to obtaining the highest noble gas polarizations. Furthermore, we find, circularly polarized light propagating at an angle as small as a few degrees to the external magnetic field does not optically pump the atoms to full transparency and causes excess absorption of the pump beam. We measured the Rb-3He spin-exchange rate coefficients using three different methods. We obtained 6.73 +/- 0.12 x 10 -20 cm3/s for the repolarization method. We deduced the spin-exchange rate coefficient to be 6.61 +/- 0.12 x 10 -20 cm3/s for the rate balance method. The third method uses a temperature dependence relaxation of 3He and the deduced value is 8.85 +/- 0.32 x 10-20 cm3/s. This is about 30% higher than the other two methods. This implies a temperature-dependence wall-relaxation or a large value of anisotropic spin-exchange rate coefficient for Rb-3He and would explain the shortfall 3He measured polarization.
NASA Astrophysics Data System (ADS)
Fuchs, Hendrik; Tan, Zhaofeng; Lu, Keding; Bohn, Birger; Broch, Sebastian; Brown, Steven S.; Dong, Huabin; Gomm, Sebastian; Häseler, Rolf; He, Lingyan; Hofzumahaus, Andreas; Holland, Frank; Li, Xin; Liu, Ying; Lu, Sihua; Min, Kyung-Eun; Rohrer, Franz; Shao, Min; Wang, Baolin; Wang, Ming; Wu, Yusheng; Zeng, Limin; Zhang, Yinson; Wahner, Andreas; Zhang, Yuanhang
2017-01-01
In 2014, a large, comprehensive field campaign was conducted in the densely populated North China Plain. The measurement site was located in a botanic garden close to the small town Wangdu, without major industry but influenced by regional transportation of air pollution. The loss rate coefficient of atmospheric hydroxyl radicals (OH) was quantified by direct measurements of the OH reactivity. Values ranged between 10 and 20 s-1 for most of the daytime. Highest values were reached in the late night with maximum values of around 40 s-1. OH reactants mainly originated from anthropogenic activities as indicated (1) by a good correlation between measured OH reactivity and carbon monoxide (linear correlation coefficient R2 = 0.33) and (2) by a high contribution of nitrogen oxide species to the OH reactivity (up to 30 % in the morning). Total OH reactivity was measured by a laser flash photolysis-laser-induced fluorescence instrument (LP-LIF). Measured values can be explained well by measured trace gas concentrations including organic compounds, oxygenated organic compounds, CO and nitrogen oxides. Significant, unexplained OH reactivity was only observed during nights, when biomass burning of agricultural waste occurred on surrounding fields. OH reactivity measurements also allow investigating the chemical OH budget. During this campaign, the OH destruction rate calculated from measured OH reactivity and measured OH concentration was balanced by the sum of OH production from ozone and nitrous acid photolysis and OH regeneration from hydroperoxy radicals within the uncertainty of measurements. However, a tendency for higher OH destruction compared to OH production at lower concentrations of nitric oxide is also observed, consistent with previous findings in field campaigns in China.
The production and escape of nitrogen atoms on Mars
NASA Technical Reports Server (NTRS)
Fox, J. L.
1993-01-01
Updated rate coefficients and a revised ionosphere-thermosphere model are used to compute the production rates and densities of odd nitrogen species in the Martian atmosphere. Computed density profiles for N(4S), N(2D), N(2P), and NO are presented. The model NO densities are found to be about a factor of 2-3 less than those measured by the Viking 1 mass spectrometer. Revised values for the escape rates of N atoms from dissociative recombination and ionospheric reactions are also computed. Dissociative recombination is found to be comparable in importance to photodissociation at low solar activity, but it is still the most important escape mechanism for N-14 at high solar activity.
As-built design specification for the CLASFYG program
NASA Technical Reports Server (NTRS)
Horton, C. L. (Principal Investigator)
1981-01-01
This program produces a file with a Universal-formatted header and data records in a nonstandard format. Trajectory coefficients are calculated from 5 to 8 acquisitions of radiance values in the training field corresponding to an agricultural product. These coefficients are then used to calculate a time of emergence and corresponding trajectory coefficients for each pixel in the test field. The time of emergence, two of the coefficients, and the sigma value for each pixel are written to the file.
State income tax policy and family size: fertility and the dependency exemption.
Whittington, L A
1993-10-01
Data from the Panel Study on Income Dynamics, excluding the low income Survey of Economic Opportunity, were used to test an empirical model of the relationship between US state tax exemption values and tax rates for couples and fertility. Income is held constant so that the real tax exemption value is affected by changes in tax rates, the price level, or the statutory value of the exemption. Prior research by Whittington et al. found a positive relationship between births and the federal exemption between 1979-83 for 294 households. The tax value of the exemption varies widely across states. There are 41 states with substantial personal income taxes, while seven states have no state personal income taxes. A very limited tax on personal income is collected in Tennessee, New Hampshire, and Connecticut. Pennsylvania has no dependency exemption. The range in exemption varies from $1500 in Georgia to $300 in Alabama. Tax credits in lieu of exemptions vary from $6 in Arkansas to $85 in Oregon. Tax rates also vary across states. The value of the exemption lowers the cost of a child and is not constant over time. Six models are specified. Model 1 uses combined state and federal exemptions. Models 2 and 3 use a lagged combined exemption value of one and two years. Models 4 and 6 use state exemptions separated from federal exemptions. Model 5 uses a lag of one year, and model 6 uses a lag of two years. The estimation results of the conditional logit (Chamberlain) Model 1 show a negative and significant coefficient, which suggests that exemptions are not an incentive for births. In Models 2 and 3, the coefficient is positive and significant. In Model 4, the pattern of Model 1 holds except the sign is positive. In Models 5 and 6, the federal exemption is positive and significant, and the state exemption is negative and significant. When substitution is made with the means of the predicted values for the exemption, Models 1-4 all become positive and significant. In models with income as a constant, income reduces the impact of the dependency exemption on fertility. Neither state or federal exemptions are a determinant of fertility but serve as a policy tool for motivating average family size.
Using Remote Sensing to Determine Timing of High Altitude Grass Hay Growth Stages
NASA Astrophysics Data System (ADS)
Mefford, B.
2015-12-01
Remote sensing has become the standard for collecting data to determine potential irrigation consumptive use in Wyoming for the Green River Basin. The Green River Basin within Wyoming is around 10.8 million acres, located in south western Wyoming and is a sub-basin of the Colorado River Basin. Grass hay is the main crop grown in the basin. The majority of the hay is grown at elevations 7,000 feet above mean sea level. Daily potential irrigation consumptive use is calculated for the basin during the growing season (May 1st to September 30th). To determine potential irrigation consumptive use crop coefficients, reference evapotranspiration (ET) and effective precipitation are required. Currently crop coefficients are the hardest to determine as most research on crop coefficients are based at lower elevations. Values for crop coefficients for grass hay still apply to high altitude grass hay, but the hay grows at a much slower rate than low elevation grass hay. To be able to more accurately determine the timing of the growth stages of hay in this basin, time-lapse cameras were installed at two different irrigated hay fields in the basin for the 2015 growing season and took pictures automatically once a day at 1 P.M.. Both of the fields also contained a permanent research grade weather station. Imagery obtained from these cameras was used as indicators of timing of the major growth stages of the hay and the length of days between the stages. A crop coefficient value was applied every day in the growing season based on the results from the imagery. Daily potential ET was calculated using the crop coefficients and the data from the on-site weather stations. The final result was potential irrigation induced crop consumptive use for each site. Using remote sensing provided necessary information that normally would be applied arbitrarily in determining irrigation induced consumptive use in the Green River Basin.
Computed rate coefficients and product yields for c-C5H5 + CH3 --> products.
Sharma, Sandeep; Green, William H
2009-08-06
Using quantum chemical methods, we have explored the region of the C6H8 potential energy surface that is relevant in predicting the rate coefficients of various wells and major product channels following the reaction between cyclopentadienyl radical and methyl radical, c-C5H5 + CH3. Variational transition state theory is used to calculate the high-pressure-limit rate coefficient for all of the barrierless reactions. RRKM theory and the master equation are used to calculate the pressure dependent rate coefficients for 12 reactions. The calculated results are compared with the limited experimental data available in the literature and the agreement between the two is quite good. All of the rate coefficients calculated in this work are tabulated and can be used in building detailed chemical kinetic models.
Hyperfine excitation of C2H in collisions with ortho- and para-H2
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2018-06-01
Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.
Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.
1999-01-01
Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.
The effect of dental scaling noise during intravenous sedation on acoustic respiration rate (RRa™).
Kim, Jung Ho; Chi, Seong In; Kim, Hyun Jeong; Seo, Kwang-Suk
2018-04-01
Respiration monitoring is necessary during sedation for dental treatment. Recently, acoustic respiration rate (RRa™), an acoustics-based respiration monitoring method, has been used in addition to auscultation or capnography. The accuracy of this method may be compromised in an environment with excessive noise. This study evaluated whether noise from the ultrasonic scaler affects the performance of RRa in respiratory rate measurement. We analyzed data from 49 volunteers who underwent scaling under intravenous sedation. Clinical tests were divided into preparation, sedation, and scaling periods; respiratory rate was measured at 2-s intervals for 3 min in each period. Missing values ratios of the RRa during each period were measuerd; correlation analysis and Bland-Altman analysis were performed on respiratory rates measured by RRa and capnogram. Respective missing values ratio from RRa were 5.62%, 8.03%, and 23.95% in the preparation, sedation, and scaling periods, indicating an increased missing values ratio in the scaling period (P < 0.001). Correlation coefficients of the respiratory rate, measured with two different methods, were 0.692, 0.677, and 0.562 in each respective period. Mean capnography-RRa biases in Bland-Altman analyses were -0.03, -0.27, and -0.61 in each respective period (P < 0.001); limits of agreement were -4.84-4.45, -4.89-4.15, and -6.18-4.95 (P < 0.001). The probability of missing respiratory rate values was higher during scaling when RRa was used for measurement. Therefore, the use of RRa alone for respiration monitoring during ultrasonic scaling may not be safe.
Liquid Jet Cavitation via Molecular Dynamics
NASA Astrophysics Data System (ADS)
Ashurst, W. T.
1997-11-01
A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).
DOT National Transportation Integrated Search
2015-08-01
Depth-Duration-Frequency coefficients for Texas were updated from findings reported in Asquith (1998) and Asquith and Roussel (2004) and are herein referred to as the 2015DDF values. The 2015DDF values were used to estimate the 2015ebd value...
Calibration of gyro G-sensitivity coefficients with FOG monitoring on precision centrifuge
NASA Astrophysics Data System (ADS)
Lu, Jiazhen; Yang, Yanqiang; Li, Baoguo; Liu, Ming
2017-07-01
The advantages of mechanical gyros, such as high precision, endurance and reliability, make them widely used as the core parts of inertial navigation systems (INS) utilized in the fields of aeronautics, astronautics and underground exploration. In a high-g environment, the accuracy of gyros is degraded. Therefore, the calibration and compensation of the gyro G-sensitivity coefficients is essential when the INS operates in a high-g environment. A precision centrifuge with a counter-rotating platform is the typical equipment for calibrating the gyro, as it can generate large centripetal acceleration and keep the angular rate close to zero; however, its performance is seriously restricted by the angular perturbation in the high-speed rotating process. To reduce the dependence on the precision of the centrifuge and counter-rotating platform, an effective calibration method for the gyro g-sensitivity coefficients under fiber-optic gyroscope (FOG) monitoring is proposed herein. The FOG can efficiently compensate spindle error and improve the anti-interference ability. Harmonic analysis is performed for data processing. Simulations show that the gyro G-sensitivity coefficients can be efficiently estimated to up to 99% of the true value and compensated using a lookup table or fitting method. Repeated tests indicate that the G-sensitivity coefficients can be correctly calibrated when the angular rate accuracy of the precision centrifuge is as low as 0.01%. Verification tests are performed to demonstrate that the attitude errors can be decreased from 0.36° to 0.08° in 200 s. The proposed measuring technology is generally applicable in engineering, as it can reduce the accuracy requirements for the centrifuge and the environment.
Vosoughi, Amir Reza; Roustaei, Narges; Mahdaviazad, Hamideh
2018-06-01
The use of valid and reliable outcome rating scales is essential for evaluating the result of different treatments and interventions. The purposes of this study were to translate and culturally adapt the American Orthopaedic Foot and Ankle Society ankle-hindfoot scale (AOFAS-AHFS) into Persian languages and evaluate its psychometric properties. Forward-backward translation and cultural adaptation method were used to develop Persian version of AOFAS-AHFS. From March to July 2016, one hundred consecutive patients with ankle and hindfoot injuries were included. Internal consistency and reproducibility were evaluated using Cronbach's alpha, Spearman's rank correlation coefficient and Intraclass correlation coefficient (ICC) respectively. Construct validity reported which compare the outcome rating scale measurements with Short Form-36 (SF-36), also convergent and discriminant validity evaluated using Spearman's rank correlation coefficient. Mean age (SD) of the patients was 41.95±13.45years. Cronbach's α coefficient, Spearman's rho and ICC values were 0.71, 0.89 and 0.90 respectively. Total score of AOFAS-AHFS and SF-36 domains has a correlation ranged between 0.17-0.55. Spearman's rank correlation coefficient of 0.4 was exceeded by all items with the exception of stability. The Spearman's rank correlation between each item in functional subscales with its own subscales was higher than the correlation between these items and other subscales. Persian version of AOFAS-AHFS provides additional reliable and valid instrument which can be used to assess broad range of patients with foot and ankle disorders that speaking in Persian. However, it seems that the original version of AOFAS-AHFS needs some revisions. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames
NASA Technical Reports Server (NTRS)
Carter, Campbell D.; King, Galen B.; Laurendeau, Normand M.
1990-01-01
The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a technique employing two fluorescence detection geometries.
Acevedo-Mendoza, Wilmer F; Buitrago Gómez, Diana Paola; Atehortua-Otero, Miguel Ángel; Páez, Miguel Ángel; Jiménez-Rincón, Manuela; Lagos-Grisales, Guillermo J; Rodríguez-Morales, Alfonso J
2017-03-01
Bacterial meningitis is an important cause of infectious neurological morbidity and mortality. Its incidence has decreased with the introduction of vaccination programmes against preventable agents. However, low-income and middle-income countries with poor access to health care still have a significant burden of the disease. Thus, the relationship between the Gini coefficient and H. influenzae and M. tuberculosis meningitis incidence in Colombia, during 2008-2011, was assessed. In this ecological study, the Gini coefficient was obtained from the Colombian Department of Statistics, incidence rates were calculated (cases/1,000,000 pop) and linear regressions were performed using the Gini coefficient, to assess the relationship between the latter and the incidence of meningitis. It was observed that when inequality increases in the Colombian departments, the incidence of meningitis also increases, with a significant association in the models (p<0.01) for both M. tuberculosis (r²=0.2382; p<0.001) and H. influenzae (r²=0.2509; p<0.001). This research suggests that high Gini coefficient values influence the incidence of Mycobacterium tuberculosis and Haemophilus influenzae meningitis, showing that social inequality is critical to disease occurrence. Early detection, supervised treatment, vaccination coverage, access to health care are efficient control strategies.
Organ and effective dose rate coefficients for submersion exposure in occupational settings
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.; ...
2017-08-24
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
Organ and effective dose rate coefficients for submersion exposure in occupational settings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
SPSS macros to compare any two fitted values from a regression model.
Weaver, Bruce; Dubois, Sacha
2012-12-01
In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.
2017-01-01
Synchronization of population dynamics in different habitats is a frequently observed phenomenon. A common mathematical tool to reveal synchronization is the (cross)correlation coefficient between time courses of values of the population size of a given species where the population size is evaluated from spatial sampling data. The corresponding sampling net or grid is often coarse, i.e. it does not resolve all details of the spatial configuration, and the evaluation error—i.e. the difference between the true value of the population size and its estimated value—can be considerable. We show that this estimation error can make the value of the correlation coefficient very inaccurate or even irrelevant. We consider several population models to show that the value of the correlation coefficient calculated on a coarse sampling grid rarely exceeds 0.5, even if the true value is close to 1, so that the synchronization is effectively lost. We also observe ‘ghost synchronization’ when the correlation coefficient calculated on a coarse sampling grid is close to 1 but in reality the dynamics are not correlated. Finally, we suggest a simple test to check the sampling grid coarseness and hence to distinguish between the true and artifactual values of the correlation coefficient. PMID:28202589
Kindu, Mengistie; Schneider, Thomas; Teketay, Demel; Knoke, Thomas
2016-03-15
Land use/land cover (LULC) dynamics alter ecosystem services values (ESVs), yet quantitative evaluations of changes in ESVs are seldom attempted. Using Munessa-Shashemene landscape of the Ethiopian highlands as an example, we showed estimate of changes in ESVs in response to LULC dynamics over the past four decades (1973-2012). Estimation and change analyses of ESVs were conducted, mainly, by employing GIS using LULC datasets of the year 1973, 1986, 2000 and 2012 with their corresponding global value coefficients developed earlier and our own modified conservative value coefficients for the studied landscape. The results between periods revealed a decrease of total ESVs from US$ 130.5 million in 1973, to US$ 118.5, 114.8 and 111.1 million in 1986, 2000 and 2012, respectively. While using global value coefficients, the total ESVs declined from US$ 164.6 million in 1973, to US$ 135.8, 127.2 and 118.7 million in 1986, 2000 and 2012, respectively. The results from the analyses of changes in the four decades revealed a total loss of ESVs ranging from US$ 19.3 million when using our own modified value coefficients to US$ 45.9 million when employing global value coefficients. Changes have also occurred in values of individual ecosystem service functions, such as erosion control, nutrient cycling, climate regulation and water treatment, which were among the highest contributors of the total ESVs. However, the value of food production service function consistently increased during the study periods although not drastically. All in all, it must be considered a minimum estimate of ESV changes due to uncertainties in the value coefficients used in this study. We conclude that the decline of ESVs reflected the effects of ecological degradation in the studied landscape and suggest further studies to explore future options and formulate intervention strategies. Copyright © 2015 Elsevier B.V. All rights reserved.
Temperature-Dependent Effect of Boric Acid Additive on Surface Roughness and Wear Rate
NASA Astrophysics Data System (ADS)
Ekinci, Şerafettin
Wear and friction hold an important place in engineering. Currently, scientific societies are struggling to control wear by means of studies on lubricants. Boric acid constitutes an important alternative with its good tribological properties similar to MO2S and graphite alongside with low environmental impacts. Boric acid can be used as a solid lubricant itself whereas it can be added or blended into mineral oils in order to yield better mechanical and tribological properties such as low shear stress due to the lamellar structure and low friction, wear and surface roughness rates. In this study, distinguishing from the literature, boric acid addition effect considering the temperature was investigated for the conventional ranges of internal combustion engines. Surface roughness, wear and friction coefficient values were used in order to determine tribological properties of boric acid as an environmentally friendly additive and mineral oil mixture in the present study. Wear experiments were conducted with a ball on disc experimental setup immersed in an oil reservoir at room temperature, 50∘C and 80∘C. The evolution of both the friction coefficient and wear behavior was determined under 10N load, at 2m/s sliding velocity and a total sliding distance of 9000m. Surface roughness was determined using atomic-force microscopy (AFM). Wear rate was calculated utilizing scanning electron microscope (SEM) visuals and data. The test results showed that wear resistance increased as the temperature increased, and friction coefficient decreased due to the presence of boric acid additive.
Resonant structure of low-energy H3+ dissociative recombination
NASA Astrophysics Data System (ADS)
Petrignani, Annemieke; Altevogt, Simon; Berg, Max H.; Bing, Dennis; Grieser, Manfred; Hoffmann, Jens; Jordon-Thaden, Brandon; Krantz, Claude; Mendes, Mario B.; Novotný, Oldřich; Novotny, Steffen; Orlov, Dmitry A.; Repnow, Roland; Sorg, Tobias; Stützel, Julia; Wolf, Andreas; Buhr, Henrik; Kreckel, Holger; Kokoouline, Viatcheslav; Greene, Chris H.
2011-03-01
High-resolution dissociative recombination rate coefficients of rotationally cool and hot H3+ in the vibrational ground state have been measured with a 22-pole trap setup and a Penning ion source, respectively, at the ion storage-ring TSR. The experimental results are compared with theoretical calculations to explore the dependence of the rate coefficient on ion temperature and to study the contributions of different symmetries to probe the rich predicted resonance spectrum. The kinetic energy release was investigated by fragment imaging to derive internal temperatures of the stored parent ions under differing experimental conditions. A systematic experimental assessment of heating effects is performed which, together with a survey of other recent storage-ring data, suggests that the present rotationally cool rate-coefficient measurement was performed at 380-130+50 K and that this is the lowest rotational temperature so far realized in storage-ring rate-coefficient measurements on H3+. This partially supports the theoretical suggestion that temperatures higher than assumed in earlier experiments are the main cause for the large gap between the experimental and the theoretical rate coefficients. For the rotationally hot rate-coefficient measurement a temperature of below 3250 K is derived. From these higher-temperature results it is found that increasing the rotational ion temperature in the calculations cannot fully close the gap between the theoretical and the experimental rate coefficients.
A novel method for the activity measurement of large-area beta reference sources.
Stanga, D; De Felice, P; Keightley, J; Capogni, M; Ioan, M R
2016-03-01
A novel method has been developed for the activity measurement of large-area beta reference sources. It makes use of two emission rate measurements and is based on the weak dependence between the source activity and the activity distribution for a given value of transmission coefficient. The method was checked experimentally by measuring the activity of two ((60)Co and (137)Cs) large-area reference sources constructed from anodized aluminum foils. Measurement results were compared with the activity values measured by gamma spectrometry. For each source, they agree within one standard uncertainty and also agree within the same limits with the certified values of the source activity. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Evdokimova, Maria; Glazunov, Gennady; Yakovlev, Aleksandr
2017-04-01
The basis for development of standards for soil quality is based on the assessment of their resistance to external influences. The main criterion for assessing the environmental sustainability of soils and lands is the ability to perform their ecological functions (Nkonya et al, 2011, 2013; Costanza et al, 2014, Dobrovolsky and Nikitin, 1990; Yakovlev, Evdokimova, 2011). The limiting value of indicators of the state of the environment (physical, chemical, biological and other) corresponds to the value at which stability of environmental components is preserved (the ability to heal itself). Tht threshold for effect of stressor should be identified by the methods of bioindication and biotesting. The analysis obtained by these methods aimed to identify the highest indicator values of physical or chemical (concentration or dose of the stressor) effects, which have not yet fairly established negative changes in the organism, population of organisms or community. Using a theoretical model (Yakovlev et al, 2009, Gendugov., 2013) the problem of finding the threshold concentration is reduced to the finding of the singular points characterizing macroscopic "kinetics" of response in the phase space of dependence of the response rate upon the impact indicator. Singular points are determined by the analysis of derivatives. The theoretical model allows to calculate the singular points of the model (six of them), one of which, the maximum point corresponds to the highest concentration of the stressor at which it had no adverse effects on the test organisms. This point corresponds to the lowest concentration of the stressor at which it has no longer a stimulatory (hormesis) effect. Six singular points divide the whole range of stressors values (concentration) on seven bands with a unique range for each set of values of "macrokinetic" indicators of the living cells response to the impact of the stressor (concentration). Thus, the use of theoretical equations allowed us 1) to establish categories (borders) of soil quality on an the empirical scale of environmental quality and 2) to detail the category of quality in the range of hormesis, that is, in the range of weak positive effects of the stressor. The solution of the equation in the phase space of dependence of response upon exposure is: q=C/z^b*exp(-K/z), where q - is a measurable response of living organisms on exposure to the stressor, the concentration of which is equal to z; C -the constant of integration that makes sense of coefficient, which is scaling the value of q; b - the coefficient of the growth rate responding on the increase of z; K - the coefficient of the decline rate of q responding with increasing z. The equation coefficients C, b, K are found by fitting the model to the experimental data got by the method of nonlinear regression using an available software package. The abscissa of the maximum point is of a particular interest, because it corresponds to: 1. the lowest concentration of the stressor, which does not manifest its stimulatory (hormesis) effect, and at the same time - 2. the largest concentration of the stressor, which has not shown its negative effect. That is, it meets the requirements for threshold concentrations of the stressor and can be used in the development of the environmental quality standards. Acknowledgments: This study was supported by the Russian Science Foundation, project no. 143800023.
A novel grating-imaging method to measure carrier diffusion coefficient in graphene
NASA Astrophysics Data System (ADS)
Chen, Ke; Wang, Yaguo; Akinwande, Deji; Bank, Seth; Lin, Jung-Fu
Similar to carrier mobility, carrier diffusion coefficient in graphene determines the response rate of future graphene-based electronics. Here we present a simple, sensitive and non-destructive technique integrated with ultrafast pump-probe spectroscopy to measure carrier diffusion in CVD-grown graphene. In the method, the pump and the probe beams pass through the same area of a photomask with metal strips i.e. a transmission amplitude grating, and get diffracted. The diffracted light is collected by an objective lens and focused onto the sample to generate carrier density grating. Relaxation of this carrier density grating is governed by both carrier recombination and carrier diffusion in the sample. Transient transmission change of the probe beams, which reflects this relaxation process, is recorded. The measured diffusion coefficients of multilayer and monolayer CVD-grown graphene are 2000cm2/s and 10000cm2/s, respectively, comparable with the reported values of epitaxial graphene and reduced graphene. This transmission grating technique can be used to measure carrier dynamics in versatile 2D materials.
Measurements of aerodynamic forces on unsteadily moving bluff parachute canopies
NASA Astrophysics Data System (ADS)
Cockrell, D. J.; Harwood, R. J.; Shen, C. Q.
1987-06-01
Equations which describe the unsteady motion of bluff bodies through fluids contain certain components, termed added mass coefficients, which can only be determined by experiment. From the solutions to such equations the ways in which the shapes of parachute canopies influence the frequency of their oscillatory motion in pitch and their corresponding damping rates are required. Although a full-scale parachute canopy descends through air, oscillating in pitch as it does, experiments necessary to determine these added mass coefficients have been performed under water, using for this purpose a large ship tank from the towing carriage of which the model parachute canopies were suspended. These experiments showed that the added mass coefficients for bluff parachute canopies differed appreciably from their corresponding potential flow values. The latter were obtained from the analysis of inviscid, fluid flow around regular shapes which were representative of those parachute canopies. The significance for the prediction of the parachute's dynamic behavior in pitch is outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Bruce; Fang, Ming; Ghate, Virendra
2016-02-01
Observations from an upward-pointing Doppler cloud radar are used to examine cloud-top entrainment processes and parameterizations in a non-precipitating continental stratocumulus cloud deck maintained by time varying surface buoyancy fluxes and cloud-top radiative cooling. Radar and ancillary observations were made at the Atmospheric Radiation Measurement (ARM)’s Southern Great Plains (SGP) site located near Lamont, Oklahoma of unbroken, non-precipitating stratocumulus clouds observed for a 14-hour period starting 0900 Central Standard Time on 25 March 2005. The vertical velocity variance and energy dissipation rate (EDR) terms in a parameterized turbulence kinetic energy (TKE) budget of the entrainment zone are estimated using themore » radar vertical velocity and the radar spectrum width observations from the upward-pointing millimeter cloud radar (MMCR) operating at the SGP site. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlates strongly (r=0.72) to the dissipation rate term in the entrainment zone. However, the ratio of the variance term to the dissipation decreases at night due to decoupling of the boundary layer. When the night -time decoupling is accounted for, the correlation between the variance and the EDR term increases (r=0.92). To obtain bulk coefficients for the entrainment parameterizations derived from the TKE budget, independent estimate of entrainment were obtained from an inversion height budget using ARM SGP observations of the local time derivative and the horizontal advection of the cloud-top height. The large-scale vertical velocity at the inversion needed for this budget from EMWF reanalysis. This budget gives a mean entrainment rate for the observing period of 0.76±0.15 cm/s. This mean value is applied to the TKE budget parameterizations to obtain the bulk coefficients needed in these parameterizations. These bulk coefficients are compared with those from previous and are used to in the parameterizations to give hourly estimates of the entrainment rates using the radar derived vertical velocity variance and dissipation rates. Hourly entrainment rates were estimated from a convective velocity w* parameterization depends on the local surface buoyancy fluxes and the calculated radiative flux divergence, parameterization using a bulk coefficient obtained from the mean inversion height budget. The hourly rates from the cloud turbulence estimates and the w* parameterization, which is independent of the radar observations, are compared with the hourly we values from the budget. All show rough agreement with each other and capture the entrainment variability associated with substantial changes in the surface flux and radiative divergence at cloud top. Major uncertainties in the hourly estimates from the height budget and w* are discussed. The results indicate a strong potential for making entrainment rate estimates directly from the radar vertical velocity variance and the EDR measurements—a technique that has distinct advantages over other methods for estimating entrainment rates. Calculations based on the EDR alone can provide high temporal resolution (for averaging intervals as small as 10 minutes) of the entrainment processes and do not require an estimate of the boundary layer depth, which can be difficult to define when the boundary layer is decoupled.« less
NASA Technical Reports Server (NTRS)
Childs, Dara W.; Alexander, Chis
1994-01-01
This viewgraph presentation presents the following results: (1) The analytical results overpredict the experimental results for the direct stiffness values and incorrectly predict increasing stiffness with decreasing pressure ratios. (2) Theory correctly predicts increasing cross-coupled stiffness, K(sub YX), with increasing eccentricity and inlet preswirl. (3) Direct damping, C(sub XX), underpredicts the experimental results, but the analytical results do correctly show that damping increases with increasing eccentricity. (4) The whirl frequency values predicted by theory are insensitive to changes in the static eccentricity ratio. Although these values match perfectly with the experimental results at 16,000 rpm, the results at the lower speed do not correspond. (5) Theoretical and experimental mass flow rates match at 5000 rpm, but at 16,000 rpm the theoretical results overpredict the experimental mass flow rates. (6) Theory correctly shows the linear pressure profiles and the associated entrance losses with the specified rotor positions.
NASA Astrophysics Data System (ADS)
Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.
2017-12-01
Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.
PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient
NASA Astrophysics Data System (ADS)
Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.
2018-02-01
Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.
Li, Xiaogai; von Holst, Hans; Kleiven, Svein
2013-01-01
A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion.
Puntillo, Kathleen A; Neuhaus, John; Arai, Shoshana; Paul, Steven M; Gropper, Michael A; Cohen, Neal H; Miaskowski, Christine
2012-10-01
Determine levels of agreement among intensive care unit patients and their family members, nurses, and physicians (proxies) regarding patients' symptoms and compare levels of mean intensity (i.e., the magnitude of a symptom sensation) and distress (i.e., the degree of emotionality that a symptom engenders) of symptoms among patients and proxy reporters. Prospective study of proxy reporters of symptoms in seriously ill patients. Two intensive care units in a tertiary medical center in the Western United States. Two hundred and forty-five intensive care unit patients, 243 family members, 103 nurses, and 92 physicians. None. On the basis of the magnitude of intraclass correlation coefficients, where coefficients from .35 to .78 are considered to be appropriately robust, correlation coefficients between patients' and family members' ratings met this criterion (≥.35) for intensity in six of ten symptoms. No intensity ratings between patients and nurses had intraclass correlation coefficients >.32. Three symptoms had intensity correlation coefficients of ≥.36 between patients' and physicians' ratings. Correlation coefficients between patients and family members were >.40 for five symptom-distress ratings. No symptoms had distress correlation coefficients of ≥.28 between patients' and nurses' ratings. Two symptoms had symptom-distress correlation coefficients between patients' and physicians' ratings at >.39. Family members, nurses, and physicians reported higher symptom-intensity scores than patients did for 80%, 60%, and 60% of the symptoms, respectively. Family members, nurses, and physicians reported higher symptom-distress scores than patients did for 90%, 70%, and 80% of the symptoms, respectively. Patient-family intraclass correlation coefficients were sufficiently close for us to consider using family members to help assess intensive care unit patients' symptoms. Relatively low intraclass correlation coefficients between intensive care unit clinicians' and patients' symptom ratings indicate that some proxy raters overestimate whereas others underestimate patients' symptoms. Proxy overestimation of patients' symptom scores warrants further study because this may influence decisions about treating patients' symptoms.
Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.
1999-01-01
Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.
Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix
2016-09-01
The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental research on friction coefficient between grain bulk and bamboo clappers
NASA Astrophysics Data System (ADS)
Tang, Gan; Sun, Ping; Zhao, Yanqi; Yin, Lingfeng; Zhuang, Hong
2017-12-01
A silo is an important piece of storage equipment, especially in the grain industry. The internal friction angle and the friction coefficient between the grain and the silo wall are the main parameters needed for calculating the lateral pressure of the silo wall. Bamboo is used in silo walls, but there are no provisions about the friction coefficient between bulk grain and bamboo clappers in existing codes. In this paper, the material of the silo wall is bamboo. The internal friction of five types of grain and the friction coefficient between the grain and the bamboo clappers were measured with an equal-strain direct shear apparatus. By comparing the experimental result values with the code values, the friction coefficient between the grain bulk and bamboo clappers is lower than that between grain and steel wall and that between grain and concrete wall. The differences in value are 0.21 and 0.09, respectively.
Geopotential coefficient determination and the gravimetric boundary value problem: A new approach
NASA Technical Reports Server (NTRS)
Sjoeberg, Lars E.
1989-01-01
New integral formulas to determine geopotential coefficients from terrestrial gravity and satellite altimetry data are given. The formulas are based on the integration of data over the non-spherical surface of the Earth. The effect of the topography to low degrees and orders of coefficients is estimated numerically. Formulas for the solution of the gravimetric boundary value problem are derived.
2013-01-01
Background Cardiovascular magnetic resonance (CMR) T1 mapping indices, such as T1 time and partition coefficient (λ), have shown potential to assess diffuse myocardial fibrosis. The purpose of this study was to investigate how scanner and field strength variation affect the accuracy and precision/reproducibility of T1 mapping indices. Methods CMR studies were performed on two 1.5T and three 3T scanners. Eight phantoms were made to mimic the T1/T2 of pre- and post-contrast myocardium and blood at 1.5T and 3T. T1 mapping using MOLLI was performed with simulated heart rate of 40-100 bpm. Inversion recovery spin echo (IR-SE) was the reference standard for T1 determination. Accuracy was defined as the percent error between MOLLI and IR-SE, and scan/re-scan reproducibility was defined as the relative percent mean difference between repeat MOLLI scans. Partition coefficient was estimated by ΔR1myocardium phantom/ΔR1blood phantom. Generalized linear mixed model was used to compare the accuracy and precision/reproducibility of T1 and λ across field strength, scanners, and protocols. Results Field strength significantly affected MOLLI T1 accuracy (6.3% error for 1.5T vs. 10.8% error for 3T, p<0.001) but not λ accuracy (8.8% error for 1.5T vs. 8.0% error for 3T, p=0.11). Partition coefficients of MOLLI were not different between two 1.5T scanners (47.2% vs. 47.9%, p=0.13), and showed only slight variation across three 3T scanners (49.2% vs. 49.8% vs. 49.9%, p=0.016). Partition coefficient also had significantly lower percent error for precision (better scan/re-scan reproducibility) than measurement of individual T1 values (3.6% for λ vs. 4.3%-4.8% for T1 values, approximately, for pre/post blood and myocardium values). Conclusion Based on phantom studies, T1 errors using MOLLI ranged from 6-14% across various MR scanners while errors for partition coefficient were less (6-10%). Compared with absolute T1 times, partition coefficient showed less variability across platforms and field strengths as well as higher precision. PMID:23890156
Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements
NASA Technical Reports Server (NTRS)
Trefny, C. J.
1985-01-01
Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.
Rampino, Sergio; Suleimanov, Yury V
2016-12-22
Thermal rate coefficients for the astrochemical reaction C + CH + → C 2 + + H were computed in the temperature range 20-300 K by using novel rate theory based on ring polymer molecular dynamics (RPMD) on a recently published bond-order based potential energy surface and compared with previous Langevin capture model (LCM) and quasi-classical trajectory (QCT) calculations. Results show that there is a significant discrepancy between the RPMD rate coefficients and the previous theoretical results that can lead to overestimation of the rate coefficients for the title reaction by several orders of magnitude at very low temperatures. We argue that this can be attributed to a very challenging energy profile along the reaction coordinate for the title reaction, not taken into account in extenso by either the LCM or QCT approximation. In the absence of any rigorous quantum mechanical or experimental results, the computed RPMD rate coefficients represent state-of-the-art estimates to be included in astrochemical databases and kinetic networks.
Calculations on the rate of the ion-molecule reaction between NH3(+) and H2
NASA Technical Reports Server (NTRS)
Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.
1991-01-01
The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.
Shi, Kun; Li, Yun-mei; Wang, Qiao; Yang, Yu; Jin, Xin; Wang, Yan-fei; Zhang, Hong; Yin, Bin
2010-05-01
Field experiments are conducted separately in Taihu Lake and Chaohu Lake on Apr. and Jun. 2009. The changes in absorption spectra of chromophoric dissolved organic matter (CDOM) characteristics are analyzed using spectral differential analysis technology. According the spectral differential characteristic of absorption coefficient; absorption coefficient from 240 to 450 nm is divided into different stages, and the value of spectral slope S is calculated in each stage. In Stage A, S value of CDOM in Taihu Lake and Chaohu Lake are 0.0166-0.0102 nm(-1) [average (0.0132 +/- 0.0017) nm(-1)], 0.029-0.017 nm(-1) [average (0.0214 +/- 0.0024) nm(-1)]. In Stage B, S values are 0.0187-0.0148 nm(-1) [average (0.0169 +/- 0.001) nm(-1)], 0.0179-0.0055 nm(-1) [average (0.0148 +/- 0.002) nm(-1)]. In Stage C, S values are 0.0208-0.0164 nm(-1) [average (0.0186 +/- 0.0009) nm(-1)], 0.0253-0.0161 nm(-1) [average (0.0197 +/- 0.002) nm(-1)]. The results can be concluded as: (1) Absorption coefficient of water in Taihu Lake, and its contribution to absorption of each component is less than that of water in Chaohu Lake, however the standardized absorption coefficient is larger than that in Chaohu Lake. (2) Both in Taihu Lake and Chaohu Lake, derivative spectra of CDOM absorption coefficient reached valley at 260nm, then rise to top at 290 nm, CDOM absorption coefficient can be delivered into three stages. (3) Generally speaking, content of CDOM in Taihu Lake is less than in Chaohu Lake. (4) pectrum slope (S value) of CDOM is related to composition of CDOM, when content of humic acid in CDOM gets higher, S value of Stage B is the most sensitive value, then is the S value of Stage C. Oppositely, S value of Stage B gets the most sensitive value, then is the S value of Stage A; the least sensitive value is in Stage B.
Zohra, Rozi; Song, M S; Iliham, Nizam; Dolikun, Mamatyusupu
2016-08-16
To investigate the characterizations of genetic recombination hotspots and linkage disequilibrium (LD) patterns in peroxisome proliferative activated receptor gamma (PPARG) gene in Kirgiz and Uyghur ethnic groups. Blood samples were collected from 100 Kirgiz (50 healthy controls and 50 patients with type 2 diabetes mellitus) residents in Halajun County, Artux City, Kizilsu Kirgiz Autonomous Prefecture, Xinjiang in August 2013, and 50 healthy Uyghur residents in Hotan Prefecture of Xinjiang Uygur Autonomous Region in May 2012.Thirty-one tagSNPs in PPARG gene were genotyped using Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) method.The recombination hotspots and LD patterns within the PPARG gene were estimated by analyzing the SNP genotying data using the Hotspot Fisher program and Haploview software, respectively. Eighteen tagSNPs (rs1151999, rs1175540, rs1875796, rs1899951, rs2292101, rs2921190, rs2938397, rs2959272, rs2959273, rs2972162, rs3856806, rs4135247, rs4135275, rs709151, rs4135354, rs6805419, rs17036700 and rs4135304) were same with relatively higher recombination rates between the patients with type 2 diabetes mellitus (T2DM) and healthy controls of Kirgiz ethnic group, and healthy controls of Uyghur ethnic group.Five haplotype blocks with LD coefficient D' value of 1, indicating no genetic recombination occurred within the region, were observed in the healthy controls of Kirgiz ethnic groups, whereas five haplotype blocks with LD coefficient D' value less than 1 were observed in the Kirgiz patients with T2DM, indicating historical recombination events occurred within the region.Four haplotype blocks with LD coefficient D' value of 1 were observed in the Uyghur healthy controls, indicating no genetic recombination occurred within the region.There were significantly different recombination hotspot profiles between the Kirgiz, Uyghur, Utah residents with Northern and Western European ancestry (CEU), Yoruban in Ibadan, Nigeria (YRI) and Han Chinese in Beijing (CHB) and Japanese in Tokyo (JPT) samples.There are six recombination hotspots in the HapMap profile of genetic recombination.The last 5 SNPs within the PPARG gene were shown with lower recombination rates in the Kirgiz, whereas no recombination hotspot was found in the Uyghur. Variable recombination rates may be present in certain chromosome region between patients and healthy controls within the same or between the different ethnic groups.There may be presence of recombination hotspots of ethnic specificity and with variable recombination rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com
Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.
Anchorage in Orthodontics: Three-dimensional Scanner Input.
Nabbout, Fidele; Baron, Pascal
2018-01-01
The aim of this article is to re-evaluate anchorage coefficient values in orthodontics and their influence in the treatment decision through the usage of three-dimensional (3D) scanner. A sample of 80 patients was analyzed with the 3D scanner using the C2000 and Cepha 3DT softwares (CIRAD Montpellier, France). Tooth anatomy parameters (linear measurements, root, and crown volumes) were then calculated to determine new anchorage coefficients based on root volume. Data were collected and statistically evaluated with the StatView software (version 5.0). The anchorage coefficient values found in this study are compared to those established in previous studies. These new values affect and modify our approach in orthodontic treatment from the standpoint of anchorage. The use of new anchorage coefficient values has significant clinical implications in conventional and in microimplants-assisted orthodontic mechanics through the selection and delivery of the optimal force system (magnitude and moment) for an adequate biological response.
NASA Astrophysics Data System (ADS)
Anggrayni, S.; Mubarok, H.; Putri, N. P.; Suprapto, N.; Kholiq, A.
2018-03-01
The viscosity is defined by dimension of a fluid that resists the force tending to motive the fluid to flow. The aim of viscosity experiment is to determine the fluid viscosity coefficient value. By using graphical analysis, the result of oil viscosity coefficient value which performed by laboratory assistant showed: (1) 0.20 Pa.s using solid ball with accuracy 99.64% and (2) 0.21 Pa.s using smaller solid ball with accuracy 99.17%. Meanwhile, the result of oil viscosity coefficient value which performed by freshmen showed: (1) 0.44 Pa.s using solid ball with accuracy 87.85% and (2) 0.32 Pa.s using smaller solid ball with accuracy 89.84%. The differences result of the freshmen and assistant laboratory viscosity experiment are caused by the freshmen calculated the coefficient viscosity value without velocity correction factor and they used small range fluid so the times are not identified well.
NASA Astrophysics Data System (ADS)
Ermis, Elif Ebru
2017-02-01
The photon mass attenuation coefficients of LiF, BaSO4, CaCO3 and CaSO4 thermoluminescent dosimetric compounds at 100; 300; 500; 600; 800; 1,000; 1,500; 2,000; 3,000 and 5,000 keV gamma-ray energies were calculated. For this purpose, FLUKA Monte Carlo (MC) program which is one of the well-known MC codes was used in this study. Furthermore, obtained results were analyzed by means of ROOT program. National Institute of Standards and Technology (NIST) values were also used to compare the obtained theoretical values because the mass attenuation values of the used compounds could not found in the literature. Calculated mass attenuation coefficients were highly in accordance with the NIST values. As a consequence, FLUKA was successful in calculating the mass attenuation coefficients of the most used thermoluminescent compound.
NASA Technical Reports Server (NTRS)
Newman, P. A.; Schoeberl, M. R.; Plumb, R. A.
1986-01-01
Calculations of the two-dimensional, species-independent mixing coefficients for two-dimensional chemical models for the troposphere and stratosphere are performed using quasi-geostrophic potential vorticity fluxes and gradients from 4 years of National Meteorological Center data for the four seasons in both hemispheres. Results show that the horizontal mixing coefficient values for the winter lower stratosphere are broadly consistent with those currently employed in two-dimensional models, but the horizontal mixing coefficient values in the northern winter upper stratosphere are much larger than those usually used.
Measuring Perceived Educational Impact of a Resident-Led Research Newsletter.
Aftab, Awais; Lackamp, Jeanne; Cerny, Cathleen
2017-06-01
To determine the perceived educational impact of a resident-led psychiatry research newsletter ('Research Watch') on the psychiatry residents at the authors' residency program. An anonymous, voluntary paper questionnaire was distributed to all psychiatry residents at the program. The survey inquired about the degree of exposure (quantified as 'exposure index') and contribution to the newsletter. A set of questions asked residents to estimate how much of the improvement they attributed to the influence of the newsletter, rating the attribution between 0 and 100%, in the areas of interest in scholarly activities/research, knowledge of current psychiatric research, and participation in scholarly activities/research. The survey also inquired if the newsletter had any impact on their clinical practice. Of 29 residents in the program who received the survey, 27 (93%) responded. The percentage of residents reporting perceived non-zero impact of the newsletter on specific areas of improvement was as follows: interest in scholarly activities/research (44%), knowledge of current psychiatric research (48%), participation in scholarly activities/research (40%), and clinical practice (40%). Exposure index significantly and positively correlated with self-reported percentage attribution for knowledge (correlation coefficient 0.422, p value 0.028) and self-reported impact on clinical practice (correlation coefficient 0.660, p value 0.000), and degree of contribution significantly and positively correlated with self-reported percentage attribution for knowledge (correlation coefficient 0.488, p value 0.010). A resident-led research newsletter can have a positive perceived impact on the residents' interest, knowledge, and participation in research, as well as a positive perceived impact on clinical practice.
Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying
2013-01-01
Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3–24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615
Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere
NASA Astrophysics Data System (ADS)
Chen, Zhiyuan; Morita, Kazuki
2018-03-01
We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.
Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere
NASA Astrophysics Data System (ADS)
Chen, Zhiyuan; Morita, Kazuki
2018-06-01
We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.
NASA Technical Reports Server (NTRS)
Anbar, A. D.; Allen, M.; Nair, H. A.
1993-01-01
We have investigated the impact of high resolution, temperature-dependent CO2 cross-section measurements, reported by Lewis and Carver (1983), on calculations of photodissociation rate coefficients in the Martian atmosphere. We find that the adoption of 50 A intervals for the purpose of computational efficiency results in errors in the calculated values for photodissociation of CO2, H2O, and O2 which are generally not above 10 percent, but as large as 20 percent in some instances. These are acceptably small errors, especially considering the uncertainties introduced by the large temperature dependence of the CO2 cross section. The inclusion of temperature-dependent CO2 cross sections is shown to lead to a decrease in the diurnally averaged rate of CO2 photodissociation as large as 33 percent at some altitudes, and increases of as much as 950 percent and 80 percent in the photodissociation rate coefficients of H2O and O2, respectively. The actual magnitude of the changes depends on the assumptions used to model the CO2 absorption spectrum at temperatures lower than the available measurements, and at wavelengths longward of 1970 A.
Light Absorption of Stratospheric Aerosols: Long-Term Trend and Contribution by Aircraft
NASA Technical Reports Server (NTRS)
Pueschel , R. F.; Gore, Waren J. Y. (Technical Monitor)
1997-01-01
Measurements of aerosol light-absorption coefficients are useful for studies of radiative transfer and heating rates. Ogren appears to have published the first light- absorption coefficients in the stratosphere in 1981, followed by Clarke in 1983 and Pueschel in 1992. Because most stratospheric soot appears to be due to aircraft operations, application of an aircraft soot aerosol emission index to projected fuel consumption suggests a threefold increase of soot loading and light absorption by 2025. Together, those four data sets indicate an increase in mid-visible light extinction at a rate of 6 % per year. This trend is similar to the increase per year of sulfuric acid aerosol and of commercial fleet size. The proportionality between stepped-up aircraft operations above the tropopause and increases in stratospheric soot and sulfuric acid aerosol implicate aircraft as a source of stratospheric pollution. Because the strongly light-absorbing soot and the predominantly light-scattering sulfuric acid aerosol increase at similar rates, however, the mid-visible stratospheric aerosol single scatter albedo is expected to remain constant and not approach a critical value of 0.98 at which stratospheric cooling could change to warming.
Buratti, C; Barbanera, M; Lascaro, E; Cotana, F
2018-03-01
The aim of the present study is to analyze the influence of independent process variables such as temperature, residence time, and heating rate on the torrefaction process of coffee chaff (CC) and spent coffee grounds (SCGs). Response surface methodology and a three-factor and three-level Box-Behnken design were used in order to evaluate the effects of the process variables on the weight loss (W L ) and the Higher Heating Value (HHV) of the torrefied materials. Results showed that the effects of the three factors on both responses were sequenced as follows: temperature>residence time>heating rate. Data obtained from the experiments were analyzed by analysis of variance (ANOVA) and fitted to second-order polynomial models by using multiple regression analysis. Predictive models were determined, able to obtain satisfactory fittings of the experimental data, with coefficient of determination (R 2 ) values higher than 0.95. An optimization study using Derringer's desired function methodology was also carried out and the optimal torrefaction conditions were found: temperature 271.7°C, residence time 20min, heating rate 5°C/min for CC and 256.0°C, 20min, 25°C/min for SCGs. The experimental values closely agree with the corresponding predicted values. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of perceived similarity between pairs of microcalcification clusters in mammograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juan; Jing, Hao; Wernick, Miles N.
2014-05-15
Purpose: Content-based image retrieval aims to assist radiologists by presenting example images with known pathology that are visually similar to the case being evaluated. In this work, the authors investigate several fundamental issues underlying the similarity ratings between pairs of microcalcification (MC) lesions on mammograms as judged by radiologists: the degree of variability in the similarity ratings, the impact of this variability on agreement between readers in retrieval of similar lesions, and the factors contributing to the readers’ similarity ratings. Methods: The authors conduct a reader study on a set of 1000 image pairs of MC lesions, in which amore » group of experienced breast radiologists rated the degree of similarity between each image pair. The image pairs are selected, from among possible pairings of 222 cases (110 malignant, 112 benign), based on quantitative image attributes (features) and the results of a preliminary reader study. Next, the authors apply analysis of variance (ANOVA) to quantify the level of variability in the readers’ similarity ratings, and study how the variability in individual reader ratings affects consistency between readers. The authors also measure the extent to which readers agree on images which are most similar to a given query, for which the Dice coefficient is used. To investigate how the similarity ratings potentially relate to the attributes underlying the cases, the authors study the fraction of perceptually similar images that also share the same benign or malignant pathology as the query image; moreover, the authors apply multidimensional scaling (MDS) to embed the cases according to their mutual perceptual similarity in a two-dimensional plot, which allows the authors to examine the manner in which similar lesions relate to one another in terms of benign or malignant pathology and clustered MCs. Results: The ANOVA results show that the coefficient of determination in the reader similarity ratings is 0.59. The variability level in the similarity ratings is proved to be a limiting factor, leading to only moderate correlation between the readers in their readings. The Dice coefficient, measuring agreement between readers in retrieval of similar images, can vary from 0.45 to 0.64 with different levels of similarity for individual readers, but is higher for average ratings from a group of readers (from 0.59 to 0.78). More importantly, the fraction of retrieved cases that match the benign or malignant pathology of the query image was found to increase with the degree of similarity among the retrieved images, reaching average value as high as 0.69 for the radiologists (p-value <10{sup −4} compared to random guessing). Moreover, MDS embedding of all the cases shows that cases having the same pathology tend to cluster together, and that neighboring cases in the plot tend to be similar in their clustered MCs. Conclusions: While individual readers exhibit substantial variability in their similarity ratings, similarity ratings averaged from a group of readers can achieve a high level of intergroup consistency and agreement in retrieval of similar images. More importantly, perceptually similar cases are also likely to be similar in their underlying benign or malignant pathology and image features of clustered MCs, which could be of diagnostic value in computer-aided diagnosis for lesions with clustered MCs.« less
NASA Technical Reports Server (NTRS)
Edwards, T. R. (Inventor)
1985-01-01
Apparatus for doubling the data density rate of an analog to digital converter or doubling the data density storage capacity of a memory deviced is discussed. An interstitial data point midway between adjacent data points in a data stream having an even number of equal interval data points is generated by applying a set of predetermined one-dimensional convolute integer coefficients which can include a set of multiplier coefficients and a normalizer coefficient. Interpolator means apply the coefficients to the data points by weighting equally on each side of the center of the even number of equal interval data points to obtain an interstital point value at the center of the data points. A one-dimensional output data set, which is twice as dense as a one-dimensional equal interval input data set, can be generated where the output data set includes interstitial points interdigitated between adjacent data points in the input data set. The method for generating the set of interstital points is a weighted, nearest-neighbor, non-recursive, moving, smoothing averaging technique, equivalent to applying a polynomial regression calculation to the data set.
Effect of mass transfer in a recirculation batch reactor system for immobilized penicillin amidase.
Park, J M; Choi, C Y; Seong, B L; Han, M H
1982-10-01
The effect of external mass transfer resistance on the overall reaction rate of the immobilized whole cell penicillin amidase of E. coli in a recirculation batch reactor was investigated. The internal diffusional resistance was found negligible as indicated by the value of effectiveness factor, 0.95. The local environmental change in a column due to the pH drop was successfully overcome by employing buffer solution. The reaction rate was measured by pH-stat method and was found to follow the simple Michaelis-Menten law at the initial stage of the reaction. The values of the net reaction rate experimentally determined were used to calculate the substrate concentration at the external surface of the catalyst pellet and then to calculate the mass transfer coefficient, k(L), at various flow rates and substrate concentrations. The correlation proposed by Chilton and Colburn represented adequately the experimental data. The linear change of log j(D) at low log N(Re) with negative slope was ascribed to the fact that the external mass transfer approached the state of pure diffusion in the limit of zero superficial velocity.
Quadcopter Control Using Speech Recognition
NASA Astrophysics Data System (ADS)
Malik, H.; Darma, S.; Soekirno, S.
2018-04-01
This research reported a comparison from a success rate of speech recognition systems that used two types of databases they were existing databases and new databases, that were implemented into quadcopter as motion control. Speech recognition system was using Mel frequency cepstral coefficient method (MFCC) as feature extraction that was trained using recursive neural network method (RNN). MFCC method was one of the feature extraction methods that most used for speech recognition. This method has a success rate of 80% - 95%. Existing database was used to measure the success rate of RNN method. The new database was created using Indonesian language and then the success rate was compared with results from an existing database. Sound input from the microphone was processed on a DSP module with MFCC method to get the characteristic values. Then, the characteristic values were trained using the RNN which result was a command. The command became a control input to the single board computer (SBC) which result was the movement of the quadcopter. On SBC, we used robot operating system (ROS) as the kernel (Operating System).
Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern.
Peevy, K J; Hernandez, L A; Moise, A A; Parker, J C
1990-06-01
To study the pulmonary microvascular injury produced by ventilation barotrauma, the isolated perfused lungs of 4 to 6-wk-old New Zealand white rabbits were ventilated by one of the following methods: peak inspiratory pressure (PIP) 23 cm H2O, gas flow rate 1.1 L/min (group 1); PIP 27 cm H2O, gas flow rate 6.9 L/min (group 2); PIP 50 cm H2O, gas flow rate 1.9 L/min (group 3); or PIP 53 cm H2O, gas flow rate 8.3 L/min (group 4). Microvascular permeability was assessed using the capillary filtration coefficient (Kfc) before and 5, 30, and 60 min after a 15-min period of ventilation. Baseline Kfc was not significantly different between groups. A significant increase over the baseline Kfc was noted at 60 min in group 2 and in all postventilation Kfc values in groups 3 and 4 (p less than .05). Group 1 Kfc values did not change significantly after ventilation. At all post-ventilation times, values for Kfc were significantly greater in groups 3 and 4 than in group 1 (p less than .05). Group 4 Kfc values were significantly greater than those in group 2 at 5 and 30 min postventilation. These data indicate that high PIP, and to a lesser extent, high gas flow rates cause microvascular injury in the compliant nonadult lung and suggest that the combination of high PIP and high gas flow rates are the most threatening to microvascular integrity.
Cortexin diffusion in human eye sclera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genina, Elina A; Bashkatov, A N; Tuchin, Valerii V
2011-05-31
Investigation of the diffusion of cytamines, a typical representative of which is cortexin, is important for evaluating the drug dose, necessary to provide sufficient concentration of the preparation in the inner tissues of the eye. In the present paper, the cortexin diffusion rate in the eye sclera is measured using the methods of optical coherence tomography (OCT) and reflectance spectroscopy. The technique for determining the diffusion coefficient is based on the registration of temporal dependence of the eye sclera scattering parameters caused by partial replacement of interstitial fluid with the aqueous cortexin solution, which reduces the level of the OCTmore » signal and decreases the reflectance of the sclera. The values of the cortexin diffusion coefficient obtained using two independent optical methods are in good agreement. (optical technologies in biophysics and medicine)« less
McDonald, G G; Vanderkooi, J M
1975-05-20
A pulsed-gradient Fourier transform nuclear magnetic resonance (NMR) technique was appplied to the study of diffusion of phospholipid vesicles. The diffusion coefficient of dimyristoyllecithin vesicles (DML) in a D2O-phospahte buffer at 37 degrees is D = 1.9 TIMES 10(-6) cm2/sec. In a solution made viscous by DNA addition, the diffusion coefficient of DML vesicles was 3.5 times 10(-7) cm2/sec. These values compare favorably with the diffusion rate for liposomes as determined by ultracentrifugation and by Stokes law calculation. The data suggest that DML diffusion is controlled primarily by whole liposome migration as opposed to movement of individual molecules within the liposome, liposome rotation, or fast exchange between lecithin molecules in solution and in vesicles.
Characterization of the interfacial heat transfer coefficient for hot stamping processes
NASA Astrophysics Data System (ADS)
Luan, Xi; Liu, Xiaochuan; Fang, Haomiao; Ji, Kang; El Fakir, Omer; Wang, LiLiang
2016-08-01
In hot stamping processes, the interfacial heat transfer coefficient (IHTC) between the forming tools and hot blank is an essential parameter which determines the quenching rate of the process and hence the resulting material microstructure. The present work focuses on the characterization of the IHTC between an aluminium alloy 7075-T6 blank and two different die materials, cast iron (G3500) and H13 die steel, at various contact pressures. It was found that the IHTC between AA7075 and cast iron had values 78.6% higher than that obtained between AA7075 and H13 die steel. Die materials and contact pressures had pronounced effects on the IHTC, suggesting that the IHTC can be used to guide the selection of stamping tool materials and the precise control of processing parameters.
NASA Astrophysics Data System (ADS)
Chang, Lienard A.
In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.
Tsujimura, Kazuma; Ota, Morihito; Chinen, Kiyoshi; Adachi, Takayuki; Nagayama, Kiyomitsu; Oroku, Masato; Nishihira, Morikuni; Shiohira, Yoshiki; Iseki, Kunitoshi; Ishida, Hideki; Tanabe, Kazunari
2017-06-23
BACKGROUND Precise evaluation of a living donor's renal function is necessary to ensure adequate residual kidney function after donor nephrectomy. Our aim was to evaluate the feasibility of estimating glomerular filtration rate (GFR) using serum cystatin-C prior to kidney transplantation. MATERIAL AND METHODS Using the equations of the Japanese Society of Nephrology, we calculated the GFR using serum creatinine (eGFRcre) and cystatin C levels (eGFRcys) for 83 living kidney donors evaluated between March 2010 and March 2016. We compared eGFRcys and eGFRcre values against the creatinine clearance rate (CCr). RESULTS The study population included 27 males and 56 females. The mean eGFRcys, eGFRcre, and CCr were, 91.4±16.3 mL/min/1.73 m² (range, 59.9-128.9 mL/min/1.73 m²), 81.5±14.2 mL/min/1.73 m² (range, 55.4-117.5 mL/min/1.73 m²) and 108.4±21.6 mL/min/1.73 m² (range, 63.7-168.7 mL/min/1.73 m²), respectively. eGFRcys was significantly lower than CCr (p<0.001). The correlation coefficient between eGFRcys and CCr values was 0.466, and the mean difference between the two values was -17.0 (15.7%), with a root mean square error of 19.2. Thus, eGFRcre was significantly lower than CCr (p<0.001). The correlation coefficient between eGFRcre and CCr values was 0.445, and the mean difference between the two values was -26.9 (24.8%), with a root mean square error of 19.5. CONCLUSIONS Although eGFRcys provided a better estimation of GFR than eGFRcre, eGFRcys still did not provide an accurate measure of kidney function in Japanese living kidney donors.
Feldberg, Stephen W
2010-06-15
For an outer-sphere heterogeneous electron transfer, Ox + e = Red, between an electrode and a redox couple, the Butler-Volmer formalism predicts that the operative heterogeneous rate constant, k(red) (cm s(-1)) for reduction (or k(ox) for oxidation) increases without limit as an exponential function of -alpha (E - E(0)) for reduction (or (1 - alpha)(E - E(0)) for oxidation), where E is the applied electrode potential, alpha (~1/2) is the transfer coefficient and E(0) is the formal potential. The Marcus-Hush formalism, as exposited by Chidsey (Chidsey, C. E. D. Science 1991, 215, 919), predicts that the value of k(red) or k(ox) limits at sufficiently large values of -(E - E(0)) or (E - E(0)). The steady-state currents at an inlaid disk electrode obtained for a redox species in solution were computed using both formalisms with the Oldham-Zoski approximation (Oldham, K. B.; Zoski, C. G. J. Electroanal. Chem. 1988, 256, 11). Significant differences are noted for the two formalisms. When k(0)r(0)/D is sufficiently small (k(0) is the standard rate constant, r(0) is the radius of the disk electrode, and D is the diffusion coefficient of the redox species), the Marcus-Hush formalism effects a limiting current that can be significantly smaller than the mass transport limited current. This is easily explained in terms of the limiting values of k(red) and k(ox) predicted by the Marcus-Hush formalism. The experimental conditions that must be met to effect significant differences in behavior are discussed; experimental conditions that effect virtually identical behavior are also discussed. As a caveat for experimentalists, applications of the Butler-Volmer formalism to systems that are more properly described using the Marcus-Hush formalism are shown to yield incorrect values of k(0) and meaningless values of alpha, which serves only as a fitting parameter.
Garabedian, Stephen P.
1986-01-01
A nonlinear, least-squares regression technique for the estimation of ground-water flow model parameters was applied to the regional aquifer underlying the eastern Snake River Plain, Idaho. The technique uses a computer program to simulate two-dimensional, steady-state ground-water flow. Hydrologic data for the 1980 water year were used to calculate recharge rates, boundary fluxes, and spring discharges. Ground-water use was estimated from irrigated land maps and crop consumptive-use figures. These estimates of ground-water withdrawal, recharge rates, and boundary flux, along with leakance, were used as known values in the model calibration of transmissivity. Leakance values were adjusted between regression solutions by comparing model-calculated to measured spring discharges. In other simulations, recharge and leakance also were calibrated as prior-information regression parameters, which limits the variation of these parameters using a normalized standard error of estimate. Results from a best-fit model indicate a wide areal range in transmissivity from about 0.05 to 44 feet squared per second and in leakance from about 2.2x10 -9 to 6.0 x 10 -8 feet per second per foot. Along with parameter values, model statistics also were calculated, including the coefficient of correlation between calculated and observed head (0.996), the standard error of the estimates for head (40 feet), and the parameter coefficients of variation (about 10-40 percent). Additional boundary flux was added in some areas during calibration to achieve proper fit to ground-water flow directions. Model fit improved significantly when areas that violated model assumptions were removed. It also improved slightly when y-direction (northwest-southeast) transmissivity values were larger than x-direction (northeast-southwest) transmissivity values. The model was most sensitive to changes in recharge, and in some areas, to changes in transmissivity, particularly near the spring discharge area from Milner Dam to King Hill.
Modeling NAPL dissolution from pendular rings in idealized porous media
NASA Astrophysics Data System (ADS)
Huang, Junqi; Christ, John A.; Goltz, Mark N.; Demond, Avery H.
2015-10-01
The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young-Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL-water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection-diffusion equation in a capillary tube assuming Hagen-Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL-water interface in an organic-wet system. A comparison of the predictions from this theoretical model with predictions from empirically derived formulations from the literature for water-wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration.
Coding stimulus amplitude by correlated neural activity
NASA Astrophysics Data System (ADS)
Metzen, Michael G.; Ávila-Åkerberg, Oscar; Chacron, Maurice J.
2015-04-01
While correlated activity is observed ubiquitously in the brain, its role in neural coding has remained controversial. Recent experimental results have demonstrated that correlated but not single-neuron activity can encode the detailed time course of the instantaneous amplitude (i.e., envelope) of a stimulus. These have furthermore demonstrated that such coding required and was optimal for a nonzero level of neural variability. However, a theoretical understanding of these results is still lacking. Here we provide a comprehensive theoretical framework explaining these experimental findings. Specifically, we use linear response theory to derive an expression relating the correlation coefficient to the instantaneous stimulus amplitude, which takes into account key single-neuron properties such as firing rate and variability as quantified by the coefficient of variation. The theoretical prediction was in excellent agreement with numerical simulations of various integrate-and-fire type neuron models for various parameter values. Further, we demonstrate a form of stochastic resonance as optimal coding of stimulus variance by correlated activity occurs for a nonzero value of noise intensity. Thus, our results provide a theoretical explanation of the phenomenon by which correlated but not single-neuron activity can code for stimulus amplitude and how key single-neuron properties such as firing rate and variability influence such coding. Correlation coding by correlated but not single-neuron activity is thus predicted to be a ubiquitous feature of sensory processing for neurons responding to weak input.
Performance evaluation of the microINR® point-of-care INR-testing system.
Joubert, J; van Zyl, M C; Raubenheimer, J
2018-04-01
Point-of-care International Normalised Ratio (INR) testing is used frequently. We evaluated the microINR ® POC system for accuracy, precision and measurement repeatability, and investigated instrument and test chip variability and error rates. Venous blood INRs of 210 patients on warfarin were obtained with Thromborel ® S on the Sysmex CS-2100i ® analyser and compared with capillary blood microINR ® values. Precision was assessed using control materials. Measurement repeatability was calculated on 51 duplicate finger-prick INRs. Triplicate finger-prick INRs using three different instruments (30 patients) and three different test chip lots (29 patients) were used to evaluate instrument and test chip variability. Linear regression analysis of microINR ® and Sysmex CS2100i ® values showed a correlation coefficient of 0.96 (P < .0001) and a positive proportional bias of 4.4%. Dosage concordance was 93.8% and clinical agreement 95.7%. All acceptance criteria based on ISO standard 17593:2007 system accuracy requirements were met. Control material coefficients of variation (CV) varied from 6.2% to 16.7%. The capillary blood measurement repeatability CV was 7.5%. No significant instrument (P = .93) or test chip (P = .81) variability was found, and the error rate was low (2.8%). The microINR ® instrument is accurate and precise for monitoring warfarin therapy. © 2017 John Wiley & Sons Ltd.
Mohd Sauid, Suhaila; Krishnan, Jagannathan; Huey Ling, Tan; Veluri, Murthy V P S
2013-01-01
Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.
Growth of Trametes versicolor on phenol.
Yemendzhiev, H; Gerginova, M; Krastanov, A; Stoilova, I; Alexieva, Z
2008-11-01
Trametes versicolor 1 was shown to grow on phenol as its sole carbon and energy source. The culture growth and degradation ability dependence on culture medium pH value was observed. The optimal pH value of a liquid Czapek salt medium was 6.5. The investigated strain utilized completely 0.5 g/l phenol in 6 days. The dynamics of the phenol degradation process was investigated. The process was characterized by specific growth rate micromax 0.33 h(-1), metabolic coefficient k=4.4, yield coefficient Yx/s=0.23 and rate of degradation Q=0.506 h(-1). The intracellular activities of phenol hydroxylase (0.333 U/mg protein) and cis,cis-muconate lactonizing enzyme (0.41 U/mg protein) were demonstrated for the first time in this fungus. In an attempt to estimate the occurrence of gene sequences in T. versicolor 1 related to phenol degradation pathway a dot blot analysis with total DNA isolated from this strain was performed. Two synthetic oligonucleotides were used as hybridizing probes. One of the probes was homologous to the 5'end of phyA gene coding for phenol hydroxylase in Trichosporon cutaneum ATCC 46490. The other probe was created on the basis of cis,cis-muconate lactonizing enzyme coding gene in T. cutaneum ATCC 58094. The results of these investigations showed that T. versicolor 1 may carry genes similar to those of Trichosporon cutaneum capable to degrade phenol.
Photochemistry of Triton's atmosphere and ionosphere.
Krasnopolsky, V A; Cruikshank, D P
1995-10-25
The photochemistry of 32 neutral and 21 ion species in Triton's atmosphere is considered. Parent species N2, CH4, and CO (with a mixing ratio of 3 x 10(-4) in our basic model) sublime from the ice with rates of 40, 208, and 0.3 g/cm2/b.y., respectively. Chemistry below 50 km is driven mostly by photolysis of methane by the solar and interstellar medium Lyman-alpha photons, producing hydrocarbons C2H4, C2H6, and C2H2 which form haze particles with precipitation rates of 135, 28, and 1.3 g/cm2/b.y., respectively. Some processes are discussed which increase the production of HCN (by an order of magnitude to a value of 29 g/cm2/b.y.) and involve indirect photolysis of N2 by neutrals. Reanalysis of the measured methane profiles gives an eddy diffusion coefficient K = 4 x 10(3) cm2/s above the tropopause and a more accurate methane number density near the surface, (3.1 +/- 0.8) x 10(11) cm-3. Chemistry above 200 km is driven by the solar EUV radiation (lambda < 1000 angstroms) and by precipitation of magnetospheric electrons with a total energy input of 10(8) W (based on thermal balance calculations). The most abundant photochemical species are N, H2, H, O, and C. They escape with the total rates of 7.7 x 10(24) s-1, 4.5 x 10(25) s-1, 2.4 x 10(25) s-1, 4.4 x 10(22) s-1, and 1.1 x 10(24) s-1, respectively. Atomic species are transported to a region of 50-200 km and drive the chemistry there. Ionospheric chemistry explains the formation of an E region at 150-240 km with HCO+ as a major ion, and of an F region above 240 km with a peak at 320 km and C+ as a major ion. The ionosphere above 500 km consists of almost equal densities of C+ and N+ ions. The model profiles agree with the measured atomic nitrogen and electron density profiles. A number of other models with varying rate coefficients of some reactions, differing properties of the haze particles (chemically passive or active), etc., were developed. These models show that there are four basic unknown values which have strong impacts on the composition and structure of the atmosphere and ionosphere. These values and their plausible ranges are the CO mixing ratio fco = 10(-4)-10(-3), the magnetospheric electron energy input (1 +/- 0.5) x 10(8) W, the rate coefficient of charge-exchange reaction N2(+) + C k = 10(-11)-10(-10) cm3/s, and the ion escape velocity Vi approximately equal to 150 cm/s.
Evaporation, diffusion and self-assembly at drying interfaces.
Roger, K; Sparr, E; Wennerström, H
2018-04-18
Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.
Studies on fluid dynamics of the flow field and gas transfer in orbitally shaken tubes.
Zhu, Li-Kuan; Song, Bo-Yan; Wang, Zhen-Long; Monteil, Dominique T; Shen, Xiao; Hacker, David L; De Jesus, Maria; Wurm, Florian M
2017-01-01
Orbitally shaken cylindrical bioreactors [OrbShake bioreactors (OSRs)] without an impeller or sparger are increasingly being used for the suspension cultivation of mammalian cells. Among small volume OSRs, 50-mL tubes with a ventilated cap (OSR50), originally derived from standard laboratory centrifuge tubes with a conical bottom, have found many applications including high-throughput screening for the optimization of cell cultivation conditions. To better understand the fluid dynamics and gas transfer rates at the liquid surface in OSR50, we established a three-dimensional simulation model of the unsteady liquid forms (waves) in this vessel. The studies verified that the operating conditions have a large effect on the interfacial surface. The volumetric mass transfer coefficient (k L a) was determined experimentally and from simulations under various working conditions. We also determined the liquid-phase mass transfer coefficient (k L ) and the specific interfacial area (a) under different conditions to demonstrate that the value of a affected the gas transfer rate more than did the value of k L . High oxygen transfer rates, sufficient for supporting the high-density culture of mammalian cells, were found. Finally, the average axial velocity of the liquid was identified to be an important parameter for maintaining cells in suspension. Overall these studies provide valuable insights into the preferable operating conditions for the OSR50, such as those needed for cell cultures requiring high oxygen levels. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:192-200, 2017. © 2016 American Institute of Chemical Engineers.
Barrera, Javier A; Dalmasso, Pablo R; Taccone, Raúl A; Lane, Silvia I
2017-11-01
Rate coefficients for the gas-phase reactions of OH radicals and Cl atoms with 1-methoxy-2-propanone (1-M-2-PONE), 1-methoxy-2-propanol (1-M-2-POL), and 1-methoxy-2-butanol (1-M-2-BOL) were determined at room temperature and atmospheric pressure using a conventional relative-rate technique. The following absolute rate coefficients were derived: k 1 (OH + 1-M-2-PONE) = (0.64 ± 0.13) × 10 -11 , k 2 (OH + 1-M-2-BOL) = (2.19 ± 0.23) × 10 -11 , k 3 (Cl + 1-M-2-PONE = (1.07 ± 0.24) × 10 -10 , k 4 (Cl + 1-M-2-POL) = (2.28 ± 0.21) × 10 -10 , and k 5 (Cl + 1-M-2-BOL) = (2.79 ± 0.23) × 10 -10 , in units of cm 3 molecule -1 s -1 . This is the first experimental determination of k 2 -k 5 . These rate coefficients were used to discuss the influence of the structure on the reactivity of the studied polyfunctional organic compounds. The atmospheric implications for 1-M-2-PONE, 1-M-2-POL, and 1-M-2-BOL and their reactions were investigated estimating atmospheric parameters such as lifetimes, global warming potentials, and average photochemical ozone production. The approximate nature of these values was stressed considering that the studied oxygenated volatile organic compounds are short-lived compounds for which the calculated parameters may vary depending on chemical composition, location, and season at the emission points.
Inelastic rate coefficients for collisions of C6H- with H2 and He
NASA Astrophysics Data System (ADS)
Walker, Kyle M.; Lique, François; Dumouchel, Fabien; Dawes, Richard
2017-04-01
The recent detection of anions in the interstellar medium has shown that they exist in a variety of astrophysical environments - circumstellar envelopes, cold dense molecular clouds and star-forming regions. Both radiative and collisional processes contribute to molecular excitation and de-excitation in these regions so that the 'local thermodynamic equilibrium' approximation, where collisions cause the gas to behave thermally, is not generally valid. Therefore, along with radiative coefficients, collisional excitation rate coefficients are needed to accurately model the anionic emission from these environments. We focus on the calculation of state-to-state rate coefficients of the C6H- molecule in its ground vibrational state in collisions with para-H2, ortho-H2 and He using new potential energy surfaces. Dynamical calculations for the pure rotational excitation of C6H- were performed for the first 11 rotational levels (up to j1 = 10) using the close-coupling method, while the coupled-states approximation was used to extend the H2 rate coefficients to j1 = 30, where j1 is the angular momentum quantum number of C6H-. State-to-state rate coefficients were obtained for temperatures ranging from 2 to 100 K. The rate coefficients for H2 collisions for Δj1 = -1 transitions are of the order of 10-10 cm3 s-1, a factor of 2 to 3 greater than those of He. Propensity rules are discussed. The collisional excitation rate coefficients produced here impact astrophysical modelling since they are required for obtaining accurate C6H- level populations and line emission for regions that contain anions.
Comparing audio and video data for rating communication.
Williams, Kristine; Herman, Ruth; Bontempo, Daniel
2013-09-01
Video recording has become increasingly popular in nursing research, adding rich nonverbal, contextual, and behavioral information. However, benefits of video over audio data have not been well established. We compared communication ratings of audio versus video data using the Emotional Tone Rating Scale. Twenty raters watched video clips of nursing care and rated staff communication on 12 descriptors that reflect dimensions of person-centered and controlling communication. Another group rated audio-only versions of the same clips. Interrater consistency was high within each group with Interclass Correlation Coefficient (ICC) (2,1) for audio .91, and video = .94. Interrater consistency for both groups combined was also high with ICC (2,1) for audio and video = .95. Communication ratings using audio and video data were highly correlated. The value of video being superior to audio-recorded data should be evaluated in designing studies evaluating nursing care.
NASA Technical Reports Server (NTRS)
Quinn, Robert D.; Gong, Leslie
2000-01-01
This report describes a method that can calculate transient aerodynamic heating and transient surface temperatures at supersonic and hypersonic speeds. This method can rapidly calculate temperature and heating rate time-histories for complete flight trajectories. Semi-empirical theories are used to calculate laminar and turbulent heat transfer coefficients and a procedure for estimating boundary-layer transition is included. Results from this method are compared with flight data from the X-15 research vehicle, YF-12 airplane, and the Space Shuttle Orbiter. These comparisons show that the calculated values are in good agreement with the measured flight data.
The Dissociative Recombination of OH(+)
NASA Technical Reports Server (NTRS)
Guberman, Steven L.
1995-01-01
Theoretical quantum chemical calculations of the cross sections and rates for the dissociative recombination of the upsilon = 0 level of the ground state of OH(+) show that recombination occurs primarily along the 2 (2)Pi diabatic route. The products are 0((1)D) and a hot H atom with 6.1 eV kinetic energy. The coupling to the resonances is very small and the indirect recombination mechanism plays only a minor role. The recommended value for the rate coefficient is (6.3 +/- 0.7) x 10(exp -9)x (T(e)/1300)(exp -0.48) cu.cm/s for 10 less than T(e) less than 1000 K.
Determination of the rate coefficient for the N2/+/ + O reaction in the ionosphere
NASA Technical Reports Server (NTRS)
Torr, D. G.; Torr, M. R.; Orsini, N.; Hanson, W. B.; Hoffman, J. H.; Walker, J. C. G.
1977-01-01
Using approximately 400 simultaneous measurements of ion and neutral densities and temperatures, and the spectrum of the solar flux measured by the Atmosphere Explorer C satellite, we have determined the rate constant k1 for the reaction between N2(+) and O in the ionosphere for ion temperatures between 600 and 700 K. We find that k1 = 1.1 x 10 to the minus 10th power cu cm per sec, with a standard deviation of + or - 15%. If we use the temperature dependence for this reaction determined in the laboratory then at 300 K we find excellent agreement with the recommended laboratory value.
Vertical Transport Rates in the Stratosphere in 1993 from Observations of CO2, N2O and CH4
NASA Technical Reports Server (NTRS)
Wofsy, Steven C.; Boering, Kristie A.; Daube, Bruce C., Jr.; McElroy, Michael B.; Loewenstein, Max; Podolske, James R.; Elkins, James W.; Dutton, Geoffrey S.; Fahey, David W.
1994-01-01
Measurements of CO2, N2O and CH4 are analyzed to define hemispheric average vertical exchange rates in the lower stratosphere from November 1992 to October 1993. Effective vertical diffusion coefficients were small in summer, less than or equal to 1 m(exp 2)/sec at altitudes below 25 km; values were similar near the tropopause in winter, but increased markedly with altitude. The analysis suggests possibly longer residence times for exhaust from stratospheric aircraft, and more efficient transport from 20 km to the middle stratosphere, than predicted by many current models. Seasonally-resolved measurements of stratospheric CO2 and N2O provide significant new constraints on rates for global-scale vertical transport.
Utilization of municipal wastewater for cooling in thermoelectric power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safari, Iman; Walker, Michael E.; Hsieh, Ming-Kai
2013-09-01
A process simulation model has been developed using Aspen Plus® with the OLI (OLI System, Inc.) water chemistry model to predict water quality in the recirculating cooling loop utilizing secondary- and tertiary-treated municipal wastewater as the source of makeup water. Simulation results were compared with pilot-scale experimental data on makeup water alkalinity, loop pH, and ammonia evaporation. The effects of various parameters including makeup water quality, salt formation, NH 3 and CO 2 evaporation mass transfer coefficients, heat load, and operating temperatures were investigated. The results indicate that, although the simulation model can capture the general trends in the loopmore » pH, experimental data on the rates of salt precipitation in the system are needed for more accurate prediction of the loop pH. It was also found that stripping of ammonia and carbon dioxide in the cooling tower can influence the cooling loop pH significantly. The effects of the NH 3 mass transfer coefficient on cooling loop pH appear to be more significant at lower values (e.g., k NH3 < 4×10 -3 m/s) when the makeup water alkalinity is low (e.g., <90 mg/L as CaCO 3). The effect of the CO2 mass transfer coefficient was found to be significant only at lower alkalinity values (e.g., k CO2<4×10 -6 m/s).« less
Suggestion for search of cyclopropenone (c-C3H2O) in a cosmic object
NASA Astrophysics Data System (ADS)
Sharma, M. K.; Sharma, M.; Chandra, S.
2017-03-01
Following Minimum Energy Principle, out of the three isomers of chemical formula C3H2O, the cyclopropenone (c-C3H2O) is the most stable and therefore may be the most abundant and easily detectable in a cosmic object. The cyclopropenone is detected in Sgr B2(N). Owing to half-spin of each of two hydrogen atoms, the c-C3H2O has two distinct ortho and para species. Using the rotational and centrifugal distortion constants along with the electric dipole moment, we have calculated energies of 100 rotational levels of each of the ortho and para species of c-C3H2O and the Einstein A-coefficients for radiative transitions between the levels. The values of Einstein A-coefficients along with the scaled values for collisional rate coefficients are used for solving a set of statistical equilibrium equations coupled with the equations of radiative transfer. Brightness temperatures of seven rotational transitions of each of the ortho and para species of c-C3H2O are investigated. Out of fourteen transitions, seven are found to show anomalous absorption and rest seven are found to show emission feature. We find that the transitions 110 -111 (1.544 GHz) may play important role in identification of cyclopropenone in a cosmic object.
Heat Transfer Coefficient at Cast-Mold Interface During Centrifugal Casting: Calculation of Air Gap
NASA Astrophysics Data System (ADS)
Bohacek, Jan; Kharicha, Abdellah; Ludwig, Andreas; Wu, Menghuai; Karimi-Sibaki, Ebrahim
2018-06-01
During centrifugal casting, the thermal resistance at the cast-mold interface represents a main blockage mechanism for heat transfer. In addition to the refractory coating, an air gap begins to form due to the shrinkage of the casting and the mold expansion, under the continuous influence of strong centrifugal forces. Here, the heat transfer coefficient at the cast-mold interface h has been determined from calculations of the air gap thickness d a based on a plane stress model taking into account thermoelastic stresses, centrifugal forces, plastic deformations, and a temperature-dependent Young's modulus. The numerical approach proposed here is rather novel and tries to offer an alternative to the empirical formulas usually used in numerical simulations for a description of a time-dependent heat transfer coefficient h. Several numerical tests were performed for different coating thicknesses d C, rotation rates Ω, and temperatures of solidus T sol. Results demonstrated that the scenario at the interface is unique for each set of parameters, hindering the possibility of employing empirical formulas without a preceding experiment being performed. Initial values of h are simply equivalent to the ratio of the coating thermal conductivity and its thickness ( 1000 Wm-2 K-1). Later, when the air gap is formed, h drops exponentially to values at least one order of magnitude smaller ( 100 Wm-2 K-1).
Miyamoto, Shuichi; Atsuyama, Kenji; Ekino, Keisuke; Shin, Takashi
2018-01-01
The isolation of useful microbes is one of the traditional approaches for the lead generation in drug discovery. As an effective technique for microbe isolation, we recently developed a multidimensional diffusion-based gradient culture system of microbes. In order to enhance the utility of the system, it is favorable to have diffusion coefficients of nutrients such as sugars in the culture medium beforehand. We have, therefore, built a simple and convenient experimental system that uses agar-gel to observe diffusion. Next, we performed computer simulations-based on random-walk concepts-of the experimental diffusion system and derived correlation formulas that relate observable diffusion data to diffusion coefficients. Finally, we applied these correlation formulas to our experimentally-determined diffusion data to estimate the diffusion coefficients of sugars. Our values for these coefficients agree reasonably well with values published in the literature. The effectiveness of our simple technique, which has elucidated the diffusion coefficients of some molecules which are rarely reported (e.g., galactose, trehalose, and glycerol) is demonstrated by the strong correspondence between the literature values and those obtained in our experiments.
Leistra, Minze; Wolters, André; van den Berg, Frederik
2008-06-01
Volatilisation of pesticides from crop canopies can be an important emission pathway. In addition to pesticide properties, competing processes in the canopy and environmental conditions play a part. A computation model is being developed to simulate the processes, but only some of the input data can be obtained directly from the literature. Three well-defined experiments on the volatilisation of radiolabelled parathion-methyl (as example compound) from plants in a wind tunnel system were simulated with the computation model. Missing parameter values were estimated by calibration against the experimental results. The resulting thickness of the air boundary layer, rate of plant penetation and rate of phototransformation were compared with a diversity of literature data. The sequence of importance of the canopy processes was: volatilisation > plant penetration > phototransformation. Computer simulation of wind tunnel experiments, with radiolabelled pesticide sprayed on plants, yields values for the rate coefficients of processes at the plant surface. As some input data for simulations are not required in the framework of registration procedures, attempts to estimate missing parameter values on the basis of divergent experimental results have to be continued. Copyright (c) 2008 Society of Chemical Industry.
Temperature dependence of the helium induced broadening and shift of the Rb D1 and D2 lines
NASA Astrophysics Data System (ADS)
Miller, Wooddy S.; Rice, Christopher A.; Perram, Glen P.
2018-02-01
The rates for collisional broadening and shifting of the Rb D1 (52S1/2 - 52P1/2) and D2 (52S1/2 - 52P3/2) transition induced by 4He have been measured at elevated temperatures of 373-723 K. The shift coefficients exhibit an increase of 20% from 4.36 MHz/Torr to 5.35 MHz/Torr for the D1 line and an 80% increase from 0.42 MHz/Torr to 0.99 MHz/Torr for the D2 line over the observed temperature range. Broadening coefficients exhibit a 6% increase from 17.8 MHz/Torr to 18.9 MHz/Torr and 10% from 18.5 MHz/Torr to 20.5 MHz/Torr for the D1 and D2 lines, respectively. The experimental values agree well with prior reported values within the temperature overlap regions of T < 394 K. Comparison to prior predictions from the Anderson-Talman theory using spin orbit multi reference (SOCI) ab initio potentials are superior to quantum treatments involving Allard and Baranger coupling.
Numerical Analysis of Heat Transfer During Quenching Process
NASA Astrophysics Data System (ADS)
Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana
2018-04-01
A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jefferson, A.; Hageman, D.; Morrow, H.
Long-term measurements of changes in the aerosol scattering coefficient hygroscopic growth at the U.S. Department of Energy Southern Great Plains site provide information on the seasonal as well as size and chemical dependence of aerosol hygroscopic growth. Annual average sub 10 um fRH values (the ratio of aerosol scattering at 85%/40% RH) were 1.75 and 1.87 for the gamma and kappa fit algorithms, respectively. The study found higher growth rates in the winter and spring seasons that correlated with high aerosol nitrate mass fraction. FRH, exhibited strong, but differing correlations with the scattering Ångström exponent and backscatter fraction, two opticalmore » size-dependent parameters. The aerosol organic fraction had a strong influence, with fRH decreasing with increases in the organic mass fraction and absorption Ångström exponent and increasing with the aerosol single scatter albedo. Uncertainty analysis if the fit algorithms revealed high uncertainty at low scattering coefficients and slight increases in uncertainty at high RH and fit parameters values.« less
Dillard, L.A.; Essaid, H.I.; Blunt, M.J.
2001-01-01
A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai. Kdissai was computed as a function of modified Peclet number (Pe???) for various NAPL saturations (SN) and ai during drainage and imbibition and during dissolution without displacement. The largest contributor to ai was the interfacial area in the water-filled corners of chambers and tubes containing NAPL. When Kdissai was divided by ai, the resulting curves of dissolution coefficient, Kdiss versus Pe??? suggested that an approximate value of Kdiss could be obtained as a weak function of hysteresis or SN. Spatially and temporally variable maps of Kdissai calculated using the network model were used in field-scale simulations of NAPL dissolution. These simulations were compared to simulations using a constant value of Kdissai and the empirical correlation of Powers et al. [Water Resour. Res. 30(2) (1994b) 321]. Overall, a methodology was developed for incorporating pore-scale processes into field-scale prediction of NAPL dissolution. Copyright ?? 2001 .
NASA Astrophysics Data System (ADS)
Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder; Singh, Prabhjot; Bajwa, B. S.
2018-03-01
In the present study, quaternary system of the composition (0.45 + x) Bi2O3-(0.25 - x) BaO-0.15 B2O3-0.15 Na2O (where 0 ≤ x ≤ 0.2 mol fraction) has been prepared by using melt-quenching technique for investigation of gamma ray shielding properties. Mass attenuation coefficients and half value layer parameters have been determined experimentally at 662 keV by using 137Cs source. It has been found that experimental results of these parameters hold good agreement with theoretical values. The density, molar volume, XRD, FTIR, Raman and UV-visible studies have been used to determine structural properties of the prepared glass samples. Dissolution rate of the samples has also been measured to check their utility as long term durable glasses.
NASA Astrophysics Data System (ADS)
Sang, Chaofeng; Sun, Jizhong; Bonnin, Xavier; Dai, Shuyu; Hu, Wanpeng; Wang, Dezhen
2014-12-01
Effects of different possible values of physical parameters on the fuel retention in tungsten (W) materials are studied in this work since W is considered as the primary plasma-facing surface material and fuel retention is a critical issue for next-step fusion devices. The upgraded Hydrogen Isotope Inventory Processes Code is used to conduct the study. First, the inventories of hydrogen isotopes (HI) inside W with different possible values of diffusivities and recombination rate coefficients are studied; then the influences of uncertainties in diffusivity, trap concentration, and recombination rate on the effective diffusion are also analyzed. Finally, an illustration of effective diffusion on the permeation and inventory is given. The enhancements of HI permeation flux and inventory in bulk W due to the presence of a carbide WxC layer on the PFS are explained.
The value of comparative research in major day surgery.
Llop-Gironés, Alba; Vergara-Duarte, Montse; Sánchez, Josep Anton; Tarafa, Gemma; Benach, Joan
2017-05-19
To measure time trends in major day surgery rates according to hospital ownership and other hospital characteristics among the providers of the public healthcare network of Catalonia, Spain. Data from the Statistics of Health Establishments providing Inpatient Care. A generalized linear mixed model with Gaussian response and random intercept and random slopes. The greatest growth in the rate of major day surgery was observed among private for-profit hospitals: 42.9 (SD: 22.5) in 2009 versus 2.7 (SD: 6.7) in 1996. These hospitals exhibited a significant increase in major day surgery compared to public hospitals (coefficient 2; p-value <0.01) CONCLUSIONS: The comparative evaluation of hospital performance is a decisive tool to ensure that public resources are used as rationally and efficiently as possible. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.
Human values in the team leader selection process.
Rovira, Núria; Ozgen, Sibel; Medir, Magda; Tous, Jordi; Alabart, Joan Ramon
2012-03-01
The selection process of team leaders is fundamental if the effectiveness of teams is to be guaranteed. Human values have proven to be an important factor in the behaviour of individuals and leaders. The aim of this study is twofold. The first is to validate Schwartz's survey of human values. The second is to determine whether there are any relationships between the values held by individuals and their preferred roles in a team. Human values were measured by the items of the Schwartz Value Survey (SVS) and the preferred roles in a team were identified by the Belbin Self Perception Inventory (BSPI). The two questionnaires were answered by two samples of undergraduate students (183 and 177 students, respectively). As far as the first objective is concerned, Smallest Space Analysis (SSA) was performed at the outset to examine how well the two-dimensional circular structure, as postulated by Schwartz, was represented in the study population. Then, the results of this analysis were compared and contrasted with those of two other published studies; one by Schwartz (2006) and one by Ros and Grad (1991). As for the second objective, Pearson correlation coefficients were computed to assess the associations between the ratings on the SVS survey items and the ratings on the eight team roles as measured by the BSPI.
Risk aversion affects economic values of blue fox breeding scheme.
Peura, J; Kempe, R; Strandén, I; Rydhmer, L
2016-12-01
The profit and production of an average Finnish blue fox farm was simulated using a deterministic bio-economic farm model. Risk was included using Arrow-Prat absolute risk aversion coefficient and profit variance. Risk-rated economic values were calculated for pregnancy rate, litter loss, litter size, pelt size, pelt quality, pelt colour clarity, feed efficiency and eye infection. With high absolute risk aversion, economic values were lower than with low absolute risk aversion. Economic values were highest for litter loss (18.16 and 26.42 EUR), litter size (13.27 and 19.40 EUR), pregnancy (11.99 and 18.39 EUR) and eye infection (12.39 and 13.81 EUR). Sensitivity analysis showed that selection pressure for improved eye health depended strongly on proportion of culled animals among infected animals and much less on the proportion of infected animals. The economic value of feed efficiency was lower than expected (6.06 and 8.03 EUR). However, it was almost the same magnitude as pelt quality (7.30 and 7.30 EUR) and higher than the economic value of pelt size (3.37 and 5.26 EUR). Risk factors should be considered in blue fox breeding scheme because they change the relative importance of traits. © 2016 Blackwell Verlag GmbH.