Flight test results for a separate surface stability augmented Beech model 99
NASA Technical Reports Server (NTRS)
Jenks, G. E.; Henry, H. F.; Roskam, J.
1977-01-01
A flight evaluation of a Beech model 99 equipped with an attitude command control system incorporating separate surface stability augmentation (SSSA) was conducted to determine whether an attitude command control system could be implemented using separate surface controls, and to determine whether the handling and ride qualities of the aircraft were improved by the SSSA attitude command system. The results of the program revealed that SSSA is a viable approach to implementing attitude command and also that SSSA has the capability of performing less demanding augmentation tasks such as yaw damping, wing leveling, and pitch damping. The program also revealed that attitude command did improve the pilot rating and ride qualities of the airplane while flying an IFR mission in turbulence. Some disadvantages of the system included the necessity of holding aileron force in a banked turn and excessive stiffness in the pitch axis.
NASA Technical Reports Server (NTRS)
Gerdes, R. M.
1980-01-01
A series of simulation and flight investigations were undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-Earth (NOE) agility and instrument flying tasks. Handling quality factors common to both tasks were identified. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping, and rotor system cross coupling due to helicopter angular rate and collective pitch input. Application of rate command, attitude command, and control input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. The NOE agility and instrument flying handling quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.
NASA Technical Reports Server (NTRS)
Gerdes, R. M.
1980-01-01
Results from a series of simulation and flight investigations undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-earth (NOE) agility and instrument flying tasks were analyzed to assess handling-quality factors common to both tasks. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping and rotor-system cross-coupling due to helicopter angular rate and collective pitch input. Application of rate-command, attitude-command, and control-input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. NOE agility and instrument flying handling-quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.
Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators
NASA Technical Reports Server (NTRS)
Zhou, Zhiqiang
2012-01-01
A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.
Engines-only flight control system
NASA Technical Reports Server (NTRS)
Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)
1994-01-01
A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.
Flight Dynamics Aspects of a Large Civil Tiltrotor Simulation Using Translational Rate Command
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Malpica, Carlos A.; Theodore, Colin R.; Decker, William A.; Lindsey, James E.
2011-01-01
An in-depth analysis of a Large Civil Tiltrotor simulation with a Translational Rate Command control law that uses automatic nacelle deflections for longitudinal velocity control and lateral cyclic for lateral velocity control is presented. Results from piloted real-time simulation experiments and offline time and frequency domain analyses are used to investigate the fundamental flight dynamic and control mechanisms of the control law. The baseline Translational Rate Command conferred handling qualities improvements over an attitude command attitude hold control law but in some scenarios there was a tendency to enter PIO. Nacelle actuator rate limiting strongly influenced the PIO tendency and reducing the rate limits degraded the handling qualities further. Counterintuitively, increasing rate limits also led to a worsening of the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired pitching motions proportional to the allowable amount of nacelle rate. A modification that applied a counteracting amount of longitudinal cyclic proportional to the nacelle rate significantly improved the handling qualities. The lateral axis of the Translational Rate Command conferred Level 1 handling qualities in a Lateral Reposition maneuver. Analysis of the influence of the modeling fidelity on the lateral flapping angles is presented. It is showed that the linear modeling approximation is likely to have under-predicted the side-force and therefore under-predicted the lateral flapping at velocities above 15 ft/s. However, at lower velocities, and therefore more weakly influenced by the side force modeling, the accelerations that the control law commands also significantly influenced the peak levels of lateral flapping achieved.
1994-03-01
Mr. Lou Knotts , Mr. Jeff Peer, and Mr. Eric Ohmit for their support. Mr. Knotts and Mr. Peer served as safety pilots during the inflight evaluations...5129 Taschner Peer 1.6 Griffith, Rauch Hoy, Mattedi 5 5130 Watrous Peer 1.5 Griffith, Rauch Hoy, Mattedi 6 5131 Taschner Knotts 1.5 Griffith, Rauch Hoy...Mattedi 7 5132 Watrous Knott : 1.6 Andreas, Hill Kipp 8 5133 Taschner Knotts 1.6 Andreas, Hill Wiflcox F.2 Pilot Commentary The pilot commentary from
NASA Technical Reports Server (NTRS)
Key, David L.; Heffley, Robert K.
2002-01-01
The purpose of the study was to develop generic design principles for obtaining attitude command response in moderate to aggressive maneuvers without increasing SCAS series servo authority from the existing +/- 10%. In particular, to develop a scheme that would work on the UH-60 helicopter so that it can be considered for incorporation in future upgrades. The basic math model was a UH-60A version of GENHEL. The simulation facility was the NASA-Ames Vertical Motion Simulator (VMS). Evaluation tasks were Hover, Acceleration-Deceleration, and Sidestep, as defined in ADS-33D-PRF for Degraded Visual Environment (DVE). The DVE was adjusted to provide a Usable Cue Environment (UCE) equal to two. The basic concept investigated was the extent to which the limited attitude command authority achievable by the series servo could be supplemented by a 10%/sec trim servo. The architecture used provided angular rate feedback to only the series servo, shared the attitude feedback between the series and trim servos, and when the series servo approached saturation the attitude feedback was slowly phased out. Results show that modest use of the trim servo does improve pilot ratings, especially in and around hover. This improvement can be achieved with little degradation in response predictability during moderately aggressive maneuvers.
Mariner Mars 1971 attitude control subsystem
NASA Technical Reports Server (NTRS)
Edmunds, R. S.
1974-01-01
The Mariner Mars 1971 attitude control subsystem (ACS) is discussed. It is comprised of a sun sensor set, a Canopus tracker, an inertial reference unit, two cold gas reaction control assemblies, two rocket engine gimbal actuators, and an attitude control electronics unit. The subsystem has the following eight operating modes: (1) launch, (2) sun acquisition, (3) roll search, (4) celestial cruise, (5) all-axes inertial, (6) roll inertial, (7) commanded turn, and (8) thrust vector control. In the celestial cruise mode, the position control is held to plus or minus 0.25 deg. Commanded turn rates are plus or minus 0.18 deg/s. The attitude control logic in conjunction with command inputs from other spacecraft subsystems establishes the ACS operating mode. The logic utilizes Sun and Canopus acquisition signals generated within the ACS to perform automatic mode switching so that dependence of ground control is minimized when operating in the sun acquisition, roll search, and celestial cruise modes. The total ACS weight is 65.7 lb, and includes 5.4 lb of nitrogen gas. Total power requirements vary from 9 W for the celestial cruise mode to 54 W for the commanded turn mode.
Speed-constrained three-axes attitude control using kinematic steering
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Piggott, Scott
2018-06-01
Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.
Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)
2002-01-01
In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.
An Investigation of Large Tilt-Rotor Hover and Low Speed Handling Qualities
NASA Technical Reports Server (NTRS)
Malpica, Carlos A.; Decker, William A.; Theodore, Colin R.; Lindsey, James E.; Lawrence, Ben; Blanken, Chris L.
2011-01-01
A piloted simulation experiment conducted on the NASA-Ames Vertical Motion Simulator evaluated the hover and low speed handling qualities of a large tilt-rotor concept, with particular emphasis on longitudinal and lateral position control. Ten experimental test pilots evaluated different combinations of Attitude Command-Attitude Hold (ACAH) and Translational Rate Command (TRC) response types, nacelle conversion actuator authority limits and inceptor choices. Pilots performed evaluations in revised versions of the ADS-33 Hover, Lateral Reposition and Depart/Abort MTEs and moderate turbulence conditions. Level 2 handling qualities ratings were primarily recorded using ACAH response type in all three of the evaluation maneuvers. The baseline TRC conferred Level 1 handling qualities in the Hover MTE, but there was a tendency to enter into a PIO associated with nacelle actuator rate limiting when employing large, aggressive control inputs. Interestingly, increasing rate limits also led to a reduction in the handling qualities ratings. This led to the identification of a nacelle rate to rotor longitudinal flapping coupling effect that induced undesired, pitching motions proportional to the allowable amount of nacelle rate. A modification that counteracted this effect significantly improved the handling qualities. Evaluation of the different response type variants showed that inclusion of TRC response could provide Level 1 handling qualities in the Lateral Reposition maneuver by reducing coupled pitch and heave off axis responses that otherwise manifest with ACAH. Finally, evaluations in the Depart/Abort maneuver showed that uncertainty about commanded nacelle position and ensuing aircraft response, when manually controlling the nacelle, demanded high levels of attention from the pilot. Additional requirements to maintain pitch attitude within 5 deg compounded the necessary workload.
Classification of response-types for single-pilot NOE helicopter combat tasks
NASA Technical Reports Server (NTRS)
Mitchell, David G.; Hoh, Roger H.; Atencio, Adolph, Jr.
1987-01-01
Two piloted simulations have recently been conducted to evaluate both workload and handling qualities requirements for operation of a helicopter by a single pilot in a nap-of-the-earth combat environment. An advanced cockpit, including a moving-map display and an interactive touchpad screen, provided aircraft mission, status, and position information to the pilot. The results of the simulations are reviewed, and the impact of these results on the development of a revised helicopter handling qualities specification is discussed. Rate command is preferred over attitude command in pitch and roll, and attitude hold over groundspeed hold, for low-speed precision pointing tasks. Position hold is necessary for Level 1 handling qualities in hover when the pilot is required to perform secondary tasks. Addition of a second crew member improves pilot ratings.
NASA Technical Reports Server (NTRS)
Chung, W. W.; Mcneill, W. E.; Stortz, M. W.
1993-01-01
The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.
Lunar Reconnaissance Orbiter (LRO) Thruster Control Mode Design and Flight Experience
NASA Technical Reports Server (NTRS)
Hsu, Oscar C.
2010-01-01
National Aeronautics and Space Administration s (NASA) Goddard Space Flight Center (GSFC) in Greenbelt, MD, designed, built, tested, and launched the Lunar Reconnaissance Orbiter (LRO) from Cape Canaveral Air Force Station on June 18, 2009. The LRO spacecraft is the first operational spacecraft designed to support NASA s return to the Moon, as part of the Vision for Space Exploration. LRO was launched aboard an Atlas V 401 launch vehicle into a direct insertion trajectory to the Moon. Twenty-four hours after separation the propulsion system was used to perform a mid-course correction maneuver. Four days after the mid-course correction a series of propulsion maneuvers were executed to insert LRO into its commissioning orbit. The commission period lasted eighty days and this followed by a second set of thruster maneuvers that inserted LRO into its mission orbit. To date, the spacecraft has been gathering invaluable data in support of human s future return to the moon. The LRO Attitude Control Systems (ACS) contains two thruster based control modes: Delta-H and Delta-V. The design of the two controllers are similar in that they are both used for 3-axis control of the spacecraft with the Delta-H controller used for momentum management and the Delta-V controller used for orbit adjust and maintenance maneuvers. In addition to the nominal purpose of the thruster modes, the Delta-H controller also has the added capability of performing a large angle slew maneuver. A suite of ACS components are used by the thruster based control modes, for both initialization and control. For initialization purposes, a star tracker or the Kalman Filter solution is used for providing attitude knowledge and upon entrance into the thruster based control modes attitude knowledge is provided via rate propagation using a inertial reference unit (IRU). Rate information for the controller is also supplied by the IRU. Three-axis control of the spacecraft in the thruster modes is provided by eight 5-lbf class attitude control thrusters configured in two sets of four thrusters for redundancy purposes. Four additional 20-lbf class thrusters configured in two sets of two thrusters are used for Lunar Orbit Insertion maneuvers. The propulsion system is one the few systems on-board the LRO spacecraft that has built in redundancy. The Delta-H controller consists of a Proportional-Derivative (PD) controller with a structural filter on the thrusters and a Proportional controller on the reaction wheels. The PD control that employs the thrusters is used for attitude and rate control. The Proportional controller on the reaction wheels is used for commanding the wheels to a new momentum state. The ground commands used for the Delta-H controller are the system momentum vector, reaction wheel momentum, maximum expected command time, and which set of attitude control thrusters to use. The ability to command both the system momentum vector and reaction wheel momentum in the Delta-H controller provides both a capability and an additional source of operator error. Large angle slews via the Delta-H controller is achievable via this commands because these commands are used for the exit mode criteria. Setting these commands to non-consistent values prevents the mode from exiting nominally.
NASA Technical Reports Server (NTRS)
Burgin, G. H.; Eggleston, D. M.
1976-01-01
A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1972-01-01
Analytical investigations and piloted moving base simulator evaluations were conducted for manual control of pitch attitude, flight path, and airspeed for the approach and landing of a powered lift jet STOL aircraft. Flight path and speed response characteristics were described analytically and were evaluated for the simulation experiments which were carried out on a large motion simulator. The response characteristics were selected and evaluated for a specified path and speed control technique. These charcteristics were: (1) the initial pitch response and steady pitch rate sensitivity for control of attitude with a pitch rate command/ attitude hold system, (2) the initial flight path response, flight path overshoot, and flight path-airspeed coupling in response to a change in thrust, and (3) the sensitivity of airspeed to pitch attitude changes. Results are presented in the form of pilot opinion ratings and commentary, substantiated where appropriate by response time histories and aircraft states at the point of touchdown.
NASA Technical Reports Server (NTRS)
Yildiz, Yildiray; Kolmanovsky, Ilya V.
2010-01-01
This paper proposes a control allocation technique that can help pilots recover from pilot induced oscillations (PIO). When actuators are rate-saturated due to aggressive pilot commands, high gain flight control systems or some anomaly in the system, the effective delay in the control loop may increase depending on the nature of the cause. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate PIOs. The proposed control allocator reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. Simulation results are reported, which demonstrate phase shift minimization and recovery from PIOs. Conversion of the objective function to be minimized and constraints to a form that is suitable for implementation is given.
ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg
2008-01-01
In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.
Attitude analysis of the Earth Radiation Budget Satellite (ERBS) yaw turn anomaly
NASA Technical Reports Server (NTRS)
Kronenwetter, J.; Phenneger, M.; Weaver, William L.
1988-01-01
The July 2 Earth Radiation Budget Satellite (ERBS) hydrazine thruster-controlled yaw inversion maneuver resulted in a 2.1 deg/sec attitude spin. This mode continued for 150 minutes until the spacecraft was inertially despun using the hydrazine thrusters. The spacecraft remained in a low-rate Y-axis spin of .06 deg/sec for 3 hours until the B-DOT control mode was activated. After 5 hours in this mode, the spacecraft Y-axis was aligned to the orbit normal, and the spacecraft was commanded to the mission mode of attitude control. This work presents the experience of real-time attitude determination support following analysis using the playback telemetry tape recorded for 7 hours from the start of the attitude control anomaly.
Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane
NASA Technical Reports Server (NTRS)
Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.
1976-01-01
A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.
NASA Technical Reports Server (NTRS)
Cudmore, Alan; Leath, Tim; Ferrer, Art; Miller, Todd; Walters, Mark; Savadkin, Bruce; Wu, Ji-Wei; Slegel, Steve; Stagmer, Emory
2007-01-01
The command-and-data-handling (C&DH) software of the Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft functions as the sole interface between (1) the spacecraft and its instrument subsystem and (2) ground operations equipment. This software includes a command-decoding and -distribution system, a telemetry/data-handling system, and a data-storage-and-playback system. This software performs onboard processing of attitude sensor data and generates commands for attitude-control actuators in a closed-loop fashion. It also processes stored commands and monitors health and safety functions for the spacecraft and its instrument subsystems. The basic functionality of this software is the same of that of the older C&DH software of the Rossi X-Ray Timing Explorer (RXTE) spacecraft, the main difference being the addition of the attitude-control functionality. Previously, the C&DH and attitude-control computations were performed by different processors because a single RXTE processor did not have enough processing power. The WMAP spacecraft includes a more-powerful processor capable of performing both computations.
Alternative Attitude Commanding and Control for Precise Spacecraft Landing
NASA Technical Reports Server (NTRS)
Singh, Gurkirpal
2004-01-01
A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.
Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane
NASA Technical Reports Server (NTRS)
Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.
1976-01-01
A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots made simulated instrument flight evaluations in light-to-moderate turbulence. They were favorably impressed with the system, particularly with the elimination of control force transients that accompanied configuration changes. For ride quality, quantitative data showed that the attitude command control system resulted in all cases of airplane motion being removed from the uncomfortable ride region.
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III
1996-01-01
Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for demanding vertical landing tasks aboard ship and in confined land-based sites.
Attitude profile design program
NASA Technical Reports Server (NTRS)
1991-01-01
The Attitude Profile Design (APD) Program was designed to be used as a stand-alone addition to the Simplex Computation of Optimum Orbital Trajectories (SCOOT). The program uses information from a SCOOT output file and the user defined attitude profile to produce time histories of attitude, angular body rates, and accelerations. The APD program is written in standard FORTRAN77 and should be portable to any machine that has an appropriate compiler. The input and output are through formatted files. The program reads the basic flight data, such as the states of the vehicles, acceleration profiles, and burn information, from the SCOOT output file. The user inputs information about the desired attitude profile during coasts in a high level manner. The program then takes these high level commands and executes the maneuvers, outputting the desired information.
NASA Technical Reports Server (NTRS)
Berthe, C. J.; Chalk, C. R.; Sarrafian, S.
1984-01-01
The degree of attitude control provided by current integral-proportional pitch rate command-type control systems, while a prerequisite for flared landing, is insufficient for 'Level 1' performance. The pilot requires 'surrogate' feedback cues to precisely control flight path in the landing flare. Monotonic stick forces and pilot station vertical acceleration are important cues which can be provided by means of angle-of-attack and pitch rate feedback in order to achieve conventional short period and phugoid characteristics. Integral-proportional pitch rate flight control systems can be upgraded to Level 1 flared landing performance by means of lead/lag and washout prefilters in the command path. Strong pilot station vertical acceleration cues can provide Level 1 flared landing performance even in the absence of monotonic stick forces.
MCC level C formulation requirements. Shuttle TAEM guidance and flight control, STS-1 baseline
NASA Technical Reports Server (NTRS)
Carman, G. L.; Montez, M. N.
1980-01-01
The TAEM guidance and body rotational dynamics models required for the MCC simulation of the TAEM mission phase are defined. This simulation begins at the end of the entry phase and terminates at TAEM autoland interface. The logic presented is the required configuration for the first shuttle orbital flight (STS-1). The TAEM guidance is simulated in detail. The rotational dynamics simulation is a simplified model that assumes that the commanded rotational rates can be achieved in the integration interval. Thus, the rotational dynamics simulation is essentially a simulation of the autopilot commanded rates and integration of these rates to determine orbiter attitude. The rotational dynamics simulation also includes a simulation of the speedbrake deflection. The body flap and elevon deflections are computed in the orbiter aerodynamic simulation.
Inverse free steering law for small satellite attitude control and power tracking with VSCMGs
NASA Astrophysics Data System (ADS)
Malik, M. S. I.; Asghar, Sajjad
2014-01-01
Recent developments in integrated power and attitude control systems (IPACSs) for small satellite, has opened a new dimension to more complex and demanding space missions. This paper presents a new inverse free steering approach for integrated power and attitude control systems using variable-speed single gimbal control moment gyroscope. The proposed inverse free steering law computes the VSCMG steering commands (gimbal rates and wheel accelerations) such that error signal (difference in command and output) in feedback loop is driven to zero. H∞ norm optimization approach is employed to synthesize the static matrix elements of steering law for a static state of VSCMG. Later these matrix elements are suitably made dynamic in order for the adaptation. In order to improve the performance of proposed steering law while passing through a singular state of CMG cluster (no torque output), the matrix element of steering law is suitably modified. Therefore, this steering law is capable of escaping internal singularities and using the full momentum capacity of CMG cluster. Finally, two numerical examples for a satellite in a low earth orbit are simulated to test the proposed steering law.
NASA Technical Reports Server (NTRS)
Sahasrabudhe, Vineet; Melkers, Edgar; Faynberg, Alexander; Blanken, Chris L.
2003-01-01
The UH-60 BLACK HAWK was designed in the 1970s, when the US Army primarily operated during the day in good visual conditions. Subsequently, the introduction of night-vision goggles increased the BLACK HAWK'S mission effectiveness, but the accident rate also increased. The increased accident rate is strongly tied to increased pilot workload as a result of a degradation in visual cues. Over twenty years of research in helicopter flight control and handling qualities has shown that these degraded handling qualities can be recovered by modifying the response type of the helicopter in low speed flight. Sikorsky Aircraft Corporation initiated a project under the National Rotorcraft Technology Center (NRTC) to develop modern flight control laws while utilizing the existing partial authority Stability Augmentation System (SAS) of the BLACK HAWK. This effort resulted in a set of Modernized Control Laws (MCLAWS) that incorporate rate command and attitude command response types. Sikorsky and the US Army Aeroflightdynamics Directorate (AFDD) conducted a piloted simulation on the NASA-Ames Vertical h4otion Simulator, to assess potential handling qualities and to reduce the risk of subsequent implementation and flight test of these modern control laws on AFDD's EH-60L helicopter. The simulation showed that Attitude Command Attitude Hold control laws in pitch and roll improve handling qualities in the low speed flight regime. These improvements are consistent across a range of mission task elements and for both good and degraded visual environments. The MCLAWS perform better than the baseline UH-60A control laws in the presence of wind and turbulence. Finally, while the improved handling qualities in the pitch and roll axis allow the pilot to pay more attention to the vertical axis and hence altitude performance also improves, it is clear from pilot comments and altitude excursions that the addition of an Altitude Hold function would further reduce workload and improve overall handling qualities of the aircraft.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
Orion MPCV GN and C End-to-End Phasing Tests
NASA Technical Reports Server (NTRS)
Neumann, Brian C.
2013-01-01
End-to-end integration tests are critical risk reduction efforts for any complex vehicle. Phasing tests are an end-to-end integrated test that validates system directional phasing (polarity) from sensor measurement through software algorithms to end effector response. Phasing tests are typically performed on a fully integrated and assembled flight vehicle where sensors are stimulated by moving the vehicle and the effectors are observed for proper polarity. Orion Multi-Purpose Crew Vehicle (MPCV) Pad Abort 1 (PA-1) Phasing Test was conducted from inertial measurement to Launch Abort System (LAS). Orion Exploration Flight Test 1 (EFT-1) has two end-to-end phasing tests planned. The first test from inertial measurement to Crew Module (CM) reaction control system thrusters uses navigation and flight control system software algorithms to process commands. The second test from inertial measurement to CM S-Band Phased Array Antenna (PAA) uses navigation and communication system software algorithms to process commands. Future Orion flights include Ascent Abort Flight Test 2 (AA-2) and Exploration Mission 1 (EM-1). These flights will include additional or updated sensors, software algorithms and effectors. This paper will explore the implementation of end-to-end phasing tests on a flight vehicle which has many constraints, trade-offs and compromises. Orion PA-1 Phasing Test was conducted at White Sands Missile Range (WSMR) from March 4-6, 2010. This test decreased the risk of mission failure by demonstrating proper flight control system polarity. Demonstration was achieved by stimulating the primary navigation sensor, processing sensor data to commands and viewing propulsion response. PA-1 primary navigation sensor was a Space Integrated Inertial Navigation System (INS) and Global Positioning System (GPS) (SIGI) which has onboard processing, INS (3 accelerometers and 3 rate gyros) and no GPS receiver. SIGI data was processed by GN&C software into thrust magnitude and direction commands. The processing changes through three phases of powered flight: pitchover, downrange and reorientation. The primary inputs to GN&C are attitude position, attitude rates, angle of attack (AOA) and angle of sideslip (AOS). Pitch and yaw attitude and attitude rate responses were verified by using a flight spare SIGI mounted to a 2-axis rate table. AOA and AOS responses were verified by using a data recorded from SIGI movements on a robotic arm located at NASA Johnson Space Center. The data was consolidated and used in an open-loop data input to the SIGI. Propulsion was the Launch Abort System (LAS) Attitude Control Motor (ACM) which consisted of a solid motor with 8 nozzles. Each nozzle has active thrust control by varying throat area with a pintle. LAS ACM pintles are observable through optically transparent nozzle covers. SIGI movements on robot arm, SIGI rate table movements and LAS ACM pintle responses were video recorded as test artifacts for analysis and evaluation. The PA-1 Phasing Test design was determined based on test performance requirements, operational restrictions and EGSE capabilities. This development progressed during different stages. For convenience these development stages are initial, working group, tiger team, Engineering Review Team (ERT) and final.
Attitude and position estimation on the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Ali, Khaled S.; Vanelli, C. Anthony; Biesiadecki, Jeffrey J.; Maimone, Mark W.; Yang Cheng, A.; San Martin, Miguel; Alexander, James W.
2005-01-01
NASA/JPL 's Mars Exploration Rovers acquire their attitude upon command and autonomously propagate their attitude and position. The rovers use accelerometers and images of the sun to acquire attitude, autonomously searching the sky for the sun with a pointable camera. To propagate the attitude and position the rovers use either accelerometer and gyro readings or gyro readings and wheel odometiy, depending on the nature of the movement ground operators are commanding. Where necessary, visual odometry is performed on images to fine tune the position updates, particularly in high slip environments. The capability also exists for visual odometry attitude updates. This paper describes the techniques used by the rovers to acquire and maintain attitude and position knowledge, the accuracy which is obtainable, and lessons learned after more than one year in operation.
Solar Sail Attitude Control Performance Comparison
NASA Technical Reports Server (NTRS)
Bladt, Jeff J.; Lawrence, Dale A.
2005-01-01
Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.
NASA Technical Reports Server (NTRS)
Shtessel, Yuri B.
2002-01-01
In this report we present a time-varying sliding mode control (TV-SMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC is developed and tuned up for the X-33 sub-orbital technology demonstration vehicle in launch and re-entry modes. A variety of nominal, dispersion and failure scenarios have tested via high fidelity 6DOF simulations using MAVERIC/SLIM simulation software.
1990-09-01
than many of the other officer career fields. In 1986, Marchewka reported that job dissatisfaction among navigators was *probably because their jobs are...Company, Inc., 1935. 30. Marchewka , Maj Peter S. Job Attitudes of USAF Pilots and Navigators. Unpublished report No. 86-1610. Air Command and Staff
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.
1979-01-01
Four basic single-rotor helicopters, one teetering, on articulated, and two hingeless, which were found to have a variety of major deficiencies in a previous fixed-based simulator study, were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate-command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular tate; and attitude-command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usages and their gain levels associated with specific rotor types are also discussed.
Stability Properties and Cross Coupling Performance of the Control Allocation Scheme CAPIO
NASA Technical Reports Server (NTRS)
Yildiz, Yildiray; Kolmanovsky, Ilya V.
2010-01-01
This paper presents a stability analysis and an application of a recently developed Control Allocator for recovery from Pilot Induced Oscillations (CAPIO). When actuators are rate-saturated due to either aggressive pilot commands, high gain ight control systems or some anomaly in the system, the effective delay in the control loop may increase. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate Pilot induced Oscillations (PIO). CAPIO reduces the e ective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. We present a stability analysis of CAPIO for a scalar system. In addition, we present simulation results for aircraft with cross-coupling which demonstrates the potential of CAPIO serving as an effective PIO handler in adverse conditions.
Apollo experience report: Command module uprighting system
NASA Technical Reports Server (NTRS)
White, R. D.
1973-01-01
A water-landing requirement and two stable flotation attitudes required that a system be developed to ensure that the Apollo command module would always assume an upright flotation attitude. The resolution to the flotation problem and the uprighting concepts, design selection, design changes, development program, qualification, and mission performance are discussed for the uprighting system, which is composed of inflatable bags, compressors, valves, and associated tubing.
Analysis of the Command and Control Segment (CCS) attitude estimation algorithm
NASA Technical Reports Server (NTRS)
Stockwell, Catherine
1993-01-01
This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.
Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators
NASA Technical Reports Server (NTRS)
Zhou, Zhiqiang
2010-01-01
The accuracy of spacecraft attitude control using magnetic actuators only is low and on the order of 0.4-5 degrees. The key reason is that the magnetic torque is two-dimensional and it is only in the plane perpendicular to the magnetic field vector. In this paper novel attitude control algorithms using the combination of magnetic actuators with Reaction Wheel Assembles (RWAs) or other types of actuators, such as thrusters, are presented. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for Nadir pointing, pitch and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude control accuracy is comparable with RWAs based attitude control. The algorithms are also useful for the RWAs based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode and the control accuracy can be maintained.
GOES-R active vibration damping controller design, implementation, and on-orbit performance
NASA Astrophysics Data System (ADS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2018-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance
NASA Technical Reports Server (NTRS)
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2017-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is presented. The GOES-16 spacecraft AVD controller frequency domain stability margins and nadir point attitude control bandwidth are presented along with on-orbit time domain disturbance response performance.
Integrated Power and Attitude Control for a Spacecraft with Flywheels and Control Moment Gyroscopes
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Bose, David M.
2003-01-01
A law is designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as all integrated set of actuators for attitude control. General. nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as it means of compensating for damping exerted by rotor bearings. Two flywheel 'steering laws' are developed such that torque commanded by all attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude and illustrate the benefits of kinetic energy error feedback.
A Survey of Civilian Employee Attitudes
1989-06-01
U.S. Army Troop Support Command. The survey was conducted as part of an organizational diagnosis in preparation for the implementation of a civilian...survey as part of the program evaluation is recommended. Keywords: Surveys; Questionnaires; Employee attitudes; Attitude measurement; Organizational diagnosis .
Effects of dynamic aeroelasticity on handling qualities and pilot rating
NASA Technical Reports Server (NTRS)
Swaim, R. L.; Yen, W.-Y.
1978-01-01
Pilot performance parameters, such as pilot ratings, tracking errors, and pilot comments, were recorded and analyzed for a longitudinal pitch tracking task on a large, flexible aircraft. The tracking task was programmed on a fixed-base simulator with a CRT attitude director display of pitch angle command, pitch angle, and pitch angle error. Parametric variations in the undamped natural frequencies of the two lowest frequency symmetric elastic modes were made to induce varying degrees of rigid body and elastic mode interaction. The results indicate that such mode interaction can drastically affect the handling qualities and pilot ratings of the task.
NASA Technical Reports Server (NTRS)
Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.
1978-01-01
A piloted simulation study assessed various levels of stability and control augmentation designed to improve the handling qualities of several helicopters in nap-of-the-earth (NOE) flight. Five basic single rotor helicopters - one teetering, two articulated, and two hingeless - which were found to have a variety of major deficiencies in a previous fixed-based simulator study were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems (CAS) to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular rate; and attitude command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usage and their gain levels associated with specific rotor type are also discussed.
Helicopter flight-control design using an H(2) method
NASA Technical Reports Server (NTRS)
Takahashi, Marc D.
1991-01-01
Rate-command and attitude-command flight-control designs for a UH-60 helicopter in hover are presented and were synthesized using an H(2) method. Using weight functions, this method allows the direct shaping of the singular values of the sensitivity, complementary sensitivity, and control input transfer-function matrices to give acceptable feedback properties. The designs were implemented on the Vertical Motion Simulator, and four low-speed hover tasks were used to evaluate the control system characteristics. The pilot comments from the accel-decel, bob-up, hovering turn, and side-step tasks indicated good decoupling and quick response characteristics. However, an underlying roll PIO tendency was found to exist away from the hover condition, which was caused by a flap regressing mode with insufficient damping.
NASA Technical Reports Server (NTRS)
Schroeder, J. A.; Merrick, V. K.
1990-01-01
Several control and display concepts were evaluated on a variable-stability helicopter prior to future evaluations on a modified Harrier. The control and display concepts had been developed to enable precise hover maneuvers, station keeping, and vertical landings in simulated zero-visibility conditions and had been evaluated extensively in previous piloted simulations. Flight evaluations early in the program revealed several inadequacies in the display drive laws that were later corrected using an alternative design approach that integrated the control and display characteristics with the desired guidance law. While hooded, three pilots performed landing-pad captures followed by vertical landings with attitude-rate, attitude, and translation-velocity-command control systems. The latter control system incorporated a modified version of state-rate-feedback implicit-model following. Precise landing within 2 ft of the desired touchdown point were achieved.
The Army Public Affairs Program
2000-09-15
charge levied to defray expenses for food , beverages , and other incidentals. (2) Using bands and other ceremonial unit support at military-sponsored...command channels by the authorized cable television (CATV) franchise . g. Advise the commander on audience attitudes about and perceptions of policies...support events and activities of common interest and benefit to local, state, regional, national, or broadly represented audiences. Commanders must be
Command and data handling for Atmosphere Explorer satellite
NASA Technical Reports Server (NTRS)
Fuldner, W. V.
1974-01-01
The command and data-handling subsystem of the Atmosphere Explorer satellite provides the necessary controls for the instrumentation and telemetry, and also controls the satellite attitude and trajectory. The subsystem executes all command information within the spacecraft, either in real time (as received over the S-band command transmission link) or remote from the command site (as required by the orbit operations schedule). Power consumption in the spacecraft is optimized by suitable application and removal of power to various instruments; additional functions include control of magnetic torquers and of the orbit-adjust propulsion subsystem. Telemetry data from instruments and the spacecraft equipment are formatted into a single serial bit stream. Attention is given to command types, command formats, decoder operation, and command processing functions.
The SAS-3 delayed command system
NASA Technical Reports Server (NTRS)
Hoffman, E. J.
1975-01-01
To meet the requirements arising from the increased complexity of the power, attitude control and telemetry systems, a full redundant high-performance control section with delayed command capability was designed for the Small Astronomy Satellite-3 (SAS-3). The relay command system of SAS-3 is characterized by 56 bystate relay commands, with capability for handling up to 64 commands in future versions. The 'short' data command service of SAS-1 and SAS-2 consisting of shifting 24-bit words to two users was expanded to five users and augmented with a 'long load' data command service (up to 4080 bits) used to program the telemetry system and the delayed command subsystem. The inclusion of a delayed command service ensures a program of up to 30 relay or short data commands to be loaded for execution at designated times. The design and system operation of the SAS-3 command section are analyzed, with special attention given to the delayed command subsystem.
A view finder control system for an earth observation satellite
NASA Astrophysics Data System (ADS)
Steyn, H.
2004-11-01
A real time TV view finder is used on-board a low earth orbiting (LEO) satellite to manually select targets for imaging from a ground station within the communication footprint of the satellite. The attitude control system on the satellite is used to steer the satellite using commands from the groundstation and a television camera onboard the satellite will then downlink a television signal in real time to a monitor screen in the ground station. The operator in the feedback loop will be able to manually steer the boresight of the satellite's main imager towards interested target areas e.g. to avoid clouds or correct for any attitude pointing errors. Due to a substantial delay (in the order of a second) in the view finding feedback loop and the narrow field of view of the main imager, the operator has to be assisted by the onboard attitude control system to stabilise and track the target area visible on the monitor screen. This paper will present the extended Kalman filter used to estimate the satellite's attitude angles using quaternions and the bias vector component of the 3-axis inertial rate sensors (gyros). Absolute attitude sensors (i.e. sun, horizon and magnetic) are used to supply the measurement vectors to correct the filter states during the view finder manoeuvres. The target tracking and rate steering reaction wheel controllers to accurately point and stabilise the satellite will be presented. The reference generator for the satellite to target attitude and rate vectors as used by the reaction wheel controllers will be derived.
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Jackson, E. Bruce; Goodrich, Kenneth H.; Ragsdale, W. Al; Neuhaus, Jason; Barnes, Jim
2008-01-01
A program of research, development, test, and evaluation is planned for the development of Spacecraft Handling Qualities guidelines. In this first experiment, the effects of Reaction Control System design characteristics and rotational control laws were evaluated during simulated proximity operations and docking. Also, the influence of piloting demands resulting from varying closure rates was assessed. The pilot-in-the-loop simulation results showed that significantly different spacecraft handling qualities result from the design of the Reaction Control System. In particular, cross-coupling between translational and rotational motions significantly affected handling qualities as reflected by Cooper-Harper pilot ratings and pilot workload, as reflected by Task-Load Index ratings. This influence is masked but only slightly by the rotational control system mode. While rotational control augmentation using Rate Command Attitude Hold can reduce the workload (principally, physical workload) created by cross-coupling, the handling qualities are not significantly improved. The attitude and rate deadbands of the RCAH introduced significant mental workload and control compensation to evaluate when deadband firings would occur, assess their impact on docking performance, and apply control inputs to mitigate that impact.
Managing Cassini Safe Mode Attitude at Saturn
NASA Technical Reports Server (NTRS)
Burk, Thomas A.
2010-01-01
The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. In the event safe mode interrupts normal orbital operations, Cassini has flight software fault protection algorithms to detect, isolate, and recover to a thermally safe and commandable attitude and then wait for further instructions from the ground. But the Saturn environment is complex, and safety hazards change depending on where Cassini is in its orbital trajectory around Saturn. Selecting an appropriate safe mode attitude that insures safe operation in the Saturn environment, including keeping the star tracker field of view clear of bright bodies, while maintaining a quiescent, commandable attitude, is a significant challenge. This paper discusses the Cassini safe table management strategy and the key criteria that must be considered, especially during low altitude flybys of Titan, in deciding what spacecraft attitude should be used in the event of safe mode.
A spacecraft attitude and articulation control system design for the Comet Halley intercept mission
NASA Technical Reports Server (NTRS)
Key, R. W.
1981-01-01
An attitude and articulation control system design for the Comet Halley 1986 intercept mission is presented. A spacecraft dynamics model consisting of five hinge-connected rigid bodies is used to analyze the spacecraft attitude and articulation control system performance. Inertial and optical information are combined to generate scan platform pointing commands. The comprehensive spacecraft model has been developed into a digital computer simulation program, which provides performance characteristics and insight pertaining to the control and dynamics of a Halley Intercept spacecraft. It is shown that scan platform pointing error has a maximum value of 1.8 milliradians during the four minute closest approach interval. It is also shown that the jitter or scan platform pointing rate error would have a maximum value of 2.5 milliradians/second for the nominal 1000 km closest approach distance trajectory and associated environment model.
1978-07-01
occurred. The attitude detection system included a three-axis fluxgate vector magnetometer and solar attitude detectors that produced both analog and digital ...heliogoniometer ( digital solar attitudeIsensing system) Three axis analog solar detection - Rubidium vapor magnetometer Three axis fluxgate magnetometer ...Telemetry: 35 channels modulating 150 MHz carrier on command Three axis solar attitude detector system Three axis fluxgate magnetometer system
Mission Command in the Joint Task Force -- Port Opening
2015-06-12
a significant concern. The appearance of lack of disciplined initiative suggests a laissez - faire attitude on the part of DDOC personnel. A...Chiefs of Staff (CJCS) published the Mission Command White Paper on 03 April 2012, launching Mission Command to the forefront of Army leadership ...trust and leadership - subordinate close proximity; furthermore, research has also shown that the same level of trust was not inherent between leaders
The quasi-inertial and wide-deadband modes as backup attitude options for the Skylab mission
NASA Technical Reports Server (NTRS)
Elrod, B. D.
1971-01-01
The quasi-inertial (QI) and wide deadband (WDB) modes were investigated as alternatives to the solar inertial (SI) mode in case two control moment gyros fail during the Skylab mission. Both modes provide a substantial reduction in propellant requirements from the solar interial hold requirement with either the orbital assembly/thruster attitude control system or service module reaction control system. Spacecraft motion in the QI mode is produced by a command rate and results in a small amplitude oscillation (17 deg, maximum) about the SI orientation. In the WDB mode a somewhat similar, but larger amplitude motion (35 deg maximum) about the SI orientation is developed by appropriate choice of controller deadbands and switch line slopes.
Attitude Design for the LADEE Mission
NASA Technical Reports Server (NTRS)
Galal, Ken; Nickel, Craig; Sherman, Ryan
2015-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) satellite successfully completed its 148-day science investigation in a low-altitude, near-equatorial lunar orbit on April 18, 2014. The LADEE spacecraft was built, managed and operated by NASA's Ames Research Center (ARC). The Mission Operations Center (MOC) was located at Ames and was responsible for activity planning, command sequencing, trajectory and attitude design, orbit determination, and spacecraft operations. The Science Operations Center (SOC) was located at Goddard Space Flight Center and was responsible for science planning, data archiving and distribution. This paper details attitude design and operations support for the LADEE mission. LADEE's attitude design was shaped by a wide range of instrument pointing requirements that necessitated regular excursions from the baseline one revolution per orbit "Ram" attitude. Such attitude excursions were constrained by a number of flight rules levied to protect instruments from the Sun, avoid geometries that would result in simultaneous occlusion of LADEE's two star tracker heads, and maintain the spacecraft within its thermal and power operating limits. To satisfy LADEE's many attitude requirements and constraints, a set of rules and conventions was adopted to manage the complexity of this design challenge and facilitate the automation of ground software that generated pointing commands spanning multiple days of operations at a time. The resulting LADEE Flight Dynamics System (FDS) that was developed used Visual Basic scripts that generated instructions to AGI's Satellite Tool Kit (STK) in order to derive quaternion commands at regular intervals that satisfied LADEE's pointing requirements. These scripts relied heavily on the powerful "align and constrain" capability of STK's attitude module to construct LADEE's attitude profiles and the slews to get there. A description of the scripts and the attitude modeling they embodied is provided. One particular challenge analysts faced was in the design of LADEE maneuver attitudes. A flight rule requiring pre-maneuver verification of in-flight maneuver conditions by ground operators prior to burn execution resulted in the need to accommodate long periods in the maneuver attitude. This in turn complicated efforts to satisfy star tracker interference and communication constraints in lunar orbit. In response to this challenge, a graphical method was developed and used to survey candidate rotation angles about the thrust vector. This survey method is described and an example of its use on a particular LADEE maneuver is discussed. Finally, the software and methodology used to satisfy LADEE's attitude requirements are also discussed in the context of LADEE's overall activity planning effort. In particular, the way in which strategic schedules of instrument and engineering activities were translated into actual attitude profiles at the tactical level, then converted into precise quaternion commands to achieve those pointing goals is explained. In order to reduce the risk of time-consuming re-planning efforts, this process included the generation of long-term projections of constraint violation predictions for individual attitude profiles that could be used to establish keep-out time-frames for particular attitude profiles. The challenges experienced and overall efficacy of both the overall LADEE ground system and the attitude components of the Flight Dynamics System in meeting LADEE's varied pointing requirements are discussed.
Job Attitudes of Air National Guard Personnel.
1986-04-01
organizational behavior literature. 2. To compare OAP-measured demographic characteristics and job attitudes of Air National Guard personnel with the ...thought to represent official ideas, attitudes , or policies of any agency of the United States Government. The author has rot had special access to...day that they are drawn together as a total force. ANG commanders studying this report will see the job attitude strengths and weaknesses of ANG
Job Attitudes of Military Airlift Command Personnel
1986-04-01
the OAP survey as part of LMDC’s consulting program. As noted in the literature review, no related research was found comparing the job attitudes of... attitudes than the other enlisted personnel in the areas of the work itself and job kA enrichment. In these two areas, MAC scores on three related factors...a more positive attitude than the other Air Force enlisted personnel toward Job Related Satisfaction. On the General
Evolution of International Space Station GN&C System Across ISS Assembly Stages
NASA Technical Reports Server (NTRS)
Lee, Roscoe; Frank, K. D. (Technical Monitor)
1999-01-01
The Guidance Navigation and Control (GN&C) system for the International Space Station is initially implemented by the Functional Cargo Block (FGB) which was built by the Khrunichev Space Center under direct contract to Boeing. This element (Stage 1A/R) was launched on 20 November 1998 and is currently operating on-orbit. The components and capabilities of the FGB Motion Control System (MCS) are described. The next ISS element, which has GN&C functionality will be the Service Module (SM) built by Rocket Space Corporation-Energia. This module is scheduled for launch (Stage 1R) in early 2000. Following activation of the SM GN&C system, the FGB MCS is deactivated and no longer used. The components and capabilities of the SM GN&C system are described. When a Progress vehicle is attached to the ISS it can be used for reboost operations, based on commands provided by the Mission Control Center-Moscow. When a data connection is implemented between the SM and the Progress, the SM can command the Progress thrusters for attitude control and reboosts. On Stage 5A, the U.S. GN&C system will become activated when the U.S. Laboratory is de loyed and installed (launch schedule is currently TBD). The U.S. GN&C system provides non-propulsive control capabilities to support micro-gravity operations and minimize the use of propellant for attitude control, and an independent capability for determining the ISS state vector, attitude, attitude rate. and time.. The components and capabilities of the U.S. GN&C system are described and the interactions between the U.S. and Russian Segment GN&C systems are also described.
Automatic control of the Skylab Astronaut Maneuvering Research Vehicle.
NASA Technical Reports Server (NTRS)
Murtagh, T. B.; Goodwin, M. A.; Greenlee, J. E.; Whitsett , C. E.
1973-01-01
The two automatic control modes of the Astronaut Maneuvering Research Vehicle (AMRV) are analyzed: the control moment gyro (CMG) and the rate gyro (RG). The AMRV is an autonomous maneuvering unit which translates and rotates the pilot by means of hand-controller input commands. The CMG normal operation, desaturation, and cage/lock dynamics are described in terms of a realistic AMRV mass property configuration. No propellant is used for normal operation in the CMG mode, and the maximum rotation rate is 5 deg/sec about each AMRV axis. The RG attitude maneuvering and limit cycle submode dynamic are described in terms of the same AMRV mass property configuration.
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Seywald, Hans; Bose, David M.
2003-01-01
Several laws are designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as an integrated set of actuators for attitude control. General, nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as a means of compensating for damping exerted by rotor bearings. Two flywheel steering laws are developed such that torque commanded by an attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude, and illustrate the benefits of kinetic energy error feedback. Control laws for attitude hold are also developed, and used to show the amount of propellant that can be saved when flywheels assist the CMGs. Nonlinear control laws for large-angle slew maneuvers perform well, but excessive momentum is required to reorient a vehicle like the International Space Station.
Art Concept - Apollo VIII - Command Module (CM) - Re-Entry Orientation
1968-01-01
S68-55292 (August 1968) --- A North American Rockwell Corporation artist's concept depicting the Apollo Command Module (CM), oriented in a blunt-end-forward attitude, re-entering Earth's atmosphere after returning from a lunar landing mission. Note the change in color caused by the extremely high temperatures encountered upon re-entry.
Improved Lunar Lander Handling Qualities Through Control Response Type and Display Enhancements
NASA Technical Reports Server (NTRS)
Mueller, Eric Richard; Bilimoria, Karl D.; Frost, Chad Ritchie
2010-01-01
A piloted simulation that studied the handling qualities for a precision lunar landing task from final approach to touchdown is presented. A vehicle model based on NASA's Altair Lunar Lander was used to explore the design space around the nominal vehicle configuration to determine which combination of factors provides satisfactory pilot-vehicle performance and workload; details of the control and propulsion systems not available for that vehicle were derived from Apollo Lunar Module data. The experiment was conducted on a large motion base simulator. Eight Space Shuttle and Apollo pilot astronauts and three NASA test pilots served as evaluation pilots, providing Cooper-Harper ratings, Task Load Index ratings and qualitative comments. Each pilot flew seven combinations of control response types and three sets of displays, including two varieties of guidance and a nonguided approach. The response types included Rate Command with Attitude Hold, which was used in the original Apollo Moon landings, a Velocity Increment Command response type designed for up-and-away flight, three response types designed specifically for the vertical descent portion of the trajectory, and combinations of these. It was found that Velocity Increment Command significantly improved handling qualities when compared with the baseline Apollo design, receiving predominantly Level 1 ratings. This response type could be flown with or without explicit guidance cues, something that was very difficult with the baseline design, and resulted in approximately equivalent touchdown accuracies and propellant burn as the baseline response type. The response types designed to be used exclusively in the vertical descent portion of the trajectory did not improve handling qualities.
Longitudinal handling qualities during approach and landing of a powered lift STOL aircraft
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1972-01-01
Longitudinal handling qualities evaluations were conducted on the Ames Research Center Flight Simulator for Advanced Aircraft (FSAA) for the approach and landing tasks of a powered lift STOL research aircraft. The test vehicle was a C-8A aircraft modified with a new wing incorporating internal blowing over an augmentor flap. The investigation included: (1) use of various flight path and airspeed control techniques for the basic vehicle; (2) assessment of stability and command augmentation schemes for pitch attitude and airspeed control; (3) determination of the influence of longitudinal and vertical force coupling for the power control; (4) determination of the influence of pitch axis coupling with the thrust vector control; and (5) evaluations of the contribution of stability and command augmentation to recovery from a single engine failure. Results are presented in the form of pilot ratings and commentary substantiated by landing approach time histories.
NASA Technical Reports Server (NTRS)
Helms, W. Jason; Pohlkamp, Kara M.
2011-01-01
The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.
Afhami, Narges; Bahadoran, Parvin; Taleghani, Hamid Reza; Nekuei, Nafisehsadat
2016-01-01
Induced abortion is an important medical issue. Knowledge and attitude of midwives regarding legal and religious commandments on induced abortion can be useful in confronting this issue. The aim of this study was to assess the knowledge and attitudes of midwives of Isfahan regarding these rules and to find their relationship with demographic characteristics. This was a cross-sectional, descriptive, and analytical study. The study participants consisted of 189 midwives working in hospitals, health centers, private gynecology clinics, and university. Random quota sampling method was used. Data were collected using a researcher-made questionnaire. Data were analyzed using mean, frequency distribution tables, Pearson correlation, and Spearman's coefficient. For all tests, an error of less than 0.05 was considered. The majority of the participants had extremely low to moderate (73%) knowledge about the subject of the study. Their attitudes toward effective implementation of these rules were mostly extremely weak to moderate (68.72%). No correlation was observed between knowledge, age, work experience, and education. However, there was a relationship between the level of knowledge about these rules and the location of service. There was no significant correlation between attitude and demographic characteristics. Due to less knowledge of the midwives and their low attitude score in this regard, training them, improving their attitude toward these issues, and effective implementation of these laws are necessary. Therefore, by identifying the factors affecting the formation of attitudes and the level of knowledge, more constructive proceedings can be taken to promote them.
Joint Operations and the Vicksburg Campaign
1993-06-04
the laisse faire attitude the army took with the navy maybe the navy should be a separate and equal command instead of subordinate to the army...of effort with the civilian Secretary of War managing the common direction and objectives for army and navy cooperation was an ideal concept. Although...lamented about. Halleck urged Washington to correct this by making him the overall Western Commander; thus, Halleck could better manage his naval resources
Apollo Onboard Navigation Techniques
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.
Thrust vector control of upper stage with a gimbaled thruster during orbit transfer
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Jia, Yinghong; Jin, Lei; Duan, Jiajia
2016-10-01
In launching Multi-Satellite with One-Vehicle, the main thruster provided by the upper stage is mounted on a two-axis gimbal. During orbit transfer, the thrust vector of this gimbaled thruster (GT) should theoretically pass through the mass center of the upper stage and align with the command direction to provide orbit transfer impetus. However, it is hard to be implemented from the viewpoint of the engineering mission. The deviations of the thrust vector from the command direction would result in large velocity errors. Moreover, the deviations of the thrust vector from the upper stage mass center would produce large disturbance torques. This paper discusses the thrust vector control (TVC) of the upper stage during its orbit transfer. Firstly, the accurate nonlinear coupled kinematic and dynamic equations of the upper stage body, the two-axis gimbal and the GT are derived by taking the upper stage as a multi-body system. Then, a thrust vector control system consisting of the special attitude control of the upper stage and the gimbal rotation of the gimbaled thruster is proposed. The special attitude control defined by the desired attitude that draws the thrust vector to align with the command direction when the gimbal control makes the thrust vector passes through the upper stage mass center. Finally, the validity of the proposed method is verified through numerical simulations.
Conceptual design study of a Harrier V/STOL research aircraft
NASA Technical Reports Server (NTRS)
Bode, W. E.; Berger, R. L.; Elmore, G. A.; Lacey, T. R.
1978-01-01
MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed.
Initial Satellite Formation Flight Results from the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Farahmand, Mitra
2016-01-01
This paper will describe the results that have been obtained to date concerning MMS formation flying. The MMS spacecraft spin at a rate of 3.1 RPM, with spin axis roughly aligned with Ecliptic North. Several booms are used to deploy instruments: two 5 m magnetometer booms in the spin plane, two rigid booms of length 12.5 m along the positive and negative spin axes, and four flexible wire booms of length 60 m in the spin plane. Minimizing flexible motion of the wire booms requires that reorientation of the spacecraft spin axis be kept to a minimum: this is limited to attitude maneuvers to counteract the effects of gravity-gradient and apparent solar motion. Orbital maneuvers must therefore be carried out in essentially the nominal science attitude. These burns make use of a set of monopropellant hydrazine thrusters: two (of thrust 4.5 N) along the spin axis in each direction, and eight (of thrust 18 N) in the spin plane; the latter are pulsed at the spin rate to produce a net delta-v. An on-board accelerometer-based controller is used to accurately generate a commanded delta-v. Navigation makes use of a weak-signal GPS-based system: this allows signals to be received even when MMS is flying above the GPS orbits, producing a highly accurate determination of the four MMS orbits. This data is downlinked to the MMS Mission Operations Center (MOC) and used by the MOC Flight Dynamics Operations Area (FDOA) for maneuver design. These commands are then uplinked to the spacecraft and executed autonomously using the controller, with the ground monitoring the burns in real time.
Comparison of two head-up displays in simulated standard and noise abatement night visual approaches
NASA Technical Reports Server (NTRS)
Cronn, F.; Palmer, E. A., III
1975-01-01
Situation and command head-up displays were evaluated for both standard and two segment noise abatement night visual approaches in a fixed base simulation of a DC-8 transport aircraft. The situation display provided glide slope and pitch attitude information. The command display provided glide slope information and flight path commands to capture a 3 deg glide slope. Landing approaches were flown in both zero wind and wind shear conditions. For both standard and noise abatement approaches, the situation display provided greater glidepath accuracy in the initial phase of the landing approaches, whereas the command display was more effective in the final approach phase. Glidepath accuracy was greater for the standard approaches than for the noise abatement approaches in all phases of the landing approach. Most of the pilots preferred the command display and the standard approach. Substantial agreement was found between each pilot's judgment of his performance and his actual performance.
Mir 22 and STS-81 crew work with gyrodyne
1997-02-04
STS081-301-031 (12-22 Jan 1997) --- Shortly after docking of the Space Shuttle Atlantis and Russia's Mir Space Station, crew members from the respective spacecraft begin to transfer hardware from the Spacehab Double Module (DM) onto the Mir complex. Here, cosmonaut Valeri G. Korzun, Mir-22 commander, along with astronauts Michael A. Baker, commander, and Brent W. Jett, Jr., pilot, unstow a gyrodyne, device for attitude control, transfer to Mir.
Mazinan, A H; Pasand, M; Soltani, B
2015-09-01
In the aspect of further development of investigations in the area of spacecraft modeling and analysis of the control scheme, a new hybrid finite-time robust three-axis cascade attitude control approach is proposed via pulse modulation synthesis. The full quaternion based control approach proposed here is organized in association with both the inner and the outer closed loops. It is shown that the inner closed loop, which consists of the sliding mode finite-time control approach, the pulse width pulse frequency modulator, the control allocation and finally the dynamics of the spacecraft is realized to track the three-axis referenced commands of the angular velocities. The pulse width pulse frequency modulators are in fact employed in the inner closed loop to accommodate the control signals to a number of on-off thrusters, while the control allocation algorithm provides the commanded firing times for the reaction control thrusters in the overactuated spacecraft. Hereinafter, the outer closed loop, which consists of the proportional linear control approach and the kinematics of the spacecraft is correspondingly designed to deal with the attitude angles that are presented by quaternion vector. It should be noted that the main motivation of the present research is to realize a hybrid control method by using linear and nonlinear terms and to provide a reliable and robust control structure, which is able to track time varying three-axis referenced commands. Subsequently, a stability analysis is presented to verify the performance of the overall proposed cascade attitude control approach. To prove the effectiveness of the presented approach, a thorough investigation is presented compared to a number of recent corresponding benchmarks. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Lessons Learned from FY82 US Army Aviation Mishaps.
1983-07-01
command action to ensure inexperienced instructor pilots recognize the problems associated with inexpe-rience, particularly those related to anticipating...and failed to remove tiedowns before flight. These actions were the result of a. improper attitude regarding the requirement to perform preflight...lack of self-discipline (improper Attitude ) by encouraging pilot to fly unauthorized maneuvers which exceeded he ability of the pilot and aircraft
Managing Perceptions of United States Africa Command
2009-02-12
and their effects on the wider community.10 How does this different perspective affect African perceptions? A review of African media reaction to... global inequities. Africans fit the attacks in a narrative of America being punished for its unilateral foreign policy, citing examples such as...Pew Global Attitudes survey mirrored these results.20 A review of the internal numbers of the Pew Global Attitudes African surveys reveals quite
Attitude controls for VTOL aircraft
NASA Technical Reports Server (NTRS)
Pauli, F. A.
1971-01-01
Systems consist of single duct system with two sets of reaction control nozzles, one linked mechanically to pilot's controls, and other set driven by electric servomotors commanded by preselected combinations of electrical signals.
Ground station software for receiving and handling Irecin telemetry data
NASA Astrophysics Data System (ADS)
Ferrante, M.; Petrozzi, M.; Di Ciolo, L.; Ortenzi, A.; Troso, G
2004-11-01
The on board resources, needed to perform the mission tasks, are very limited in nano-satellites. This paper proposes a software system to receive, manage and process in Real Time the Telemetry data coming from IRECIN nanosatellite and transmit operator manual commands and operative procedures. During the receiving phase, it shows the IRECIN subsystem physical values, visualizes the IRECIN attitude, and performs other suitable functions. The IRECIN Ground Station program is in charge to exchange information between IRECIN and the Ground segment. It carries out, in real time during IRECIN transmission phase, IRECIN attitude drawing, sun direction drawing, power supply received from Sun, visualization of the telemetry data, visualization of Earth magnetic field and more other functions. The received data are memorized and interpreted by a module, parser, and distribute to the suitable modules. Moreover it allows sending manual and automatic commands. Manual commands are delivered by an operator, on the other hand, automatic commands are provided by pre-configured operative procedures. Operative procedures development is realized in a previous phase called configuration phase. This program is also in charge to carry out a test session by mean the scheduler and commanding modules allowing execution of specific tasks without operator control. A log module to memorize received and transmitted data is realized. A phase to analyze, filter and visualize in off line the collected data, called post analysis, is based on the data extraction form the log module. At the same time, the Ground Station Software can work in network allowing managing, receiving and sending data/commands from different sites. The proposed system constitutes the software of IRECIN Ground Station. IRECIN is a modular nanosatellite weighting less than 2 kg, constituted by sixteen external sides with surface-mounted solar cells and three internal Al plates, kept together by four steel bars. Lithium-ions batteries are used. Attitude is determined by two three-axis magnetometers and the solar panels data. Control is provided by an active magnetic control system. The spacecraft will be spin- stabilized with the spin-axis normal to the orbit. All IRECIN electronic components are SMD technology in order to reduce weight and size. The realized Electronic board are completely developed, realized and tested at the Vitrociset S.P.A. under control of Research and Develop Group
A Time Response Approach to Equivalent Aircraft Dynamics
1979-09-01
Constant seconds e Commanded Pitch Attitude radians c + except in tables 1-6 and figures 2-4 where 6 is in degrees. - vi - A __ NADC-79231-60...4. 1.1 2. 261 1 . 324 .80 .645 -8.50 r’ 5.668:E 4.6112 2 . 12031 I. 285: . 7879 .6461 TR~rt-.FEP FUNCTION FHAE LAG "IGMA;QOMEGA; .0010 1. ’ c’:1) 0 0...15 - Pitch Rate Resoonse 4 L5- NAOC-179231-60 LAHOS 1-4 C3NFI:URATI:N 1INPUT K 110; %sec. ti -0 .5 vI ! 0.2 HOS LOS - - - - - - - 0 .1 --7 0 2 1 t ’ sec
A COTS-Based Attitude Dependent Contact Scheduling System
NASA Technical Reports Server (NTRS)
DeGumbia, Jonathan D.; Stezelberger, Shane T.; Woodard, Mark
2006-01-01
The mission architecture of the Gamma-ray Large Area Space Telescope (GLAST) requires a sophisticated ground system component for scheduling the downlink of science data. Contacts between the ````````````````` satellite and the Tracking and Data Relay Satellite System (TDRSS) are restricted by the limited field-of-view of the science data downlink antenna. In addition, contacts must be scheduled when permitted by the satellite s complex and non-repeating attitude profile. Complicating the matter further, the long lead-time required to schedule TDRSS services, combined with the short duration of the downlink contact opportunities, mandates accurate GLAST orbit and attitude modeling. These circumstances require the development of a scheduling system that is capable of predictively and accurately modeling not only the orbital position of GLAST but also its attitude. This paper details the methods used in the design of a Commercial Off The Shelf (COTS)-based attitude-dependent. TDRSS contact Scheduling system that meets the unique scheduling requirements of the GLAST mission, and it suggests a COTS-based scheduling approach to support future missions. The scheduling system applies filtering and smoothing algorithms to telemetered GPS data to produce high-accuracy predictive GLAST orbit ephemerides. Next, bus pointing commands from the GLAST Science Support Center are used to model the complexities of the two dynamic science gathering attitude modes. Attitude-dependent view periods are then generated between GLAST and each of the supporting TDRSs. Numerous scheduling constraints are then applied to account for various mission specific resource limitations. Next, an optimization engine is used to produce an optimized TDRSS contact schedule request which is sent to TDRSS scheduling for confirmation. Lastly, the confirmed TDRSS contact schedule is rectified with an updated ephemeris and adjusted bus pointing commands to produce a final science downlink contact schedule.
NASA Technical Reports Server (NTRS)
Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.
1979-01-01
An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.
Tracking Positions and Attitudes of Mars Rovers
NASA Technical Reports Server (NTRS)
Ali, Khaled; vanelli, Charles; Biesiadecki, Jeffrey; Martin, Alejandro San; Maimone, Mark; Cheng, Yang; Alexander, James
2006-01-01
The Surface Attitude Position and Pointing (SAPP) software, which runs on computers aboard the Mars Exploration Rovers, tracks the positions and attitudes of the rovers on the surface of Mars. Each rover acquires data on attitude from a combination of accelerometer readings and images of the Sun acquired autonomously, using a pointable camera to search the sky for the Sun. Depending on the nature of movement commanded remotely by operators on Earth, the software propagates attitude and position by use of either (1) accelerometer and gyroscope readings or (2) gyroscope readings and wheel odometry. Where necessary, visual odometry is performed on images to fine-tune the position updates, particularly on high-wheel-slip terrain. The attitude data are used by other software and ground-based personnel for pointing a high-gain antenna, planning and execution of driving, and positioning and aiming scientific instruments.
NASA Technical Reports Server (NTRS)
Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.
1993-01-01
The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.
NASA Technical Reports Server (NTRS)
Smith, G. A.; Meyer, G.
1981-01-01
A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.
NASA Astrophysics Data System (ADS)
Algrain, Marcelo C.; Powers, Richard M.
1997-05-01
A case study, written in a tutorial manner, is presented where a comprehensive computer simulation is developed to determine the driving factors contributing to spacecraft pointing accuracy and stability. Models for major system components are described. Among them are spacecraft bus, attitude controller, reaction wheel assembly, star-tracker unit, inertial reference unit, and gyro drift estimators (Kalman filter). The predicted spacecraft performance is analyzed for a variety of input commands and system disturbances. The primary deterministic inputs are the desired attitude angles and rate set points. The stochastic inputs include random torque disturbances acting on the spacecraft, random gyro bias noise, gyro random walk, and star-tracker noise. These inputs are varied over a wide range to determine their effects on pointing accuracy and stability. The results are presented in the form of trade- off curves designed to facilitate the proper selection of subsystems so that overall spacecraft pointing accuracy and stability requirements are met.
Landsat-1 and Landsat-2 flight evaluation
NASA Technical Reports Server (NTRS)
1975-01-01
The flight performance of Landsat 1 and Landsat 2 is analyzed. Flight operations of the satellites are briefly summarized. Other topics discussed include: orbital parameters; power subsystem; attitude control subsystem; command/clock subsystem; telemetry subsystem; orbit adjust subsystem; magnetic moment compensating assembly; unified s-band/premodulation processor; electrical interface subsystem; thermal subsystem; narrowband tape recorders; wideband telemetry subsystem; attitude measurement sensor; wideband video tape recorders; return beam vidicon; multispectral scanner subsystem; and data collection subsystem.
Job Attitudes of AFSC (Air Force Systems Command) Acquisition Project Managers.
1986-04-01
for performance (3rd ed.). Homewood, IL: Irwin. Ajzen , 1. & Fishbein , M . (1977). Attitude-behavior relations: A theoretical analysis and review of...factors that may be influencing job attitudes. I X. Chapter One I NTRODUCTION Today, about 2000 Air Force members manage the acquisit ion of bi1lions of...ison.i .ncl I (’ate" Nt ro’ p 2ject ranager s and cther AFSC o tI c rs ha N.e s ie m a r - a t t ,.des, IL t their att itudes ai e lower compai ed to
Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Vadali, Srinivas R.; Markley, F. Landis
1999-01-01
An optimal control approach using variable-structure (sliding-mode) tracking for large angle spacecraft maneuvers is presented. The approach expands upon a previously derived regulation result using a quaternion parameterization for the kinematic equations of motion. This parameterization is used since it is free of singularities. The main contribution of this paper is the utilization of a simple term in the control law that produces a maneuver to the reference attitude trajectory in the shortest distance. Also, a multiplicative error quaternion between the desired and actual attitude is used to derive the control law. Sliding-mode switching surfaces are derived using an optimal-control analysis. Control laws are given using either external torque commands or reaction wheel commands. Global asymptotic stability is shown for both cases using a Lyapunov analysis. Simulation results are shown which use the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft.
Study of the detail content of Apollo orbital photography
NASA Technical Reports Server (NTRS)
Kinzly, R. E.
1972-01-01
The results achieved during a study of the Detail Content of Apollo Orbital Photography are reported. The effect of residual motion smear or image reproduction processes upon the detail content of lunar surface imagery obtained from the orbiting command module are assessed. Data and conclusions obtained from the Apollo 8, 12, 14 and 15 missions are included. For the Apollo 8, 12 and 14 missions, the bracket-mounted Hasselblad camera had no mechanism internal to the camera for motion compensation. If the motion of the command module were left totally uncompensated, these photographs would exhibit a ground smear varying from 12 to 27 meters depending upon the focal length of the lens and the exposure time. During the photographic sequences motion compensation was attempted by firing the attitude control system of the spacecraft at a rate to compensate for the motion relative to the lunar surface. The residual smear occurring in selected frames of imagery was assessed using edge analyses methods to obtain and achieved modulation transfer function (MTF) which was compared to a baseline MTF.
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth S.; Paradiso, Joseph; Bergmann, Edward V.; Rowell, Derek
1990-01-01
Two steering laws are presented for single-gimbal control moment gyroscopes. An approach using the Moore-Penrose pseudoinverse with a nondirectional null-motion algorithm is shown by example to avoid internal singularities for unidirectional torque commands, for which existing algorithms fail. Because this is still a tangent-based approach, however, singularity avoidance cannot be guaranteed. The singularity robust inverse is introduced as an alternative to the pseudoinverse for computing torque-producing gimbal rates near singular states. This approach, coupled with the nondirectional null algorithm, is shown by example to provide better steering law performance by allowing torque errors to be produced in the vicinity of singular states.
NASA Technical Reports Server (NTRS)
Gunning, George R.; Spapperi, Jeff; Wilkinson, Jeffrey P.; Eldred, Jim; Labij, Dennis; Strinni, Meredith
1990-01-01
A design proposal for an unmanned probe to Pluto is presented. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.
CubeSat Attitude Determination and Helmholtz Cage Design
2012-03-01
4.2.2. 3.6 CubeSat Components The CubeSat used in this experiment is commanded and controlled via the Arduino Mega board that is based on the ATmel...UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base , Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views...ENY/12-M03 Abstract A method of 3-axis satellite attitude determination utilizing six body-fixed light sensors and a 3-axis magnetometer is analyzed. A
Wheel speed management control system for spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.
1990-08-01
remembered to pack shampoo , requested and received a minimal amount from the staff in order that we could wash our hair about half way through the...accepted. Thirdly we have performed a survey in the RNoAF, in order to map the attitudes of squadron commanders and flight commanders (34 males) about their...experience their situation seen from a female point of view. This survey consists of 36 questions covering subjects like recruiting, education, working
Robertson, Tasha; Walter, Garry; Soh, Nerissa; Hunt, Glenn; Cleary, Michelle; Malhi, Gin
2009-08-01
The objectives were, first, to determine attitudes towards psychiatry as a career among medical students currently enrolled at the University of Sydney and, second, to establish the immediate impact on those attitudes of a promotional DVD, released by the Royal Australian and New Zealand College of Psychiatrists. Medical students enrolled in the University of Sydney in 2008 were invited to complete a voluntary online questionnaire, in which their attitudes towards psychiatry were explored, and the immediate effects of a 15-minute DVD were ascertained. A total of 123 students participated. Only one student identified psychiatry as their chosen career. Medical students viewed psychiatry as the least attractive specialty for the degree to which patients are helped effectively and in terms of having a reliable scientific foundation. However, it rated well in regard to being intellectually challenging, a rapidly advancing field of medicine, and providing research opportunities and a good lifestyle. Psychiatry is less respected than most other specialties by students and they perceive this discipline to be poorly respected by other medical students and current medical practitioners. After viewing the DVD, there were improved student ratings of the benefits of a career in psychiatry, especially in relation to the specialty being enjoyable, offering effective treatment and having a scientific foundation. There was also enhanced understanding of the role of a psychiatrist in just over half of the participants and increased interest in psychiatry in about 30% of participants. The DVD was most effective in increasing awareness of the diversity of subspecialties available within psychiatry, good lifestyle factors, and the training involved. Among medical students, psychiatry is perceived as unattractive and fails to command the respect afforded other specialties. The viewing of a promotional DVD by medical students was found to be effective in improving their attitudes towards psychiatry and increasing their interest in pursuing a career in the specialty. However, the long-term impact of this modest improvement is unknown and the low survey response rate limits the extent to which the results can be generalized.
Human reproduction: Jewish perspectives.
Schenker, Joseph G
2013-11-01
Developments in science and technology and corresponding clinical applications raise new religious questions, often without clear answers. The role of theology in bioethics is integral to clarify perceived attitudes toward these developments for different religious communities. The Jewish attitude towards procreation is derived from the first commandment of God to Adam to 'Be fruitful and multiply'. Judaism allows the practice of all techniques of assisted reproduction when the oocyte and spermatozoon originate from the wife and husband respectively. This paper presents the attitude of Jewish Law -- Halacha to therapeutic procedures, such as IVF-embryo transfer, spermatozoa, oocytes, embryo donation, cryopreservation of genetic material, surrogacy, posthumous reproduction, gender preselection, reproductive and therapeutic cloning.
LANDSAT-2 and LANDSAT-3 Flight evaluation report
NASA Technical Reports Server (NTRS)
Winchester, T. W.
1978-01-01
Flight performance analysis of LANDSAT 2 and LANDSAT 3 are presented for the period July 1978 to October 1978. Spacecraft operations and orbital parameters are summarized for each spacecraft. Data are provided on the performance and operation of the following subsystems onboard the spacecraft: power; attitude control; command/clock; telemetry; orbit adjust; magnetic moment compensating assembly; unified S band/premodulation processor; electrical interface; thermal narrowband tape recorders; wideband telemetry; attitude measurement sensor; wideband video tape recorders; return beam vidicon; multispectral scanner subsystem; and data collections.
1986-04-01
was to satisfy the author’s curiosity about the job attitudes of physicians and nurses in the Air Force medical career field. There are very few...feedback to leaders and managers within the medical career field. The fourth was to fulfill a requirement for graduation from Air Command and Staff College...version of the style prescribed by the American Psychological Association. I am indebted to many individuals who provided support in the completion of
Student Preferences toward Microcomputer User Interfaces.
ERIC Educational Resources Information Center
Hazari, Sunil I.; Reaves, Rita R.
1994-01-01
Describes a study of undergraduates that was conducted to determine students' preferences toward Graphical User Interface versus Command Line Interface during computer-assisted instruction. Previous experience, comfort level, performance scores, and student attitudes are examined and compared, and the computer use survey is appended. (Contains 13…
Control theory analysis of a three-axis VTOL flight director. M.S. Thesis - Pennsylvania State Univ.
NASA Technical Reports Server (NTRS)
Niessen, F. R.
1971-01-01
A control theory analysis of a VTOL flight director and the results of a fixed-based simulator evaluation of the flight-director commands are discussed. The VTOL configuration selected for this study is a helicopter-type VTOL which controls the direction of the thrust vector by means of vehicle-attitude changes and, furthermore, employs high-gain attitude stabilization. This configuration is the same as one which was simulated in actual instrument flight tests with a variable stability helicopter. Stability analyses are made for each of the flight-director commands, assuming a single input-output, multi-loop system model for each control axis. The analyses proceed from the inner-loops to the outer-loops, using an analytical pilot model selected on the basis of the innermost-loop dynamics. The time response of the analytical model of the system is primarily used to adjust system gains, while root locus plots are used to identify dominant modes and mode interactions.
Correspondence between mothers' self-reported and observed child-rearing practices.
Kochanska, G; Kuczynski, L; Radke-Yarrow, M
1989-02-01
The correspondence between self-reported child-rearing attitudes and practices and actual child management was examined among 68 mothers of young children. Data on mothers' verbal and physical control techniques along with children's responses (cooperation vs. resistance) were obtained during 90 min of spontaneous interaction in a naturalistic setting. Self-report data (the Block Q-Sort) were obtained 1-2 weeks later. The Block Q-Sort factors were combined to represent authoritarian and authoritative patterns of attitudes. The authoritarian pattern was positively associated with the use of direct commands, physical enforcements, reprimands, and prohibitive interventions, and negatively associated with the use of suggestions. The authoritative pattern was positively related to the use of suggestions and positive incentives, and negatively related to the use of physical enforcements, prohibitive interventions, and direct commands. Mothers' enjoyment of the parental role and their negative affect toward the child, as expressed in the Block Q-Sort, were more a result of the child's cooperation/resistance during the interaction than predictors of maternal control strategies.
Hu, Qinglei
2007-10-01
This paper presents a dual-stage control system design method for the flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration control by input shaper. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. As a stepping stone, an integral variable structure controller with the assumption of knowing the upper bounds of the mismatched lumped perturbation has been designed which ensures exponential convergence of attitude angle and angular velocity in the presence of bounded uncertainty/disturbances. To reconstruct estimates of the system states for use in a full information variable structure control law, an asymptotic variable structure observer is also employed. In addition, the thruster output is modulated in pulse-width pulse-frequency so that the output profile is similar to the continuous control histories. For actively suppressing the induced vibration, the input shaping technique is used to modify the existing command so that less vibration will be caused by the command itself, which only requires information about the vibration frequency and damping of the closed-loop system. The rationale behind this hybrid control scheme is that the integral variable structure controller can achieve good precision pointing, even in the presence of uncertainties/disturbances, whereas the shaped input attenuator is applied to actively suppress the undesirable vibrations excited by the rapid maneuvers. Simulation results for the spacecraft model show precise attitude control and vibration suppression.
Simulation evaluation of two VTOL control/display systems in IMC approach and shipboard landing
NASA Technical Reports Server (NTRS)
Merrick, V. K.
1984-01-01
Two control/display systems, which differed in overall complexity but were both designed for VTOL flight operations to and from small ships in instrument meteorological conditions (IMC), were tested using the Ames Flight Simulator for Advanced Aircraft (FSAA). Both systems have attitude command in transition and horizontal-velocity command in hover; the more complex system also has longitudinal-acceleration and flightpath-angle command in transition, and vertical-velocity command in hover. The most important overall distinction between the two systems for the viewpoint of implementation is that in one - the more complex - engine power and nozzle position are operated indirectly through flight controllers, whereas in the other they are operated directly by the pilot. Simulated landings were made on a moving model of a DD 963 Spruance-class destroyer. Acceptable transitions can be performed in turbulence of 3 m/sec rms using either system. Acceptable landings up to sea state 6 can be performed using the more complex system, and up to sea state 5 using the other system.
Moving base simulation evaluation of translational rate command systems for STOVL aircraft in hover
NASA Technical Reports Server (NTRS)
Franklin, James A.; Stortz, Michael W.
1996-01-01
Using a generalized simulation model, a moving-base simulation of a lift-fan short takeoff/vertical landing fighter aircraft has been conducted on the Vertical Motion Simulator at Ames Research Center. Objectives of the experiment were to determine the influence of system bandwidth and phase delay on flying qualities for translational rate command and vertical velocity command systems. Assessments were made for precision hover control and for landings aboard an LPH type amphibious assault ship in the presence of winds and rough seas. Results obtained define the boundaries between satisfactory and adequate flying qualities for these design features for longitudinal and lateral translational rate command and for vertical velocity command.
NASA Technical Reports Server (NTRS)
Knauber, R. N.
1982-01-01
A FORTRAN IV coded computer program is presented for post-flight analysis of a missile's control surface response. It includes preprocessing of digitized telemetry data for time lags, biases, non-linear calibration changes and filtering. Measurements include autopilot attitude rate and displacement gyro output and four control surface deflections. Simple first order lags are assumed for the pitch, yaw and roll axes of control. Each actuator is also assumed to be represented by a first order lag. Mixing of pitch, yaw and roll commands to four control surfaces is assumed. A pseudo-inverse technique is used to obtain the pitch, yaw and roll components from the four measured deflections. This program has been used for over 10 years on the NASA/SCOUT launch vehicle for post-flight analysis and was helpful in detecting incipient actuator stall due to excessive hinge moments. The program is currently set up for a CDC CYBER 175 computer system. It requires 34K words of memory and contains 675 cards. A sample problem presented herein including the optional plotting requires eleven (11) seconds of central processor time.
German telecommunications satellite (Deutscher fernmelde satellit) (DFS-1 and -2)
NASA Technical Reports Server (NTRS)
Hiendlmeier, G.; Schmeller, H.
1991-01-01
The German Telecommunications Satellite (DFS) Program is to provide telecommunications service for high data rate transmission of text and video data to the Federal Republic of Germany within the 11-14 GHz and 20-30 GHz bands. The space segment of this program is composed of three satellites, DFS-1, DFS-2, and DFS-3, which will be located at 23.5 degrees E longitude of the geostationary orbit. The DFS will be launched from the Center Spatial Guyanis in French Giana on an Ariane launch vehicle. The mission follows the typical injection sequence: parking orbit, transfer orbit, and earth orbit. Attitude maneuvers will be performed to orient the spacecraft prior to Apogee Kick Motor (AKM) firing. After AKM firing, drift phase orbital and attitude maneuvers will be performed to place the spacecraft in its final geostationary position. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. Information is presented in tabular form for the following areas: DSN support, compatibility testing, frequency assignments, telemetry, command, and tracking support responsibilities.
Line-of-sight pointing accuracy/stability analysis and computer simulation for small spacecraft
NASA Astrophysics Data System (ADS)
Algrain, Marcelo C.; Powers, Richard M.
1996-06-01
This paper presents a case study where a comprehensive computer simulation is developed to determine the driving factors contributing to spacecraft pointing accuracy and stability. The simulation is implemented using XMATH/SystemBuild software from Integrated Systems, Inc. The paper is written in a tutorial manner and models for major system components are described. Among them are spacecraft bus, attitude controller, reaction wheel assembly, star-tracker unit, inertial reference unit, and gyro drift estimators (Kalman filter). THe predicted spacecraft performance is analyzed for a variety of input commands and system disturbances. The primary deterministic inputs are desired attitude angles and rate setpoints. The stochastic inputs include random torque disturbances acting on the spacecraft, random gyro bias noise, gyro random walk, and star-tracker noise. These inputs are varied over a wide range to determine their effects on pointing accuracy and stability. The results are presented in the form of trade-off curves designed to facilitate the proper selection of subsystems so that overall spacecraft pointing accuracy and stability requirements are met.
Apollo Guidance, Navigation, and Control (GNC) Hardware Overview
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This viewgraph presentation reviews basic guidance, navigation and control (GNC) concepts, examines the Command and Service Module (CSM) and Lunar Module (LM) GNC organization and discusses the primary GNC and the CSM Stabilization and Control System (SCS), as well as other CSM-specific hardware. The LM Abort Guidance System (AGS), Control Electronics System (CES) and other LM-specific hardware are also addressed. Three subsystems exist on each vehicle: the computer subsystem (CSS), the inertial subsystem (ISS) and the optical subsystem (OSS). The CSS and ISS are almost identical between CSM and LM and each is designed to operate independently. CSM SCS hardware are highlighted, including translation control, rotation controls, gyro assemblies, a gyro display coupler and flight director attitude indicators. The LM AGS hardware are also highlighted and include the abort electronics assembly and the abort sensor assembly; while the LM CES hardware includes the attitude controller assembly, thrust/translation controller assemblies and the ascent engine arming assemble. Other common hardware including the Orbital Rate Display - Earth and Lunar (ORDEAL) and the Crewman Optical Alignment Sight (COAS), a docking aid, are also highlighted.
Panoramic attitude sensor for Radio Astronomy Explorer B
NASA Technical Reports Server (NTRS)
Thomsen, R.
1973-01-01
An instrument system to acquire attitude determination data for the RAE-B spacecraft was designed and built. The system consists of an electronics module and two optical scanner heads. Each scanner head has an optical scanner with a field of view of 0.7 degrees diameter which scans the sky and measures the position of the moon, earth and sun relative to the spacecraft. This scanning is accomplished in either of two modes. When the spacecraft is spinning, the scanner operates in spherical mode, with the spacecraft spin providing the slow sweep of lattitude to scan the entire sky. After the spacecraft is placed in lunar orbit and despun, the scanner will operate in planar mode, advancing at a rate of 5.12 seconds per revolution in a fixed plane parallel to the spacecraft Z axis. This scan will cross and measure the moon horizons with every revolution. Each scanner head also has a sun slit which is aligned parallel to the spin axis of the spacecraft and which provides a sun pulse each revolution of the spacecraft. The electronics module provides the command and control, data processing and housekeeping functions.
Mir 22 and STS-81 crew work with gyrodyne
1997-02-04
STS081-301-032 (12-22 Jan. 1997) --- Shortly after the docking of the Space Shuttle Atlantis and Russia's Mir Space Station, crewmembers from the respective spacecraft begin to transfer hardware from the Spacehab Double Module (DM) onto the Mir complex. In this scene, cosmonaut Valeri G. Korzun (second left) Mir-22 commander, along with astronauts Michael A. Baker (second right) commander, and Brent W. Jett, Jr., pilot, unstow a gyrodyne, a device used for attitude control, for transfer to Mir. Astronaut Marsha S. Ivins looks over a lengthy inventory of supplies to be transferred.
Ten Commandments of Formal Methods...Ten Years Later
NASA Technical Reports Server (NTRS)
Bowen, Jonathan P.; Hinchey, Michael G.
2006-01-01
More than a decade ago, in "Ten Commandments of Formal Methods," we offered practical guidelines for projects that sought to use formal methods. Over the years, the article, which was based on our knowledge of successful industrial projects, has been widely cited and has generated much positive feedback. However, despite this apparent enthusiasm, formal methods use has not greatly increased, and some of the same attitudes about the infeasibility of adopting them persist. Formal methodists believe that introducing greater rigor will improve the software development process and yield software with better structure, greater maintainability, and fewer errors.
Evaluation of control and display configurations for helicopter shipboard operations
NASA Technical Reports Server (NTRS)
Paulk, C. H., Jr.; Donley, S. T.; Hollis, M. K.
1983-01-01
A simulation evaluation of several approach and landing flight-control configurations and of two out-of-the-cockpit display devices (a head-up display and a helmet-mounted display) was performed for the task of landing a helicopter on a destroyer in adverse weather. The results indicated that the ship airwake turbulence was the most significant environmental variable affecting hover performance. In addition, to achieve adequate landing performance, attitude-command control compensation was required for the pilot regardless of the display used. For improved performance with reduced pilot effort, a velocity-command, position-hold control system was desired.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1976-01-01
A computer algorithm for extracting a quaternion from a direction-cosine matrix (DCM) is described. The quaternion provides a four-parameter representation of rotation, as against the nine-parameter representation afforded by a DCM. Commanded attitude in space shuttle steering is conveniently computed by DCM, while actual attitude is computed most compactly as a quaternion, as is attitude error. The unit length of the rotation quaternion, and interchangeable of a quaternion and its negative, are used to advantage in the extraction algorithm. Protection of the algorithm against square root failure and division overflow are considered. Necessary and sufficient conditions for handling the rotation vector element of largest magnitude are discussed
Perception of Dental Professionals towards Biostatistics
Batra, Manu; Gupta, Mudit; Dany, Subha Soumya; Rajput, Prashant
2014-01-01
Biostatistics is becoming an integral part of dental sciences. Awareness regarding the subject is not thoroughly assessed in the field of dentistry. So the study was conducted to assess dental professionals' knowledge, attitude, and perception toward biostatistics at an academic dental institution. An anonymous cross-sectional questionnaire survey was conducted among all the faculty and postgraduate students of two dental colleges in Moradabad, Uttar Pradesh. The responses were assessed on 5-point likert scale. The survey response rate was 73.71%. Two-thirds of respondents believed biostatistics to be a difficult subject and at the same time half of them did not consider it to be more difficult than other subjects in dentistry. Females were less competent than males in applying biostatistical skills which was found to be statistically significant. Results suggested that dentists with research or academics as an adjunct to their clinical practice had better command over the subject. The current study shows that there is lack of command over the subject of biostatistics among dental professionals although they were aware of its importance in dentistry. There is a need of changing the training pattern of biostatistics for dental professionals which would make them confident enough to apply biostatistics in their clinical practice. PMID:27355029
Perception of Dental Professionals towards Biostatistics.
Batra, Manu; Gupta, Mudit; Dany, Subha Soumya; Rajput, Prashant
2014-01-01
Biostatistics is becoming an integral part of dental sciences. Awareness regarding the subject is not thoroughly assessed in the field of dentistry. So the study was conducted to assess dental professionals' knowledge, attitude, and perception toward biostatistics at an academic dental institution. An anonymous cross-sectional questionnaire survey was conducted among all the faculty and postgraduate students of two dental colleges in Moradabad, Uttar Pradesh. The responses were assessed on 5-point likert scale. The survey response rate was 73.71%. Two-thirds of respondents believed biostatistics to be a difficult subject and at the same time half of them did not consider it to be more difficult than other subjects in dentistry. Females were less competent than males in applying biostatistical skills which was found to be statistically significant. Results suggested that dentists with research or academics as an adjunct to their clinical practice had better command over the subject. The current study shows that there is lack of command over the subject of biostatistics among dental professionals although they were aware of its importance in dentistry. There is a need of changing the training pattern of biostatistics for dental professionals which would make them confident enough to apply biostatistics in their clinical practice.
Decrease in medical command errors with use of a "standing orders" protocol system.
Holliman, C J; Wuerz, R C; Meador, S A
1994-05-01
The purpose of this study was to determine the physician medical command error rates and paramedic error rates after implementation of a "standing orders" protocol system for medical command. These patient-care error rates were compared with the previously reported rates for a "required call-in" medical command system (Ann Emerg Med 1992; 21(4):347-350). A secondary aim of the study was to determine if the on-scene time interval was increased by the standing orders system. Prospectively conducted audit of prehospital advanced life support (ALS) trip sheets was made at an urban ALS paramedic service with on-line physician medical command from three local hospitals. All ALS run sheets from the start time of the standing orders system (April 1, 1991) for a 1-year period ending on March 30, 1992 were reviewed as part of an ongoing quality assurance program. Cases were identified as nonjustifiably deviating from regional emergency medical services (EMS) protocols as judged by agreement of three physician reviewers (the same methodology as a previously reported command error study in the same ALS system). Medical command and paramedic errors were identified from the prehospital ALS run sheets and categorized. Two thousand one ALS runs were reviewed; 24 physician errors (1.2% of the 1,928 "command" runs) and eight paramedic errors (0.4% of runs) were identified. The physician error rate was decreased from the 2.6% rate in the previous study (P < .0001 by chi 2 analysis). The on-scene time interval did not increase with the "standing orders" system.(ABSTRACT TRUNCATED AT 250 WORDS)
Landsat-1 and Landsat-2 evaluation report, 23 January 1975 to 23 April 1975
NASA Technical Reports Server (NTRS)
1975-01-01
A description of the work accomplished with the Landsat-1 and Landsat-2 satellites during the period 23 Jan. - 23 Apr. 1975 was presented. The following information was given for each satellite: operational summary, orbital parameters, power subsystem, attitude control subsystem, command/clock subsystem, telemetry subsystem, orbit adjust subsystem, magnetic moment compensating assembly, unified S-band/premodulation processor, electrical interface subsystem, thermal subsystem, narrowband tape recorders, wideband telemetry subsystem, attitude measurement sensor, wideband video tape recorders, return beam vidicon, multispectral scanner subsystem, and data collection subsystem.
Total energy based flight control system
NASA Technical Reports Server (NTRS)
Lambregts, Antonius A. (Inventor)
1985-01-01
An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.
The Army's Use of the Advanced Communications Technology Satellite
NASA Technical Reports Server (NTRS)
Ilse, Kenneth
1996-01-01
Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.
Direct Fault Tolerant RLV Altitude Control: A Singular Perturbation Approach
NASA Technical Reports Server (NTRS)
Zhu, J. J.; Lawrence, D. A.; Fisher, J.; Shtessel, Y. B.; Hodel, A. S.; Lu, P.; Jackson, Scott (Technical Monitor)
2002-01-01
In this paper, we present a direct fault tolerant control (DFTC) technique, where by "direct" we mean that no explicit fault identification is used. The technique will be presented for the attitude controller (autopilot) for a reusable launch vehicle (RLV), although in principle it can be applied to many other applications. Any partial or complete failure of control actuators and effectors will be inferred from saturation of one or more commanded control signals generated by the controller. The saturation causes a reduction in the effective gain, or bandwidth of the feedback loop, which can be modeled as an increase in singular perturbation in the loop. In order to maintain stability, the bandwidth of the nominal (reduced-order) system will be reduced proportionally according to the singular perturbation theory. The presented DFTC technique automatically handles momentary saturations and integrator windup caused by excessive disturbances, guidance command or dispersions under normal vehicle conditions. For multi-input, multi-output (MIMO) systems with redundant control effectors, such as the RLV attitude control system, an algorithm is presented for determining the direction of bandwidth cutback using the method of minimum-time optimal control with constrained control in order to maintain the best performance that is possible with the reduced control authority. Other bandwidth cutback logic, such as one that preserves the commanded direction of the bandwidth or favors a preferred direction when the commanded direction cannot be achieved, is also discussed. In this extended abstract, a simplistic example is proved to demonstrate the idea. In the final paper, test results on the high fidelity 6-DOF X-33 model with severe dispersions will be presented.
A Comparative Analysis of Job Attitudes of Military Airlift Command Pilots.
1986-04-01
1985). The survey is designed to measure the three widely accepted variables of successful leadership and management: success of the group, leadership ... management style, and the situational environment (Mahr, 1982). This is achieved through a 16-item demographic section followed by a 93-item attitudinal
LANDSAT-1 and LANDSAT-2 flight evaluation report, 23 January - 23 April 1977
NASA Technical Reports Server (NTRS)
1977-01-01
The LANDSAT operations from launch through orbital instrument observations are reviewed. Orbital parameters, power subsystem, attitude control subsystem, and command/clock subsystem are discussed. Other subsystems are also considered, such as telemetry, orbit adjust, electrical interface, thermal, wideband telemetry, multispectral scanner, and data collection.
Transforming the Army with Mission Command
2015-06-12
organizations the work of John Kotter has served as a useful guide. “Changing behavior is less a matter of giving people analysis to influence their thoughts......fear or panic. The third is you cannot make me move deviance , driven by anger. The last is a very pessimistic attitude that leads to constant
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-21
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3336-000] Command Power Corp.; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Command Power...
High angle of attack flying qualities criteria for longitudinal rate command systems
NASA Technical Reports Server (NTRS)
Wilson, David J.; Citurs, Kevin D.; Davidson, John B.
1994-01-01
This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.
Simulation study of two VTOL control/display systems in IMC approach and landing
NASA Technical Reports Server (NTRS)
Merrick, V. K.
1981-01-01
Both systems had full attitude command; the more complex system (Type 1) also had translational velocity command. The systems were applied to existing models of a VTOL lift-fan transport and the AV-8A Harrier. Simulated landings were made on a model of a DD963 Spruance-class destroyer. It was concluded that acceptable transitions and vertical landings can be performed, using the Type 1 system, in free-air turbulence up to 2.5 m/sec and sea state 6 and, using the Type 2 system, in free-air turbulence up to 1.5 m/sec and sea state 4.
Testing and evaluation of the LES-6 pulsed plasma thruster by means of a torsion pendulum system
NASA Technical Reports Server (NTRS)
Hamidian, J. P.; Dahlgren, J. B.
1973-01-01
Performance characteristics of the LES-6 pulsed plasma thruster over a range of input conditions were investigated by means of a torsion pendulum system. Parameters of particular interest included the impulse bit and time average thrust (and their repeatability), specific impulse, mass ablated per discharge, specific thrust, energy per unit area, efficiency, and variation of performance with ignition command rate. Intermittency of the thruster as affected by input energy and igniter resistance were also investigated. Comparative experimental data correlation with the data presented. The results of these tests indicate that the LES-6 thruster, with some identifiable design improvements, represents an attractive reaction control thruster for attitude contol applications on long-life spacecraft requiring small metered impulse bits for precise pointing control of science instruments.
Backup Attitude Control Algorithms for the MAP Spacecraft
NASA Technical Reports Server (NTRS)
ODonnell, James R., Jr.; Andrews, Stephen F.; Ericsson-Jackson, Aprille J.; Flatley, Thomas W.; Ward, David K.; Bay, P. Michael
1999-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission, studying the early origins of the universe, in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point. Due to limited mass, power, and financial resources, a traditional reliability concept involving fully redundant components was not feasible. This paper will discuss the redundancy philosophy used on MAP, describe the hardware redundancy selected (and why), and present backup modes and algorithms that were designed in lieu of additional attitude control hardware redundancy to improve the odds of mission success. Three of these modes have been implemented in the spacecraft flight software. The first onboard mode allows the MAP Kalman filter to be used with digital sun sensor (DSS) derived rates, in case of the failure of one of MAP's two two-axis inertial reference units. Similarly, the second onboard mode allows a star tracker only mode, using attitude and derived rate from one or both of MAP's star trackers for onboard attitude determination and control. The last backup mode onboard allows a sun-line angle offset to be commanded that will allow solar radiation pressure to be used for momentum management and orbit stationkeeping. In addition to the backup modes implemented on the spacecraft, two backup algorithms have been developed in the event of less likely contingencies. One of these is an algorithm for implementing an alternative scan pattern to MAP's nominal dual-spin science mode using only one or two reaction wheels and thrusters. Finally, an algorithm has been developed that uses thruster one shots while in science mode for momentum management. This algorithm has been developed in case system momentum builds up faster than anticipated, to allow adequate momentum management while minimizing interruptions to science. In this paper, each mode and algorithm will be discussed, and simulation results presented.
Zero-Propellant Maneuver[TM] Flight Results for 180 deg ISS Rotation
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth; Bhatt, Sagar; Lammers, Mike; Nguyen, Louis
2007-01-01
This paper presents results for the Zero Propellant Maneuver (ZPM) TradeMark attitude control concept flight demonstration. On March 3, 2007, a ZPM was used to reorient the International Space Station 180 degrees without using any propellant. The identical reorientation performed with thrusters would have burned 110lbs of propellant. The ZPM was a pre-planned trajectory used to command the CMG attitude hold controller to perform the maneuver between specified initial and final states while maintaining the CMGs within their operational limits. The trajectory was obtained from a PseudoSpectral solution to a new optimal attitude control problem. The flight test established the breakthrough capability to simultaneously perform a large angle attitude maneuver and momentum desaturation without the need to use thrusters. The flight implementation did not require any modifications to flight software. This approach is applicable to any spacecraft that are controlled by momentum storage devices.
NASA Astrophysics Data System (ADS)
Godbole, Saurabh
Traditionally, textual tools have been utilized to teach basic programming languages and paradigms. Research has shown that students tend to be visual learners. Using flowcharts, students can quickly understand the logic of their programs and visualize the flow of commands in the algorithm. Moreover, applying programming to physical systems through the use of a microcontroller to facilitate this type of learning can spark an interest in students to advance their programming knowledge to create novel applications. This study examined if freshmen college students' attitudes towards programming changed after completing a graphical programming lesson. Various attributes about students' attitudes were examined including confidence, interest, stereotypes, and their belief in the usefulness of acquiring programming skills. The study found that there were no statistically significant differences in attitudes either immediately following the session or after a period of four weeks.
Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency
NASA Technical Reports Server (NTRS)
Sedlak, Joseph E.
2016-01-01
A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.
Surveying Language Attitudes and Practices in Latvia
ERIC Educational Resources Information Center
Priedite, Aija
2005-01-01
As a heritage from the Soviet period (1945-1991) about 500,000-700,000 (mostly Russophone) persons (military persons, workers and others) lived in Latvia with little or no command of Latvian. During the same period, the Russian language had replaced Latvian in the public administration. Following the restitution of independence in 1991, one of the…
Magellan attitude control mission operations
NASA Technical Reports Server (NTRS)
Dukes, Eileen M.
1993-01-01
From the Martin Marietta Astronautics Group base in Denver, Colorado, spacecraft engineers have been operating the Magellan spacecraft for the past three and one half years, along with the Jet Propulsion Laboratory, for NASA. The spacecraft team in Denver is responsible for the health of the vehicle, from command generation to evaluation of engineering telemetry. Operation of the spacecraft's Attitude and Articulation Control Subsystem (AACS) has specifically posed several in-flight challenges. This system must provide accurate pointing of the spacecraft throughout each 3.2 hour orbit which typically consists of 5 - 9 discrete maneuvers. Preparation of bi-weekly command sequences, monitoring execution, and trending of subsystem performance is of paramount importance, but in-flight anomalies have also demanded the attention of AACS engineers. Anomalies are often very interesting and challenging aspects of a project, and the Magellan mission was no exception. From the first unsuccessful attempts to perform a starscan, to spacecraft safing events, much has been experienced to add to the `lessons learned' from this mission. Many of Magellan's in-flight experiences, anomalies, and their resolutions are highlighted in this paper.
Magellan attitude control mission operations
NASA Astrophysics Data System (ADS)
Dukes, Eileen M.
From the Martin Marietta Astronautics Group base in Denver, Colorado, spacecraft engineers have been operating the Magellan spacecraft for the past three and one half years, along with the Jet Propulsion Laboratory, for NASA. The spacecraft team in Denver is responsible for the health of the vehicle, from command generation to evaluation of engineering telemetry. Operation of the spacecraft's Attitude and Articulation Control Subsystem (AACS) has specifically posed several in-flight challenges. This system must provide accurate pointing of the spacecraft throughout each 3.2 hour orbit which typically consists of 5 - 9 discrete maneuvers. Preparation of bi-weekly command sequences, monitoring execution, and trending of subsystem performance is of paramount importance, but in-flight anomalies have also demanded the attention of AACS engineers. Anomalies are often very interesting and challenging aspects of a project, and the Magellan mission was no exception. From the first unsuccessful attempts to perform a starscan, to spacecraft safing events, much has been experienced to add to the `lessons learned' from this mission. Many of Magellan's in-flight experiences, anomalies, and their resolutions are highlighted in this paper.
Preliminary Design and Analysis of the GIFTS Instrument Pointing System
NASA Technical Reports Server (NTRS)
Zomkowski, Paul P.
2003-01-01
The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Instrument is the next generation spectrometer for remote sensing weather satellites. The GIFTS instrument will be used to perform scans of the Earth s atmosphere by assembling a series of field-of- views (FOV) into a larger pattern. Realization of this process is achieved by step scanning the instrument FOV in a contiguous fashion across any desired portion of the visible Earth. A 2.3 arc second pointing stability, with respect to the scanning instrument, must be maintained for the duration of the FOV scan. A star tracker producing attitude data at 100 Hz rate will be used by the autonomous pointing algorithm to precisely track target FOV s on the surface of the Earth. The main objective is to validate the pointing algorithm in the presence of spacecraft disturbances and determine acceptable disturbance limits from expected noise sources. Proof of concept validation of the pointing system algorithm is carried out with a full system simulation developed using Matlab Simulink. Models for the following components function within the full system simulation: inertial reference unit (IRU), attitude control system (ACS), reaction wheels, star tracker, and mirror controller. With the spacecraft orbital position and attitude maintained to within specified limits the pointing algorithm receives quaternion, ephemeris, and initialization data that are used to construct the required mirror pointing commands at a 100 Hz rate. This comprehensive simulation will also aid in obtaining a thorough understanding of spacecraft disturbances and other sources of pointing system errors. Parameter sensitivity studies and disturbance analysis will be used to obtain limits of operability for the GIFTS instrument. The culmination of this simulation development and analysis will be used to validate the specified performance requirements outlined for this instrument.
Touchless attitude correction for satellite with constant magnetic moment
NASA Astrophysics Data System (ADS)
Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan
2017-09-01
Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.
Mission management, planning, and cost: PULSE Attitude And Control Systems (AACS)
NASA Technical Reports Server (NTRS)
1990-01-01
The Pluto unmanned long-range scientific explorer (PULSE) is a probe that will do a flyby of Pluto. It is a low weight, relatively low costing vehicle which utilizes mostly off-the-shelf hardware, but not materials or techniques that will be available after 1999. A design, fabrication, and cost analysis is presented. PULSE will be launched within the first decade of the twenty-first century. The topics include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion systems; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.
Advanced Control System Increases Helicopter Safety
NASA Technical Reports Server (NTRS)
2008-01-01
With support and funding from a Phase II NASA SBIR project from Ames Research Center, Hoh Aeronautics Inc. (HAI), of Lomita, California, produced HeliSAS, a low-cost, lightweight, attitude-command-attitude-hold stability augmentation system (SAS) for civil helicopters and unmanned aerial vehicles. HeliSAS proved itself in over 160 hours of flight testing and demonstrations in a Robinson R44 Raven helicopter, a commercial helicopter popular with news broadcasting and police operations. Chelton Flight Systems, of Boise, Idaho, negotiated with HAI to develop, market, and manufacture HeliSAS, now available as the Chelton HeliSAS Digital Helicopter Autopilot.
Optimal attitude maneuver execution for the Advanced Composition Explorer (ACE) mission
NASA Technical Reports Server (NTRS)
Woodard, Mark A.; Baker, David
1995-01-01
The Advanced Composition Explorer (ACE) spacecraft will require frequent attitude reorientations in order to maintain the spacecraft high gain antenna (HGA) within 3 deg of earth-pointing. These attitude maneuvers will be accomplished by employing a series of ground-commanded thruster pulses, computed by ground operations personnel, to achieve the desired change in the spacecraft angular momentum vector. With each maneuver, attitude nutation will be excited. Large nutation angles are undesirable from a science standpoint. It is important that the thruster firings be phased properly in order to minimize the nutation angle at the end of the maneuver so that science collection time is maximized. The analysis presented derives a simple approximation for the nutation contribution resulting from a series of short thruster burns. Analytic equations are derived which give the induced nutation angle as a function of the number of small thruster burns used to execute the attitude maneuver and the phasing of the burns. The results show that by properly subdividing the attitude burns, the induced nutation can be kept low. The analytic equations are also verified through attitude dynamics simulation and simulation results are presented. Finally, techniques for quantifying the post-maneuver nutation are discussed.
Spacecraft with gradual acceleration of solar panels
NASA Technical Reports Server (NTRS)
Merhav, Tamir R. (Inventor); Festa, Michael T. (Inventor); Stetson, Jr., John B. (Inventor)
1996-01-01
A spacecraft (8) includes a movable appendage such as solar panels (12) operated by a stepping motor (28) driven by pulses (311). In order to reduce vibration andor attitude error, the drive pulses are generated by a clock down-counter (312) with variable count ratio. Predetermined desired clock ratios are stored in selectable memories (314a-d), and the selected ratio (R) is coupled to a comparator (330) together with the current ratio (C). An up-down counter (340) establishes the current count-down ratio by counting toward the desired ratio under the control of the comparator; thus, a step change of solar panel speed never occurs. When a direction change is commanded, a flag signal generator (350) disables the selectable memories, and enables a further store (360), which generates a count ratio representing a very slow solar panel rotational rate, so that the rotational rate always slows to a low value before direction is changed. The principles of the invention are applicable to any movable appendage.
Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems
NASA Technical Reports Server (NTRS)
Chou, Hwei-Lan; Biezad, Daniel J.
1996-01-01
Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.
High Rate User Ka-Band Phased Array Antenna Test Results
NASA Technical Reports Server (NTRS)
Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)
2001-01-01
The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.
Network device interface for digitally interfacing data channels to a controller via a network
NASA Technical Reports Server (NTRS)
Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)
2006-01-01
The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.
NASA Technical Reports Server (NTRS)
Luna, Michael E.; Collins, Steven M.
2011-01-01
On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.
A Theory of Rate-Dependent Plasticity
1984-05-01
crystal microplasticity use a variety of parameters, such as mobile dislocation density and velocity, all of which are eventually related in some manner...Info Center Bldg. 2925, Box 22 Fort Ord, CA 93941 55 DISTRIBUTION LIST No. of Copies Organization 1 Commander Naval Sea Systems Command...Washington, DC 20360 Commander Naval Sea Systems Command ( SEA -62R41) ATTN: L. Pasiuk Washington, DC 20360 Commander Naval
V/STOL Systems Research Aircraft: A Tool for Cockpit Integration
NASA Technical Reports Server (NTRS)
Stortz, Michael W.; ODonoghue, Dennis P.; Tiffany, Geary (Technical Monitor)
1995-01-01
The next generation ASTOVL aircraft will have a complicated propulsion System. The configuration choices include Direct Lift, Lift-Fan and Lift+Lift /Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to decouple longitudinal and vertical responses allowing the pilot to close the loop on flight path and flight path acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision. has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flight path command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results will be used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.
V/STOL systems research aircraft: A tool for cockpit integration
NASA Technical Reports Server (NTRS)
Stortz, Michael W.; ODonoghue, Dennis P.
1995-01-01
The next generation ASTOVL aircraft will have a complicated propulsion system. The configuration choices include Direct Lift, Lift-Fan and Lift + Lift/Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to de-couple longitudinal and vertical responses allowing the pilot to close the loop on flightpath and flightpath acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision, has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flightpath command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results are used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.
Interaction of feel system and flight control system dynamics on lateral flying qualities
NASA Technical Reports Server (NTRS)
Bailey, R. E.; Knotts, L. H.
1990-01-01
An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.
NASA Technical Reports Server (NTRS)
Taylor, J. C.; Robertson, M. M.
1995-01-01
An airline maintenance department undertook a CRM training program to change its safety and operating culture. In 2 1/2 years this airline trained 2200 management staff and salaried professionals. Participants completed attitude surveys immediately before and after the training, as well as two months, six months, and one year afterward. On-site interviews were conducted to test and confirm the survey results. Comparing managers' attitudes immediately after their training with their pretraining attitudes showed significant improvement for three attitudes. A fourth attitude, assertiveness, improved significantly above the pretraining levels two months after training. The expected effect of the training on all four attitude scales did not change significantly thereafter. Participants' self-reported behaviors and interview comments confirmed their shift from passive to more active behaviors over time. Safety, efficiency, and dependability performance were measured before the onset of the training and for some 30 months afterward. Associations with subsequent performance were strongest with positive attitudes about sharing command (participation), assertiveness, and stress management when those attitudes were measured 2 and 12 months after the training. The two month follow-up survey results were especially strong and indicate that active behaviors learned from the CRM training consolidate and strengthen in the months immediately following training.
NASA Technical Reports Server (NTRS)
Gershzohn, Gary R.; Sirko, Robert J.; Zimmerman, K.; Jones, A. D.
1990-01-01
This task concerns the design, development, testing, and evaluation of a new proximity operations planning and flight guidance display and control system for manned space operations. A forecast, derivative manned maneuvering unit (MMU) was identified as a candidate for the application of a color, highway-in-the-sky display format for the presentation of flight guidance information. A silicon graphics 4D/20-based simulation is being developed to design and test display formats and operations concepts. The simulation includes the following: (1) real-time color graphics generation to provide realistic, dynamic flight guidance displays and control characteristics; (2) real-time graphics generation of spacecraft trajectories; (3) MMU flight dynamics and control characteristics; (4) control algorithms for rotational and translational hand controllers; (5) orbital mechanics effects for rendezvous and chase spacecraft; (6) inclusion of appropriate navigation aids; and (7) measurement of subject performance. The flight planning system under development provides for: (1) selection of appropriate operational modes, including minimum cost, optimum cost, minimum time, and specified ETA; (2) automatic calculation of rendezvous trajectories, en route times, and fuel requirements; (3) and provisions for manual override. Man/machine function allocations in planning and en route flight segments are being evaluated. Planning and en route data are presented on one screen composed of two windows: (1) a map display presenting a view perpendicular to the orbital plane, depicting flight planning trajectory and time data attitude display presenting attitude and course data for use en route; and (2) an attitude display presenting local vertical-local horizontal attitude data superimposed on a highway-in-the-sky or flight channel representation of the flight planned course. Both display formats are presented while the MMU is en route. In addition to these displays, several original display elements are being developed, including a 3DOF flight detector for attitude commanding, a different flight detector for translation commands, and a pictorial representation of velocity deviations.
Digital controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Using linear-optimal estimation and control techniques, digital-adaptive control laws have been designed for a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. Two distinct discrete-time control laws are designed to interface with velocity-command and attitude-command guidance logic, and each incorporates proportional-integral compensation for non-zero-set-point regulation, as well as reduced-order Kalman filters for sensor blending and noise rejection. Adaptation to flight condition is achieved with a novel gain-scheduling method based on correlation and regression analysis. The linear-optimal design approach is found to be a valuable tool in the development of practical multivariable control laws for vehicles which evidence significant coupling and insufficient natural stability.
The MGS Avionics System Architecture: Exploring the Limits of Inheritance
NASA Technical Reports Server (NTRS)
Bunker, R.
1994-01-01
Mars Global Surveyor (MGS) avionics system architecture comprises much of the electronics on board the spacecraft: electrical power, attitude and articulation control, command and data handling, telecommunications, and flight software. Schedule and cost constraints dictated a mix of new and inherited designs, especially hardware upgrades based on findings of the Mars Observer failure review boards.
ERIC Educational Resources Information Center
Fishburne, R. P., Jr.; Mims, Diane M.
An experimental Basic Electricity and Electronics course (BE/E) utilizing a lock-step, instructor presentation methodology was developed and evaluated at the Service School Command, Great Lakes. The study, directed toward the training of lower mental group, school nonqualified personnel, investigated comparative data on test performance, attitude,…
GRODY - GAMMA RAY OBSERVATORY DYNAMICS SIMULATOR IN ADA
NASA Technical Reports Server (NTRS)
Stark, M.
1994-01-01
Analysts use a dynamics simulator to test the attitude control system algorithms used by a satellite. The simulator must simulate the hardware, dynamics, and environment of the particular spacecraft and provide user services which enable the analyst to conduct experiments. Researchers at Goddard's Flight Dynamics Division developed GRODY alongside GROSS (GSC-13147), a FORTRAN simulator which performs the same functions, in a case study to assess the feasibility and effectiveness of the Ada programming language for flight dynamics software development. They used popular object-oriented design techniques to link the simulator's design with its function. GRODY is designed for analysts familiar with spacecraft attitude analysis. The program supports maneuver planning as well as analytical testing and evaluation of the attitude determination and control system used on board the Gamma Ray Observatory (GRO) satellite. GRODY simulates the GRO on-board computer and Control Processor Electronics. The analyst/user sets up and controls the simulation. GRODY allows the analyst to check and update parameter values and ground commands, obtain simulation status displays, interrupt the simulation, analyze previous runs, and obtain printed output of simulation runs. The video terminal screen display allows visibility of command sequences, full-screen display and modification of parameters using input fields, and verification of all input data. Data input available for modification includes alignment and performance parameters for all attitude hardware, simulation control parameters which determine simulation scheduling and simulator output, initial conditions, and on-board computer commands. GRODY generates eight types of output: simulation results data set, analysis report, parameter report, simulation report, status display, plots, diagnostic output (which helps the user trace any problems that have occurred during a simulation), and a permanent log of all runs and errors. The analyst can send results output in graphical or tabular form to a terminal, disk, or hardcopy device, and can choose to have any or all items plotted against time or against each other. Goddard researchers developed GRODY on a VAX 8600 running VMS version 4.0. For near real time performance, GRODY requires a VAX at least as powerful as a model 8600 running VMS 4.0 or a later version. To use GRODY, the VAX needs an Ada Compilation System (ACS), Code Management System (CMS), and 1200K memory. GRODY is written in Ada and FORTRAN.
Design development of the Apollo command and service module thrust vector attitude control systems
NASA Technical Reports Server (NTRS)
Peters, W. H.
1978-01-01
Development of the Apollo thrust vector control digital autopilot (TVC DAP) was summarized. This is the control system that provided pitch and yaw attitude control during velocity change maneuvers using the main rocket engine on the Apollo service module. A list of ten primary functional requirements for this control system are presented, each being subordinate to a more general requirement appearing earlier on the list. Development process functions were then identified and the essential information flow paths were explored. This provided some visibility into the particular NASA/contractor interface, as well as relationships between the many individual activities.
Gravity Probe B spacecraft description
NASA Astrophysics Data System (ADS)
Bennett, Norman R.; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky
2015-11-01
The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles & Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data.
NASA Technical Reports Server (NTRS)
Shem, B. C.
1985-01-01
Background on Pioneer probes 6 to 11 is given as well as an overview of the Pioneer Venus mission. A computer program was written in C language for analyzing radio signals from the Pioneer Venus orbiter. A second program was written to facilitate high gain antenna commands to move the antenna itself, to set the simulated spin period, and to set the attitude control system angle.
1979-12-01
processing holding register upset times. Therefore reaction wh these transient response times will not significantly affect pointing of SS7 -20 a error...change so that the requirements of SS7 -20 are not met. Command Logic and Power Switching I Transients whall not cause mode changes to occur in the CEA
Tailhook 91. Part 1. Review of the Navy Investigations
1992-09-01
9 VI. MANAGEMENT ERRORS RESULTED IN INADEQUATE INVESTIGATIONS ................... 11 VII. PERSONAL FAILURES AND RESPONSIBILITIES... 14 A. The...Under Secretary of the Navy ...... 14 B. The Commander, NIS ....................... 15 Attitude Toward Women in Military Service...he alert his subordinates to a number of concerns: The general decorum and conduct last year was far less than that expected of mature naval officers
Controlling Attitude of a Solar-Sail Spacecraft Using Vanes
NASA Technical Reports Server (NTRS)
Mettler, Edward; Acikmese, Ahmet; Ploen, Scott
2006-01-01
A paper discusses a concept for controlling the attitude and thrust vector of a three-axis stabilized Solar Sail spacecraft using only four single degree-of-freedom articulated spar-tip vanes. The vanes, at the corners of the sail, would be turned to commanded angles about the diagonals of the square sail. Commands would be generated by an adaptive controller that would track a given trajectory while rejecting effects of such disturbance torques as those attributable to offsets between the center of pressure on the sail and the center of mass. The controller would include a standard proportional + derivative part, a feedforward part, and a dynamic component that would act like a generalized integrator. The controller would globally track reference signals, and in the presence of such control-actuator constraints as saturation and delay, the controller would utilize strategies to cancel or reduce their effects. The control scheme would be embodied in a robust, nonlinear algorithm that would allocate torques among the vanes, always finding a stable solution arbitrarily close to the global optimum solution of the control effort allocation problem. The solution would include an acceptably small angle, slow limit-cycle oscillation of the vanes, while providing overall thrust vector pointing stability and performance.
NASA Technical Reports Server (NTRS)
Ha, Kong Q.; Femiano, Michael D.; Mosier, Gary E.
2004-01-01
In this paper, we present an optimal open-loop slew trajectory algorithm developed at GSFC for the so-called "Yardstick design" of the James Webb Space Telescope (JWST). JWST is an orbiting infrared observatory featuring a lightweight, segmented primary mirror approximately 6 meters in diameter and a sunshield approximately the size of a tennis court. This large, flexible structure will have significant number of lightly damped, dominant flexible modes. With very stringent requirements on pointing accuracy and image quality, it is important that slewing be done within the required time constraint and with minimal induced vibration in order to maximize observing efficiency. With reaction wheels as control actuators, initial wheel speeds as well as individual wheel torque and momentum limits become dominant constraints in slew performance. These constraints must be taken into account when performing slews to ensure that unexpected reaction wheel saturation does not occur, since such saturation leads to control failure in accurately tracking commanded motion and produces high frequency torque components capable of exciting structural modes. A minimum-time constraint is also included and coupled with reaction wheel limit constraints in the optimization to minimize both the effect of the control torque on the flexible body motion and the maneuver time. The optimization is on slew command parameters, such as maximum slew velocity and acceleration, for a given redundant reaction wheel configuration and is based on the dynamic interaction between the spacecraft and reaction wheel motion. Analytical development of the slew algorithm to generate desired slew position, rate, and acceleration profiles to command a feedback/feed forward control system is described. High-fidelity simulation and experimental results are presented to show that the developed slew law achieves the objectives.
1980-09-01
1969 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING from the NAVAL POSTGRADUATE... Science and Engineering 3 ABSTRACT A continuation of experiments initiated by Commander Calvin G. Miller, USN, on the effect of flow rate, flow geometry and...Salvage Department INaval Coastal Systems Center Panama City, Florida 32401 6. Commander, Naval Sea Systems Command 2 Supervisor of Diving (Code GOC
Proposed CMG momentum management scheme for space station
NASA Technical Reports Server (NTRS)
Bishop, L. R.; Bishop, R. H.; Lindsay, K. L.
1987-01-01
A discrete control moment gyro (CMG) momentum management scheme (MMS) applicable to spacecraft with principal axes misalignments, such as the proposed NASA dual keel space station, is presented in this paper. The objective of the MMS is to minmize CMG angular momentum storage requirements for maintaining the space station near local vertical in the presence of environmental disturbances. It utilizes available environmental disturbances, namely gravity gradient torques, to minimize CMG momentum storage. The MMS is executed once per orbit and generates a commanded torque equilibrium attitude (TEA) time history which consists of a yaw, pitch and roll angle command profile. Although the algorithm is called only once per orbit to compute the TEA profile, the space station will maneuver several discrete times each orbit.
Sexual misbehaviour in the Australian Defence Force.
Williams, Angela; Ranson, David
2013-12-01
It is clear from recent media reporting that serious issues have come to light regarding sexual misbehaviour matters within the Australian Defence Force. Subsequent reviews have indicated that these behaviours appear to have been more widespread than the initial media reports suggested and a number of reviews have been undertaken to better understand the problem and address the concerns of victims, Defence command, government and the community. If these problems are not addressed, there is a risk that recruitment to the Defence Forces may become problematic. The strong command structures within the Defence Forces can both exacerbate these misbehaviours through entrenching secrecy and at the same time have the capacity to provide a powerful leadership message that can change attitudes and reduce such misbehaviours.
Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft
NASA Astrophysics Data System (ADS)
Juhasz, Ondrej
A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various control systems are flown in a fixed-base simulator. Pilot inputs and aircraft performance are recorded and analyzed.
How are tonic and phasic cardiovascular changes related to central motor command?
Jennings, J R; van der Molen, M W; Brock, K; Somsen, R J
1993-07-01
We examined the influence of central motor command on heart rate, respiration, and peripheral vascular activity. Central command was enhanced or reduced using tendon vibration. Muscle tension was held constant permitting the examination of variation in central command. Experiment 1 demonstrated in 13 college-aged males an enhancement of heart rate and vascular responses to an isometric, extensor contraction when vibration of the flexor tendon was added. Experiment 2 asked whether changes in central command interacted with phasic cardiovascular changes such as stimulus-linked anticipatory cardiac deceleration. Twenty college-aged males performed either an isometric flexor or extensor contraction with or without flexor tendon vibration. As expected, vibration enhanced cardiovascular change with extensor contraction more than with flexor contraction. Relative to control contractions, however, the flexor change was not an absolute decrease in cardiovascular change. More importantly, tendon vibration failed to alter phasic cardiovascular changes. Force and central commands for force induce cardiovascular change, but this change seems independent of phasic changes induced by the anticipation and processing of environmental stimuli.
NASA Astrophysics Data System (ADS)
Thorsen, Adam
This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight regime. An energy management system was developed in order to manage performance limits (namely power required) to promote carefree maneuvering and alleviate pilot workload. This system features limits on pilot commands and has additional logic for preserving control margins and limiting maximum speed in a dive. Nonlinear dynamic inversion (NLDI) is the framework of the unified controller, which incorporates primary and redundant controls. The inner loop of the NLDI controller regulates bank angle, pitch attitude, and yaw rate, while the outer loop command structure is varied (three modes). One version uses an outer loop that commands velocities in the longitudinal and vertical axes (velocity mode), another commands longitudinal acceleration and vertical speed (acceleration mode), and the third commands longitudinal acceleration and transitions from velocity to acceleration command in the vertical axis (aerobatic mode). The flight envelope is discretized into low, cruise, and high speed flight regimes. The unified outer loop primary control effectors for the longitudinal and vertical axes (collective pitch, pitch attitude, and propeller pitch) vary depending on flight regime. A weighted pseudoinverse is used to phase either the collective or propeller pitch in/out of a redundant control role. The controllers were evaluated in Penn State's Rotorcraft Flight Simulator retaining the cyclic stick for vertical and lateral axis control along with pedal inceptors for yaw axis control. A throttle inceptor was used in place of the pilot's traditional left hand inceptor for longitudinal axis control. Ultimately, a simple rigid body model of the aircraft was sufficient enough to design a controller with favorable performance and stability characteristics. This unified flight control system promoted a low enough pilot workload so that an untrained pilot (the author) was able to pilot maneuvers of varying complexity with ease. The framework of this unified system is generalized enough to be able to be applied to any rotorcraft with redundant controls. Minimum power propeller thrust shares ranged from 50% - 90% in high speed flight, while lift shares at high speeds tended towards 60% wing and 40% main rotor.
NASA Technical Reports Server (NTRS)
Grantham, W. D.; Smith, P. M.; Deal, P. L.; Neely, W. R., Jr.
1984-01-01
A six-degree-of-freedom, ground based simulator study is conducted to evaluate the low-speed flight characteristics of four dissimilar cargo transport airplanes. These characteristics are compared with those of a large, present-day (reference) transport configuration similar to the Lockheed C-5A airplane. The four very large transport concepts evaluated consist of single-fuselage, twin-fuselage, triple-fuselage, and span-loader configurations. The primary piloting task is the approach and landing operation. The results of his study indicate that all four concepts evaluated have unsatisfactory longitudinal and lateral directional low speed flight characteristics and that considerable stability and control augmentation would be required to improve these characteristics (handling qualities) to a satisfactory level. Through the use of rate command/attitude hold augmentation in the pitch and roll axes, and the use of several turn-coordination features, the handling qualities of all four large transports simulated are improved appreciably.
Sustainability Of The 21M Missile Maintainer
2016-02-16
access to information , procedures, processes , and details of the mission are often deliberately separated. For nuclear surety and security purposes...serious erosion…in expertise” which resulted in process improvements, increased oversight, leadership firings, and the creation of a 4-star command.2 The...duties and tasks into cohesive job clusters that are used to match personnel requirements with personal aptitudes, attitudes , and qualifications.”4
The Necessity for the Military Assistance Command--Vietnam Studies and Observations Group
2015-06-12
officials, as well as then-Colonel Edward Lansdale. An opponent of President Eisenhower’s laissez - faire attitude towards French Colonialism, the... leadership since the military was now tasked to 3 John Plaster, SOG: The Secret Wars of America’s...University of California Press Berkeley, 1972), 2. 9 oversee covert military actions. The military leadership argued that covert actions were not
2015-05-21
Source Assessment and Feedback OER Officer Evaluation Report PME Professional Military Education TRADOC Training and Doctrine Command...Toxic leadership is a combination of self-centered attitudes, motivations , and behaviors that have adverse effects on subordinates, the...process of influencing people by providing purpose, direction and motivation to accomplish the mission and improve the organization.”28 The ideal
Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.
2004-01-01
This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that
NASA Technical Reports Server (NTRS)
Lisano, Michael E.
2004-01-01
Controlled flight of a solar sail-propelled spacecraft ('sailcraft') is a six-degree-of-freedom dynamics problem. Current state-of-the-art tools that simulate and optimize the trajectories flown by sailcraft do not treat the full kinetic (i.e. force and torque-constrained) motion, instead treating a discrete history of commanded sail attitudes, and either neglecting the sail attitude motion over an integration timestep, or treating the attitude evolution kinematically with a spline or similar treatment. The present paper discusses an aspect of developing a next generation sailcraf trajectory designing optimization tool JPL, for NASA's Solar Sail Spaceflight Simulation Software (SS). The aspect discussed in an experimental approach to modeling full six-degree-of-freedom kinetic motion of a solar sail in a trajectory propagator. Early results from implementing this approach in a new trajectory propagation tool are given.
Singularity-free backstepping controller for model helicopters.
Zou, Yao; Huo, Wei
2016-11-01
This paper develops a backstepping controller for model helicopters to achieve trajectory tracking without singularity, which occurs in the attitude representation when the roll or pitch reaches ±π2. Based on a simplified model with unmodeled dynamics, backstepping technique is introduced to exploit the controller and hyperbolic tangent functions are utilized to compensate the unmodeled dynamics. Firstly, a position loop controller is designed for the position tracking, where an auxiliary dynamic system with suitable parameters is introduced to warrant the singularity-free requirement for the extracted command attitude. Then, a novel attitude loop controller is proposed to obviate singularity. It is demonstrated that, based on the established criteria for selecting controller parameters and desired trajectories, the proposed controller realizes the singularity-free trajectory tracking of the model helicopter. Simulations confirm the theoretical results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Stubbs, Sandy M.
1967-01-01
An experimental investigation was made to determine impact water pressures, accelerations, and landing dynamics of a 1/4-scale dynamic model of the command module of the Apollo spacecraft. A scaled-stiffness aft heat shield was used on the model to simulate the structural deflections of the full-scale heat shield. Tests were made on water to obtain impact pressure data at a simulated parachute letdown (vertical) velocity component of approximately 30 ft/sec (9.1 m/sec) full scale. Additional tests were made on water, sand, and hard clay-gravel landing surfaces at simulated vertical velocity components of 23 ft/sec (7.0 m/sec) full scale. Horizontal velocity components investigated ranged from 0 to 50 ft/sec (15 m/sec) full scale and the pitch attitudes ranged from -40 degrees to 29 degrees. Roll attitudes were O degrees, 90 degrees, and 180 degrees, and the yaw attitude was 0 degrees.
Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities
NASA Technical Reports Server (NTRS)
Pausder, Heinz-Juergen; Blanken, Chris L.
1992-01-01
Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hr of flight time during 10 days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.
Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities
NASA Technical Reports Server (NTRS)
Blanken, Chris L.; Pausder, Heinz-Jurgen
1994-01-01
Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter aeromechanics have recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effect of time delays in a high bandwidth vehicle on handling qualities. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays of up to 160 milliseconds over the baseline and band width values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hours of flight time during ten days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities Aeronautical Design Standard (ADS)-33C.
Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities
NASA Technical Reports Server (NTRS)
Pausder, Heinz-Juergen; Blanken, Chris L.
1993-01-01
Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hours of flight time during ten days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.
Implementation of an Adaptive Controller System from Concept to Flight Test
NASA Technical Reports Server (NTRS)
Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve
2009-01-01
The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a "floating limiter" (FL) concept that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly "floating" and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually "hit" the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The tunable metrics for the FL are (1) window size, (2) drift rate, and (3) persistence counter. Ultimate range limits are also included in case the NN command should drift slowly to a limit value that would cause the FL to be defeated. The FL has proven to work as intended. Both high-g transients and excessive structural loads are controlled with NN hard-over commands. This presentation discusses the FL design features and presents test cases. Simulation runs are included to illustrate the dramatic improvement made to the control of NN hard-over effects. A mission control room display from a flight playback is presented to illustrate the neural net fault display representation. The FL is very adaptable to various requirements and is independent of flight condition. It should be considered as a cost-effective safety monitor to control single-string inputs in general.
Neural Net Safety Monitor Design
NASA Technical Reports Server (NTRS)
Larson, Richard R.
2007-01-01
The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a floating limiter (FL) concept1 that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly floating and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually hit the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The tunable metrics for the FL are (1) window size, (2) drift rate, and (3) persistence counter. Ultimate range limits are also included in case the NN command should drift slowly to a limit value that would cause the FL to be defeated. The FL has proven to work as intended. Both high-g transients and excessive structural loads are controlled with NN hard-over commands. This presentation discusses the FL design features and presents test cases. Simulation runs are included to illustrate the dramatic improvement made to the control of NN hard-over effects. A mission control room display from a flight playback is presented to illustrate the neural net fault display representation. The FL is very adaptable to various requirements and is independent of flight condition. It should be considered as a cost-effective safety monitor to control single-string inputs in general.
Three-Axis Attitude Estimation Using Rate-Integrating Gyroscopes
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Markley, F. Landis
2016-01-01
Traditionally, attitude estimation has been performed using a combination of external attitude sensors and internal three-axis gyroscopes. There are many studies of three-axis attitude estimation using gyros that read angular rates. Rate-integrating gyros measure integrated rates or angular displacements, but three-axis attitude estimation using these types of gyros has not been as fully investigated. This paper derives a Kalman filtering framework for attitude estimation using attitude sensors coupled with rate- integrating gyroscopes. In order to account for correlations introduced by using these gyros, the state vector must be augmented, compared with filters using traditional gyros that read angular rates. Two filters are derived in this paper. The first uses an augmented state-vector form that estimates attitude, gyro biases, and gyro angular displacements. The second ignores correlations, leading to a filter that estimates attitude and gyro biases only. Simulation comparisons are shown for both filters. The work presented in this paper focuses only on attitude estimation using rate-integrating gyros, but it can easily be extended to other applications such as inertial navigation, which estimates attitude and position.
The Software Design for the Wide-Field Infrared Explorer Attitude Control System
NASA Technical Reports Server (NTRS)
Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom
1998-01-01
The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel 80386 processor with 80387 coprocessor running under the VRTX operating system). The mode manager organizes and controls all the software modules used to accomplish these goals, and in particular, the FDH module is tightly coupled with the mode manager.
Single step optimization of manipulator maneuvers with variable structure control
NASA Technical Reports Server (NTRS)
Chen, N.; Dwyer, T. A. W., III
1987-01-01
One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.
NASA Technical Reports Server (NTRS)
Fehrmann, Elizabeth A.; Kenny, Barbara H.
2004-01-01
The NASA Glenn Research Center (GRC) has been working to advance the technology necessary for a flywheel energy storage system for the past several years. Flywheels offer high efficiency, durability, and near-complete discharge capabilities not produced by typical chemical batteries. These characteristics show flywheels to be an attractive alternative to the more typical energy storage solutions. Flywheels also offer the possibility of combining what are now two separate systems in space applications into one: energy storage, which is currently provided by batteries, and attitude control, which is currently provided by control moment gyroscopes (CMGs) or reaction wheels. To date, NASA Glenn research effort has produced the control algorithms necessary to demonstrate flywheel operation up to a rated speed of 60,000 RPM and the combined operation of two flywheel machines to simultaneously provide energy storage and single axis attitude control. Two position-sensorless algorithms are used to control the motor/generator, one for low (0 to 1200 RPM) speeds and one for high speeds. The algorithm allows the transition from the low speed method to the high speed method, but the transition from the high to low speed method was not originally included. This leads to a limitation in the existing motor/generator control code that does not allow the flywheels to be commanded to zero speed (and back in the negative speed direction) after the initial startup. In a multi-flywheel system providing both energy storage and attitude control to a spacecraft, speed reversal may be necessary.
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.
2005-01-01
During the Hubble Robotic Servicing Mission, the Hubble Space Telescope (HST) attitude and rates are necessary to achieve the capture of HST by the Hubble Robotic Vehicle (HRV). The attitude and rates must be determined without the HST gyros or HST attitude estimates. The HRV will be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is based on more traditional Extended Kalman filter techniques. Simulation test results for both methods are given.
Job Attitudes of USAF Administrative Personnel
1986-04-01
34opportunities for training, giving supervisory feedback, and -developing future leaders. Their findings were bas-ed on researrch Sdate similar to those upon...chance to move in and out of this rewarding functional area, could have a significant effect on the outcome of future attitudinal surveys of the admin...admin personnal to mission accomplishment at newcomer orientetions , commander’s calls, and similar gatherings, especially when families are present. (c
NASA Technical Reports Server (NTRS)
1972-01-01
Digital autopilots for the manned command module earth orbital and lunar missions using program COLOSSUS 3 are discussed. Subjects presented are: (1) reaction control system digital autopilot, (2) thrust vector control autopilot, (3) entry autopilot and mission control programs, (4) takeover of Saturn steering, and (5) coasting flight attitude maneuver routine.
TDRSS momentum unload planning
NASA Technical Reports Server (NTRS)
Cross, George R.; Potter, Mitchell A.; Whitehead, J. Douglass; Smith, James T.
1991-01-01
A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems.
Momentum management strategy during Space Station buildup
NASA Technical Reports Server (NTRS)
Bishop, Lynda; Malchow, Harvey; Hattis, Philip
1988-01-01
The use of momentum storage devices to control effectors for Space Station attitude control throughout the buildup sequence is discussed. Particular attention is given to the problem of providing satisfactory management of momentum storage effectors throughout buildup while experiencing variable torque loading. Continuous and discrete control strategies are compared and the effects of alternative control moment gyro strategies on peak momentum storage requirements and on commanded maneuver characteristics are described.
Nanosatellite Maneuver Planning for Point Cloud Generation With a Rangefinder
2015-06-05
aided active vision systems [11], dense stereo [12], and TriDAR [13]. However, these systems are unsuitable for a nanosatellite system from power, size...command profiles as well as improving the fidelity of gap detection with better filtering methods for background objects . For example, attitude...application of a single beam laser rangefinder (LRF) to point cloud generation, shape detection , and shape reconstruction for a space-based space
Communications satellite no. 2 (CS-2)
NASA Technical Reports Server (NTRS)
1982-01-01
The purpose of the Japanese CS-2 satellite is to provide national communications and industrial communications, such as special emergency and remote communications, and to contribute to the development of technology pertaining to communications satellites. Description and operating parameters of the following satellite components are presented: structure, communications system, telemetry/command system, electric power system, attitude and antenna control system, secondary propulsion system, apogee motor, framework, and heat control system.
Inertial Pointing and Positioning System
NASA Technical Reports Server (NTRS)
Yee, Robert (Inventor); Robbins, Fred (Inventor)
1998-01-01
An inertial pointing and control system and method for pointing to a designated target with known coordinates from a platform to provide accurate position, steering, and command information. The system continuously receives GPS signals and corrects Inertial Navigation System (INS) dead reckoning or drift errors. An INS is mounted directly on a pointing instrument rather than in a remote location on the platform for-monitoring the terrestrial position and instrument attitude. and for pointing the instrument at designated celestial targets or ground based landmarks. As a result. the pointing instrument and die INS move independently in inertial space from the platform since the INS is decoupled from the platform. Another important characteristic of the present system is that selected INS measurements are combined with predefined coordinate transformation equations and control logic algorithms under computer control in order to generate inertial pointing commands to the pointing instrument. More specifically. the computer calculates the desired instrument angles (Phi, Theta. Psi). which are then compared to the Euler angles measured by the instrument- mounted INS. and forms the pointing command error angles as a result of the compared difference.
Fault tolerant attitude sensing and force feedback control for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Jagadish, Chirag
Two aspects of an unmanned aerial vehicle are studied in this work. One is fault tolerant attitude determination and the other is to provide force feedback to the joy-stick of the UAV so as to prevent faulty inputs from the pilot. Determination of attitude plays an important role in control of aerial vehicles. One way of defining the attitude is through Euler angles. These angles can be determined based on the measurements of the projections of the gravity and earth magnetic fields on the three body axes of the vehicle. Attitude determination in unmanned aerial vehicles poses additional challenges due to limitations of space, payload, power and cost. Therefore it provides for almost no room for any bulky sensors or extra sensor hardware for backup and as such leaves no room for sensor fault issues either. In the face of these limitations, this study proposes a fault tolerant computing of Euler angles by utilizing multiple different computation methods, with each method utilizing a different subset of the available sensor measurement data. Twenty-five such methods have been presented in this document. The capability of computing the Euler angles in multiple ways provides a diversified redundancy required for fault tolerance. The proposed approach can identify certain sets of sensor failures and even separate the reference fields from the disturbances. A bank-to-turn maneuver of the NASA GTM UAV is used to demonstrate the fault tolerance provided by the proposed method as well as to demonstrate the method of determining the correct Euler angles despite interferences by inertial acceleration disturbances. Attitude computation is essential for stability. But as of today most UAVs are commanded remotely by human pilots. While basic stability control is entrusted to machine or the on-board automatic controller, overall guidance is usually with humans. It is therefore the pilot who sets the command/references through a joy-stick. While this is a good compromise between complete automation and complete human control, it still poses some unique challenges. Pilots of manned aircraft are present inside the cockpit of the aircraft they fly and thus have a better feel of the flying environment and also the limitations of the flight. The same might not be true for UAV pilots stationed on the ground. A major handicap is that visual feedback is the only one available for the UAV pilot. An additional parameter like force feedback on the remote control joy-stick can help the UAV pilot to physically feel the limitation of the safe flight envelope. This can make the flying itself easier and safer. A method proposed here is to design a joy-stick assembly with an additional actuator. This actuator is controlled so as to generate a force feedback on the joy-stick. The control developed for this system is such that the actuator allows free movement for the pilot as long as the UAV is within the safe flight envelope. On the other hand, if it is outside this safe range, the actuator opposes the pilot's applied torque and prevents him/her from giving erroneous commands to the UAV.
Schwartz, Oren; Kanevsky, Boris; Kutikov, M A J Sergey; Olsen, Cara H; Dudkiewicz, Israel
2018-03-14
Attrition from training is associated with substantial financial and personnel loss. There is a plethora of medical literature and research of attrition rates related to initial/phase 1 training (basic combat training); however, the analysis of second phase training (commanders training, consisting of schools that qualify junior commanders and officers for infantry and non-infantry combat units) is limited. The purpose of this study is to perform a comprehensive survey regarding to medical attrition from commanders training in the IDF (Israeli Defense Forces) in order to present the commanders of the IDF a detailed situation report that will serve as an evidence-based platform for future policy planning and implementation. A cross-sectional study including all soldiers (23,841) who participated in commanders training in the IDF in the period of 2012-2015 was performed. Soldiers for whom the attrition reason (medical or not medical) was missing were excluded from this study. Data were collected from the adjutancy-computerized system as well as the IDF's computerized medical consultation records package (CPR). Descriptive statistics were performed using mean, standard deviation, and median in order to express results. For the determination of statistical significance, chi-square test, Student's t-test, and Poisson regression models were used. Out of 23,841 soldiers that participated in this study, 75% (17,802) were males and 25% (6,039) were females. The overall attrition rate was 0.7% (164). The attrition rate for males was 0.86% (148 out of 17,082 males) and 0.26% (16 out of 6,039 females) for females. After adjusting for training unit, age, and BMI, the risk for attrition was 1.6 (160%) times higher for males as compared with females, and this result was statistically significant (IRR = 1.6, p = 0.01, CI 1.1, 2.2). The re-injury rate was 41% (68 out of 164 soldiers). The three most frequent diagnoses for attrition were orthopedics (66%), general surgery diagnoses (12%), and diagnoses related to internal medicine (11%). Out of 107 soldiers that attired due to orthopedic reasons, 36 (34%) suffered from calf and ankle injuries, 22 (21%) attired due to diagnoses related to the lower back, and 22 (21%) attired due to diagnoses related to the knee region. The highest attrition rate was encountered in the school for infantry junior command (2.2%) and the lowest rate was encountered in the officer training school for non-infantry units (0.11%). After adjusting for age and BMI, the risk for ankle injury was 2.55 (255%) times higher for soldiers in the school for infantry junior command as compared with soldiers in the officer school for infantry units (IRR = 2.55 p = 0.017, CI 1.18, 5.47). The attrition rate from commanders training in the IDF is low, and at this point, however, due to lack of uniform criteria for attrition, it cannot serve as an objective measure. We suggest measuring and discussing overuse injury rates (which is the most frequent cause of attrition), instead. Based on our results, we recommend an implementation of a better medical screening policy in order to reduce the re-injury rates during commanders training.
NASA Technical Reports Server (NTRS)
Challa, M. S.; Natanson, G. A.; Baker, D. F.; Deutschmann, J. K.
1994-01-01
This paper describes real-time attitude determination results for the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), a gyroless spacecraft, using a Kalman filter/Euler equation approach denoted the real-time sequential filter (RTSF). The RTSF is an extended Kalman filter whose state vector includes the attitude quaternion and corrections to the rates, which are modeled as Markov processes with small time constants. The rate corrections impart a significant robustness to the RTSF against errors in modeling the environmental and control torques, as well as errors in the initial attitude and rates, while maintaining a small state vector. SAMPLEX flight data from various mission phases are used to demonstrate the robustness of the RTSF against a priori attitude and rate errors of up to 90 deg and 0.5 deg/sec, respectively, as well as a sensitivity of 0.0003 deg/sec in estimating rate corrections in torque computations. In contrast, it is shown that the RTSF attitude estimates without the rate corrections can degrade rapidly. RTSF advantages over single-frame attitude determination algorithms are also demonstrated through (1) substantial improvements in attitude solutions during sun-magnetic field coalignment and (2) magnetic-field-only attitude and rate estimation during the spacecraft's sun-acquisition mode. A robust magnetometer-only attitude-and-rate determination method is also developed to provide for the contingency when both sun data as well as a priori knowledge of the spacecraft state are unavailable. This method includes a deterministic algorithm used to initialize the RTSF with coarse estimates of the spacecraft attitude and rates. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude and 0.01 deg/sec in the rates and convergence times as little as 400 sec.
38 CFR 4.23 - Attitude of rating officers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Attitude of rating... FOR RATING DISABILITIES General Policy in Rating § 4.23 Attitude of rating officers. It is to be... personal feelings to intrude; an antagonistic, critical, or even abusive attitude on the part of a claimant...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
... required without notice and comment a pilot serving as a second in command in part 135 commuter operations to have an airline transport pilot certificate and an aircraft type rating, and a pilot in command in... pilot certificate requirements for a second in command (SIC) in part 121 operations. Specifically, Sec...
Multivariable control of a forward swept wing aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Quinn, W. W.
1986-01-01
The impact of independent canard and flaperon control of the longitudinal axis of a generic forward swept wing aircraft is examined. The Linear Quadratic Gaussian (LQG)/Loop Transfer Recovery (LTR) method is used to design three compensators: two single-input-single-output (SISO) systems, one with angle of attack as output and canard as control, the other with pitch attitude as output and canard as control, and a two-input-two-output system with both canard and flaperon controlling both the pitch attitude and angle of attack. The performances of the three systems are compared showing the addition of flaperon control allows the aircraft to perform in the precision control modes with very little loss of command following accuracy.
CSM docked DAP/orbital assembly bending interaction-axial case
NASA Technical Reports Server (NTRS)
Turnbull, J. F.; Jones, J. E.
1972-01-01
A digital autopilot which can provide attitude control for the entire Skylab orbital assembly using the service module reaction control jets is described. An important consideration is the potential interaction of the control system with the bending modes of the orbital assembly. Two aspects of this potential interaction were considered. The first was the possibility that bending induced rotations feeding back through the attitude sensor into the control system could produce an instability or self-sustained oscillation. The second was whether the jet activity commanded by the control system could produce excessive loads at any of the critical load points of the orbital assembly. Both aspects were studied by using analytic techniques and by running simulations on the all-digital simulator.
Angular-Rate Estimation Using Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.
1998-01-01
In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1980-01-01
Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.
Longitudinal Effects of Job Change Upon Interest Utilization and Satisfaction Attitudes.
1980-10-01
USAF Commander SUBJECT TO EXPORT CONTROL LAWS This document contains information for manufacturing or using munitions of war. Export of the information...contained herein, or release to foreign nationals within the United States, without first obtaining an export license, is a violation of the...information was then interpreted as an index of the stability of a job type over time. The second kind of information indicating which job types the
Guidelines for Commanders and Staffs: How to Engage With Local Societies During Military Operations
2010-11-01
elements (features, traits, hallmarks, etc.) a given society considers the basis of their collective identity. Culture involves a great variety of fields... against a culture may contribute to escalate the conflict and make the personnel become targets in the conflict. 8. WHERE CAN THE KNOWLEDGE ABOUT THE...courtesy); attitudes; confidence; accept food offerings; speak some words in their language; treat women as invisible. 2. Means to
Two Axis Pointing System (TAPS) attitude acquisition, determination, and control
NASA Technical Reports Server (NTRS)
Azzolini, John D.; Mcglew, David E.
1990-01-01
The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.
NASA Technical Reports Server (NTRS)
Gundy-Burlet, Karen
2003-01-01
The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.
Using the global positioning satellite system to determine attitude rates using doppler effects
NASA Technical Reports Server (NTRS)
Campbell, Charles E. (Inventor)
2003-01-01
In the absence of a gyroscope, the attitude and attitude rate of a receiver can be determined using signals received by antennae on the receiver. Based on the signals received by the antennae, the Doppler difference between the signals is calculated. The Doppler difference may then be used to determine the attitude rate. With signals received from two signal sources by three antennae pairs, the three-dimensional attitude rate is determined.
Commercial Experiment Transporter: COMET
NASA Astrophysics Data System (ADS)
Wessling, Francis C.; Robinson, Michael; Martinez, Ramiro S.; Gallimore, Thomas; Combs, Nick
1994-09-01
A launch system consisting of ground-support equipment, a four-stage rocket, a service module, a recovery system and a recovery site, and an orbital operations center is being assembled. The system is designed to launch 818 kg (1800 lb) to a 552-km (300-n.mi.) low earth orbit at a 40-deg inclination. Experiment space exists in both the service module and the recovery system. The service module provides space for 68 kg (150 lb) of experiments plus telemetry services, attitude control, and power and uses no consumables to maintain attitude. Consequently, the service module can maintain orbit attitude for years. Power of 400 W is supplied by solar cells and batteries for both experiment operation and housekeeping. The recovery system houses an experiment carrier for 136 kg (300 lb) of experiments, a retro rocket, a heat shield, and a parachute. An orbital operations control center provides tracking, telemetry, and commanding for the satellite. The payloads are also briefly described. The first launch was scheduled for 1995.
Novel approach to improve the attitude update rate of a star tracker.
Zhang, Shuo; Xing, Fei; Sun, Ting; You, Zheng; Wei, Minsong
2018-03-05
The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.
Cloud Absorption Radiometer Autonomous Navigation System - CANS
NASA Technical Reports Server (NTRS)
Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan
2013-01-01
CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode, the software aligns the precision navigation sensors and initializes the communications interfaces with the sensor and the remote computing system. It also monitors the navigation data state for quality and ensures that the system maintains the required fidelity for attitude and positional information. In the operational mode, the software runs at 12.5 Hz and gathers the required navigation/attitude data, computes the required sensor correction values, and then commands the sensor to the required roll correction. In this manner, the sensor will stay very near to vertical at all times, greatly improving the resulting collected data and imagery. CANS greatly improves quality of resulting imagery and data collected. In addition, the software component of the system outputs a concisely formatted, high-speed data stream that can be used for further science data processing. This precision, time-stamped data also can benefit other instruments on the same aircraft platform by providing extra information from the mission flight.
Data Analysis & Statistical Methods for Command File Errors
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Waggoner, Bruce; Bryant, Larry
2014-01-01
This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.
2013-03-01
attrition (Goodstadt, 1981). Kubisiak, et al. contend that leaders should consider attrition a negative occurrence and that each leader should develop...related to the information, and the consequences associated with the options. The ability to ruminate before acting when presented with new information or
NASA Technical Reports Server (NTRS)
1972-01-01
A Tracking and Data Relay Satellite System (TDRSS) concept for service of low and medium data rate user spacecraft has been defined. The TDRS system uses two geosynchronous dual spin satellites compatible with Delta 2914 to provide command, tracking, and telemetry service between multiple low earth orbiting users and a centrally located ground station. The low data rate user service capability via each TDRS is as follows: (1) forward link at UHF: voice to one user, commands to 20 users (sequential), range and range rate service, and (2) return link at VHF: voice from one user, data from 20 users (simultaneous), range and range rate return signals. The medium data rate user service via each TDRS is as follows: (1) forward link at S band: voice or command and tracking signals to one user, and (2) return link at S band: voice, data and tracking signals from one user "order wire" for high priority service requests (implemented with an earth coverage antenna).
Attitude determination with three-axis accelerometer for emergency atmospheric entry
NASA Technical Reports Server (NTRS)
Garcia-Llama, Eduardo (Inventor)
2012-01-01
Two algorithms are disclosed that, with the use of a 3-axis accelerometer, will be able to determine the angles of attack, sideslip and roll of a capsule-type spacecraft prior to entry (at very high altitudes, where the atmospheric density is still very low) and during entry. The invention relates to emergency situations in which no reliable attitude and attitude rate are available. Provided that the spacecraft would not attempt a guided entry without reliable attitude information, the objective of the entry system in such case would be to attempt a safe ballistic entry. A ballistic entry requires three controlled phases to be executed in sequence: First, cancel initial rates in case the spacecraft is tumbling; second, maneuver the capsule to a heat-shield-forward attitude, preferably to the trim attitude, to counteract the heat rate and heat load build up; and third, impart a ballistic bank or roll rate to null the average lift vector in order to prevent prolonged lift down situations. Being able to know the attitude, hence the attitude rate, will allow the control system (nominal or backup, automatic or manual) to cancel any initial angular rates. Also, since a heat-shield forward attitude and the trim attitude can be specified in terms of the angles of attack and sideslip, being able to determine the current attitude in terms of these angles will allow the control system to maneuver the vehicle to the desired attitude. Finally, being able to determine the roll angle will allow for the control of the roll ballistic rate during entry.
Balloon platform for extended-life astronomy research
NASA Technical Reports Server (NTRS)
Ostwald, L. T.
1974-01-01
A configuration has been developed for a long-life balloon platform to carry pointing telescopes weighing as much as 80 pounds (36 kg) to point at selected celestial targets. A platform of this configuration weighs about 375 pounds (170 kg) gross and can be suspended from a high altitude super pressure balloon for a lifetime of several months. The balloon platform contains a solar array and storage batteries for electrical power, up and down link communications equipment, and navigational and attitude control systems for orienting the scientific instrument. A biaxial controller maintains the telescope attitude in response to look-angle data stored in an on-board computer memory which is updated periodically by ground command. Gimbal angles are computed by using location data derived by an on-board navigational receiver.
NASA Astrophysics Data System (ADS)
Nayak, M.; Beck, J.; Udrea, B.
This paper focuses on the aerospace application of a single beam laser rangefinder (LRF) for 3D imaging, shape detection, and reconstruction in the context of a space-based space situational awareness (SSA) mission scenario. The primary limitation to 3D imaging from LRF point clouds is the one-dimensional nature of the single beam measurements. A method that combines relative orbital motion and scanning attitude motion to generate point clouds has been developed and the design and characterization of multiple relative motion and attitude maneuver profiles are presented. The target resident space object (RSO) has the shape of a generic telecommunications satellite. The shape and attitude of the RSO are unknown to the chaser satellite however, it is assumed that the RSO is un-cooperative and has fixed inertial pointing. All sensors in the metrology chain are assumed ideal. A previous study by the authors used pure Keplerian motion to perform a similar 3D imaging mission at an asteroid. A new baseline for proximity operations maneuvers for LRF scanning, based on a waypoint adaptation of the Hill-Clohessy-Wiltshire (HCW) equations is examined. Propellant expenditure for each waypoint profile is discussed and combinations of relative motion and attitude maneuvers that minimize the propellant used to achieve a minimum required point cloud density are studied. Both LRF strike-point coverage and point cloud density are maximized; the capability for 3D shape registration and reconstruction from point clouds generated with a single beam LRF without catalog comparison is proven. Next, a method of using edge detection algorithms to process a point cloud into a 3D modeled image containing reconstructed shapes is presented. Weighted accuracy of edge reconstruction with respect to the true model is used to calculate a qualitative “ metric” that evaluates effectiveness of coverage. Both edge recognition algorithms and the metric are independent of point cloud densit- , therefore they are utilized to compare the quality of point clouds generated by various attitude and waypoint command profiles. The RSO model incorporates diverse irregular protruding shapes, such as open sensor covers, instrument pods and solar arrays, to test the limits of the algorithms. This analysis is used to mathematically prove that point clouds generated by a single-beam LRF can achieve sufficient edge recognition accuracy for SSA applications, with meaningful shape information extractable even from sparse point clouds. For all command profiles, reconstruction of RSO shapes from the point clouds generated with the proposed method are compared to the truth model and conclusions are drawn regarding their fidelity.
Leadership in War and Peace: A Historical Assessment for Today
1989-05-01
had deep regard. Nimitz s ,’ that Ghormley’s negative attitude was infectious on others under him. The situation demanded a more aggressive commander...great military leaders of the past, and was an inspiring speaker. Yet, by contrast, Patton suffered from dyslexia , a disorder which caused him to have...his affliction, dyslexia , he was tutored at home until he was twelve years old. He attended private schools from 1896 until 1903. In 1903 he earned an
Navy and Marine Corps Officers’ Attitudes Toward the Don’t Ask, Don’t Tell Policy
2011-03-01
the 48 percent agreed with the statement, “In the event of a draft, gay men should be drafted the same as...that has continued to emerge in studies over the years among researchers is the concept of unit cohesion and how it might be affected by the repeal of...suggest that interpersonal conflicts would be minimal, and the key to stopping insignificant disruptive acts is through commander
1993-01-22
AUGLPITCHROLLCONTROLa ttitude .-ontrol_roll_command, MAX..STABAUG3_PITCH-.ROLL..CONTROL); return ( attitude -.control-roll-commuand); static REAL set...pitch...if any). V V RETURNS: TRUE if successful, FALSE if not. V * PURPOSE: This routine performs the functions V V specifically related to the firing of a...specifically related to the flying a ADAT * missile. * void missile _adaLfly (aptr, sightiocation, locqsightto.world, tube, veh_list) ADATMISSILE
Predicting Military Recruiter Effectiveness: A Literature Review
1987-04-01
employing commanding officer nominations and/or supervisor ratings as criteria for success in recruiting. Wollack and KiDnis (1960). Commanding officer...ratings can be used to predict field recruiter performance. The authors attribute the failure to predict field recruiter performance to the...Time to Complete -12 -27 -5 -09 5. MC 431 Completion/ Failure 08 Studies 1. Cross-validities obtained via rMonte Carlo procedure by Borman, Toquam
Inertial attitude control of a bat-like morphing-wing air vehicle.
Colorado, J; Barrientos, A; Rossi, C; Parra, C
2013-03-01
This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.
NASA Technical Reports Server (NTRS)
Querry, R. G.; Smith, S. A.; Stromstad, M.; Ide, K.; Raven, P. B.; Secher, N. H.
2001-01-01
This investigation was designed to determine central command's role on carotid baroreflex (CBR) resetting during exercise. Nine volunteer subjects performed static and rhythmic handgrip exercise at 30 and 40% maximal voluntary contraction (MVC), respectively, before and after partial axillary neural blockade. Stimulus-response curves were developed using the neck pressure-neck suction technique and a rapid pulse train protocol (+40 to -80 Torr). Regional anesthesia resulted in a significant reduction in MVC. Heart rate (HR) and ratings of perceived exertion (RPE) were used as indexes of central command and were elevated during exercise at control force intensity after induced muscle weakness. The CBR function curves were reset vertically with a minimal lateral shift during control exercise and exhibited a further parallel resetting during exercise with neural blockade. The operating point was progressively reset to coincide with the centering point of the CBR curve. These data suggest that central command was a primary mechanism in the resetting of the CBR during exercise. However, it appeared that central command modulated the carotid-cardiac reflex proportionately more than the carotid-vasomotor reflex.
NASA Tech Briefs, December 2004
NASA Technical Reports Server (NTRS)
2004-01-01
opics include: High-Rate Digital Receiver Board; Signal Design for Improved Ranging Among Multiple Transceivers; Automated Analysis, Classification, and Display of Waveforms; Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO; Format for Interchange and Display of 3D Terrain Data; Program Analyzes Radar Altimeter Data; Indoor Navigation using Direction Sensor and Beacons; Software Assists in Responding to Anomalous Conditions; Software for Autonomous Spacecraft Maneuvers; WinPlot; Software for Automated Testing of Mission-Control Displays; Nanocarpets for Trapping Microscopic Particles; Precious-Metal Salt Coatings for Detecting Hydrazines; Amplifying Electrochemical Indicators; Better End-Cap Processing for Oxidation-Resistant Polyimides; Carbon-Fiber Brush Heat Exchangers; Solar-Powered Airplane with Cameras and WLAN; A Resonator for Low-Threshold Frequency Conversion; Masked Proportional Routing; Algorithm Determines Wind Speed and Direction from Venturi-Sensor Data; Feature-Identification and Data-Compression Software; Alternative Attitude Commanding and Control for Precise Spacecraft Landing; Inspecting Friction Stir Welding using Electromagnetic Probes; and Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers.
Personnel Evaluation: Noncommissioned Officer Evaluation Reporting System
2002-05-15
Maintenance System), paper copies will be maintained in state, command, or local career manage- ment individual files ( CMIF ) such as AGR management...Routine use DA Form 2166-8 will be maintained in the rated NCO’s official military personnel file (OMPF) and career manage- ment individual file ( CMIF ). A...CAR Chief, Army Reserve CDR commander CE commander’s evaluation CG commanding general CMIF career management individual file CNGB Chief, National Guard
Performance Test for the SIGMA Communication System
NASA Astrophysics Data System (ADS)
Jeong, Seonyeong; Lee, Hyojeong; Lee, Seongwhan; Shin, Jehyuck; Lee, Jungkyu; Jin, Ho
2016-12-01
Scientific CubeSat with Instruments for Global Magnetic Fields and Radiations (SIGMA) is a 3-U size CubeSat that will be operated in low earth orbit (LEO). The SIGMA communication system uses a very high frequency (VHF) band for uplink and an ultra high frequency (UHF) band for downlink. Both frequencies belong to an amateur band. The ground station that communicates with SIGMA is located at Kyung Hee Astronomical Observatory (KHAO). For reliable communication, we carried out a laboratory (LAB) test and far-field tests between the CubeSat and a ground station. In the field test, we considered test parameters such as attenuation, antenna deployment, CubeSat body attitude, and Doppler frequency shift in transmitting commands and receiving data. In this paper, we present a communication performance test of SIGMA, a link budget analysis, and a field test process. We also compare the link budget with the field test results of transmitting commands and receiving data.
Characterization of Orbital Debris Via Hyper-Velocity Ground-Based Tests
NASA Technical Reports Server (NTRS)
Cowardin, Heather
2015-01-01
To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models. DebriSat is intended to be representative of modern LEO satellites.Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. A key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992 .Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Sanner, Robert M.
2005-01-01
In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
Combat Support and the Operational Commander
1988-09-01
adversity" (31:64). During the 19th century , Heinrich von Treitschke wrote that: The state’s first duty was to maintain its power in its relations...beyond its own frontiers [9:271. the prevailing attitude towards combat support was still mired in the 19th century . As an example of the prevailing...Donald C. McNeeley, Jr., B.A. Lieutenant, USN AFIT/GLM/LSM/88S-48 a DTIC E’ 7CTEe DEC 2 2188 C H Approved for public release; distribution unlimited The
NASA Astrophysics Data System (ADS)
Rozenfeld, Pawel; Kuga, Helio Koiti; Orlando, Valcir
An international symposium on spacecraft flight dynamics and ground control systems produced 85 papers in the areas of attitude determination and control, orbit control, satellite constellation strategies, stationkeeping, spacecraft maneuvering, orbit determination, astrodynamics, ground command and control systems, and mission operations. Several papers included discussions on the application of artificial intelligence, neural networks, expert systems, and ion propulsion. For individual titles, see A95-89098 through A95-89182.
The Search for an Advanced Fighter: A History from the XF-108 to the Advanced Tactical Fighter
1986-04-01
V, ,tt AIR COMMAND AND- STAFF COLLEGE STUDENT REPORT THE SEARCH FOR AN ADVANCED FIGHTER, A HISTORY FROM THE XF-108 TO THE &ELECTE j - MAJOR ROBERT P...expressed in this document are those of the author. They are- J not intended and should not be thought to represent official ideas, attitudes, or policies of...the general public. A loan copy of the document may be obtained from the Air University Interlibrary Loan Service (AULILDEX, Maxwell AFB, Alabama
NASA Astrophysics Data System (ADS)
Dilssner, Florian; Springer, Tim; Schönemann, Erik; Zandbergen, Rene; Enderle, Werner
2015-04-01
Solar radiation pressure (SRP) is the largest non-gravitational perturbation for Global Navigation Satellite System (GNSS) satellites, and can therefore have substantial impact on their orbital dynamics. Various SRP force models have been developed over the past 30 years for the purpose of precise orbit determination. They all rely upon the assumption that the satellites continuously maintain a Sun-Nadir pointing attitude with the navigation antenna boresight (body-fixed z-axis) pointing towards Earth center, and the solar panel rotation axis (body-fixed y-axis) being normal to the Sun direction. However, in reality, this is not perfectly the case. Reasons for a non-nominal spacecraft attitude may be eclipse maneuvers, commanded attitude biases and Sun/horizon sensor measurement errors, for example due to mounting misalignment or incorrectly calibrated sensor electronics. In this work the effect of GNSS spacecraft orientation errors on SRP modelling is investigated. Simplified mathematical functions describing the SRP force acting on the solar arrays in the presence of yaw-, pitch- and roll-biases are derived. Special attention is paid to the yaw-bias and its relationship to the SRP dynamics, particular in direction of the spacecraft y-axis ("y-bias force"). Analytical and experimental results gathered from orbit and attitude analyses of GPS Block II/IIA/IIF satellites demonstrate how sensitive the SRP coefficients are to changes in yaw.
Integrated identification and control for nanosatellites reclaiming failed satellite
NASA Astrophysics Data System (ADS)
Han, Nan; Luo, Jianjun; Ma, Weihua; Yuan, Jianping
2018-05-01
Using nanosatellites to reclaim a failed satellite needs nanosatellites to attach to its surface to take over its attitude control function. This is challenging, since parameters including the inertia matrix of the combined spacecraft and the relative attitude information of attached nanosatellites with respect to the given body-fixed frame of the failed satellite are all unknown after the attachment. Besides, if the total control capacity needs to be increased during the reclaiming process by new nanosatellites, real-time parameters updating will be necessary. For these reasons, an integrated identification and control method is proposed in this paper, which enables the real-time parameters identification and attitude takeover control to be conducted concurrently. Identification of the inertia matrix of the combined spacecraft and the relative attitude information of attached nanosatellites are both considered. To guarantee sufficient excitation for the identification of the inertia matrix, a modified identification equation is established by filtering out sample points leading to ill-conditioned identification, and the identification performance of the inertia matrix is improved. Based on the real-time estimated inertia matrix, an attitude takeover controller is designed, the stability of the controller is analysed using Lyapunov method. The commanded control torques are allocated to each nanosatellite while the control saturation constraint being satisfied using the Quadratic Programming (QP) method. Numerical simulations are carried out to demonstrate the feasibility and effectiveness of the proposed integrated identification and control method.
A device for recording automatic audio tape recording1
Bernal, Martha E.; Gibson, Dennis M.; Williams, Donald E.; Pesses, Danny I.
1971-01-01
Adaptation of a commercially available timer for use as a means of operating an audio tape recorder several times during the day is described. Data on a mother's rates of commanding her children were collected via both physically present observer and recorder methods in order to compare the usefulness of the recordings with direct observation. There was a high positive relationship between observer-recorder command rates, with the observer rates being consistently higher, when data were collected via both methods simultaneously as well as at different points in time. ImagesFig. 1 PMID:16795287
A device for recording automatic audio tape recording.
Bernal, M E; Gibson, D M; Williams, D E; Pesses, D I
1971-01-01
Adaptation of a commercially available timer for use as a means of operating an audio tape recorder several times during the day is described. Data on a mother's rates of commanding her children were collected via both physically present observer and recorder methods in order to compare the usefulness of the recordings with direct observation. There was a high positive relationship between observer-recorder command rates, with the observer rates being consistently higher, when data were collected via both methods simultaneously as well as at different points in time.
CASSIUS: The Cassini Uplink Scheduler
NASA Technical Reports Server (NTRS)
Bellinger, Earl
2012-01-01
The Cassini Uplink Scheduler (CASSIUS) is cross-platform software used to generate a radiation sequence plan for commands being sent to the Cassini spacecraft. Because signals must travel through varying amounts of Earth's atmosphere, several different modes of constant telemetry rates have been devised. These modes guarantee that the spacecraft and the Deep Space Network agree with respect to the data transmission rate. However, the memory readout of a command will be lost if it occurs on a telemetry mode boundary. Given a list of spacecraft message files as well as the available telemetry modes, CASSIUS can find an uplink sequence that ensures safe transmission of each file. In addition, it can predict when the two on-board solid state recorders will swap. CASSIUS prevents data corruption by making sure that commands are not planned for memory readout during telemetry rate changes or a solid state recorder swap.
Matsukawa, Kanji
2012-01-01
Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. Contrary to the traditional idea that vagal withdrawal at the onset of exercise causes the increase in heart rate, central command did not decrease cardiac vagal efferent nerve activity but did allow cardiac sympathetic efferent nerve activity to produce cardiac acceleration. In addition, central command-evoked inhibition of the aortic baroreceptor-heart rate reflex blunted the baroreflex-mediated bradycardia elicited by aortic nerve stimulation, further increasing the heart rate at the onset of exercise. Spontaneous motor activity and associated cardiovascular responses disappeared in animals decerebrated at the midcollicular level. These findings indicate that the brain region including the caudal diencephalon and extending to the rostral mesencephalon may play a role in generating central command. Bicuculline microinjected into the midbrain ventral tegmental area of decerebrate rats produced a long-lasting repetitive activation of renal sympathetic nerve activity that was synchronized with the motor nerve discharge. When lidocaine was microinjected into the ventral tegmental area, the spontaneous motor activity and associated cardiovascular responses ceased. From these findings, we conclude that cerebral cortical outputs trigger activation of neural circuits within the caudal brain, including the ventral tegmental area, which causes central command to augment cardiac sympathetic outflow at the onset of exercise in decerebrate animal models.
Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes
NASA Technical Reports Server (NTRS)
Shtessel, Yuri; Hall, Charles; Jackson, Mark
2000-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.
Flight code validation simulator
NASA Astrophysics Data System (ADS)
Sims, Brent A.
1996-05-01
An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.
Magnetometer-only attitude and rate determination for a gyro-less spacecraft
NASA Technical Reports Server (NTRS)
Natanson, G. A.; Challa, M. S.; Deutschmann, J.; Baker, D. F.
1994-01-01
Attitude determination algorithms that requires only the earth's magnetic field will be useful for contingency conditions. One way to determine attitude is to use the time derivative of the magnetic field as the second vector in the attitude determination process. When no gyros are available, however, attitude determination becomes difficult because the rates must be propagated via integration of Euler's equation, which in turn requires knowledge of the initial rates. The spacecraft state to be determined must then include not only the attitude but also rates. This paper describes a magnetometer-only attitude determination scheme with no a priori knowledge of the spacecraft state, which uses a deterministic algorithm to initialize an extended Kalman filter. The deterministic algorithm uses Euler's equation to relate the time derivatives of the magnetic field in the reference and body frames and solves the resultant transcendental equations for the coarse attitude and rates. An important feature of the filter is that its state vector also includes corrections to the propagated rates, thus enabling it to generate highly accurate solutions. The method was tested using in-flight data from the Solar, Anomalous, and Magnetospheric Particles Explorer (SAMPEX), a Small Explorer spacecraft. SAMPEX data using several eclipse periods were used to simulate conditions that may exist during the failure of the on-board digital sun sensor. The combined algorithm has been found effective, yielding accuracies of 1.5 deg in attitude (within even nominal mission requirements) and 0.01 degree per second (deg/sec) in the rates.
32 CFR Appendix A to Part 110 - Climatic Zones Used To Determine Rates of Commutation Allowance
Code of Federal Regulations, 2012 CFR
2012-07-01
... Virginia 42. Wisconsin 43. Wyoming The climate zones listed above are to be used as a guide to determine... commanders may request a zone change by submitting evidence to the Major Command of the appropriate Military...
32 CFR Appendix A to Part 110 - Climatic Zones Used To Determine Rates of Commutation Allowance
Code of Federal Regulations, 2014 CFR
2014-07-01
... Virginia 42. Wisconsin 43. Wyoming The climate zones listed above are to be used as a guide to determine... commanders may request a zone change by submitting evidence to the Major Command of the appropriate Military...
32 CFR Appendix A to Part 110 - Climatic Zones Used To Determine Rates of Commutation Allowance
Code of Federal Regulations, 2013 CFR
2013-07-01
... Virginia 42. Wisconsin 43. Wyoming The climate zones listed above are to be used as a guide to determine... commanders may request a zone change by submitting evidence to the Major Command of the appropriate Military...
32 CFR Appendix A to Part 110 - Climatic Zones Used To Determine Rates of Commutation Allowance
Code of Federal Regulations, 2010 CFR
2010-07-01
... Virginia 42. Wisconsin 43. Wyoming The climate zones listed above are to be used as a guide to determine... commanders may request a zone change by submitting evidence to the Major Command of the appropriate Military...
An investigation of the 'von Restorff' phenomenon in post-test workload ratings
NASA Technical Reports Server (NTRS)
Thornton, D. C.
1985-01-01
The von Restorff effect in post-task ratings of task difficulty is examined. Nine subjects performed a hovercraft simulation task which combined elements of skill-based tracking and rule- and knowledge-based process control for five days of one hour sessions. The effects of isolated increases in workload on rating of task performance, and on the number of command errors and river band hits are analyzed. It is observed that the position of the workload increase affects the number of bank hits and command errors. The data reveal that factors not directly related to the task performance influence subjective rating, and post-task ratings of workload are biased.
Spacecraft attitude and velocity control system
NASA Technical Reports Server (NTRS)
Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)
1992-01-01
A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.
NASA Astrophysics Data System (ADS)
Décamp, N.; Viennot, L.
2015-08-01
This research documents the impact of a teaching interview aimed at developing a critical attitude in students, and focused on a particular topic: radiocarbon dating. This teaching interview is designed to observe students' reaction to limited written explanations of the phenomenon under study, and their possible frustration or intellectual satisfaction in relation to these texts. We aim to document the possible link between students' developing conceptual understanding of a topic and their ability to express their frustration when presented with very incomplete explanations, or their intellectual satisfaction when presented with complete explanation. As a side product, we intend to observe some of their a priori ideas concerning this topic. Ten teaching interviews conducted with fourth-year University students were recorded, transcribed and coded. Beyond a series of results concerning students' a priori understanding of the domain, the analysis of the interviews suggests that, when students are presented with texts of increasing completeness and discuss these with the interviewer, their critical reactions evolve in time in a very specific way. We propose a tentative model for this co-evolution of student conceptual command and critical stance. The discussion bears on possible interpretations for the 'anesthesia of judgment' observed in most students at the beginning of the interview, and for a few of them throughout the discussion. Keeping in mind the 'competence vs concepts' current alternative, the conditions that seem to free students' critical potential are analyzed in relation to their evolving command of the topic and their degree of intellectual satisfaction.
Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.
2005-01-01
In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a non-linear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.
AMOS Galaxy 15 Satellite Observations and Analysis
NASA Astrophysics Data System (ADS)
Hall, D.
2011-09-01
In early April 2010, the Galaxy 15 geosynchronous satellite experienced an on-orbit anomaly. Even though the satellite's transmitters and articulating solar panel were still functioning, ground controllers lost the ability to command and maneuver the satellite. With its orbital position no longer maintained, Galaxy 15 began to drift eastward. This forced several other satellites to make collision avoidance maneuvers during the following months. Soon after the initial anomaly, Galaxy 15's operators predicted that the satellite’s reaction wheels would eventually become saturated, causing a loss of both spacecraft attitude and proper sunward orientation of the solar panels. This "off-pointing" event finally occurred in late December, ultimately leading to a depletion of Galaxy 15's batteries. This near-death experience had a fortunate side effect, however, in that it forced the satellite’s command unit to reboot and once again be able to both receive and execute ground commands. The satellite operators have since recovered control of the satellite. AMOS conducted non-resolved photometric observations of Galaxy 15 before, during and after these events. Similar observations were conducted of Galaxy 12, the nearly-identical replacement satellite. This presentation presents and discusses these temporal brightness signatures in detail, comparing the changing patterns in the observations to the known sequence of events.
Judgmental Bias in the Rating of Attitude Statements
ERIC Educational Resources Information Center
Bruvold, William H.
1975-01-01
Judges holding divergent attitudes rated two sets of statements regarding uses of water reclaimed from sewage. Results showed a close linear relationship between item scale values obtained from positive and negative attitudinal groups, and a somewhat reduced rating range for judges holding unfavorable personal attitudes toward reuse. (Author/RC)
Development and psychometric evaluation of the Military Suicide Attitudes Questionnaire (MSAQ).
VanSickle, Marcus; Tucker, Jennifer; Daruwala, Samantha; Ghahramanlou-Holloway, Marjan
2016-10-01
To date, a culturally-sensitive psychological instrument has not been developed to evaluate military attitudes toward suicide. Understanding these attitudes can inform suicide prevention research, clinical practice, and policy. We aimed to develop such an instrument and to evaluate its psychometric properties using an active-duty military sample. A team of military personnel, suicidologists, and researchers assisted with item development. A cross-sectional design was used to evaluate the psychometric properties of the Military Suicide Attitudes Questionnaire (MSAQ) via an online survey battery. Exploratory and confirmatory factor analyses were conducted. A total of 317 military service members met eligibility criteria and completed the online surveys. A four-factor model that explained 46.4% of the variance was identified: (1) Individual-Based Rejection versus Acceptance; (2) Psychache versus Pathological; (3) Unit-Based Rejection versus Acceptance; (4) Moral versus Immoral. The MSAQ demonstrated high partial validity and test-retest reliability. The study used a convenience sample and did not control for social desirability. The newly developed MSAQ is a promising measure that fills a notable gap in the assessment of suicide attitudes within the United States military. The MSAQ has the potential for future use in evaluating suicide prevention and stigma reduction programs within the Department of Defense. Additionally, the MSAQ may serve as a useful tool for leadership in the evaluation of command climates. In clinical settings, the MSAQ could be used along with other cognitive and attitudinal measures to track suicidal patients' attitude towards suicide over the course of treatment. Published by Elsevier B.V.
GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR
NASA Technical Reports Server (NTRS)
Garrick, J.
1994-01-01
The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and ASSEMBLER and has been implemented on a VAX 11/780 under VMS 4.5. It has a virtual memory requirement of 255k. GROSS was developed in 1986.
Spacecraft attitude control using a smart control system
NASA Technical Reports Server (NTRS)
Buckley, Brian; Wheatcraft, Louis
1992-01-01
Traditionally, spacecraft attitude control has been implemented using control loops written in native code for a space hardened processor. The Naval Research Lab has taken this approach during the development of the Attitude Control Electronics (ACE) package. After the system was developed and delivered, NRL decided to explore alternate technologies to accomplish this same task more efficiently. The approach taken by NRL was to implement the ACE control loops using systems technologies. The purpose of this effort was to: (1) research capabilities required of an expert system in processing a classic closed-loop control algorithm; (2) research the development environment required to design and test an embedded expert systems environment; (3) research the complexity of design and development of expert systems versus a conventional approach; and (4) test the resulting systems against the flight acceptance test software for both response and accuracy. Two expert systems were selected to implement the control loops. Criteria used for the selection of the expert systems included that they had to run in both embedded systems and ground based environments. Using two different expert systems allowed a comparison of the real-time capabilities, inferencing capabilities, and the ground-based development environment. The two expert systems chosen for the evaluation were Spacecraft Command Language (SCL), and NEXTPERT Object. SCL is a smart control system produced for the NRL by Interface and Control Systems (ICS). SCL was developed to be used for real-time command, control, and monitoring of a new generation of spacecraft. NEXPERT Object is a commercially available product developed by Neuron Data. Results of the effort were evaluated using the ACE test bed. The ACE test bed had been developed and used to test the original flight hardware and software using simulators and flight-like interfaces. The test bed was used for testing the expert systems in a 'near-flight' environment. The technical approach, the system architecture, the development environments, knowledge base development, and results of this effort are detailed.
Optimal Propellant Maneuver Flight Demonstrations on ISS
NASA Technical Reports Server (NTRS)
Bhatt, Sagar; Bedrossian, Nazareth; Longacre, Kenneth; Nguyen, Louis
2013-01-01
In this paper, first ever flight demonstrations of Optimal Propellant Maneuver (OPM), a method of propulsive rotational state transition for spacecraft controlled using thrusters, is presented for the International Space Station (ISS). On August 1, 2012, two ISS reorientations of about 180deg each were performed using OPMs. These maneuvers were in preparation for the same-day launch and rendezvous of a Progress vehicle, also a first for ISS visiting vehicles. The first maneuver used 9.7 kg of propellant, whereas the second used 10.2 kg. Identical maneuvers performed without using OPMs would have used approximately 151.1kg and 150.9kg respectively. The OPM method is to use a pre-planned attitude command trajectory to accomplish a rotational state transition. The trajectory is designed to take advantage of the complete nonlinear system dynamics. The trajectory choice directly influences the cost of the maneuver, in this case, propellant. For example, while an eigenaxis maneuver is kinematically the shortest path between two orientations, following that path requires overcoming the nonlinear system dynamics, thereby increasing the cost of the maneuver. The eigenaxis path is used for ISS maneuvers using thrusters. By considering a longer angular path, the path dependence of the system dynamics can be exploited to reduce the cost. The benefits of OPM for the ISS include not only reduced lifetime propellant use, but also reduced loads, erosion, and contamination from thrusters due to fewer firings. Another advantage of the OPM is that it does not require ISS flight software modifications since it is a set of commands tailored to the specific attitude control architecture. The OPM takes advantage of the existing ISS control system architecture for propulsive rotation called USTO control mode1. USTO was originally developed to provide ISS Orbiter stack attitude control capability for a contingency tile-repair scenario, where the Orbiter is maneuvered using its robotic manipulator relative to the ISS. Since 2005 USTO has been used for nominal ISS operations.
Keeper-Animal Interactions: Differences between the Behaviour of Zoo Animals Affect Stockmanship
Ward, Samantha J.; Melfi, Vicky
2015-01-01
Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowledge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman’s zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n = 93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals’ latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: “attitude towards the animals” and “knowledge and experience of the animals”. In this novel study, data demonstrated unique dyads were formed between keepers and zoo animals, which influenced animal behaviour. PMID:26509670
Keeper-Animal Interactions: Differences between the Behaviour of Zoo Animals Affect Stockmanship.
Ward, Samantha J; Melfi, Vicky
2015-01-01
Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowledge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman's zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n = 93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals' latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: "attitude towards the animals" and "knowledge and experience of the animals". In this novel study, data demonstrated unique dyads were formed between keepers and zoo animals, which influenced animal behaviour.
An improved lateral control wheel steering law for the Transport Systems Research Vehicle (TSRV)
NASA Technical Reports Server (NTRS)
Ragsdale, W. A.
1992-01-01
A lateral control wheel steering law with improved performance was developed for the Transport Systems Research Vehicle (TSRV) simulation and used in the Microwave Landing System research project. The control law converted rotational hand controller inputs into roll rate commands, manipulated ailerons, spoilers, and the rudder to achieve the desired roll rates. The system included automatic turn coordination, track angle hold, and autopilot/autoland modes. The resulting control law produced faster roll rates (15 degrees/sec), quicker response to command reversals, and safer bank angle limits, while using a more concise program code.
The influence of central command on baroreflex resetting during exercise
NASA Technical Reports Server (NTRS)
Raven, Peter B.; Fadel, Paul J.; Smith, Scott A.
2002-01-01
The arterial baroreflex functions as a negative feedback system regulating blood pressure around an established operating point. Paradoxically, a parallel increase in heart rate and blood pressure manifests during exercise. Experimental evidence suggests these events are caused, in part, by a rapid resetting of the baroreflex by central command.
Biased optimal guidance for a bank-to-turn missile
NASA Astrophysics Data System (ADS)
Stallard, D. V.
A practical terminal-phase guidance law for controlling the pitch acceleration and roll rate of a bank-to-turn missile with zero autopilot lags was derived and tested, so as to minimize squared miss distance without requiring overly large commands. An acceleration bias is introduced to prevent excessive roll commands due to noise. The Separation Theorem is invoked and the guidance (control) law is derived by applying optimal control theory, linearizing the nonlinear plant equation around the present missile orientation, and obtaining a closed-form solution. The optimal pitch-acceleration and roll-rate commands are respectively proportional to two components of the projected, constant-bias, miss distance, with a resemblance to earlier derivations and proportional navigation. Simulaiation results and other related work confirm the suitability of the guidance law.
Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Hodel, A. S.; Callahan, Ronnie; Jackson, Scott (Technical Monitor)
2002-01-01
The role of control allocation (CA) in modern aerospace vehicles is to compute a command vector delta(sub c) is a member of IR(sup n(sub a)) that corresponding to commanded or desired body-frame torques (moments) tou(sub c) = [L M N](sup T) to the vehicle, compensating for and/or responding to inaccuracies in off-line nominal control allocation calculations, actuator failures and/or degradations (reduced effectiveness), or actuator limitations (rate/position saturation). The command vector delta(sub c) may govern the behavior of, e.g., acrosurfaces, reaction thrusters, engine gimbals and/or thrust vectoring. Typically, the individual moments generated in response to each of the n(sub a) commands does not lie strictly in the roll, pitch, or yaw axes, and so a common practice is to group or gang actuators so that a one-to-one mapping from torque commands tau(sub c) actuator commands delta(sub c) may be achieved in an off-line computed CA function.
2004-03-01
2-15 2-10. Pitch Tracking Closed Loop System for Gap Criterion...................................... 2-16 2-11. Four Resulting Gap ...Level 1 Minimize Resonance Closed Loop Bode Diagram ( ) ( ) s sCommand θ θ ( ) ( ) s sCommand θ θ BWω 2-16 Gap Criterion...System for Gap Criterion In modern fly-by-wire aircraft, feedback is an integral part of obtaining more desirable closed loop flying qualities
Constrained optimal multi-phase lunar landing trajectory with minimum fuel consumption
NASA Astrophysics Data System (ADS)
Mathavaraj, S.; Pandiyan, R.; Padhi, R.
2017-12-01
A Legendre pseudo spectral philosophy based multi-phase constrained fuel-optimal trajectory design approach is presented in this paper. The objective here is to find an optimal approach to successfully guide a lunar lander from perilune (18km altitude) of a transfer orbit to a height of 100m over a specific landing site. After attaining 100m altitude, there is a mission critical re-targeting phase, which has very different objective (but is not critical for fuel optimization) and hence is not considered in this paper. The proposed approach takes into account various mission constraints in different phases from perilune to the landing site. These constraints include phase-1 ('braking with rough navigation') from 18km altitude to 7km altitude where navigation accuracy is poor, phase-2 ('attitude hold') to hold the lander attitude for 35sec for vision camera processing for obtaining navigation error, and phase-3 ('braking with precise navigation') from end of phase-2 to 100m altitude over the landing site, where navigation accuracy is good (due to vision camera navigation inputs). At the end of phase-1, there are constraints on position and attitude. In Phase-2, the attitude must be held throughout. At the end of phase-3, the constraints include accuracy in position, velocity as well as attitude orientation. The proposed optimal trajectory technique satisfies the mission constraints in each phase and provides an overall fuel-minimizing guidance command history.
Testing of the on-board attitude determination and control algorithms for SAMPEX
NASA Technical Reports Server (NTRS)
Mccullough, Jon D.; Flatley, Thomas W.; Henretty, Debra A.; Markley, F. Landis; San, Josephine K.
1993-01-01
Algorithms for on-board attitude determination and control of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope (HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital sun sensor (DSS) failure detection logic. These improved algorithms were tested in a closed-loop environment for three orbit geometries, one with the sun perpendicular to the orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter Solstice. The closed-loop simulator was enhanced and used as a truth model for the control systems' performance evaluation and sensor/actuator contingency analysis. The simulations were performed on a VAX 8830 using a prototype version of the on-board software.
NASA Technical Reports Server (NTRS)
1996-01-01
On this sixth day of the STS-77 mission, the flight crew, Cmdr. John H. Casper, Pilot Curtis L. Brown, Jr., and Mission Specialists Andrew S.W. Thomas, Ph.D., Daniel W. Bursch, Mario Runco, Jr., and Marc Garneau, Ph.D., spend some time relaxing, then go back to working in the Spacehab module and preparing to revisit a small cylindrical satellite that they deployed on the mission's third day. Commander John Casper and Pilot Curt Brown monitor Endeavour's systems. Mission Specialist Mario Runco tests an attitude determination system using the GPS attitude and navigation experiment called GANE. The remaining crew members, Mission Specialists Andy Thomas, Dan Bursch and Marc Garneau monitor the health of experiments ongoing in the Spacehab and on the middeck of the orbiter. The crew also conduct a health check of the Aquatic Research Facility (ARF) which contains starfish, mussels and sea urchins.
NASA Technical Reports Server (NTRS)
Neil, A. L.
1973-01-01
The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.
PhoneSat - The Smartphone Nanosatellite
NASA Technical Reports Server (NTRS)
Westley, Deborah; Yost, Bruce; Petro, Andrew
2013-01-01
PhoneSat 2.4, carried into space on November 19, 2013 aboard a Minotaur I rocket from the Mid-Atlantic Regional Spaceport at NASAs Wallops Flight Facility in Virginia, is the first of the PhoneSat family to use a two-way S-band radio to allow engineers to command the satellite from Earth. This mission also serves as a technology demonstration for a novel attitude determination and control system (ADCS) that establishes and stabilizes the satellites attitude relative to Earth. Unlike the earlier PhoneSats that used a Nexus One, PhoneSat 2.4 uses the Nexus S smartphone, which runs Googles Android operating system, and is made by Samsung Electronics Co., Suwon, So. Korea. The smartphone provides many of the functions needed by the satellite such as a central computer, data memory, ready-made interfaces for communications, navigation and power all pre-assembled in a rugged electronics package.
Modular experimental platform for science and applications
NASA Technical Reports Server (NTRS)
Hill, A. S.
1984-01-01
A modularized, standardized spacecraft bus, known as MESA, suitable for a variety of science and applications missions is discussed. The basic bus consists of a simple structural arrangement housing attitude control, telemetry/command, electrical power, propulsion and thermal control subsystems. The general arrangement allows extensive subsystem adaptation to mission needs. Kits provide for the addition of tape recorders, increased power levels and propulsion growth. Both 3-axis and spin stabilized flight proven attitude control subsystems are available. The MESA bus can be launched on Ariane, as a secondary payload for low cost, or on the STS with a PAM-D or other suitable upper stage. Multi-spacecraft launches are possible with either booster. Launch vehicle integration is simple and cost-effective. The low cost of the MESA bus is achieved by the extensive utilization of existing subsystem design concepts and equipment, and efficient program management and test integration techniques.
The NASA Spacecraft Transponding Modem
NASA Technical Reports Server (NTRS)
Berner, Jeff B.; Kayalar, Selahattin; Perret, Jonathan D.
2000-01-01
A new deep space transponder is being developed by the Jet Propulsion Laboratory for NASA. The Spacecraft Transponding Modem (STM) implements the standard transponder functions and the channel service functions that have previously resided in spacecraft Command/Data Subsystems. The STM uses custom ASICs, MMICs, and MCMs to reduce the active device parts count to 70, mass to I kg, and volume to 524 cc. The first STMs will be flown on missions launching in the 2003 time frame. The STM tracks an X-band uplink signal and provides both X-band and Ka-band downlinks, either coherent or non-coherent with the uplink. A NASA standard Command Detector Unit is integrated into the STM, along with a codeblock processor and a hardware command decoder. The decoded command codeblocks are output to the spacecraft command/data subsystem. Virtual Channel 0 (VC-0) (hardware) commands are processed and output as critical controller (CRC) commands. Downlink telemetry is received from the spacecraft data subsystem as telemetry frames. The STM provides the following downlink coding options: the standard CCSDS (7-1/2) convolutional coding, ReedSolomon coding with interleave depths one and five, (15-1/6) convolutional coding, and Turbo coding with rates 1/3 and 1/6. The downlink symbol rates can be linearly ramped to match the G/T curve of the receiving station, providing up to a 1 dB increase in data return. Data rates range from 5 bits per second (bps) to 24 Mbps, with three modulation modes provided: modulated subcarrier (3 different frequencies provided), biphase-L modulated direct on carrier, and Offset QPSK. Also, the capability to generate one of four non-harmonically related telemetry beacon tones is provided, to allow for a simple spacecraft status monitoring scheme for cruise phases of missions. Three ranging modes are provided: standard turn around ranging, regenerative pseudo-noise (PN) ranging, and Differential One-way Ranging (DOR) tones. The regenerative ranging provides the capability of increasing the ground received ranging SNR by up to 30 dB. Two different avionics interfaces to the command/data subsystem's data bus are provided: a MIL STD 1553B bus or an industry standard PCI interface. Digital interfaces provide the capability to control antenna selection (e.g., switching between high gain and low gain antennas) and antenna pointing (for future steered Ka-band antennas).
Recent progress in MEMS technology development for military applications
NASA Astrophysics Data System (ADS)
Ruffin, Paul B.; Burgett, Sherrie J.
2001-08-01
The recent progress of ongoing efforts at the Army Aviation and Missile Command (AMCOM) to develop microelectromechanical systems (MEMS) technology for military applications is discussed in this paper. The current maturity level of low cost, low power, micro devices in industry, which range from simple temperature and pressure sensors to accelerometers in airbags, provides a viable foundation for the development of rugged MEMS devices for dual-use applications. Early MEMS technology development efforts at AMCOM emphasized inertial MEMS sensors. An Army Science and Technology Objective (STO) project was initiated to develop low cost inertial components with moderate angular rate sensor resolution for measuring pitch and yaw of missile attitude and rotational roll rate. Leveraging the Defense Advanced Research Projects Agency and other Government agencies has resulted in the development of breadboard inertial MEMS devices with improved robustness. During the past two years, MEMS research at AMCOM has been expanded to include environmental MEMS sensors for missile health monitoring, RF-MEMS, optical MEMS devices for beam steering, and micro-optic 'benches' for opto-electronics miniaturization. Additionally, MEMS packaging and integration issues have come into focus and are being addressed. Selected ongoing research efforts in these areas are presented, and some horizon MEMS sensors requirements for Army and law enforcement are presented for consideration.
NASA Technical Reports Server (NTRS)
McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul
1995-01-01
Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.
Evaluation and review of the safety management system implementation in the Royal Thai Air Force
NASA Astrophysics Data System (ADS)
Chaiwan, Sakkarin
This study was designed to determine situation and effectiveness of the safety management system currently implemented in the Royal Thai Air Force. Reviewing the ICAO's SMS and the RTAF's SMS was conducted to identify similarities and differences between the two safety management systems. Later, the researcher acquired safety statistics from the RTAF Safety Center to investigate effectiveness of its safety system. The researcher also collected data to identify other factors affecting effectiveness of the safety system during conducting in-depth interviews. Findings and Conclusions: The study shows that the Royal Thai Air Force has never applied the International Civil Aviation Organization's Safety management System to its safety system. However, the RTAF's SMS and the ICAO's SMS have been developed based on the same concepts. These concepts are from Richard H. Woods's book, Aviation safety programs: A management handbook. However, the effectiveness of the Royal Thai Air Force's safety system is in good stance. An accident rate has been decreasing regularly but there are no known factors to describe the increasing rate, according to the participants' opinion. The participants have informed that there are many issues to be resolved to improve the RTAF's safety system. Those issues are cooperation among safety center's staffs, attitude toward safety of the RTAF senior commanders, and safety standards.
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Commander Ken Cockrell conducts window inspection, checking for leaks, in the cockpit of Atlantis. He and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Commander Ken Cockrell conducts window inspection, checking for leaks, in the cockpit of Atlantis. He and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
Portrait of the Mir 23 crew in the Base Block
1997-02-26
NM23-48-003 (29 April 1997) --- Cosmonaut Vasili V. Tsibliyev, Mir-23 commander, operates at the end of the Russian Mir Space Stations STRELA boom during a space walk on April 29, 1997. He was joined by United States astronaut Jerry M. Linenger, cosmonaut guest researcher, in an effort to deploy scientific instruments and retrieve other science hardware. At the lower left of the picture is the Kvant-1 module. Hovering above it is the Sofora tower, which was once used for an experiment in attitude control of the Mir.
1991-09-01
efforts (14, 15). Such focal points are now also being established at various non-AFLC/AFSC agencies, such as Strategic Air Command (SAC) and Air...of ASD/TQ is - basically - to "promote Total Quality (TQ) throughout ASD" by "assisting leaders in developing TQ attitudes and initiatives with ASD...result(ed) in an improved, successful "way of doing business " (33, 34); this is essentially a "positive- oriented" analog to "lessons learned
Applications Technology Satellite ATS-6 in orbit checkout report
NASA Technical Reports Server (NTRS)
Moore, W.; Prensky, W. (Editor)
1974-01-01
The activities of the ATS-6 spacecraft for the checkout period of approximately four weeks beginning May 30, 1974 are described, along with the results of a performance evaluation of its subsystems and components. The following specific items are discussed: (1) subsystem requirements/specifications and in-orbit performance summary; (2) flight chronology; (3) spacecraft description; (4) structural/deployment subsystems; (5) electrical power subsystem; (6) thermal control subsystem; (7) telemetry and command subsystems; (8) attitude control subsystem; (9) spacecraft propulsion subsystem; (10) communication subsystem; and (12) experiment subsystem.
Flight software operation of the Hubble Space Telescope fine guidance sensor
NASA Technical Reports Server (NTRS)
Rodden, J. J.; Dougherty, H. J.; Cormier, D. J.
1988-01-01
The Hubble Space Telescope (HST) is to carry five major scientific instruments to collect imagery, spectrographic, and photometric astronomical data. The Pointing Control System is designed to achieve pointing accuracies and line of sight jitter levels an order of magnitude less than can be achieved with ground mounted telescopes. This paper describes the operation of the pointing control system flight software in targeting a celestial object in a science instrument aperture and in performing the coordinate transformations necessary for commanding the fine guidance sensor and determining the attitude-error corrections.
Distress, omnipotence, and responsibility beliefs in command hallucinations.
Ellett, Lyn; Luzon, Olga; Birchwood, Max; Abbas, Zarina; Harris, Abi; Chadwick, Paul
2017-09-01
Command hallucinations are considered to be one of the most distressing and disturbing symptoms of schizophrenia. Building on earlier studies, we compare key attributes in the symptomatic, affective, and cognitive profiles of people diagnosed with schizophrenia and hearing voices that do (n = 77) or do not (n = 74) give commands. The study employed a cross-sectional design, in which we assessed voice severity, distress and control (PSYRATs), anxiety and depression (HADS), beliefs about voices (BAVQ-R), and responsibility beliefs (RIQ). Clinical and demographic variables were also collected. Command hallucinations were found to be more distressing and controlling, perceived as more omnipotent and malevolent, linked to higher anxiety and depression, and resisted more than hallucinations without commands. Commanding voices were also associated with higher conviction ratings for being personally responsible for preventing harm. The findings suggest key differences in the affective and cognitive profiles of people who hear commanding voices, which have important implications for theory and psychological interventions. Command hallucinations are associated with higher distress, malevolence, and omnipotence. Command hallucinations are associated with higher responsibility beliefs for preventing harm. Responsibility beliefs are associated with voice-related distress. Future psychological interventions for command hallucinations might benefit from focussing not only on omnipotence, but also on responsibility beliefs, as is done in psychological therapies for obsessive compulsive disorder. Limitations The cross-sectional design does not assess issues of causality. We did not measure the presence or severity of delusions. © 2017 The British Psychological Society.
DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization
NASA Technical Reports Server (NTRS)
Cowardin, Heather
2015-01-01
To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.
Ooue, Anna; Sato, Kohei; Hirasawa, Ai; Sadamoto, Tomoko
2012-11-07
The superficial vein of the resting limb constricts sympathetically during exercise. Central command is the one of the neural mechanisms that controls the cardiovascular response to exercise. However, it is not clear whether central command contributes to venous vessel response during exercise. Tendon vibration during static elbow flexion causes primary muscle spindle afferents, such that a lower central command is required to achieve a given force without altering muscle force. The purpose of this study was therefore to investigate whether a reduction in central command during static exercise with tendon vibration influences the superficial venous vessel response in the resting limb. Eleven subjects performed static elbow flexion at 35% of maximal voluntary contraction with (EX + VIB) and without (EX) vibration of the biceps brachii tendon. The heart rate, mean arterial pressure, and rating of perceived exertion (RPE) in overall and exercising muscle were measured. The cross-sectional area (CSAvein) and blood velocity of the basilic vein in the resting upper arm were assessed by ultrasound, and blood flow (BFvein) was calculated using both variables. Muscle tension during exercise was similar between EX and EX + VIB. However, RPEs at EX + VIB were lower than those at EX (P <0.05). Increases in heart rate and mean arterial pressure during exercise at EX + VIB were also lower than those at EX (P <0.05). CSAvein in the resting limb at EX decreased during exercise from baseline (P <0.05), but CSAvein at EX + VIB did not change during exercise. CSAvein during exercise at EX was smaller than that at EX + VIB (P <0.05). However, BFvein did not change during the protocol under either condition. The decreases in circulatory response and RPEs during EX + VIB, despite identical muscle tension, showed that activation of central command was less during EX + VIB than during EX. Abolishment of the decrease in CSAvein during exercise at EX + VIB may thus have been caused by a lower level of central command at EX + VIB rather than EX. Diminished central command induced by tendon vibration may attenuate the superficial venous vessel response of the resting limb during sustained static arm exercise.
Dynamic sample size detection in learning command line sequence for continuous authentication.
Traore, Issa; Woungang, Isaac; Nakkabi, Youssef; Obaidat, Mohammad S; Ahmed, Ahmed Awad E; Khalilian, Bijan
2012-10-01
Continuous authentication (CA) consists of authenticating the user repetitively throughout a session with the goal of detecting and protecting against session hijacking attacks. While the accuracy of the detector is central to the success of CA, the detection delay or length of an individual authentication period is important as well since it is a measure of the window of vulnerability of the system. However, high accuracy and small detection delay are conflicting requirements that need to be balanced for optimum detection. In this paper, we propose the use of sequential sampling technique to achieve optimum detection by trading off adequately between detection delay and accuracy in the CA process. We illustrate our approach through CA based on user command line sequence and naïve Bayes classification scheme. Experimental evaluation using the Greenberg data set yields encouraging results consisting of a false acceptance rate (FAR) of 11.78% and a false rejection rate (FRR) of 1.33%, with an average command sequence length (i.e., detection delay) of 37 commands. When using the Schonlau (SEA) data set, we obtain FAR = 4.28% and FRR = 12%.
Own and Friends' Smoking Attitudes and Social Preference as Early Predictors of Adolescent Smoking
ERIC Educational Resources Information Center
Otten, Roy; Wanner, Brigitte; Vitaro, Frank; Engels, Rutger C. M. E.
2008-01-01
This study examined the role of friends' attitudes in adolescent smoking (N = 203). Growth mixture modeling was used to identify three trajectories of smoking behavior from ages 12 to 14 years: a "low-rate" group, an "increasing-rate" group, and a "high-rate" group. Adolescents' own and their friends' attitudes at age…
Why would young people donate blood? A survey-based questionnaire study.
Weinberg, I; Zarka, S; Levy, Y; Shinar, E
2009-02-01
Different issues associated with blood donation among young donors were studied, towards building a large and consistent blood donor base. Data were collected from 221/285 donors in drives conducted among military personnel (response rate of 78%), through a self-administered questionnaire tailored to review knowledge, beliefs, attitudes and habits regarding blood and general donations. Data were then further analysed using a multivariate model. The most significant factors related to blood donation were the donors' perception of approval from a superior (the commander's request to donate blood) and the participant's military rank or position (P < 0.0001 and P = 0.0019, respectively). Experienced blood donors comprised 71.9 % of all donors and more donations were noted among men (P = 0.0013). The important role of a significant superior, and his or her personal involvement in the blood drive organization was elucidated. Various other factors, previously found to be related to readiness or reluctance to donate blood, were insignificant among the studied population. Our finding may assist blood centres in optimizing their efforts in recruiting and retention of young donors.
NASA Technical Reports Server (NTRS)
Lewis, Michael S.; Mansur, M. Hossein; Chen, Robert T. N.
1987-01-01
A piloted simulation study investigating handling qualities and flight characteristics required for helicopter air to air combat is presented. The Helicopter Air Combat system was used to investigate this role for Army rotorcraft. Experimental variables were the maneuver envelope size (load factor and sideslip), directional axis handling qualities, and pitch and roll control-response type. Over 450 simulated, low altitude, one-on-one engagements were conducted. Results from the experiment indicate that a well damped directional response, low sideforce caused by sideslip, and some effective dihedral are all desirable for weapon system performance, good handling qualities, and low pilot workload. An angular rate command system was favored over the attitude type pitch and roll response for most applications, and an enhanced maneuver envelope size over that of current generation aircraft was found to be advantageous. Pilot technique, background, and experience are additional factors which had a significant effect on performance in the air combat tasks investigated. The implication of these results on design requirements for future helicopters is presented.
Piloted simulation of one-on-one helicopter air combat at NOE flight levels
NASA Technical Reports Server (NTRS)
Lewis, M. S.; Aiken, E. W.
1985-01-01
A piloted simulation designed to examine the effects of terrain proximity and control system design on helicopter performance during one-on-one air combat maneuvering (ACM) is discussed. The NASA Ames vertical motion simulator (VMS) and the computer generated imagery (CGI) systems were modified to allow two aircraft to be independently piloted on a single CGI data base. Engagements were begun with the blue aircraft already in a tail-chase position behind the red, and also with the two aircraft originating from positions unknown to each other. Maneuvering was very aggressive and safety requirements for minimum altitude, separation, and maximum bank angles typical of flight test were not used. Results indicate that the presence of terrain features adds an order of complexiaty to the task performed over clear air ACM and that mix of attitude and rate command-type stability and control augmentation system (SCAS) design may be desirable. The simulation system design, the flight paths flown, and the tactics used were compared favorably by the evaluation pilots to actual flight test experiments.
MSL EDL Entry Guidance using the Entry Terminal Point Controller
NASA Technical Reports Server (NTRS)
2006-01-01
The Mars Science Laboratory will be the first Mars mission to attempt a guided entry with the objective of safely delivering the entry vehicle to a survivable parachute deploy state within 10 km of the pre-designated landing site. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control range based on deviations in range, altitude rate, and drag acceleration from a reference trajectory. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last four years. Performance tradeoffs between ellipse size and deploy altitude will be presented, along with imposed constraints of entry acceleration and heating. Performance sensitivities to the bank reversal deadbands, heading alignment, attitude initialization error, and atmospheric delivery errors are presented. Guidance settings for contingency operations, such as those appropriate for severe dust storm scenarios, are evaluated.
Identification and Reconfigurable Control of Impaired Multi-Rotor Drones
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje; Bencomo, Alfredo
2016-01-01
The paper presents an algorithm for control and safe landing of impaired multi-rotor drones when one or more motors fail simultaneously or in any sequence. It includes three main components: an identification block, a reconfigurable control block, and a decisions making block. The identification block monitors each motor load characteristics and the current drawn, based on which the failures are detected. The control block generates the required total thrust and three axis torques for the altitude, horizontal position and/or orientation control of the drone based on the time scale separation and nonlinear dynamic inversion. The horizontal displacement is controlled by modulating the roll and pitch angles. The decision making algorithm maps the total thrust and three torques into the individual motor thrusts based on the information provided by the identification block. The drone continues the mission execution as long as the number of functioning motors provide controllability of it. Otherwise, the controller is switched to the safe mode, which gives up the yaw control, commands a safe landing spot and descent rate while maintaining the horizontal attitude.
Guo-Hua, Peng; Zhu-Hua, Hu; Wei, Hua; Ke, Qian; Xiao-Gang, Li; Zhi-Shu, Zhang; Zhi-Gang, Chen; Xiao-Wu, Feng
2017-06-26
To understand the present situation of the chronic schistosomiasis patients' knowledge, attitude and practice on schistosomiasis control in Nanchang City. The knowledge, attitude and values on schistosomiasis control of 523 chronic schistosomiasis patients in Nanchang County, Jinxian County and Xinjian District in the Poyang Lake District were investigated with questionnaires. And the accuracy rates of the knowledge, attitude and practice among the patient groups of different counties, genders, age groups, occupations and educational levels were analyzed. The accuracy rates of the knowledge, attitude and practice of patients on schistosomiasis control were 95.76%, 82.80%, and 81.73% in Nanchang County; 91.37%, 93.32%, and 76.48% in Jinxian County; 88.25%, 67.56%, and 49.40% in Xinjian District. In the accuracy rates of knowledge, attitude and practice, the differences among the three counties (districts) were statistically significant ( χ 2 = 57.511-301.378, all P < 0.05) . The accuracy rates of chronic schistosomiasis patients' attitude and practice on schistosomiasis control in Nanchang City remain low. Therefore, the intensity of attitude and practice intervention should be strengthened in the Poyang Lake District in order to enhance the self-protection awareness of the patients.
1987-12-01
Appendix D: Macro Listings D-1 Appendix E: MATRIXx Simulation E-1 Bibiliography Vita iv e List of Figures Figure Page 1-1 Self -Tuning Regulator 6 2-1 AFTI...Command 59 4-25 Yaw Rate Command - Three Pulses 60 4-26 Adaptive Yaw Rate Respose - Three Pulses 61 4-27 Adaptive Pitch Angle Response - Three Pulses 62 4...several types of adaptive controllers (regulators). Three of the simplest controllers are gain scheduling, model reference, and self -tuning
NASA Technical Reports Server (NTRS)
Campbell, Stefan F.; Kaneshige, John T.
2010-01-01
Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).
NASA Technical Reports Server (NTRS)
Oshman, Yaakov; Markley, Landis
1998-01-01
A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.
Orbital and attitude evolution of SCD-1 and SCD-2 Brazilian satellites
NASA Astrophysics Data System (ADS)
Murcia, J. O.; Carrara, V.; Kuga, H. K.
2017-10-01
The SCD-1 and SCD-2 satellites were launched in 1993 and 1998, respectively, with use of the Launcher “Pegasus” of the OSC (Orbital Sciences Corporation). 21 and 16 years later, the satellites are still in orbit around the Earth and providing data for users. Mission and Operational data from Satellite Tracking Center Network are stored in mission files in the Satellite Control Center (SCC) and made available to the users. The SCC also stores history files of the satellite orbit and attitude ephemeris, besides the on-board telemetry, temperatures, equipment status, etc. This work will present some analysis of the orbit ephemeris evolution based upon the Two-Line Elements sets (TLE’s) obtained from NORAD (North American Aerospace Defense Command). Attitude evolution along time is also presented for both satellites from SCC data. The orbit decay will be explained as resulting mainly due to the solar activity during the satellite lifetime. This work aims to report the history of more than 20 years of continuous operation of SCD-1 and SCD-2. At the end, an estimation of the orbital decay is forecast with the use of NASA’s DAS software.
Benefits, barriers, and limitations on the use of Hospital Incident Command System.
Shooshtari, Shahin; Tofighi, Shahram; Abbasi, Shirin
2017-01-01
Hospital Incident Command System (HICS) has been established with the mission of prevention, response, and recovery in hazards. Regarding the key role of hospitals in medical management of events, the present study is aimed at investigating benefits, barriers, and limitations of applying HICS in hospital. Employing a review study, articles related to the aforementioned subject published from 1995 to 2016 were extracted from accredited websites and databases such as PubMed, Google Scholar, Elsevier, and SID by searching keywords such as HICS, benefits, barriers, and limitations. Then, those articles were summarized and reported. Using of HICS can cause creating preparedness in facing disasters, constructive management in strategies of controlling events, and disasters. Therefore, experiences indicate that there are some limitations in the system such as failure to assess the strength and severity of vulnerabilities of hospital, no observation of standards for disaster management in the design, constructing and equipping hospitals, and the absence of a model for evaluating the system. Accordingly, the conducted studies were investigated for probing the performance HICS. With regard to the role of health in disaster management, it requires advanced international methods in facing disasters. Using accurate models for assessing, the investigation of preparedness of hospitals in precrisis conditions based on components such as command, communications, security, safety, development of action plans, changes in staff's attitudes through effective operational training and exercises and creation of required maneuvers seems necessary.
Orion Entry Flight Control Stability and Performance
NASA Technical Reports Server (NTRS)
Strahan, Alan L.; Loe, Greg R.; Seiler, Pete
2007-01-01
The Orion Spacecraft will be required to perform entry and landing functions for both Low Earth Orbit (LEO) and Lunar return missions, utilizing only the Command Module (CM) with its unique systems and GN&C design. This paper presents the current CM Flight Control System (FCS) design to support entry and landing, with a focus on analyses that have supported its development to date. The CM FCS will have to provide for spacecraft stability and control while following guidance or manual commands during exo-atmospheric flight, after Service Module separation, translational powered flight required of the CM, atmospheric flight supporting both direct entry and skip trajectories down to drogue chute deploy, and during roll attitude reorientation just prior to touchdown. Various studies and analyses have been performed or are on-going supporting an overall FCS design with reasonably sized Reaction Control System (RCS) jets, that minimizes fuel usage, that provides appropriate command following but with reasonable stability and control margin. Results from these efforts to date are included, with particular attention on design issues that have emerged, such as the struggle to accommodate sub-sonic pitch and yaw control without using excessively large jets that could have a detrimental impact on vehicle weight. Apollo, with a similar shape, struggled with this issue as well. Outstanding CM FCS related design and analysis issues, planned for future effort, are also briefly be discussed.
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Bodson, Marc; Acosta, Diana M.
2009-01-01
The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.
Control definition study for advanced vehicles
NASA Technical Reports Server (NTRS)
Lapins, M.; Martorella, R. P.; Klein, R. W.; Meyer, R. C.; Sturm, M. J.
1983-01-01
The low speed, high angle of attack flight mechanics of an advanced, canard-configured, supersonic tactical aircraft designed with moderate longitudinal relaxed static stability (Static Margin, SM = 16% C sub W at M = 0.4) was investigated. Control laws were developed for the longitudinal axis (""G'' or maneuver and angle of attack command systems) and for the lateral/directional axes. The performance of these control laws was examined in engineering simulation. A canard deflection/rate requirement study was performed as part of the ""G'' command law evaluation at low angles of attack. Simulated coupled maneuvers revealed the need for command limiters in all three aircraft axes to prevent departure from controlled flight. When modified with command/maneuver limiters, the control laws were shown to be adequate to prevent aircraft departure during aggressive air combat maneuvering.
Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams.
van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien
2017-04-01
Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader's verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time.
14 CFR 91.527 - Operating in icing conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... installation or to an airspeed, altimeter, rate of climb, or flight attitude instrument system; (2) Snow or ice... climb, or flight attitude instrument system. (c) Except for an airplane that has ice protection... airspeed, altimeter, rate of climb, or flight attitude instrument system or wing, except that takeoffs may...
Reding, Michael E. J.; Chorpita, Bruce F.; Lau, Anna S.; Innes-Gomberg, Debbie
2014-01-01
Evidence-based practice (EBP) attitudes were measured in a sample of Los Angeles County mental health service providers. Three types of data were collected: provider demographic characteristics, attitudes toward EBP in general, and attitudes toward specific EBPs being implemented in the county. Providers could reliably rate characteristics of specific EBPs, and these ratings differed across interventions. Preliminary implementation data indicate that appealing features of an EBP relate to the degree to which providers use it. These findings suggest that assessing EBP-specific attitudes is feasible and may offer implementation-relevant information beyond that gained solely from providers' general attitudes toward EBP. PMID:24166077
Investigation of piloting aids for manual control of hypersonic maneuvers
NASA Technical Reports Server (NTRS)
Raney, David L.; Phillips, Michael R.; Person, Lee H., Jr.
1995-01-01
An investigation of piloting aids designed to provide precise maneuver control for an air-breathing hypersonic vehicle is described. Stringent constraints and nonintuitive high-speed flight effects associated with maneuvering in the hypersonic regime raise the question of whether manual control of such a vehicle should even be considered. The objectives of this research were to determine the extent of manual control that is desirable for a vehicle maneuvering in this regime and to identify the form of aids that must be supplied to the pilot to make such control feasible. A piloted real-time motion-based simulation of a hypersonic vehicle concept was used for this study, and the investigation focused on a single representative cruise turn maneuver. Piloting aids, which consisted of an auto throttle, throttle director, autopilot, flight director, and two head-up display configurations, were developed and evaluated. Two longitudinal control response types consisting of a rate-command/attitude-hold system and a load factor-rate/load-factor-hold system were also compared. The complete set of piloting aids, which consisted of the autothrottle, throttle director, and flight director, improved the average Cooper-Harper flying qualities ratings from 8 to 2.6, even though identical inner-loop stability and control augmentation was provided in all cases. The flight director was determined to be the most critical of these aids, and the cruise turn maneuver was unachievable to adequate performance specifications in the absence of this flight director.
Stellar Gyroscope for Determining Attitude of a Spacecraft
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Hancock, Bruce; Liebe, Carl; Mellstrom, Jeffrey
2005-01-01
A paper introduces the concept of a stellar gyroscope, currently at an early stage of development, for determining the attitude or spin axis, and spin rate of a spacecraft. Like star trackers, which are commercially available, a stellar gyroscope would capture and process images of stars to determine the orientation of a spacecraft in celestial coordinates. Star trackers utilize chargecoupled devices as image detectors and are capable of tracking attitudes at spin rates of no more than a few degrees per second and update rates typically <5 Hz. In contrast, a stellar gyroscope would utilize an activepixel sensor as an image detector and would be capable of tracking attitude at a slew rate as high as 50 deg/s, with an update rate as high as 200 Hz. Moreover, a stellar gyroscope would be capable of measuring a slew rate up to 420 deg/s. Whereas a Sun sensor and a three-axis mechanical gyroscope are typically needed to complement a star tracker, a stellar gyroscope would function without them; consequently, the mass, power consumption, and mechanical complexity of an attitude-determination system could be reduced considerably.
Effort to recover SOHO spacecraft continue as investigation board focuses on most likely causes
NASA Astrophysics Data System (ADS)
1998-07-01
Meanwhile, the ESA/NASA investigation board concentrates its inquiry on three errors that appear to have led to the interruption of communications with SOHO on June 25. Officials remain hopeful that, based on ESA's successful recovery of the Olympus spacecraft after four weeks under similar conditions in 1991, recovery of SOHO may be possible. The SOHO Mission Interruption Joint ESA/NASA Investigation Board has determined that the first two errors were contained in preprogrammed command sequences executed on ground system computers, while the last error was a decision to send a command to the spacecraft in response to unexpected telemetry readings. The spacecraft is controlled by the Flight Operations Team, based at NASA's Goddard Space Flight Center, Greenbelt, MD. The first error was in a preprogrammed command sequence that lacked a command to enable an on-board software function designed to activate a gyro needed for control in Emergency Sun Reacquisition (ESR) mode. ESR mode is entered by the spacecraft in the event of anomalies. The second error, which was in a different preprogrammed command sequence, resulted in incorrect readings from one of the spacecraft's three gyroscopes, which in turn triggered an ESR. At the current stage of the investigation, the board believes that the two anomalous command sequences, in combination with a decision to send a command to SOHO to turn off a gyro in response to unexpected telemetry values, caused the spacecraft to enter a series of ESRs, and ultimately led to the loss of control. The efforts of the investigation board are now directed at identifying the circumstances that led to the errors, and at developing a recovery plan should efforts to regain contact with the spacecraft succeed. ESA and NASA engineers believe the spacecraft is currently spinning with its solar panels nearly edge-on towards the Sun, and thus not generating any power. Since the spacecraft is spinning around a fixed axis, as the spacecraft progresses in its orbit around the Sun, the orientation of the panels with respect to the Sun should gradually change. The orbit of the spacecraft and the seasonal change in the spacecraft-Sun alignment should result in the increased solar illumination of the spacecraft solar arrays over the next few months. The engineers predict that in late September 1998, illumination of the solar arrays and, consequently, power supplied to the spacecraft, should approach a maximum. The probability of successfully establishing contact reaches a maximum at this point. After this time, illumination of the solar arrays gradually diminishes as the spacecraft-Sun alignment continues to change. In an attempt to recover SOHO as soon as possible, the Flight Operations Team is uplinking commands to the spacecraft via NASA's Deep Space Network, managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, approximately 12 hours per day with no success to date. A recovery plan is under development by ESA and NASA to provide for orderly restart of the spacecraft and to mitigate risks involved. The recovery of the Olympus spacecraft by ESA in 1991 under similar conditions leads to optimism that the SOHO spacecraft may be recoverable once contact is re-established. In May 1991, ESA's Olympus telecommunications satellite experienced a similar major anomaly which resulted in the loss of attitude, leading to intermittent power availability. As a consequence, there was inadequate communication, and the batteries and fuel froze. From analysis of the data available prior to the loss, there was confidence that the power situation would improve over the coming months. A recovery plan was prepared, supported by laboratory tests, to assess the characteristics of thawing batteries and propellants. Telecommand access of Olympus was regained four weeks later, and batteries and propellant tanks were thawed out progressively over the next four weeks. The attitude was then fully recovered and the payload switched back on three months after the incident. Equipment damage was sustained as a result of the low temperatures, but nothing significant enough to prevent the successful resumption of the mission. The experience of Olympus is being applied, where possible, to SOHO and increases the hope of also recovering this mission. Estimating the probability of recovery is made difficult by a number of unknown spacecraft conditions. Like Olympus, the hydrazine fuel and batteries may be frozen. Thermal stress may have damaged some of the scientific instruments as well. If the rate of spin is excessive, there may have been structural damage. SOHO engineers can reliably predict the spacecraft's orbit through November 1998. After that time, the long-term orbital behavior becomes dependent on the initial velocity conditions of the spacecraft at the time of the telemetry loss. These are not known precisely, due to spacecraft thruster activity that continued after loss of telemetry, so orbital prediction becomes very difficult.
Overcoming Robot-Arm Joint Singularities
NASA Technical Reports Server (NTRS)
Barker, L. K.; Houck, J. A.
1986-01-01
Kinematic equations allow arm to pass smoothly through singular region. Report discusses mathematical singularities in equations of robotarm control. Operator commands robot arm to move in direction relative to its own axis system by specifying velocity in that direction. Velocity command then resolved into individual-joint rotational velocities in robot arm to effect motion. However, usual resolved-rate equations become singular when robot arm is straightened.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural networks as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research are identified to enhance the practical applicability of neural networks to flight control design.
Neural network application to aircraft control system design
NASA Technical Reports Server (NTRS)
Troudet, Terry; Garg, Sanjay; Merrill, Walter C.
1991-01-01
The feasibility of using artificial neural network as control systems for modern, complex aerospace vehicles is investigated via an example aircraft control design study. The problem considered is that of designing a controller for an integrated airframe/propulsion longitudinal dynamics model of a modern fighter aircraft to provide independent control of pitch rate and airspeed responses to pilot command inputs. An explicit model following controller using H infinity control design techniques is first designed to gain insight into the control problem as well as to provide a baseline for evaluation of the neurocontroller. Using the model of the desired dynamics as a command generator, a multilayer feedforward neural network is trained to control the vehicle model within the physical limitations of the actuator dynamics. This is achieved by minimizing an objective function which is a weighted sum of tracking errors and control input commands and rates. To gain insight in the neurocontrol, linearized representations of the nonlinear neurocontroller are analyzed along a commanded trajectory. Linear robustness analysis tools are then applied to the linearized neurocontroller models and to the baseline H infinity based controller. Future areas of research identified to enhance the practical applicability of neural networks to flight control design.
Fruit and Vegetable Attitudes, Norms, and Intake in Low-Income Youth.
Di Noia, Jennifer; Cullen, Karen Weber
2015-12-01
Fruit and vegetable (FV) attitudes and norms have been shown to influence intake in youth; yet research with low-income youth and studies supplementing self-report with objective measures of intake are lacking. Cross-sectional survey data on self-rated FV intake, FV attitudes, and FV norms were collected in a sample of 116 youth attending a residential summer camp serving low-income families. FV intake also was estimated by direct observation. Differences between self-rated and observed FV intake, perceived and observed peer intake, and perceived and peer-reported attitudes toward eating FVs were assessed with paired samples t tests. The role of FV attitudes, descriptive norms (perceived peer FV intake), injunctive norms (perceived peer attitudes toward eating FVs), and actual norms (observed peer FV intake and peer-reported FV attitudes) in predicting FV intake also was examined with multiple regression analysis. Youth misperceived their own and their peers' FV intake (i.e., overestimated intake of fruit and underestimated intake of vegetables) and believed that peers held less favorable attitudes toward eating FVs than was the case. The models predicting self-rated intake were significant, accounting for 34% of the variance in fruit intake and 28% of the variance in vegetable intake. Attitudes and descriptive norms were positively associated with FV intake, and observed peer fruit intake was negatively associated with fruit intake. Findings suggest that in low-income youth, FV attitudes, descriptive norms, and normative peer behavior predict perceived but not actual intake. Youth may benefit from intervention to promote favorable FV attitudes and norms. A focus on descriptive norms holds promise for improving self-rated intake in this population. © 2015 Society for Public Health Education.
Docking Mechanism on Progress 52
2014-02-03
ISS038-E-041175 (3 Feb. 2014) --- This close-up view shows the docking mechanism of the unpiloted Russian ISS Progress 52 resupply ship as it undocks from the International Space Station's Pirs Docking Compartment at 11:21 a.m. (EST) on Feb. 3, 2014. The Progress backed away to a safe distance from the orbital complex to begin several days of tests to study thermal effects of space on its attitude control system. Filled with trash and other unneeded items, the Russian resupply ship will be commanded to re-enter Earth's atmosphere Feb. 11 and disintegrate harmlessly over the Pacific Ocean.
Aerospace Vehicle Design, Spacecraft Section. Volume 1: Project Groups 3-5
NASA Technical Reports Server (NTRS)
1989-01-01
Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedom and provide an emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are analyzed. These subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing.
Project Cerberus: Flyby Mission to Pluto
NASA Technical Reports Server (NTRS)
Sivier, K.; Koepke, A.; Humphrey, Theodore W.; Elbel, Jeffrey P.; Hackett, Bruce E.; Kennedy, Ralph G.; Leo, Donald J.; Zimmerman, Shery A.
1990-01-01
The goal of the Cerberus Project was to design a feasible and cost-effective unmanned flyby mission to Pluto. The requirements in the request for proposal for an unmanned probe to Pluto are presented and were met. The design stresses proven technology that will avoid show stoppers which could halt mission progress. Cerberus also utilizes the latest advances in the spacecraft industry to meet the stringent demands of the mission. The topics covered include: (1) mission management, planning, and costing; (2) structures; (3) power and propulsion; (4) attitude, articulation, and control; (5) command, control, and communication; and (6) scientific instrumentation.
NASA Technical Reports Server (NTRS)
Rodden, John James (Inventor); Price, Xenophon (Inventor); Carrou, Stephane (Inventor); Stevens, Homer Darling (Inventor)
2002-01-01
A control system for providing attitude control in spacecraft. The control system comprising a primary attitude reference system, a secondary attitude reference system, and a hyper-complex number differencing system. The hyper-complex number differencing system is connectable to the primary attitude reference system and the secondary attitude reference system.
NASA Astrophysics Data System (ADS)
Inamori, Takaya; Hosonuma, Takayuki; Ikari, Satoshi; Saisutjarit, Phongsatorn; Sako, Nobutada; Nakasuka, Shinichi
2015-02-01
Recently, small satellites have been employed in various satellite missions such as astronomical observation and remote sensing. During these missions, the attitudes of small satellites should be stabilized to a higher accuracy to obtain accurate science data and images. To achieve precise attitude stabilization, these small satellites should estimate their attitude rate under the strict constraints of mass, space, and cost. This research presents a new method for small satellites to precisely estimate angular rate using star blurred images by employing a mission telescope to achieve precise attitude stabilization. In this method, the angular velocity is estimated by assessing the quality of a star image, based on how blurred it appears to be. Because the proposed method utilizes existing mission devices, a satellite does not require additional precise rate sensors, which makes it easier to achieve precise stabilization given the strict constraints possessed by small satellites. The research studied the relationship between estimation accuracy and parameters used to achieve an attitude rate estimation, which has a precision greater than 1 × 10-6 rad/s. The method can be applied to all attitude sensors, which use optics systems such as sun sensors and star trackers (STTs). Finally, the method is applied to the nano astrometry satellite Nano-JASMINE, and we investigate the problems that are expected to arise with real small satellites by performing numerical simulations.
Adolescent Co-Occurring Disorders Treatment: Clinicians' Attitudes, Values, and Knowledge
ERIC Educational Resources Information Center
Denby, Ramona W.; Brinson, Jesse A.; Ayala, Jessica
2011-01-01
This study examined community-based clinicians' (N = 294) attitudes, background/experiences, values, and knowledge relating to issues of co-occurring disorders, which occur at a high rate among adolescents involved in the juvenile justice system. Study results reveal that clinicians self-rate their clinical values and attitudes at or above the…
14 CFR 125.221 - Icing conditions: Operating limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., or to an airspeed, altimeter, rate of climb, or flight attitude instrument system, except under the..., rate of climb, or flight attitude instrument system. (d) Except for an airplane that has ice protection... attitude instrument system, or wing, except that takeoffs may be made with frost under the wing in the area...
NASA Technical Reports Server (NTRS)
Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III
2006-01-01
Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.
Malaria on a military peacekeeping operation: a case study with no cases.
Houston, David J K; Tuck, Jeremy J H
2005-03-01
Malaria continues to be a disease of importance to travelers and the military is no exception. Individual protection measures based on advice, bite avoidance, chemoprophylaxis, and diagnosis are advocated for protection against the disease. However, the military has an additional strand to malaria protection--the chain of command. To describe the experience of a British military deployment where the Force Commander took a proactive approach to malaria protection. In 512 person-weeks of exposure in a theater with high rates of transmission of malaria, with an enduring threat of asymmetric military action and with a proactive approach by the chain of command to the implementation of malaria protection policy, no malaria cases developed. The chain of command can have a significant impact on compliance with malaria protection measures, which might reduce incidence of the disease in the deployed population.
Berry, Tanya R; Shields, Chris
2014-02-01
The relationship of attributed source (commercial or nonprofit) and credibility of exercise advertisements to explicit and implicit exercise-related attitudes and intentions was examined. Male and female participants (N = 227) were randomly assigned to watch health or appearance-related advertisements and then completed an implicit attitudes task and questionnaires. Health advertisements and those attributed to a nonprofit source were rated more credible. Appearance condition participants who attributed the advertisement to a nonprofit source also rated the advertisement as more credible. Participants who rated a commercial advertisement as credible reported higher implicit instrumental attitudes. Implications for exercise promotion are discussed.
Dugré, Jules R; Guay, Jean-Pierre; Dumais, Alexandre
2018-05-01
Clinicians are often left with the difficult task of assessing and managing the risk of violent behaviors in individuals having command hallucinations, which may result in substantial rates of false positive or false negative. Moreover, findings on the association between command hallucinations and suicidal behaviors are limited. In an attempt to better understand compliance to this hallucinatory phenomenon, our objective was to identify the risk factors of compliance with self-harm command hallucinations. Secondary analyses from the MacArthur Study were performed on 82 participants with psychosis reporting such commands. Univariate logistic regression was used to examine the classification value of each characteristic associated with compliance with such commands. Seriousness and frequency of childhood physical abuse, a current comorbid substance use disorder, emotional distress, general symptomatology, history of compliance, and belief about compliance in the future were found to be significant risk factors of compliance with self-harm commands in the week preceding psychiatric inpatient. Multivariate analyses revealed that severity of childhood physical abuse, belief about compliance in the future, and a current comorbid substance use disorder were independent risk factors. The final model showed excellent classification accuracy as suggest by the receiver operating characteristic curve (AUC=0.84, 95% CI: 0.75-0.92, p<0.001). Our results suggest considerable clinical implications in regard to the assessment of risk of compliance to self-harm command hallucinations in individuals with psychosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Autonomous Navigation Using Celestial Objects
NASA Technical Reports Server (NTRS)
Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne
1999-01-01
In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.
ERIC Educational Resources Information Center
Fernquist, Robert M.
2001-01-01
Political integration theory (Durkheim) argues that when political crises occur, individuals band together to solve the problem at hand, which yields lower suicide rates. This analysis examines a different component of political integration-attitudes. Cross-sectional time series analysis reveals that attitudes individuals hold toward such an event…
Xia, Kewei; Huo, Wei
2016-05-01
This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Lv, Yueyong; Hu, Qinglei; Ma, Guangfu; Zhou, Jiakang
2011-10-01
This paper treats the problem of synchronized control of spacecraft formation flying (SFF) in the presence of input constraint and parameter uncertainties. More specifically, backstepping based robust control is first developed for the total 6 DOF dynamic model of SFF with parameter uncertainties, in which the model consists of relative translation and attitude rotation. Then this controller is redesigned to deal with the input constraint problem by incorporating a command filter such that the generated control could be implementable even under physical or operating constraints on the control input. The convergence of the proposed control algorithms is proved by the Lyapunov stability theorem. Compared with conventional methods, illustrative simulations of spacecraft formation flying are conducted to verify the effectiveness of the proposed approach to achieve the spacecraft track the desired attitude and position trajectories in a synchronized fashion even in the presence of uncertainties, external disturbances and control saturation constraint. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nugraha, A. T.; Agustinah, T.
2018-01-01
Quadcopter an unstable system, underactuated and nonlinear in quadcopter control research developments become an important focus of attention. In this study, following the path control method for position on the X and Y axis, used structure-Generator Tracker Command (CGT) is tested. Attitude control and position feedback quadcopter is compared using the optimal output. The addition of the H∞ performance optimal output feedback control is used to maintain the stability and robustness of quadcopter. Iterative numerical techniques Linear Matrix Inequality (LMI) is used to find the gain controller. The following path control problems is solved using the method of LQ regulators with output feedback. Simulations show that the control system can follow the paths that have been defined in the form of a reference signal square shape. The result of the simulation suggest that the method which used can bring the yaw angle at the expected value algorithm. Quadcopter can do automatically following path with cross track error mean X=0.5 m and Y=0.2 m.
Staggering Inflation To Stabilize Attitude of a Solar Sail
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; West, John
2007-01-01
A document presents computational-simulation studies of a concept for stabilizing the attitude of a spacecraft during deployment of such structures as a solar sail or other structures supported by inflatable booms. Specifically, the solar sail considered in this paper is a square sail with inflatable booms and attitude control vanes at the corners. The sail inflates from its stowed configuration into a square sail with four segments and four vanes at the tips. Basically, the concept is one of controlling the rates of inflation of the booms to utilize in mass-distribution properties to effect changes in the system s angular momentum. More specifically, what was studied were the effects of staggering inflation of each boom by holding it at constant length for specified intervals between intervals of increasing length until full length is reached. The studies included sensitivity analyses of effects of variations in mass properties, boom lengths, rates of increase in boom length, initial rates of rotation of the spacecraft, and several asymmetries that could arise during deployment. The studies led to the conclusion that the final attitude of the spacecraft could be modified by varying the parameters of staggered inflation. Computational studies also showed that by feeding back attitude and attitude-rate measurements so that corrective action is taken during the deployment, the final attitude can be maintained very closely to the initial attitude, thus mitigating the attitude changes incurred during deployment and caused by modeling errors. Moreover, it was found that by optimizing the ratio between the holding and length-increasing intervals in deployment of a boom, one could cause deployment to track a desired deployment profile to place the entire spacecraft in a desired attitude at the end of deployment.
Miyashita, Tetsuya; Mizuno, Yusuke; Sugawara, Yo; Nagamine, Yusuka; Koyama, Yukihide; Miyazaki, Tomoyuki; Uchimoto, Kazuhiro; Iketani, Yasuhiro; Tojo, Kentaro; Goto, Takahisa
2015-03-01
We studied the use of tele-anaesthesia between Sado General Hospital (SGH) located on Sado Island and Yokohama City University Hospital (YCUH) located in mainland Japan. The two sites were connected via a virtual private network (VPN). We investigated the relationship between the bandwidth of the VPN and both the frame rate and the delay time of the tele-anaesthesia monitoring system. The tool used for communication between the two hospitals was free videoconferencing software (FaceTime), which can be used over Wi-Fi connections. We also investigated the accuracy of the commands given during teleanaesthesia: any commands from the anaesthetist at the YCUH that were not carried out for any reason, were recorded in the anaesthetic records at the SGH. The original frame rate and data rate at the SGH were 5 fps and approximately 18 Mbit/s, respectively. The frame rate at the transmission speeds of 1, 5 and 20 Mbit/s was 0.6, 1.6 and 5.0 fps, respectively. The corresponding delay time was 12.2, 4.9 and 0.7 s. Twenty-five adult patients were enrolled in the study and tele-anaesthesia was performed. The total duration of anaesthesia was 37 hours. All 888 anaesthetic commands were completed. There were 7 FaceTime disconnections, which lasted for 10 min altogether. Because no commands needed to be given during the FaceTime disconnection, the telephone was not used. The anaesthesia assistance system might form part of the solution to medical resource shortages. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
System and method for correcting attitude estimation
NASA Technical Reports Server (NTRS)
Josselson, Robert H. (Inventor)
2010-01-01
A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.
USE OF THE SDO POINTING CONTROLLERS FOR INSTRUMENT CALIBRATION MANEUVERS
NASA Technical Reports Server (NTRS)
Vess, Melissa F.; Starin, Scott R.; Morgenstern, Wendy M.
2005-01-01
During the science phase of the Solar Dynamics Observatory mission, the three science instruments require periodic instrument calibration maneuvers with a frequency of up to once per month. The command sequences for these maneuvers vary in length from a handful of steps to over 200 steps, and individual steps vary in size from 5 arcsec per step to 22.5 degrees per step. Early in the calibration maneuver development, it was determined that the original attitude sensor complement could not meet the knowledge requirements for the instrument calibration maneuvers in the event of a sensor failure. Because the mission must be single fault tolerant, an attitude determination trade study was undertaken to determine the impact of adding an additional attitude sensor versus developing alternative, potentially complex, methods of performing the maneuvers in the event of a sensor failure. To limit the impact to the science data capture budget, these instrument calibration maneuvers must be performed as quickly as possible while maintaining the tight pointing and knowledge required to obtain valid data during the calibration. To this end, the decision was made to adapt a linear pointing controller by adjusting gains and adding an attitude limiter so that it would be able to slew quickly and still achieve steady pointing once on target. During the analysis of this controller, questions arose about the stability of the controller during slewing maneuvers due to the combination of the integral gain, attitude limit, and actuator saturation. Analysis was performed and a method for disabling the integral action while slewing was incorporated to ensure stability. A high fidelity simulation is used to simulate the various instrument calibration maneuvers.
The Survival of the Company Man in Iraq
2008-03-01
counter to their career success , even 29 Out of the 32 interviews there were at least 10 that...problem and informing their own commanders is not conducive to their own career success . Then the soldiers write home or tell their family upon their...balancing the need to meet the measures of success set forth by his commanders, with only the rating by his superiors affecting his long term career
Servo control booster system for minimizing following error
Wise, William L.
1985-01-01
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Evolutionary Telemetry and Command Processor (TCP) architecture
NASA Technical Reports Server (NTRS)
Schneider, John R.
1992-01-01
A low cost, modular, high performance, and compact Telemetry and Command Processor (TCP) is being built as the foundation of command and data handling subsystems for the next generation of satellites. The TCP product line will support command and telemetry requirements for small to large spacecraft and from low to high rate data transmission. It is compatible with the latest TDRSS, STDN and SGLS transponders and provides CCSDS protocol communications in addition to standard TDM formats. Its high performance computer provides computing resources for hosted flight software. Layered and modular software provides common services using standardized interfaces to applications thereby enhancing software re-use, transportability, and interoperability. The TCP architecture is based on existing standards, distributed networking, distributed and open system computing, and packet technology. The first TCP application is planned for the 94 SDIO SPAS 3 mission. The architecture enhances rapid tailoring of functions thereby reducing costs and schedules developed for individual spacecraft missions.
Shen, H; Xu, Y; Dickinson, B T
2014-11-18
Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.
Reusable Launch Vehicle Control in Multiple Time Scale Sliding Modes
NASA Technical Reports Server (NTRS)
Shtessel, Yuri
1999-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. 6DOF simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. It creates possibility to operate the X-33 vehicle in an aircraft-like mode with reduced pre-launch adjustment of the control system.
Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams
van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien
2017-01-01
Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader’s verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time. PMID:28490856
Evaluating the Performance of the NASA LaRC CMF Motion Base Safety Devices
NASA Technical Reports Server (NTRS)
Gupton, Lawrence E.; Bryant, Richard B., Jr.; Carrelli, David J.
2006-01-01
This paper describes the initial measured performance results of the previously documented NASA Langley Research Center (LaRC) Cockpit Motion Facility (CMF) motion base hardware safety devices. These safety systems are required to prevent excessive accelerations that could injure personnel and damage simulator cockpits or the motion base structure. Excessive accelerations may be caused by erroneous commands or hardware failures driving an actuator to the end of its travel at high velocity, stepping a servo valve, or instantly reversing servo direction. Such commands may result from single order failures of electrical or hydraulic components within the control system itself, or from aggressive or improper cueing commands from the host simulation computer. The safety systems must mitigate these high acceleration events while minimizing the negative performance impacts. The system accomplishes this by controlling the rate of change of valve signals to limit excessive commanded accelerations. It also aids hydraulic cushion performance by limiting valve command authority as the actuator approaches its end of travel. The design takes advantage of inherent motion base hydraulic characteristics to implement all safety features using hardware only solutions.
Kinematic rate control of simulated robot hand at or near wrist singularity
NASA Technical Reports Server (NTRS)
Barker, K.; Houck, J. A.; Carzoo, S. W.
1985-01-01
A robot hand should obey movement commands from an operator on a computer program as closely as possible. However, when two of the three rotational axes of the robot wrist are colinear, the wrist loses a degree of freedom, and the usual resolved rate equations (used to move the hand in response to an operator's inputs) are indeterminant. Furthermore, rate limiting occurs in close vicinity to this singularity. An analysis shows that rate limiting occurs not only in the vicinity of this singularity but also substantially away from it, even when the operator commands rotational rates of the robot hand that are only a small percentage of the operational joint rate limits. Therefore, joint angle rates are scaled when they exceed operational limits in a real time simulation of a robot arm. Simulation results show that a small dead band avoids the wrist singularity in the resolved rate equations but can introduce a high frequency oscillation close to the singularity. However, when a coordinated wrist movement is used in conjunction with the resolved rate equations, the high frequency oscillation disappears.
NASA Astrophysics Data System (ADS)
Song, YoungJae; Sepulveda, Francisco
2017-02-01
Objective. Self-paced EEG-based BCIs (SP-BCIs) have traditionally been avoided due to two sources of uncertainty: (1) precisely when an intentional command is sent by the brain, i.e., the command onset detection problem, and (2) how different the intentional command is when compared to non-specific (or idle) states. Performance evaluation is also a problem and there are no suitable standard metrics available. In this paper we attempted to tackle these issues. Approach. Self-paced covert sound-production cognitive tasks (i.e., high pitch and siren-like sounds) were used to distinguish between intentional commands (IC) and idle states. The IC states were chosen for their ease of execution and negligible overlap with common cognitive states. Band power and a digital wavelet transform were used for feature extraction, and the Davies-Bouldin index was used for feature selection. Classification was performed using linear discriminant analysis. Main results. Performance was evaluated under offline and simulated-online conditions. For the latter, a performance score called true-false-positive (TFP) rate, ranging from 0 (poor) to 100 (perfect), was created to take into account both classification performance and onset timing errors. Averaging the results from the best performing IC task for all seven participants, an 77.7% true-positive (TP) rate was achieved in offline testing. For simulated-online analysis the best IC average TFP score was 76.67% (87.61% TP rate, 4.05% false-positive rate). Significance. Results were promising when compared to previous IC onset detection studies using motor imagery, in which best TP rates were reported as 72.0% and 79.7%, and which, crucially, did not take timing errors into account. Moreover, based on our literature review, there is no previous covert sound-production onset detection system for spBCIs. Results showed that the proposed onset detection technique and TFP performance metric have good potential for use in SP-BCIs.
Simplified adaptive control of an orbiting flexible spacecraft
NASA Astrophysics Data System (ADS)
Maganti, Ganesh B.; Singh, Sahjendra N.
2007-10-01
The paper presents the design of a new simple adaptive system for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. A moment generating device located on the central rigid body of the spacecraft is used for the attitude control. It is assumed that the system parameters are unknown and the truncated model of the spacecraft has finite but arbitrary dimension. In addition, only the pitch angle and its derivative are measured and elastic modes are not available for feedback. The control output variable is chosen as the linear combination of the pitch angle and the pitch rate. Exploiting the hyper minimum phase nature of the spacecraft, a simple adaptive control law is derived for the pitch angle control and elastic mode stabilization. The adaptation rule requires only four adjustable parameters and the structure of the control system does not depend on the order of the truncated spacecraft model. For the synthesis of control system, the measured output error and the states of a third-order command generator are used. Simulation results are presented which show that in the closed-loop system adaptive output regulation is accomplished in spite of large parameter uncertainties and disturbance input.
Ragland, Denise; Battle, Marlene; Kueter, Teddi J; Payakachat, Nalin
2015-10-01
To collectively assess consumer attitudes towards and satisfaction with emergency contraception (EC) counselling by student pharmacists in two different locations: an academic healthcare clinic and a retail pharmacy. EC counselling was provided by trained student pharmacists utilizing a standardized education toolkit. Participants were asked to rate the counselling at the end of the knowledge survey. In addition to descriptive statistics, we compared the self-reported attitudes and satisfaction with the counselling between the two sites. The majority of participants from both settings rated 'strongly agree' on the attitude and satisfaction statements for the EC counselling. Participants from the clinic setting rated higher in two of the four statements than the participants from the retail setting. Participants had positive attitudes towards and were highly satisfied with the EC counselling in both settings. EC counselling should be encouraged in practice settings. © 2014 Royal Pharmaceutical Society.
Analysis of space telescope data collection system
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Schoggen, W. O.
1982-01-01
An analysis of the expected performance for the Multiple Access (MA) system is provided. The analysis covers the expected bit error rate performance, the effects of synchronization loss, the problem of self-interference, and the problem of phase ambiguity. The problem of false acceptance of a command word due to data inversion is discussed. A mathematical determination of the probability of accepting an erroneous command word due to a data inversion is presented. The problem is examined for three cases: (1) a data inversion only, (2) a data inversion and a random error within the same command word, and a block (up to 256 48-bit words) containing both a data inversion and a random error.
Command and data handling of science signals on Spacelab
NASA Technical Reports Server (NTRS)
Mccain, H. G.
1975-01-01
The Orbiter Avionics and the Spacelab Command and Data Management System (CDMS) combine to provide a relatively complete command, control, and data handling service to the instrument complement during a Shuttle Sortie Mission. The Spacelab CDMS services the instruments and the Orbiter in turn services the Spacelab. The CDMS computer system includes three computers, two I/O units, a mass memory, and a variable number of remote acquisition units. Attention is given to the CDMS high rate multiplexer, CDMS tape recorders, closed circuit television for the visual monitoring of payload bay and cabin area activities, methods of science data acquisition, questions of transmission and recording, CDMS experiment computer usage, and experiment electronics.
Command and Service Module Communications
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This viewgraph presentation examines Command and Service Module (CSM) Communications. The communication system's capabilities are defined, including CSM-Earth, CSM-Lunar Module and CSM-Extravehicular crewman communications. An overview is provided for S-band communications, including data transmission and receiving rates, operating frequencies and major system components (pre-modulation processors, unified S-band electronics, S-band power amplifier and S-band antennas). Additionally, data transmission rates, operating frequencies and the capabilities of VHF communications are described. Major VHF components, including transmitters and receivers, and the VHF multiplexer and antennas are also highlighted. Finally, communications during pre-launch, ascent, in-flight and entry are discussed. Overall, the CSM communication system was rated highly by flight controllers and crew. The system was mostly autonomous for both crew and flight controllers and no major issues were encountered during flight.
Error rate information in attention allocation pilot models
NASA Technical Reports Server (NTRS)
Faulkner, W. H.; Onstott, E. D.
1977-01-01
The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.
Huan, Liu; Ai-Xia, Wang; Yuan-Zhen, Li; Ming-Ming, Zhou
2017-02-22
To investigate the status of knowledge, attitude and behavior of schistosomiasis control of rural residents in Wanjiang River region after a flood, so as to provide the reference for targeted health education. The multistage sampling was applied to select the respondents in rural residents in Wanjiang River region, and the self-designed questionnaire was used to investigate the current situation of knowledge, attitude and behavior of schistosomiasis prevention and control of the rural residents. The total awareness rate of knowledge about the prevention and control of schistosomiasis was 47.92%. The age, education, family income, relatives and friends with medical background, and health education significantly influenced the awareness rate ( χ 2 = 12.76, 89.19, 18.19, 50.83 and 92.60 respectively, all P < 0.05). The accuracy rates of attitude and behavior in schistosomiasis control were 62.89% and 52.37% respectively. The awareness rate of knowledge about the prevention and control of schistosomiasis, and the accuracy rates of attitude and behavior in schistosomiasis control of the rural residents in Wanjiang River region are all inefficient, and therefore, the targeted health education should be strengthened to decrease the risk of schistosomiasis transmission.
NASA Technical Reports Server (NTRS)
Powell, J. D.; Schneider, J. B.
1986-01-01
The use of charge-coupled-devices, or CCD's, has been documented by a number of sources as an effective means of providing a measurement of spacecraft attitude with respect to the stars. A method exists of defocussing and interpolation of the resulting shape of a star image over a small subsection of a large CCD array. This yields an increase in the accuracy of the device by better than an order of magnitude over the case when the star image is focussed upon a single CCD pixel. This research examines the effect that image motion has upon the overall precision of this star sensor when applied to an orbiting infrared observatory. While CCD's collect energy within the visible spectrum of light, the targets of scientific interest may well have no appreciable visible emissions. Image motion has the effect of smearing the image of the star in the direction of motion during a particular sampling interval. The presence of image motion is incorporated into a Kalman filter for the system, and it is shown that the addition of a gyro command term is adequate to compensate for the effect of image motion in the measurement. The updated gyro model is included in this analysis, but has natural frequencies faster than the projected star tracker sample rate for dim stars. The system state equations are reduced by modelling gyro drift as a white noise process. There exists a tradeoff in selected star tracker sample time between the CCD, which has improved noise characteristics as sample time increases, and the gyro, which will potentially drift further between long attitude updates. A sample time which minimizes pointing estimation error exists for the random drift gyro model as well as for a random walk gyro model.
Construction of a Bilingual Attitude Rating Scale.
ERIC Educational Resources Information Center
Halasa, Ofelia
A bilingual rating scale was constructed to determine teachers' ratings of attitude and proficiency among Anglo and Spanish children in Title VII classes. This instrument was designed to ascertain how teachers perceive the pupils in their classroom and how two teachers representing different backgrounds perceive children of similar and different…
Everything's better in moderation: young women's gender role attitudes and risky sexual behavior.
Leech, Tamara G J
2010-05-01
This study examines the association between gender role attitudes and risky sexual behavior among young women. Previous studies have posed seemingly contradictory arguments: that either traditional attitudes or egalitarian attitudes are associated with riskier behavior. Data are based on the children of the National Longitudinal Survey of Youth, representing 520 sexually active 18-19-year-old women. Propensity radius matching was used to assess differences in rates of multiple sexual partners and sex outside of a committed relationship. Relative to moderate gender role attitudes, both egalitarian gender role attitudes and traditional gender role attitudes are associated with higher rates of risky sexual behavior. Both women with egalitarian role attitudes and those with traditional role attitudes have about a 10% higher prevalence of risky behavior compared to women with more moderate gender role attitudes. Existing, seemingly contradictory contentions about the relationship between gender role attitudes and risky sexual behavior may be more coherent than they seem. By shifting focus from risk to protection, the results suggest that moderate gender role attitudes are protective against risky sexual behavior. Future studies should investigate the causal mechanisms and intervention implications of this protective relationship. Copyright 2010 Society for Adolescent Medicine. Published by Elsevier Inc. All rights reserved.
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, the STS-98 crew talks with United Space Alliance worker Larry Oshein (right). Standing left to right are Mission Specialist Robert Curbeam, Commander Ken Cockrell, Mission Specialist Tom Jones, and Mission Specialists Mark Polansky and Marsha Ivins. The crew is at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, the STS-98 crew talks with United Space Alliance worker Larry Oshein (right). Standing left to right are Mission Specialist Robert Curbeam, Commander Ken Cockrell, Mission Specialist Tom Jones, and Mission Specialists Mark Polansky and Marsha Ivins. The crew is at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8
NASA Technical Reports Server (NTRS)
1989-01-01
Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.
NASA Technical Reports Server (NTRS)
Janson, Siegfried
2017-01-01
A Brane Craft is a membrane spacecraft with solar cells, command and control electronics, communications systems, antennas, propulsion systems, attitude and proximity sensors, and shape control actuators as thin film structures manufactured on 10 micron thick plastic sheets. This revolutionary spacecraft design can have a thickness of tens of microns with a surface area of square meters to maximize area-to-mass ratios for exceptionally low-mass spacecraft. Communications satellites, solar power satellites, solar electric propulsion stages, and solar sails can benefit from Brane Craft design. It also enables new missions that require low-mass spacecraft with exceptionally high delta-V. Active removal of orbital debris from Earth orbit is the target application for this study.
NASA Technical Reports Server (NTRS)
Goldstein, H. W.; Grenda, R. N.
1977-01-01
The sensors were examined for adaptability to shuttle by reviewing pertinent information regarding sensor characteristics as they related to the shuttle and Multimission Modular Spacecraft environments. This included physical and electrical characteristics, data output and command requirements, attitude and orientation requirements, thermal and safety requirements, and adaptability and modification for space. The sensor requirements and characteristics were compared with the corresponding shuttle and Multimission Modular Spacecraft characteristics and capabilities. On this basis the adaptability and necessary modifications for each sensor were determined. A number of the sensors were examined in more detail and estimated cost for the modifications was provided.
Witztum, E; Levy, A; Solomon, Z
1996-01-01
The current article examines the history of therapeutic response in the Israel Defense Forces toward combat stress reaction during two decades, and in the course of three wars: the 1948 War of Independence, the 1956 Sinai Campaign, and the 1967 Six Day War. Three independent sources were used: recorded debriefing materials; interviews conducted with therapists, commanders and military historians; and professional literature on the wars in Hebrew and other languages. The collected material is described and issues of attitudes, treatment approaches and preparedness are discussed.
Alcohol use and negative consequences among active duty military personnel.
Mattiko, Mark J; Olmsted, Kristine L Rae; Brown, Janice M; Bray, Robert M
2011-06-01
An examination of alcohol use patterns in the active duty military to determine the relations of drinking levels and self-reported negative outcomes. A population-based cross-sectional study design using two-stage complex sampling methodology. Paper and pencil surveys were administered anonymously in groups at 64 U.S. military installations worldwide. Randomly selected active duty members (28,546) at major military installations representing the total active force, with the exception of recruits, cadets, and incarcerated personnel. Personnel were classified into five drinking levels ranging from abstainer to heavy drinker based on quantity and frequency of alcohol intake. Negative outcomes were measured as self-reported serious consequences of alcohol use and alcohol-related productivity loss. Risk for other alcohol related problems was assessed by the Alcohol Use Disorders Identification Test (AUDIT). Alcohol negative outcomes showed a curvilinear dose-response relationship with drinking levels. Higher levels of drinking were associated with higher rates of alcohol problems, but problem rates were notably higher for heavy drinkers. Heavy alcohol users showed nearly three times the rate of self-reported serious consequences and over twice the rate of self-reported productivity loss than moderate/heavy drinkers. Heavy drinkers also had the highest risk for alcohol problems on the AUDIT. One fifth of military personnel were heavy drinkers and were most likely aged 18 to 35. Prevention and clinical interventions should include a major focus on heavy drinkers. Commanders and peers should be trained in recognizing signs of heavy alcohol use and in approaching heavy alcohol users in a way that will foster positive attitudes as opposed to defensiveness and stigma. Published by Elsevier Ltd.
Ríos, Antonio; López-Navas, Ana I; Navalón, Juan C; Martínez-Alarcón, Laura; Ayala-García, Marco A; Sebastián-Ruiz, María J; Moya-Faz, Francisco; Garrido, Gregorio; Ramirez, Pablo; Parrilla, Pascual
2015-04-01
The Latin American (LA) population has similarities with the Spanish population which makes its integration into Spanish society easier. to analyze the attitude toward organ donation among Latin American citizens residing in Spain, to determine the psychosocial variables which affect this attitude, and to examine the correlation between donation rates of LA citizens in Spain and in their countries of origin. A random sample of LA residents in Spain was taken and stratified according to the respondent's nationality (n = 1.314), in the year 2010. Attitude was assessed using a validated questionnaire (PCID-DTO Dr Rios). The survey was self-administered and completed anonymously. Student's t-test, the χ(2) test, and logistic regression analysis. There was a 94% completion rate (n = 1.237). Attitude toward donation was favorable in 60% of cases (n = 745), 12% (n = 145) were against, and 28% (n = 347) were undecided. The following variables were associated with attitude toward donation: sex (P = 0.038), level of formal education (P < 0.001), country of origin (P = 0.002), attitude toward the donation of a family member's organs (P < 0.001), having discussed donation with the family (P < 0.001), carrying out prosocial activities (P = 0.025), attitude toward cremation of the body (P < 0.001), attitude toward burial of the body (P < 0.001), attitude toward having an autopsy carried out (P < 0.001), previous experience of the organ donation and transplantation process (P < 0.001), fear of mutilation after donation (P < 0.001), knowledge that the Church has a positive attitude toward organ donation and transplantation (P < 0.001), knowledge of one's partner's attitude toward organ donation (P < 0.001), and a belief that one might need a transplant in the future (P < 0.001). The donation rates in this population group in Spain are higher than those recorded in their countries of origin (55.76 vs. <10 pmp; P < 0.001). The attitude toward organ donation among LA citizens residing in Spain is slightly worse than that reported in the native Spanish population and is determined by many psychosocial factors. The donation rates of LA citizens in Spain are higher than those in their countries of origin. © 2015 Steunstichting ESOT.
Command History Calendar Year 1992 (Navy Personnel Research and Development Center)
1993-07-01
efficiently. and manage our personnel resources optimally. By combining a deep understanding of operational requirements with first-rate scientific and...the needs of manpower, personnel, and training managers in the Navy, Marine Corps, and Department of Defense (DOD); to the operating forces; and to the...NPRDC Professional Publications Award and the 1990 Commander’s Award for Management Excellence. He is a fellow of the American Association for the
75 FR 21040 - Submission for OMB Review: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
...: National Survey of Public Attitudes Towards People With Disabilities. OMB Control Number: Pending. Agency... assess public attitudes towards people with disabilities with a focus on workplace relations. The survey... attitudes of individuals and develops ways of changing those attitudes to improve the employment rate and...
Simultaneous quaternion estimation (QUEST) and bias determination
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1989-01-01
Tests of a new method for the simultaneous estimation of spacecraft attitude and sensor biases, based on a quaternion estimation algorithm minimizing Wahba's loss function are presented. The new method is compared with a conventional batch least-squares differential correction algorithm. The estimates are based on data from strapdown gyros and star trackers, simulated with varying levels of Gaussian noise for both inertially-fixed and Earth-pointing reference attitudes. Both algorithms solve for the spacecraft attitude and the gyro drift rate biases. They converge to the same estimates at the same rate for inertially-fixed attitude, but the new algorithm converges more slowly than the differential correction for Earth-pointing attitude. The slower convergence of the new method for non-zero attitude rates is believed to be due to the use of an inadequate approximation for a partial derivative matrix. The new method requires about twice the computational effort of the differential correction. Improving the approximation for the partial derivative matrix in the new method is expected to improve its convergence at the cost of increased computational effort.
A Coarse-Alignment Method Based on the Optimal-REQUEST Algorithm
Zhu, Yongyun
2018-01-01
In this paper, we proposed a coarse-alignment method for strapdown inertial navigation systems based on attitude determination. The observation vectors, which can be obtained by inertial sensors, usually contain various types of noise, which affects the convergence rate and the accuracy of the coarse alignment. Given this drawback, we studied an attitude-determination method named optimal-REQUEST, which is an optimal method for attitude determination that is based on observation vectors. Compared to the traditional attitude-determination method, the filtering gain of the proposed method is tuned autonomously; thus, the convergence rate of the attitude determination is faster than in the traditional method. Within the proposed method, we developed an iterative method for determining the attitude quaternion. We carried out simulation and turntable tests, which we used to validate the proposed method’s performance. The experiment’s results showed that the convergence rate of the proposed optimal-REQUEST algorithm is faster and that the coarse alignment’s stability is higher. In summary, the proposed method has a high applicability to practical systems. PMID:29337895
Rate determination from vector observations
NASA Technical Reports Server (NTRS)
Weiss, Jerold L.
1993-01-01
Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.
Pseudo-Linear Attitude Determination of Spinning Spacecraft
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2004-01-01
This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler s equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler's equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate. The performance of the two filters is examined using simulated data.
Matsukawa, Kanji; Ishii, Kei; Kadowaki, Akito; Liang, Nan; Ishida, Tomoko
2012-08-15
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, fictive motor activity in paralyzed, decerebrate cats. We confirmed that aortic nerve (AN)-stimulation-induced bradycardia was markedly blunted to 26 ± 4.4% of the control (21 ± 1.3 beats/min) at the onset of spontaneous motor activity. Although the baroreflex bradycardia by electrical stimulation of the carotid sinus nerve (CSN) was suppressed (P < 0.05) to 86 ± 5.6% of the control (38 ± 1.2 beats/min), the inhibitory effect of spontaneous motor activity was much weaker (P < 0.05) with CSN stimulation than with AN stimulation. The baroreflex bradycardia elicited by brief occlusion of the abdominal aorta was blunted to 36% of the control (36 ± 1.6 beats/min) during spontaneous motor activity, suggesting that central command is able to inhibit the cardiomotor sensitivity of arterial baroreflexes as the net effect. Mechanical stretch of the triceps surae muscle never affected the baroreflex bradycardia elicited by AN or CSN stimulation and by aortic occlusion, suggesting that muscle mechanoreflex did not modify the cardiomotor sensitivity of aortic and carotid sinus baroreflex. Since the inhibitory effect of central command on the carotid baroreflex pathway, associated with spontaneous motor activity, was much weaker compared with the aortic baroreflex pathway, it is concluded that central command does not force a generalized modulation on the whole pathways of arterial baroreflexes but provides selective inhibition for the cardiomotor component of the aortic baroreflex.
Test Telemetry And Command System (TTACS)
NASA Technical Reports Server (NTRS)
Fogel, Alvin J.
1994-01-01
The Jet Propulsion Laboratory has developed a multimission Test Telemetry and Command System (TTACS) which provides a multimission telemetry and command data system in a spacecraft test environment. TTACS reuses, in the spacecraft test environment, components of the same data system used for flight operations; no new software is developed for the spacecraft test environment. Additionally, the TTACS is transportable to any spacecraft test site, including the launch site. The TTACS is currently operational in the Galileo spacecraft testbed; it is also being provided to support the Cassini and Mars Surveyor Program projects. Minimal personnel data system training is required in the transition from pre-launch spacecraft test to post-launch flight operations since test personnel are already familiar with the data system's operation. Additionally, data system components, e.g. data display, can be reused to support spacecraft software development; and the same data system components will again be reused during the spacecraft integration and system test phases. TTACS usage also results in early availability of spacecraft data to data system development and, as a result, early data system development feedback to spacecraft system developers. The TTACS consists of a multimission spacecraft support equipment interface and components of the multimission telemetry and command software adapted for a specific project. The TTACS interfaces to the spacecraft, e.g., Command Data System (CDS), support equipment. The TTACS telemetry interface to the CDS support equipment performs serial (RS-422)-to-ethernet conversion at rates between 1 bps and 1 mbps, telemetry data blocking and header generation, guaranteed data transmission to the telemetry data system, and graphical downlink routing summary and control. The TTACS command interface to the CDS support equipment is nominally a command file transferred in non-real-time via ethernet. The CDS support equipment is responsible for metering the commands to the CDS; additionally for Galileo, TTACS includes a real-time-interface to the CDS support equipment. The TTACS provides the basic functionality of the multimission telemetry and command data system used during flight operations. TTACS telemetry capabilities include frame synchronization, Reed-Solomon decoding, packet extraction and channelization, and data storage/query. Multimission data display capabilities are also available. TTACS command capabilities include command generation verification, and storage.
Dental student attitudes towards communication skills instruction and clinical application.
McKenzie, Carly T
2014-10-01
This study investigated dental students' attitudes towards communication skills instruction and clinical application and explored the impact of a one-semester course and year in school on students' attitudes, measured by the Communication Skills Attitude Scale. Demographic characteristics and self-assessment of communication skills were also analyzed. The study employed a pretest-posttest survey design combined with cross-sectional data. Participants were first- and fourth-year students at a U.S. dental school. Out of a possible 120 students, 106 (fifty-seven D1 and forty-nine D4) participated in the pretest, an 88 percent response rate; out of a possible 121 students, 115 (fifty-seven D1 and fifty-eight D4) participated in the posttest, a 95 percent response rate. In the results, D4 students consistently demonstrated less positive attitudes towards communication skills instruction and more negative attitudes regarding the importance of interpersonal skills in clinical encounters than did their D1 counterparts. A single communications course had no discernible effect on attitudes or self-assessments for either cohort. Females reported more positive attitudes towards clinical application of interpersonal skills than did males. Gender significantly interacted with two demographic variables: primary language and parent as health care professional. Female children of health care professionals reported poorer attitudes towards clinical communication skills training and application than did their male counterparts. Generally, parental occupation in health care moderated the decrease in positive attitudes over time towards clinical usefulness of communication skills. The D4 students rated their communication skills higher than did the D1 students. Students who demonstrated more positive attitudes towards communication skills training and application were more likely to say their own skills needed improvement.
Attitude Model of a Reaction Wheel/Fixed Thruster Based Satellite Using Telemetry Data
2005-03-01
xii ATTITUDE MODEL OF A REACTION WHEEL/ FIXED THRUSTER BASED SATELLITE USING TELEMETRY DATA I. Introduction As technology advances and spacecraft ...Earth’s horizon to determine spacecraft attitude . Sun sensors use the Sun to determine spacecraft attitude and are currently the attitude determination...wheels and the rate of rotation of the gimbal. Gravity gradient stabilization is a passive attitude control technique that is designed to use the
Jewish and Celtic attitudes to breast feeding compared.
Ineichen, B; Pierce, M; Lawrenson, R
1997-03-01
To examine reasons for the high rate of breast feeding among one UK ethnic group (Jews) and the low rate among Celtic (Scots and Irish) populations. A manual literature search of ethnic variation in breast feeding rates in the UK was conducted over several years. A computerised search yielded 31 additional references. Seven of these were added. Positive Jewish attitudes to breast feeding were underpinned by scriptural references, and rates of breast feeding were found to be especially high among Orthodox samples in the UK and Israel. Low Scottish and Irish rates appear to reflect prudishness, fashion, and possibly poor health. Reasons for falling rates among these populations in the twentieth century were not clear. Health education needs to address cultural attitudes throughout society if effective change is to be introduced, and the overall rate of breast feeding is to be increased.
Attitudes toward suicide among college students in South Korea and the United States
2014-01-01
Background South Korea (hereafter, Korea) has witnessed a rapid increase in its suicide rate over the past few decades and currently reports the highest rate among Organization for Economic Cooperation and Development (OECD) countries. Conversely, the United States has maintained its suicide rate near the OECD average. The present study examines and compares attitudes toward suicide among college students in either country to explain the higher prevalence of suicide in Korea. Findings Non-Korean students in the United States, Korean students in the United States, and Korean students in Korea completed a web-based questionnaire on Attitudes Toward Suicide (ATTS). A series of two-way 3 × 2 between subjects Analysis of Variance (ANOVA) tests of the participants’ group and gender, as well as post-hoc comparisons, were conducted to examine differences across various attitude domains. As expected, the results revealed group differences in the majority of attitude areas. Most notably, students in Korea reported more permissive attitudes toward suicide and were less likely to believe in the right to prevent others’ suicide. Gender did not have an effect on any attitudes except on the right to prevent suicide and there were no interactions between group and gender. Conclusions The results suggest the importance of addressing public attitudes toward suicide in future suicide prevention efforts in Korea. PMID:24843383
Altukhov, Alexey V.; Andrews, Russel D.; Calkins, Donald G.; Gelatt, Thomas S.; Gurarie, Eliezer D.; Loughlin, Thomas R.; Mamaev, Evgeny G.; Nikulin, Victor S.; Permyakov, Peter A.; Ryazanov, Sergey D.; Vertyankin, Vladimir V.; Burkanov, Vladimir N.
2015-01-01
After a dramatic population decline, Steller sea lions have begun to recover throughout most of their range. However, Steller sea lions in the Western Aleutians and Commander Islands are continuing to decline. Comparing survival rates between regions with different population trends may provide insights into the factors driving the dynamics, but published data on vital rates have been extremely scarce, especially in regions where the populations are still declining. Fortunately, an unprecedented dataset of marked Steller sea lions at rookeries in the Russian Far East is available, allowing us to determine age and sex specific survival in sea lions up to 22 years old. We focused on survival rates in three areas in the Russian range with differing population trends: the Commander Islands (Medny Island rookery), Eastern Kamchatka (Kozlov Cape rookery) and the Kuril Islands (four rookeries). Survival rates differed between these three regions, though not necessarily as predicted by population trends. Pup survival was higher where the populations were declining (Medny Island) or not recovering (Kozlov Cape) than in all Kuril Island rookeries. The lowest adult (> 3 years old) female survival was found on Medny Island and this may be responsible for the continued population decline there. However, the highest adult survival was found at Kozlov Cape, not in the Kuril Islands where the population is increasing, so we suggest that differences in birth rates might be an important driver of these divergent population trends. High pup survival on the Commander Islands and Kamchatka Coast may be a consequence of less frequent (e.g. biennial) reproduction there, which may permit females that skip birth years to invest more in their offspring, leading to higher pup survival, but this hypothesis awaits measurement of birth rates in these areas. PMID:26016772
Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system
NASA Technical Reports Server (NTRS)
Mcewen, Rob
1994-01-01
Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.
Influenza vaccination status and attitudes among restaurant employees.
Parrish, Amanda T; Graves, Meredith C; Harris, Jeffrey R; Hannon, Peggy A; Hammerback, Kristen; Allen, Claire L
2015-01-01
Restaurant employees represent a substantial portion of the US workforce, interact closely with the public, and are at risk for contracting influenza, yet their influenza vaccination rates and attitudes are unknown. Assess influenza vaccination rates and attitudes among Seattle restaurant employees, to identify factors that could enhance the success of a restaurant-based vaccination program. In 2012, we invited employees of Seattle restaurants to complete an anonymous paper survey assessing participant demographics, previous influenza vaccination status, and personal attitudes toward influenza vaccination (using a 5-point scale). Sit-down, full service restaurants in or near Seattle, Washington, were eligible if they had no previous history of offering worksite influenza vaccinations and had more than 20 employees who were older than 18 years and spoke either English or Spanish. We invited staff in all restaurant positions (servers, bussers, kitchen staff, chefs, managers, etc) to complete the survey, which was available in English and Spanish. Of 428 restaurant employees surveyed, 26% reported receiving the seasonal influenza vaccine in 2011-2012 (response rate = 74%). Across 8 attitude statements, participants were most likely to agree that the vaccine is not too expensive (89%), and least likely to agree that it is relevant for their age group (25%), or normative at their workplace (13%). Vaccinated participants reported significantly more positive attitudes than unvaccinated participants, and Hispanics reported significantly more positive attitudes than non-Hispanic whites. Increasing influenza vaccination rates among restaurant employees could protect a substantial portion of the US workforce, and the public, from influenza. Seattle restaurant employees have low vaccination rates against seasonal influenza. Interventions aimed at increasing vaccination among restaurant employees should highlight the vaccine's relevance and effectiveness for working-age adults.
How well does voice interaction work in space?
NASA Technical Reports Server (NTRS)
Morris, Randy B.; Whitmore, Mihriban; Adam, Susan C.
1993-01-01
The methods and results of an evaluation of the Voice Navigator software package are discussed. The first phase or ground phase of the study consisted of creating, or training, computer voice files of specific commands. This consisted of repeating each of six commands eight times. The files were then tested for recognition accuracy by the software aboard the microgravity aircraft. During the second phase, both voice training and testing were performed in microgravity. Inflight training was done due to problems encountered in phase one which were believed to be caused by ambient noise levels. Both quantitative and qualitative data were collected. Only one of the commands was found to offer consistently high recognition rates across subjects during the second phase.
NASA Technical Reports Server (NTRS)
Barker, L. K.; Houck, J. A.; Carzoo, S. W.
1984-01-01
An operator commands a robot hand to move in a certain direction relative to its own axis system by specifying a velocity in that direction. This velocity command is then resolved into individual joint rotational velocities in the robot arm to effect the motion. However, the usual resolved-rate equations become singular when the robot arm is straightened. To overcome this elbow joint singularity, equations were developed which allow continued translational control of the robot hand even though the robot arm is (or is nearly) fully extended. A feature of the equations near full arm extension is that an operator simply extends and retracts the robot arm to reverse the direction of the elbow bend (difficult maneuver for the usual resolved-rate equations). Results show successful movement of a graphically simulated robot arm.
Lee, Sang-Il; Khang, Young-Ho; Lee, Moo-Song
2004-06-01
In South Korea, cesarean section rates (i.e., the proportion of all live births delivered by cesarean section) approached 40 percent in 2000. The relative contribution of physicians and women to this high rate has been a source of debate. This study explored attitudes toward mode of delivery among South Korean women. A nationwide cross-sectional telephone survey of 505 Korean women aged 20 to 49 years was conducted using a proportionate quota and systematic random sampling method. The response rate was 57.3 percent. Data were collected using a structured questionnaire consisting of 7 questions about vaginal and cesarean delivery. Over 95 percent of women preferred vaginal delivery during pregnancy and were willing to recommend this method to others. Of the women who delivered by cesarean section, 10.6 percent stated that they had requested a cesarean birth. Attitudes toward vaginal or cesarean delivery differed significantly according to a woman's education level. Most study participants showed more favorable attitudes toward vaginal delivery than cesarean delivery. This result does not support the assumption that the upsurge of cesarean section rates in South Korea is associated with women's positive attitudes toward cesarean section. The main cause of the rapid rise of cesarean section rates in South Korea during the past two decades have its origins in health care practitioners and the health care system in which they work.
Joint Forward Operating Base Elements of Command and Control
NASA Astrophysics Data System (ADS)
Summers, William C.
2002-01-01
Since the 1986 Goldwater-Nichols Act directed the Chairman of the Joint Chiefs of Staff to develop doctrine for the joint employment of the armed forces, tactics, techniques, and procedures have evolved at different rates depending on the competency. Whereas the command of joint air forces is well prescribed within the structure of the air operations center and its associated leadership, command of air assets at a joint forward operating base lacks guidance. Today, the United States prosecutes an air war over Afghanistan from bases in Uzbekistan, Pakistan, and Afghanistan. Elements of the United States Army, Air Force, and Marines combine at these geographically minute locations, each bringing a certain complement of support and command and control. Evidence from operations during the 1999 air war for Kosovo at Tirana Rinas Airport in Albania suggests that when these service elements meet at the airfield for the first time, there are problems associated with local procedure. At best, time is wasted creating local joint systems to overcome the difficulties. At worst, safety and mission accomplishment are jeopardized. This thesis will address the need to develop doctrine and a jointly integrated organization to support the command and control function at a forward operating base.
Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims.
Barnes, Ralph M; Tobin, Stephanie J; Johnston, Heather M; MacKenzie, Noah; Taglang, Chelsea M
2016-01-01
A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.
Attitude and Trajectory Estimation Using Earth Magnetic Field Data
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack Y.
1996-01-01
The magnetometer has long been a reliable, inexpensive sensor used in spacecraft momentum management and attitude estimation. Recent studies show an increased accuracy potential for magnetometer-only attitude estimation systems. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computer and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. Traditionally, satellite attitude and trajectory have been estimated with completely separate system, using different measurement data. Recently, trajectory estimation for low earth orbit satellites was successfully demonstrated in ground software using only magnetometer data. This work proposes a single augmented extended Kalman Filter to simultaneously and autonomously estimate both spacecraft trajectory and attitude with data from a magnetometer and either dynamically determined rates or gyro-measured body rates.
The Relationship between a History of Childhood Sexual Abuse and Gender Role Attitudes
ERIC Educational Resources Information Center
Unger, Jo Ann; Norton, G. Ron; De Luca, Rayleen V.
2009-01-01
This study explored the relationship between childhood sexual abuse and gender role attitudes. Female university students rated themselves and their parents on gender role attitudes and history of childhood sexual abuse. Traditional participant gender role attitude and social isolation were associated with reporting being sexually abused as a…
Nakisci, Egemen; Ozdemir, Ramazan S.
2017-01-01
Background and objectives Extensive research documents ubiquitous negative attitudes towards stuttering, but when and how they develop is unclear. This non-experimental, comparative study examined US and Turkish preschoolers to explore the origin of stuttering attitudes cross-culturally. Method The authors compared stuttering attitudes of 28 US and 31 Turkish non-stuttering preschoolers on English and Turkish versions of experimental prototypes of the newly developed Public Opinion Survey on Human Attributes–Stuttering/Child (POSHA–S/Child). Children first watched a short video of two stuttering avatar characters and then answered oral questions about stuttering. Parents completed a demographic questionnaire. Differences in the US and Turkish POSHA–S/Child means were calculated using the Mann–Whitney U test. Results Attitudes of the US and Turkish children were remarkably similar. Children rated most of the items negatively but also rated some items as neutral or positive. They held relatively more negative attitudes towards traits and personalities of children who stutter yet relatively more positive attitudes towards stuttering children’s potential. Conclusion Stuttering attitudes in children appear to be partly independent of culture. PMID:28470081
Weidner, Mary E; St Louis, Kenneth O; Nakisci, Egemen; Ozdemir, Ramazan S
2017-04-21
Extensive research documents ubiquitous negative attitudes towards stuttering, but when and how they develop is unclear. This non-experimental, comparative study examined US and Turkish preschoolers to explore the origin of stuttering attitudes cross-culturally. The authors compared stuttering attitudes of 28 US and 31 Turkish non-stuttering preschoolers on English and Turkish versions of experimental prototypes of the newly developed Public Opinion Survey on Human Attributes-Stuttering/Child (POSHA-S/Child). Children first watched a short video of two stuttering avatar characters and then answered oral questions about stuttering. Parents completed a demographic questionnaire. Differences in the US and Turkish POSHA-S/Child means were calculated using the Mann-Whitney U test. Attitudes of the US and Turkish children were remarkably similar. Children rated most of the items negatively but also rated some items as neutral or positive. They held relatively more negative attitudes towards traits and personalities of children who stutter yet relatively more positive attitudes towards stuttering children's potential. Stuttering attitudes in children appear to be partly independent of culture.
Pool, Sean M; Hoyle, John M; Malone, Laurie A; Cooper, Lloyd; Bickel, C Scott; McGwin, Gerald; Rimmer, James H; Eberhardt, Alan W
2016-04-08
One approach to encourage and facilitate exercise is through interaction with virtual environments. The present study assessed the utility of Microsoft Kinect as an interface for choosing between multiple routes within a virtual environment through body gestures and voice commands. The approach was successfully tested on 12 individuals post-stroke and 15 individuals with cerebral palsy (CP). Participants rated their perception of difficulty in completing each gesture using a 5-point Likert scale questionnaire. The "most viable" gestures were defined as those with average success rates of 90% or higher and perception of difficulty ranging between easy and very easy. For those with CP, hand raises, hand extensions, and head nod gestures were found most viable. For those post-stroke, the most viable gestures were torso twists, head nods, as well as hand raises and hand extensions using the less impaired hand. Voice commands containing two syllables were viable (>85% successful) for those post-stroke; however, participants with CP were unable to complete any voice commands with a high success rate. This study demonstrated that Kinect may be useful for persons with mobility impairments to interface with virtual exercise environments, but the effectiveness of the various gestures depends upon the disability of the user.
The accuracy of dynamic attitude propagation
NASA Technical Reports Server (NTRS)
Harvie, E.; Chu, D.; Woodard, M.
1990-01-01
Propagating attitude by integrating Euler's equation for rigid body motion has long been suggested for the Earth Radiation Budget Satellite (ERBS) but until now has not been implemented. Because of limited Sun visibility, propagation is necessary for yaw determination. With the deterioration of the gyros, dynamic propagation has become more attractive. Angular rates are derived from integrating Euler's equation with a stepsize of 1 second, using torques computed from telemetered control system data. The environmental torque model was quite basic. It included gravity gradient and unshadowed aerodynamic torques. Knowledge of control torques is critical to the accuracy of dynamic modeling. Due to their coarseness and sparsity, control actuator telemetry were smoothed before integration. The dynamic model was incorporated into existing ERBS attitude determination software. Modeled rates were then used for attitude propagation in the standard ERBS fine-attitude algorithm. In spite of the simplicity of the approach, the dynamically propagated attitude matched the attitude propagated with good gyros well for roll and yaw but diverged up to 3 degrees for pitch because of the very low resolution in pitch momentum wheel telemetry. When control anomalies significantly perturb the nominal attitude, the effect of telemetry granularity is reduced and the dynamically propagated attitudes are accurate on all three axes.
Factors associated with compliance and resistance to command hallucinations.
Mackinnon, Andrew; Copolov, David L; Trauer, Tom
2004-05-01
Command hallucinations (CHs) are hallucinations that direct the patient to perform an action. Beyond issues related to the danger that some CHs may pose, comparatively little is known about the broader clinical context of CHs. To investigate this, 199 patients were interviewed using the Mental Health Research Institute Unusual Perceptions Scale. More than two thirds of the sample reported hearing CHs. A quarter of these patients felt unable to resist them. Patients with CHs reported their voices more negatively than those who did not hear commands. More of those unable to resist CHs rated their hallucinations as intrusive, they had fewer coping strategies than those able to resist, and they were prescribed higher dosages of medication. CHs are associated with a greater degree of adverse hallucinatory and illness experience. Patients who experience CHs may have a more malignant form of the underlying disorder. Thus, CHs warrant special therapeutic attention for reasons beyond any harm that their commands pose to themselves or others.
Servo control booster system for minimizing following error
Wise, W.L.
1979-07-26
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Attitudes of neurology specialists toward older adults.
Seferoğlu, Meral; Yıldız, Demet; Pekel, Nilüfer Büyükkoyuncu; Güneş, Aygül; Yıldız, Abdülmecit; Tufan, Fatih
2017-08-01
Attitude of healthcare providers toward older people is very important in the aging world. Neurologists contact older adults very frequently. We aimed to investigate the attitudes of neurologists toward older adults. We recorded participants age; sex; duration of clinical practice in neurology; existence of older adult relatives; and history of geriatrics education, nursing home visits, older adult patient density in their clinical practice, and participation in voluntary public activities. UCLA Geriatrics Attitude Scale was used to evaluate participants' attitudes. A total of 100 neurologists participated in this study. Seventy-seven percent had positive, 3 % had neutral, and 20 % had negative attitudes. Twenty-seven percent of the participants had history of geriatrics education, and these participants tended to have a higher rate of positive attitudes. Neurologists with positive attitudes tended to be older than those with negative attitudes. Participants with history of living with older adult relatives had lower rates of positive attitudes. The most common diagnoses of the patients the participants encountered were stroke and dementia. Independent factors associated with positive attitudes were history of geriatrics education and older age. History of living with older relatives tended to have a negative effect. Most of the negative items of the attitude scale were associated with the natural course and behavior of the common diseases in neurology practice. Generalization of geriatrics education may translate into a better understanding and improved care for older patients. Development of instruments and implementation of qualitative studies to assess attitudes of neurologists toward older adults are needed.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.
1992-01-01
The Experiment Control and Monitor (EC&M) software was developed at NASA Lewis Research Center to support the Advanced Communications Technology Satellite (ACTS) High Burst Rate Link Evaluation Terminal (HBR-LET). The HBR-LET is an experimenter's terminal to communicate with the ACTS for various investigations by government agencies, universities, and industry. The EC&M software is one segment of the Control and Performance Monitoring (C&PM) software system of the HBR-LET. The EC&M software allows users to initialize, control, and monitor the instrumentation within the HBR-LET using a predefined sequence of commands. Besides instrument control, the C&PM software system is also responsible for computer communication between the HBR-LET and the ACTS NASA Ground Station and for uplink power control of the HBR-LET to demonstrate power augmentation during rain fade events. The EC&M Software User's Guide, Version 1.0 (NASA-CR-189160) outlines the commands required to install and operate the EC&M software. Input and output file descriptions, operator commands, and error recovery procedures are discussed in the document.
Addressing the Hard Factors for Command File Errors by Probabilistic Reasoning
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Bryant, Larry
2014-01-01
Command File Errors (CFE) are managed using standard risk management approaches at the Jet Propulsion Laboratory. Over the last few years, more emphasis has been made on the collection, organization, and analysis of these errors for the purpose of reducing the CFE rates. More recently, probabilistic modeling techniques have been used for more in depth analysis of the perceived error rates of the DAWN mission and for managing the soft factors in the upcoming phases of the mission. We broadly classify the factors that can lead to CFE's as soft factors, which relate to the cognition of the operators and hard factors which relate to the Mission System which is composed of the hardware, software and procedures used for the generation, verification & validation and execution of commands. The focus of this paper is to use probabilistic models that represent multiple missions at JPL to determine the root cause and sensitivities of the various components of the mission system and develop recommendations and techniques for addressing them. The customization of these multi-mission models to a sample interplanetary spacecraft is done for this purpose.
Tumbling and spaceflight: the Gemini VIII experience.
Mohler, S R; Nicogossian, A E; McCormack, P D; Mohler, S R
1990-01-01
A malfunctioning orbital flight attitude thruster during the flight of Gemini VIII led to acceleration forces on astronauts Neil Armstrong (commander) and David Scott (pilot) that created the potential for derogation of oculo-vestibular and eye-hand coordination effects. The spacecraft attained an axial tumbling rotation of 50 rpm and would have exceeded this had not the commander accurately diagnosed the problem and taken immediate corrective action. By the time counter-measure controls were applied, both astronauts were experiencing vertigo and the physiological effects of the tumbling acceleration. Data from the recorders reveal that one astronaut experienced -Gy of 0.92 G-units, and the other +Gy of 0.92 for approximately 46 s. Both received a -Gz of 0.89 G-units from the waist up with a +Gz of 0.05 from the waist down. A substantial increase of time and/or an increase in rpm would ultimately have produced incapacitation of both astronauts. NASA corrected the Gemini thruster problem by changing the ignition system wiring. Future space-craft undertaking long-term missions could be equipped with unambiguous thruster fault displays and could have computer-controlled automatic cutoffs to control excessive thruster burns.
Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit
NASA Technical Reports Server (NTRS)
Chelmins, David; Reinhart, Richard; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Mike
2014-01-01
As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASAs Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.
Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit
NASA Technical Reports Server (NTRS)
Chelmins, David T.; Reinhart, Richard C.; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Michael
2014-01-01
As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASA's Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.
NASA Astrophysics Data System (ADS)
Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei
2018-02-01
This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.
AIDS related attitudes and sexual practices of the Jakarta WARIA (male transvestites).
Lubis, I; Master, J; Bambang, M; Papilaya, A; Anthony, R L
1994-03-01
As part of a community based educational campaign to convey the risk of HIV infection and AIDS to commercial sex workers in Jakarta, over 600 male transvestites (WARIA) were questioned about their sexual behavior patterns and their knowledge and attitude towards HIV infection and AIDS. Most expressed a genuine fear about AIDS, but they stated they did not have sufficient information to determine if their risk of infection, at this time, was great enough to command a change in their sexual conduct. Among the group who felt they were not at risk for HIV infection, 40% had 8 or more different sex partners per week. Low risk receptive oral sex, thigh massage (simulated vaginal sex) and masturbation of the client were routine activities but high risk receptive anal sex without condoms was most common. Despite such high risk behavior, the WARIA community remains free of HIV infections. However, if they refuse to accept the endorsement of their peer leaders and they fail to alter their sexual behavior because of an unawareness of their risk, that status will change soon.
Development of the functional simulator for the Galileo attitude and articulation control system
NASA Technical Reports Server (NTRS)
Namiri, M. K.
1983-01-01
A simulation program for verifying and checking the performance of the Galileo Spacecraft's Attitude and Articulation Control Subsystem's (AACS) flight software is discussed. The program, which is called Functional Simulator (FUNSIM), provides a simple method of interfacing user-supplied mathematical models coded in FORTRAN which describes spacecraft dynamics, sensors, and actuators; this is done with the AACS flight software, coded in HAL/S (High-level Advanced Language/Shuttle). It is thus able to simulate the AACS flight software accurately to the HAL/S statement level in the environment of a mainframe computer system. FUNSIM also has a command and data subsystem (CDS) simulator. It is noted that the input/output data and timing are simulated with the same precision as the flight microprocessor. FUNSIM uses a variable stepsize numerical integration algorithm complete with individual error bound control on the state variable to solve the equations of motion. The program has been designed to provide both line printer and matrix dot plotting of the variables requested in the run section and to provide error diagnostics.
Vector Observation-Aided/Attitude-Rate Estimation Using Global Positioning System Signals
NASA Technical Reports Server (NTRS)
Oshman, Yaakov; Markley, F. Landis
1997-01-01
A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.
A User’s Guide to the MOFO Model
1989-08-01
8592 8591 8589 8588 8586 8585 8583 8582 8580 6 4 2 1 1 0 0 0 0 0 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0...radians to degrees ( ISO /it degrees/radian) Common Block ICONTRLI CH1DOT—present commanded heading rate after time filtering CHIDOTO—previous commanded
Simple method enabling pulse on command from high power, high frequency lasers
NASA Astrophysics Data System (ADS)
Baer, David J.; Marshall, Graham D.; Coutts, David W.; Mildren, Richard P.; Withford, Michael J.
2006-09-01
A method for addressing individual laser pulses in high repetition frequency systems using an intracavity optical chopper and novel electronic timing system is reported. This "pulse on command" capability is shown to enable free running and both subharmonic pulse rate and burst mode operation of a high power, high pulse frequency copper vapor laser while maintaining a fixed output pulse energy. We demonstrate that this technique can be used to improve feature finish when laser micromachining metal.
ERIC Educational Resources Information Center
Henderson-King, Donna; Brooks, Kelly D.
2009-01-01
Rates of cosmetic surgery procedures have increased dramatically over the past several decades, but only recently have studies of cosmetic surgery attitudes among the general population begun to appear in the literature. The vast majority of those who undergo cosmetic surgery are women. We examined cosmetic surgery attitudes among 218…
The Effect of Sensor Failure on the Attitude and Rate Estimation of MAP Spacecraft
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Harman, Richard R.
2003-01-01
This work describes two algorithms for computing the angular rate and attitude in case of a gyro and a Star Tracker failure in the Microwave Anisotropy Probe (MAP) satellite, which was placed in the L2 parking point from where it collects data to determine the origin of the universe. The nature of the problem is described, two algorithms are suggested, an observability study is carried out and real MAP data are used to determine the merit of the algorithms. It is shown that one of the algorithms yields a good estimate of the rates but not of the attitude whereas the other algorithm yields a good estimate of the rate as well as two of the three attitude angles. The estimation of the third angle depends on the initial state estimate. There is a contradiction between this result and the outcome of the observability analysis. An explanation of this contradiction is given in the paper. Although this work treats a particular spacecraft, its conclusions are more general.
Rasch Analysis for Psychometric Improvement of Science Attitude Rating Scales
ERIC Educational Resources Information Center
Oon, Pey-Tee; Fan, Xitao
2017-01-01
Students' attitude towards science (SAS) is often a subject of investigation in science education research. Survey of rating scale is commonly used in the study of SAS. The present study illustrates how Rasch analysis can be used to provide psychometric information of SAS rating scales. The analyses were conducted on a 20-item SAS scale used in an…
Effect of Variations in IRU Integration Time Interval On Accuracy of Aqua Attitude Estimation
NASA Technical Reports Server (NTRS)
Natanson, G. A.; Tracewell, Dave
2003-01-01
During Aqua launch support, attitude analysts noticed several anomalies in Onboard Computer (OBC) rates and in rates computed by the ground Attitude Determination System (ADS). These included: 1) periodic jumps in the OBC pitch rate every 2 minutes; 2) spikes in ADS pitch rate every 4 minutes; 3) close agreement between pitch rates computed by ADS and those derived from telemetered OBC quaternions (in contrast to the step-wise pattern observed for telemetered OBC rates); 4) spikes of +/- 10 milliseconds in telemetered IRU integration time every 4 minutes (despite the fact that telemetered time tags of any two sequential IRU measurements were always 1 second apart from each other). An analysis presented in the paper explains this anomalous behavior by a small average offset of about 0.5 +/- 0.05 microsec in the time interval between two sequential accumulated angle measurements. It is shown that errors in the estimated pitch angle due to neglecting the aforementioned variations in the integration time interval by the OBC is within +/- 2 arcseconds. Ground attitude solutions are found to be accurate enough to see the effect of the variations on the accuracy of the estimated pitch angle.
Charge efficiency of Ni/H2 cells during transfer orbit of Telstar 4 satellites
NASA Technical Reports Server (NTRS)
Fang, W. C.; Maurer, Dean W.; Vyas, B.; Thomas, M. N.
1994-01-01
The TELSTAR 4 communication satellites being manufactured by Martin Marietta Astro Space (Astro Space) for AT&T are three axis stabilized spacecraft scheduled to be launched on expendable vehicles such as the Atlas or Ariane rockets. Typically, these spacecraft consist of a box that holds the electronics and supports the antenna reflectors and the solar array wings. The wings and reflectors are folded against the sides of the box during launch and the spacecraft is spun for attitude control in that phase; they are then deployed after achieving the final orbit. The launch phase and transfer orbits required to achieve the final geosynchronous orbit typically take 4 to 5 days during which time the power required for command, telemetry, attitude control, heaters, etc., is provided by two 50 AH nickel hydrogen batteries augmented by the exposed outboard solar panels. In the past, this situation has presented no problem since there was a considerable excess of power available from the array. In the case of large high powered spacecraft such as TELSTAR 4, however, the design power levels in transfer orbit approach the time-averaged power available from the exposed surface area of the solar arrays, resulting in a very tight power margin. To compound the difficulty, the array output of the spinning spacecraft in transfer orbit is shaped like a full wave rectified sine function and provides very low charging rates to the batteries during portions of the rotation. In view of the typically low charging efficiency of alkaline nickel batteries at low rates, it was decided to measure the efficiency during a simulation of the TELSTAR 4 conditions at the expected power levels and temperatures on three nickel hydrogen cells of similar design. The unique feature of nickel hydrogen cells that makes the continuous measurement of efficiency possible is that hydrogen is one of the active materials and thus, cell pressure is a direct measure of the state of charge or available capacity. The pressure is measured with a calibrated strain gage mounted on the outside of the pressurized cell.
DSP/FPGA Design for a High-Speed Programmable S-Band Space Transceiver
NASA Technical Reports Server (NTRS)
Janicik, Jeffrey; Friedman, Assi
2013-01-01
Traditional command uplink receivers are very limited in performance capability, take a long time to acquire, cannot operate on both uplink bands (NASA & AFSCN), and only support low-rate communications. As a result, transceivers end up on many programs critical paths, even though they should be a standard purchased spacecraft subsystem. Also, many missions are impacted by the low effective uplink throughput. In order to tackle these challenges, a transceiver was developed that will provide on-site frequency agility, support of high uplink rates, and operation on both NASA and AFSCN frequency bands. The device is a low-power, high-reliability, and high-performance digital signal processing (DSP) demodulator for an on-orbit programmable command receiver.
2000-10-23
In the Space Station Processing Facility, a worker is surprised by the camera as she exits the U.S. Lab, Destiny. Inside the lab is the STS-98 crew, which is taking part in Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
In the Space Station Processing Facility, workers in the foreground watch and wait while members of the STS-98 crew check out the U.S. Lab, Destiny in the background. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. They are taking part in Crew Equipment Interface Test activities, becoming familiar with equipment they will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
In the Space Station Processing Facility, members of the STS-98 crew check out components inside the U.S. Lab, Destiny, under the watchful eye of trainers. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. They are taking part in Crew Equipment Interface Test activities, becoming familiar with equipment they will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
Inside the U.S. Lab, Destiny, members of the STS-98 crew work with technicians (in the background) to learn more about the equipment in the module. They are taking part in Crew Equipment Interface Test activities. At left, back to camera, is Mission Specialist Marsha Ivins. Standing are Mission Specialists Thomas Jones (left) and Robert Curbeam (right). Other crew members not seen are Commander Ken Cockrell and Pilot Mark Polansky. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
In the Space Station Processing Facility, STS-98 Mission Specialist Marsha Ivins wields a tool on part of the U.S. Lab, Destiny. The crew is checking out equipment inside the lab as part of Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
In the Space Station Processing Facility, STS-98 Mission Specialist Marsha Ivins maneuvers a part of the U.S. Lab, Destiny. The crew is checking out equipment inside the lab as part of Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
In the Space Station Processing Facility, workers at left watch while members of the STS-98 crew check out equipment inside the U.S. Lab, Destiny (at right). The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. They are taking part in Crew Equipment Interface Test activities, becoming familiar with equipment they will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
Space vehicle with customizable payload and docking station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judd, Stephen; Dallmann, Nicholas; McCabe, Kevin
A "black box" space vehicle solution may allow a payload developer to define the mission space and provide mission hardware within a predetermined volume and with predetermined connectivity. Components such as the power module, radios and boards, attitude determination and control system (ADCS), command and data handling (C&DH), etc. may all be provided as part of a "stock" (i.e., core) space vehicle. The payload provided by the payload developer may be plugged into the space vehicle payload section, tested, and launched without custom development of core space vehicle components by the payload developer. A docking station may facilitate convenient developmentmore » and testing of the space vehicle while reducing handling thereof.« less
STS-98 crew members take part in CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, a worker is surprised by the camera as she exits the U.S. Lab, Destiny. Inside the lab is the STS-98 crew, which is taking part in Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.
Development of bubble memory recorder onboard Japan Earth Resources Satellite-1
NASA Astrophysics Data System (ADS)
Araki, Tsunehiko; Ishida, Chu; Ochiai, Kiyoshi; Nozue, Tatsuhiro; Tachibana, Kyozo; Yoshida, Kazutoshi
The Bubble Memory Recorder (BMR) developed for use on the Earth Resources Satellite is described in terms of its design, capabilities, and functions. The specifications of the BMR are given listing memory capacity, functions, and interface types for data, command, and telemetry functions. The BMR has an emergency signal interface to provide contingency recording, and a satellite-separation signal interface can be turned on automatically by signal input. Data are stored in a novolatile memory device so that the memory is retained during power outages. The BMR is characterized by a capability for random access, nonvolatility, and a solid-state design that is useful for space operations since it does not disturb spacecraft attitude.
NASA Technical Reports Server (NTRS)
Larman, B. T.
1981-01-01
The conduction of the Project Galileo Orbiter, with 18 microcomputers and the equivalent of 360K 8-bit bytes of memory contained within two major engineering subsystems and eight science instruments, requires that the key onboard computer system resources be managed in a very rigorous manner. Attention is given to the rationale behind the project policy, the development stage, the preliminary design stage, the design/implementation stage, and the optimization or 'scrubbing' stage. The implementation of the policy is discussed, taking into account the development of the Attitude and Articulation Control Subsystem (AACS) and the Command and Data Subsystem (CDS), the reporting of margin status, and the response to allocation oversubscription.
STS-98 crew members take part in CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Marsha Ivins maneuvers a part of the U.S. Lab, Destiny. The crew is checking out equipment inside the lab as part of Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.
Balloon Support Systems Performance for the Cosmic Rays Energetics and Mass Mission
NASA Technical Reports Server (NTRS)
Tompson, Linda D.; Stuchlik, David W.
2006-01-01
The Ballooncraft Support Systems were developed by NASA Wallops Flight Facility for use on ULDB class balloon missions. The support systems have now flown two missions supporting the Cosmic Rays Energetics and Mass (CREAM) experiment. The first, CREAM I, flown in December 2004, was for a record breaking 41 days, 21 hours, and the second, flown in December 2005, was for 28 days, 9 hours. These support systems provide CREAM with power, telecommunications, command and data handling ioc!uding Plight computers, mechanical structures, thermal management and attitude control to help ensure a successful scientific mission. This paper will address the performance and success of these support systems over the two missions.
Attitude control of the space construction base: A modular approach
NASA Technical Reports Server (NTRS)
Oconnor, D. A.
1982-01-01
A planar model of a space base and one module is considered. For this simplified system, a feedback controller which is compatible with the modular construction method is described. The systems dynamics are decomposed into two parts corresponding to base and module. The information structure of the problem is non-classical in that not all system information is supplied to each controller. The base controller is designed to accommodate structural changes that occur as the module is added and the module controller is designed to regulate its own states and follow commands from the base. Overall stability of the system is checked by Liapunov analysis and controller effectiveness is verified by computer simulation.
Trajectory control sensor engineering model detailed test objective
NASA Technical Reports Server (NTRS)
Dekome, Kent; Barr, Joseph Martin
1991-01-01
The concept employed in an existing Trajectory Control Sensor (TCS) breadboard is being developed into an engineering model to be considered for flight on the Shuttle as a Detailed Test Objective (DTO). The sensor design addresses the needs of Shuttle/SSF docking/berthing by providing relative range and range rate to 1500 meters as well as the perceived needs of AR&C by relative attitude measurement over the last 100 meters. Range measurement is determined using a four-tone ranging technique. The Doppler shift on the highest frequency tone will be used to provide direct measurement of range rate. Bearing rate and attitude rates will be determined through back differencing of bearing and attitude, respectively. The target consists of an isosceles triangle configuration of three optical retroreflectors, roughly one meter and one-half meter in size. After target acquisition, the sensor continually updates the positions of the three retros at a rate of about one hertz. The engineering model is expected to weigh about 25 pounds, consume 25-30 watts, and have an envelope of about 1.25 cubic feet. The following concerns were addressed during the presentation: are there any concerns with differentiating attitude and bearing to get attitude and bearing rates? Since the docking scenario has low data bandwidth, back differencing is a sufficient approximation of a perfect differentiator for this application. Could range data be obtained if there were no retroreflectors on the target vehicle? Possibly, but only at close range. It would be dependent on target characteristics.
High Quality Teaching in a University: Identification and Description.
ERIC Educational Resources Information Center
Moses, Ingrid
1985-01-01
The teaching approaches and attitudes toward teaching of University of Queensland faculty rated superior under one rating system are examined, including professional and personal skills and attitudes such as subject area competence, ability to communicate knowledge in various classroom contexts, and commitment to facilitating learning in…
Golmakani, Nahid; Fazeli, Elham; Taghipour, Ali; Shakeri, Mohammad Taghi
2015-01-01
Fertility rate apparently is a non-interventional behavior, but in practice, it is influenced by social values and norms in which culture and traditional beliefs play a significant role. In this regard, some studies have shown that gender roles can be associated with reproductive behaviors. With regard to the importance of annual reduction of population growth rate and its outcomes, the present study was performed to determine the relationship between gender role attitude and fertility rate in women referring to Mashhad health centers in 2013. The present study is an analytical cross-sectional and multistage sampling study performed on 712 women. Data were collected by a questionnaire consisting of two sections: Personal information and gender role attitude questionnaire that contained two dimensions, i.e. gender stereotypes and gender egalitarianism. Its validity was determined by content validity and its reliability by internal consistency (r = 0.77). Data were analyzed by SPSS software version 16. Initial analysis of the data indicated that there was a significant relationship between acceptance of gender stereotypes (P = 0.008) and gender egalitarianism (P < 0.001), and fertility. There was also a direct association between acceptance of gender stereotypes and fertility rate (r = 0.13) and an indirect association between egalitarianism and fertility rate (r = -0.15). The results of the present study indicate that there is an association between gender role attitude and fertility. Paying attention to women's attitude is very important for successful planning in the improvement of fertility rate and population policy.
Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims
Barnes, Ralph M.; Tobin, Stephanie J.; Johnston, Heather M.; MacKenzie, Noah; Taglang, Chelsea M.
2016-01-01
A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect. PMID:27920743
Results of the Magnetometer Navigation (MAGNAV)lnflight Experiment
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Harman, Richard R.; Bar-Itzhack, Itzhack Y.; Lambertson, Mike
2004-01-01
The Magnetometer Navigation (MAGNAV) algorithm is currently running as a flight experiment as part of the Wide Field Infrared Explorer (WIRE) Post-Science Engineering Testbed. Initialization of MAGNAV occurred on September 4, 2003. MAGNAV is designed to autonomously estimate the spacecraft orbit, attitude, and rate using magnetometer and sun sensor data. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed magnetic field and measured magnetic field components, as measured by the magnetometer throughout the entire spacecraft orbit, are a function of the spacecraft trajectory and attitude errors. Therefore, these errors are used to estimate both trajectory and attitude. In addition, the time rate of change of the magnetic field vector is used to estimate the spacecraft rotation rate. The estimation of the attitude and trajectory is augmented with the rate estimation into an Extended Kalman filter blended with a pseudo-linear Kalman filter. Sun sensor data is also used to improve the accuracy and observability of the attitude and rate estimates. This test serves to validate MAGNAV as a single low cost navigation system which utilizes reliable, flight qualified sensors. MAGNAV is intended as a backup algorithm, an initialization algorithm, or possibly a prime navigation algorithm for a mission with coarse requirements. Results from the first six months of operation are presented.
Urban Early Childhood Teachers' Attitudes towards Inclusive Education
ERIC Educational Resources Information Center
Hsieh, Wu-Ying; Hsieh, Chang-Ming
2012-01-01
This study investigated the relationship between urban early childhood teachers' attitudes towards inclusive education and personal characteristics, professional background, and programme context. Questionnaires were completed by teachers (n = 130) who taught preschool children in primarily low-income, urban neighbourhoods. Attitude ratings were…
ERIC Educational Resources Information Center
Hsu, Tammy Huei-Lien
2016-01-01
This study explores the attitudes of raters of English speaking tests towards the global spread of English and the challenges in rating speakers of Indian English in descriptive speaking tasks. The claims put forward by language attitude studies indicate a validity issue in English speaking tests: listeners tend to hold negative attitudes towards…
Karpinski, Andrew; Steinman, Ross B; Hilton, James L
2005-07-01
The authors examined attitude importance as a moderator of the relationship between the Implicit Association Test (IAT) and explicit attitude measures. In Study 1 (N = 194), as ratings of attitude importance regarding the 2000 presidential election increased, the strength of the relationship between a Bush-Gore IAT and explicit attitude measures also increased. Study 2 provided a conceptual replication of these results using attitudes toward Coke and Pepsi (N = 112). In addition, across both studies, explicit attitude measures were better predictors of deliberative behaviors than IAT scores. In Study 3 (N = 77), the authors examined the role of elaboration as a mechanism by which attitude importance may moderate IAT-explicit attitude correlations. As predicted, increased elaboration resulted in stronger IAT-explicit attitude correlations. Other possible mechanisms by which attitude importance may moderate the IAT-explicit attitude relationship also are discussed.
Does attitude hinder or help selecting evaluation questions?
Shams, Behzad; Dehghani, Mostafa
2015-06-01
Positive attitude leads to a more successfully implementation of a change. We investigated the effect of attitudes of stakeholders toward a program on their prioritization of the program components for selecting the key question of a theory-driven evaluation with concept mapping method. During a brainstorming session, stated statements defined the program components. Then they were sorted and rated regarding the importance and feasibility of them. In addition, the attitudes of participants were assessed by a 30 items questionnaire extracted from a pool named as "50 reasons not to change." We determined and compared the consensus points of participants both with and without of considering their attitudes toward the program. The participants were divided into two groups of high (45% - above the mean) and low (55% - below the mean) attitude. Brainstorming discussions generated a pool of almost 120 statements which were subsequently refined to 44 statements. Matching the rating scores between two attitude groups yielded a consensus at a higher priority than the other method. In the concept mapping procedure, it is crucial to reach the consensus with respect to the participants' attitude, rather than the similarity of mean scores of feasibility and importance.
Liao, Yanhui; Knoesen, Natalie P; Castle, David J; Tang, Jinsong; Deng, Yunlong; Bookun, Riteesh; Chen, Xiaogang; Hao, Wei; Meng, Gang; Liu, Tieqiao
2010-01-01
This cross-sectional study explored the prevalence of disordered eating attitudes, body shape concerns, and social anxiety and depressive symptoms in male and female medical students in China. Four hundred eighty-seven students from Central South University (Hunan Province, Changsha City, China) completed the following self-report measures: Eating Attitudes Test-26, Eating Disorders Assessment Questionnaire, Body Shape Questionnaire, Swansea Muscularity Attitudes Questionnaire, Social Interaction Anxiety Scale, and the Self-Rating Depression Scale. A comparatively lower rate of at-risk eating attitudes (2.5%) and eating disorders (0.90%) were found compared to those reported in other studies. Significantly more female (3.2%) than male (1.2%) students had abnormal eating attitudes with 4 female students meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria for bulimia nervosa. Significant relationships were observed between eating attitudes, body shape concern, social anxiety, depression, and body mass index. For females, the most significant correlate of distorted eating attitudes was body shape concern, whereas for male students, social anxiety and concern with muscle size and shape were most strongly correlated with distorted eating attitudes. Copyright 2010 Elsevier Inc. All rights reserved.
The Role of Counterfactual Thinking on Attitudes Toward ADHD Medication Use.
Ramos, Ashley M; Becker, Brittney; Biemer, Julie A; Clark, Lindsay; Fields, Sherecce; Smallman, Rachel
2016-01-01
Despite serious health risks, attitudes toward Attention-Deficit Hyperactivity Disorder (ADHD) medication use in college students remain favorable. Given the robust link between attitudes and behavior (e.g., the Theory of Planned Behavior), it is important to understand how these attitudes are developed and maintained. The current study examined the role of counterfactual, or "what if'" thinking as a mechanism for the development of attitudes toward ADHD medications. All participants (n = 190) were asked to read either a positive or negative scenario regarding ADHD medication misuse and rate their attitudes toward the behavior; half of the participants were also asked to generate counterfactuals prior to rating their attitudes. Results suggest that scenario valence influenced the direction of counterfactual statements. Further, through the generation of upward counterfactuals, the negative scenario elicited more positive attitudes toward ADHD medication misuse. Based on limited prior research, it is suggested that upward counterfactuals may allow individuals to explain away the misuse of ADHD medication and avoid negative emotions such as guilt and shame related to current or prior ADHD medication misuse. In sum, additional research is needed to confirm preliminary findings that suggest counterfactual thinking could be a precursor to ADHD medication misuse.
Wang, Mo; Chen, Yiwei
2006-09-01
This study examined the influences of cognitive resources and motivation on how young and older adults process different quantities of persuasive arguments. In the first experiment session, both young and older adults rated their attitudes toward marijuana legalization and capital punishment. After a week, they read either 3 or 9 similar-quality arguments supporting marijuana legalization and capital punishment. Half of participants were assigned to the high-involvement condition (i.e., told that they were going to discuss the arguments later with the experimenter) and the other half were assigned to the low-involvement condition (i.e., given no instructions). After reading the arguments, participants rated their attitudes toward those 2 social issues again. Highly involved young adults changed their attitudes regardless of the quantity of arguments, whereas lowly involved young adults' attitude change was influenced by the argument quantity. Older adults in both high-involvement and low-involvement conditions changed their attitudes according to the argument quantity. Working memory was found to mediate the age effects on attitude change. This finding demonstrated the importance of a cognitive mechanism in accounting for age differences in attitude change.
Introduction to Sonar, Naval Education and Training Command. Revised Edition.
ERIC Educational Resources Information Center
Naval Education and Training Command, Pensacola, FL.
This Rate Training Manual (RTM) and Nonresident Career Course form a self-study package for those U.S. Navy personnel who are seeking advancement in the Sonar Technician Rating. Among the requirements of the rating are the abilities to obtain and interpret underwater data, operate and maintain upkeep of sonar equipment, and interpret target and…
Paparone, Pamela
2015-03-01
The leadership styles of healthcare organizations and the attitudes of nurses toward the adoption of evidence-based practice (EBP) were examined to provide a predictor of influenza vaccination intent (VI) and improve the current inadequate vaccination rate among nurses. Influenza is a costly and potentially serious disease. The United States has set a benchmark of a 90% influenza vaccination rate among healthcare personnel by 2020. A sample of 354 registered nurses completed a survey assessing demographic data, the leadership styles of their organization, their attitudes toward EBP, and their VI. A significant positive correlation was found between transformational leadership and VI, but not between transactional leadership and VI. Attitudes toward EBP correlated weakly, but insignificantly, with VI. Transformational leadership can predict and positively influence vaccination rates among nurses, thus decreasing vaccine preventable illness and improving patient outcomes.
The attitude-behavior discrepancy in medical decision making.
He, Fei; Li, Dongdong; Cao, Rong; Zeng, Juli; Guan, Hao
2014-12-01
In medical practice, the dissatisfaction of patients about medical decisions made by doctors is often regarded as the fuse of doctor-patient conflict. However, a few studies have looked at why there are such dissatisfactions. This experimental study aimed to explore the discrepancy between attitude and behavior within medical situations and its interaction with framing description. A total of 450 clinical undergraduates were randomly assigned to six groups and investigated using the classic medical decision making problem, which was described either in a positive or a negative frame (2) × decision making behavior\\attitude to risky plan\\attitude to conservative plan (3). A discrepancy between attitude and behavior did exist in medical situations. Regarding medical dilemmas, if the mortality rate was described, subjects had a significant tendency to choose a conservative plan (t = 3.55, P < 0.01) yet if the survival rate was described, there was no such preference (t = -1.48, P > 0.05). However, regardless of the plan chosen by the doctor, the subjects had a significant opposing attitude (P < .05). Framing description had a significant impact on both decision making behavior and attitude (t behavior = -3.24, P < 0.01;t attitude to surgery = 4.08,P < 0.01;t attitude to radiation = -2.15,P < 0.05). A discrepancy of attitude-behavior does exist in medical situations. The framing of a description has an impact on medical decision-making.
Evaluating the Convergence of Muscle Appearance Attitude Measures
ERIC Educational Resources Information Center
Cafri, Guy; Thompson, J. Kevin
2004-01-01
There has been growing interest in the assessment of a muscular appearance. Given the importance of assessing muscle appearance attitudes, the aim of this study was to explore the convergence of the Drive for Muscularity Scale, Somatomorphic Matrix, Contour Drawing Rating Scale, Male Figure Drawings, and the Muscularity Rating Scale. Participants…
Influences of Teaching Approaches and Class Size on Undergraduate Mathematical Learning
ERIC Educational Resources Information Center
Olson, Jo Clay; Cooper, Sandy; Lougheed, Tom
2011-01-01
An issue for many mathematics departments is the success rate of precalculus students. In an effort to increase the success rate, this quantitative study investigated how class size and teaching approach influenced student achievement and students' attitudes towards learning mathematics. Students' achievement and their attitudes toward learning…
Interpersonal Attraction and Organizational Outcomes: A Field Examination.
ERIC Educational Resources Information Center
Ross, Jerry; Ferris, Kenneth R.
1981-01-01
A cross-sectional study of 306 male accountants and managers at two public accounting firms examined the relationship of physical attractiveness, attitude similarity, and social background to performance ratings and salaries. Results suggest that physical attractiveness leads to higher ratings and salaries but that attitudes and background have…
Illinois Ratings of Teacher Effectiveness Manual. Grades 9-12.
ERIC Educational Resources Information Center
Blanchard, B. Everard
The Illinois Ratings of Teacher Effectiveness (IRTE) is an instrument for recording senior high school student perceptions of teacher performance in ten trait areas: teacher appearance, ability to explain, friendliness, grading fairness, discipline, outside classroom assignments, enjoyment of teaching, voice, mannerisms, and command of subject…
Reinhardt, Jan D; Pennycott, Andrew; Fellinghauer, Bernd A G
2014-01-01
The portrayal of disabled people in the media can influence the public's perception of disability in both positive and negative ways. In this article, an experimental before and after design is used to determine the effects of a short film on the attitudes of non-disabled and disabled persons concerning employment and productivity of persons with disabilities. Three questions were posed to 480 study participants prior to and following a short film featuring a police officer with paraplegia. Linear mixed models were used to assess the effects of time point and disability status on the responses. The non-disabled participants' ratings of eligibility for employment of a paraplegic man and estimates of the employment rate of disabled people were significantly enhanced following the film. Nevertheless, the film had no significant effects on the ratings given by participants with disabilities in terms of eligibility, employment rate or productivity. This investigation highlights the potentially important influence of media portrayal and coverage of people with disabilities on attitudes of the public concerning disability. Restrictions in participation may result from an interaction of persons with impairments with an environment that is dominated by negative attitudes towards disability The portrayal of disabled people in the media can influence the public's attitudes towards disability in both positive and negative ways In this experimental study, attitudes of the general public were significantly improved following viewing a short film featuring a positive media portrayal of a police officer with paraplegia.
Birchwood, Max; Dunn, Graham; Meaden, Alan; Tarrier, Nicholas; Lewis, Shon; Wykes, Til; Davies, Linda; Michail, Maria; Peters, Emmanuelle
2017-12-05
Acting on harmful command hallucinations is a major clinical concern. Our COMMAND CBT trial approximately halved the rate of harmful compliance (OR = 0.45, 95% CI 0.23-0.88, p = 0.021). The focus of the therapy was a single mechanism, the power dimension of voice appraisal, was also significantly reduced. We hypothesised that voice power differential (between voice and voice hearer) was the mediator of the treatment effect. The trial sample (n = 197) was used. A logistic regression model predicting 18-month compliance was used to identify predictors, and an exploratory principal component analysis (PCA) of baseline variables used as potential predictors (confounders) in their own right. Stata's paramed command used to obtain estimates of the direct, indirect and total effects of treatment. Voice omnipotence was the best predictor although the PCA identified a highly predictive cognitive-affective dimension comprising: voices' power, childhood trauma, depression and self-harm. In the mediation analysis, the indirect effect of treatment was fully explained by its effect on the hypothesised mediator: voice power differential. Voice power and treatment allocation were the best predictors of harmful compliance up to 18 months; post-treatment, voice power differential measured at nine months was the mediator of the effect of treatment on compliance at 18 months.
Nurse attitudes toward childbirth: a concept clarification.
Levine, Martha S; Lowe, Nancy K
2014-01-01
To clarify the concept of "nurse attitudes toward childbirth." It has been suggested that the international trend of escalating cesarean birth rates can be attributed to attitudes that perceive childbirth as an illness. Nurses' attitudes about childbirth direct their nursing care and may influence patient outcomes like cesarean birth. However, the concept "nurse attitudes toward childbirth" must be clarified to inform future research. An English-language literature review, from 1990 to present, was performed using CINAHL, PubMed, and Ovid. Norris's model of concept clarification was used. Although the nursing literature poorly defined "nurse attitudes" and rarely used a conceptual framework, the discipline of psychology has been refining this concept for over 40 years. Psychologists have established that attitude can predict behavior as demonstrated through testing of the theory of planned behavior. Various types of "nurse attitudes toward childbirth" were identified through our literature review, and five central beliefs were noted. This resulted in the development of a preliminary model using theory of planned behavior as a foundation. Finally, potential research hypotheses were generated. This paper clarifies "nurse attitudes toward childbirth" and supports its use for research. Nurse scholars have demonstrated that labor and delivery nurses do have individual attitudes toward childbirth, and the measurement of these attitudes may predict nursing care intentions and behavior. This concept is appropriate, important, and may be used as a means of exploring relationships between nursing care and the rising primary cesarean birth rate. © 2013 Wiley Periodicals, Inc.
Halfdansdottir, Berglind; Olafsdottir, Olof A; Hildingsson, Ingegerd; Smarason, Alexander Kr; Sveinsdottir, Herdis
2016-03-01
to examine the relationship between attitudes towards home birth and birth outcomes, and whether women's attitudes towards birth and intervention affected this relationship. a prospective cohort study. the study was set in Iceland, a sparsely populated island with harsh terrain, 325,000 inhabitants, high fertility and home birth rates, and less than 5000 births a year. a convenience sample of women who attended antenatal care in Icelandic health care centres, participated in the Childbirth and Health Study in 2009-2011, and expressed consistent attitudes towards home birth (n=809). of the participants, 164 (20.3%) expressed positive attitudes towards choosing home birth and 645 (79.7%) expressed negative attitudes. Women who had a positive attitude towards home birth had significantly more positive attitudes towards birth and more negative attitudes towards intervention than did women who had a negative attitude towards home birth. Of the 340 self-reported low-risk women that answered questionnaires on birth outcomes, 78 (22.9%) had a positive attitude towards home birth and 262 (77.1%) had a negative attitude. Oxytocin augmentation (19.2% (n=15) versus 39.1% (n=100)), epidural analgesia (19.2% (n=15) versus 33.6% (n=88)), and neonatal intensive care unit admission rates (0.0% (n=0) versus 5.0% (n=13)) were significantly lower among women who had a positive attitude towards home birth. Women's attitudes towards birth and intervention affected the relationship between attitudes towards home birth and oxytocin augmentation or epidural analgesia. the beneficial effect of planned home birth on maternal outcome in Iceland may depend to some extent on women's attitudes towards birth and intervention. Efforts to de-stigmatise out-of-hospital birth and de-medicalize women's attitudes towards birth might increase women׳s use of health-appropriate birth services. Copyright © 2016 Elsevier Ltd. All rights reserved.
Orion Absolute Navigation System Progress and Challenge
NASA Technical Reports Server (NTRS)
Holt, Greg N.; D'Souza, Christopher
2012-01-01
The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.
Estimation of attitude sensor timetag biases
NASA Technical Reports Server (NTRS)
Sedlak, J.
1995-01-01
This paper presents an extended Kalman filter for estimating attitude sensor timing errors. Spacecraft attitude is determined by finding the mean rotation from a set of reference vectors in inertial space to the corresponding observed vectors in the body frame. Any timing errors in the observations can lead to attitude errors if either the spacecraft is rotating or the reference vectors themselves vary with time. The state vector here consists of the attitude quaternion, timetag biases, and, optionally, gyro drift rate biases. The filter models the timetags as random walk processes: their expectation values propagate as constants and white noise contributes to their covariance. Thus, this filter is applicable to cases where the true timing errors are constant or slowly varying. The observability of the state vector is studied first through an examination of the algebraic observability condition and then through several examples with simulated star tracker timing errors. The examples use both simulated and actual flight data from the Extreme Ultraviolet Explorer (EUVE). The flight data come from times when EUVE had a constant rotation rate, while the simulated data feature large angle attitude maneuvers. The tests include cases with timetag errors on one or two sensors, both constant and time-varying, and with and without gyro bias errors. Due to EUVE's sensor geometry, the observability of the state vector is severely limited when the spacecraft rotation rate is constant. In the absence of attitude maneuvers, the state elements are highly correlated, and the state estimate is unreliable. The estimates are particularly sensitive to filter mistuning in this case. The EUVE geometry, though, is a degenerate case having coplanar sensors and rotation vector. Observability is much improved and the filter performs well when the rate is either varying or noncoplanar with the sensors, as during a slew. Even with bad geometry and constant rates, if gyro biases are independently known, the timetag error for a single sensor can be accurately estimated as long as its boresight is not too close to the spacecraft rotation axis.
NASA Technical Reports Server (NTRS)
Sarani, Siamak
2010-01-01
This paper describes a methodology for accurate and flight-calibrated determination of the on-times of the Cassini spacecraft Reaction Control System (RCS) thrusters, without any form of dynamic simulation, for the reaction wheel biases. The hydrazine usage and the delta V vector in body frame are also computed from the respective thruster on-times. The Cassini spacecraft, the largest and most complex interplanetary spacecraft ever built, continues to undertake ambitious and unique scientific observations of planet Saturn, Titan, Enceladus, and other moons of Saturn. In order to maintain a stable attitude during the course of its mission, this three-axis stabilized spacecraft uses two different control systems: the RCS and the reaction wheel assembly control system. The RCS is used to execute a commanded spacecraft slew, to maintain three-axis attitude control, control spacecraft's attitude while performing science observations with coarse pointing requirements, e.g. during targeted low-altitude Titan and Enceladus flybys, bias the momentum of reaction wheels, and to perform RCS-based orbit trim maneuvers. The use of RCS often imparts undesired delta V on the spacecraft. The Cassini navigation team requires accurate predictions of the delta V in spacecraft coordinates and inertial frame resulting from slews using RCS thrusters and more importantly from reaction wheel bias events. It is crucial for the Cassini spacecraft attitude control and navigation teams to be able to, quickly but accurately, predict the hydrazine usage and delta V for various reaction wheel bias events without actually having to spend time and resources simulating the event in flight software-based dynamic simulation or hardware-in-the-loop simulation environments. The methodology described in this paper, and the ground software developed thereof, are designed to provide just that. This methodology assumes a priori knowledge of thrust magnitudes and thruster pulse rise and tail-off time constants for eight individual attitude control thrusters, the spacecraft's wet mass and its center of mass location, and a few other key parameters.
Attitude Ground System (AGS) for the Magnetospheric Multi-Scale (MMS) Mission
NASA Technical Reports Server (NTRS)
Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak
2015-01-01
MMS Overview Recall from Conrads presentation earlier today MMS launch: March 13, 2015 on an Atlas V from Space Launch Complex 40, Cape Canaveral, Florida MMS Observatory Separation: five minute intervals spinning at 3 rpm approximately 1.5 hours after launch MMS Science Goals: study magnetospheric plasma physics and understand the processes that cause power grids, communication disruptions and Aurora formation Mission: 4 identical spacecraft in tetrahedral formation with variable size1.2 x 12 RE in Phase 1, with apogee on dayside to observe bow shock1.2 x 25 RE in Phase 2, with apogee on night side to observe magneto tail Challenges Tight attitude control box, orbit and formation maintenance requirements Maneuvers on thrusters every two weeks Delta-H Spin axis direction and spin rate maintenance Delta-V Orbit and Formation maintenance Mission phase transitions AGS support Smart targeting prediction of Spin-Axis attitude in the presence of environmental torques to stay within the science attitude Determination of the spacecraft attitude and spin rate (sensitive to knowledge of inertia tensor)Calibrations to improve attitude determination results and improve orbit maneuvers Mass properties (Center of Mass, and inertia tensor for nutation and coning) Accelerometer bias (sensitive to the accuracy of the rate estimates) Sensor alignments.
NASA Technical Reports Server (NTRS)
Grantham, W. D.; Smith, P. M.; Neely, W. R., Jr.; Deal, P. L.; Yenni, K. R.
1985-01-01
Six-degree-of-freedom ground-based and in-flight simulator studies were conducted to evaluate the low-speed flight characteristics of a twin-fuselage passenger transport airplane and to compare these characteristics with those of a large, single-fuselage (reference) transport configuration similar to the Lockheed C-5A airplane. The primary piloting task was the approach and landing task. The results of this study indicated that the twin-fuselage transport concept had acceptable but unsatisfactory longitudinal and lateral-directional low-speed flight characteristics, and that stability and control augmentation would be required in order to improve the handling qualities. Through the use of rate-command/attitude-hold augmentation in the pitch and roll axes, and the use of several turn coordination features, the handling qualities of the simulated transport were improved appreciably. The in-flight test results showed excellent agreement with those of the six-degree-of-freedom ground-based simulator handling qualities tests. As a result of the in-flight simulation study, a roll-control-induced normal-acceleration criterion was developed. The handling qualities of the augmented twin-fuselage passenger transport airplane exhibited an improvement over the handling characteristics of the reference (single-fuselage) transport.
Development of a Smart Release Algorithm for Mid-Air Separation of Parachute Test Articles
NASA Technical Reports Server (NTRS)
Moore, James W.
2011-01-01
The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is currently developing an autonomous method to separate a capsule-shaped parachute test vehicle from an air-drop platform for use in the test program to develop and validate the parachute system for the Orion spacecraft. The CPAS project seeks to perform air-drop tests of an Orion-like boilerplate capsule. Delivery of the boilerplate capsule to the test condition has proven to be a critical and complicated task. In the current concept, the boilerplate vehicle is extracted from an aircraft on top of a Type V pallet and then separated from the pallet in mid-air. The attitude of the vehicles at separation is critical to avoiding re-contact and successfully deploying the boilerplate into a heatshield-down orientation. Neither the pallet nor the boilerplate has an active control system. However, the attitude of the mated vehicle as a function of time is somewhat predictable. CPAS engineers have designed an avionics system to monitor the attitude of the mated vehicle as it is extracted from the aircraft and command a release when the desired conditions are met. The algorithm includes contingency capabilities designed to release the test vehicle before undesirable orientations occur. The algorithm was verified with simulation and ground testing. The pre-flight development and testing is discussed and limitations of ground testing are noted. The CPAS project performed a series of three drop tests as a proof-of-concept of the release technique. These tests helped to refine the attitude instrumentation and software algorithm to be used on future tests. The drop tests are described in detail and the evolution of the release system with each test is described.
Attitude control for on-orbit servicing spacecraft using hybrid actuator
NASA Astrophysics Data System (ADS)
Wu, Yunhua; Han, Feng; Zheng, Mohong; He, Mengjie; Chen, Zhiming; Hua, Bing; Wang, Feng
2018-03-01
On-orbit servicing is one of the research hotspots of space missions. A small satellite equipped with multiple robotic manipulators is expected to carry out device replacement task for target large spacecraft. Attitude hyperstable control of a small satellite platform under rotations of the manipulators is a challenging problem. A hybrid momentum exchanging actuator consists of Control Moment Gyro (CMG) and Reaction Wheel (RW) is proposed to tackle the above issue, due to its huge amount of momentum storage capacity of the CMG and high control accuracy of the RW, in which the CMG produces large command torque while the RW offers additional control degrees. The constructed dynamic model of the servicing satellite advises that it's feasible for attitude hyperstable control of the platform with arbitrary manipulators through compensating the disturbance generated by rapid rotation of the manipulators. Then, null motion between the CMG and RW is exploited to drive the system to the expected target with favorable performance, and to overcome the CMG inherent geometric singularity and RW saturation. Simulations with different initial situations, including CMG hyperbolic and elliptic singularities and RW saturation, are executed. Compared to the scenarios where the CMG or RW fails stabilizing the platform, large control torque, precise control effect and escape of singularity are guaranteed by the introduced hybrid actuator, CMGRW (CMGRW refers to the hybrid momentum exchanging devices in this paper, consisting of 4 CMGs in classical pyramid cluster and 3 RWs in an orthogonal group (specific description can been found in Section 4)). The feasible performance of the satellite, CMG and RW under large disturbance demonstrates that the control architecture proposed is capable of attitude control for on-orbit servicing satellite with multiple robotic manipulators.
Design and Flight Tests of an Adaptive Control System Employing Normal-Acceleration Command
NASA Technical Reports Server (NTRS)
McNeill, Water E.; McLean, John D.; Hegarty, Daniel M.; Heinle, Donovan R.
1961-01-01
An adaptive control system employing normal-acceleration command has been designed with the aid of an analog computer and has been flight tested. The design of the system was based on the concept of using a mathematical model in combination with a high gain and a limiter. The study was undertaken to investigate the application of a system of this type to the task of maintaining nearly constant dynamic longitudinal response of a piloted airplane over the flight envelope without relying on air data measurements for gain adjustment. The range of flight conditions investigated was between Mach numbers of 0.36 and 1.15 and altitudes of 10,000 and 40,000 feet. The final adaptive system configuration was derived from analog computer tests, in which the physical airplane control system and much of the control circuitry were included in the loop. The method employed to generate the feedback signals resulted in a model whose characteristics varied somewhat with changes in flight condition. Flight results showed that the system limited the variation in longitudinal natural frequency of the adaptive airplane to about half that of the basic airplane and that, for the subsonic cases, the damping ratio was maintained between 0.56 and 0.69. The system also automatically compensated for the transonic trim change. Objectionable features of the system were an exaggerated sensitivity of pitch attitude to gust disturbances, abnormally large pitch attitude response for a given pilot input at low speeds, and an initial delay in normal-acceleration response to pilot control at all flight conditions. The adaptive system chatter of +/-0.05 to +/-0.10 of elevon at about 9 cycles per second (resulting in a maximum airplane normal-acceleration response of from +/-0.025 g to +/- 0.035 g) was considered by the pilots to be mildly objectionable but tolerable.
NASA Astrophysics Data System (ADS)
Fils-Aime, Nestor
Having in perspective the slight representativeness of students, from Haitian background, from the most unprivileged sections of the great region of Montreal in the scientific fields in High School and in the choices of career, this study intends to examine the effect of the individual characteristics as well as the associated factors related to the familial, scholastic, socio-economic, and cultural environment upon the attitudes of those students toward sciences. The analysis of the datum is based on the results of a questionnaire focusing on the socio-demographic profile of a group of students from fourth and fifth year attending two multiethnic High Schools of the North-Crown of Montreal as well as on the interviews with fifteen of those students who are from a haitian background. There were also interviews with some parents, a member of a community organism, some staff members of some schools as well as some Haitian-Quebecer professionals and scientists, in order to have a critical viewpoint upon the different positions expressed by the fifteen students. The Bronfenbrenner's ecosystemic model (1979, 1986) has been used as scope of reference allowing to draw the prominent aspects from the attitudes toward science in the students, from haitian background. The synthesis of ideas expressed by different interviewee reveals the existence of a environment not much enhancing the value of sciences around of students, from Haitian background. The socio-economic conditions, the familial practices, the ethnocultural status as well as some individual representations of sciences contribute to create and maintain some attitudes very little committed to sciences in those students. The study shows how much it is urgent to demystify the sciences by breaking with some stereotypes that prevent some categories of students from acceding to sciences. It also commands to politicians, concerning education, to be more open to ethnocultural differences and to explore some dynamic ways in order to make the scientific culture accessible to all social groups. Key words: science learning, attitudes toward science, multiethnicity, ecosystemic model, environmental factors, High School students, immigration, socio-economic status, ethnocultural status, haitian background, econominically disadvantaged area, students attitudes.
Wingood, G M; DiClemente, R J; Harrington, K; Davies, S; Hook, E W; Oh, M K
2001-05-01
To examine the association between exposure to X-rated movies and teens' contraceptive attitudes and behaviors. Black females, 14 to 18 years old (n = 522) were recruited from adolescent medicine clinics, health departments, and school health clinics. Exposure to X-rated movies was reported by 29.7% of adolescents. Exposure to X-rated movies was associated with being more likely to have negative attitudes toward using condoms (odds ratio [OR]: 1.4), to have multiple sex partners (OR: 2.0), to have sex more frequently (OR: 1.8), to not have not used contraception during the last intercourse (OR: 1.5), to have not used contraception in the past 6 months (OR: 2.2), to have a strong desire to conceive (OR: 2.3), and to test positive for chlamydia (OR: 1.7). Additional research is needed to understand the impact of X-rated movies on adolescents' sexual and contraceptive health.
Estrogen attenuates the cardiovascular and ventilatory responses to central command in cats.
Hayes, Shawn G; Moya Del Pino, Nicolas B; Kaufman, Marc P
2002-04-01
Static exercise is well known to increase heart rate, arterial blood pressure, and ventilation. These increases appear to be less in women than in men, a difference that has been attributed to an effect of estrogen on neuronal function. In decerebrate male cats, we examined the effect of estrogen (17beta-estradiol; 0.001, 0.01, 0.1, and 1.0 microg/kg iv) on the cardiovascular and ventilatory responses to central command and the exercise pressor reflex, the two neural mechanisms responsible for evoking the autonomic and ventilatory responses to exercise. We found that 17beta-estradiol, in each of the three doses tested, attenuated the pressor, cardioaccelerator, and phrenic nerve responses to electrical stimulation of the mesencephalic locomotor region (i.e., central command). In contrast, none of the doses of 17beta-estradiol had any effect on the pressor, cardioaccelerator, and ventilatory responses to static contraction or stretch of the triceps surae muscles. We conclude that, in decerebrate male cats, estrogen injected intravenously attenuates cardiovascular and ventilatory responses to central command but has no effect on responses to the exercise pressor reflex.
Computer controlled synchronous shifting of an automatic transmission
Davis, Roy I.; Patil, Prabhakar B.
1989-01-01
A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the torque at the output of the transmission or drive wheels, the speed of the power source, and the hydraulic pressure applied to a clutch and brake. A control algorithm produces input data representing a commanded upshift, a commanded downshift, a commanded transmission output torque, and commanded power source speed. A microprocessor processes the inputs and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake at a rate that satisfies the requirements for a short gear ratio change and smooth torque transfer between the friction elements.
NASA Technical Reports Server (NTRS)
Dodson, D. W.; Shields, N. L., Jr.
1979-01-01
Individual Spacelab experiments are responsible for developing their CRT display formats and interactive command scenarios for payload crew monitoring and control of experiment operations via the Spacelab Data Display System (DDS). In order to enhance crew training and flight operations, it was important to establish some standardization of the crew/experiment interface among different experiments by providing standard methods and techniques for data presentation and experiment commanding via the DDS. In order to establish optimum usage guidelines for the Spacelab DDS, the capabilities and limitations of the hardware and Experiment Computer Operating System design had to be considered. Since the operating system software and hardware design had already been established, the Display and Command Usage Guidelines were constrained to the capabilities of the existing system design. Empirical evaluations were conducted on a DDS simulator to determine optimum operator/system interface utilization of the system capabilities. Display parameters such as information location, display density, data organization, status presentation and dynamic update effects were evaluated in terms of response times and error rates.
McLean, Siân A; Paxton, Susan J; Massey, Robin; Hay, Phillipa J; Mond, Jonathan M; Rodgers, Bryan
2016-01-01
Addressing stigma through social marketing campaigns has the potential to enhance currently low rates of treatment seeking and improve the well-being of individuals with the eating disorder bulimia nervosa. This study aimed to evaluate the persuasiveness of health messages designed to reduce stigma and improve mental health literacy about this disorder. A community sample of 1,936 adults (48.2% male, 51.8% female) from Victoria, Australia, provided (a) self-report information on knowledge and stigma about bulimia nervosa and (b) ratings of the persuasiveness of 9 brief health messages on dimensions of convincingness and likelihood of changing attitudes. Messages were rated moderately to very convincing and a little to moderately likely to change attitudes toward bulimia nervosa. The most persuasive messages were those that emphasized that bulimia nervosa is a serious mental illness and is not attributable to personal failings. Higher ratings of convincingness were associated with being female, with having more knowledge about bulimia nervosa, and with lower levels of stigma about bulimia nervosa. Higher ratings for likelihood of changing attitudes were associated with being female and with ratings of the convincingness of the corresponding message. This study provides direction for persuasive content to be included in social marketing campaigns to reduce stigma toward bulimia nervosa.
Lampe, Lisa; Coulston, Carissa; Walter, Garry; Malhi, Gin
2010-08-01
The aim of this paper was to examine the influence of a clinical attachment in psychiatry on medical students' attitudes to psychiatry as a specialty and potential career. Medical students at Sydney Medical School were surveyed following an 8-week clinical attachment in psychiatry. Secondary analyses sought to identify associations with variables such as age, gender and level of clinical experience as a medical student. Following a clinical attachment in psychiatry, 80% of students rated their attitude to psychiatry as more positive. Approximately 32% rated themselves as likely or very likely to choose a career in psychiatry. No differences were seen with respect to gender, age or stage of training. The quality of the teaching, enthusiasm of the clinical teachers, the holistic approach and scientific basis of psychiatry were cited by students as factors influencing attitudes. The clinical rotation in psychiatry is a significant factor influencing medical student attitudes towards psychiatry.
Legitimization of regulatory norms: Waterfowl hunter acceptance of changing duck bag limits
Schroeder, Susan A.; Fulton, David C.; Lawrence, Jeffrey S.; Cordts, Steven D.
2014-01-01
Few studies have examined response to regulatory change over time, or addressed hunter attitudes about changes in hunting bag limits. This article explores Minnesota waterfowl hunters’ attitudes about duck bag limits, examining attitudes about two state duck bag limits that were initially more restrictive than the maximum set by the U.S. Fish and Wildlife Service (USFWS), but then increased to match federal limits. Results are from four mail surveys that examined attitudes about bag limits over time. Following two bag limit increases, a greater proportion of hunters rated the new bag limit “too high” and a smaller proportion rated it “too low.” Several years following the first bag limit increase, the proportion of hunters who indicated that the limit was “too high” had declined, suggesting hunter acceptance of the new regulation. Results suggest that waterfowl bag limits may represent legal norms that influence hunter attitudes and gain legitimacy over time.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.; Hardy, G. H.
1980-01-01
A flight research program was conducted to assess the effectiveness of manual control concepts and various cockpit displays in improving altitude (pitch, roll, and yaw) and longitudinal path control during short takeoff aircraft approaches and landings. Satisfactory flying qualities were demonstrared to minimum decision heights of 30 m (100 ft) for selected stabilization and command augmentation systems and flight director combinations. Precise landings at low touchdown sink rates were achieved with a gentle flare maneuver.
Commander Lousma records PGU data on middeck
1982-03-30
STS003-22-122 (30 March 1982) --- STS-3 Commander Lousma, wearing communications kit assembly (ASSY) mini-headset (HDST), records Plant Growth Unit (PGU) data for the Influence of Weightlessness on Plant Lignification Experiment at forward middeck locker MF14K. The experiment is designed to demonstrate the effect of weightlessness on the quantity and rate of lignin formation in different plant species during early stages of development. Port side bulkhead with window shade and filter kit appears behind Lousma and potable water tank below him. Trash bag also appears in view. Photo credit: NASA
Assessment of feedback modalities for wearable visual aids in blind mobility
Sorrentino, Paige; Bohlool, Shadi; Zhang, Carey; Arditti, Mort; Goodrich, Gregory; Weiland, James D.
2017-01-01
Sensory substitution devices engage sensory modalities other than vision to communicate information typically obtained through the sense of sight. In this paper, we examine the ability of subjects who are blind to follow simple verbal and vibrotactile commands that allow them to navigate a complex path. A total of eleven visually impaired subjects were enrolled in the study. Prototype systems were developed to deliver verbal and vibrotactile commands to allow an investigator to guide a subject through a course. Using this mode, subjects could follow commands easily and navigate significantly faster than with their cane alone (p <0.05). The feedback modes were similar with respect to the increased speed for course completion. Subjects rated usability of the feedback systems as “above average” with scores of 76.3 and 90.9 on the system usability scale. PMID:28182731
ERIC Educational Resources Information Center
Naval Education and Training Command, Washington, DC.
Designed as a self-study text for enlisted personnel of the Navy and Naval Reserve, this rate training manual presents information that is directly related to the professional standards for advancement to Petty Officer Third Class and Petty Officer Second Class in the Tradevman (TD) rating. (Tradevmen install, repair, modify, and maintain…
Attitude Consistency Among American Youth.
ERIC Educational Resources Information Center
Mott, Frank L.; Mott, Susan H.
Attitudes of youth (ages 14-21) toward fertility expectations and women's roles are examined for consistency (e.g., whether high career expectations are correlated with a desire for fewer children). Approximately 12,000 White, Black, and Hispanic youth rated their attitudes toward statements that a woman's place is in the home, employment of wives…
ATTITUDES TOWARD EDUCATION AND PERCEPTION OF DESIRABLE TEACHER BEHAVIORS--A Q STUDY.
ERIC Educational Resources Information Center
SONTAG, MARVIN
TO INVESTIGATE HOW ATTITUDES TOWARD EDUCATION INFLUENCE PERCEPTION OF DESIRABLE TEACHER BEHAVIORS, AN EDUCATIONAL ATTITUDES INSTRUMENT (KERLINGER'S ES-VII) AND AN 80-ITEM TEACHER BEHAVIORS Q-SORT WERE ADMINISTERED TO 80 ELEMENTARY AND SECONDARY SCHOOL TEACHERS. THIRTY-TWO TEACHERS WERE RATED AS "PROGRESSIVE," 32…
Stability of Body Attitudes and Self-esteem in Late Adolescents.
ERIC Educational Resources Information Center
Padin, Mark A.; And Others
1981-01-01
Measures of body- and self-attitudes were assessed among 152 undergraduate students of both sexes. Subjects' self-rated physical attractiveness, physical effectiveness and self-esteem were measured at the initiation and end of their physical education classes. Results indicated no significant differences in stability of body attitudes and…
Students' Attitude Towards Mathematics
ERIC Educational Resources Information Center
Farooq, Muhammad Shahid; Shah, Syed Zia Ullah
2008-01-01
Students' success in mathematics depends upon attitude towards mathematics. It also influences the participation rate of learners. This study was based on a survey of high school students about their attitudes towards mathematics. Students of both the gender constitute the population of this study. Sample of the study was 685 students (male = 379…
Financial stress, attitudes toward money, and scores on a Dream Inventory.
Kroth, Jerry; Mann, Sonia; Cervantes, Carolina; Jaffe, Matthew; Ristic, Vera
2010-08-01
During stock market losses in 2009 and high unemployment, ratings on the KJP Dream Inventory were correlated with factors of the Money Attitude Scale and items on the Contemporary Financial Stress Inventory for 71 graduate students in Counseling Psychology and Education. Correlations were significant for Retention on the Money Attitude Scale with Dissociative Avoidance (-.31), Dreams of falling (.26), Risk-taking in dreams (.24), and Dreaming of being chased (.28). Also, ratings for the Money Attitude Scale of Distrust correlated with Discontentedness in dreams (.33) and Dreams of being chased (.26), Repetitive trauma (.33), Nightmares (.30), and Recurring nightmares (.35). Concern about retention in graduate school due to finances correlated with recalled frequencies of nightmares (.27) and dreams of flying (.25).
Preliminary results of rocket attitude and auroral green line emission rate in the DELTA campaign
NASA Astrophysics Data System (ADS)
Iwagami, Naomoto; Komada, Sayaka; Takahashi, Takao
2006-09-01
The attitude of a sounding rocket launched in the DELTA (Dynamics and Energetics of the Lower Thermosphere in Aurora) campaign was determined with IR horizon sensors and geomagnetic sensors. Since the payload was separated into two portions, two sets of attitude sensors were needed. A new IR sensor was developed for the present experiment, and found the zenith-angle of the spin-axis of the rocket with an accuracy of 2°. By combining information obtained by both type of sensors, the absolute attitudes were determined. The auroral green line emission rate was measured by a photometer on board the same rocket launched under active auroral conditions, and the energy flux of the auroral particle precipitation was estimated.
Douglas, Karen M; Sutton, Robbie M
2008-04-01
The authors examined the perceived and actual impact of exposure to conspiracy theories surrounding the death of Diana, Princess of Wales, in 1997. One group of undergraduate students rated their agreement and their classmates' perceived agreement with several statements about Diana's death. A second group of students from the same undergraduate population read material containing popular conspiracy theories about Diana's death before rating their own and others' agreement with the same statements and perceived retrospective attitudes (i.e., what they thought their own and others' attitudes were before reading the material). Results revealed that whereas participants in the second group accurately estimated others' attitude changes, they underestimated the extent to which their own attitudes were influenced.
The Attitude-Behavior Discrepancy in Medical Decision Making
He, Fei; Li, Dongdong; Cao, Rong; Zeng, Juli; Guan, Hao
2014-01-01
Background: In medical practice, the dissatisfaction of patients about medical decisions made by doctors is often regarded as the fuse of doctor-patient conflict. However, a few studies have looked at why there are such dissatisfactions. Objectives: This experimental study aimed to explore the discrepancy between attitude and behavior within medical situations and its interaction with framing description. Patients and Methods: A total of 450 clinical undergraduates were randomly assigned to six groups and investigated using the classic medical decision making problem, which was described either in a positive or a negative frame (2) × decision making behavior\\attitude to risky plan\\attitude to conservative plan (3). Results: A discrepancy between attitude and behavior did exist in medical situations. Regarding medical dilemmas, if the mortality rate was described, subjects had a significant tendency to choose a conservative plan (t = 3.55, P < 0.01) yet if the survival rate was described, there was no such preference (t = -1.48, P > 0.05). However, regardless of the plan chosen by the doctor, the subjects had a significant opposing attitude (P < .05). Framing description had a significant impact on both decision making behavior and attitude (t behavior = -3.24, P < 0.01;t attitude to surgery = 4.08,P < 0.01;t attitude to radiation = -2.15,P < 0.05). Conclusions: A discrepancy of attitude-behavior does exist in medical situations. The framing of a description has an impact on medical decision-making. PMID:25763230
Tompson, Steven; Chua, Hannah Faye; Kitayama, Shinobu
2016-11-01
Prior research shows that after making a choice, decision makers shift their attitudes in a choice-congruous direction. Although this post-choice attitude change effect is robust, the neural mechanisms underlying it are poorly understood. Here, we tested the hypothesis that decision makers elaborate on their choice in reference to self-knowledge to justify the choice they have made. This self-referential processing of the choice is thought to play a pivotal role in the post-choice attitude change. Twenty-four young American adults made a series of choices. They also rated their attitudes toward the choice options before and after the choices. In support of the current hypothesis, we found that changes in functional connectivity between two putative self-regions (medial prefrontal cortex and posterior cingulate cortex/precuneus]) during the post-choice (vs. pre-choice) rating of the chosen options predicted the post-choice shift of the attitudes toward the chosen options. This finding is the first to suggest that cognitive integration of various self-relevant cognitions is instrumental in fostering post-choice attitude change. Hum Brain Mapp 37:3810-3820, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Pizzagalli, D; Koenig, T; Regard, M; Lehmann, D
1999-01-01
We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25+/-4. 8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta-theta, alpha, and beta EEG frequency band, and for the full range (1.5-30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta-theta band, more posterior and more right for the alpha, beta and 1.5-30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning. Copyright 1999 Elsevier Science B.V.
Public attitudes toward-and identification of-cluttering and stuttering in Norway and Puerto Rico.
St Louis, Kenneth O; Sønsterud, Hilda; Carlo, Edna J; Heitmann, Ragnhild R; Kvenseth, Helene
2014-12-01
The study sought to compare public attitudes toward cluttering versus stuttering in Norway and Puerto Rico and to compare respondents' identification of persons known with these fluency disorders. After reading lay definitions of cluttering and stuttering, three samples of adults from Norway and three from Puerto Rico rated their attitudes toward cluttering and/or stuttering on modified versions of the POSHA-Cl (for cluttering) and POSHA-S (for stuttering). They also identified children and adults whom they knew who either or both manifested cluttering or stuttering. Attitudes toward cluttering were essentially unaffected by rating either cluttering only or combined cluttering and stuttering on the same questionnaire in both countries. The same was also true of stuttering. Attitudes were very similar toward both disorders although slightly less positive for cluttering. Norwegian attitudes toward both disorders were generally more positive than Puerto Rican attitudes. The average respondent identified slightly more than one fluency disorder, a higher percentage for stuttering than cluttering and higher for adults than children. Cluttering-stuttering was rarely identified. Given a lay definition, this study confirmed that adults from diverse cultures hold attitudes toward cluttering that are similar to-but somewhat less positive than-their attitudes toward stuttering. It also confirmed that adults can identify cluttering among people they know, although less commonly than stuttering. Design controls in this study assured that consideration of stuttering did not affect either the attitudes or identification results for cluttering. The reader will be able to: (a) describe the effects-or lack thereof-of considerations of stuttering on attitudes toward cluttering; (b) describe differences in public identification of children and adults who either clutter or stutter; (c) describe differences between attitudes toward cluttering and stuttering in Norway and Puerto Rico. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hu, Guangwei; Lei, Jun
2012-01-01
This article reports on a mixed-methods study of Chinese university students' knowledge of and attitudes toward plagiarism in English academic writing. A sample of 270 undergraduates from two Chinese universities rated three short English passages under different conditions, provided open-ended responses to justify their ratings, and completed a…
Precision Pointing Control to and Accurate Target Estimation of a Non-Cooperative Vehicle
NASA Technical Reports Server (NTRS)
VanEepoel, John; Thienel, Julie; Sanner, Robert M.
2006-01-01
In 2004, NASA began investigating a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates in order to achieve capture by the proposed Hubble Robotic Vehicle (HRV), but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST. To generalize the situation, HST is the target vehicle and HRV is the chaser. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a control scheme. Non-cooperative in this context relates to the target vehicle no longer having the ability to maintain attitude control or transmit attitude knowledge.
NASA Astrophysics Data System (ADS)
Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.
2016-09-01
This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.
2000-10-23
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas Jones works on a part of the U.S. Lab, Destiny. Watching at right is Pilot Mark Polansky. Jones and Polansky, along with other crew members, are taking part in Crew Equipment Interface Test activities to become familiar with equipment they will be handling during the mission. Others in the crew are Commander Ken Cockrell and Mission Specialists Robert Curbeam and Marsha Ivins. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2001-01-03
STS-98 Pilot Mark Polansky is pleased to arrive at KSC’s Shuttle Landing Facility for Terminal Countdown Test Activities. In preparation for the Jan. 19 launch, he and the rest of the crew Commander Ken Cockrell and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins will be training in emergency procedures from the pad, checking the payload and taking part in a simulated countdown. The payload for the mission is the U.S. Lab Destiny, a key element in the construction of the International Space Station. The lab has five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. STS-98 is the seventh construction flight to the ISS.
Spacecraft (Mobile Satellite) configuration design study
NASA Technical Reports Server (NTRS)
1985-01-01
The relative costs to procure and operate a two-satellite mobile satellite system designed to operate either in the UHF band of the L Band, and with several antenna diameter options in each frequency band was investigated. As configured, the size of the spacecraft is limited to the current RCA Series 4000 Geosynchronous Communications Spacecraft bus, which spans the range from 4000 to 5800 pounds in the transfer orbit. The Series 4000 bus forms the basis around which the Mobile Satellite transponder and associated antennas were appended. Although the resultant configuration has little outward resemblance to the present Series 4000 microwave communications spacecraft, the structure, attitude control, thermal, power, and command and control subsystems of the Series 4000 spacecraft are all adapted to support the Mobile Satellite mission.
STS-98 crew members take part in CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the U.S. Lab, Destiny, members of the STS-98 crew work with technicians (in the background) to learn more about the equipment in the module. They are taking part in Crew Equipment Interface Test activities. At left, back to camera, is Mission Specialist Marsha Ivins. Standing are Mission Specialists Thomas Jones (left) and Robert Curbeam (right). Other crew members not seen are Commander Ken Cockrell and Pilot Mark Polansky. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.
STS-98 crew members take part in CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-98 Mission Specialist Robert Curbeam (right) raises his arms as he checks out equipment inside the U.S. Lab, Destiny. At left of center is Mission Specialist Marsha Ivins. Curbeam and Ivins, along with other crew members, are taking part in Crew Equipment Interface Test activities becoming familiar with equipment they will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialist Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.
2000-10-23
In the Space Station Processing Facility, members of the STS-98 crew check out equipment in the U.S. Lab, Destiny, with the help of workers. In the background, looking over her shoulder, is Mission Specialist Marsha Ivins. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The crew is taking part in Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
Psychiatric stigma in the military.
Porter, T L; Johnson, W B
1994-09-01
There is potential for the stigma of mental health care to directly affect an active duty member's career. The authors are aware of cases in which fear of adverse career consequences has led service members to avoid needed mental health care. In order to investigate the legitimacy of this fear, the authors surveyed 252 USN and USMC commanding and executive officers concerning their attitudes about service members who had received mental health and other services; 138 responded. Overall the responses were neutral and there were relatively few negative evaluations of service members who had received services. Military health care providers should take an active role in diminishing the stigma of mental illness, and in allaying fears of adverse career consequences for seeking care.
Thermally-Constrained Fuel-Optimal ISS Maneuvers
NASA Technical Reports Server (NTRS)
Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol
2015-01-01
Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.
Power system interface and umbilical system study
NASA Technical Reports Server (NTRS)
1980-01-01
System requirements and basic design criteria were defined for berthing or docking a payload to the 25 kW power module which will provide electrical power and attitude control, cooling, data transfer, and communication services to free-flying and Orbiter sortie payloads. The selected umbilical system concept consists of four assemblies and command and display equipment to be installed at the Orbiter payload specialist station: (1) a movable platen assembly which is attached to the power system with EVA operable devices; (2) a slave platen assembly which is attached to the payload with EVA operable devices; (3) a fixed secondary platen permanently installed in the power system; and (4) a fixed secondary platen permanently installed on the payload. Operating modes and sequences are described.
Adaptive State Predictor Based Human Operator Modeling on Longitudinal and Lateral Control
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2015-01-01
Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to categorize these interactions of the pilot with an adaptive controller compensating during control surface failures. A general linear in-parameter model structure is used to represent a pilot. Three different estimation methods are explored. A gradient descent estimator (GDE), a least squares estimator with exponential forgetting (LSEEF), and a least squares estimator with bounded gain forgetting (LSEBGF) used the experiment data to predict pilot stick input. Previous results have found that the GDE and LSEEF methods are fairly accurate in predicting longitudinal stick input from commanded pitch. This paper discusses the accuracy of each of the three methods - GDE, LSEEF, and LSEBGF - to predict both pilot longitudinal and lateral stick input from the flight director's commanded pitch and bank attitudes.
Attitudes toward same-sex marriage: the case of Scandinavia.
Jakobsson, Niklas; Kotsadam, Andreas; Jakobsson, Siri Støre
2013-01-01
The purpose of this study was to examine the variables that explain attitudes toward same-sex marriage. Using recently collected Scandinavian data (from Norway and Sweden) with a high response rate, this study shows that gender, regular participation in religious activities, political ideology, education, whether the respondent lived in the capital city, and attitudes toward gender equality were important for attitudes toward same-sex marriage. Age and income were not important for attitudes toward same-sex marriage. Although both Norwegians and Swedes clearly favor same-sex marriage, Swedes are significantly more positive than Norwegians.
Role of central command in carotid baroreflex resetting in humans during static exercise
NASA Technical Reports Server (NTRS)
Ogoh, S.; Wasmund, W. L.; Keller, D. M.; O-Yurvati, A.; Gallagher, K. M.; Mitchell, J. H.; Raven, P. B.
2002-01-01
The purpose of the experiments was to examine the role of central command in the exercise-induced resetting of the carotid baroreflex. Eight subjects performed 30 % maximal voluntary contraction (MVC) static knee extension and flexion with manipulation of central command (CC) by patellar tendon vibration (PTV). The same subjects also performed static knee extension and flexion exercise without PTV at a force development that elicited the same ratings of perceived exertion (RPE) as those observed during exercise with PTV in order to assess involvement of the exercise pressor reflex. Carotid baroreflex (CBR) function curves were modelled from the heart rate (HR) and mean arterial pressure (MAP) responses to rapid changes in neck pressure and suction during steady state static exercise. Knee extension exercise with PTV (decreased CC activation) reset the CBR-HR and CBR-MAP to a lower operating pressure (P < 0.05) and knee flexion exercise with PTV (increased CC activation) reset the CBR-HR and CBR-MAP to a higher operating pressure (P < 0.05). Comparison between knee extension and flexion exercise at the same RPE with and without PTV found no difference in the resetting of the CBR-HR function curves (P > 0.05) suggesting the response was determined primarily by CC activation. However, the CBR-MAP function curves were reset to operating pressures determined by both exercise pressor reflex (EPR) and central command activation. Thus the physiological response to exercise requires CC activation to reset the carotid-cardiac reflex but requires either CC or EPR to reset the carotid-vasomotor reflex.
Social inclusion affects elderly suicide mortality.
Yur'yev, Andriy; Leppik, Lauri; Tooding, Liina-Mai; Sisask, Merike; Värnik, Peeter; Wu, Jing; Värnik, Airi
2010-12-01
National attitudes towards the elderly and their association with elderly suicide mortality in 26 European countries were assessed, and Eastern and Western European countries compared. For each country, mean age-adjusted, gender-specific elderly suicide rates in the last five years for which data had been available were obtained from the WHO European Mortality Database. Questions about citizens' attitudes towards the elderly were taken from the European Social Survey. Correlations between attitudes and suicide rates were analyzed using Pearson's test. Differences between mean scores for Western and Eastern European attitudes were calculated, and data on labor-market exit ages were obtained from the EUROSTAT database. Perception of the elderly as having higher status, recognition of their economic contribution and higher moral standards, and friendly feelings towards and admiration of them are inversely correlated with suicide mortality. Suicide rates are lower in countries where the elderly live with their families more often. Elderly suicide mortality and labor-market exit age are inversely correlated. In Eastern European countries, elderly people's status and economic contribution are seen as less important. Western Europeans regard the elderly with more admiration, consider them more friendly and more often have elderly relatives in the family. The data also show gender differences. Society's attitudes influence elderly suicide mortality; attitudes towards the elderly are more favorable among Western European citizens; and extended labor-market inclusion of the elderly is a suicide-protective factor.
Seidel, Allison K; Schetzina, Karen E; Freeman, Sherry C; Coulter, Meredith M; Colgrove, Nicole J
2013-03-01
Breast-feeding rates in rural and southeastern regions of the United States are lower than national rates and Healthy People 2020 targets. The objectives of this study were to understand current breast-feeding knowledge, attitudes, and beliefs among rural southern Appalachian adolescents and to explore whether a high school educational intervention designed to address the five tenets (knowledge, attitudes, intentions, perceived behavioral control, and subjective norms) of the theory of planned behavior may be effective in increasing future rates of breast-feeding in this population. An educational session including an interactive game was developed and administered to occupational health science students during a single class period in two county high schools. A presurvey and a postsurvey administered 2 weeks after the intervention were completed by students. Pre- and postsurveys were analyzed using paired t tests and Cohen d and potential differences based on sex and grade were explored. Both pre- and postsurveys were completed by 107 students (78%). Knowledge, attitudes about breast-feeding benefits, subjective norms, and intentions significantly improved following the intervention. Baseline knowledge and attitudes about breast-feeding benefits for mothers were low and demonstrated the greatest improvement. Offering breast-feeding education based on the theory of planned behavior in a single high school class session was effective in improving student knowledge, attitudes, and beliefs about breast-feeding and intention to breast-feed.
Clinical findings, child and mother psychosocial status in functional constipation.
Çağan Appak, Yeliz; Yalın Sapmaz, Şermin; Doğan, Güzide; Herdem, Ahmet; Özyurt, Beyhan Cengiz; Kasırga, Erhun
2017-11-01
Functional constipation (FC) is a common problem in childhood. In this study, we aimed to analyze the clinical and sociodemographic findings of patients with FC, parenting behaviors, and psychosocial states of children and parents. According to the Roma III diagnosis criteria, 32 patients with FC and 31 healthy controls were included. Patients' clinical and sociodemographic data set associated with constipation was determined. Strengths and Difficulties Questionnaire was used to screen the emotional and behavioral problems in children. To evaluate the parents and family, Beck Depression Inventory, State-Trait Anxiety Inventory, Parental Attitude Research Instrument were used. Emotional and peer problems subscale scores, parental concerns as well as over-parenting attitude were found higher in patients. Significant difference was also observed between the groups in terms of mean score of authoritarian attitude dimensions. Attitude of hostility and rejection and marital discordance was found to be significantly high in patient families. Our study revealed a decrease in the constipation rate with the increasing education level of parents, higher rate of constipation in families with less income than expenses, and lower rate of working mothers in patients with constipation. Parents' depressive symptoms and anxiety level were determined to be considerably higher. A mother's low education level, low socioeconomic level, presence of psychological symptoms, and problems of parental attitude-primarily the authoritarian attitude-increase the risk of FC occurrence. Therefore, FC patients and their families should definitely undergo a psychosocial assessment.
MAP Attitude Control System Design and Flight Performance
NASA Technical Reports Server (NTRS)
Andrews, S. F.; ODonnell, J. R.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used that will cover the entire celestial sphere in six months. The spin rate should be an order of magnitude higher than the precession rate, and each rate should be tightly controlled. The sunline angle should be 22.5 +/- 0.25 deg. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.3 arc-minutes RSS three axes. In addition, the spacecraft must be able to acquire and hold the sunline at initial acquisition, and in the event of a failure. Finally. the spacecraft must be able to slew to the proper burn orientations and to the proper off-sunline attitude to start the compound spin. The design and flight performance of the Attitude Control System on MAP that meets these requirements will be discussed.
Attitudes to Cadaveric Organ Donation in Irish Preclinical Medical Students
ERIC Educational Resources Information Center
Cahill, Kevin C.; Ettarh, Rajunor R.
2011-01-01
There is a worldwide shortage of organs for transplantation. It has been shown that the attitude of healthcare professionals can improve the rates of organ donation, and that educational programs aimed at improving both attitudes and knowledge base of professionals can have positive outcomes. Although there has been research carried out on this…
Anxiety and Attitude of Graduate Students in On-Campus vs. Online Statistics Courses
ERIC Educational Resources Information Center
DeVaney, Thomas A.
2010-01-01
This study compared levels of statistics anxiety and attitude toward statistics for graduate students in on-campus and online statistics courses. The Survey of Attitudes Toward Statistics and three subscales of the Statistics Anxiety Rating Scale were administered at the beginning and end of graduate level educational statistic courses.…
Implicit and Explicit Attitudes of Educators toward the Emotional Disturbance Label
ERIC Educational Resources Information Center
Jones, James Patrick
2009-01-01
This study examined implicit and explicit attitudes of teachers toward the Emotional Disturbance (ED) label, the strength of association between implicit and explicit ratings, and the variance in attitudes between different types of teachers or among teachers in different settings. Ninety-eight teachers (52 regular education and 46 special…
Fruit and vegetable attitudes, norms, and intake in low-income youth
USDA-ARS?s Scientific Manuscript database
Fruit and vegetable (FV) attitudes and norms have been shown to influence intake in youth; yet research with low-income youth and studies supplementing self-report with objective measures of intake are lacking. Cross-sectional survey data on self-rated FV intake, FV attitudes, and FV norms were coll...
Taylor; Fuggle, P; Charman, T
2001-10-01
The psychological adjustment of healthy siblings was investigated in relation to their attitudes and perceptions about their brother's or sister's chronic physical disorder, to their mothers' awareness of these attitudes and perceptions, and to three other maternal factors (maternal distress, maternal social support, and amount of care demanded by the physical disorder). Sixty-two well siblings and mothers of children with a range of chronic physical disorders completed standardised questionnaires. The majority of siblings did not appear to have adjustment problems, although the sample had slightly increased rates of emotional symptoms compared to the general population. Mothers rated well siblings as having more negative attitudes and perceptions about the physical disorder than reported by siblings themselves. A multiple regression analysis indicated that better sibling adjustment was associated with higher maternal awareness of their attitudes and perceptions. These findings support Varni and Wallander's (1998) model that emphasises the role of relationship and attitude variables in child adjustment to chronic physical disorder. The implications of these findings for clinical practice are discussed.
Precision Attitude Control for the BETTII Balloon-Borne Interferometer
NASA Technical Reports Server (NTRS)
Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen
2012-01-01
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.
75 FR 51191 - Great Lakes Pilotage Rates-2011 Annual Review and Adjustment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
...-AB48 Great Lakes Pilotage Rates--2011 Annual Review and Adjustment AGENCY: Coast Guard, DHS. ACTION... the Great Lakes to generate sufficient revenue to cover allowable expenses, target pilot compensation..., Chief, Great Lakes Pilotage Division, Commandant (CG-5522), U.S. Coast Guard, at 202-372-1535, by fax...
Quality and adequacy of training of expanded function dental auxiliaries in the U.S. Army.
Chisick, M C
1994-08-01
This study explores the quality and adequacy of training U.S. Army expanded function dental auxiliaries (X2s). Data were collected in the spring of 1989 using self-administered questionnaires from dental commanders, clinic chiefs, X2 graduates, dentists working with X2s, and potential X2 students. Nearly all (94.2%) dental activities personnel responded. Results show overall performance of X2s was rated excellent or very good by 76% of commanders, 70% of clinic chiefs, and 42% of dentists. Of 23 job-specific tasks assessed, X2s received lowest performance ratings for placement of complex composite restorations and highest ratings for individual topical fluoride application. Of X2 graduates, 82% rated the overall quality of X2 training as very good or excellent. X2 graduates and their supervisors recommend retaining each job-specific skill in the X2 training program while lengthening the program from 16 to 28-30 weeks. Training of U.S. Army X2s may offer a model to other dental care systems with limited resources.
On-board data management study for EOPAP
NASA Technical Reports Server (NTRS)
Davisson, L. D.
1975-01-01
The requirements, implementation techniques, and mission analysis associated with on-board data management for EOPAP were studied. SEASAT-A was used as a baseline, and the storage requirements, data rates, and information extraction requirements were investigated for each of the following proposed SEASAT sensors: a short pulse 13.9 GHz radar, a long pulse 13.9 GHz radar, a synthetic aperture radar, a multispectral passive microwave radiometer facility, and an infrared/visible very high resolution radiometer (VHRR). Rate distortion theory was applied to determine theoretical minimum data rates and compared with the rates required by practical techniques. It was concluded that practical techniques can be used which approach the theoretically optimum based upon an empirically determined source random process model. The results of the preceding investigations were used to recommend an on-board data management system for (1) data compression through information extraction, optimal noiseless coding, source coding with distortion, data buffering, and data selection under command or as a function of data activity, (2) for command handling, (3) for spacecraft operation and control, and (4) for experiment operation and monitoring.
Quadcopter Control Using Speech Recognition
NASA Astrophysics Data System (ADS)
Malik, H.; Darma, S.; Soekirno, S.
2018-04-01
This research reported a comparison from a success rate of speech recognition systems that used two types of databases they were existing databases and new databases, that were implemented into quadcopter as motion control. Speech recognition system was using Mel frequency cepstral coefficient method (MFCC) as feature extraction that was trained using recursive neural network method (RNN). MFCC method was one of the feature extraction methods that most used for speech recognition. This method has a success rate of 80% - 95%. Existing database was used to measure the success rate of RNN method. The new database was created using Indonesian language and then the success rate was compared with results from an existing database. Sound input from the microphone was processed on a DSP module with MFCC method to get the characteristic values. Then, the characteristic values were trained using the RNN which result was a command. The command became a control input to the single board computer (SBC) which result was the movement of the quadcopter. On SBC, we used robot operating system (ROS) as the kernel (Operating System).
Hsu, Hao-Teng; Lee, I-Hui; Tsai, Han-Ting; Chang, Hsiang-Chih; Shyu, Kuo-Kai; Hsu, Chuan-Chih; Chang, Hsiao-Huang; Yeh, Ting-Kuang; Chang, Chun-Yen; Lee, Po-Lei
2016-05-01
This paper studies the amplitude-frequency characteristic of frontal steady-state visual evoked potential (SSVEP) and its feasibility as a control signal for brain computer interface (BCI). SSVEPs induced by different stimulation frequencies, from 13 ~ 31 Hz in 2 Hz steps, were measured in eight young subjects, eight elders and seven ALS patients. Each subject was requested to participate in a calibration study and an application study. The calibration study was designed to find the amplitude-frequency characteristics of SSVEPs recorded from Oz and Fpz positions, while the application study was designed to test the feasibility of using frontal SSVEP to control a two-command SSVEP-based BCI. The SSVEP amplitude was detected by an epoch-average process which enables artifact-contaminated epochs can be removed. The seven ALS patients were severely impaired, and four patients, who were incapable of completing our BCI task, were excluded from calculation of BCI performance. The averaged accuracies, command transfer intervals and information transfer rates in operating frontal SSVEP-based BCI were 96.1%, 3.43 s/command, and 14.42 bits/min in young subjects; 91.8%, 6.22 s/command, and 6.16 bits/min in elders; 81.2%, 12.14 s/command, and 1.51 bits/min in ALS patients, respectively. The frontal SSVEP could be an alternative choice to design SSVEP-based BCI.
Trilateration range and range rate system. Volume 1: CDA system manual
NASA Technical Reports Server (NTRS)
1976-01-01
This document is one of a series of manuals designed to provide the information required to operate and maintain the Command and Data Acquisition (CDA) equipment of the Trilateration Range and Range Rate (TRRR) System. Information pertaining to the equipment in the Trilateration Range and Range Rate System which is designed to interface with existing NASA equipment located at Wallops Island, Virginia is presented.